BaBar Data Distribution

Adil Hasan

BaBar Computing Review

April 11th 2002

SLAC
Brief History (Objy)

- **SP4**: To date 127 TB of data import from external sites.
- Both Tier A and Tier C shipped data to SLAC.
- Sites located in Germany, UK, France, Italy, USA, Canada - truly distributed effort!

Snapshot of Total size of imports from external sites
Brief History (Objy)

• Export from SLAC to in2p3:
 • ~75TB export from SLAC to ccin2p3.
 • Regularly ship 300GB in < 1 day.
 • In addition ccin2p3 have also export data to SLAC

• General tools used for data distribution:
 • BdbServer and JImport (SLAC -> in2p3).
 • MocaEspresso (SP sites -> SLAC).
 • All use BdbDistTools components and bbftp or bbcp to copy data.
 • All tools mainly written in C++, Perl.

• Automated Import procedure at SLAC to cope with increased growth of SP production sites.
 • Book-keeping of each sites import in Oracle.
 • Import procedure has automatic integrity checking of databases.
 • Recovery procedures are necessarily manual.
 • Automated tools also at in2p3 with very similar capabilities
Brief History (Kanga)

• Kanga collections made by running prod jobs off Objy collections at SLAC.

• Shipped ~8TB Kanga data to RAL since beginning 2001

• Data to transfer selected using skimTools.
 • In bulk copy mode new data is found by mirroring mySQL database at SLAC and RAL.
 • Recently Alessandra Forti worked on providing a tool so mySQL database update after each sweep from OPR to analysis.

• Use bbftp for transfers (a bit inefficient as opens a connection for each file - lots of small files).

• Currently ~12 sites import Kanga data:
 • US sites take Kanga from SLAC.
 • European sites take Kanga from RAL.
Brief History: Problems

• Data dist problems:
 • Unreadable databases:
 • mainly due to outstanding transactions on extracted databases.
 • Few problems because of bad disks corrupting databases.
 • Missing databases:
 • Problems in MocaEspresso which are fixed now.

• A majority of these problems are picked up by the integrity checking when importing to SLAC and in2p3.
 • However, there are some problems (~2%) that pass the integrity checks.
 • Improvements to the existing QA tools should catch the remaining problems.

• Data dist problems occupy up to 30% FTEs (depending on the experience of the person).
Collection Export: BdbServer

- **BdbServer** is the main tool for shipping Objy data from in2p3 and SLAC to external sites.
 - Originally designed at ccin2p3 for bulk data transfers.
 - Uses BdbDistTools components.

- BdbServer has easily been extended at ccin2p3 to ship individual collections (either pointer or deep-copy collections).

- It was recognised that the distrib of pointer collections means that undesired as well as desired data is export.

- BdbCopyJob allows the user to make a deep copy of a pointer collection of interest, thus eliminating the undesired data.
Collection Export: BdbServer

• Ccin2p3 are currently making a deep copy of Stream17 events for Caltech using BdbCopyJob.

• So far, ~25% of current total has been copied using BdbCopyJob and export using BdbServer to Caltech.

• Have experienced very few problems with the copy or extraction of data.
Future: Data production

• **SP data distribution (to end of next year):**
 - Expect approx same data volume as now (not shipping raw or sim, but adding more sites). I.e. ~1.5 - 2 TB/week shipped to SLAC.

• **Remote reprocessing in Padova (starting July):**
 - Plan is to carry out reprocessing in Padova.
 - Will require a dedicated data server to send/receive data at SLAC.
 - Will require slight modifications to the automatic import tools at SLAC.
 - MocaEspresso (modified) will be the main tool to distribute data from Padova to SLAC.
 - Initial plan is to ship all data to SLAC.
 - It's possible that in2p3 will take data directly from Padova in the future.
Future: Tools

• **BdbDistTools:**
 • Originally developed at Orsay by Jean-Noel Albert.
 • Has provided the foundation applications for many of the Objy data distribution tools.
 • But, is getting more difficult to maintain.
 • Have embarked on re-design of BdbDistTools keeping in mind:
 • Ease of maintenance.
 • Ability to plug in Grid applications.
 • Ease of use at Tier A, C sites (i.e. shouldn’t require any additional s/w outside of what’s needed for a BaBar release).
 • The re-design is expected to be completed by end August.

• Factors that have caused time slippage are:
 • Developers for new system have to maintain old system
 • Developers for new system also have to administer the Objy database

• Manpower for BdbDistTools re-design:
 • Wilko Kroeger (~30%)
 • Adil Hasan (~20%)
Future: Tools

• **MocaEspresso:**
 • This is the tool used by all external SP sites to distribute data.

 • There are still a number of improvements that need to be implemented.

 • The package maintainer (and architect) is moving off to help support the Padova reprocessing farm.

 • We need help to find a person willing to take on the responsibility for maintenance and future development of this critical tool!

 • Ideally someone (or more than one person) from one of the SP producer sites.
Future: Tools

• **BdbServer++:**
 • The goal is to allow users to create and extract deep copies of pointer collections through BdbServer.
 • Work done so far:
 • List of use cases and requirements collected for the system.
 • Manual walk through of the separate components of the system at in2p3.
 • Work to be done:
 • Integration of BdbCopyJob with BdbServer
 • Stage III of bridge federations (see Jacek’s talk).
 • RDBMS containing collection-database mapping.
 • It is expected that a working version of the BdbServer++ will be ready on the timescale of Run3 (late this year).
• Manpower:
 • Dominique Boutigny + others at in2p3
 • Akram Khan, Alasdair Earle Edinburgh, UK.
Future: Tools

- **Kanga server (export mechanism):**
 - As with Objectivity, Kanga pointer collections imply an inefficient space usage for recipient sites.
 - There is an effort underway to follow the model of BdbServer and produce a "KangaServer" capable of creating a deep copy of collections of interest and ship them to the interested site.
 - This work is underway in the UK (see Ulrik’s presentation).
Future: Tools

- **QA tools:**
 - Better QA tools should reduce the time DB Importers spend tracking down problems.

- **Current work:**
 - Compiling a list of outstanding problems.

- **To be done:**
 - Create a set of tools that are sensitive to these problems and incorporate them in a package usable at producer sites.
 - Combine all the existing tools used at all sites into this package.
 - This will be an iterative (but convergent) process.

- **Manpower:**
 - Tofigh Azemoon (~20% increasing to ~50% in next few weeks).
 - Data Dist contributors from all sites.

- **Collection to database mapping:**
 - A critical component of the Objy data distribution is the production and maintenance of a metadata store containing the mapping between collections and databases.
Future: Tools

• Collection to database map
 • Current:
 • Are scanning all data and SP federations to produce the mapping which will be stored in Oracle at SLAC.
 • Are up to date with SP, 1 month behind with data.
 • To be done:
 • Tools to extract and populate similar stores (not necessarily using Oracle) at remote sites.
 • Improvements/optimization of the scanning tool.
 • Integration with Grid tools.
 • Will leverage expertise in the PPDG (and other Grid projects)

• Manpower:
 • Wilko Kroeger (~30%)
 • Liliana Martin (~50%)
 • Adil Hasan (~20%)
 • 1 Stanford RA (~50%)
 • + others from Tier A’s in the near future
Future: Requirements

• **Software:**
 - The data distribution plans consider the need to burden external sites with as little extra software as possible of utmost importance.

• **Kanga:**
 - MySQL database (currently at Tier A, B and C).
 - BaBar software and Root (including bbftp and bbcp).

• **Objy:**
 - BaBar software and Objectivity (including bbftp and bbcp).

• Both data formats will require collaborators to possess Grid certificates in order to use the Grid-enabled tools.
schematic dataflow

SLAC \rightarrow Ccin2p3

SP + PR data

SP data from remote sites

Kanga data (SP + PR)

RAL

Tier B,C sites
schematic dataflow (cont)
Summary

• **BaBar Data Distribution faces interesting times...**
 • Implementing the distributed nature of computing model.
 • Incorporating Grid tools into data distribution.

• The successful implementation of the computing model depends on the continued work and close collaboration of **all members of the data distribution group in all BaBar institutes.**