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Primary ECAL Design Requirements

• Optimal contribution to the reconstruction of multijet events:

– Excellent separation of γ’s from charged particles

Efficiency > 95% for energy flow

– Good reconstruction of π±, detection of neutral hadrons

– Good linkage of ECAL with HCAL

– Reasonable EM energy resolution (< 15%/
√

E)

Physics case: jet reconstruction important for many physics processes.
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⇒ A principal goal of a linear collider is the determination of Higgs

branching ratios using the processes:

e+e− → Zh

e+e− → hνν̄
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⇒ Excellent jet energy resolution is needed for the later process.

Precision tests may also be of interest, e.g., measurement of quartic

gauge couplings:
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Use all final states.
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• Reconstruct Bhabhas and deconvolve luminosity spectrum

– Position resolution ∼ 100µm, bias ∼ 25µm in endcap

– Good energy resolution for 500 GeV electron showers.

Luminosity spectrum is important for

• tt̄ threshold (mt, αs, tt̄h coupling )

• e+e− → ff̄ , important for limits on extra dimensions and ”contact

interactions”
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• Position resolution important for

understanding single hard photons

from beamstrahlung
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• Well understood energy resolution needed to understand linac beam

energy spread

(NLC 500 Results from Torrence and Woods – beamstrahlung off)

503497

Torrence and Woods
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• Reconstruct τ ’s and measure polarization (separate π, ρ, a1, e’s)

τ ’s are important in many ”New Physics” models:

– In many SUSY models staus are the lightest sfermions

– Many models have special couplings for the heaviest generation

(extra couplings may explain large top mass)

– Tau polarization may be important in differentiating New Physics

scenarios from each other
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Secondary ECAL Design Requirements

• Excellent electron identification in jets (tag and b/c quarks)

• Partial reconstruction of b/c hadrons in jets

• Good γ impact resolution for long lived SUSY neutrals

∼ 1 cm

• Good background immunity

– Bunchlet identification

– High granularity
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SD (”Silicon detector”)

Design constraints impacting calorimetry
(See talk by M. Breidenbach at Cornell∗)

• Excellent jet-energy reconstruction using combined tracking and
calorimetry (i.e. “energy flow”)

• Excellent momentum resolution for lepton pairs in processes such
as (e.g. e+e− → hZ → µ+µ−X)

• Excellent reconstruction of detached vertices from B’s (e.g. 5 layer
CCD vertex detector)

• Cost compatible with ∼ 5%/detector of machine cost, perhaps
$350M/detector

∗http://blueox.uoregon.edu/~lc/cornell-detectors.html
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• Main trade off is magnetic field versus detector radius with figure

of merit

fp = BR2

• SD option: 5 T magnetic field, 1.25m calorimeter radius

Optimization limited by maximum field

Helps confine background e+e− pairs to beam pipe

• Stored Energy is less than TESLA ( ∼ 1.5GJ versus ∼ 2.4GJ )

• Reduces Si area and cost

• Places premium on ECAL granularity

(strive for a very dense detector)
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Cut-away view

• 5 layer CCD vertex Detector

• Silicon tracker

• SiW ECAL (blue)

• HCAL inside of coil (brown)

• Coil (red)
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Quadrant View

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

0.000 2.000 4.000 6.000 8.000

m

m

Beam Pipe

Ecal

Hcal

Coil

MT

Endcap

Endcap_Hcal

Endcap_Ecal

VXD

Track Angle

Endcap_Trkr_1

Endcap_Trkr_2

Endcap_Trkr_3

Endcap_Trkr_4

Endcap_Trkr_5

Trkr_2

Trkr_3

Trkr_4

Trkr_5

Trkr_1

CALOR2004 12 2 April 04 – David Strom – UO



Layer Assembly 

3.6 Meters
1.

1-
1.

3 
M

et
er

s

Silicon Wafers

Circuit Board

Rolled Tungsten 

Inner Tracker
1.25m

ECAL

Si-W Calorimeter Concept

Transverse Segmentation ~5mm

Energy Resolution  ~15%/E
30 Longitudinal Samples

1/2

CALOR2004 13 2 April 04 – David Strom – UO



Electronics and Silicon Design

( Discussed in detail in Silicon Calorimetry Session )

• Use hexagonal 5mm pixels on

6 in wafers

• Use DC coupling to simplify

wafer processing

• Readout chip bump bonded to

wafer

• Electronics have a large dy-

namic range (0.1 - 2000 MIPs)

with at least 0.5% resolution

• Cost first order insensitive to

pixel size

• Power is main constraint on

density

CALOR2004 14 2 April 04 – David Strom – UO



Importance of Granularity

• Figure of merit for energy reconstruction is

fE =
RM

Rcal

where RM is the Molière radius and Rcal is the inner radius of the
calorimeter

• The costs of the calorimeters, coil, and muon system have

cost ∝ Rn
cal

where n is ∼ 2− 3.

• Thus a 10% increase in the Molière radius of the calorimeter leads
to a > 20% increase in cost of the detector for constant fe.

• Conclusion: try and make the calorimeter as dense as possible
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Layout goal(?):
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Critical parameter: gap between tungsten layers.

Config. Radiation Molière
length Radius

100% W 3.5mm 9mm
92.5% W 3.9mm 10mm
+1mm gap 5.5mm 14mm
+1mmCu 6.4mm 17mm
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Important system level design issue for the calorimeter will be dealing
with the heat produced by the electronics.

⇒ Largest unknown is power consumption of the electronics
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Warm – Cold Machine Differences

• ECAL design was developed in the context of a warm (X-band) linear

accelerator. Will it still work for a cold (superconducting) machine?

• Main difference is the bunch structure:

Technology Repetition rate Bunch train length Bunch separation

Warm 120Hz 192 (0.270 µs) 1.4 ns

Cold 5Hz 2820 (950 µs) 337 ns
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Power Pulsing

• Assuming a 10µs turn on time for power pulsing, duty cycle of pulsed

power:

warm 1/833

cold 1/206

• Non-pulsed is ∼ 1% of “ON” power and dominates!

• Slower electronics possible for warm machine, so less power needed in

”ON” state than for cold machine

Overall slight advantage for warm machine

Not a basis for choosing one or the other machines

CALOR2004 20 2 April 04 – David Strom – UO



Technology choice impact on electronics

• Current electronics provides timing at the few ns level for the warm

machine (see next slide)

• Bunch ID for the cold machine is easy, but pipelined electronics

needed (can’t integrate over 2820 bunches)

• We expect that our electronics could be adapted for the cold ma-

chine, but effort is currently concentrated on warm machine
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Toy Monte Carlo Studies of Timing Resolution for 30 Samples

Assumptions – wild guesses – (waiting for real electronics model):

• Each MIP has 30 samples at random distances from the read-out chip

• Threshold for timing measurement is 8,000 electrons.

• Input FET has gm = 1.5mS and the noise contribution from the rest of the
amplifier is equal to input FET except for the ”floor” noise.

• The charge measurement has a noise floor of either 0 or 4000 electrons

• Time constant for charge measurement is 200 ns.

• Time constant for the time measurement is 50 or 200 ns.

• The noise signals in the timing and charge circuits are uncorrelated

• Random 5% channel to channel variation in threshold

• Random 1% event-to-event variation in threshold

• Random 5% uncertainty in constants used for correction.

• Reject time measurements far from mean
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Sample Timing Results
200 ns time constant, no noise floor
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Including a 4000 electron noise floor (not needed in new electronics

design):
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With no noise floor (eg use switchable feedback capacitor) and

50ns time constant:
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Needs to be demonstrated in a test beam!
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Si-W Status and Plans

• Design of first silicon detectors complete

⇒ Prototypes in hand

• Electronics design well advanced

⇒ Expect to be ready for submission in mid ’04

• Mechanical conceptual design started

⇒ ∼ 1mm gap between layers without a copper heat

sink may be possible

• Hope to build 30 layer test module within next two

years
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