Dyson-Schwinger Equations: an update

Craig D. Roberts

cdroberts@anl.gov

Physics Division

Argonne National Laboratory
Dichotomy of the Pion

How does one make an almost massless particle from two massive constituent-quarks?
Dichotomy of the Pion

How does one make an almost massless particle from two massive constituent-quarks?

Not Allowed to do it by fine-tuning

Must exhibit \(m_\pi^2 \propto m_q \)

Current Algebra \ldots 1968
Dichotomy of the Pion

How does one make an **almost massless** particle from two **massive** constituent-quarks?

Not Allowed to do it by fine-tuning

Must exhibit $m^2_\pi \propto m_q$

Current Algebra . . . 1968

The **correct understanding** of pion observables; e.g. mass, decay constant and form factors, requires an approach to contain a **well-defined and valid chiral limit**, and an **accurate realisation** of dynamical chiral symmetry breaking.
Dichotomy of the Pion

How does one make an almost massless particle from two massive constituent-quarks?

Not Allowed to do it by fine-tuning

Must exhibit \[m_\pi^2 \propto m_q \]

Current Algebra ... 1968

The correct understanding of pion observables; e.g. mass, decay constant and form factors, requires an approach to contain a well-defined and valid chiral limit, and an accurate realisation of dynamical chiral symmetry breaking.

Requires detailed understanding of Connection between Current-quark and Constituent-quark masses
Dichotomy of the Pion

How does one make an almost massless particle from two massive constituent-quarks?

Not Allowed to do it by fine-tuning

Must exhibit \(m_\pi^2 \propto m_q \)

Current Algebra ... 1968

The correct understanding of pion observables; e.g. mass, decay constant and form factors, requires an approach to contain a well-defined and valid chiral limit, and an accurate realisation of dynamical chiral symmetry breaking.

Requires detailed understanding of Connection between Current-quark and Constituent-quark masses

Using DSEs, we've provided this.
Dyson-Schwinger Equations
Dyson-Schwinger Equations

A Modern Method for Relativistic Quantum Field Theory
Dyson-Schwinger Equations

A Modern Method for Relativistic Quantum Field Theory

Simplest level: Generating Tool for Perturbation Theory

........................ Materially Reduces Model Dependence
Dyson-Schwinger Equations

- A Modern Method for Relativistic Quantum Field Theory
- Simplest level: Generating Tool for Perturbation Theory
 Materially Reduces Model Dependence
- NonPerturbative, Continuum approach to QCD
Dyson-Schwinger Equations

A Modern Method for Relativistic Quantum Field Theory

Simplest level: Generating Tool for Perturbation Theory

Materially Reduces Model Dependence

NonPerturbative, Continuum approach to QCD

Hadrons as Composites of Quarks and Gluons
Dyson-Schwinger Equations

- A Modern Method for Relativistic Quantum Field Theory
- Simplest level: Generating Tool for Perturbation Theory
 Materially Reduces Model Dependence
- NonPerturbative, Continuum approach to QCD
- Hadrons as Composites of Quarks and Gluons
 Qualitative and Quantitative Importance of:
 - Dynamical Chiral Symmetry Breaking
 - Quark & Gluon Confinement
Dyson-Schwinger Equations

- A Modern Method for Relativistic Quantum Field Theory
- Simplest level: Generating Tool for Perturbation Theory
 Materially Reduces Model Dependence
- NonPerturbative, Continuum approach to QCD
 - Hadrons as Composites of Quarks and Gluons
 - Qualitative and Quantitative Importance of:
 - Dynamical Chiral Symmetry Breaking
 - Quark & Gluon Confinement
 - Understanding InfraRed (long-range)
 - behaviour of $\alpha_s(Q^2)$
Dyson-Schwinger Equations

- A Modern Method for Relativistic Quantum Field Theory
- Simplest level: Generating Tool for Perturbation Theory
 Materially Reduces Model Dependence
- NonPerturbative, Continuum approach to QCD
- Hadrons as Composites of Quarks and Gluons
 Qualitative and Quantitative Importance of:
 - Dynamical Chiral Symmetry Breaking
 - Quark & Gluon Confinement
 ⇒ Understanding InfraRed (long-range) behaviour of $\alpha_s(Q^2)$
- Method yields Schwinger Functions \equiv Propagators
Dyson-Schwinger Equations

- A Modern Method for Relativistic Quantum Field Theory
- Simplest level: Generating Tool for Perturbation Theory

 Materially Reduces Model Dependence

- NonPerturbative, Continuum approach to QCD

 - Hadrons as Composites of Quarks and Gluons

 Qualitative and Quantitative Importance of:

 - Dynamical Chiral Symmetry Breaking
 - Quark & Gluon Confinement

 ⟹ Understanding InfraRed (long-range)

 .. behaviour of $\alpha_s(Q^2)$

- Method yields Schwinger Functions \equiv Propagators

 Cross-Sections built from Schwinger Functions
Contemporary Reviews

- Dyson-Schwinger Equations: Density, Temperature and Continuum Strong QCD

- The IR behavior of QCD Green’s functions: Confinement, DCSB, and hadrons . . .

- Dyson-Schwinger equations: A Tool for Hadron Physics
Persistent Challenge

Infinitely Many Coupled Equations

\[\Sigma = \Gamma \]

\[\Sigma \rightarrow \Gamma \]

\[\gamma \rightarrow S \rightarrow \Gamma \]
Persistent Challenge

- Infinitely Many Coupled Equations
- Solutions are Schwinger Functions
 (Euclidean Green Functions)
- Same VEVs measured in Lattice-QCD simulations
Persistent Challenge

- Infinitely Many Coupled Equations
- Solutions are Schwinger Functions (Euclidean Green Functions)
- Same VEVs measured in Lattice-QCD simulations
- Coupling between equations necessitates truncation
Persistent Challenge

- Infinitely Many Coupled Equations
 - Solutions are Schwinger Functions (Euclidean Green Functions)
 - Same VEVs measured in Lattice-QCD simulations

- Coupling between equations necessitates truncation
 - Weak coupling expansion \Rightarrow Perturbation Theory
Persistent Challenge

- Infinitely Many Coupled Equations
- Solutions are Schwinger Functions (Euclidean Green Functions)
- Same VEVs measured in Lattice-QCD simulations
- Coupling between equations necessitates truncation
- Weak coupling expansion \Rightarrow Perturbation Theory
 Not useful for the nonperturbative problems in which we’re interested.
Persistent Challenge

- Infinitely Many Coupled Equations
 - Solutions are Schwinger Functions (Euclidean Green Functions)
 - Same VEVs measured in Lattice-QCD simulations

- We introduced a systematic nonperturbative, symmetry-preserving truncation scheme

Persistent Challenge

- Infinitely Many Coupled Equations
- Solutions are Schwinger Functions (Euclidean Green Functions)
- Same VEVs measured in Lattice-QCD simulations

We introduced a systematic nonperturbative, symmetry-preserving truncation scheme

- Has Enabled Proof of EXACT Results in QCD
Persistent Challenge

- Infinitely Many Coupled Equations
- Solutions are Schwinger Functions (Euclidean Green Functions)
- Same VEVs measured in Lattice-QCD simulations

- We introduced a systematic nonperturbative, symmetry-preserving truncation scheme
- Has Enabled Proof of EXACT Results in QCD
- And Formulation of Practical Phenomenological Tool to Illustrate Exact Results
Persistent Challenge

- Infinitely Many Coupled Equations
- Solutions are Schwinger Functions (Euclidean Green Functions)
- Same VEVs measured in Lattice-QCD simulations

- We introduced a systematic nonperturbative, symmetry-preserving truncation scheme

- Has Enabled Proof of EXACT Results in QCD
- And Formulation of Practical Phenomenological Tool to Make Predictions with Readily Quantifiable Errors
Perturbative Dressed-quark Propagator
Perturbative Dressed-quark Propagator

\[S(p) = \frac{Z(p^2)}{i\gamma \cdot p + M(p^2)} \]

Gap Equation
Perturbative Dressed-quark Propagator

\[S(p) = \frac{Z(p^2)}{i\gamma \cdot p + M(p^2)} \]

dressed-quark propagator

Gap Equation

\[S(p) = \frac{1}{i\gamma \cdot p A(p^2) + B(p^2)} \]
Perturbative Dressed-quark Propagator

\[S(p) = \frac{Z(p^2)}{i\gamma \cdot p + M(p^2)} \]

\[S(p) = \frac{1}{i\gamma \cdot p A(p^2) + B(p^2)} \]

dressed-quark propagator

Gap Equation

Weak Coupling Expansion

Reproduces Every Diagram in Perturbation Theory
Perturbative Dressed-quark Propagator

\[S(p) = \frac{Z(p^2)}{i\gamma \cdot p + M(p^2)} \]

- dressed-quark propagator

Gap Equation

\[\Sigma \rightarrow = \]

- Weak Coupling Expansion
 - Reproduces Every Diagram in Perturbation Theory
 - But in Perturbation Theory

\[B(p^2) = m \left(1 - \frac{\alpha}{\pi} \ln \left[\frac{p^2}{m^2} \right] + \ldots \right) \quad m \rightarrow 0 \quad 0 \]
Perturbative Dressed-quark Propagator

\[
S(p) = \frac{Z(p^2)}{i\gamma \cdot p + M(p^2)}
\]

- **dressed-quark propagator**

\[
S(p) = \frac{1}{i\gamma \cdot p A(p^2) + B(p^2)}
\]

Gap Equation

Weak Coupling Expansion

Reproduces Every Diagram in Perturbation Theory

- **But in Perturbation Theory**

\[
B(p^2) = m \left(1 - \frac{\alpha}{\pi} \ln \left[\frac{p^2}{m^2}\right] + \ldots\right) \xrightarrow{m \to 0} 0
\]

No DCSB Here!
Dressed-Quark Propagator
Dressed-Quark Propagator

\[S(p) = \frac{Z(p^2)}{i\gamma \cdot p + M(p^2)} \]

Gap Equation

\[\Sigma = \gamma \Gamma \]

\[\Sigma \]

\[\Gamma \]
Dressed-Quark Propagator

\[S(p) = \frac{Z(p^2)}{i\gamma \cdot p + M(p^2)} \]

Gap Equation’s Kernel Enhanced on IR domain

⇒ IR Enhancement of \(M(p^2) \)
\[S(p) = \frac{Z(p^2)}{i\gamma \cdot p + M(p^2)} \]

Gap Equation’s Kernel Enhanced on IR domain

\[\Rightarrow \text{IR Enhancement of } M(p^2) \]

Euclidean Constituent–Quark Mass: \(M_f^E : p^2 = M(p^2)^2 \)

<table>
<thead>
<tr>
<th>flavour</th>
<th>(u/d)</th>
<th>(s)</th>
<th>(c)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{M_f^E}{m_\zeta})</td>
<td>(\sim 10^2)</td>
<td>(\sim 10)</td>
<td>(\sim 1.5)</td>
<td>(\sim 1.1)</td>
</tr>
</tbody>
</table>
Dressed-Quark Propagator

Longstanding Prediction of Dyson-Schwinger Equation Studies
Dressed-Quark Propagator

- Longstanding Prediction of Dyson-Schwinger Equation Studies
Dressed-Quark Propagator

- Longstanding Prediction of Dyson-Schwinger Equation Studies
- Long used as basis for efficacious hadron physics phenomenology
Dressed-Quark Propagator

- Longstanding Prediction of Dyson-Schwinger Equation Studies
 - Long used as basis for efficacious hadron physics phenomenology
Quenched-QCD

Dressed-Quark Propagator

M(p)

Z(p)

“data:” Quenched Lattice Meas.

– Bowman, Heller, Leinweber, Williams: [he-lat/0209129](https://arxiv.org/abs/he-lat/0209129)
"data:" Quenched Lattice Meas.

– Bowman, Heller, Leinweber, Williams: [he-lat/0209129](http://arxiv.org/abs/he-lat/0209129)

current-quark masses: 30 MeV, 50 MeV, 100 MeV
"data:" Quenched Lattice Meas.
- Bowman, Heller, Leinweber, Williams: hep-lat/0209129
 current-quark masses: 30 MeV, 50 MeV, 100 MeV

Curves: Quenched DSE Cal.
- Bhagwat, Pichowsky, Roberts, Tandy nu-th/0304003
Quenched-QCD

Dressed-Quark Propagator

2002

\[M(p) \]

\[Z(p) \]

“data:” Quenched Lattice Meas.

– Bowman, Heller, Leinweber, Williams: [he-lat/0209129](http://arxiv.org/abs/he-lat/0209129)

current-quark masses: 30 MeV, 50 MeV, 100 MeV

Curves: Quenched DSE Cal.

Linear extrapolation of lattice data to chiral limit is inaccurate
Kernel of Gap Equation: $D_{\mu\nu}(p - q) \Gamma_{\nu}(q)$

Dressed-gluon propagator and dressed-quark-gluon vertex

Reliable DSE studies of Dressed-gluon propagator:

Kernel of Gap Equation: $D_{\mu\nu}(p - q) \Gamma_\nu(q)$

Dressed-gluon propagator and dressed-quark-gluon vertex

Reliable DSE studies of Dressed-gluon propagator:

- Dressed-gluon propagator – lattice-QCD simulations confirm that behaviour:

Exploratory DSE and lattice-QCD studies of dressed-quark-gluon vertex
Dressed-gluon Propagator

\[D_{\mu\nu}(k) = \left(\delta_{\mu\nu} - \frac{k_\mu k_\nu}{k^2} \right) \frac{Z(k^2)}{k^2} \]

Suppression means \(\exists \) IR gluon mass-scale \(\approx 1 \text{ GeV} \)

Naturally, this scale has the same origin as \(\Lambda_{\text{QCD}} \)
Dressed-gluon Propagator

\[
D_{\mu \nu}(k) = \left(\delta_{\mu \nu} - \frac{k_{\mu} k_{\nu}}{k^2} \right) \frac{Z(k^2)}{k^2}
\]

Suppression means \(\exists \) IR gluon mass-scale \(\approx 1 \text{ GeV} \)

Naturally, this scale has the same origin as \(\Lambda_{\text{QCD}} \)
\[D_{\mu\nu}(k) = \left(\delta_{\mu\nu} - \frac{k_\mu k_\nu}{k^2} \right) \frac{Z(k^2)}{k^2} \]

Suppression means \(\exists \) IR gluon mass-scale \(\approx 1 \text{ GeV} \)

Naturally, this scale has the same origin as \(\Lambda_{\text{QCD}} \)
Hadrons

- Established understanding of two- and three-point functions
Hadrons

- Established understanding of two- and three-point functions
- What about bound states?
• Without bound states, Comparison with experiment is impossible
• Without bound states, Comparison with experiment is impossible

• They appear as pole contributions to $n \geq 3$-point colour-singlet Schwinger functions
• Without bound states, Comparison with experiment is impossible

• Bethe-Salpeter Equation

QFT Generalisation of Lippman-Schwinger Equation.
Hadrons

- Without bound states, Comparison with experiment is impossible

- Bethe-Salpeter Equation

QFT Generalisation of Lippman-Schwinger Equation.

- What is the kernel, K?
• Without bound states, Comparison with experiment is impossible

• Bethe-Salpeter Equation

QFT Generalisation of Lippman-Schwinger Equation.

• What is the kernel, K?

or What is the long-range potential in QCD?
Bethe-Salpeter Kernel

Axial-vector Ward-\textit{Takahashi} identity

\[
P_\mu \Gamma^l_{\bar{5}\mu}(k; P) = S^{-1}(k_+) \left(\frac{1}{2} \lambda_f i\gamma_5 + \frac{1}{2} \lambda_f i\gamma_5 \right) S^{-1}(k_-)
\]

\[
- M_\zeta i\Gamma^l_5(k; P) \quad \text{QFT Statement of Chiral Symmetry}
\]
Axial-vector Ward-Takahashi identity

\[P_\mu \Gamma_{5\mu}^l (k; P) = S^{-1}(k_+) \frac{1}{2} \lambda_f i \gamma_5 + \frac{1}{2} \lambda_f i \gamma_5 \frac{1}{2} \lambda_f i \gamma_5 S^{-1}(k_-) \]

\[-M_\zeta \, i \Gamma_{5}^l (k; P) - i \Gamma_{5}^l (k; P) M_\zeta \]

Satisfies BSE \hspace{1cm} \text{Satisfies DSE}
Axial-vector Ward-Takahashi identity

\[P_\mu \, \Gamma^{l}_{5\mu}(k; P) = S^{-1}(k_+) \frac{1}{2} \chi_f i \gamma_5 + \frac{1}{2} \chi_f i \gamma_5 \left(S^{-1}(k_-) - M_\zeta i \Gamma^l_5(k; P) - i \Gamma^l_5(k; P) M_\zeta \right) \]

Satisfies BSE

Satisfies DSE

Kernels must be intimately related
Axial-vector Ward-Takahashi identity

\[P_\mu \Gamma^l_{5\mu}(k; P) = S^{-1}(k_+) \frac{1}{2} \chi_f i\gamma_5 + \frac{1}{2} \chi_f i\gamma_5 S^{-1}(k_-) \]

\[-M_\zeta i\Gamma^l_{5}(k; P) - i\Gamma^l_{5}(k; P) M_\zeta \]

Satisfies BSE

Satisfies DSE

Kernels must be **intimately** related

- Relation **must** be preserved by truncation
Bethe-Salpeter Kernel

Axial-vector Ward-Takahashi identity

\[P_\mu \Gamma_{5\mu}^l (k; P) = S^{-1}(k_+) \frac{1}{2} \lambda_f i \gamma_5 + \frac{1}{2} \lambda_f i \gamma_5 S^{-1}(k_-) \]

\[-M_\zeta i \Gamma_5^l (k; P) - i \Gamma_5^l (k; P) M_\zeta \]

Satisfies BSE \hspace{1cm} Satisfies DSE

\[\text{Kernels must be \textit{intimately} related} \]

\[\text{Relation \textbf{must} be preserved by truncation} \]

\[\text{Nontrivial constraint} \]
Bethe-Salpeter Kernel

Axial-vector Ward-Takahashi identity

\[P_\mu \Gamma_{5\mu}^l (k; P) = S^{-1}(k_-) \frac{1}{2} \lambda_f^l i \gamma_5 + \frac{1}{2} \lambda_f^l i \gamma_5 S^{-1}(k_-) \]

\[-M_\zeta i \Gamma_5^l (k; P) - i \Gamma_5^l (k; P) M_\zeta \]

Satisfies BSE \hspace{2cm} \text{Satisfies DSE}

\[\text{Kernels must be \textit{intimately} related} \]

- Relation \textbf{must} be preserved by truncation
- Failure \implies Explicit Violation of QCD’s Chiral Symmetry
Goldberger-Treiman for pion

- Pseudoscalar Bethe-Salpeter amplitude

\[\Gamma_{\pi j}(k; P) = \tau^{\pi j} \gamma_5 \left[iE_{\pi}(k; P) + \gamma \cdot PF_{\pi}(k; P) \right. \]

\[\left. + \gamma \cdot k \cdot P G_{\pi}(k; P) + \sigma_{\mu\nu} k_{\mu} P_{\nu} H_{\pi}(k; P) \right] \]
Goldberger-Treiman for pion

- Pseudoscalar Bethe-Salpeter amplitude

\[\Gamma_{\pi j}(k; P) = \tau^{\pi j} \gamma_5 \left[iE_{\pi}(k; P) + \gamma \cdot PF_{\pi}(k; P) \right. \]
\[+ \left. \gamma \cdot k \cdot P G_{\pi}(k; P) + \sigma_{\mu\nu} k_{\mu} P_{\nu} H_{\pi}(k; P) \right] \]

- Dressed-quark Propagator:

\[S(p) = \frac{1}{i\gamma \cdot p A(p^2) + B(p^2)} \]
Goldberger-Treiman for pion

- Pseudoscalar Bethe-Salpeter amplitude

\[\Gamma_{\pi j}(k; P) = \tau^j \gamma_5 \left[iE_{\pi}(k; P) + \gamma \cdot PF_{\pi}(k; P) \right. \]

\[\left. + \gamma \cdot k k \cdot P G_{\pi}(k; P) + \sigma_{\mu\nu} k_{\mu} P_{\nu} H_{\pi}(k; P) \right] \]

- Dressed-quark Propagator: \(S(p) = \frac{1}{i\gamma \cdot p A(p^2) + B(p^2)} \)

- Axial-vector Ward-Takahashi identity

\[f_\pi E_{\pi}(k; P = 0) = B(p^2) \]
Goldberger-Treiman for pion

- Pseudoscalar Bethe-Salpeter amplitude

\[
\Gamma_{\pi j}(k; P) = \tau^{\pi j} \gamma_5 \left[iE_\pi(k; P) + \gamma \cdot PF_\pi(k; P) + \gamma \cdot k \cdot P G_\pi(k; P) + \sigma_{\mu\nu} k_\mu P_\nu H_\pi(k; P) \right]
\]

- Dressed-quark Propagator: \(S(p) = \frac{1}{i\gamma \cdot p A(p^2) + B(p^2)} \)

- Axial-vector Ward-Takahashi identity

\[
\Rightarrow
\frac{f_\pi E_\pi(k; P = 0)}{F_R(k; 0) + 2 f_\pi F_\pi(k; 0)} = B(p^2) \\
G_R(k; 0) + 2 f_\pi G_\pi(k; 0) = A(k^2) \\
H_R(k; 0) + 2 f_\pi H_\pi(k; 0) = 2A'(k^2) \\
\]
Goldberger-Treiman for pion

- Pseudoscalar Bethe-Salpeter amplitude

\[\Gamma_{\pi^j}(k; P) = \tau^{\pi^j} \gamma_5 \left[iE_{\pi}(k; P) + \gamma \cdot P F_{\pi}(k; P) \right. \]

\[\left. + \gamma \cdot k \cdot P G_{\pi}(k; P) + \sigma_{\mu \nu} k_\mu P_\nu H_{\pi}(k; P) \right] \]

- Dressed-quark Propagator: \[S(p) = \frac{1}{i\gamma \cdot p A(p^2) + B(p^2)} \]

- Axial-vector Ward-Takahashi identity

\[f_{\pi} E_{\pi}(k; P = 0) = B(p^2) \]

\[F_R(k; 0) + 2 f_{\pi} F_{\pi}(k; 0) = A(k^2) \]

\[G_R(k; 0) + 2 f_{\pi} G_{\pi}(k; 0) = 2A'(k^2) \]

\[H_R(k; 0) + 2 f_{\pi} H_{\pi}(k; 0) = 0 \]

Pseudovector components necessarily nonzero

Exact in Chiral QCD
Andreas Krassnigg

FWF “Erwin Schrödinger Fellow,” ANL 2003-2005
Future President . . . almost Blood Relative of Arnold
Radial Excitations
& Chiral Symmetry

\[f_H \ m_H^2 = - \ \rho^H_\zeta \ M_H \]
Radial Excitations & Chiral Symmetry

(Maris, Roberts, Tandy nu-th/9707003)

\[f_H \quad m_H^2 = - \rho^H_\zeta \quad M_H \]

- Mass\(^2\) of pseudoscalar hadron
Radial Excitations & Chiral Symmetry

\[f_H m_H^2 = -\rho_H^\zeta M_H \]

\[M_H := \text{tr}_{\text{flavour}} \left[M_{(\mu)} \left\{ T^H, (T^H)^t \right\} \right] = m_{q_1} + m_{q_2} \]

- Sum of constituents’ current-quark masses
- e.g., \(T^{K^+} = \frac{1}{2} (\lambda^4 + i\lambda^5) \)
Radial Excitations & Chiral Symmetry

\[m_H^2 = - \rho^H_\zeta M_H \]

\[f_H p_\mu = Z_2 \int_0^\Lambda \frac{1}{2} \text{tr} \left\{ \left(T^H \right)^t \gamma_5 \gamma_\mu S(q+) \Gamma_H(q; P) S(q-) \right\} \]

- Pseudovector projection of BS wave function at \(x = 0 \)
- Pseudoscalar meson’s leptonic decay constant

\[\vec{\pi} \quad -f_\pi k^\mu \quad \vec{A}_5^\mu \quad \text{equiv} \quad \vec{\Gamma}_5 \quad i (\tau/2) \gamma^\mu \gamma_5 \]
Radial Excitations & Chiral Symmetry

\[f_H \quad m_H^2 = - \rho^H_\zeta \mathcal{M}_H \]

\[i \rho^H_\zeta = Z_4 \int^\Lambda_q \frac{1}{2} \text{tr} \left\{ (T^H)^t \gamma_5 S(q_+) \Gamma_H(q; P)S(q_-) \right\} \]

- Pseudoscalar projection of BS wave function at \(x = 0 \)
Radial Excitations & Chiral Symmetry

(Maris, Roberts, Tandy nu-th/9707003)

\[f_H \ m_H^2 = - \ \rho_H^H \ \mathcal{M}_H \]

- Light-quarks; i.e., \(m_q \sim 0 \)

\[f_H \rightarrow f_H^0 \quad \text{and} \quad \rho_H^\zeta \rightarrow \frac{-\langle \bar{q}q \rangle_0^\zeta}{f_H^0}, \quad \text{Independent of} \quad m_q \]

Hence \(m_H^2 = \frac{-\langle \bar{q}q \rangle_0^\zeta}{(f_H^0)^2} m_q \) \(\ldots \) GMOR relation, a corollary
Radial Excitations & Chiral Symmetry

\[f_H m_H^2 = - \rho^H \zeta M_H \]

- **Light-quarks**: i.e., \(m_q \sim 0 \)

 \[f_H \rightarrow f_H^0 \quad \text{and} \quad \rho^H_\zeta \rightarrow -\frac{\langle \bar{q}q \rangle^0_\zeta}{f_H^0}, \quad \text{Independent of} \quad m_q \]

 \[m_H^2 = \frac{-\langle \bar{q}q \rangle^0_\zeta}{(f_H^0)^2} m_q \quad \text{...GMOR relation, a corollary} \]

- **Heavy-quark + light-quark**

 \[f_H \propto \frac{1}{\sqrt{m_H}} \quad \text{and} \quad \rho^H_\zeta \propto \sqrt{m_H} \]

 Hence, \(m_H \propto m_q \)

... QCD Proof of Potential Model result
$$f_H \quad m_H^2 = - \quad \rho^H \quad \mathcal{M}_H$$

Valid for ALL Pseudoscalar mesons
Valid for **ALL** Pseudoscalar mesons

\[f_H \ m_H^2 = - \ \rho_H^H \ \mathcal{M}_H \]

- \(\rho_H \) \(\Rightarrow \) finite, nonzero value in chiral limit, \(\mathcal{M}_H \rightarrow 0 \)
Radial Excitations & Chiral Symmetry

Valid for \textbf{ALL} Pseudoscalar mesons

\(\rho_H \) \Rightarrow \text{finite, nonzero value in chiral limit, } M_H \to 0

“radial” excitation of \(\pi \)-meson,

\(m_{\pi_n \neq 0}^2 > m_{\pi_n = 0}^2 = 0, \text{ in chiral limit} \)
Radial Excitations & Chiral Symmetry

\[f_H \ m_H^2 = - \ \rho H \ \mathcal{M}_H \]

- Valid for ALL Pseudoscalar mesons
- \(\rho_H \Rightarrow \) finite, nonzero value in chiral limit, \(\mathcal{M}_H \rightarrow 0 \)
- “radial” excitation of \(\pi \)-meson,
 \[m_{\pi_n \neq 0}^2 > m_{\pi_n = 0}^2 = 0, \text{ in chiral limit} \]
- \(\Rightarrow f_H = 0 \)

ALL pseudoscalar mesons except \(\pi(140) \) in chiral limit
Valid for ALL Pseudoscalar mesons

\[\rho_H \Rightarrow \text{finite, nonzero value in chiral limit, } M_H \to 0 \]

“radial” excitation of \(\pi \)-meson,

\[m_{\pi n \neq 0}^2 > m_{\pi n = 0}^2 = 0, \text{ in chiral limit} \]

\[\Rightarrow f_H = 0 \]

ALL pseudoscalar mesons except \(\pi(140) \) in chiral limit

Dynamical Chiral Symmetry Breaking

– Goldstone’s Theorem –

impacts upon every pseudoscalar meson
Radial Excitations

- Spectrum contains 3 pseudoscalars $[I^G(J^P)L = 1^-(0^-)S]$

 masses below 2 GeV: $\pi(140)$; $\pi(1300)$; and $\pi(1800)$
Radial Excitations

- Spectrum contains 3 pseudoscalars $[I^G(J^P)L = 1^- (0^-)S]$
 - masses below 2 GeV: $\pi(140)$, $\pi(1300)$, and $\pi(1800)$
- The Pion
- Consituent-Q Model: 1st three members of n^1S_0 trajectory; i.e., ground state plus radial excitations?
Radial Excitations

- Spectrum contains 3 pseudoscalars $[I^G(J^P)L = 1^-(0^-)_S]$

 masses below 2 GeV: $\pi(140)$; $\pi(1300)$; and $\pi(1800)$

- The Pion

- Consituent-Q Model: 1st three members of n^1S_0 trajectory; i.e., ground state plus radial excitations?

- But $\pi(1800)$ is narrow ($\Gamma = 207 \pm 13$) & decay pattern might indicate some “flux tube angular momentum” content:

 $S_{\bar{Q}Q} = 1 \oplus L_F = 1 \Rightarrow J = 0$

 & $L_F = 1 \Rightarrow ^3S_1 \oplus ^3S_1 (\bar{Q}Q)$ decays suppressed?
Radial Excitations

- Spectrum contains 3 pseudoscalars \([I^G(J^P)L = 1^-(0^-)S] \)

 masses below 2 GeV: \(\pi(140) \); \(\pi(1300) \); and \(\pi(1800) \)

- The Pion

- Consituent-Q Model: 1st three members of \(n \ 1S_0 \) trajectory; i.e., ground state plus radial excitations?

- But \(\pi(1800) \) is narrow (\(\Gamma = 207 \pm 13 \)) & decay pattern might indicate some “flux tube angular momentum” content:

- Radial excitations & Hybrids & Exotics \(\Rightarrow \) Long-range radial wave functions \(\Rightarrow \) sensitive to confinement
Radial Excitations

- Spectrum contains 3 pseudoscalars \([I^G(J^P)L = 1^{-}(0^{-})S]\)
- masses below 2 GeV: \(\pi(140)\); \(\pi(1300)\); and \(\pi(1800)\)
- The Pion
- Consituent-Q Model: 1\(^{st}\) three members of \(n\,^1S_0\) trajectory; i.e., ground state plus radial excitations?
- But \(\pi(1800)\) is narrow \((\Gamma = 207 \pm 13)\) & decay pattern might indicate some “flux tube angular momentum” content:
- Radial excitations & Hybrids & Exotics \(\Rightarrow\) Long-range radial wave functions \(\Rightarrow\) sensitive to confinement
- NSAC Long-Range Plan, 2002: . . . an understanding of confinement “remains one of the greatest intellectual challenges in physics”
Radial Excitations & Chiral Symmetry
Fundamental properties of QCD
Fundamental properties of QCD

If chiral symmetry is dynamically broken, then in the chiral limit every pseudoscalar meson is blind to the weak interaction except $\pi(140)$.

![Graph showing f_π as a function of m_q]
Fundamental properties of QCD

- If chiral symmetry is dynamically broken, then in the chiral limit every pseudoscalar meson is blind to the weak interaction except $\pi(140)$.
- If chiral symmetry is not broken, then NO pseudoscalar meson experiences the weak interaction.
Two-photon Couplings of Pseudoscalar Mesons

\[T_{\pi^0}^{\pi^0}(k_1, k_2) = \alpha i \varepsilon_{\mu\nu\rho\sigma} k_{1\rho} k_{2\sigma} G_{\pi^0}^{\pi^0}(k_1, k_2) \]

Define: \[T_{\pi^0}^{\pi^0}(P^2, Q^2) = G_{\pi^0}^{\pi^0}(k_1, k_2) \bigg|_{k_1^2 = Q^2 = k_2^2} \]

This is a transition form factor.

Physical Processes described by couplings:
\[g_{\pi^0\gamma\gamma} := T_{\pi^0}^{\pi^0}(-m_{\pi^0}^2, 0) \]

Width: \[\Gamma_{\pi^0\gamma\gamma} = \alpha_{em}^2 \frac{m_{\pi^0}^3}{16\pi^3} g_{\pi^0\gamma\gamma}^2 \]
Two-photon Couplings: Goldstone Mode

\[\pi_0^0(P) \]

\[T_{\mu\nu}^{\pi_0^0}(k_1, k_2) = \frac{\alpha}{\pi} i \epsilon_{\mu\nu\rho\sigma} k_1^\rho k_2^\sigma G^{\pi_0^0}(k_1, k_2) \]

Chiral limit, model-independent and algebraic result

\[g_{\pi_0^0\gamma\gamma} := T_{\pi_0^0}(-m_{\pi_0^0}^2 = 0, 0) = \frac{1}{2} \frac{1}{f_{\pi_0}} \]

So long as truncation preserves chiral symmetry and the pattern of its dynamical breakdown

The most widely known consequence of the Abelian anomaly
Two-photon Couplings: Transition Form Factor

\[T_{\mu\nu}^{\pi_0}(k_1, k_2) = \frac{\alpha}{\pi} i\varepsilon_{\mu\nu\rho\sigma} k_1^\rho k_2^\sigma G_{\pi_0}^{\pi_0}(k_1, k_2) \]

So long as truncation preserves chiral symmetry and the pattern of its dynamical breakdown, and the one-loop renormalisation group properties of QCD: model-independent result – \(\forall n \):

\[T_{\pi_0}^{\pi_0}(P^2, Q^2) = G_{\pi_0}^{\pi_0}(k_1, k_2) \bigg|_{k_1^2 = Q^2 = k_2^2} \quad \frac{Q^2 \gg \Lambda_{QCD}^2}{4\pi^2} \frac{4\pi^2}{3} \frac{f_{\pi_0}}{Q^2} \]

- Chiral limit with DCSB: $f_{\pi_0} \neq 0$

- Chiral limit with DCSB: $f_{\pi_0} \neq 0$
- BUT, $f_{\pi_n} \equiv 0$, $\forall n$!
Höll, Krassnigg, Maris, et al.,
“Electromagnetic properties of ground and
excited state pseudoscalar mesons,”
nu-th/0503043

- Chiral limit with DCSB: $f_{\pi_0} \neq 0$
- BUT, $f_{\pi_n} \equiv 0, \forall n!$
- Model-independent result, in chiral limit: $\forall n \geq 1$

$$\lim_{\hat{m} \to 0} T_{\pi_0}(-m_{\pi_n}^2, Q^2)$$

$$Q^2 \gg \Lambda^2_{\text{QCD}} \quad \frac{4\pi^2}{3} \quad F_n^{(2)}(-m_{\pi_n}^2) \quad \frac{\ln \gamma Q^2/\omega_{\pi_n}^2}{Q^4} \bigg|_{\hat{m}=0}$$

where:
- γ is an anomalous dimension
- ω_{π_n} is a width mass-scale

both determined, in part, by properties of the meson’s Bethe-Salpeter wave function.
Höll, Krassnigg, Maris, et al.,
“Electromagnetic properties of ground and
excited state pseudoscalar mesons,”
nu-th/0503043

- Chiral limit with DCSB: $f_{\pi_0} \neq 0$
- BUT, $f_{\pi_n} \equiv 0$, $\forall n$!

Model-independent result, in chiral limit: $\forall n \geq 1$
$$\lim_{\hat{m} \to 0} T_{\pi_0}^{(n)} (-m_{\pi_n}^2, Q^2)$$
where:
- γ is an anomalous dimension
- ω_{π_n} is a width mass-scale
both determined, in part, by properties of the meson’s
Bethe-Salpeter wave function.

Importantly, $F_{n}^{(2)} (-m_{\pi_n}^2) \not\propto f_{\pi_n}$. Instead, it is determined by
DCSB mass-scales for π_n that do not vanish in the chiral limit.

\[
m_u(1 \text{ GeV}) = m_d(1 \text{ GeV}) = 0
\]
Transition Form Factor (Chiral):
RGI Rainbow-Ladder

Höll, Krassnigg, Maris, et al.,
“Electromagnetic properties of ground and excited state pseudoscalar mesons,”
uu-th/0503043

\[
|T_{\pi n}(Q^2)| \propto \left(\frac{4\pi^2 f_{\pi}}{3Q^2} \right) \left(\frac{0.22 \text{ GeV}}{Q^2} \right)^{3/4}
\]

- \(m_u(1 \text{ GeV}) = m_d(1 \text{ GeV}) = 0 \)
- Again, Predicted UV-behaviour is abundantly clear
- precise for \(Q^2 > 120 \text{ GeV}^2 \)

Transition Form Factor (Chiral): RGI Rainbow-Ladder

\[F_{1}^{(2)}(-m_{\pi}^{2}) \ln \frac{Q^{2}}{\omega_{\pi}^{2}} \rvert_{\hat{m}=0} \approx (0.22 \text{ GeV})^{3} \approx -\langle \bar{q}q \rangle^{0} \] (3)

\[m_{u}(1 \text{ GeV}) = m_{d}(1 \text{ GeV}) = 0 \]

Again, Predicted UV-behaviour is abundantly clear

precise for \(Q^{2} > 120 \text{ GeV}^{2} \)
Are we there yet?
Maris & Tandy ... series of five papers ... excellent description of light pseudoscalar and vector mesons ... basket of 31 masses/couplings/radii with r.m.s. error of 15% ... moreover, prediction of $F_\pi(Q^2)$ measured in Hall A.
Nucleon Properties

- Maris & Tandy ... series of five papers ... excellent description of light pseudoscalar and vector mesons ... basket of 31 masses/couplings/radii with r.m.s. error of 15% ... moreover, prediction of $F_\pi(Q^2)$ measured in Hall A.

Pieter Maris

Peter Tandy
Nucleon Properties

- Maris & Tandy . . . series of five papers . . . excellent description of light pseudoscalar and vector mesons . . . basket of 31 masses/couplings/radii with r.m.s. error of 15% . . . moreover, prediction of $F_\pi(Q^2)$ measured in Hall A.

- One parameter model . . . parameter specifies long-range interaction between light-quarks . . . model-independent results in ultraviolet
Nucleon Properties

- Maris & Tandy . . . series of five papers . . . excellent description of light pseudoscalar and vector mesons . . . basket of 31 masses/couplings/radii with r.m.s. error of 15% . . . moreover, prediction of $F_\pi(Q^2)$ measured in Hall A.

- One parameter model . . . parameter specifies long-range interaction between light-quarks . . . model-independent results in ultraviolet

Next Steps . . . Applications to excited states and axial-vector mesons, e.g., will improve understanding of confinement interaction between light-quarks
Another Direction ... Also want/need information about three-quark systems
Nucleon Properties

- Another Direction . . . Also want/need information about three-quark systems
- With this problem . . . current expertise at approximately same point as studies of mesons in 1995.
Another Direction ... Also want/need information about three-quark systems

With this problem ... current expertise at approximately same point as studies of mesons in 1995.

Namely ... Model-building and Phenomenology, constrained by the DSE results outlined already.
Proton Form Factors:
Modern Experiment
Rosenbluth and Polarization-Transfer Extractions of Ratio of Proton’s Electric and Magnetic Form Factors
Proton Form Factors: Modern Experiment

If Pol. Trans. Correct, then Completely Unexpected Result:
In the Proton – On Relativistic Domain
– Distribution of Quark-Charge Not Equal
Distribution of Quark-Current!
Closing in on something
Nucleon EM Form Factors: A Précis

- Interpreting expts. with GeV electromagnetic probes requires Poincaré covariant treatment of baryons

- Interpreting expts. with GeV electromagnetic probes requires Poincaré covariant treatment of baryons
 \[\Rightarrow \text{Covariant dressed-quark Faddeev Equation} \]

- Interpreting expts. with GeV electromagnetic probes requires Poincaré covariant treatment of baryons
 ⇒ Covariant dressed-quark Faddeev Equation
- Excellent mass spectrum (octet and decuplet)

Easily obtained:

\[
\left(\frac{1}{N_H} \sum_H \frac{[M_H^{\text{exp}} - M_H^{\text{calc}}]^2}{[M_H^{\text{exp}}]^2} \right)^{1/2} = 2\%
\]

- Interpreting expts. with GeV electromagnetic probes requires Poincaré covariant treatment of baryons
 ⇒ Covariant dressed-quark Faddeev Equation
- Excellent mass spectrum (octet and decuplet)

Easily obtained:

\[
\left(\frac{1}{N_H} \sum_H \frac{[M_H^{\text{exp}} - M_H^{\text{calc}}]^2}{[M_H^{\text{exp}}]^2} \right)^{1/2} = 2\%
\]

(Oettel, Hellstern, Alkofer, Reinhardt: nucl-th/9805054)

- Interpreting expts. with GeV electromagnetic probes requires Poincaré covariant treatment of baryons
 \[\Rightarrow \text{Covariant dressed-quark Faddeev Equation} \]
- Excellent mass spectrum (octet and decuplet)

Easily obtained:

\[
\left(\frac{1}{N_H} \sum_H \frac{[M_H^{\text{exp}} - M_H^{\text{calc}}]^2}{[M_H^{\text{exp}}]^2} \right)^{1/2} = 2\%
\]

- But is that good?
Interpreting expts. with GeV electromagnetic probes requires Poincaré covariant treatment of baryons ⇒ Covariant dressed-quark Faddeev Equation

Excellent mass spectrum (octet and decuplet)

Easily obtained:

\[
\left(\frac{1}{N_H} \sum_H \left[\frac{M_H^{\text{exp}} - M_H^{\text{calc}}}{M_H^{\text{exp}}} \right]^2 \right)^{1/2} = 2\%
\]

But is that good?

Cloudy Bag: \(\delta M_+^{\pi \text{-loop}} = -300 \) to \(-400 \text{ MeV}\)!
Nucleon EM Form Factors: A Précis

- Interpreting expts. with GeV electromagnetic probes requires Poincaré covariant treatment of baryons ⇒ Covariant dressed-quark Faddeev Equation
- Excellent mass spectrum (octet and decuplet)
 Easily obtained:
 \[
 \left(\frac{1}{N_H} \sum_H \frac{[M^\text{exp}_H - M^\text{calc}_H]^2}{[M^\text{exp}_H]^2} \right)^{1/2} = 2\%
 \]
- But is that good?
 - Cloudy Bag: \(\delta M^\pi_{+}^{\text{loop}} = -300 \text{ to } -400 \text{ MeV!} \)
 - Critical to anticipate pion cloud effects

Roberts, Tandy, Thomas, et al., nu-th/02010084
Dynamical coupled-channels model . . . Analyzed extensive JLab data . . . Completed a study of the $\Delta(1236)$

Dynamical coupled-channels model . . . Analyzed extensive JLab data . . . Completed a study of the $\Delta(1236)$

Pion cloud effects are large in the low Q^2 region.

Ratio of the M1 form factor in $\gamma N \rightarrow \Delta$ transition and proton dipole form factor G_D. Solid curve is $G_M^(Q^2)/G_D(Q^2)$ including pions; Dotted curve is $G_M(Q^2)/G_D(Q^2)$ without pions.*
Dynamical coupled-channels model . . . Analyzed extensive JLab data . . . Completed a study of the $\Delta(1236)$

- Pion cloud effects are large in the low Q^2 region.

Ratio of the M1 form factor in $\gamma N \rightarrow \Delta$ transition and proton dipole form factor G_D. Solid curve is $G_M^(Q^2)/G_D(Q^2)$ including pions; Dotted curve is $G_M(Q^2)/G_D(Q^2)$ without pions.*

Quark Core

- Responsible for only 2/3 of result at small Q^2
- Dominant for $Q^2 > 2 – 3 \text{ GeV}^2$
Faddeev equation
Faddeev equation

\[\Psi^a \begin{array}{c} P \\ \Gamma^a \end{array} \begin{array}{c} p_q \\ p_d \end{array} = \begin{array}{c} \Gamma^a \begin{array}{c} p_q \\ q \end{array} \\ \Gamma^b \end{array} \begin{array}{c} p_q \\ p_d \end{array} \Psi^b \begin{array}{c} P \\ \Gamma^b \end{array} \]
Faddeev equation

\[\Psi^a_{p_q} \Gamma^{a\Gamma} p_p q_q \Psi^b_{p_d} \Gamma^{b\Gamma} \]

Linear, Homogeneous Matrix equation

- Yields wave function (Poincaré Covariant Faddeev Amplitude) that describes quark-diquark relative motion within the nucleon

- Scalar and Axial-Vector Diquarks . . . In Nucleon’s Rest Frame Amplitude has . . . s—, p— & d—wave correlations
Parametrising diquark properties
Parametrising diquark properties

- Dressed-quark ... fixed by DSE and Meson Studies
Parametrising diquark properties

Bethe-Salpeter-Like Amplitudes

\[\Gamma^{0+}(k; K) = \frac{1}{N^{0+}} H^a C i\gamma_5 i\tau_2 \mathcal{F}(k^2/\omega_{0+}^2), \]

\[t^i \Gamma^{1+}_\mu(k; K) = \frac{1}{N^{1+}} H^a i\gamma_\mu C t^i \mathcal{F}(k^2/\omega_{1+}^2). \]
Parametrising diquark properties

• Bethe-Salpeter-Like Amplitudes

\[
\Gamma^{0+}(k; K) = \frac{1}{N^{0+}} H^a C i\gamma_5 i\tau_2 F\left(k^2/\omega_{0+}^2\right),
\]

\[
\tau^i\Gamma^{1+}_\mu(k; K) = \frac{1}{N^{1+}} H^a i\gamma_\mu C \tau^i F\left(k^2/\omega_{1+}^2\right)
\]

• Colour matrices:

\[
\{H^1 = i\lambda^7, H^2 = -i\lambda^5, H^3 = i\lambda^2\}, \epsilon_{c_1c_2c_3} = (H^{c_3})_{c_1c_2}
\]
Parametrising diquark properties

- Bethe-Salpeter-Like Amplitudes

\[
\Gamma^0^+ (k; K) = \frac{1}{\mathcal{N}^0^+} H^a C \gamma_5 i \tau_2 \mathcal{F}(k^2 / \omega^2_0^+),
\]

\[
t^i \Gamma^1^+_{\mu} (k; K) = \frac{1}{\mathcal{N}^1^+} H^a i \gamma_{\mu} C t^i \mathcal{F}(k^2 / \omega^2_1^+).
\]

- Two parameters: \(\omega_0^+, \omega_1^+\)
 - \(\sim\) Inverse of diquarks’ configuration-space size
Parametrising diquark properties

Pseudoparticle Propagators

\[\Delta^0_{+}(K) = \frac{1}{m_{0+}^2} \mathcal{F}(K^2/\omega_{0+}^2), \]

\[\Delta^{1+}_{\mu\nu}(K) = \left(\delta_{\mu\nu} + \frac{K_{\mu}K_{\nu}}{m_{1+}^2} \right) \frac{1}{m_{1+}^2} \mathcal{F}(K^2/\omega_{1+}^2) \]

\[\mathcal{F}(x) = \frac{1 - \exp(-x)}{x} \]

Absence of a Spectral Representation

Realisation of Confinement
Parametrising diquark properties

Pseudoparticle Propagators

\[
\Delta^{0+}(K) = \frac{1}{m_0^2} \mathcal{F}(K^2/\omega_0^2),
\]

\[
\Delta^{1+}_{\mu\nu}(K) = \left(\delta_{\mu\nu} + \frac{K_\mu K_\nu}{m_1^2} \right) \frac{1}{m_1^2} \mathcal{F}(K^2/\omega_1^2)
\]

- Two parameters: \(m_{0+}, m_{1+} \)
- ~Inverse of diquarks’ configuration-space correlation length
Parametrising diquark properties

- Total of four parameters

... reduce that via Normalisation Condition

\[
\frac{d}{dK^2} \left(\frac{1}{m_{JP}^2} \mathcal{F}(K^2/\omega_{JP}^2) \right)^{-1} \bigg|_{K^2=0} = 1 \Rightarrow \omega_{JP}^2 = \frac{1}{2} m_{JP}^2,
\]

Accentuates free-particle-like propagation characteristics of the diquarks within hadron.

Parametrising diquark properties

- Total of four parameters

 \[\text{reduce that via Normalisation Condition} \]

\[
\frac{d}{dK^2} \left(\frac{1}{m^2_{JP}} \mathcal{F}(K^2/\omega^2_{JP}) \right)^{-1} \bigg|_{K^2=0} = 1 \Rightarrow \omega^2_{JP} = \frac{1}{2} m^2_{JP},
\]

Accentuates free-particle-like propagation characteristics of the diquarks within hadron.

- Two Parameter Faddeev Equation Model of Nucleon
Parametrising diquark properties

- Total of four parameters
 ... reduce that via Normalisation Condition

\[
\frac{d}{dK^2} \left(\frac{1}{m_{JP}^2} \mathcal{F}(K^2/\omega_{JP}^2) \right)^{-1} \bigg|_{K^2=0} = 1 \Rightarrow \omega_{JP}^2 = \frac{1}{2} m_{JP}^2 ,
\]

Accentuates free-particle-like propagation characteristics of the diquarks within hadron.

- Two Parameter Faddeev Equation Model of Nucleon
- Solve Faddeev Equation
Parametrising diquark properties

- Total of four parameters

... reduce that via Normalisation Condition

\[
\frac{d}{dK^2} \left(\frac{1}{m_{JP}^2} \mathcal{F}(K^2/\omega_{JP}^2) \right)^{-1} \bigg|_{K^2=0} = 1 \Rightarrow \omega_{JP}^2 = \frac{1}{2} m_{JP}^2,
\]

Accentuates free-particle-like propagation characteristics of the diquarks within hadron.

- Two Parameter Faddeev Equation Model of Nucleon
- Solve Faddeev Equation
- Vary \(m_{0^+} \) and \(m_{1^+} \) to obtain desired masses for \(N \) and \(\Delta \)
Results: Nucleon and Δ Masses
Results: Nucleon and Δ Masses

Mass-scale parameters (in GeV) for the scalar and axial-vector diquark correlations, fixed by fitting nucleon and Δ masses

- **Set A** – fit to the actual masses was required; whereas for
- **Set B** – fitted mass was offset to allow for “π-cloud” contributions

<table>
<thead>
<tr>
<th>set</th>
<th>M_N</th>
<th>M_Δ</th>
<th>m_{0+}</th>
<th>m_{1+}</th>
<th>ω_{0+}</th>
<th>ω_{1+}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.94</td>
<td>1.23</td>
<td>0.63</td>
<td>0.84</td>
<td>0.44$=1/(0.45 \text{ fm})$</td>
<td>0.59$=1/(0.33 \text{ fm})$</td>
</tr>
<tr>
<td>B</td>
<td>1.18</td>
<td>1.33</td>
<td>0.79</td>
<td>0.89</td>
<td>0.56$=1/(0.35 \text{ fm})$</td>
<td>0.63$=1/(0.31 \text{ fm})$</td>
</tr>
</tbody>
</table>

$m_{1+} \rightarrow \infty: M_N^A = 1.15 \text{ GeV}; M_N^B = 1.46 \text{ GeV}$
Mass-scale parameters (in GeV) for the scalar and axial-vector diquark correlations, fixed by fitting nucleon and \(\Delta \) masses

Set A – fit to the actual masses was required; whereas for

Set B – fitted mass was offset to allow for “\(\pi \)-cloud” contributions

<table>
<thead>
<tr>
<th>set</th>
<th>(M_N)</th>
<th>(M_{\Delta})</th>
<th>(m_0^+)</th>
<th>(m_1^+)</th>
<th>(\omega_0^+)</th>
<th>(\omega_1^+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.94</td>
<td>1.23</td>
<td>0.63</td>
<td>0.84</td>
<td>0.44 = (1/(0.45 \text{ fm}))</td>
<td>0.59 = (1/(0.33 \text{ fm}))</td>
</tr>
<tr>
<td>B</td>
<td>1.18</td>
<td>1.33</td>
<td>0.79</td>
<td>0.89</td>
<td>0.56 = (1/(0.35 \text{ fm}))</td>
<td>0.63 = (1/(0.31 \text{ fm}))</td>
</tr>
</tbody>
</table>

\(m_1^+ \rightarrow \infty: M_N^A = 1.15 \text{ GeV} ; M_N^B = 1.46 \text{ GeV} \)

Axial-vector diquark provides significant attraction
Mass-scale parameters (in GeV) for the scalar and axial-vector diquark correlations, fixed by fitting nucleon and ∆ masses

Set A – fit to the actual masses was required; whereas for Set B – fitted mass was offset to allow for “π-cloud” contributions

<table>
<thead>
<tr>
<th>set</th>
<th>M_N</th>
<th>M_Δ</th>
<th>m_{0^+}</th>
<th>m_{1^+}</th>
<th>ω_{0^+}</th>
<th>ω_{1^+}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.94</td>
<td>1.23</td>
<td>0.63</td>
<td>0.84</td>
<td>0.44 = 1/(0.45 fm)</td>
<td>0.59 = 1/(0.33 fm)</td>
</tr>
<tr>
<td>B</td>
<td>1.18</td>
<td>1.33</td>
<td>0.79</td>
<td>0.89</td>
<td>0.56 = 1/(0.35 fm)</td>
<td>0.63 = 1/(0.31 fm)</td>
</tr>
</tbody>
</table>

$m_{1^+} \rightarrow \infty: M_N^A = 1.15$ GeV; $M_N^B = 1.46$ GeV

Constructive Interference: 1^{++}-diquark + $\partial_\mu \pi$
Nucleon-Photon Vertex
Nucleon-Photon Vertex

constructed systematically . . . current conserved automatically for on-shell nucleons described by Faddeev Amplitude
6 terms . . . constructed systematically . . . current conserved automatically for on-shell nucleons described by Faddeev Amplitude

Nucleon-Photon Vertex

\[\Psi_f \rightarrow \Gamma \rightarrow \Psi_i \]

\[\Psi_f \rightarrow \Gamma \rightarrow \Psi_i \]

\[\Psi_f \rightarrow \Gamma \rightarrow \Psi_i \]

\[\Psi_f \rightarrow \Gamma \rightarrow \Psi_i \]
Form Factor Ratio: \(GE/GM \)
Combine these elements . . .
Combine these elements ...

Dressed-Quark Core

\[
\frac{G_E^p}{G_M^p}\]

Rosenbluth precision Rosenbluth polarization transfer

Rosenbluth polarization transfer
Combine these elements . . .

- **Dressed-Quark Core**
- **Ward-Takahashi**
 Identity preserving current

![Graph showing the ratio of form factors](image)

Form Factor Ratio: GE/GM
Combine these elements . . .

- Dressed-Quark Core
- Ward-Takahashi Identity preserving current
- Anticipate and Estimate Pion Cloud’s Contribution

Form Factor Ratio: \(\frac{G_E}{G_M} \)
Combine these elements . . .

- **Dressed-Quark Core**
- **Ward-Takahashi**
 Identity preserving current
- **Anticipate and Estimate Pion Cloud’s Contribution**

![Graph showing the form factor ratio \(\mu_p G_E^P/G_M^P \) as a function of \(Q^2 \) in GeV^2.](image)
Combine these elements . . .

- Dressed-Quark Core
- Ward-Takahashi Identity preserving current
- Anticipate and Estimate Pion Cloud’s Contribution

All parameters fixed in other applications . . . Not varied.
Combine these elements . . .

- **Dressed-Quark Core**
- **Ward-Takahashi**
 Identity preserving current
- **Anticipate and Estimate Pion Cloud’s Contribution**

All parameters fixed in other applications . . . **Not varied.**

Agreement with Pol. Trans. data at $Q^2 \gtrsim 2 \text{ GeV}^2$
Combine these elements . . .

- Dressed-Quark Core
- Ward-Takahashi Identity preserving current
- Anticipate and Estimate Pion Cloud’s Contribution

All parameters fixed in other applications . . . Not varied.

- Agreement with Pol. Trans. data at $Q^2 \gtrsim 2 \text{ GeV}^2$
- Correlations in Faddeev amplitude – quark orbital angular momentum – essential to that agreement
Combine these elements . . .

- Dressed-Quark Core
- Ward-Takahashi Identity preserving current
- Anticipate and Estimate Pion Cloud’s Contribution

All parameters fixed in other applications . . . Not varied.

- Agreement with Pol. Trans. data at $Q^2 \sim 2 \text{ GeV}^2$
- Correlations in Faddeev amplitude – quark orbital angular momentum – essential to that agreement
- Predict Zero at $Q^2 \approx 6.5 \text{ GeV}^2$
Epilogue
Epilogue
Dyson-Schwinger Equations

Provide Understanding of
Dynamical Chiral Symmetry Breaking:

π is quark-antiquark Bound State
AND QCD’s Goldstone Mode
Dyson-Schwinger Equations

- Provide Understanding of Dynamical Chiral Symmetry Breaking:
 \[\pi \text{ is quark-antiquark Bound State} \]
 \[\text{AND} \quad \text{QCD’s Goldstone Mode} \]

- Foundation for Proof of Exact Results in QCD
 e.g., Quark Goldberger-Treiman Properties of Pseudoscalar Mesons
Epilogue

Dyson-Schwinger Equations

- Provide Understanding of Dynamical Chiral Symmetry Breaking:
 \[\pi \] is quark-antiquark Bound State AND QCD’s Goldstone Mode

- Foundation for Proof of Exact Results in QCD
 e.g., Quark Goldberger-Treiman Properties of Pseudoscalar Mesons

- Renormalisation-Group-Improved Rainbow-Ladder
 \[\Rightarrow \] Practical Phenomenological Tool Corrections Quantifiable
Poincaré Covariant Faddeev Equation

Epilogue
Epilogue

- Poincaré Covariant Faddeev Equation
- Nonpointlike scalar and axial-vector diquark correlations
Epilogue

- Poincaré Covariant Faddeev Equation
- Nonpointlike scalar and axial-vector diquark correlations
- $s-$, $p-$, $d-$wave quark angular momentum
Epilogue

- Poincaré Covariant Faddeev Equation
- Nonpointlike scalar and axial-vector diquark correlations
- $s-, p-, d-$wave quark angular momentum
- Quark core, relaxed to allow for pion cloud
Epilogue

- Poincaré Covariant Faddeev Equation
- Nonpointlike scalar and axial-vector diquark correlations
- $s-$, $p-$, $d-$wave quark angular momentum
- Quark core, relaxed to allow for pion cloud
- Predicts zero in $G_{E}^{P}(Q^2)$ at $Q^2 \approx 6.5 \text{ GeV}^2$
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pion Dichotomy</td>
<td></td>
</tr>
<tr>
<td>2. DSEs</td>
<td></td>
</tr>
<tr>
<td>3. Persistent Challenge</td>
<td></td>
</tr>
<tr>
<td>4. Perturbative Quark Propagator</td>
<td></td>
</tr>
<tr>
<td>5. Dressed-Quark Propagator</td>
<td></td>
</tr>
<tr>
<td>6. Lattice cf. DSE</td>
<td></td>
</tr>
<tr>
<td>7. Light-Quark Interaction</td>
<td></td>
</tr>
<tr>
<td>8. Dressed-gluon Propagator</td>
<td></td>
</tr>
<tr>
<td>9. Hadrons</td>
<td></td>
</tr>
<tr>
<td>10. Bethe-Salpeter Kernel</td>
<td></td>
</tr>
<tr>
<td>11. Goldberger-Treiman for pion</td>
<td></td>
</tr>
<tr>
<td>12. Excitations & Chiral Symmetry</td>
<td></td>
</tr>
<tr>
<td>13. Radial Excitations</td>
<td></td>
</tr>
<tr>
<td>14. Radial Excitations II</td>
<td></td>
</tr>
<tr>
<td>15. Two-photon Couplings</td>
<td></td>
</tr>
<tr>
<td>16. Proton FF</td>
<td></td>
</tr>
<tr>
<td>17. Nucleon EM Form Factors</td>
<td></td>
</tr>
<tr>
<td>18. Pions and Form Factors</td>
<td></td>
</tr>
<tr>
<td>19. Faddeev equation</td>
<td></td>
</tr>
<tr>
<td>20. Parametrising diquark properties</td>
<td></td>
</tr>
<tr>
<td>21. Results: Nucleon & Δ Masses</td>
<td></td>
</tr>
<tr>
<td>22. Form Factor Ratio: GE/GM</td>
<td></td>
</tr>
<tr>
<td>23. Dressed-Vertex</td>
<td></td>
</tr>
<tr>
<td>24. Dressed-Vertex II</td>
<td></td>
</tr>
<tr>
<td>25. Colour-singlet BSE</td>
<td></td>
</tr>
<tr>
<td>26. Two-photon: small Q^2</td>
<td></td>
</tr>
<tr>
<td>27. E.M. Charge Radii</td>
<td></td>
</tr>
<tr>
<td>28. DIS</td>
<td></td>
</tr>
<tr>
<td>29. Valence Distribution</td>
<td></td>
</tr>
<tr>
<td>30. Handbag Diagrams</td>
<td></td>
</tr>
<tr>
<td>31. General Calc. cf. Data</td>
<td></td>
</tr>
<tr>
<td>32. Form Factor Ratio: Q * F2/F1</td>
<td></td>
</tr>
<tr>
<td>33. Form Factor Ratio: alternative F2/F1</td>
<td></td>
</tr>
</tbody>
</table>
Quenched-QCD

Dressed-quark-gluon Vertex

- Bhagwat, et al.:
 - nu-th/0304003
 - nu-th/0403012
 - hep-ph/0407163

share 65 citations
Quenched-QCD

Dressed-quark-gluon Vertex

Bhagwat, et al.:
- nu-th/0304003
- nu-th/0403012
- he-ph/0407163

Share 65 citations

Light-Cone QCD and Nonperturbative Hadron Physics, 15-19/05/06 – p. 38/49
Bhagwat, et al.:
- nu-th/0304003
- nu-th/0403012
- he-ph/0407163

share 65 citations

Parameter Free DSE Prediction confirms
lattice simulation of \(\lambda_1, \lambda_3 \)
Quenched-QCD

Dressed-quark-gluon Vertex

Bhagwat, et al.:
- nu-th/0304003
- nu-th/0403012
- he-ph/0407163

Parameter Free DSE Prediction confirms lattice simulation of λ_1, λ_3

Parameter Free DSE Prediction suggests lattice result for λ_2 erroneous – owing to systematic errors

Parameter Free DSE Prediction confirms lattice simulation of λ_1, λ_3

Parameter Free DSE Prediction suggests lattice result for λ_2 erroneous – owing to systematic errors

Light-Cone QCD and Nonperturbative Hadron Physics, 15-19/05/06 – p. 38/49
Colour-singlet

Bethe-Salpeter equation

Detmold et al., nu-th/0202082

Bhagwat, et al., nu-th/0403012
Colour-singlet
Bethe-Salpeter equation

- Coupling-modified dressed-ladder vertex

\[\Gamma_\mu(k,p) = \Gamma_\mu + C \Gamma_\mu + C^2 \Gamma_\mu + \ldots \]
Colour-singlet

Bethe-Salpeter equation

- Coupling-modified dressed-ladder vertex

\[\Gamma_\mu(k,p) = C + C^2 + \ldots \]

- BSE consistent with vertex
Colour-singlet

Bethe-Salpeter equation

Detmold et al., nu-th/0202082

Bhagwat, et al., nu-th/0403012

- Coupling-modified dressed-ladder vertex

\[\Gamma_\mu(k,p) = C + C^2 + \ldots \]

- BSE consistent with vertex

\[\Gamma_M = \sum_n \left[\Gamma_\mu + \Gamma_\nu + \Lambda^{(n)}_{\mu \nu} \right] \]

- Bethe-Salpeter kernel... recursion relation

\[-\frac{1}{8C} \Lambda^{(n)}_{\mu \nu} = \Gamma_{\mu}^{n-1} + \Gamma_{\nu}^{n-1} + \Gamma_M + \Lambda^{(n-1)}_{\mu \nu} \]
Colour-singlet

Bethe-Salpeter equation

Detmold et al., nu-th/0202082

Bhagwat, et al., nu-th/0403012

- Coupling-modified dressed-ladder vertex

\[\Gamma_{\mu}(k,p) = \Gamma_{\mu} + \Gamma_{\mu}^2 + \cdots \]

- BSE consistent with vertex

\[\Gamma_M = \sum G \Gamma_M + \text{integer terms} \]

- Bethe-Salpeter kernel \ldots \text{recursion relation}

\[-\frac{1}{8C} \]

- Kernel necessarily non-planar, even with planar vertex
\(\pi \) and \(\rho \) mesons
π and ρ mesons

<table>
<thead>
<tr>
<th></th>
<th>$M_{H}^{n=0}$</th>
<th>$M_{H}^{n=1}$</th>
<th>$M_{H}^{n=2}$</th>
<th>$M_{H}^{n=\infty}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>π, $m = 0$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>π, $m = 0.011$</td>
<td>0.147</td>
<td>0.135</td>
<td>0.139</td>
<td>0.138</td>
</tr>
<tr>
<td>ρ, $m = 0$</td>
<td>0.920</td>
<td>0.648</td>
<td>0.782</td>
<td>0.754</td>
</tr>
<tr>
<td>ρ, $m = 0.011$</td>
<td>0.936</td>
<td>0.667</td>
<td>0.798</td>
<td>0.770</td>
</tr>
</tbody>
</table>
\(\pi \) and \(\rho \) mesons

<table>
<thead>
<tr>
<th></th>
<th>(M_H^{n=0})</th>
<th>(M_H^{n=1})</th>
<th>(M_H^{n=2})</th>
<th>(M_H^{n=\infty})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi, m = 0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\pi, m = 0.011)</td>
<td>0.147</td>
<td>0.135</td>
<td>0.139</td>
<td>0.138</td>
</tr>
<tr>
<td>(\rho, m = 0)</td>
<td>0.920</td>
<td>0.648</td>
<td>0.782</td>
<td>0.754</td>
</tr>
<tr>
<td>(\rho, m = 0.011)</td>
<td>0.936</td>
<td>0.667</td>
<td>0.798</td>
<td>0.770</td>
</tr>
</tbody>
</table>

- \(\pi \) massless in chiral limit ... **NO** Fine Tuning
π and ρ Mesons

<table>
<thead>
<tr>
<th></th>
<th>$M_H^{n=0}$</th>
<th>$M_H^{n=1}$</th>
<th>$M_H^{n=2}$</th>
<th>$M_H^{n=\infty}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>π, $m = 0$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>π, $m = 0.011$</td>
<td>0.147</td>
<td>0.135</td>
<td>0.139</td>
<td>0.138</td>
</tr>
<tr>
<td>ρ, $m = 0$</td>
<td>0.920</td>
<td>0.648</td>
<td>0.782</td>
<td>0.754</td>
</tr>
<tr>
<td>ρ, $m = 0.011$</td>
<td>0.936</td>
<td>0.667</td>
<td>0.798</td>
<td>0.770</td>
</tr>
</tbody>
</table>

- **π massless** in chiral limit . . . **NO Fine Tuning**
- **ALL π-ρ mass splitting present in chiral limit**
π and ρ Mesons

<table>
<thead>
<tr>
<th></th>
<th>$M_H^{n=0}$</th>
<th>$M_H^{n=1}$</th>
<th>$M_H^{n=2}$</th>
<th>$M_H^{n=\infty}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>π, $m = 0$</td>
<td>~0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>π, $m = 0.011$</td>
<td>0.147</td>
<td>0.135</td>
<td>0.139</td>
<td>0.138</td>
</tr>
<tr>
<td>ρ, $m = 0$</td>
<td>0.920</td>
<td>0.648</td>
<td>0.782</td>
<td>0.754</td>
</tr>
<tr>
<td>ρ, $m = 0.011$</td>
<td>0.936</td>
<td>0.667</td>
<td>0.798</td>
<td>0.770</td>
</tr>
</tbody>
</table>

- **π massless** in chiral limit . . . **NO** Fine Tuning
- **ALL π-ρ** mass splitting present in chiral limit and with the **Simplest** kernel
π and ρ Mesons

<table>
<thead>
<tr>
<th></th>
<th>$M_H^{n=0}$</th>
<th>$M_H^{n=1}$</th>
<th>$M_H^{n=2}$</th>
<th>$M_H^{n=\infty}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>π, $m = 0$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>π, $m = 0.011$</td>
<td>0.147</td>
<td>0.135</td>
<td>0.139</td>
<td>0.138</td>
</tr>
<tr>
<td>ρ, $m = 0$</td>
<td>0.920</td>
<td>0.648</td>
<td>0.782</td>
<td>0.754</td>
</tr>
<tr>
<td>ρ, $m = 0.011$</td>
<td>0.936</td>
<td>0.667</td>
<td>0.798</td>
<td>0.770</td>
</tr>
</tbody>
</table>

- **π** massless in chiral limit ... **NO** Fine Tuning
- **π-ρ** mass splitting **driven** by $D\chi_{SB}$ mechanism

 Not constituent-quark-model-like **hyperfine splitting**
π and ρ Mesons

<table>
<thead>
<tr>
<th></th>
<th>(M_{H}^{n=0})</th>
<th>(M_{H}^{n=1})</th>
<th>(M_{H}^{n=2})</th>
<th>(M_{H}^{n=\infty})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi, m = 0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\pi, m = 0.011)</td>
<td>0.147</td>
<td>0.135</td>
<td>0.139</td>
<td>0.138</td>
</tr>
<tr>
<td>(\rho, m = 0)</td>
<td>0.920</td>
<td>0.648</td>
<td>0.782</td>
<td>0.754</td>
</tr>
<tr>
<td>(\rho, m = 0.011)</td>
<td>0.936</td>
<td>0.667</td>
<td>0.798</td>
<td>0.770</td>
</tr>
</tbody>
</table>

- **π** massless in chiral limit . . . **NO** Fine Tuning
- \(\pi - \rho \) mass splitting driven by \(D\chi_{SB} \) mechanism
 - Not constituent-quark-model-like hyperfine splitting
- Extending kernel
π and ρ mesons

<table>
<thead>
<tr>
<th></th>
<th>$M_H^{n=0}$</th>
<th>$M_H^{n=1}$</th>
<th>$M_H^{n=2}$</th>
<th>$M_H^{n=∞}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>π, $m = 0$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>π, $m = 0.011$</td>
<td>0.147</td>
<td>0.135</td>
<td>0.139</td>
<td>0.138</td>
</tr>
<tr>
<td>ρ, $m = 0$</td>
<td>0.920</td>
<td>0.648</td>
<td>0.782</td>
<td>0.754</td>
</tr>
<tr>
<td>ρ, $m = 0.011$</td>
<td>0.936</td>
<td>0.667</td>
<td>0.798</td>
<td>0.770</td>
</tr>
</tbody>
</table>

- **π massless** in chiral limit . . . **NO** Fine Tuning
- **π-ρ** mass splitting driven by $D_{\chi}SB$ mechanism
 - Not constituent-quark-model-like hyperfine splitting
- Extending kernel: **NO** effect on m_π
\(\pi \) and \(\rho \) Mesons

<table>
<thead>
<tr>
<th></th>
<th>(M_{H}^{n=0})</th>
<th>(M_{H}^{n=1})</th>
<th>(M_{H}^{n=2})</th>
<th>(M_{H}^{n=\infty})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi, m = 0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\pi, m = 0.011)</td>
<td>0.147</td>
<td>0.135</td>
<td>0.139</td>
<td>0.138</td>
</tr>
<tr>
<td>(\rho, m = 0)</td>
<td>0.920</td>
<td>0.648</td>
<td>0.782</td>
<td>0.754</td>
</tr>
<tr>
<td>(\rho, m = 0.011)</td>
<td>0.936</td>
<td>0.667</td>
<td>0.798</td>
<td>0.770</td>
</tr>
</tbody>
</table>

- \(\pi \) massless in chiral limit . . . **NO** Fine Tuning
- \(\pi - \rho \) mass splitting **driven** by \(D\chi_{SB} \) mechanism
 - Not constituent-quark-model-like **hyperfine** splitting
- Extending kernel: **NO** effect on \(m_{\pi} \)
 - For \(m_{\rho} \) – zeroth order, accurate to **20%**
π and ρ mesons

<table>
<thead>
<tr>
<th></th>
<th>$M_{H=0}^n$</th>
<th>$M_{H=1}^n$</th>
<th>$M_{H=2}^n$</th>
<th>$M_{H=\infty}^n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>π, $m = 0$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>π, $m = 0.011$</td>
<td>0.147</td>
<td>0.135</td>
<td>0.139</td>
<td>0.138</td>
</tr>
<tr>
<td>ρ, $m = 0$</td>
<td>0.920</td>
<td>0.648</td>
<td>0.782</td>
<td>0.754</td>
</tr>
<tr>
<td>ρ, $m = 0.011$</td>
<td>0.936</td>
<td>0.667</td>
<td>0.798</td>
<td>0.770</td>
</tr>
</tbody>
</table>

- **π** massless in chiral limit . . . **NO** Fine Tuning
- **π-ρ** mass splitting **driven** by D_χSB mechanism
 Not constituent-quark-model-like hyperfine splitting
- Extending kernel: **NO** effect on m_π
 For m_ρ – zeroth order, accurate to 20%
 – one loop, accurate to 13%
π and ρ mesons

<table>
<thead>
<tr>
<th></th>
<th>$M_H^{n=0}$</th>
<th>$M_H^{n=1}$</th>
<th>$M_H^{n=2}$</th>
<th>$M_H^{n=\infty}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>π, $m = 0$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>π, $m = 0.011$</td>
<td>0.147</td>
<td>0.135</td>
<td>0.139</td>
<td>0.138</td>
</tr>
<tr>
<td>ρ, $m = 0$</td>
<td>0.920</td>
<td>0.648</td>
<td>0.782</td>
<td>0.754</td>
</tr>
<tr>
<td>ρ, $m = 0.011$</td>
<td>0.936</td>
<td>0.667</td>
<td>0.798</td>
<td>0.770</td>
</tr>
</tbody>
</table>

- π massless in chiral limit . . . **NO** Fine Tuning
- π-ρ mass splitting driven by $D\chi_{SB}$ mechanism
 - Not constituent-quark-model-like hyperfine splitting
- Extending kernel: **NO** effect on m_π
 - For m_ρ – zeroth order, accurate to 20%
 - – one loop, accurate to 13%
 - – two loop, accurate to 4%
Calculated Transition Form Factor:

Höll, Krassnigg, Maris, et al.,
“Electromagnetic properties of ground and excited state pseudoscalar mesons,”
uu-th/0503043

$m_u(1\ \text{GeV}) = m_d(1\ \text{GeV}) = 5.5\ \text{MeV}$
Calculated Transition Form Factor:
RGI Rainbow-Ladder

Höll, Krassnigg, Maris, et al.,
“Electromagnetic properties of ground and
excited state pseudoscalar mesons,”
nu-th/0503043

\[
m_u(1 \text{ GeV}) = m_d(1 \text{ GeV}) = 5.5 \text{ MeV}
\]

\[
T_{\pi_1^0}(-m_{\pi_1^0}^2, Q^2) < 0, \quad Q^2 \geq -m_{\pi_1^0}^2 / 4;
\]

viz., it is negative on the entire kinematically accessible domain.
Calculated Transition Form Factor: RGI Rainbow-Ladder

\[\frac{1}{(2 f_{\pi_0})} \]

\[m_u(1 \text{ GeV}) = m_d(1 \text{ GeV}) = 5.5 \text{ MeV} \]

\[\mathcal{T}_{\pi_1^0}(-m_{\pi_1}^2, Q^2) < 0, \quad Q^2 \geq -m_{\pi_1}^2/4; \]

viz., it is negative on the entire kinematically accessible domain.

\[\Gamma_{\pi_0^0 \gamma\gamma} = 7.9 \text{ eV}, \quad \Gamma_{\pi_1^0 \gamma\gamma} = 240 \text{ eV} \]
Calculated Transition Form Factor: RGI Rainbow-Ladder

$|\tau_{\pi_n}(Q^2)| \left[\text{GeV}^{-1} \right]$

$m_u(1 \text{ GeV}) = m_d(1 \text{ GeV}) = 5.5 \text{ MeV}$
Calculated Transition Form Factor:
RGI Rainbow-Ladder

\[|T_{\pi_n}(Q^2)| \quad [\text{GeV}^{-1}] \]

\[
m_u(1 \text{ GeV}) = m_d(1 \text{ GeV}) = 5.5 \text{ MeV}
\]

Predicted **UV**-behaviour is abundantly clear

precise for \(Q^2 > 120 \text{ GeV}^2 \)
Electromagnetic Charge Radii – RGI
Rainbow-Ladder

\[m_{u,d}(1 \text{ GeV}) = 5.5 \text{ MeV} \]
Electromagnetic Charge Radii – RGI

Rainbow-Ladder

- \(m_{u,d}(1 \text{ GeV}) = 5.5 \text{ MeV} \)

- Reminder:
 - MT-model has one IR-mass-scale – \(\omega \)
 - \(r_\alpha := 1/\omega \)
 - gauges the range of strong attraction

\[r_\pi \text{ [fm]} \]

\[\begin{align*}
\text{linear fit: } & 0.61 + 0.11 \omega \\
\text{linear fit: } & 0.09 + 1.76 \omega
\end{align*} \]
Electromagnetic Charge Radii – RGI

Rainbow-Ladder

Höll, Krassnigg, Maris, et al., nu-th/0503043

- $m_{u,d}(1 \text{ GeV}) = 5.5 \text{ MeV}$

- Reminder:
 - MT-model has one IR-mass-scale – ω
 - $r_\alpha := 1/\omega$
 - gauges the range of strong attraction

- Goldstone Mode’s properties are insensitive to r_α

- Expected cf. $T \neq 0$, Goldstone mode’s properties do not change until very near chiral symmetry restoration temperature.
$m_{u,d}(1 \text{ GeV}) = 5.5 \text{ MeV}$

Reminder:
MT-model has one
IR-mass-scale – ω

$r_a := 1/\omega$
gauges the range
of strong attraction

1st excited state:
orthogonal to Goldstone mode

Not protected ... properties very sensitive to r_a
Electromagnetic Charge Radii – RGI

Höll, Krassnigg, Maris, et al., nu-th/0503043

- \(m_{u,d}(1 \text{ GeV}) = 5.5 \text{ MeV} \)

- Reminder:
 MT-model has one
 IR-mass-scale – \(\omega \)

- \(r_a := 1/\omega \)
 gauges the range of strong attraction

- Best estimate \(r_{\pi_1} = 1.4 r_{\pi_0} \)

- But \(r_{\pi_1} < r_{\pi_0} \) is possible if confinement force is very strong
Electromagnetic Charge Radii – RGI

Rainbow-Ladder

- \(m_{u,d}(1\ \text{GeV}) = 5.5\ \text{MeV} \)
- Reminder: MT-model has one IR-mass-scale – \(\omega \)
 - \(r_a := 1/\omega \) gauges the range of strong attraction
- Radial excitations are plainly useful to map out the long-range part of interaction between light-quarks.

\[r_\pi \quad [\text{fm}] \]

\[0.3 \quad 0.32 \quad 0.34 \quad 0.36 \quad 0.38 \quad 0.4 \]

\[\omega \quad [\text{GeV}] \]

\[0.60 \quad 0.65 \quad 0.70 \quad 0.75 \quad 0.80 \]

\[n = 0 \ (\text{ground state}) \]
\[n = 1 \ (\text{radial excitation}) \]

Linear fit:
- \(0.61 + 0.11 \)
- \(0.09 + 1.76 \)

Light-Cone QCD and Nonperturbative Hadron Physics, 15-19/05/06 – p. 43/49
Electromagnetic Charge Radii – RGI

Rainbow-Ladder

- $m_{u,d}(1 \text{ GeV}) = 5.5$ MeV
- Reminder:
 - MT-model has one IR-mass-scale – ω
 - $r_\alpha := 1/\omega$
 gauges the range of strong attraction
- Radial excitations are plainly useful to map out the long-range part of interaction between light-quarks.
- Same is true of orbital excitations; e.g., axial-vector mesons.
Electromagnetic Charge Radii – RGI
Rainbow-Ladder

- $m_{u,d}(1\text{ GeV}) = 5.5\text{ MeV}$
- Reminder:
 - MT-model has one IR-mass-scale – ω
 - $r_a := 1/\omega$
 - gauges the range of strong attraction
- Radial excitations are plainly useful to map out the long-range part of interaction between light-quarks.
- Same is true of orbital excitations; e.g., axial-vector mesons.
- Hall-D at JLab
Deep-inelastic scattering
Deep-inelastic scattering

Looking for Quarks
Deep-inelastic scattering

Looking for Quarks
Deep-inelastic scattering

Looking for Quarks

Signature Experiment for QCD:

Discovery of Quarks at SLAC
Deep-inelastic scattering

- Looking for Quarks

Signature Experiment for QCD:

Discovery of Quarks at SLAC

Cross-section: Interpreted as Measurement of Momentum-Fraction Prob. Distribution: $q(x), g(x)$
Pion’s valence quark distn
Pion’s valence quark distn

- π is Two-Body System: “Easiest” Bound State in QCD
- However, NO π Targets!
\(\pi \) is Two-Body System: “Easiest” Bound State in QCD

However, NO \(\pi \) Targets!

Proved on

22/July/2002, ANL
Pion’s valence quark distn

- π is Two-Body System: “Easiest” Bound State in QCD
- However, NO π Targets!
- Existing Measurement Inferred from Drell-Yan:

 $$\pi N \rightarrow \mu^+ \mu^- X$$
Pion’s valence quark distn

- \(\pi \) is Two-Body System: “Easiest” Bound State in QCD
- However, NO \(\pi \) Targets!
- Existing Measurement Inferred from Drell-Yan:
 \[\pi N \rightarrow \mu^+ \mu^- X \]
- Proposal (Holt & Reimer, ANL, nu-ex/0010004)

\[e^{-5\text{GeV}} - p_{25\text{GeV}} \text{ Collider } \rightarrow \text{ Accurate “Measurement”} \]
Proposal at JLab

(Holt, Reimer, Wijesooriya, et al., JLab at 12 GeV)
Handbag diagrams
\[W_{\mu\nu}(q; P) = \frac{1}{2\pi} \text{Im} \left[T_{\mu\nu}^+(q; P) + T_{\mu\nu}^-(q; P) \right] \]

\[T_{\mu\nu}^+(q, P) = \text{tr} \int \frac{d^4k}{(2\pi)^4} \tau_- \bar{\Gamma}_\pi(k_{-\frac{1}{2}}; -P) S(k_{-0}) ieQ \Gamma_\nu(k_{-0}, k) \]
\[\times S(k) i\epsilon Q \Gamma_\mu(k, k_{-0}) S(k_{-0}) \tau_+ \Gamma_\pi(k_{-\frac{1}{2}}; P) S(k_{--}) \]
Bjorken Limit: \(q^2 \to \infty , \quad P \cdot q \to -\infty\) but \(x := -\frac{q^2}{2P \cdot q}\) fixed.

Numerous algebraic simplifications

\[
\begin{align*}
W_{\mu\nu}(q; P) &= \frac{1}{2\pi} \text{Im} \left[T_{\mu\nu}^+(q; P) + T_{\mu\nu}^-(q; P) \right] \\
T_{\mu\nu}^+(q, P) &= \text{tr} \int \frac{d^4k}{(2\pi)^4} \tau_- \bar{\Gamma}_{\pi}(k_{-\frac{1}{2}}; -P) S(k_{-0}) i e Q \Gamma_{\nu}(k_{-0}, k) \\
&\quad \times S(k) i e Q \Gamma_{\mu}(k, k_{-0}) S(k_{-0}) \tau_+ \Gamma_{\pi}(k_{-\frac{1}{2}}; P) S(k_{-0})
\end{align*}
\]
Extant theory vs. experiment

K. Wijersooriya, P. Reimer and R. Holt, nu-ex/0509012 ... Phys. Rev. C (Rapid)
Form Factor Ratio: $Q \ast F_2/F_1$
Form Factor Ratio: $Q^* F_2/F_1$

![Graph showing the form factor ratio $Q^2 F_{2p} / (\kappa p F_{1p})$ vs. Q^2 with data points and error bars from SLAC, JLab1, and JLab2. The graph includes a fit curve and shaded regions representing uncertainty.]
Perhaps \approx constant for $2 < Q^2 < 6 \text{GeV}^2$
Formln Factor Ratio: alternative

\[F2/F1 \]
Formln Factor Ratio: alternative

\[\frac{F_2}{F_1} \]

\[
\left(\frac{Q}{\ln \left(\frac{Q^2}{\Lambda^2} \right)} \right)^2 \frac{F_{2p}}{\kappa_p F_{1p}}
\]

set B

SLAC

JLab 1

JLab 2

Light-Cone QCD and Nonperturbative Hadron Physics, 15-19/05/06 – p. 49/49
Formln Factor Ratio: alternative

\[\frac{Q^2}{[\ln Q^2/\Lambda^2]^2} \frac{F_2(Q^2)}{F_1(Q^2)} = \text{constant, } Q^2 \gg \Lambda^2 \approx M_N^2 \]

Suggestive

NB. Framework constructed to give quark-counting, i.e., “pQCD” *but* with wrong anomalous dimensions *but* they’re ignored in ln-power “2” of this ratio.