Some EGS Studies...

- Compare with Geant4
 - Questions of range/cutoff
- EM Resolution understood?
- Moliere radius readout gap relation
- Input shower widths for fast MC
- Calibration requirement (electronics design)
- ECal depth
 - containment
 - Transverse/long. segmentation for pattern recognition
 - Optimize coarser sampling with depth
- Minimum number of silicon layers (30? 25? 20??)

EGS4 Setup

1.5 mm	0.5	0.68	0.32	0.25	<u> </u>	< 1.5
W bulk	W thin	G10	Si	Air	W thin	W bulk
E cut = 500 keV	100 keV	100 keV	100 keV		100 keV	500 keV
Pcut = 500 keV	100 keV	100 keV	20 keV		100 keV	500 keV
Estepe = 0.3%	0.3%	0.3%	0.3%		0.3%	0.3%

Config: 30 x [5/7 X0 (2.5 mm) + 1.25 mm gaps]

Thin EM sampling (Si)

If energy cutoffs (EGS) are too large, then the simulated range of low energy secondaries exceeds the physical range

 \Rightarrow Their energy doesn't get deposited in the sensitive region.

Presumably the same issue exists for Geant4 (range cut)

Do we need the "skins" in this case?

- 10 GeV photons
- about 3x more CPU time

transverse spatial distributions (5 GeV photons)

SiD Cal R. Frey

Graham Wilson - Victoria

Superb Position Resolution for 1 GeV Photons

For illustration purposes only !:

Si-W, 42 layers, **1mm x 1mm pixels**,

 $R_{\rm M} = 13.5 \ {\rm mm}$

1 GeV photons

Transverse segmentations much finer than 5 mm may be useful – Si strips ?

Position residual (mm)

energy resolution (photons)

 $(\sigma_{\rm E}/{\rm E})$ × ${\rm E}_{\gamma}^{1/2}$

Compare with Geant4 N. Graf, G. Wilson, RF

- Used infinite planes of 2.5 mm W + 1mm G10 + 0.4mm Si
- Found that Geant4 with (standard?) 1mm range cut underestimated the energy deposited in the silicon by 15-20% (and hence the standard Geant4 gets poorer energy resolution)
- Found that the two converged for a Geant4 range cut of 0.1mm (or about 1 KeV equiv. energy cutoff)

• CPU time increases by factor 30

EGS4/Geant4 contd

• Can make EGS approximate Geant4 with 1mm range cut by removing the skins and changing energy step from 0.3% (upper plot) to 2% (lower)

SiD Cal R. Frey

Effective Moliere radius - old

•Standard SD: 5x5 mm² pixels with (1) 0.4mm or (2) 2.5mm readout gaps.

•10 GeV photons; look at layer 10

9

Alternative Sampling Configurations - old study

