Silicon/Tungsten ECal for the SD Detector

M. Breidenbach, D. Freytag, G. Haller, M. Huffer, J.J Russell Stanford Linear Accelerator Center

> <u>R. Frey</u>, D. Strom *U. Oregon*

LCWS2002, Jeju Island, Korea August 28, 2002

SD Detector

1

- SD designed for excellent energy flow performance – with well-understood and somewhat constrained costs (see Snowmass Orange Book for details)
- Si/W ECal
 - 5 T ; R_{in} = 1.27 m
 - 5mm transverse segmentation
 - [2.5 mm W (0.7 X₀), 0.3 mm Si] x30
 - Not optimized !
 - $R_m = 9mm (1 + gap(mm)/2.5) \rightarrow$ Keep gaps small !

In this talk:

•Detector/Frontend architecture and considerations •Current R&D

•Still working on overall mechanical design

•Plans

SD Si/W

- $5x5 \text{ mm}^2 \text{ pixel} \Rightarrow 50M \text{ pixels}$
- Do NOT scale electronics by this number
- For each (6 inch) wafer:
 - 1000 pixels (approx)
 - One readout chip (ROC)
- Simple, scalable detector design:
 - Minimum of fab. steps
 - Use largest available wafers
- \Rightarrow Detector cost below \$2/cm²
- \Rightarrow Electronics cost even less
- ⇒ A reasonable (cheap?) cost

1,027 (5mm) CELLS

Wafer and readout chip

Silicon detector layout considerations

- DC coupled detectors are simple (cheap)
 - Use AMPLEX-type preamp design
 - OK as long as leakage currents small and stay small
 - Straightforward layout uses two metallization layers (OK)
 - Possible to try one for R&D ?
 - Get (fast) trigger signal from common back side
 - Pixel-readout trace crosstalk ≈ 1%
- AC coupled also possible
 - Avoid inputting leakage current to preamp
 - More complicated
 - Complete additional network (hard)
 - Additional layer and vias
 - Cap. breakdown
 - Beware hierarchy of capacitances

Readout channel

- Dynamic range: MIPs to Bhabhas
 - About factor 2000 range per pixel
 - Want to maintain resolution at both ends of scale
 - Demand S/N of 7 for MIPs
 - Satisfy with 2 overlapped ranges
 - G1/G2 ≈ 15
 - 12 bit ADC
 - Need C \approx 10 pF (big)
 - Approx. same as pixel cap.
- Additional 10 pF cap. for calib.
- Shaping time about 100-200 ns
- One additional channel per chip for fast common trigger signal
- Expect noise of 300 e rms (GLAST)

Detailed design in progress

Radiation

- EM radiation dominated by Bhabhas (in forward endcap)
 - $d\sigma/d\theta \approx 10 \text{ pb}/\theta^3$ for t-channel
 - Consider 1 ab⁻¹, 500 GeV, shower max., and θ=60 mrad (worst case)
 - Use measured damage constant (Lauber, et al., NIM A 396)
 ⇒ ≈6 nA increase in leakage current per pixel
 - $\rightarrow \sim 0$ IIA increase in leakage current per pr
 - Comparable to initial leakage current
 - Completely negligible except at forward edge of endcap
- Currently evaluating potential neutron damage
- A 300 GeV electron shower into a readout chip?
 - "Linear Energy Threshold" (LET) is 70 MeV/cm²/mg
 - \Rightarrow Expect no such problems

Heat

- Does integrated design imply fancy cooling system?
- Consider: NLC duty cycle is 5x10⁻⁵ (5x10⁻³ for TESLA)
 - 270 ns bunch trains at 150 Hz
- \Rightarrow Use power pulsing of the electronics
- For example, GLAST-equivalent readout would produce only about 1 mW average power per 1000-channel chip
 - Assumes power duty cycle of 10⁻³
 - ... this factor is an important R&D item
- Current proposed scheme:
 - Heat conduction thru thick (6 oz) Cu layer in G10 m-board to fixed temperature heat sinks at edges of ECal modules
 - $\Rightarrow \Delta T \approx 1^{\circ}C$
- Requires R&D to demonstrate

Putting together a layer

Calorimeter Layer

Gross System Architecture

Plans

- Procure full-wafer (6" for now) detectors with complete layout
 - QC, verify crosstalk, SNR, etc.
 - Test in 5 T
- Simulations: optimize segmentation and longitudinal sampling
- Design and produce first readout chip
- Bump bonding trials
- Design and build full 1-wafer wide module
 - Power pulsing and thermal management
- Test beam
 - Electrons/photons and hadrons (together?)
 - Check vs simulations
- Mechanical structure
- Cost optimizations
 - Silicon
 - Readout
 - Tungsten

Summary

- A highly granular Si/W ECal would be very nice at the LC !
 - Expect excellent EFlow jet reconstruction
 - Photon reconstruction (non-pointing; flavor id. of jets)
 - "Imaging calorimeter" for MIPs, photons, had. showers
- An integrated design makes this feasible
 - If not cheap, at least not crazy
- Requires answers to key R&D issues over next ≈ 2 years
 - Silicon configuration
 - Readout chip
 - Cooling and mechanics
 - Test beam