Two-body Charmless Hadronic B decays: $B \to K^0 h$, $B \to h^+ \pi^0$

Daniele del Re
BaBar collaboration

Univ. di Roma “La Sapienza”
and INFN (Rome)

Flavour Physics Session
APS
05-01-2001
The measurements of charmless hadronic BR

• **Charmless two body B decays:**

 \[
 B \rightarrow h^- h^+ \\
 B \rightarrow K_s h^{(+,0)} \\
 \begin{aligned}
 B &\rightarrow h^+ \pi^0 \\
 \end{aligned}
 \}

 at least one neutral particle

• The measurement of these branching ratios could help in extraction of parameters of the Standard Model

• Small BR → high statistic is needed
 → BaBar recorded \(~23\) million of B’s
The measurements of charmless hadronic BR

Discriminant variables:

\begin{align*}
\text{Sphericity, } R2 \\
\text{Fisher discriminant}
\end{align*}
\begin{align*}
\text{High momentum} \\
M_{ES} &= \sqrt{\frac{1}{2} \frac{s + p_0 \cdot p_B}{E_0^2 - p_B^2}} \\
\Delta E &= E_B^* - \sqrt{s}/2
\end{align*}
\begin{align*}
\theta \text{ Cherenkov} \\
\Rightarrow \text{ Unbinned Maximum Likelihood}
\end{align*}
Detected Internally Reflected Cherenkov light.

- 144 fused silica bars (1.7 cm thick)
- 11000 PMTs
- 10 mrad single photon resolution
Reconstruction of K_s

- K_s reconstructed only in $\pi^+\pi^-$ channel ($\text{BF} \sim 68\%$)
- Basically two cuts:

 1. K_s mass
 \[|m_{K_s} - m_{PDG}| < 11.2 \text{ MeV} \quad (\rightarrow 3.5 \sigma) \]

 2. Decay time significance
 \[\frac{\tau_{K_s}}{\sigma_{\tau_{K_s}}} > 5 \]

\[\text{BABAR} \]

histo = bkg
dots = K_s signal
Reconstruction of π^0

- Cuts on: γ energy (>30 MeV)
- lateral momentum (shower shape)
- π^0 energy (>1.0 GeV)
- π^0 mass $\sigma(M \pi^0)$ ~ 8.5 MeV, 3σ cut
 \rightarrow 110 $< M(\gamma \gamma) <$ 160 MeV/c^2
- $\cos \theta^*(\gamma)$ (<0.95)
M_{ES} and ΔE parametrization

- M_{ES}:
 - Signal from $B \to D\pi$ ($B \to D\rho$)
 - Bkg \Rightarrow argus
 - (from ΔE sidebands)

- ΔE:
 - Different value for Kh and πh
 - MC \to data resol. rescaled using $B \to D\pi$ ($B \to D\rho$)

Daniele del Re - APS 05-01-01
• **Fisher:**

 signal from MC

 background M_{ES} sidebands

 control sample used

 $B \rightarrow D\pi$ ($B \rightarrow D\rho$)
• \(\theta \) Cherenkov:
parametrization of \(\theta c \) vs momentum from
\(D^* \to D\pi \) (ccbar events)

satellite peak due to misID

included in the PDF
Systematics

<table>
<thead>
<tr>
<th></th>
<th>$B \to K_s \pi^+$</th>
<th>$B \to K_s \pi^0$</th>
<th>$B \to K^+ \pi^0$</th>
<th>$B \to \pi^+ \pi^0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDF parametriz</td>
<td>+7.9%</td>
<td>+10.2%</td>
<td>+7.4%</td>
<td>+14.5%</td>
</tr>
<tr>
<td></td>
<td>-10.1%</td>
<td>-11.2%</td>
<td>-9.5%</td>
<td>-14.3%</td>
</tr>
<tr>
<td>K_s, π^0 reco, tracking</td>
<td>±3.8%</td>
<td>±6.4%</td>
<td>±5.1%</td>
<td>±5.1%</td>
</tr>
<tr>
<td>B counting</td>
<td>±1.6%</td>
<td>±1.6%</td>
<td>±1.6%</td>
<td>±1.6%</td>
</tr>
<tr>
<td>Total</td>
<td>+8.9%</td>
<td>+12.2%</td>
<td>+9.1%</td>
<td>+15.5%</td>
</tr>
<tr>
<td></td>
<td>-10.9%</td>
<td>-13.0%</td>
<td>-10.6%</td>
<td>-15.3%</td>
</tr>
</tbody>
</table>
Results ($B \rightarrow K^0h^{(+,0)}$)

<table>
<thead>
<tr>
<th>Mode</th>
<th>N_S</th>
<th>Stat. Sig. (σ)</th>
<th>$\mathcal{B} \times 10^{-6}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^0\pi^+$</td>
<td>59_{-10}^{+11}</td>
<td>9.8</td>
<td>$18.2_{-3.0}^{+3.3+1.6}$</td>
</tr>
<tr>
<td>K^0K^+</td>
<td>$0(<8)$</td>
<td>0</td>
<td><2.6</td>
</tr>
<tr>
<td>$K^0\pi^0$</td>
<td>$17.9_{-5.8}^{+6.8}$</td>
<td>4.5</td>
<td>$8.2_{-2.7}^{+3.1+1.1}$</td>
</tr>
</tbody>
</table>

M_{ES}

- $K^0\pi^+$
- $K^0\pi^0$

ΔE

- $K^0\pi^+$
- $K^0\pi^0$
Results ($B \to h^+ \pi^0$)

Upper limit $B(10^{-6}) < 9.0$

<table>
<thead>
<tr>
<th>Mode</th>
<th>N_S</th>
<th>Stat. Sig. (σ)</th>
<th>$B(10^{-6})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi^0 \pi^+$</td>
<td>37^{+15}_{-13}</td>
<td>3.4</td>
<td>$5.1^{+2.0}_{-1.8} \pm 0.8$</td>
</tr>
<tr>
<td>$\pi^0 K^+$</td>
<td>75^{+14}_{-13}</td>
<td>8.0</td>
<td>$10.8^{+2.1+1.0}_{-1.9-1.2}$</td>
</tr>
</tbody>
</table>

M_{ES}

ΔE

Daniele del Re - APS 05-01-01
Measurement of Asymmetries

• The measurement of the asymmetries corresponds to the measurement of the direct CP violation

• the result for h^+h^0 channels are:

\[B \rightarrow K_s\pi^+ : \quad A_{K_S\pi^+} = -0.21 \pm 0.18 \pm 0.03 \]

\[B \rightarrow K^+\pi^0 : \quad A_{K^+\pi^0} = 0.00 \pm 0.18 \pm 0.04 \]

• systematic uncertainty comes from

1) asymmetry in tracking (eval. from τ decays)
2) asymmetry in PID (detector effect)

this is evaluated by using $D^0 \rightarrow K\pi$

3) PDF variation
Future

• The measures of BR and asymmetries are still statistically limited

• BaBar will take an equivalent amount of data by the summer

• In the near future we will be able to measure the time dependent asymmetry (for $\pi\pi \Rightarrow \sin 2\alpha$)