
Failure modes of resistive plate chambers

Outline

• Resistive Plate Chamber (RPC) operation

• Mechanical tolerances

• Failures due to resistivity changes – eg Oil

bridges

• Aging in new production BaBar RPCs

• Malter effect

• Water in glass RPCs

• Conclusions

LC Santa Cruz 1 David Strom – UO



RPC operation

• Number of electrons at the

head of shower is given by

ne = eα`

where α is the Townsend coef-

ficient (depends on gas and E)
and ` is the shower length

• Streamer mode (space charge

dominated discharge) occurs

when

α` ' 20 ⇒ ne = 5× 108

• Streamer is limited in part by

the high resistivity of the bake-
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Typical gas mixture

• Argon to provide for efficient gas amplification

• Isobutane (or another hydrocarbon) to absorb UV photon

• Freon ( e.g. 134a , C4H2F4 ) ”quench gas”, controls charge and
physical size of streamers

• The detectors will operate over a very wide range of these gases.

• The Isobutane fraction can be as low as 4%

Caution: flammable mixtures easily produced, especially at low 134a
fractions!

• Streamer production relatively tolerant to N2, O2 and H2 O contam-
ination
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• The ratio of Ar/134a can vary

from 10 to 0.25

• Streamer charge and size

(area is in mm2) increase with

Ar fraction.

• Charge distributions of

streamers is relatively narrow

• Fraction of double streamers

small

• Charge distributions of

avalanches exponential in

parallel plate geometry

2001 NSS, Onodera, et al.
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Bakelite (or glass) resistivity controls time needed (typically millisec-

onds) to rebuild field after a streamer occurs

In BaBar bakelite was required to have

ρ = 28− 120× 1010Ωcm

at 20◦ C. Resistivity of bakelite varies substantially with both humid-

ity and temperature. Higher resistivities can be used for cosmic ray

detectors.

The temperature effect is large:

∆ρ/ρ ∼ −10%/ ◦C

It is speculated that at high temperature streamers lower values of ρ

can lead to large discharges and significant aging of the detectors.
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Mechanical Tolerances

• Townsend coefficients

rapidly increase with electric

field (from Imonte simula-

tion)

• If gap width increased,

Townsend coefficient de-

creases faster than streamer

length ` increases

• Chamber becomes ineffi-

cient when α` < 20

• This analysis courtesy of

C. Lu, Princeton
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Basic result:

dV

d gap
' 2300V/mm

In Babar a few ”popped buttons” (unglued spacers) can easily lead to

a 3mm gap width rather than the nominal 2 mm width.

• To avoid excess aging chambers should be kept no more than 500 V

above streamer threshold

⇒ mechanical tolerance of only 200 µm
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Problems associated with linseed oil coating

• Linseed oil coatings of inner surface lower the current drawn through

the gas and singles of rates of the detectors by a factor of 5 to 10.

• The linseed oil is thought to provide two functions:

• It makes a smooth inner surfaces leading

to a more uniform electric field

• It can absorb UV photons produced in the

avalanche

• Main advantage of glass RPCs is that they avoid this coating
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Babar problems

Possibly due to linseed oil

bridges

• Temperature rose to 36◦ C in

the experimental hall

• Currents increased

⇒ Many chambers temporarily

disconnected

• Efficiency can be increased by

lowering amount of Freon

⇒ See 200 and 420 days

• But efficiency still declines con-

tinuously
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• Inefficiency appears to be mainly

concentrated around edges of

the chambers

• There is some evidence that the

efficiency also occurs near the

rows of spacers

• High voltage plateau’s become

very broad

Efficiency Maps
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Efficiency Plateaus

During original testing After operation in BaBar
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Test Stand Studies

• Can we reproduce the problems

in the lab?

• SLAC test stand shows that

trigger chambers made prior to

the BaBar production are sensi-

tive to heat.

• Other tests (e.g. at Oregon)

show that damage can be done

to chambers at temperatures of

only 28◦ C

⇒ Problems could occur even

at moderate temperatures!
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Materials Studies and Models

• Effects of linseed oil columns will

depend on the resistivity of the lin-

seed oil:
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• A model of high and low resistivity

linseed oil columns:

⇒ The resistivity of linseed oil

depends on how it has cured and

if contaminants are present

Sample resistivity
[109Ωcm]

polymerized US linseed oil 145.9
(skin/oil mix)

US linseed oil 42.3
(cured in air for 30 days)

US linseed oil 27.9
(cured in air for 3 days)

uncured US linseed oil 14.4

uncured linseed 7.7
(production oil)

uncured oil 0.21
(removed from bad RPC )

measurements from SLAC and Princeton

Unclear why oil removed from bad

RPC has so low resistivity
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Experience with prototypes for endcap replacement

• 24 endcap modules (12 chambers) were

replaced with prototypes 12/00

• The prototype chambers have a single

coat of 30% linseed oil, 70% pentane.

• Inner surface of opened chambers

smooth

• Some damage seen in one of two cham-

bers heated in test stand

⇒ Thinner linseed oil surface more sen-

sitive to dust, contamination

• Modules in the shallow layers of the

detector have stable, good efficiency

Efficiency (no beam) for layer 18

prototypes
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• Modules in the deepest layer of the calorimeter show significant
damage after ∼ 120 days of operation.
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• The layer 18 prototypes were exposed

to high levels of background from beam

processes.

• Since detailed monitoring began, the

charge through the gas has grown linearly

with time.

• The decline in efficiency started

at about 120 days corresponding to

∼500 C/m2 (∼ 108 streamers/cm2) in

the gas.

• A model which takes the temperature
of the leakage current into account and
which assumes that

Ileakage ∝ Qgas

describes the data well.

⇒ Can this model explain the

decline in efficiency?
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• Water vapor (70% relative

humidity at 20◦) was added

to the gas of test stand

chamber 6 on day 528. Rate

was nominally 1 cm3/min,

but was much lower for

chamber 6 because it is

somewhat leaky.

• On day 529 a high rate

of gas was flown through

chamber 6

(flow rate off-scale on flow

meters, ∼ 15 cm3/min)

• Current immediately de-

creased in 6

• Efficiency immediately

improved in 6
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Discussion

The observed behavior of chamber 6 is consistent with the Malter effect:
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• Chamber current locally depletes charge carriers in linseed oil skin
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• Ions collect on the insulating linseed oil surface

• Accumulated ions will produce a large electric field across the linseed

oil surface

• Electrons can then be accelerated into the gas volume where avalanches

are produced (Malter Effect)

• The large current from Malter electrons keeps the gap voltage below

streamer threshold. A large current and inefficiency is observed
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• Adding water vapor to the gas decreases the surface resistivity of

the linseed oil and prevents the accumulation of ions

• The Malter Effect also explains a common phenomena observed

with many chambers: when the chambers are first switched on their

efficiency decreases and the current increases

• The increased current occurs as the ions collect on islands of insu-

lator on the linseed oil surface causing the Malter Effect

• As the chambers become drier, these islands become larger due to

the depletion of ion conductivity (see Jerry’s Notebook).

• On 2 of 3 chambers tested, the water had no effect
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Glass RPCs

• ”Float glass” has resistivity of roughly 1012 Ω cm, comparable to the

higher resistivity bakelite
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• In the Belle experiment, it was found necessary to control any mosture

in the glass very tightly. Reportedly

- Water can combine with Fluorine which forms in the

streamers to produce HF

-HF can etche the glass allowing for the adsorption of

water onto the glass etch

-The water forms a conducting layer which ”shorts” the

surfaces to nearby spacers, reducing the gap voltage be-

low streamer threshold.
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Gas without freon 134a can be used (Hoshi et al.,) eg:

4% isobutane, 10% O2, 10% Ar and 76% CO2 has 90% efficiency

instead of 95% for freon based mixtures.

Caution: a simple analysis based

on adiabatic flame temperatures

and complete combustion indi-

cates that this mixture may still

be flammable.
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Conclusion

• Results are mixed for large scale deployment of RPC

• Detectors are relatively inexpensive, but are not ”easy to build” –

careful QA/QC needed during production

• Double gap chambers are more robust against failure

• Must be able to replace faulty RPC chambers during the lifetime of

the experiment.

LC Santa Cruz 23 David Strom – UO


