Search for B-Meson Decays to Two-body Final States with $a_0(980)$ Mesons

We present a search for B decays to charmless final states involving charged or neutral a_0 mesons. The data sample corresponds to 89 million $B\bar{B}$ pairs collected with the BABAR detector operating at the PEP-II asymmetric-energy B Factory at SLAC. We find no significant signals and determine the following 90% C.L. upper limits: $\mathcal{B}(B^0 \to a_0^+ \pi^+) < 5.1 \times 10^{-6}$, $\mathcal{B}(B^0 \to a_0^+ K^+) < 2.1 \times 10^{-6}$, $\mathcal{B}(B^- \to a_0^0 \bar{K}^0) < 3.9 \times 10^{-6}$, $\mathcal{B}(B^+ \to a_0^0 \pi^+) < 5.8 \times 10^{-6}$, $\mathcal{B}(B^+ \to a_0^0 K^+) < 2.5 \times 10^{-6}$, and $\mathcal{B}(B^0 \to a_0^0 (K^0) < 7.8 \times 10^{-6}$, where in all cases \mathcal{B} indicates the product of branching fractions for $B \to a_0 X$ and $a_0 \to \eta \pi$, where X indicates K or π.

PACS numbers: 13.25.Hw, 12.15.Hb, 11.30.Er

We report results on measurements of B-meson decays to charmless final states with $a_0(980)$ mesons [1]. Both experimentally and theoretically, most work in charmless two-body B decays has involved states with only pseudoscalar and vector mesons. The only charmless B decay involving scalar mesons that has been observed is $B \to f_0(980)K$ [2]. There have been no previously published searches for B decays to final states with a_0 mesons. In this paper we search for the decays $B \to a_0 \pi^\pm$, $B \to a_0 K$, and $B \to a_0 K^0$ for both charged and neutral a_0 mesons. These measurements should provide information both for B decays to scalar mesons and the nature of those mesons.

Some specific predictions can be made for the decays $B \to a_0 \pi^\pm$ if factorization is assumed and if the decay is a “tree” process, that is, one in which a virtual W decays rather than being reabsorbed, as it is in a penguin (loop) process. The dominant such process is shown in Fig. 1(a). The companion tree process, shown in Fig. 1(b), is expected to be greatly suppressed, since the virtual W cannot produce an a_0 meson [4]. This is a firm prediction of the Standard Model because the weak current has a G-parity even vector part and a G-parity odd axial-vector part. The latter can produce an axial-vector or pseudoscalar particle while the former produces a vector particle, but neither can produce a G-parity odd scalar meson. Penguin processes such as shown in Fig. 1(c) are allowed, but are suppressed relative to the tree processes. Thus the decay $B \to a_0 \pi^\pm$ is expected to be “self-tagging” (the charge of the pion identifies the B flavor). The decays with a kaon in the final state should be dominated by penguin processes (Fig. 1d); however, there is a cancellation for these decays [5], so they also should have rather small branching fractions. The diagrams for neutral B decays involving a_0^0 mesons are similar to those shown in Fig. 1.

The nature of the a_0 is still not well understood. It is thought to be a $q\bar{q}$ state with a possible admixture of a $K\bar{K}$ bound-state component due to the proximity to the $K\bar{K}$ threshold [6, 7]. The a_0 mass is known to be about 985 MeV and the dominant decay mode is $a_0 \to \eta \pi$ [6], which is the mode used in the present analysis. A recent analysis [8] that uses this $\eta \pi$ decay channel finds a Breit-Wigner width of (71 ± 7) MeV, with no better fit obtained when the more correct Flatté shape [9] is used. Also since the branching fraction for $a_0 \to \eta \pi$ is not well known, we report the product branching fraction $\mathcal{B}(B \to a_0 X) \times \mathcal{B}(a_0 \to \eta \pi)$, where X indicates K or π.

The results presented here are based on data collected with the BABAR detector [10] at the PEP-II asymmetric e^+e^- collider located at the Stanford Linear Accelerator Center. An integrated luminosity of 81.9 fb$^{-1}$, corresponding to 88.9 ± 1.0 million $B\overline{B}$ pairs, was recorded at the $\Upsilon(4S)$ resonance (center-of-mass energy $\sqrt{s} = 10.58$ GeV).

The track parameters of charged particles are measured by a combination of a silicon vertex tracker, with five layers of double-sided silicon sensors, and a 40-layer central drift chamber, both operating in the 1.5-T magnetic field of a superconducting solenoid. We identify photons and electrons using a CsI(Tl) electromagnetic calorimeter (EMC). Further charged particle identification (PID) is provided by the average energy loss (dE/dx) in the tracking devices and by an internally-reflecting, ring-imaging Cherenkov detector (DIRC) covering the central region.

We select a_0 candidates from the decay channel $a_0 \to \eta \pi$ with the decays $\eta \to \gamma\gamma$ ($\eta_{\gamma\gamma}$) and $\eta \to \pi^+\pi^-\pi^0$ ($\eta_{3\pi}$). We apply the following requirements on the in-

![FIG. 1: Feynman diagrams for decays involving charged a_0 mesons: (a) dominant and (b) G-parity-suppressed tree diagrams for $B^0 \to a_0^0 \pi^\pm$, (c) penguin diagram for the same decay mode, and (d) penguin diagram for the decay $B^0 \to a_0^0 K^+$.](image-url)
variant masses (in MeV) relevant here: 500 < m_{\gamma\gamma} < 585 for \eta_{\gamma\gamma}, 535 < m_{\pi\pi} < 560 for \eta_{\pi\pi}, 120 < m_{\gamma\eta} < 150 for \pi^0, and 775 < m_{\eta\eta} < 1175 for a_0 \rightarrow \eta\eta. These requirements are typically quite loose compared with typical resolutions in order to achieve high efficiency and retain sufficient sidebands to characterize the background for subsequent fitting. We reconstruct \(K^0_s\) candidates through the \(K^0_s \rightarrow \pi^+\pi^-\) decay; to obtain a low-background, well-understood \(K^0_s\) sample, we require 488 < m_{\pi\pi} < 508 MeV, the three-dimensional flight distance from the event primary vertex to be greater than 2 mm, and the angle between flight and momentum vectors, in the plane perpendicular to the beam direction, to be less than 40 mrad.

We make several PID requirements to ensure the identity of the pions and kaons. Secondary tracks in \(\eta\pi\) candidates must have measured DIRC, \(dE/dx\), and EMC outputs consistent with pions. For the decays \(B \rightarrow a_0 h^+\) [3], where \(h^+\) indicates a charged pion or kaon, the particle \(h^+\) must have an associated DIRC signal with a Cherenkov angle within 3.5 standard deviations of the expected value for either a \(\pi^\pm\) or \(K^\pm\) hypothesis (we describe below the separation between the two hypotheses).

A \(B\)-meson candidate is characterized kinematically by the energy-substituted mass \(m_{ES} = \left(\frac{1}{2} s + E_B^2 - \frac{1}{2} \left| \mathbf{p}_B^2 \right| \right)^{1/2}\) and energy difference \(\Delta E = E_B - \frac{1}{2} \sqrt{s}\), where \((E_B, \mathbf{p}_B)\) and \((E_0, \mathbf{p}_0)\) are the four vectors of the \(B\)-candidate and the initial electron-positron system, respectively. The asterisk denotes the \(\Upsilon(4S)\) frame, and \(s\) is the square of the invariant mass of the electron-positron system. The energy resolution \(m_{ES}\) is about 40 MeV (3.0 MeV). We require \(\Delta E\) < 0.2 GeV and 5.2 < \(m_{ES}\) < 5.29 GeV.

Backgrounds arise primarily from random combinations in continuum \(e^+e^- \rightarrow q\bar{q}\) \((q = u, d, s, c)\) events. We reduce these by using the angle \(\theta_B\) between the thrust axis of the \(B\) candidate in the \(\Upsilon(4S)\) frame and that of the rest of the charged tracks and neutral clusters in the event. The distribution of \(|\cos \theta_B|\) is sharply peaked near 1.0 for combinations drawn from jet-like \(q\bar{q}\) pairs, and nearly uniform for \(B\)-meson decays. We require \(|\cos \theta_B| < 0.9\) for the \(a_0K^0_s\) decay modes, tightening for higher-background \(a_0 h^\pm\) channels: 0.8 for \(a_0^0(\eta_{\pi\pi})h^+, 0.7\) for \(a_0^0(\eta_{\gamma\gamma})h^+, \) and \(0.6\) for \(a_0^0(\gamma\gamma)h^+.\) We also use, in the fit described below, a Fisher discriminant \(F\) that combines the angles with respect to the beam axis of the \(B\) momentum and \(B\) thrust axis (in the \(\Upsilon(4S)\) frame), and moments describing the energy flow about the \(B\) thrust axis [11].

For the \(\eta \rightarrow \gamma\gamma\) modes we use additional event-selection criteria to reduce backgrounds from several charmless \(B\) decay modes. We require |\(\cos \theta_{\eta\eta}^0| < 0.86\), where \(\theta_{\eta\eta}^0\) is the \(\eta\) decay angle, the angle of the photons in the \(\eta\) rest frame with respect to the boost direction from the \(B\) to that frame. We also require \(\cos \theta_{a_0}^0 < 0.8\), where \(\theta_{a_0}^0\) is the \(a_0\) decay angle, defined similarly to \(\theta_{\eta\eta}^0\), with sign such that high-momentum \(\eta\) mesons populate the region near +1. From Monte Carlo (MC) simulation [12] we estimate that the residual charmless \(B\bar{B}\) background is less than one event for all decays except \(a_0^0(\eta_{\gamma\gamma})K^0\) (the notation indicates the decay mode of the \(\eta\) used in reconstructing the \(a_0\)) and \(a_0^0(\eta_{\gamma\gamma})h^+\). We include in the fit a \(B\bar{B}\) component, that we find to be less than 0.5% of the total sample in both cases.

We obtain yields and branching fractions from extended unbinned maximum-likelihood fits, with input observables \(\Delta E, m_{ES}, F, m_{\eta\eta}\), and for charged modes the PID variables \(S_\pi\) and \(S_K\); the last quantities are the number of standard deviations between the measured Cherenkov angle and the expectation for pions and kaons.

For each event \(i\), hypothesis \(j\) (signal, continuum background, \(B\bar{B}\) background), and, for the \(a_0h^+\) decays, flavor \(k\), we define the probability density function (PDF)

\[
P_j^i = P_j(m_{ES}^i)P_j(\Delta E_k^i[S_k^i])P_j(F^i)P_j(m_{\eta\eta}^i). \tag{1}
\]

The term in brackets for \(S\) pertains to the \(a_0h^+\) modes. The absence of correlations among observables (except between \(\Delta E\) and \(S\), which both depend on the momentum of the particle \(h^+\)) in the background \(P_j^i\), is confirmed in the (background-dominated) data samples entering the fit. For the signal component, we correct for effects due to the neglect of small correlations (more details are provided in the systematics discussion below). The likelihood function is

\[
\mathcal{L} = \exp \left(- \sum_{j,k} Y_{jk} \right) \prod_i \left[\sum_{j,k} Y_{jk} P_j^i \right], \tag{2}
\]

where \(Y_{jk}\) is the yield of events of hypothesis \(j\) and flavor \(k\) that we find by maximizing \(\mathcal{L}\), and \(N\) is the number of events in the sample.

We determine the PDF parameters from simulation for the signal and \(B\bar{B}\) background components, and initial values of the continuum background parameters from \((m_{ES}, \Delta E)\) sideband data. We parameterize each of the functions \(P_{\text{sig}}(m_{ES}), P_{\text{sig}}(\Delta E_k), P_j(F), P_j(S_k)\) and the peaking component of \(P_j(m_{\eta\eta})\) with either a Gaussian function, the sum of two Gaussian functions or an asymmetric Gaussian function, as required to describe the distribution. Slowly varying distributions \((a_0\) candidate mass and \(\Delta E\) for combinatoric background) are represented by second order Chebyshev polynomials. The \(q\bar{q}\) combinatoric background in \(m_{ES}\) is described by the function \(f(x) = x\sqrt{1 - x^2}\exp[-\xi(1 - x^2)],\) with \(x \equiv 2m_{ES}/\sqrt{s}\) and free parameter \(\xi\); for \(B\bar{B}\) background, we add a Gaussian function to the quantity \(f(x)\). Large control samples of \(B \rightarrow D\pi\) decays of topology similar to the signal are used to verify the simulated resolutions in \(\Delta E\) and \(m_{ES}\). Where the control data samples reveal differences from MC, we shift or scale the resolution used in the likelihood fits. Examples of many of these PDFs
shapes from a very similar analysis are shown in Ref. [11]. Additionally, the Breit-Wigner signal parameters for the \(a_0\) mass and width are determined from an inclusive dataset that is much larger than the sample used for this analysis. The widths are consistent with expectations from the natural-width values of Ref. [8].

In Table I we show for each decay mode the measured product branching fraction, together with the quantities entering into its determination. The free parameters in the fit include the signal and background yields and six parameters describing the background PDFs: slopes for the polynomial shape for the \(\Delta E\) and \(a_0\) mass distributions, the parameter \(\xi\) used in the \(m_{ES}\) description, and three parameters describing the asymmetric Gaussian function for \(\mathcal{F}\). For calculation of branching fractions, we assume that the decay rates of the \(T(4S)\) to \(B^+B^-\) and \(B^0\bar{B}^0\) are equal [13]. We combine branching fraction results from the two \(\eta\) decay channels by adding the values of \(-2\ln L\), adjusted for a small fit bias (see below) and taking proper account of the correlated and uncorrelated systematic errors. In Figs. 2 and 3 we show projections onto \(m_{ES}\) and \(\Delta E\) of subsamples enriched with a mode-dependent threshold requirement on the signal likelihood (computed ignoring the PDF associated with the variable plotted).

The statistical error on the signal yield is taken as the change in the central value when the quantity \(-2\ln L\) increases by one unit from its minimum value. The significance is taken as the square root of the difference between the value of \(-2\ln L\) (with systematic uncertainties included) for zero signal and the value at the minimum, with other parameters free in both cases. The 90\% confidence level (C.L.) upper limit is taken to be the branching fraction below which lies 90\% of the total of the likelihood integral in the positive branching fraction region.

Most of the yield uncertainties arising from lack of knowledge of the PDFs have been included in the statistical error since most background parameters are free in the fit. Varying the signal PDF parameters within their estimated uncertainties, we determine the uncertainties in the signal PDFs to be 1–5 events, depending on the final state. The contribution to this uncertainty from the parameterization of the \(a_0\) signal shape is small. We verify that the value of the likelihood of each fit is consistent with the expectation found from an ensemble of simulated experiments.

Uncertainties in our knowledge of the efficiency, found from auxiliary studies, include 0.8\%–N_{\text{T}}, 2.5\%–N_{\text{N}}, and 4\% for a \(K_0^0\) decay, where \(N_{\text{T}}\) and \(N_{\text{N}}\) are the number of signal tracks and photons, respectively. Our estimate of the number of produced \(B\bar{B}\) events is uncertain by 1.1\%. The neglect of correlations among observables in the fit can cause a systematic bias; the correction for this bias (between −3 and +3 events) and assignment of the resulting systematic uncertainty (0.5–2 events) is determined from simulated samples with varying background populations. Published data [6] provide the uncertainties in the \(B\)-daughter product branching fractions (1–2\%). Selection efficiency uncertainties are 0.5–3.5\% for \(\cos \theta_T\) and 0.5\% for PID (for the \(a_0h^+\) modes).

In conclusion, we do not find significant signals for these \(B\)-meson decays to states with \(a_0\) mesons. The measured branching fractions and 90\% C.L. upper limits are given in Table I. Assuming \(\eta\pi\) to be the dominant population...
TABLE I: Signal yield, detection efficiency ϵ, daughter branching fraction product ($\prod B_i$), significance (including systematic uncertainties, taken to be zero if corrected yield is negative), measured product branching fraction (see text), and the 90% C.L. upper limit on this branching fraction.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Yield</th>
<th>ϵ (%)</th>
<th>$\prod B_i$ (%)</th>
<th>Signif.</th>
<th>$B(10^{-6})$</th>
<th>UL(10^{-6})</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_0^0 (\eta) \pi^+$</td>
<td>18.8</td>
<td>94.8</td>
<td>33.9</td>
<td>1.3</td>
<td>$2.3^{+1.4}_{-1.0}$</td>
<td>0.9</td>
</tr>
<tr>
<td>$a_0^0 (\eta) \pi^+$</td>
<td>17.9</td>
<td>92.5</td>
<td>33.9</td>
<td>1.3</td>
<td>$2.3^{+1.4}_{-1.0}$</td>
<td>0.9</td>
</tr>
<tr>
<td>$a_0^0 (\eta) K^+$</td>
<td>21.4</td>
<td>93.5</td>
<td>34.1</td>
<td>1.0</td>
<td>$2.3^{+1.4}_{-1.0}$</td>
<td>0.9</td>
</tr>
<tr>
<td>$a_0^0 (\eta) K^0$</td>
<td>21.4</td>
<td>93.5</td>
<td>34.1</td>
<td>1.0</td>
<td>$2.3^{+1.4}_{-1.0}$</td>
<td>0.9</td>
</tr>
<tr>
<td>$a_0^- K^0$</td>
<td>15.8</td>
<td>93.5</td>
<td>34.1</td>
<td>1.0</td>
<td>$2.3^{+1.4}_{-1.0}$</td>
<td>0.9</td>
</tr>
<tr>
<td>$a_0^0 (\eta) \pi^+$</td>
<td>12.4</td>
<td>92.5</td>
<td>34.1</td>
<td>1.0</td>
<td>$2.3^{+1.4}_{-1.0}$</td>
<td>0.9</td>
</tr>
<tr>
<td>$a_0^0 (\eta) \pi^+$</td>
<td>12.4</td>
<td>92.5</td>
<td>34.1</td>
<td>1.0</td>
<td>$2.3^{+1.4}_{-1.0}$</td>
<td>0.9</td>
</tr>
<tr>
<td>$a_0^- K^0$</td>
<td>15.0</td>
<td>93.5</td>
<td>34.1</td>
<td>1.0</td>
<td>$2.3^{+1.4}_{-1.0}$</td>
<td>0.9</td>
</tr>
<tr>
<td>$a_0^0 (\eta) \pi^+$</td>
<td>12.4</td>
<td>92.5</td>
<td>34.1</td>
<td>1.0</td>
<td>$2.3^{+1.4}_{-1.0}$</td>
<td>0.9</td>
</tr>
<tr>
<td>$a_0^- K^0$</td>
<td>15.0</td>
<td>93.5</td>
<td>34.1</td>
<td>1.0</td>
<td>$2.3^{+1.4}_{-1.0}$</td>
<td>0.9</td>
</tr>
<tr>
<td>$a_0^0 (\eta) \pi^+$</td>
<td>12.4</td>
<td>92.5</td>
<td>34.1</td>
<td>1.0</td>
<td>$2.3^{+1.4}_{-1.0}$</td>
<td>0.9</td>
</tr>
<tr>
<td>$a_0^- K^0$</td>
<td>15.0</td>
<td>93.5</td>
<td>34.1</td>
<td>1.0</td>
<td>$2.3^{+1.4}_{-1.0}$</td>
<td>0.9</td>
</tr>
</tbody>
</table>

We are grateful for the excellent luminosity and machine conditions provided by our PE-P II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

a Now at Department of Physics, University of Warwick, Coventry, United Kingdom
b Also with Università della Basilicata, Potenza, Italy
c Also with IFIC, Instituto de Física Corpuscular, CSIC-Universidad de Valencia, Valencia, Spain
d Deceased

[1] Throughout this note, when we refer to a_0, we mean specifically $a_0(980)$.