Effects of beam energy spread and disruption angles on precision measurements of m_t and m_H

M. Woods Feb. 6, 2003

Beam instrumentation goals

- Top mass:
- Higgs mass:
- W mass:
- 'Giga'-Z A_{LR}:

- 200 ppm (35 MeV)
- 200 ppm (25 MeV for 120 GeV Higgs)
- 50 ppm (4 MeV) ??
- 200 ppm (20 MeV) (comparable to ~0.25% polarimetry) 50 ppm (5 MeV) (for sub-0.1% polarimetry with e+ pol) ??

 $\langle \mathsf{E} \rangle^{\mathsf{lum-wt}} \neq \langle \mathsf{E} \rangle$

The beam energy spectrometers measure <E>, but for physics we need to know <E>^{lum-wt}.

Effect I want to consider today is the beam energy spread. At NLC, $\sigma(E) \sim 0.3\%$ rms, and at TESLA it is ~ 0.1% rms. (3000 ppm) (1000 ppm)

Energy Spread Study

MatLIAR-generated files from Andrei Seryi

LIAR+DIMAD+Matlab used to generate files Tools developed by NLC Accelerator physics group Files were used for TRC studies

They were obtained with non-perfect machines: LCs were initially misaligned and then brought back to ~nominal luminosity by one-to-one correction in the linac.

- generates distributions of incoming beams at IP
- 6 files each for NLC-500 and TESLA-500 machines
- Electron and positron beams are symmetric; ie. similar spotsizes, bunch lengths, charge

Guinea-Pig simulation

- ISR and Beamstrahlung turned off
- electron.ini and positron.ini files from MatLIAR simulation
- beam1.dat and beam2.dat files for outgoing beam distributions
- lumi.dat file for distribution of particles that make luminosity

Summary of Results for energy spread effect

Note: energies are given in units of ppm, ie. the deviation from the nominal energy, for example:

$$\langle E_1 \rangle (ppm) = \frac{\langle E_1 \rangle - 250}{250}$$

E₁, E₂ and E_{cm} all come from The Guinea-Pig file lumi.dat

~500ppm effect for NLC ~ 50ppm effect for TESLA

NLC	L	<e<sub>1></e<sub>	<e<sub>2></e<sub>	<e<sub>cm></e<sub>
file	(cm ⁻² s ⁻¹)	(ppm)	(ppm)	(ppm)
1	$2.0 \ge 10^{34}$	+641	+454	+547
2	2.0 x 10 ³⁴	+543	+187	+365
3	1.8 x 10 ³⁴	+398	+626	+512
4	2.0 x 10 ³⁴	+301	+187	+244
5	1.7 x 10 ³⁴	+995	+298	+647
6	1.7 x 10 ³⁴	+537	+878	+707
TESLA	L	<e1></e1>	<e2></e2>	<e<sub>cm></e<sub>
TESLA file	L (cm ⁻² s ⁻¹)	<e<sub>1> (ppm)</e<sub>	<e<sub>2> (ppm)</e<sub>	<e<sub>cm> (ppm)</e<sub>
TESLA file 1	L (cm ⁻² s ⁻¹) 3.3 x 10 ³⁴	< E ₁ > (ppm) +90	< E ₂ > (ppm) +100	<e<sub>cm> (ppm) +95</e<sub>
TESLA file 1 2	L (cm ⁻² s ⁻¹) 3.3 x 10 ³⁴ 3.2 x 10 ³⁴	< E ₁ > (ppm) +90 +38	< E ₂ > (ppm) +100 +103	<e<sub>cm> (ppm) +95 +71</e<sub>
TESLA file 1 2 3	L (cm ⁻² s ⁻¹) 3.3×10^{34} 3.2×10^{34} 3.3×10^{34}	< E ₁ > (ppm) +90 +38 -33	< E ₂ > (ppm) +100 +103 +49	<e<sub>cm> (ppm) +95 +71 +8</e<sub>
TESLA file 1 2 3 4	L (cm ⁻² s ⁻¹) 3.3×10^{34} 3.2×10^{34} 3.3×10^{34} 3.6×10^{34}	< E ₁ > (ppm) +90 +38 -33 +12	<e<sub>2> (ppm) +100 +103 +49 +58</e<sub>	<e<sub>cm> (ppm) +95 +71 +8 +35</e<sub>
TESLA file 1 2 3 4 5	L(cm ⁻² s ⁻¹) $3.3 \ge 10^{34}$ $3.2 \ge 10^{34}$ $3.3 \ge 10^{34}$ $3.6 \ge 10^{34}$ $3.2 \ge 10^{34}$	< E ₁ > (ppm) +90 +38 -33 +12 +51	<e<sub>2> (ppm) +100 +103 +49 +58 +92</e<sub>	<e<sub>cm> (ppm) +95 +71 +8 +35 +72</e<sub>

See files ESPREAD_NLC.pdf and ESPREAD_TESLA.pdf for distributions of beam parameters and correlations for

- incoming beams
- outgoing beams, and
- luminosity particles

Dominant cause for $\langle E \rangle^{lum-wt} \neq \langle E \rangle$, appears to be due to a combined effect of

- Energy-z correlation of the incoming bunches
- pinch and disruption of the colliding beams in y

Can consider collision of opposing bunches to be approximated by:

- head-head collisions (nominal luminosity; high E_{CM})
- head-tail collisions (~nominal luminosity due to pinch, disruption; nominal E_{CM})
- tail-tail collisions (lower luminosity due to disruption; low E_{CM})

 $(50 \mu rad \cdot 100 um = 5 nm)$

NLC-500 Results

TESLA-500 Results

Energy spread study is ongoing

- how to constrain effect? (what measurements needed?)
- how to reduce effect? (Linac rf quads?)

Need to further study effects of:

- beam offsets
- residual dispersion
- waist offsets
- asymmetric beam distributions for electrons, positrons: ex. transverse spotsizes, bunch lengths
- add in beamstrahlung

Bhabha Acolinearity to measure Energy Spread and Beamstrahlung

Use conservation of transverse momentum, and assume that only 1 beam radiates:

$$p_{1} \sin \theta_{1} = p_{2} \sin \theta_{2}$$
Let $r = \frac{\min(p_{1}, p_{2})}{\max(p_{1}, p_{2})} = \frac{\min(\sin \theta_{1}, \sin \theta_{2})}{\max(\sin \theta_{1}, \sin \theta_{2})}$
Assume $\max(p_{1}, p_{2}) = p_{beam}$
 $\sqrt{s'_{angles}} = p_{beam}(1+r)$

→ Use energy spectrometers to measure p_{beam} , and forward detectors to measure θ_1 and θ_2 .

Sources of Bhabha Acolinearity

Incoming Beam

- $\langle E_1 \rangle \neq \langle E_2 \rangle$
- energy spread
- beam divergence

Collision Process

- ISR
- beamstrahlung
- disruption angles

Detector Effects

- angular resolution
- alignment errors
- backgrounds

Bhabha Simulation and Acolinearity Study

- Generate Bhabhas with θ_1 in range 100-500 mrad and $1/\theta^3$ distribution
- Use GuineaPig to generate collision electron, positron energies (p_1, p_2)
- Balance transverse momenta to generate θ_2, Φ_2 angles
- (put in effects of disruption angles)
- (put in effects of detector resolution)
- Reconstruct $\sqrt{s'_{angles}}$ assuming only 1 particle radiates

Bhabha Acolinearity Study for energy spread effects only

NLC-500 study,

Acolinearity angle, θ_A : $\theta_A = \theta_2 - \theta_1$

Acolinearity analysis provides a measure of the energy spread, but does **not** provide information on difference between E_{cm}^{lum-wt} and $\langle E_{cm} \rangle$

Bhabha Acolinearity Study with beamstrahlung and energy spread effects

Optimistic assessments in the literature:

"With an integrated luminosity of 3 fb-1 at sqrt(s)=500GeV the mean energy loss due to Beamstrahlung can be measured with a statistical precision of 50ppm and the beamspread to 5ppm. Systematic errors also seem to be controllable at this level." K. Moenig, LC-PHSM-2000-60-TESLA, Dec. 2000.

"The analysis of the acolinearity distribution of the scattered e+ and e- particles allows to reconstruct the effective centre-of-mass energy sqrt(s) with a relative accuracy of the order of 100ppm or better depending on the assumed beam parameters." M. Battaglia, 'Luminosity Determination at CLIC', SNOWMASS-2001-E3015, Jun 2001.

"While at first glance the effect of ISR, beamstrahlung, and the linac energy spread seem daunting on the possibility of extracting top quark parameters in a scan of the ttbar threshold at a high energy e+e- linear collider, this detailed study shows that such extraction is not limited by the dL/dE spectrum. The dL/dE spectrum can be measured to an accuracy limited by the statistics of Bhabha scattering in various techniques using various features of the proposed detectors." D. Cinabro, hep-ex/0005015 May 2000.

The authors did note that additional systematic studies were needed to address correlations, backgrounds and other effects.

NLC-500 study Bhabha acolinearity study with beamstrahlung and espread

2 measures of the luminosity spectrum are $\sigma(E), \sqrt{s'}$

Energy Spread:

$$\sigma(E)=0.3\%$$
rms $\longrightarrow \sigma(\theta_A)=800\mu$ rad
 $\delta(\sigma(E))=100\,ppm \longrightarrow \delta(\sigma(\theta_A))\approx 30\,\mu$ rad

Beamstrahlung:

ung:
$$\frac{\sqrt{s} - \sqrt{s'}}{\sqrt{s}} \approx 2.5\%$$
 $\sigma(\theta_A) = 20 \text{ mrad}$
 $\frac{\sqrt{s'_{angles}} - \sqrt{s'}}{\sqrt{s'}} \approx 0.5\%$
 $\delta(\sqrt{s'}) = 100 \text{ ppm} \longrightarrow \delta(\sigma(\theta_A)) \approx 100 \mu \text{ rad}$

Disruption Angles at NLC-500

Outgoing beam angles from G-P beam1.dat

 $\sigma(\theta_x) \approx 240 \,\mu rad$ $\sigma(\theta_y) \approx 100 \,\mu rad$

Significant impact on acolinearity analysis (also on estimating detector requirements)

Bhabha acolinearity study is ongoing

- need to implement Moenig's fitting procedure
 - use Circe parametrization of beamstrahlung to generate MC $\sqrt{s'_{angles}}$ distributions, varying the Circe parameters

 - use MatLiar/GuineaPig simulation to generate 'data' $\sqrt{s'_{angles}}$ extract Circe parameters from fit of 'data' to Circe-generated distributions
 - compare fit values with true values for $\langle s' \rangle, \sigma(E)$

Need to quantify effects and further study:

- disruption angles
- beam offsets
- residual dispersion
- waist offsets
- asymmetric beam distributions for electrons, positrons: ex. transverse spotsizes, bunch lengths