Poincaré invariance with fields as OPVD in the Epstein and Glaser context

E. Werner ‡ and P. Grangé †

†Physique Théorique et Astroparticules, CNRS-UMR5207, Université Montpellier II, 34095 Montpellier (France)
‡Institut für Theoretische Physik, Universität Regensburg, (Germany)
"The SMOOTH OPERATOR":
(a hit for Evening Jazz Sessions ?)
PLAN

- Introduction, aims of this contribution.
PLAN

- Introduction, aims of this contribution.
- Fields as OPVD, mathematical apparatus
PLAN

- Introduction, aims of this contribution.
- Fields as OPVD, mathematical apparatus
- Partition of unity in the definition of integrals of differential forms. Consequences for the fields
PLAN

- Introduction, aims of this contribution.
- Fields as OPVD, mathematical apparatus
- Partition of unity in the definition of integrals of differential forms. Consequences for the fields
- Partition of unity and Poincaré commutator algebra.
PLAN

- Introduction, aims of this contribution.
- Fields as OPVD, mathematical apparatus
- Partition of unity in the definition of integrals of differential forms. Consequences for the fields
- Partition of unity and Poincaré commutator algebra.
- Lorentz invariant extension of singular distributions: the double magic of the partition of unity and Lagrange’s formula
PLAN

Introduction, aims of this contribution.
Fields as OPVD, mathematical apparatus
Partition of unity in the definition of integrals of differential forms. Consequences for the fields
Partition of unity and Poincaré commutator algebra.
Lorentz invariant extension of singular distributions: the double magic of the partition of unity and Lagrange’s formula
UV divergences in Minskowkian metric
PLAN

- Introduction, aims of this contribution.
- Fields as OPVD, mathematical apparatus
- Partition of unity in the definition of integrals of differential forms. Consequences for the fields
- Partition of unity and Poincaré commutator algebra.
- Lorentz invariant extension of singular distributions: the double magic of the partition of unity and Lagrange’s formula
- UV divergences in Minskowkian metric
- Equivalence with dispersion relations
Introduction

Fields as OPVD with explicit test functions: a mathematically rigorous way to handle singular distributions.
Fields as OPVD with explicit test functions: a mathematically rigourous way to handle singular distributions.

The mathematical apparatus is well established: implemented for integrals of differential forms, new developments in distribution theory (Estrada, Kenwall)
Introduction

- Fields as OPVD with explicit test functions: a mathematically rigorous way to handle singular distributions.

- The mathematical apparatus is well established: implemented for integrals of differential forms, new developments in distribution theory (Estrada, Kenwall)

- Applications to QFT dating back to the work of Epstein-Glaser, Stora (1973) with recent revival from many contributors (Scharf, Dutsch, Fredenhagen, Estrada, Garcia-Bondia, Prange, Pinter....)
Introduction

- Fields as OPVD with explicit test functions: a mathematically rigorous way to handle singular distributions.

- The mathematical apparatus is well established: implemented for integrals of differential forms, new developments in distribution theory (Estrada, Kenwall)

- Applications to QFT dating back to the work of Epstein-Glaser, Stora (1973) with recent revival from many contributors (Scharf, Dutsch, Fredenhagen, Estrada, Garcia-Bondia, Prange, Pinter,....)

- Provides a comprehensive handling of UV and IR behaviour: see LC2004 (Amsterdam) and LC2005 (Cairns)
Scalar Field (or Fermi as well) as OPVD
OPVD defines a functional with respect to a test function \(\rho(x) \), \(C^\infty \) with compact support,
\[
\Phi(\rho) \equiv \langle \varphi, \rho \rangle = \int d^Dy \varphi(y) \rho(y).
\]
More general interpretation: functional \(\Phi(x, \rho) \) evaluated at \(x = 0 \).
The translated functional is a well defined object such that
\[
T_x \Phi(\rho) = \langle T_x \varphi, \rho \rangle = \langle \varphi, T_{-x} \rho \rangle = \int d^Dy \varphi(y) \rho(x - y).
\]
Due to the properties of \(\rho \), \(T_x \Phi(\rho) \) obeys the EQM (KG or Dirac) and is taken as the physical field \(\phi(x) \)
Fourier decomposition of $\rho(x - y)$

$$
\rho(x - y) = \int \frac{d^{(D)}q}{(2\pi)^D} e^{iq(x-y)} f(q_0^2, \vec{q}^2)
$$

quantized form for $\phi(x)$ follows:

In Minkowskian metric:

$$
\phi(x) = \int \frac{d^{(D-1)}p}{(2\pi)^{D-1}} \frac{f(\omega_p^2, \vec{p}^2)}{(2\omega_p)} [a_p e^{ipx} + a_p^* e^{-ipx}].
$$

or in Euclidean metric:

$$
\phi(x) = \int \frac{d^{(D)}p}{(2\pi)^D} [a_p e^{-ipx} + a_p^* e^{ipx}] f(p^2).
$$
Mathematical apparatus: 4 theorems

i) Open covering of a topological space M

$\exists (O_i)_{i \in I}$ open subsets that cover M: $M = \bigcup_{i \in I} O_i$;

(α_i) a family of functions on $M \rightarrow \mathbb{R}$;

α_i is locally finite: for any point $P \in M$ only a finite number of α’s are 0; $\sum_{i \in I} \alpha_i$ is finite at every point. Then

$$\beta_j = \frac{\alpha_j}{\sum_{j \in I} \alpha_j}$$

is a partition of unity on M as $\sum_{j \in I} \beta_j = 1$

ii) Paracompact spaces and decomposition of unity subordinate to the open covering,

M is paracompact if to an arbitrary open covering $(O_i)_{i \in I}$ one can find a partition of unity $\sum_{i \in I} \beta_i$ such that β_i vanishes outside O_i: β_i is said to be subordinate to O_i.
iii) Euclidean manifolds are paracompact: one may use partition of unity when needed. Well known case: definition of integrals of differential forms (Spivak, Felsager, Kobayashi-Nomizu,...)

F a differential form, (β_i) is used to cut F into small pieces: $F_i = \beta_i F$ and $\sum F_i = F$. For $\Omega \subset M$ one defines:
$$\int_{\Omega} F := \sum_i \int_{\Omega_i} \beta_i F.$$ result is independent of the choice of coordinates (atlas) on Ω_i and of the partition of unity.

iv) Localisation of distributions: J. Dieudonné’s GPT-theorem (Glueing-Pieces-Together) establishes the above properties for distribution functionals on Euclidean manifolds
Consequences:

i) the test function $f(p^2)$ can be taken as a partition of unity and the integral defining the physical field $\phi(x)$ is independant of its construction.

ii) The translated functional built out of the physical field $\phi(x)$ is again $\phi(x)$ itself

$$T_x\phi(\rho) = \int d^{(D)}y \phi(y) \rho(x - y) = \int \frac{d^{(D)}p}{(2\pi)^D} [a_p e^{-ipx} + a_p e^{ipx}] f^2(p^2).$$

here $f^2(p^2)$ is still a decomposition of unity (another) and $T_x\phi(\rho) \equiv \phi(x)$.

the test function $f(p^2)$ ensures convergence of otherwise diverging integrals but plays no role on the reverse.(it may taken as 1 everywhere in this case)
Partition of unity and Poincaré commutator algebra (scalar field) Itzykson-Zuber conventions (p115)

\[d\Omega_k = \frac{d^3 k}{(2\pi)^3 2\omega_k}; \omega_k = \sqrt{k^2 + m^2}; [a^-_k, a^+_k] = (2\pi)^3 2\omega_k \delta(\vec{k} - \vec{k}') \]

\[\varphi(x) = \int d\Omega_k [a^-_k e^{-ik \cdot x} + a^+_k e^{ik \cdot x}] f(\omega_k^2, \bar{k}'^2); \]

\[\Pi(x) = -i \int d\Omega_k \omega_k [a^-_k e^{-ik \cdot x} - a^+_k e^{ik \cdot x}] f(\omega_k^2, \bar{k}'^2); \]

\[\theta^{\mu\nu} = \partial^\mu \varphi \partial^\nu \varphi - \frac{1}{2} g^{\mu\nu} [(\partial \varphi)^2 - m^2 \varphi^2] \]

Purpose: Check that \(i [P^\mu, \varphi(x)] = \partial^\mu \varphi(x) \)

\[P^0 = H = \int d\Omega_k \omega_k a^+_k a^-_k f^2(\omega_k^2, \bar{k}'^2) \]

\[P^j = \frac{1}{2} \int d\Omega_k \omega_k k^j [a^+_k a^-_k + a^-_k a^+_k] f^2(\omega_k^2, \bar{k}'^2) \]
\[i[P^j, \varphi] = i \int d\Omega_k k^j [a_k^+ e^{ikx} - a_k^- e^{-ikx}] f^3(\omega^2, \vec{k}^2) \equiv \partial^j \varphi \]

since \(f^3 \) is also a partition of unity with same support as \(f^2 \)

\[M^{\mu\nu} = \int d^3x [x^\mu \theta^{0\nu} - x^\nu \theta^{0\mu}] \]

\[M_{0j} = - \int d^3x x_j \theta_{00} = i \int d\Omega_k \omega_k a_k^+ f(\omega_k^2, \vec{k}^2) \frac{\partial}{\partial k^j} (a_{\vec{k}} f(\omega_k^2, \vec{k}^2)) \]

\[M_{jl} = i \int d\Omega_k a_k^+ f(\omega_k^2, \vec{k}^2) [k_j \frac{\partial}{\partial k^l} - k_l \frac{\partial}{\partial k^j}] (a_{\vec{k}} f(\omega_k^2, \vec{k}^2)) \]

The commutations of the \(a \)'s and \(a^+ \)'s give the usual result

\[[M^{\mu\nu}, P^\lambda] = i(g^{\mu\nu} P^\lambda - g^{\nu\lambda} P^\mu) \]

since in the RHS \(f^2 \) in \(P^\nu (P^\mu) \) is replaced by \(f^4 \) with the same conclusion as before. Holds also for \([M^{\mu\nu}, M^{\lambda\sigma}]\)
Lorentz invariant extension of singular distributions: the double magic of the partition of unity and Lagrange's formula

$E - G$'s analysis of singular distributions

$f(X) : \mathcal{C}^\infty(\mathbb{R}^d)$ test function $\in \mathcal{S}(\mathbb{R}^d)$

$T(X)$ distribution $\in \mathcal{S}'(\mathbb{R}^d - \{0\})$

singular order k of $T(X)$ at the origin of (\mathbb{R}^d) such that

$$k = \inf \{ s : \lim_{\lambda \to 0} \lambda^s T(\lambda X) = 0 \} - d$$

$E - G$'s extension consists in performing an "educated" Taylor surgery on the original test function by throwing away the the weighed k-jet of $f(X)$. Call $R^k_1 f(X)$ (Taylor's remainder) Notation:

$$\alpha! = \alpha^1! \cdots \alpha^d!; |\alpha| = \alpha^1 + \cdots + \alpha^d; \partial^\alpha = \partial_{x_1}^{\alpha_1} \cdots \partial_{x_d}^{\alpha_d}$$

$$R^k_1 f(X) = f(X) - \sum_{n=0}^{k} \sum_{|\alpha| = n} \frac{X^\alpha}{\alpha!} \partial^\alpha f(X)|_{X=0}$$
Call $\tilde{T}(X)$ extension of $T(X)$ by transposition such that

$$< \tilde{T}, f > := < T, R^k_1 f >$$

but $R^k_1 f(X) \notin S(\mathbb{R}^d)$ E-G’s remedy: introduce a weight with properties $w(0) = 1$, $w^{(\alpha)}(0) = 0$, $0 < |\alpha| \leq k$ such that

$$R^k_w f(X) = f(X) - w(X) \sum_{n=0}^{k} \sum_{|\alpha| = n} \frac{X^\alpha}{\alpha!} \partial^\alpha f(X) |_{X=0}$$

$$< \tilde{T}, f > := < T, R^k_w f >$$

However under action of element Λ of the Lorentz group derivatives transform as

$$x^\alpha \partial_\alpha (\Lambda f) = x^\alpha [\Lambda^{-1}]^\beta_\alpha (\partial_\beta f) \circ \Lambda^{-1}$$

$$= (\Lambda^{-1} X)^\beta (\partial_\beta f) \circ \Lambda^{-1}; \text{ and in the Taylor expansion}$$

$$x^\alpha \partial_\alpha (\Lambda f)(0) = (\Lambda^{-1} X)^\beta \partial_\beta f(0) \Rightarrow \text{Lorentz covariance violation}$$
Restauration: $\widehat{T}(X)$ determined up to $\sum_{|\alpha|\leq k} (-1)^{\alpha} \frac{a_\alpha}{\alpha!} \delta(\alpha)(X)$; since $\delta(\alpha)(\Lambda X) = [\Lambda^{-1} X]^\alpha_\beta \delta(\beta)(X)$ scheme is : determine a_α to correct for the violation due to derivatives.

- Lorentz covariance with test function as partition of unity and Lagrange’s formula for Taylor’s remainder $R^k_1 f(X)$ with a p. of u. $f^{(\alpha)}(0) = 0 \quad \forall \alpha \geq 0$ it holds that $f(X) = R^k_1 f(X) \quad \forall k > 0$: no violation due to derivatives (they are just not there) and $\Lambda R^k_1 f(X) = R^k_1 \Lambda f(X); R^k_1 f(X)$ given by Lagrange and $\widehat{T}(X)$ by partial integration (cf LC05)

$$f^<(X) = R^k_1 f(X) = (k + 1) \sum_{|\beta|=k+1} \partial^\beta \left[\frac{X^\beta}{\beta!} \int_0^1 dt (1 - t)^k \partial^{\beta}(tX) f^<(tX) \right]$$

$$\widehat{T}^<(X) = (-)^{k+1} (k + 1) \sum_{|\beta|=k+1} \partial^\beta \left[\frac{X^\beta}{\beta!} \int_0^1 dt \frac{X}{t} t^k \frac{(1 - t)^k}{t^{(k+d+1)}} \right]$$
Link with BPHZ renormalization

Denote by \(\hat{f} = \mathcal{F}(f) \) the Fourier transform (normalized with \((2\pi)^{d/2} \)) of \(f(X) \); Then

\[
(X^\mu f)(p) = (-i)^|\mu| \partial^\mu \hat{f}(p); \quad (X^\mu)(p) = (-i)^|\mu|(2\pi)^{d/2} \delta^\mu(p);
\]

\[
\partial^\mu f(0) = (-i)^|\mu|(2\pi)^{-d/2} < p^\mu, \hat{f} >
\]

which implies

\[
< T, f > = < T, R^k_1 f > = < \mathcal{F}(T), \mathcal{F}^{-1}(R^k_1 f) >
\]

\[
= < \mathcal{F}(T), R^k_1(\mathcal{F}^{-1}(f)) > = < R^k_1 \mathcal{F}(T), \mathcal{F}^{-1}(f) >
\]

that is

\[
\mathcal{F}(\tilde{T}) = R^k_1 \mathcal{F}(T) \quad \text{ie BPHZ in momentum space}
\]
UV divergences in Minkowskian metric

- Recall **UV** extension of **T**(*X*) at \(\|X\| \approx h\) Taylor remainder is:

\[
\begin{align*}
 f(X) & \equiv f^>(X) \equiv -(k + 1) \sum_{|\beta|=k+1} \left[\frac{X^\beta}{\beta!} \int_1^\infty dt (1-t)^k \partial_{(tX)}^\beta f(tX) \right] \forall k \\
\end{align*}
\]

\[
\begin{align*}
 < T, f^> > & = \int d^dX T(X) \left\{ -(k + 1) \sum_{|\beta|=k+1} \left[\frac{X^\beta}{\beta!} \int_1^\mu t^2 \frac{(1-t)^k}{t(k+1)} \partial_{X}^\beta f^>(tX) \right] \right\} \\
 & = < \tilde{T}^>, 1 > \implies \tilde{T}^>(X) \quad \text{after partial integration} \\
\end{align*}
\]

\[
\begin{align*}
 \tilde{T}^>(X) & = (-)^k(k + 1) \sum_{|\beta|=k+1} \partial_X^\beta \left[\frac{X^\beta}{\beta!} \int_1^\mu t^2 \frac{(1-t)^k}{t(d+k+1)} T\left(\frac{X}{t}\right) \right] \\
\end{align*}
\]
Evaluation of \(\int d^D p \frac{f(p_0^2, p^2)}{p_0^2 - p^2 - m^2 + 2i\epsilon \omega_p} \) at \(D = 2 \) and \(D = 4 \)

Do first the \(p_0 \)-integration with the result

\[
\int_{-\infty}^{\infty} dp_0 \frac{f(p_0^2, p^2)}{p_0 \pm \omega_p + i\epsilon} = \pm i\pi f(\omega_p^2, p^2)
\]

by application of Lagrange’s formula and integration by part

\[
PP \int_{-\infty}^{\infty} dp_0 \frac{f(p_0^2, p^2)}{p_0 \pm \omega_p} = PP \int_{-\infty}^{\infty} dp_0 \frac{1}{p_0 \pm \omega_p} \{ -p_0 \frac{d}{dp_0} \int_1^{\infty} \frac{dt}{t} f(p_0^2 t^2, p^2) \} = 0
\]

at \(D=2 \) the remaining integral is

\[
-i\pi \int_{-\infty}^{\infty} dp \frac{f(\omega_p^2, p^2)}{\omega_p} = -i\pi < \frac{1}{\omega_p}, f(\omega_p^2, p^2) > = -i\pi < \frac{\sqrt{1}}{\omega_p}, 1 >
\]

here \(d = 1, \omega = 0, k = 0 \rightarrow \left(\frac{1}{\omega_p} \right) = \frac{d}{dp} \left[p \int_1^{\infty} \frac{dt}{t} \frac{1}{\sqrt{p^2 + m^2 t^2}} \right]
\]

\[
= \frac{1}{\sqrt{p^2 + m^2}} - \frac{1}{\sqrt{p^2 + m^2 \mu^4}}
\]
\[2i\pi \int_0^\infty dp \left[\frac{1}{\sqrt{p^2 + m^2}} - \frac{1}{\sqrt{p^2 + m^2 \mu^2}} \right] = -2i\pi \log[\mu^2] \] as expected

one may rewrite under Pauli-Villars form

\[\int d^2p \frac{f(p_0^2, p^2)}{p^2 - m^2 + i\epsilon} \equiv \int d^2p \left[\frac{1}{p^2 - m^2 + i\epsilon} - \frac{1}{p^2 - m^2 \mu^4 + i\epsilon} \right] \]

At \(D = 4 \) the \(p_0 \)-integral is the same and with \(X = p^2 \)

\[\int d^4p \frac{f(p_0^2, p^2)}{p_0^2 - p^2 - m^2 + i\epsilon} = -4i\pi^2 \int_0^\infty \frac{XdXf(X)}{\sqrt{X(X + m^2)}} \]

here \(d = 2, \omega = 0, k = 1 \) giving

\[\left(\frac{1}{\sqrt{X(X + m^2)}} \right) = -2 \frac{\partial^2}{\partial X^2} \left[\frac{X^2}{2!} \int_1^{\mu^2} \frac{dt}{t^3} \frac{(1 - t)}{\sqrt{X(X + m^2t)}} \right] \]

\[= -\frac{3}{4} \int_1^{\mu^2} \frac{dt}{t^3} \left[\frac{1}{\sqrt{X(X + m^2t)}} - \frac{2\sqrt{X}}{(X + m^2t)^{3/2}} + \frac{X^{3/2}}{(X + m^2t)^{5/2}} \right] \]

PV-type of substraction \(I(X, t) \)
\[\int_{0}^{\infty} X dX I(X, t) = \frac{4}{6} m^2 t; \quad \int_{1}^{\mu^2} dt \frac{1 - t}{t^2} = -\frac{1}{\mu^2} (1 - \mu^2 + \mu^2 \log(\mu^2)) \]

Characterisation of \(I(X, t) \) as PV-type of substraction: see transparencies for technical details.
Equivalence with dispersion relations

- Recall first E-G’s construction of retarded/advanced parts of $T(X)$

$\chi(t)$ a "smooth" extension of the usual step-function (necessary for multiplication with a distribution) such that

$$
\chi(t) = \begin{cases}
0 & \text{for } t \leq 0 \\
< 1 & \text{for } 0 < t < 1 \\
1 & \text{for } t \geq 1
\end{cases}
$$

Pick up a vector $v = (v_1, \ldots , v_{d-1}) \in \Gamma^+ \implies v.x = 0$ defines hyperplane separating causal support. Define retarded part $T_r(X)$ of $T(X)$ as the existing limit

$$
T_r(X) = \lim_{\delta \to 0} \chi(\frac{v.X}{\delta})T(X) := \Theta(v.X)T(X)
$$

and

$$
<T_r(X), f(X)> = <T(X), \chi(v.X)(k + 1) \sum_{|\beta| = k+1} \frac{X^\beta}{\beta!} \int_0^1 dt \frac{(1-t)^k}{t^{(k+1)}} \partial_x^\beta f(tX)>
$$
\(\tilde{T}_r(X) \) is obtained after integration by part

\[
\tilde{T}_r(X) = (-)^{k+1}(k+1) \sum_{|\beta| = k+1} \partial^\beta_X \left[\frac{X^\beta}{\beta!} \int_0^1 dt \frac{(1 - t)^k}{t^{d+k+1}} \chi \left(\frac{v.X}{t} \right) T \left(\frac{X}{t} \right) \right]
\]

Take Fourier-transforms:

\[
\mathcal{F}(\chi(v.X)) = \hat{\chi}_v(k) = (2\pi)^{(d/2)-1} \frac{i}{k_0 + i\epsilon} \delta^{(d-1)}(\vec{k} - k_0 \vec{v}) \text{ etc...}
\]

Then

\[
\tilde{T}_r(p) = \frac{(k+1)}{(2\pi)^{d/2}} \sum_{|\beta| = k+1} \frac{p^\beta}{\beta!} \int_0^1 dt (1 - t)^k \int dq \hat{\chi}_v(q) \partial^\beta_{(pt)} \hat{T}(pt - q)
\]

may evaluate in special coordinate system

\(p = (p_0^1, 0, 0,) ; v = (1, 0, 0,) \) to give

\[
\tilde{T}_r(p_0^1) = \frac{i}{2\pi} \frac{(p_0^1)^{(k+1)}}{k!} \int_0^1 dt (1 - t)^k \int_{-\infty}^\infty dq^0_1 \frac{d}{dq^0_1 p_1^0 t - q_1^0 + i\epsilon} \frac{\partial^{k+1}}{\partial(q^0_1)^{(k+1)}} \hat{T}(q_0^1, ...)
\]
after partial integration on q_1^0 and on t and with the final integration variable $s = \frac{q_1^0}{p_1^0}$ one finds for any p a dispersion relation for the retarded part

$$\tilde{T}_r(p) = \frac{i}{2\pi} \int_{-\infty}^{\infty} ds \frac{\hat{T}(ps)}{(s - i\epsilon)^{(k+1)}(1 - s + i\epsilon)}$$

advanced part is obtained in a similar way with $i\epsilon \rightarrow -i\epsilon$
Final Conclusions

- Well defined fields leading to Lorentz invariant formulation
Final Conclusions

- Well defined fields leading to Lorentz invariant formulation
- Finite RG-analysis w.r.t to scale parameter present in partition of unity
Final Conclusions

- Well defined fields leading to Lorentz invariant formulation
- Finite RG-analysis w.r.t to scale parameter present in partition of unity
- Minkowskian metric focuses on causality: Taylor subtractions equivalent to symmetry preserving dispersion relations or possibly interpreted in terms of P.V. type of subtraction (but without the introduction of new fields)
Final Conclusions

- Well defined fields leading to Lorentz invariant formulation
- Finite RG-analysis w.r.t to scale parameter present in partition of unity
- Minkowskian metric focusses on causality: taylor substractions equivalent to symmetry preserving dispersion relations or possibly interpreted in terms of P.V. type of subtraction (but without the introduction of new fields)
- QED gauge invariance OK (cf LC2004)
Final Conclusions

- Well defined fields leading to Lorentz invariant formulation
- Finite RG-analysis w.r.t to scale parameter present in partition of unity
- Minkowskian metric focusses on causality: taylor substractions equivalent to symmetry preserving dispersion relations or possibly interpreted in terms of P.V. type of subtraction (but without the introduction of new fields)
- QED gauge invariance OK (cf LC2004)
- Link with dimensional regularisation through analytic continuation of power of propagator (but no problem related to γ_5 extension cf J.M. Garcia-Bondia)
Final Conclusions

- Well defined fields leading to Lorentz invariant formulation
- Finite RG-analysis w.r.t to scale parameter present in partition of unity
- Minkowskian metric focusses on causality: taylor substractions equivalent to symmetry preserving dispersion relations or possibly interpreted in terms of P.V. type of subtraction (but without the introduction of new fields)
- QED gauge invariance OK (cf LC2004)
- Link with dimensional regularisation through analytic continuation of power of propagator (but no problem related to γ_5 extension cf J.M. Garcia-Bondia)
- Towards a finite LCQFT for the S-matrix represented in terms of the light-front time $\sigma = \omega \cdot \bar{x}$ (counterterms avoided)
References

- Finite QED: the causal approach, G. Scharf, Springer Verlag 1995
- Algebric QFT, Pertubation theory and loop expansion, M. Dutsch and K. Fredenhagen, hep-th/0001129 and references therein
- Techniques of distributions in pertubative QFT, A.N. Kuznetsov, F.V. Tekchov and V.V. Vlasov, hep-th/9612037
- A causal approach to massive Yang-Mills theories, F. Krahe, hep-th/9508038
- Non-uniqueness of quantized Yang-Mills theories, M. Duetsch, hep-th/9606100
- QED fermi fields as OPVD and anomalies, E. Werner, P. Grangé, Few-Body Systems 00, 1-7 (2005)
- UV AND IR behaviour for QFT and LCQFT with fields as Operator Valued Distributions: Epstein and Glaser revisited, E. Werner, P. Grangé, LC2005, Cairns, Australia