ZPD Project Overview

* **BABAR L1 DCT Upgrade FDR**

 Masahiro Morii
 Harvard University

- Design Overview
- Progress and Changes since CDR
- Current Status
- Plans for Production and Testing
Z \ p_T \ Discriminator = ZPD

- ZPD is a 3-D enhanced version of the PTD
 - Finds tracks and fit them to helix
 - Measures p_T, dip angle (\lambda) and z_0
 - Primary usage: Cut on |z_0| to remove background
Block Diagram (Super-Simplified)

ZPDi

153 segments

Receiver /Driver

MegaBus

Algorithm Engine 0
hm 1
hm 2
hm 3
hm 4
hm 5

Fit Results

Decision Module

4 to GLT

8-bit decisions

Memory access, DAQ control, etc.

FPGA Config

C-link

D-link

FCC Decoder
Inputs

- Each ZPD receives data from 9 TSFs
 - 3/8 in ϕ
 - Seed segments in the middle 1/8 of SL7 and SL10
- 14 bits \times 153 segments/CLK4

- Challenge 1: Moving around 8 Gbit/s
 - Backplane: 153 pins @ 60 MHz
 - Megabus: 75 LVDS pairs @ 120 MHz

1: mask
4: cell location
6: ϕ in the cell
3: error in ϕ

144 used

Up to 12 seeds

Eunil’s talk
Algorithm Engines

- Algorithm largely unchanged since CDR
 - Finder selects combination of segments \(\rightarrow \) Seed tracks
 - Fitter does 3-D helix fitting \(\rightarrow \) \(z_0, p_T, \tan \lambda \)
- Algorithm Engines = Xilinx Virtex II 4000
 - Each AE handles 2 seeds/CLK4 \(\rightarrow \) 12 seeds/CLK4 total
- Challenge 2: Implementing the Algorithm
 - Does it fit in the chip?
 - Does it run fast enough?
 - Clock margin?
 - Latency < 8 CLK4s

Stephen’s talk
Outputs and Interface

- Output to GLT: 4 bit decisions/CLK4
 - Decision Module FPGA makes 8 decisions
 - Programmable cuts on z_0, error on z_0, p_T and $\tan\lambda$
- DAQ data: 566 bytes/event
 - Mask bits (exist or not) for 153 TSF segments/CLK4
 - z_0, error on z_0, p_T and $\tan\lambda$ for 12 tracks/CLK4
 - 8-bit decisions/CLK4
- Diagnostic memories help debugging
- Fast Control interface talks to BABAR online system

Eunil’s talk
Progress Since CDR

- Prototype has been built (May 2002) and tested
 - 2 working modules – 1 at SLAC, 1 at Harvard
 - I/O and buses have been fully validated
 - Algorithm Engines *almost* do what they’re supposed to do

- Problems & inconveniences found and fixed
 - Unconnected vias due to layout software bug
 - Choice of clock input pins on FPGA
 - Move them to special pins that guarantee timing
 - FPGA configuration method
 - Switch to use Compact Flash memory

Eunil’s talk
Are the FPGAs Right?

- Algorithm fits comfortably

<table>
<thead>
<tr>
<th></th>
<th>Decoder/Driver</th>
<th>Algorithm Engine</th>
<th>Decision Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLBs</td>
<td>27%</td>
<td>44%</td>
<td>70%</td>
</tr>
<tr>
<td>RAMs</td>
<td>15%</td>
<td>74%</td>
<td>32%</td>
</tr>
<tr>
<td>Multipliers</td>
<td>0%</td>
<td>20%</td>
<td>0%</td>
</tr>
</tbody>
</table>

- Speed is sufficient
 - Firmware meets 60.5 MHz constraint
 - Tested to work up to 67 MHz
 - Latency 2 µs → Meets the specification

Stephen’s talk
Current Status

- Firmware coding continues
 - Algorithm bugs at lower-and-lower levels
 - Goal: bit-wise match with the C++ simulation
 - DAQ memory implementation
 - Mostly done; tests in progress
- PCB is ready for production
 - Design is solid
 - All issues have been fixed in the layout
- All parts are on order or in hand
Production Plan

- After the “green light”
 - Final “paranoid” layout check – 1-2 days
 - PCB production – 2-3 weeks
 - PCB assembly – 2-3 weeks

- Cost for 11 ZPD modules

<table>
<thead>
<tr>
<th>Function</th>
<th>Part</th>
<th>Qty</th>
<th>$/ea</th>
<th>$/ea*Qty</th>
<th>Fixed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Receiver</td>
<td>XC2V3000</td>
<td>12</td>
<td>631.00</td>
<td>7,572.00</td>
<td></td>
<td>7,572.00</td>
</tr>
<tr>
<td>Algorithm Engines</td>
<td>XC2V4000</td>
<td>68</td>
<td>1,239.00</td>
<td>84,252.00</td>
<td></td>
<td>84,252.00</td>
</tr>
<tr>
<td>Decision Module</td>
<td>XC2V1000</td>
<td>12</td>
<td>202.70</td>
<td>2,432.40</td>
<td></td>
<td>2,432.40</td>
</tr>
<tr>
<td>Other components</td>
<td></td>
<td></td>
<td>4,845.37</td>
<td></td>
<td></td>
<td>4,845.37</td>
</tr>
<tr>
<td>PCB fab. + tooling</td>
<td></td>
<td>13</td>
<td>701.23</td>
<td>9,116.00</td>
<td>1,890.00</td>
<td>11,006.00</td>
</tr>
<tr>
<td>PCB assy. + tooling</td>
<td></td>
<td>11</td>
<td>65.00</td>
<td>715.00</td>
<td>1,400.00</td>
<td>2,115.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>112,222.77</td>
</tr>
</tbody>
</table>
Test Plan – Harvard

- Production modules will be tested first at Harvard
 - PC-based test stand has been developed
 - Signal connectivity test to ensure PCB is good
 - Boundary scan
 - Tool in hand, but has not been used
 - Megabus test with special firmware
 - Done on prototype. High statistics ($\sim 10^{13}$ bits/trace)
 - Bus tests using diagnostic memories
 - Done on prototype. Tests memory access & buses
 - Small-scale (~ 1000 simulated events) algorithm test
 - Done on prototype for a few events
Test Plan – SLAC

- More tests follow at SLAC test stand
 - Interface test with ZPDi
 - Done on prototype at 10^{10} bits/trace level
 - Algorithm test with higher statistics
 - Can do 10^6 events easily – Is it useful?
 - System test: integrate with the BABAR DAQ system
 - Work in progress → Gerald’s talk
- Finally, integrate in IR-2…
Following Presentations

- Eunil Won
 - Prototype PCB test results
 - DAQ memories and interface
- Stephen Bailey
 - Algorithm implementation
 - Current issues and problems

We concentrate on what is new since the CDR. Please interrupt for more information.

Checklist before production:

- Is the PCB design correct?
- Is the firmware mature enough to confirm design choices?
- Are there any bugs that require a PCB modification to fix?