Parameter  Value  Ref. / Comments 

τ(B_{d})  (1.536 ± 0.014) ps  HFAG  Oscillations/Lifetime (Winter 2004) 
Δm_{d}  (0.502 ± 0.007) ps^{–1}  HFAG  Oscillations/Lifetime (Winter 2004) 
A_{⊥}^{2} (CPodd fraction in B^{0}→ J/ψK* CP sample) 
0.245 ± 0.015 ± 0.004 (note: acceptancecorrected central value; the uncorrected value is: 0.230) 
BABARCONF04/38, hepex/0408127 
0.181 ± 0.012 ± 0.008  BelleCONF0438, hepex/0408104  
0.211 ± 0.011  Average (CL = 0.0025 → 3.0σ) 
Parameter: sin(2β)/sin(2φ_{1}) (if β/φ_{1} dominant weak phase)  

Mode  BABAR  Belle  Average  Ref. / Comments 
Charmonium:  N(BB)=227m  N(BB)=152m    BABARCONF04/38, hepex/0408127 (submitted to PRL) BellePreprint200431, hepex/0408111 (submitted to PRD) 
J/ψK_{S}, ψ(2S)K_{S}, χ_{c1}K_{S}, η_{C}K_{S}  0.75 ± 0.04_{stat}  0.73 ± 0.06_{stat}  
J/ψK_{L} (η_{CP}=+1)  0.57 ± 0.09_{stat}  0.77 ± 0.13_{stat}  
J/ψK*^{0} (K*^{0} → K_{S}π^{0})  0.96 ± 0.32_{stat}  0.10 ± 0.45_{stat}  
All charmonium  0.722 ± 0.040 ± 0.023  0.728 ± 0.056 ± 0.023 
0.725 ± 0.037 (0.033_{statonly}) 
CL = 0.91 
spenguin:  N(BB)=209227m  N(BB)=274m  
φK^{0}  0.50 ± 0.25 ^{+0.07}_{–0.04}  0.06 ± 0.33 ± 0.09  0.34 ± 0.20 CL=0.30 
BABARCONF04/033, hepex/0408072 BelleCONF0435, hepex/0409049 
η'K_{S}  0.27 ± 0.14 ± 0.03  0.65 ± 0.18 ± 0.04  0.41 ± 0.11 CL=0.10 (1.6σ) 
BABARCONF04/040, hepex/0408090 BelleCONF0435, hepex/0409049 
f_{0}K_{S}  0.95 ^{+0.23}_{–0.32} ± 0.10  –0.47 ± 0.41 ± 0.08  0.39 ± 0.26 CL=0.008 (2.7σ) 
BABARCONF04/019, hepex/0408095 BelleCONF0435, hepex/0409049 
π^{0}K_{S}  0.35 ^{+0.30}_{–0.33} ± 0.04  0.30 ± 0.59 ± 0.11  0.34 ^{+0.27}_{–0.29} CL=0.94 
BABARCONF04/030, hepex/0408062 BelleCONF0435, hepex/0409049 
ωK_{S}  not yet available  0.75 ± 0.64 ^{+0.13}_{–0.16}  0.75 ± 0.64 ^{+0.13}_{–0.16}  BelleCONF0435, hepex/0409049 
K^{+}K^{–}K_{S} (excluding φK_{S}) 
0.55 ± 0.22 ± 0.04 ± 0.11_{CPeven} (f_{CPeven}= 0.89 ± 0.08 ± 0.06 [moments]) 
0.49 ± 0.18 ± 0.04 ^{+0.17}_{–0.00}_{CPeven} (f_{CPeven}= 1.03 ± 0.15 ± 0.05 [SU(2)]) 
0.53 ± 0.17 CL=0.72 (rescaled to average f_{CPeven}= 0.93 ± 0.09) 
BABARCONF04/025, hepex/0408076 BelleCONF0435, hepex/0409049 
K_{S}K_{S}K_{S}  not yet available  –1.26 ± 0.68 ± 0.18  –1.26 ± 0.68 ± 0.18  BelleCONF0475, hepex/0411056 
All b → spenguin  0.41 ± 0.07  CL=0.10 (1.7σ)  
All modes  0.665 ± 0.033  CL=0.0016 (3.1σ)  
Direct comparison of charmonium average and spenguin average (see comments below): CL=0.00012 (3.8σ) 
Parameter: sin(2β)/sin(2φ_{1})  

Experiment  Value  Ref. / Comments  
ALEPH  0.84 ^{+0.82}_{–1.04} ± 0.16  PL B492 (2000) 259274  
OPAL  3.2 ^{+1.8}_{–2.0} ± 0.5  EPJ C5 (1998) 379388  
CDF (full Run I)  0.79 ^{+0.41}_{–0.44}(stat+syst)  PRD 61 (2000) 072005 
Parameter: sin(2β)/sin(2φ_{1})  

All charmonium  0.726 ± 0.037 
Parameter: C=–A (if not stated otherwise)  

Mode  BABAR  Belle  Average  Ref. / Comments 
Charmonium  λ = 0.950 ± 0.031 ± 0.013 
λ = 1.007 ± 0.041 ± 0.033 
0.969 ± 0.028 (0.025_{statonly}) CL=0.30 
BABARCONF04/38, hepex/0408127 (submitted to PRL) BelleCONF0436, hepex/0408111 (submitted to PRD) 
C = 0.051 ± 0.033 ± 0.014  C = –0.007 ± 0.041 ± 0.033 
C = 0.031 ± 0.029
(0.025_{statonly})
CL=0.30 

φK^{0}  0.00 ± 0.23 ± 0.05  –0.08 ± 0.22 ± 0.09  –0.04 ± 0.17 CL=0.81 
BABARCONF04/033, hepex/0408072 BelleCONF0435, hepex/0409049 
η'K_{S}  –0.21 ± 0.10 ± 0.03  0.19 ± 0.11 ± 0.05  –0.04 ± 0.08 CL=0.01 (2.5σ) 
BABARCONF04/040, hepex/0408090 BelleCONF0435, hepex/0409049 
f_{0}K_{S}  –0.24 ± 0.31 ± 0.15  0.39 ± 0.27 ± 0.08  0.14 ± 0.22 CL=0.16 (1.4σ) 
BABARCONF04/019, hepex/0408095 BelleCONF0435, hepex/0409049 
π^{0}K_{S}  0.06 ± 0.18 ± 0.06  0.12 ± 0.20 ± 0.07  0.09 ± 0.14 CL=0.83 
BABARCONF04/030, hepex/0408062 BelleCONF0435, hepex/0409049 
ωK_{S}  not yet available  –0.26 ± 0.48 ± 0.15  –0.26 ± 0.48 ± 0.15  BelleCONF0435, hepex/0409049 
K^{+}K^{–}K_{S} (excluding φK_{S}) 
0.10 ± 0.14 ± 0.06  0.08 ± 0.12 ± 0.07  0.09 ± 0.10 CL=0.92 
BABARCONF04/025, hepex/0408076 BelleCONF0435, hepex/0409049 
K_{S}K_{S}K_{S}  not yet available  –0.54 ± 0.34 ± 0.08  –0.54 ± 0.34 ± 0.08  BelleCONF0475, hepex/0411056 
All b → spenguin  0.007 ± 0.052  CL=0.30  
All modes  0.025 ± 0.025  CL=0.37  
Direct comparison of charmonium average and spenguin average (see comments above): CL=1.00 (0.0σ) 
Constraining C_{J/ψ Ks}
from A_{CP}(B^{+} → J/ψ K^{+})
and A_{SL}: as suggested by
Y. Nir,
one can obtain a powerful SM constraint on
λ = q/pAbar/A via the relations
A_{SL} = (1–q/p^{4})/(1+q/p^{4})
and
A_{CP}(B^{+} → J/ψ K^{+})
= (Abar/A^{2}–1)/(Abar/A^{2}+1),
where A_{SL} denotes the CP asymmetry in semileptonic
B decays,
and A_{CP}(B^{+} → J/ψ K^{+})
is the CPviolating charge asymmetry measured in
B^{+} → J/ψ K^{+} decays.
Averaging the A_{SL} results from
BABAR,
Belle,
CLEO,
ALEPH and
OPAL
(using also the BABAR
measurement of q/p from fully reconstructed B decays),
as well as the A_{CP}(B^{+} → J/ψ K^{+})
results from
BABAR,
Belle and
CLEO,
we find respectively
A_{SL} = –0.0026 ± 0.0067
(see
HFAG oscillation group
for more details) and
A_{CP}(B^{+} → J/ψ K^{+})
= –0.007 ± 0.019. This
gives
q/p = 1.0013 ± 0.0034 and
Abar/A = 0.993 ± 0.018,
and hence
λ_{indirect} = 0.994 ± 0.018, which
is C = 0.006 ± 0.018
(see right hand plot below).
Discussion: the amplitude relation between neutral and charged B → J/ψ K decays has been found by FleischerMannel to hold up to negligible corrections of the order O(λ^{3}). However, the identification of λ, measured through the C coefficient in B^{0} → J/ψ K^{0}, with q/pAbar/A assumes ΔΓ_{Bd}=0. The systematic error on C from a width difference ΔΓ_{Bd}/Γ_{Bd}~0.02 has been estimated by BABAR to be 0.0009. 
Compilation of results for –η×S ≈ sin(2β)/sin(2φ_{1}) from charmonium and spenguin decays: BABAR and Belle separately. 
eps gif gif(high res) 
eps gif gif(high res) 
Compilation of results for –η×S ≈ sin(2β)/sin(2φ_{1}) from charmonium and spenguin decays: BABAR and Belle are shown on one plot. 
eps gif gif(high res) 

Compilation of results for –η×S ≈ sin(2β)/sin(2φ_{1}) and C: averages of experiments. 
eps gif gif(high res) 
eps gif gif(high res) 
Compilation of results for
–η×S ≈ sin(2β)/sin(2φ_{1})
from charmonium and spenguin decays:
world averages.
The right hand plot
indicates coarse estimates of
possible theoretical uncertainties
for sin(2β)/sin(2φ_{1}) from
the noncharmonium modes. [These estimates are obtained from dimensional arguments only, based on the CKM suppression of the Vub penguin, and on the naive contribution from tree diagrams. In general, more theoretically motivated analyses, taking advantage of the factorization property of nonleptonic B decays, obtain smaller deviations.] 
eps gif gif(high res) 
eps gif gif(high res) 
Constraining the Unitarity Triangle (ρ, η):
the measurement of sin(2β)/sin(2φ_{1}) from charmonium modes
can be compared in the ρbarηbar plane (ρbar, ηbar being the
parameters in the exact (unitary)
Wolfenstein
parameterization of the CKM matrix) with the constraints from
other experimental inputs. Visit the CKMfitter and UTfit sites for results on global CKM fits using different fit techniques and input quantities. 
Experiment  sin(2β/2φ_{1})_{J/ψK*}  cos(2β/2φ_{1})_{J/ψK*}  Correlation  Ref. / Comments 

BABAR'04 N(BB)=88m 
–0.10 ± 0.57 ± 0.14  3.32 ^{+0.76}_{–0.96} ± 0.27  0.37 
BABARPUB04/030, hepex/0411016 (submitted to PRD) 
Belle'04 N(BB)=275m 
0.30 ± 0.32 ± 0.02  0.31 ± 0.91 ± 0.11
[using Solution II] 
?  BelleCONF0438, hepex/0408104 
Average  0.21 ± 0.28 (CL = 0.55 → 0.6σ) 
1.69 ± 0.67 (CL = 0.026 → 2.2σ) 
?  See remark below table 
Experiment  S_{J/ψπ0}  C_{J/ψπ0} = –A_{J/ψπ0}  Correlation  Ref. / Comments  

BABAR'02 N(BB)=88m 
0.05 ± 0.49 ± 0.16  0.38 ± 0.41 ± 0.09  –0.12  PRL 91 (2003) 061802  
Belle'04 N(BB)=151m 
–0.72 ± 0.42 ± 0.09  0.01 ± 0.29 ± 0.03  –0.12  BellePreprint200423, hepex/0408105 (submitted to PRL)  
Average  –0.40 ± 0.33  0.12 ± 0.24  –0.12  χ^{2} = 2.1 (CL=0.36 → 0.9σ)  
eps gif gif (high res) 
eps gif gif (high res) 
Experiment  S_{D*+D*–}  C_{D*+D*–}  Correlation  Ref. / Comments 

BABAR'03 N(BB)=88m 
Im(λ) = 0.05 ± 0.29 ± 0.10  λ = 0.75 ± 0.19 ± 0.02  0.18 
PRL 91 (2003) 131801 f_{CPodd} = 0.063 ± 0.055 ± 0.009 
S = 0.06 ± 0.37 ± 0.13  C = 0.28 ± 0.23 ± 0.02  –0.15  
Belle'04 N(BB)=152m 
–0.75 ± 0.56 ± 0.12  0.26 ± 0.26 ± 0.04  –0.053 
BelleCONF0453 f_{CPodd} = 0.19 ± 0.08 ± 0.01 
Average^{(}*^{) }  –0.20 ± 0.32  0.28 ± 0.17  –0.074  χ^{2} = 1.4 (CL=0.49 → 0.7σ) 
Experiment  S_{+–}(D*^{+}D^{–})  C_{+–}(D*^{+}D^{–})  S_{–+}(D*^{–}D^{+})  C_{–+}(D*^{–}D^{+})  A(D*^{+–}D–+)  Ref. / Comments 

BABAR'03 N(BB)=88m 
–0.82 ± 0.75 ± 0.14  –0.47 ± 0.40 ± 0.12  –0.24 ± 0.69 ± 0.12  –0.22 ± 0.37 ± 0.10  –0.03 ± 0.11 ± 0.05  PRL 90 (2003) 221801 
Belle'04 N(BB)=152m (combined fully and partially rec. B decays) 
–0.55 ± 0.39 ± 0.12  –0.37 ± 0.22 ± 0.06  –0.96 ± 0.43 ± 0.12  0.23 ± 0.25 ± 0.06  0.07 ± 0.08 ± 0.04  PRL 93 (2004) 201802 
Average  –0.61 ± 0.36  –0.39 ± 0.20  –0.75 ± 0.38  0.09 ± 0.21  0.03 ± 0.07 
Compilation of results for sin(2β_{eff}/φ_{1,eff})=–S (left figure) and C (right figure) from timedependent b → ccbar d analyses. The results are compared to the values from the corresponding charmonium averages. 
eps gif gif(high res) 
eps gif gif(high res) 
Experiment  S_{Ksπ0γ}  C_{Ksπ0γ} = –A_{Ksπ0γ}  Correlation  Ref. / Comments 

BABAR'04 N(BB)=124m 
0.25 ± 0.63 ± 0.14  –0.57 ± 0.32 ± 0.09  –0.01  PRL 93 (2004) 201801 
Belle'04 N(BB)=275m 
–0.58 ^{+0.46}_{–0.38} ± 0.11  –0.03 ± 0.34 ± 0.11  0.02  BelleCONF0475, hepex/0411056 
Average  –0.29 ± 0.38  –0.32 ± 0.24  0.01  χ^{2} = 2.3 (CL=0.31 → 1.0σ) 
Experiment  S_{ππ}  C_{ππ} = –A_{ππ}  Correlation  Ref. / Comments  

BABAR'04 N(BB)=227m 
–0.30 ± 0.17 ± 0.03  –0.09 ± 0.15 ± 0.04  –0.016  BABARCONF04/047, hepex/0408089  
Belle'04 N(BB)=152m 
–1.00 ± 0.21 ± 0.07  –0.58 ± 0.15 ± 0.07  –0.286  PRL 93 (2004) 021601  
Average  –0.61 ± 0.14  –0.37 ± 0.11  –0.135  χ^{2} = 13.1 (CL = 0.0014 → 3.2σ)  
eps gif gif (high res) 
eps gif gif (high res) 
The Penguintotree ratio:
using as input the measured
C_{ππ} and S_{ππ} coefficients
together with the Wolfenstein parameters ρ and η from
the Global CKM fit
using standard constraints,
one can infer module and phase of the complex penguin
to tree (P/T) ratio
in B_{d}→ π^{+}π^{–}
decays within the Standard Model. Note that the definition of P/T is
conventiondependent (see, e.g.,
GroRos02).
One can choose to eliminate the charm quark in
the penguin loop using CKM unitarity, so that the amplitudes are
parameterized as follows:

Experiment  A_{CP}(ρπ)  S_{ρπ}  C_{ρπ}  ΔS_{ρπ}  ΔC_{ρπ}  Correlations  Ref. / Comments  

BABAR'04 N(BB)=213m 
–0.088 ± 0.049 ± 0.013  –0.10 ± 0.14 ± 0.04  0.34 ± 0.11 ± 0.05  0.22 ± 0.15 ± 0.03  0.15 ± 0.11 ± 0.03  Table  BABARCONF04/038, hepex/0408099  
Belle'04 N(BB)=152m 
–0.16 ± 0.10 ± 0.02  –0.28 ± 0.23 ^{+0.10}_{–0.08}  0.25 ± 0.17 ^{+0.02}_{–0.06}  –0.30 ± 0.24 ± 0.09  0.38 ± 0.18 ^{+0.02}_{–0.04}  Table  BellePreprint 200421, hepex/0408003 (submitted to PRL)  
Average  –0.102 ± 0.045  –0.13 ± 0.13  0.31 ± 0.10  0.09 ± 0.13  0.22 ± 0.10  Table  
Significance of CPV in the decay: Δχ^{2} = χ^{2}(Acp=C=0) – χ^{2} = 14.5 (CL = 0.00070, that is: 3.4σ) 
CP violation in the decay: as shown by
Charles
it is convenient to transform the experimentally motivated
CP parameters A_{CP}(ρπ) and C_{ρπ}
into the physically motivated ones A^{+–}(ρπ) = (κ^{+–}^{2}–1)/(κ^{+–}^{2}+1) = –(A_{CP}(ρπ)+C_{ρπ}+A_{CP}(ρπ)ΔC_{ρπ})/(1+ΔC_{ρπ} + A_{CP}(ρπ)C_{ρπ}), A^{–+}(ρπ) = (κ^{–+}^{2}–1)/(κ^{–+}^{2}+1) = (–A_{CP}(ρπ)+C_{ρπ}+A_{CP}(ρπ)ΔC_{ρπ})/(–1+ΔC_{ρπ} + A_{CP}(ρπ)C_{ρπ}), where κ^{+–}=(q/p)Abar^{–+}/A^{+–} and κ^{–+}=(q/p)Abar^{+–}/A^{–+}. With this definition A^{–+}(ρπ) (A^{+–}(ρπ)) describes CP violation in B_{d} decays where the ρ is emitted (not emitted) by the spectator interaction. Taking into account experimental correlations, one finds A^{+–}(ρπ) = –0.15 ± 0.09, A^{–+}(ρπ) = –0.47 ^{+0.13}_{–0.14}. The two quantities have a linear correlation coefficient of +59%. See right hand plot for a confidence level representation in the A^{+–}(ρπ) versus A^{–+}(ρπ) plane. 
eps gif gif (high res) 

Flavorcharge specific branching fractions: the charge and
flavor asymmetry parameters A_{CP}(ρπ), C_{ρπ} and
ΔC_{ρπ} can be used to derive flavorcharge specific
rates from the
HFAG branching fraction
BR(B_{d}→ ρ^{+–}π^{–+})=(24.0 ± 2.5)×10^{–6}.

Experiment  α/φ_{2} (deg)  δ_{+–} (deg)  Ref. / Comments  

BABAR'04 N(BB)=213m 
113 ^{+27}_{–17} ± 6  –67 ^{+28}_{–31} ± 7  BABARCONF04/038, hepex/0408099  
Belle  not yet available  
Confidence levels for α (left hand plot) and δ_{+–} (right hand plot) as found by BABAR 
eps gif gif (high res) 
eps gif gif (high res) 
Experiment  S_{ρρ,long}  C_{ρρ,long}  Correlation  Ref. / Comments 

BABAR'04 N(BB)=123m 
–0.19 ± 0.33 ± 0.11  –0.23 ± 0.24 ± 0.14  0.04 
BABARPROC04012, hepex/0407051 see also updated ICHEP'04 presentation 
Belle  not yet available 
The Penguintotree ratio: using as input the measured C_{ρρ,long} and S_{ρρ,long} coefficients together with the Wolfenstein parameters ρ and η using standard constraints, one can infer module and phase of the complex penguin to tree (P/T) ratio as done in the ππ case. Plots for confidence level representations of the P/T phase versus its module can be found on the corresponding CKMfitter and UTfit pages. 
Constraining α: using as input the measured C_{ρρ,long} and S_{ρρ,long} coefficients together with the present (HFAG) ρρ branching fractions and longitudinal polarization fractions (including the limit on ρ^{0}ρ^{0}, for which the polarization is unknown), one can perform the GronauLondon isospin analysis (electroweak penguins can be taken into account, while other SU(2)breaking effects are usually neglected). Plots for confidence level representations of the P/T phase versus its module can be found on the corresponding CKMfitter and UTfit pages. 
Combined α constraint from b → uubar d transitions: averaging the confidence level curves from the ππ and ρρ isospin analyses as well as the ρπ Dalitz plot analysis, leads to a the combined constraint: α = (100 ^{+9 }_{–10}[1σ] ^{+29}_{–20}[2σ]) deg, where the first errors given are at one and the second at two standard deviations, respectively. The isospin analyses are performed following the statistical interpretation of the CKMfitter analysis (Rfit). It includes the Fiertz treatment of electroweak penguins for ππ and ρρ leading to a shift in α of approximately –2 deg. 
eps gif gif (high res) 
The decays B_{d} → D^{+–}π^{–+}, B_{d} → D*^{+–}π^{–+} and B_{d} → D^{+–}ρ^{–+} provide sensitivity to γ/φ_{3} because of the interference between the Cabibbofavoured amplitude (e.g. B^{0} → D^{–}π^{+}) with the doubly Cabibbosuppressed amplitude (e.g. B^{0} → D^{+}π^{–}). The relative weak phase between these two amplitudes is –γ/–φ_{3} and, when combined with the B_{d}B_{d}bar mixing phase, the total phase difference is –(2β+γ)/–(2φ_{1}+φ_{3}).
The size of the CP violating effect in each mode depends on the ratio of magnitudes of the suppressed and favoured amplitudes, e.g., r_{Dπ} = A(B^{0} → D^{+}π^{–})/A(B^{0} → D^{–}π^{+}). Each of the ratios r_{Dπ}, r_{D*π} and r_{Dρ} is expected to be about 0.02, and can be obtained experimentally from the corresponding suppressed charged B decays, (e.g., B^{+} → D^{+}π^{0}) using isospin, or from selftagging decays with strangeness (e.g., B^{0} → D_{s}^{+}π^{–}), using SU(3). In the latter case, the theoretical uncertainties are hard to quantify. The smallness of the r values makes direct extractions from, e.g., the D^{+–}π^{–+} system very difficult.
Both BABAR and Belle exploit partial reconstructions of D*^{+–}π^{–+} to increase the available statistics. Both experiments also reconstruct D^{+–}π^{–+} and D*^{+–}π^{–+} fully, and BABAR includes the mode D^{+–}ρ^{–+}. Additional states with similar quark content are also possible, but for vectorvector final states an angular analysis is required, while states containing higher resonances may suffer from uncertainties due to nonresonant or other contributions.
BABAR and Belle use different observables:
Here we convert the Belle results to express them in terms of a and c. Explicitly, the conversion reads:
Belle D*π (partial reconstruction):  a_{π}* = – (S^{+} + S^{–})/2 
c_{π}* = – (S^{+} – S^{–})/2  
Belle D*π (full reconstruction):  a_{π}* = + ( 2 R_{D*π} sin( 2φ_{1}+φ_{3} + δ_{D*π} ) + 2 R_{D*π} sin( 2φ_{1}+φ_{3} – δ_{D*π} ) )/2 
c_{π}* = + ( 2 R_{D*π} sin( 2φ_{1}+φ_{3} + δ_{D*π} ) – 2 R_{D*π} sin( 2φ_{1}+φ_{3} – δ_{D*π} ) )/2  
Belle Dπ (full reconstruction):  a_{π} = – ( 2 R_{Dπ} sin( 2φ_{1}+φ_{3} + δ_{Dπ} ) + 2 R_{Dπ} sin( 2φ_{1}+φ_{3} – δ_{Dπ} ) )/2 
c_{π} = – ( 2 R_{Dπ} sin( 2φ_{1}+φ_{3} + δ_{Dπ} ) – 2 R_{Dπ} sin( 2φ_{1}+φ_{3} – δ_{Dπ} ) )/2 
At present we do not rescale the results to a
common set of input parameters. Also, common systematic errors
are not considered.
Observable  BABAR  Belle  Average^{(}*^{)}  Ref. / Comments  

partially reconstructed N(BB)=178m 
fully reconstructed N(BB)=110m 
partially reconstructed N(BB)=152m 
fully reconstructed N(BB)=152m 

a_{π}*  –0.041 ± 0.016 ± 0.010  –0.049 ± 0.031 ± 0.020  –0.031 ± 0.028 ± 0.018  0.060 ± 0.040 ± 0.019  –0.030 ± 0.014
(CL=0.19) 
BABARCONF04/018, hepex/0408038 (partially reco.) BABARCONF04/029, hepex/0408059 (fully reco.) BelleCONF0448, hepex/0408106 (partially reco.) Belle: PRL 93 (2004) 031802; Erratumibid. 93 (2004) 059901 
c_{π}*  –0.015 ± 0.036 ± 0.019
(lepton tags only) 
0.044 ± 0.054 ± 0.033
(lepton tags only) 
–0.004 ± 0.028 ± 0.018  0.049 ± 0.040 ± 0.019  0.010 ± 0.021
(CL=0.66) 

a_{π}    –0.032 ± 0.031 ± 0.020    –0.062 ± 0.037 ± 0.018  –0.045 ± 0.027
(CL=0.59) 

c_{π}    –0.059 ± 0.055 ± 0.033
(lepton tags only) 
  –0.025 ± 0.037 ± 0.018  –0.035 ± 0.035
(CL=0.66) 

a_{ρ}    –0.005 ± 0.044 ± 0.021      –0.005 ± 0.049  
c_{ρ}    –0.147 ± 0.074 ± 0.035
(lepton tags only) 
    –0.147 ± 0.082 
Compilation of the above results. 
eps gif gif(high res) 
A_{CP+–} = [Γ(B^{–} → D^{(}*^{)}_{CP+–}K^{(}*^{)}^{–} – Γ(B^{+} → D^{(}*^{)}_{CP+–}K^{(}*^{)}^{+}] / Sum , 
R_{CP+–} = [Γ(B^{–} → D^{(}*^{)}_{CP+–}K^{(}*^{)}^{–} + Γ(B^{+} → D^{(}*^{)}_{CP+–}K^{(}*^{)}^{+}] / [Γ(B^{–} → D^{(}*^{)0} K^{(}*^{)}^{–} + Γ(B^{+} → D^{(}*^{)0}bar K^{(}*^{)}^{+}]. 
Mode  Experiment  A_{CP+}  A_{CP–}  R_{CP+}  R_{CP–}  Ref. / Comments 

D_{CP}K^{–}  BABAR'04 N(BB)=214m 
0.40 ± 0.15 ± 0.08  0.21 ± 0.17 ± 0.07  0.87 ± 0.14 ± 0.06  0.80 ± 0.14 ± 0.08  BABARCONF04/039, hepex/0408082 
Belle'04 N(BB)=274m 
0.07 ± 0.14 ± 0.06  –0.11 ± 0.14 ± 0.05  0.98 ± 0.18 ± 0.10  1.29 ± 0.16 ± 0.08  BelleCONF0443  
Average 
0.22 ± 0.11  0.02 ± 0.12  0.91 ± 0.12  1.02 ± 0.12  
D*_{CP}K^{–}  BABAR'04 N(BB)=123m 
–0.02 ± 0.24 ± 0.05    1.09 ± 0.26 ^{+0.10–0.08}    BABARCONF04/049, hepex/0408060 
Belle'04 N(BB)=274m 
–0.27 ± 0.25 ± 0.04  0.26 ± 0.26 ± 0.03  1.43 ± 0.28 ± 0.06  0.94 ± 0.28 ± 0.06  BelleCONF0443  
Average 
–0.14 ± 0.18  0.26 ± 0.26  1.25 ± 0.20  0.94 ± 0.29  
D_{CP}K^{–}*  BABAR'04 N(BB)=227m 
–0.09 ± 0.20 ± 0.06  –0.33 ± 0.34 ± 0.10 _{–0.06}^{(}*^{)}  1.77 ± 0.37 ± 0.12  0.76 ± 0.29 ± 0.06 ^{+0.04}_{–0.14}^{(}*^{)}  BABARCONF04/012, hepex/0408069 
Belle'03 N(BB)=96m 
–0.02 ± 0.33 ± 0.07  0.19 ± 0.50 ± 0.04      BelleCONF0316, hepex/0307074  
Average 
–0.07 ± 0.18  –0.16 ± 0.29  1.77 ± 0.39  0.76 ± ^{+0.30}_{–0.33} 
A_{Kπ} = [Γ(B^{–} → [K^{+}π^{–}]_{D(*)}K^{(}*^{)}^{–} – Γ(B^{+} → [K^{–}π^{+}]_{D(*)}K^{(}*^{)}^{+}] / [Γ(B^{–} → [K^{+}π^{–}]_{D(*)}K^{(}*^{)}^{–} + Γ(B^{+} → [K^{–}π^{+}]_{D(*)}K^{(}*^{)}^{+}] , 
R_{Kπ} = [Γ(B^{–} → [K^{+}π^{–}]_{D(*)}K^{(}*^{)}^{–} + Γ(B^{+} → [K^{–}π^{+}]_{D(*)}K^{(}*^{)}^{+}] / [Γ(B^{–} → [K^{–}π^{+}]_{D(*)}K^{(}*^{)}^{–} + Γ(B^{+} → [K^{+}π^{–}]_{D(*)}K^{(}*^{)}^{+}] . 
Mode  Experiment  A_{Kπ}  R_{Kπ}  Ref. / Comments  

DK^{–}
D→Kπ 
BABAR'04 N(BB)=227m 
  0.013 ^{+0.011}_{–0.009}  BABARCONF04/13, hepex/0408028  
Belle'04 N(BB)=274m 
0.49 ^{+0.53}_{–0.46} ± 0.06  0.028 ^{+0.015}_{–0.014} ± 0.010  BelleCONF0444, hepex/0408129  
Average 
0.49 ^{+0.53}_{–0.46}  0.017 ± 0.009  
D*K^{–}
D* → Dπ^{0} D→Kπ 
BABAR'04 N(BB)=227m 
  0.001^{+0.010}_{–0.006}  BABARCONF04/13, hepex/0408028  
Average 
  0.001^{+0.010}_{–0.006}  
D*K^{–}
D* → Dγ D→Kπ 
BABAR'04 N(BB)=227m 
  0.0011^{+0.019}_{–0.013}  BABARCONF04/13, hepex/0408028  
Average 
  0.011^{+0.019}_{–0.013} 
Constraining γ/φ_{3}:
The rate ratios and asymmetries of the GLW and ADS methods can be
expressed in terms of amplitude ratios and strong phase differences,
as well as the weak phase difference γ/φ_{3}.
For the GLW observables, one has:

Experiment  Mode  γ/φ_{3} (°)  δ_{B} (°)  r_{B}  Ref. / Comments 

Belle'04
N(BB)=274m 
DK^{–}
D→K_{S}π^{+}π^{–} 
64 ± 19 ± 13 ± 11  157 ± 19 ± 11 ± 21  0.21 ± 0.08 ± 0.03 ± 0.04  BelleCONF0476, hepex/0411049 
D*K^{–}
D*→Dπ^{0} D→K_{S}π^{+}π^{–} 
75 ± 57 ± 11 ± 11  321 ± 57 ± 11 ± 21  0.12 ^{+0.16}_{–0.11} ± 0.02 ± 0.04  
Combined  68 ^{+14}_{–15} ± 13 ± 11      
BABAR'04
N(BB)=227m 
DK^{–}
D→K_{S}π^{+}π^{–} 
70 ± 44 ± 10 ± 10  114 ± 41 ± 8 ± 10  < 0.19 (90% CL)  BABARCONF04/043, hepex/0408088, 
D*K^{–}
D*→Dπ^{0} & D*→Dγ D→K_{S}π^{+}π^{–} 
73 ± 35 ± 8 ± 10  303 ± 34 ± 14 ± 10  0.16 ^{+0.07}_{–0.08} ± 0.04 ± 0.02  
Combined  70 ± 26 ± 10 ± 10      
Average  UNDER CONSTRUCTION 