CHAPTER 2 The Megatables

Table 2.1, Table 2.2, Table 2.3, Table 2.4, Table 2.5, and Table 2.6 contain summary information for all the machines.

	TA	BLE 2.1:	Overall para	meters		
	TESL.	A		JLC-C	$JLC-X/NLC^{a}$	CLIC
Center of mass energy [GeV]	500	800	500	1000	500 1000	500 3000
RF frequency of main linac [GHz]	1.3		5.7	$5.7/11.4^b$	11.4	30
Design luminosity $[10^{33} \text{ cm}^{-2} \text{s}^{-1}]$	34.0	58.0	14.1	25.0	25.0(20.0) $25.0(30.0)$	21.0 80.0
Linac repetition rate [Hz]	ъ	4		100	150(120) $100(120)$	200 100
Number of particles/bunch at IP $[10^{10}]$	2	1.4		0.75	0.75	0.4
Number of bunches/pulse	2820	4886		192	192	154
Bunch separation [nsec]	337	176		1.4	1.4	0.67
Bunch train length $[\mu sec]$	950	860		0.267	0.267	0.102
Beam power/beam [MW]	11.3	17.5	5.8	11.5	8.7 (6.9) 11.5 (13.8)	4.9 14.8
Unloaded/loaded gradient c [MV/m]	$23.8 \; / \; 23.8^{d}$	35 / 35	41.8/31.5	41.8/31.5 / $70/55$	65 / 50	$172 \ / \ 150$
Total two-linac length [km]	30	30	17.1	29.2	13.8 27.6	5.0 28.0
Total beam delivery length [km]	33			3.7	3.7	5.2
Proposed site length [km]	33			33	32	10.2 33.2
Total site AC power ^e [MW]	140	200	233	300	$243\ (195) \qquad 292\ (350)$	175 410
Tunnel configuration f	Single			Double	Double	\mathbf{Single}
$\frac{1}{2} \int \frac{1}{2} \int \frac{1}$	The the NLC	dasi <i>a</i> n wit	h 190 H ₇ ver	atition rata		

design with 120 Hz repetition rate. Numbers in () for the JLC-A/NLC correspond to the NLC

^bThe 1 TeV JLC-C collider uses a C-band rf system for the first 200 GeV of each linac followed by an X-band rf system for the remaining 300 GeV of acceleration—the X-band rf system would be identical to that described for the JLC-X band collider.

^cThe main linac loaded gradient includes the effect of single-bunch (all modes) and multibunch beam loading, assuming that the bunches ride on crest. Beam loading is based on bunch charges in the linacs, which are slightly higher than at the IP.

^dWith the present site layout for TESLA, 23.4 MV/m was the required energy gain per meter of accelerator structure. A detailed analysis by the ILC-TRC revealed that the gradient has to be increased to 23.8 MV/m when rf phasing, especially for BNS damping, is taken into account.

^eTotal site power includes AC for linac rf and cooling systems as well as power for all other beam lines and site facilities.

^fThe single tunnel layout has both the klystrons and accelerator structures in the main linac tunnel while the double tunnel layout places the klystrons and modulators in a separate enclosure. In the CLIC scheme, the main linac uses a single tunnel since there are no klystrons or modulators associated with

it. However, the 300 m-long CLIC drive beam accelerator has a double tunnel layout.

	TABLE 2.2:	Linear colliders:	electron and positron sour	ces	
	L	ESLA	JLC-C	$JLC-X/NLC^{a}$	CLIC
	500 GeV	800 GeV	500 GeV $1000 GeV$	500 GeV 1000 GeV	500 GeV 3000 GeV
Repetition Rate [Hz]	5	4	Same as JLC-X/NLC	$150\ (120)\ 100\ (120)$	200 100
Number of bunches/train	2820	4886		192	154
Bunch spacing [ns]	337	176		1.4	0.67
Electron Source					
\mathbf{Style}	Subhar	m. buncher		Subharm. buncher	Subharm. buncher
e^- beam energy ^b [GeV]		0.5		0.08	0.2
Number particles/bunch [10 ¹⁰]		2.3		0.8	0.625
Polarization [%]		80		80	75
Emittance [rms] $\gamma \varepsilon_x / \gamma \varepsilon_y$ [$\mu m \cdot rad$]	4	0 / 40		100 / 100	7
Bunch length Δz_{FWHM} [mm]		. ∞		10	2
Bunch energy spread $\Delta E/E_{FWHM}$ (%)		1		2	2
Positron Source					
Style	Ur	Idulator		Conv. target	Conv. target
e^+ beam energy ^b [GeV]		0.29		0.250	0.2
Number particles/bunch $[10^{10}]$	2.0	1.4		0.9	0.84
Polarization [%]		0		0	0
Emittance [edge] $\gamma \varepsilon_x / \gamma \varepsilon_y^c [\mu m rad]$		-4,000		$30,000 \; / \; 30,000$	$90,000 \ / \ 90,000$
Bunch length Δz_{FWHM} [mm]		5		15	7
Bunch energy spread $\Delta E/E_{FWHM}$ [%]		7		15	10
Incident beam energy [GeV]	2	50 - 150		6.2	2
Target material / thickness [r.l.]	L	11 / 0.4		WRe / 4	WRe / 4
Number of targets		1		33	1
Incident beam spot size [mm]		0.7		1.6	2
Yield at damping ring ^d $[e^+ / e^-]$	2 at 500 Ge ⁷	$V \ / \ 1$ at 300 GeV	Γ	>1	0.7
^a Numbers in () correspond to US site wi	ith 120 Hz repe	tition rate.			

^bBeam energy is given at the end of the injector system. ^cPositron emittance is listed as the 'edge' emittance although the TESLA design specifies an rms value—the edge emittance listed is 1.4 times the specified rms value for TESLA. ^dYield is evaluated as number of captured e^+ at the system exit or in the damping ring versus number of incident e^- .

THE MEGATABLES

	TESLA	0-011	11.C-X /N1.Ca	OFIC
	500 GeV 800 GeV	500 GeV 1000 GeV	500 GeV 1000 GeV	500 GeV $3000 GeV$
Damping Ring Systems				
Damping ring complex energy [GeV]	5	Same as JLC-X/NLC	1.98	2.424
Number of rings in complex	2		33	c,
Number of bunches/train	2820 4886		192	154
Number of particles/bunch $[10^{10}]$	2 1.4		0.8	0.42
Bunch spacing [ns]	20 11.5		1.4	0.66
Injected beam emit. ^b $\gamma \epsilon_{e+} / \gamma \epsilon_{e-}$ [µm·rad]	$14,000 \ / \ 40$		$45,000 \ / \ 150$	10
Extr. beam emit $^{b} \gamma \varepsilon_{x} / \gamma \varepsilon_{y} \ [\mu m rad]$	$8.0 \ / \ 0.020 \ \ 6.0 \ / \ 0.010$		$3.0 \ / \ 0.020$	$1.6 \ / \ 0.005 \ \ 0.45 \ / \ 0.003$
Positron (Pre-)Damping $\ddot{\mathbf{R}}$ ings ^c				
Ring circumference [m]	17,000		231	No design
Number of trains stored			2	
RF frequency & voltage $[MHz/MV]$	500 / 54		$714 \ / \ 1.5$	
Wiggler length [m]	432		50	
Damping times $(\tau_x/\tau_y/\tau_z)$ [ms]	$28 \mid 28 \mid 14$		$5.8 \; / \; 5.8 \; / \; 2.9$	
Tunes $(\nu_x/\nu_y/\nu_z)$	$72.28 \; / \; 44.18 \; / \; 0.100$		$11.45 \; / \; 5.45 \; / \; 0.011$	
Bunch len. $\sigma_z \ \&$ energy spr. $\frac{\sigma_E}{R} \ [mm / \%]$	$6.0 \ / \ 0.13$		$5.1 \ / \ 0.08$	
Equil. beam emit. $\gamma \varepsilon_x / \gamma \varepsilon_y [\mu m \cdot rad]$	$8.0 \ / \ 0.014 \ \ 6.0 \ / \ 0.010$		$30 \ / \ 30$	
Electron Damping Ring^d				
Ring circumference [m]	17,000		300	375
Number of trains stored	1		33	9
RF frequency & voltage $[MHz/MV]$	500 / 34		$714 \ / \ 1.1$	1500
Wiggler length [m]	284		46	158
Damping times $(\tau_x/\tau_y/\tau_z)$ [ms]	$44 \ / \ 44 \ / \ 22$		$4.8 \; / \; 5.0 \; / \; 2.6$	$2.7\ /\ 2.7\ /\ 1.4$
Tunes $(\nu_x/\nu_y/\nu_z)$	$72.28 \; / \; 44.18 \; / \; 0.10$		$27.26\ /\ 11.13\ /\ 0.004$	$69.21 \; / \; 29.63 \; / \; 0.004$
Bunch len. σ_z & energy spr. $\frac{\sigma_E}{R}$ [mm / %]	$6.0 \ / \ 0.10$		$3.6\ /\ 0.09$	$1.3 \ / \ 0.14$
Equil. beam emit. $\gamma \varepsilon_x / \gamma \varepsilon_y [\mu m \cdot rad]$	$8.0 \ / \ 0.014 \ \ 6.0 \ / \ 0.010$		$2.2 \ / \ 0.013$	$0.62 \ / \ 0.007$
^{a} Numbers in table correspond to NLC dampin	ng ring designs with 120 Hz	repetition rate.		

TABLE 2.3: Damping rings

^cPositron Ring table describes TESLA e^+ ring and JLC-X/NLC/CLIC positron pre-damping rings. ^dElectron Ring table describes TESLA e^- ring and JLC-X/NLC/CLIC electron and positron main damping rings.

THE MEGATABLES

 $^{^{}b}$ Injected emittances are assumed round but different for e^{+} and e^{-} while extracted emittances are equal for e^{+} and e^{-} but asymmetric. All emittances are runs values except the injected positron emittance which is the 'edge' emittance although the TESLA design specifies an runs value—the edge emittance listed is 1.4 times the specified rms value for TESLA.

	TABLE 2.4: Pre-lina	ics and bunch compressor	S	
	TESLA	JLC-C	$JLC-X/NLC^{a}$	CLIC
	500 GeV 800 GeV	500 GeV $1000 GeV$	500 GeV 1000 GeV	500 GeV 3000 GeV
Electron booster linac (e^- source $\rightarrow e^-$	damping rings)			
Initial and final energy [GeV]	$0.5 \ / \ 5.0$	Same as JLC-X/NLC	$0.08 \ / \ 1.98$	$0.2 \ / \ 2.424$
RF frequency [GHz]	1.3		2.8	1.5
Unloaded and loaded gradient ^b [MV/m]	$20.0 \ / \ 20.0$		$19.3 \;/\; 16.2$	$21.0 \ / \ 17.0$
Total length [m]	305		164	150
Positron booster linac (e^+ source $\rightarrow e^+$	damping rings)			
Initial and final energy [GeV]	$0.29 \ / \ 5.0$		$0.25 \ / \ 1.98$	$0.2 \ / \ 2.424$
RF frequency [GHz]	1.3		1.4	1.5
Unloaded and loaded gradient ^b [MV/m]	$20.0 \ / \ 20.0$		$14.1 \ / \ 12.5$	$21.0 \ / \ 17.0$
Total length [m]	400		164	150
First stage bunch compressor				
Initial and final bunch length [mm]	$6.0 \ / \ 0.3$		$4.0 \ / \ 0.5$	$1.3 \ / \ 0.33$
Initial and final energy spread $[\%]$	$0.13 \ / \ 2.7$		$0.09 \ / \ 1.0$	$0.13 \ / \ 0.54$
RF frequency [GHz]	1.3		1.4	°.
RF voltage [MV]	890		139	154
Total length [m]	400		51	80
$ \text{Pre-linac (damping rings} \rightarrow 2 \text{nd bune} \\$	ch compressor)			
Initial and final energy [GeV]	Not needed		1.98 / 8.0	$2.424 \ / \ 9.0$
RF frequency [GHz]			2.8	° CO
Unloaded and loaded gradient ^b [MV/m]			$19.3 \;/\; 16.8$	$26.0 \ / \ 21.0$
Total length [m]			485	360
Second stage bunch compressor				
Initial and final bunch length [mm]	Not needed		$0.5 \ / \ 0.11$	$0.33 \; / \; 0.035$
Initial and final energy spread $[\%]$			$0.25 \; / \; 1.5$	$0.14 \ / \ 1.36$
RF frequency [GHz]			11.4	30
RF voltage [MV]			583	592
Total length $[m]$			212	90
nii miior J IN of Processing oldot ni modernin	th a 190 Hz montition	4		

^aNumbers in table correspond to NLC design with a 120 Hz repetition rate. ^bThe linac loaded gradient includes the effect of single-bunch (all modes) and multibunch beam loading, assuming that the bunches ride on crest. Beam loading is based on bunch charges in the linacs, which might be slightly higher than at the IP.

	FABLE 2.5 :	Main linac pa	irameters				
TESL	Α	JLC	C C	JLC-X/NL	\mathbf{C}^a	CI	IC
500 GeV	800 GeV	500 GeV	$1000 { m ~GeV}^b$	500 GeV 1000) GeV	500 GeV	3000 GeV
5.0		x	0	8.0		6	0
1.3		5.7	5.7/11.4	11.4		ŝ	0
$23.8 \; / \; 23.8^{d}$	35 / 35	$41.8 \ / \ 31.5$		65 / 50		172 /	$^{\prime} 150$
5)	(n S		9	9
0.4)	(5		7	5
21.6	23	15.4	12.2/12.5	11.1 22	2.4	3.6	22.0
30	30	17.1	29.2	13.8 2′	7.6	5.0	28.0
572	1212	4276	3392/4640	4064 82	256	4	8
572	1212	4276	3392/580	508 10)32	4	8
9.7		50	50/75	75		U	0
5	4	100	100	150(120) 100	(120)	200	100
1370		2.8	2.8/1.6	1.6		16.7	92
1		5	5/4	4		32×4	32×22
1		3.6	3.6/3.4	3.0		32×4	32×22
1370		0.55	0.55/0.40	0.40		0.13	0.13
20592	21816	8552	6784/13920	12192 24	-768	7272	44000
1.04		1.8		0.9		0	5
0.15		0.171 - 0.126		0.210 - 0.148	x	0.225 -	-0.175
		3.6 - 1.1		5.1 - 1.1		10.4	-5.2
$4.2{ imes}10^5$	5.1×10^{5}	285		120		ç	0
10^{10}		9772		9055 - 8093		3628 -	-3621
10^{7}		54.1		81.2		20.2^{-}	-27.1
95	160	175	280	188(150) 254	(305)	105	319
37.3		24.1	26	28.0		40	
62.4	56.5	25.9	28.7	31.5		23	.1
N odt ot bronse	T C doction	00 H 200 Hz	actition wate				
	$\begin{array}{c c} \mathbf{TESL} \\ \hline \mathbf{TESL} \\ \hline 500 \ \mathrm{GeV} \\ \hline 5.0 \\ 5.0 \\ 5.0 \\ 1.3 \\ 2.0 \\ 2.3 \\ 3.0 \\ 5.7 \\ 5 \\ 5.7 \\ 5.7 \\ 5.7 \\ 5.7 \\ 5.7 \\ 5.7 \\ 5.7 \\ 1.1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IABLE 2.5: Main linac particular picture TESLA JLG 500 GeV 500 GeV 500 GeV 800 GeV 500 GeV 510 1.3 5.7 81.5 23.8 / 23.8^d 35 / 35 / 41.8 / 31.5 672 21.6 23 15.4 91.5 21.6 23 15.4 0.1 572 1212 4276 60 572 1212 4276 50 572 1212 4276 50 572 1212 4276 50 572 1212 4276 50 572 1212 4276 50 572 1212 4276 50 572 1212 4276 50 572 1212 4276 50 1370 51212 4276 50 1370 51370 2.85 1.10 1010 0.15 $0.171-0.126$ -1.04 0.15 $0.171-0.126$ -1.05 5.1×10^5 2.85 10^7 37.3 37.3 <td>IABLE 2.5: Main linac parameters JLC-C 500 GeV 8.0 GeV 1000 GeV 5.0 GeV 8.0 GeV 1.000 GeV 5.0 GeV 8.0 GeV 1.000 GeV 1.3 5.7 8.0 0 5.7 5.7/11.4 23.8 / 23.8 d 35 / 35 41.8 / 31.5 5.7/11.4 2.2 23.8 / 23.8 d 35 / 35 41.8 / 31.5 5.7/11.4 2.2 21.6 23 17.1 29.2 5.7/11.4 272 1212 4276 3392/4640 5.2/12.5 30 30 17.1 29.5 5.0/75 5 4 100 100 100 1370 4 100 100 100 20592 6784/13920 3.6/75 6.7/41 1370 2055 0.171-0.126 3.6/3.4 101 1.07 2.85 6.7/41 101</td> <td>IABLE 2.5: Main linac parameters JLC-C JLC-X/NL JLC-C JLC-X/NL 500 GeV 800 GeV 500 GeV 500 GeV 500 GeV 100 5.0 5.7 $5.7/11.4$ 11.4 57 $5.7/11.4$ 11.4 $23.8 / 23.8^d$ $35 / 35$ $41.8 / 31.5$ $5.7/11.4$ $65 / 50$ $57 / 50$ 21.6 23 15.4 $12.2/12.5$ 11.1 2 2 572 12112 4276 $3392/580$ 508 11 2 572 12112 4276 $3392/580$ 508 11 2 572 12112 4276 $3392/580$ 508 11 2 572 12122 4276 $3392/580$ 508 116 572 1370 2.8 $2.8/1.6$ 1.6 2.6 1370 0.55 $0.55/1.6$ $0.200.100$ 1.6 <</td> <td>IABLE 2.5: Main linac parameters JLC-C JLC-X/NLC^a 500 GeV 800 GeV 500 GeV 500 GeV 11.4 500 GeV 1000 GeV 500 GeV 11.4 5.0 5.1 5.7/11.4 11.4 65 / 50 50 57 50 2.3.8 23.8 5.7 5.7/11.4 11.4 55 1 1<td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td>	IABLE 2.5: Main linac parameters JLC-C 500 GeV 8.0 GeV 1000 GeV 5.0 GeV 8.0 GeV 1.000 GeV 5.0 GeV 8.0 GeV 1.000 GeV 1.3 5.7 8.0 0 5.7 5.7/11.4 23.8 / 23.8 d 35 / 35 41.8 / 31.5 5.7/11.4 2.2 23.8 / 23.8 d 35 / 35 41.8 / 31.5 5.7/11.4 2.2 21.6 23 17.1 29.2 5.7/11.4 272 1212 4276 3392/4640 5.2/12.5 30 30 17.1 29.5 5.0/75 5 4 100 100 100 1370 4 100 100 100 20592 6784/13920 3.6/75 6.7/41 1370 2055 0.171-0.126 3.6/3.4 101 1.07 2.85 6.7/41 101	IABLE 2.5: Main linac parameters JLC-C JLC-X/NL JLC-C JLC-X/NL 500 GeV 800 GeV 500 GeV 500 GeV 500 GeV 100 5.0 5.7 $5.7/11.4$ 11.4 57 $5.7/11.4$ 11.4 $23.8 / 23.8^d$ $35 / 35$ $41.8 / 31.5$ $5.7/11.4$ $65 / 50$ $57 / 50$ 21.6 23 15.4 $12.2/12.5$ 11.1 2 2 572 12112 4276 $3392/580$ 508 11 2 572 12112 4276 $3392/580$ 508 11 2 572 12112 4276 $3392/580$ 508 11 2 572 12122 4276 $3392/580$ 508 116 572 1370 2.8 $2.8/1.6$ 1.6 2.6 1370 0.55 $0.55/1.6$ $0.200.100$ 1.6 <	IABLE 2.5: Main linac parameters JLC-C JLC-X/NLC ^a 500 GeV 800 GeV 500 GeV 500 GeV 11.4 500 GeV 1000 GeV 500 GeV 11.4 5.0 5.1 5.7/11.4 11.4 65 / 50 50 57 50 2.3.8 23.8 5.7 5.7/11.4 11.4 55 1 1 <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

rat
repetition
H_{z}
120
with
design
Ŋ
Z
$_{\mathrm{the}}$
$_{\mathrm{to}}$
correspond
4LO
< Z
3
JL
the
for
\bigcirc
in (
\mathbf{rs}
mbe

^bThe 1 TeV JLC-C collider uses a C-band rf system for the first 200 GeV of each linac followed by an X-band rf system for the remaining 300 GeV of acceleration—the X-band rf system would be identical to that described for the JLC-X band collider. Numbers in the table that are missing are simply found from values in the JLC-C (500) and the JLC-X (500) columns.

^cThe main linac loaded gradient includes the effect of single-bunch (all modes) and multibunch beam loading, assuming that the bunches ride on crest. Beam loading is based on bunch charges in the linacs, which are slightly higher than at the IP.

^dWith the present site layout for TESLA, 23.4 MV/m was the required energy gain per meter of accelerator structure. A detailed analysis by the ILC-TRC

revealed that the gradient has to be increased to 23.8 MV/m when rf phasing, especially for BNS damping, is taken into account. ^eTotal AC power includes power for the cryo-plant in a superconducting facility and it includes power for cooling water in a normal conducting facility. It does not include power for distribution and it does not include power for magnets, movers, instrumentation or lighting.

TABLE	2.6: Linear collic	ders: beam d	elivery system	and interacti	on point parar	meters		
	TES	LA	JLC	C C	JLC-X	$/ \mathbf{NLC}^a$	CL	IC
	500 GeV	800 GeV	500 GeV	1000 GeV	500 GeV	1000 GeV	500 GeV	3000 GeV
Beam delivery system length ^b [km]	3.5		3.	8	3.	8	5.	2
Collimation system length ^{b} [km]	1.4	1	1.	4	1.	4	4.	1
Final Focus system length ^{b} [km]	1.2	~	1.	6	1.	6	1.	1
$\gamma \varepsilon_x^* \ / \ \gamma \varepsilon_u^* \ [ext{m-rad} imes 10^{-6}]$	$10 \ / \ 0.03$	$8 \ / \ 0.015$	3.6 /	0.04	3.6 /	0.04	$2.0\ /\ 0.01$	$0.68 \ / \ 0.01$
$\beta_x^{\star} / \beta_s^{\star} [mm]$	$15 \ / \ 0.40$	$15 \ / \ 0.40$	$8 \ / \ 0.20$	$13 \ / \ 0.11$	$8 \ / \ 0.11$	$13 \ / \ 0.11$	$10 \ / \ 0.05$	16 / 0.07
$\sigma_{x}^{\star} / \sigma_{u}^{*}$ before pinch ^c [nm]	$554 \ / \ 5.0$	392 / 2.8	243 / 4.0	219 / 2.1	243 / 3.0	219 / 2.1	202 / 1.2	60 / 0.7
σ_{z}^{\star} [μ m]	300	. 0	200	110	11	. 0	řř.	
$\sigma_{\Delta E/E}^{ ilde{ ille{ illet{ ille{ ille{ ille{ ille{ ille{ ille{ ille{ ille{ ill$	$0.14 \ /$	0.04	0.5	25	0.5	25	0.25	0.35
Distance between IP and last quad	3.(0	4	3.5	3.	5	4.	3
Crossing Angle at IP [mrad]	0		[-	•	;) 2	20)	2(0
Disruptions D_x / D_y	$0.23 \; / \; 25.3$	0.20 / 28.0	$0.29 \; / \; 17.5$	$0.10 \ / \ 10.3$	$0.16 \ / \ 13.1$	$0.10\ /\ 10.3$	$0.04 \ / \ 6.4$	$0.07 \ / \ 6.3$
Υ_0	0.05	0.09	0.07	0.28	0.13	0.28	0.25	5.0
δ_{B} [%]	3.2	4.3	3.4	7.5	4.6	7.5	4.4	21.1
n_{γ} [number of γ s per e]	1.56	1.51	1.36	1.30	1.26	1.30	0.75	1.53
$N_{ m pairs}(p_T^{ m min} = 20 \ { m MeV/c}, \Theta_{ m min} = 0.2)$	39.4	37.3	10.7	15.0	11.9	15.0	7.2	43
$N_{ m hadron\ events}/ m crossing$	0.248	0.399	0.075	0.270	0.103	0.270	0.066	2.26
$N_{ m jets} imes 10^{-2} \; [p_T^{ m min} = 3.2 \; { m GeV/c}]$	0.74	1.90	0.23	2.27	0.36	2.72	0.29	150.5
Geometric Luminosity ^{e} [10 ³³ cm ⁻² s ⁻¹]	16.4	28.1	8.76	18.5	$17.7 \ (14.2)$	$18.5 \ (22.2)$	16.0	47.0
H_D	2.11	1.90	1.61	1.42	1.49	1.42	1.42	1.70
Luminosity dilution for tuning [%]	0		ц		цĵ		10	0
Peak Luminosity ^e $[10^{33} \text{ cm}^{-2} \text{s}^{-1}]$	34.5	53.4	13.6	24.9	$25.1 \ (20.1)$	25.0(30.0)	21.0	80.0
$L_{99\%}~[\%]$	66	62	67	58	64	58	71	41
$L_{95\%}$ [%]	91	86	90	86	85	22	87	53
$L_{90\%}$ [%]	98	95	97	87	94	87	93	62
a otis 211 of bucusarios () ui suoduutV [®]	nith 120 Hz rene	tition rate						

rate.
repetition
H_{z}
120
with
site
Ω
$_{\mathrm{to}}$
correspond
\frown
л (
umbers

^aNumbers in () curtespond to the momines. ^bSystem length includes both incoming beamlines. ^bFor all designs except CLIC, the IP spot sizes are calculated as usual from the emittances and beta functions. With the design emittances in CLIC, ^cFor all designs except CLIC, the IP spot sizes are calculated as usual from the emittances and beta functions. With the design emittances in CLIC, nonlinear aberrations in the final focus system increase the final spot size by 20 to 40%.

^dEnergy spread is for electrons / positrons if different. ^{For} For the sake of uniformity, the geometric luminosity is simply defined as $N^2/4\pi \sigma_x^* \sigma_y^*$ times the number of crossings per second, and in all cases assumes head-on collisions, no hour-glass effect and no pinch. The peak luminosity is calculated using the Guinea Pig program and incorporates all the effects, including the pinch enhancement, hour-glass, and crossing angle where applicable, plus any additional IP dilutions that may be expected.