LSF at SLAC

Using the SIMES Batch Cluster

Neal Adams
Stanford Linear Accelerator Center
neal@slac.stanford.edu
Useful LSF Commands

bsub submit a batch job to LSF
bjobs display batch job information
bkill kill batch job
bmod modify job submission options
bqueues display batch queue information
busers displays information about batch users
lshosts display LSF host information

For more details use: man <command_name>.
Useful LSF Commands

• bqueues

```
87 iris01 neal/bin> bqueues
QUEUE_NAME  PRIO  STATUS    MAX  JL/U  JL/P  JL/H  NJOBS  PEND  RUN  SUSP
... simesq  192  Open:Active  -   -   -   -   728   0   728   0
simesgpuq  191  Open:Active  -   -   -   -   64   0   64   0
... short  185  Open:Active  -   -   -   -   0   0   0   0
medium  180  Open:Active  -   -   -   -   153  102   51   0
long  175  Open:Active  -   -   -   -   897  757  140   0
xlong  170  Open:Active  -   -   1   2   1636  1359  277   0
xxl  165  Open:Active  160  64   -   1   56   1   55   0
...```

• busers

```
85 iris01 neal/bin> busers
USER/GROUP JL/P MAX NJOBS PEND RUN SSUSP USUSP RSV
neal - - 0 0 0 0 0 0

79 sprocket sf/neal> busers kemper
USER/GROUP JL/P MAX NJOBS PEND RUN SSUSP USUSP RSV
kemper - - 384 0 384 0 0 0
```
Useful LSF Commands

- lshosts

```
50 sprocket sf/neal> lshosts
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
farmboss1 LINUX AMD_2400 6.7 4 15976M 16386M Yes (linux linux64 rhel40 master)
farmboss2 LINUX AMD_2400 6.7 4 15976M 16386M Yes (linux linux64 rhel40 master)
farmanfs SUN5 UF_900 2.8 2 4096M 7209M Yes (solaris sol9 master)
farmhand SUN5 UT1_440 1.0 1 256M 2220M Yes (bcs solaris sol9)
sunlics1 SUN5 UT1_440 1.0 2 2048M 5731M Yes (lics solaris sol10)
sunlics2 SUN5 UT1_440 1.0 2 2048M 3673M Yes (lics solaris sol10)
sunlics3 SUN5 UT1_440 1.0 2 2048M 5726M Yes (lics solaris sol10)
sprocket LINUX PC_200 0.5 1 2009M 4094M Yes (linux linux64 rhel40 dungheap)
adam MACOSX G5_2000 4.8 - - - Yes (macosx ppc_darwin)
[...]```

```
51 sprocket sf/neal> lshosts simes0001
HOST_NAME      type    model   cpuf ncpus maxmem maxswp server RESOURCES
simes0001      LINUX    INTEL_26  11.0    8 15918M 32767M    Yes (bs linux linux64 rhel50 simes)```
Using bsub

• To submit batch jobs to the SLAC LSF cluster use the `bsub` command.

  `bsub [bsub options] command [arguments]`

  For example:

  `bsub -o outputfilename date -u`
Using bsub

Example of a simple bsub:

```
iris01 sf/neal> bsub hostname
Job <235254> is submitted to default queue <short>.

iris01 sf/neal> bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
235254 neal PEND short iris01 hostname Mar 4 19:17

iris01 sf/neal> bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
235254 neal RUN short iris01 yili0146 hostname Mar 4 19:17

iris01 sf/neal> bjobs 235254
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
235254 neal DONE short iris01 yili0146 hostname Mar 4 19:17
```
Using bsub

Output from my simple batch job:
Job <hostname> was submitted from host <iris01> by user <neal>.
Job was executed on host(s) <yili0146>, in queue <short>, as user <neal>.
</u/sf/neal> was used as the home directory.
</u/sf/neal> was used as the working directory.
Started at Sun Mar  4 19:21:19 2007
Results reported at Sun Mar  4 19:21:57 2007
Your job looked like:

------------------------------------------------------------------------
# LSBATCH: User input
hostname
------------------------------------------------------------------------

Successfully completed.
Resource usage summary:
CPU time : 0.22 sec.
Max Memory : 3 MB
Max Swap : 11 MB
Max Processes : 3
Max Threads : 3

The output (if any) follows:
yili0146
Using bsub

Default behavior using bsub at SLAC.

• Job will be submitted to the default *short* job queue.

• Output will be returned via email.

• Job will be scheduled on a host of the same OS type.

  SUN5
  LINUX
  MACOSX
  WINDOWS
A few useful bsub options.

• Submit with a CPU limit (normalized): `bsub -c`
  
  Example: `bsub -c 24:00 date`

• Submit with a RUN limit (wallclock): `bsub -W`
  
  Example: `bsub -W 24:00 date`

• Submit with a jobname: `bsub -J “job_name”`
  
  Example: `bsub -J “Date_job” date`
Batch Job Scheduling Policy

- By default LSF is configured for FCFS scheduling.

- SLAC uses fairshare scheduling in the general queues.

- Fairshare controls how resources are shared between competing users or user groups.

- Job priorities are dynamic and change based upon your usage in the queues over the last few days. (Usage values decay over a period of hours.)
The SIMES Cluster

- **SIMES Servers** *(simesfarm)*
  - 64 Dell 1950 Dual-CPU Quad-Core Intel(R) Xeon(R) CPU X5355 @ 2.66GHz
  - 20 Dell C6100 Dual-CPU Hex-Core Intel(R) Xeon(R) CPU X5675 @ 3.07GHz
  - 752 cores (job slots)
  - ~380GB local /scratch space (simes0001-64); ~64GB (simes0065-84)
  - Infiniband

- **Dedicated LSF MPI queue** *(simesq)*
  - Access controlled via LSF user group *(simes)*

- **Two login nodes accessible from SLAC interactive servers.**
  - simes0001
  - simes0002
The SIMES GPU Cluster

- SIMES GPU Servers (**simesgpufarm**)
  - 4 Colfax Dual-CPU Quad-Core Intel(R) Xeon(R) CPU X5520 @ 2.27GHz
  - 72 cores (job slots)
  - 8 nVidia Tesla (Fermi) GPUs

- Dedicated LSF MPI queue (**simesgpuq**)
  - Access controlled via LSF user group (**simes**)

- One login node accessible from SLAC interactive servers.
  - simes-gpu
  - SuperMicro Intel(R) Xeon(R) CPU E5520 @ 2.27GHz
The SIMES Cluster

iris01 sf/neal> bqueues -l simesq

QUEUE: simesq
   -- SIMES MPI queue.

PARAMETERS/STATISTICS
PRIO NICE STATUS       MAX JL/U JL/P JL/H NJOBS PEND  RUN SSUSP USUSP  RSV
192  0 Open:Active      -     -     -     -  288   0  288   0   0   0

[...]

USERS: simes/
HOSTS: simesfarm/
ADMINISTRATORS: moritzb
RES_REQ: select[type==LINUX] span[]

JOB_CONTROLS:
   TERMINATE   [kill -CONT -$LSB_JOBRES_PID -$LSB_PAMPID; kill -TERM -$LSB_JOBRES_PID - $LSB_PAMPID]
Submitting jobs to the SIMES Cluster

Using bsub to submit OpenMPI jobs to simesq.

71 iris01 sf/neal> bsub -q simesq -a mympi -n 10 -o ~/neal/tmp/simestest.out ~/neal/MPI/openmpi/rhel40/hello

Job <381464> is submitted to queue <simesq>.

78 sprocket sf/neal> bjobs -l 381464

Job <381464>, User <neal>, Project <none>, Status <DONE>, Queue <simesq>, Job Priority <50>,
Command <pam -g 1 mympirun_wrapper /u/sf/neal/MPI/openmpi/rhel40/hello>
Tue Jul  8 16:04:22: Submitted from host <iris01>, CWD <$HOME>, Output File <
~/u/sf/neal/tmp/simestest.out>, 10 Processors Requested;
Tue Jul  8 16:04:31: Started on 10 Hosts/Processors <8*simes0005> <2*simes0004>
, Execution Home </u/sf/neal>, Execution CWD </u/sf/neal>;

Tue Jul  8 16:04:35: Done successfully. The CPU time used is 1.3 seconds.
Submitting jobs to the SIMES Cluster

Using bsub to submit OpenMPI job to simesq overriding default queue ptile option.

```bash
iris01 sf/neal> bsub -q simesq -a mympi -n 4 -R "span[ptile=1]" -o ~neal/tmp/simes4.out ~neal/MPI/openmpi/rhel40/hello
Job <354171> is submitted to queue <simesq>.

The span[ptile=1] option will tell LSF to schedule the job using 1 processor on each host.

iris01 sf/neal> bjobs -l 354171

Job <354171>, User <neal>, Project <none>, Status <DONE>, Queue <simesq>, Job Priority <50>,
Command <pam -g 1 mympirun_wrapper /u/sf/neal/MPI/openmpi/rhel40/hello>
Tue Jul 8 13:00:04: Submitted from host <iris01>, CWD <$HOME>, Output File
< /u/sf/neal/tmp/simes4.out>, 4 Processors Requested, Requested Resources <span[ptile=1]>;
Tue Jul 8 13:00:13: Started on 4 Hosts/Processors <1*simes0049> <1*simes0035>
<1*simes0021> <1*simes0028>, Execution Home </u/sf/neal>,
Execution CWD </u/sf/neal>;
Tue Jul 8 13:00:16: Done successfully. The CPU time used is 0.7 seconds.
```
Submitting jobs to the SIMES Cluster

Using bsub to submit OpenMPI job to simesq requesting scratch > 100GB.

```
iris01 sf/neal> bsub -q simesq -a openmpi -n 10 -R "scratch > 100" -o ~neal/tmp/simesfun.out -neal/MPI/openmpi/rhel40/hello
Job <387815> is submitted to queue <simesq>.

iris01 sf/neal> bjobs -l 387815
Job <387815>, User <neal>, Project <none>, Status <DONE>, Queue <simesq>, Job Priority <50>, Command <pam -g 1 openmpirun_wrapper /u/sf/neal/MPI/openmpi/rhel40/hello>
Tue Jul 8 17:36:44: Submitted from host <iris01>, CWD <$HOME/bin>, Output File <u/sf/neal/tmp/simesfun.out>, 10 Processors Requested, Requested Resources <scratch > 100>;
Tue Jul 8 17:36:54: Started on 10 Hosts/Processors <8*simes0033> <2*simes0058>, Execution Home </u/sf/neal>, Execution CWD </u/sf/neal/bin>;
Tue Jul 8 17:36:58: Done successfully. The CPU time used is 1.2 seconds.
```

```
108 sprocket neal/bin> lsload -I scratch simes0033 simes0058
HOST_NAME status scratch
simes0058 ok 377.0
simes0033 ok 377.0
```
Submitting jobs to the SIMES Cluster

Using bsub to submit OpenMPI job to simesq requesting two processors on each host and scratch > 300GB.

41 iris02 sf/neal> bsub -q simesq -a mympi -n 4 -R "span[ptile=2] && scratch>300" -o ~neal/tmp/scratchit.out ~neal/MPI/openmpi/rhel40/hello
Job <390941> is submitted to queue <simesq>.

42 iris02 sf/neal> bjobs -l 390941

Job <390941>, User <neal>, Project <none>, Status <DONE>, Queue <simesq>, Job Priority <50>, Command <pam -g 1 mympirun_wrapper /u/sf/neal/MPI/openmpi/rhel40/hello>
Tue Jul  8 18:20:50: Submitted from host <iris02>, CWD <$HOME>, Output File </u/sf/neal/tmp/scratchit.out>, 4 Processors Requested, Requested Resources <span[ptile=2] && scratch>300>;
Tue Jul  8 18:21:02: Started on 4 Hosts/Processors <2*simes0020> <2*simes0006>, Execution Home </u/sf/neal>, Execution CWD </u/sf/neal>;
Tue Jul  8 18:21:06: Done successfully. The CPU time used is 0.3 seconds.

108 sprocket neal/bin> lsload -I scratch simes0030 simes0006
HOST_NAME       status scratch
simes0006        ok   377.0
simes0030        ok   377.0
LSF Documentation

• **SLAC specific LSF documentation.**
  
  http://www.slac.stanford.edu/comp/unix
  Click on “High Performance”

• **Platform LSF documentation.**
  
Problem Reporting

Send email to:

unix-admin@slac.stanford.edu