Measurement of $B \to D_s(\ast) D(\ast)$ Branching Fractions at Babar

Bram Lillard (Univ. of Maryland)
APS meeting April, 30 2001
Motivation/Theory

- Large Branching Fractions! $\Sigma Br(B \rightarrow D_s(\ast) D^{(\ast)}) \sim 5\%$
 (large sample for systematic study of double-charm B decays…)

Goals:

- Measure precisely branching ratios for 8 modes
 $B^0 \rightarrow D_s(\ast)+ D^{(\ast)-}$ $B^+ \rightarrow D_s(\ast)+ \bar{D}^{(\ast)0}$

- Measure transversity amplitudes for $B \rightarrow D_s^{(*)+} \bar{D}^{(*)}$ modes

- Use BR measurements to test theory for hadron dynamics in high q^2 two-body decays
Detector & Data

- Used fully reconstructed B mesons from e^+e^- collisions ($\sqrt{s} = 10.58$ GeV)
- Data set: 23×10^6 $B\bar{B}$ pairs recorded by BaBar detector
Decay Modes

8 modes to study:

\[\begin{align*}
B^0 & \rightarrow D_s^+ D^- \\
B^0 & \rightarrow D_s^+ D^{*-} \\
B^0 & \rightarrow D_s^{*-} D^- \\
B^0 & \rightarrow D_s^{*-} D^{*-}
\end{align*} \quad \begin{align*}
B^+ & \rightarrow D_s^+ D^0 \\
B^+ & \rightarrow D_s^+ D^{*-} \\
B^+ & \rightarrow D_s^{*-} D^0 \\
B^+ & \rightarrow D_s^{*-} D^{*-}
\end{align*} \]

\[D_s^{*+} \rightarrow D_s^+ \gamma \]

\[\phi \pi^+ \rightarrow K^- K^+ \pi^+ \]

\[D_s^0 \rightarrow D^0 \pi^0 \]

\[D_s^{*+} \rightarrow D^0 \pi^+ \]

\[K^- \pi^+ \]

\[K^- \pi^+ \pi^0 \]

\[K^- \pi^+ \pi^+ \pi^- \]

\[D^+ \rightarrow K^- \pi^+ \pi^+ \]

Events selected by cut criteria…

- Kaons required to have particle ID info from dE/dx (Drift chamber) and Cherenkov angle (DIRC)

- Events with B mesons are more spherical – cut on event shape parameters to remove jetty continuum (q\bar{q}) events

- Combine reconstructed tracks to form composite particles, require candidates to pass kinematic constraints (inv. mass cuts, vertexing, etc.)
D_{s}(*), D(*) Selection

- Require mass of reconstructed D_{s}’s to be within $\sim 3\sigma$ of nominal D_{s} mass

- Require $\Delta m = \text{mass}(D_{s}\gamma) - \text{mass}(D_{s})$ be within 27 MeV window

Other cuts:

<table>
<thead>
<tr>
<th>Cut variable</th>
<th>Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{D^{*+}} - M_{D_{0}}$</td>
<td>6 MeV</td>
</tr>
<tr>
<td>$M_{D^{*0}} - M_{D_{0}}$</td>
<td>6 MeV</td>
</tr>
<tr>
<td>$M_{D_{0}} - M_{\text{PDG}}$</td>
<td>42 MeV</td>
</tr>
<tr>
<td>$M_{\phi} - M_{\text{PDG}}$</td>
<td>16 MeV</td>
</tr>
<tr>
<td>$M_{\pi^{0}}$</td>
<td>35 MeV</td>
</tr>
</tbody>
</table>
B Candidate Selection

- Constrain mass of daughters of B candidates and require daughters come from the same vertex.

- Define $\Delta E = E_{B_0}^* - E_{beam}^*$
 For data, require $-28 < \Delta E < 20$ MeV, and choose 'best' B candidate by the lowest ΔE.

- Define $m_{ES} = \sqrt{E_{beam}^* - p_B^*}$
 (* = center of mass frame)

 In data, will fit m_{ES} distribution to determine number of signal events.
Background studies in Monte Carlo:

• Perform analysis on generic $B^0\overline{B}^0$ & B^+B^- events, take out real signal

• Fit background distributions to ARGUS function to parameterize bkgd. contribution

• Constrain background shape in data to what is measured in MC

\[B^{-} \rightarrow D^{*+}D^{0}, \text{ PRELIMINARY} \]
Signal (Data)

- Fit m_{ES} distributions
 - **ARGUS** for bkgd.
 - **gaussian** for signal

<table>
<thead>
<tr>
<th>Decay Mode</th>
<th>No. events from fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \rightarrow D_s^+ D^-$</td>
<td>35.8 ± 6.1</td>
</tr>
<tr>
<td>$B^0 \rightarrow D_s^+ D^{*-}$</td>
<td>46.3 ± 7.2</td>
</tr>
<tr>
<td>$B^0 \rightarrow D_s^{**} D^-$</td>
<td>23.9 ± 5.1</td>
</tr>
<tr>
<td>$B^0 \rightarrow D_s^{**} D^{*-}$</td>
<td>44.7 ± 6.8</td>
</tr>
<tr>
<td>All B^0</td>
<td>150.7 ± 12.7</td>
</tr>
<tr>
<td>$B^+ \rightarrow D_s^+ \bar{D}^0$</td>
<td>124.9 ± 11.8</td>
</tr>
<tr>
<td>$B^+ \rightarrow D_s^+ \bar{D}^{*0}$</td>
<td>34.1 ± 6.1</td>
</tr>
<tr>
<td>$B^+ \rightarrow D_s^{**} \bar{D}^0$</td>
<td>121.2 ± 13.2</td>
</tr>
<tr>
<td>$B^+ \rightarrow D_s^{**} \bar{D}^{*0}$</td>
<td>42.0 ± 6.8</td>
</tr>
<tr>
<td>All B^+</td>
<td>322.1 ± 19.9</td>
</tr>
<tr>
<td>$B \rightarrow D_s^{()} + \bar{D}^{()}$</td>
<td>472.8 ± 23.6</td>
</tr>
</tbody>
</table>
Signal (Data)

All B^0 modes

All B^+ modes
Branching Ratios

\[\text{Br}(B \to D_s^{(*)+} D^{(*)}) = \frac{1}{N_{BB}} \sum_i \sum_j \text{Br}_i \text{Br}_j \varepsilon_{ij} \]

Number of BB pairs produced

Branching fractions of \(D_s^{(*)}\) and \(D^{(*)}\)

<table>
<thead>
<tr>
<th>Decay Mode</th>
<th>BR(%) (BABAR)</th>
<th>BR(%) (CLEO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B^0 \to D_s^+ D^-)</td>
<td>0.59 ± 0.10 ± 0.07 ± 0.15</td>
<td>0.85 ± 0.23 ± 0.19 ± 0.21</td>
</tr>
<tr>
<td>(B^0 \to D_s^+ D^*^-)</td>
<td>0.74 ± 0.11 ± 0.10 ± 0.18</td>
<td>0.90 ± 0.22 ± 0.16 ± 0.23</td>
</tr>
<tr>
<td>(B^0 \to D_s^{*+} D^-)</td>
<td>0.76 ± 0.17 ± 0.11 ± 0.19</td>
<td>0.97 ± 0.34 ± 0.21 ± 0.24</td>
</tr>
<tr>
<td>(B^0 \to D_s^{+} D^^-)</td>
<td>1.41 ± 0.22 ± 0.18 ± 0.35</td>
<td>1.97 ± 0.49 ± 0.35 ± 0.49</td>
</tr>
<tr>
<td>(B^+ \to D_s^+ \bar{D}^0)</td>
<td>0.93 ± 0.09 ± 0.11 ± 0.23</td>
<td>1.23 ± 0.21 ± 0.24 ± 0.31</td>
</tr>
<tr>
<td>(B^+ \to D_s^+ \bar{D}^{*0})</td>
<td>0.95 ± 0.18 ± 0.13 ± 0.24</td>
<td>1.36 ± 0.42 ± 0.34 ± 0.34</td>
</tr>
<tr>
<td>(B^+ \to D_s^{*+} \bar{D}^0)</td>
<td>0.76 ± 0.10 ± 0.10 ± 0.19</td>
<td>0.85 ± 0.26 ± 0.17 ± 0.21</td>
</tr>
<tr>
<td>(B^+ \to D_s^{*+} \bar{D}^{*0})</td>
<td>2.13 ± 0.36 ± 0.31 ± 0.53</td>
<td>3.01 ± 0.86 ± 0.63 ± 0.75</td>
</tr>
</tbody>
</table>

Number of Signal events seen

Reconstruction Efficiency for each decay mode (determined in Monte Carlo study)
Summary

- Measured 8 branching fractions for B mesons corresponding to the $b \rightarrow c\bar{c}s$ transition
- Results consistent with previous measurements but with smaller statistical and systematic errors
- Systematic uncertainties dominated by tracking efficiency and errors on secondary branching ratios
- Added large sample of $B \rightarrow D_s^{(*)}D^{(*)}$ decays (~470 events) to the sample of fully reconstructed B mesons
 - Transversity analysis soon to come!