Some EGS Studies...

- Compare with Geant4
 - Questions of range/cutoff
- EM Resolution understood?
- Moliere radius readout gap relation
- Input shower widths for fast MC
- Calibration requirement (electronics design)
- ECal depth
 - containment
 - Transverse/long. segmentation for pattern recognition
 - Optimize coarser sampling with depth
- Minimum number of silicon layers (30? 25? 20??)

EGS4 Setup

1.5 mm	0.5	0.68	0.32	0.25	<u> </u>	< 1.5
W bulk	W thin	G10	Si	Air	W thin	W bulk
E cut = 500 keV	100 keV	100 keV	100 keV		100 keV	500 keV
Pcut = 500 keV	100 keV	100 keV	20 keV		100 keV	500 keV
Estepe = 0.3%	0.3%	0.3%	0.3%		0.3%	0.3%

Config: 30 x [5/7 X0 (2.5 mm) + 1.25 mm gaps]

Thin EM sampling (Si)

If energy cutoffs (EGS) are too large, then the simulated range of low energy secondaries exceeds the physical range

 \Rightarrow Their energy doesn't get deposited in the sensitive region.

Presumably the same issue exists for Geant4 (range cut)

Do we need the "skins" in this case?

- 10 GeV photons
- about 3x more CPU time

transverse spatial distributions (5 GeV photons)

SiD Cal R. Frey

energy resolution (photons)

(Sigma(E)/E) * sqrt(E)

Alternative Sampling Configurations – old study

