The Lessons Learned Process at SLAC: How Does it Work?

By Mike Grissom

The SLAC Integrated Safety Management System (ISMS), Core Function 5 (Provide Feedback and Continuous Improvement), states that SLAC management provides several avenues for communicating concerns about hazards in the workplace to the appropriate authorities for action.

One of the avenues for communicating concerns about hazards in the workplace is the SLAC lessons learned process. This process has several venues:

- Presentations at meetings of the Operating Safety Committee (OSC)
- Presentations at meetings of the Environment, Safety, and Health Coordinating Council (ES&HCC)
- Automated announcements via a lessons learned e-mail list server
- Targeted e-mails to key SLAC staff
- Notices in publications such as TIP

If you or any of your colleagues feel that the SLAC ISMS program can be improved by specific actions, the above methods are ways to ensure review of the actions takes place and appropriate distribution to the SLAC community is assured.

At times, all of the above approaches may be taken to ensure a particularly relevant lesson learned is communicated throughout the site. SLAC supervisors often discuss lessons learned items relevant to their work groups as a part of their normal management meeting process.

Operating Safety Committee

The OSC reviews recent accident/incident histories and near-miss events that come either from SLAC or other sites as a regular part of the Committee’s agenda (http://www.slac.stanford.edu/esh/committees/oscchart.html).

Much of the non-SLAC information considered by the OSC comes from the DOE Occurrence Reporting and Processing System (ORIPS). The ORIPS system is undergoing an extensive redesign that appears to require a more aggressive posting of lessons learned through venues such as the Operating Experience Summaries (OES) (http://tis.eh.doe.gov/paa/summary/) and the DOE.

Juneteenth Celebration... see Page 3
Lessons
(continued from page 1)

The means by which Kenny chooses lessons-learned note topics include, in order of importance:

1. Items that are plainly of significance to management, such as the ladder accidents (ladder safety).
2. Items of local interest that apply to SLAC, for example, the Golden Gate Bridge worker that fell to his death (fall protection).
3. Product recalls where direct buyer notification is impossible (that is, credit-card purchased or so old that items have changed departments).
4. DOE-complex items of interest to SLAC.

ES&H Coordinating Council

The ES&H Coordinating Council is the senior management safety-related committee that reviews lessons learned felt to have special relevance to activities at SLAC (http://www.slac.stanford.edu/esh/committees/eshschc.html).

The Council members drive discussions on key lessons learned at their divisional management meetings and assure that appropriate actions have been taken. Specific actions are at times identified in the minutes of the Council.

Lessons Learned E-mail List Server

Kenny (SHA) is a SLAC subject matter expert in industrial safety and the list owner for the Lessons Learned e-mail list server (http://www.slac.stanford.edu/cgi-bin/tkwgate/SLAC-LESSONS-LEARNED2/).

Send comments for the committee to Tom Himel (himel@slac.stanford.edu).

Lessons
(continued from page 1)

The committee has sponsored a number of public seminars: B Day, Neutrino Physics Day, LHC Day, Z/Higgs Day, Two Beam Day and Astrophysics Day. They are also holding town meetings and soliciting e-mail input ideas from SLAC users, staff and faculty.

“The Days have been very successful, with good speakers and a lot of user participation,” said Himel. “There’s other physics to be done and SLAC is contributing.”

This summer the committee will narrow down the number of scenarios to study in more detail in order to estimate the budget, manpower and infrastructure they would require. The end result will be a report in October with a few scenarios – illustrations rather than recommendations – of what directions SLAC can take.

“This is a tool for SLAC management to help decide which of these scenarios to pursue and, in the short-term, where we should be doing R&D and where we need to build our strengths,” said Himel.

Slides and videos from talks, documents, as well as instructions to join the mailing list are at http://www-project.slac.stanford.edu/lc/LocalScenarios/default.html.

Women’s Interchange at SLAC (WIS) is pleased to present:

Persis Drell
Associate Director, Research Division, SLAC

Speaking on:

“From near to far, from here to there, funny things are everywhere”

Drell will speak about her career path that led her to her current leadership position, her experiences as a particle physicist and how she has woven together her personal and work lives.

Monday, June 23 12 noon - 1 p.m.
Panofsky Auditorium

Everyone is welcome—bring your lunch and a friend!
Wildland Fire Safety Tips

By Robert Rock

Wildland fires destroy hundreds of homes and acres of land every year across the country. Fire-safe landscaping is an effective tool that creates an area of defensible space between your home and flammable vegetation that protects against devastating fires.

The United States Fire Administration (USFA) encourages you to keep fire safety at the forefront by learning how to landscape and maintain your property to minimize possible fire damage and slow fires if they start. Remember, fire safety is your personal responsibility... Fire Stops With You!

Defensible Space Works

During the 1993 raging Malibu fires, a number of homes were saved as a result of the owners’ careful pruning and landscaping techniques that protected their homes. In a fire situation, the dead trees and shrubs surrounding your home act as fuel for fire. Removing flammable vegetation reduces the threat of fire. Follow these basic rules to create defensible space that works.

1. Remove all dead plants, trees and shrubs from the site.
2. Remove excess leaves, plant parts and low hanging branches.
3. Replace dense flammable plants with fire-resistant plants.
4. The choice of plants, spacing, and maintenance are crucial elements in any defensible space landscaping plan.

Tips for a Fire-safe Landscape

- Create a defensible space perimeter by thinning trees and brush within 30 feet around your home.
- Beyond 30 feet, remove dead wood, debris and low tree branches.
- Eliminate small trees and plants growing under trees. They allow ground fires to jump into tree crowns.
- Space trees 30 feet apart and prune to a height of 8 to 10 feet.
- Place shrubs at least 20 feet from any structures and prune regularly.
- Plant the most drought-tolerant vegetation within three feet of your home and adjacent to structures to prevent ignition.
- Provide at least a 10" to 15" separation between islands of shrubs and plant groups to effectively break up continuity of vegetation.

Choose Fire Resistant Materials

- Check your local nursery or county extension service for advice on fire resistant plants that are suited for your environment.
- Create fire-safe zones with stone walls, patios, swimming pools, decks and roadways.
- Use rock, mulch, flower beds and gardens as ground cover for bare spaces and as effective firebreaks.
- There are no ‘fire-proof’ plants. Select high moisture plants that grow close to the ground and have a low sap or resin content.
- Choose plant species that resist ignition such as rockrose, iceplant and alove.
- Fire-resistant shrubs include hedging roses, bush honeysuckles, currant, cotoneaster, sumac and shrub apples.
- Plant hardwood, maple, poplar and cherry trees that are less flammable than pine, fir and other conifers.

Maintain Your Home and Surrounding Property

- Maintain a well-pruned and watered landscape to serve as a green belt and protection against fire.
- Keep plants green during the dry season and use supplemental irrigation, if necessary.
- Trim grass to a regular height up to 18 inches around your home.
- Store flammable materials, liquids and solvents in metal containers outside the home at least 10 feet away from structures and wooden fences.
- No matter where you live, always install smoke alarms on every level of your home. Test them monthly and change the batteries at least once a year. Consider installing the new long-life smoke alarms.

Protect the Outside of Your Home

- Stack firewood outdoors at least 30 feet away from your home.
- Keep the roof clear of leaves, pine needles and other debris.
- Cover the chimney with a mesh screen spark arrester.
- Remove branches hanging above the chimney, flues or vents.

Staff Celebrate Juneteenth with Music, Food, Family and Friends

Photos by Diana Rogers

What is Juneteenth?

Juneteenth is the five day period in June when the news of the Emancipation Proclamation (signed in January 1863) finally reached slaves in Texas and a few other southern states. Juneteenth signifies the end of slavery.
SPEAR3 Construction Hums at Night

By Heather Rock Woods

Even truck drivers pull owl shifts when they work on a SLAC project. In the last few weeks, 75 concrete trucks have rolled past the Main Gate between 10 p.m. and 5 a.m., delivering 656 cubic yards of concrete (more than 32,000 gallons) for SPEAR3's new floors.

This nighttime bustle is part of the typically 16-hour-a-day schedule to construct the next generation synchrotron radiation source (SPEAR3) in a record seven months. SP3 was dismantled in April. Leaving the storage ring walls and experimental stations in place, crews removed one million pounds of magnets and other hardware using rollers, cranes and cables. Because the tunnel is only 6'-10 high, a low-slung robotic machine with spider-like legs crushed up the old concrete floor.

In phase 2, which begins mid-June and continues through October, SSRL is installing the new accelerator and power supplies, rebuilding beam lines and upgrading the injection line. The concrete trucks arrived on site at night to avoid local traffic and peak hours at the concrete plant. One quarter of the ring was poured at mid-October, and began some operations in January 2003.

The new source will deliver a brighter, denser beam to see smaller objects than the old machine. The flux density with the bending magnets will increase 100 times, and will increase 10 times with the insertion devices.

Tom Elioff and Bob Hettel (both SSRL) are the project leaders. Jeff Corbett and the SSRL Accelerator Physics Group provided the specifications for the new ring. Richard M. Boyce (SSRL) is in charge of the overall installation and Brian Choi (ESSD) is the project manager for the conventional facilities.

"Most of the big deliveries from off-site are complete, but equipment will still be moving around on site," Pianetta said. You can watch a time-lapse video of SPEAR3's dismantling at http://www.srsl.slac.stanford.edu/visit/SPEAR/Status.html. You can also check on progress on regularly updated Web-cam pictures.

Retiree Receives Member of the Year Award

By Victor Flynn and Roger Gearhart

Henning Petersen was recently awarded the Danish Society Dania posthumous Member of the Year Award at their annual convention. He is pictured here with his wife, L. B. Both are very active in the many Danish organizations in Northern California, especially Dania.

In addition, Petersen has also been the General Secretary of the International Reblid Society, the organization that sponsors the annual Fourth of July celebration in Denmark where as many as 40,000 gather to celebrate American Independence. In 2001, Petersen was appointed the Honorary Mayor of Aalborg, Denmark and served in that capacity during the Reblid festivities.

In nominating Petersen for the award, members of the Denmark #2 branch wrote, "There is no question of Henning's unselfing devotion to our Society. He has served us with distinction at every opportunity, as President, currently as Trustee of Denmark #2, and earlier he was often a delegate to the Society's Conventions. We can all recall the wonderful manner in which Henning served as the Society's Grand President. He has always handled all Dania matters with unflinching grace and resourcefulness. His wonderful sense of humor never failed to bring a smile to all around him. He was a most successful Grand President."

A long-time member of the EFD Cryogenics Group, Petersen retired on January 1, 1995. His considerable engineering talents were applied to the SLAC Bubble Chamber Program, LASS, LBS and LSL to name a few. Petersen was instrumental in recruiting others from SLAC to become involved in the Danish-American organizations, notably the late Bob Pedersen (RD), Jim Johnson (SLS), the late Joel Jensen (EFD), Roger Gearhart (EFD, AD, retired), and Jim Gearhart (former summer student).

Many others from the SLAC Community have attended various social functions that the Danish Society holds.

Petersen was born in Denmark and educated there as a mechanical engineer. He had worked in Denmark, Sweden and at CERN before coming to SLAC in 1965. He and his wife L. B. lived in Merlo Park until several years ago, when they built a dream home in Sonoma and relocated there.

In Danish, "Til Lykke til Henning" (elations). Among the many good works accomplished by Society Dania is the granting of scholarships to deserving students. For more information, see: the Dania Web site at DANIÆSHCA.Org.

Computer Self-Help is On-Line at the Library

By Lesley Wolf

Maybe you have an amicable relationship with your desktop computer, maybe you don't. Maybe you exist in a state of symbiotic tension with your computer: You can live with it and you can't live without it. Let's face it, your PC may be upgraded, but never uprooted. Sure, the Library has tons of current computer books and manuals (to say nothing of the old age self-help section, with titles like Mastering Excel, Linux for Dummies, or GUI for Geeks) on its shelves, but that's 1999. What you really need is this, the 21st Century, is some kind of on-line advice or computer aid the library. And the SLAC Library has it. Just go to the Library Web page (http://www.slac.stanford.edu/library/). There you'll find links to more than 200 full text O'Reilly titles, like the Python Cookbook. (I doubt there is a chapter on capturing a python. You're on your own there, though one of our staff could research material for you.) You'll find links to Java, Perl, UNIX, Web, XF, Oracle, Excel, Microsoft Office and other popular computer books.

This offering is a collaboration between the Stanford Libraries and SLAC. All you need is a SLAC IP address to view, search by topic, or print out information from any one of the thousands of books available. The books are searchable by keyword, or you can browse by chapter and subheading. Engineering and technology titles are also available.

Once you see how the Library Web page can improve your man-machine interaction, you are going to want to return again and again. Your Library: virtually three when you need it—24/7. So bookmark the Web site: http://www.slac.stanford.edu/library.
Cooperative Spirit at SLAC Pays Off for UCLA Researchers

By Oleg Tsai, Vickee Flynn and Ted Fiegluth

In April, the UCLA Intermediate Energy Physics (IEP)/Relativistic Heavy Ion Research Group, headed by Charles Whitten, successfully completed experiment T466, the test of a novel high-density design for an electromagnetic calorimeter for measuring the energy of electrons, positrons or photons. This test was completed because of the exemplary spirit of cooperation between several SLAC departments.

By day, at the Final Focus Test Beam (FFTB) facility in the Research Yard, Jerome Hastings (SSRL) was frantically overseeing workers installing the Sub-Picosecond Photon Source (SPS) (TIF, April 18, 2003). By night, the operators would re-establish an electron beam for the UCLA experimenters. The Accelerator Operations group, coordinated by Roger Erickson and Richard Iverson, were responsible for conducting a search to ensure that everyone was out of the beam area and then tuning the beam for the experiment.

The Radiation Physics department, coordinated by Roger Erickson and Richard Iverson, was responsible for ensuring that the area was safe for the experiment. The SPPS group from SSRL, in particular Stan Mao and Heinz Hastings, worked for months and had trucked their prototype electromagnetic calorimeter to SLAC from UCLA. This prototype electromagnetic calorimeter was brought from UCLA to SLAC by truck to test out a novel detector technique using tungsten powder and scintillating fibers.

The SPS group from SSRL, in particular Stan Mao and Heinz Hastings, was responsible for coordinating beamline modifications so that the important radiation safety items would stay intact ensuring the beamline was safe. This was very important since it was a critical period for SPS installation, but, at the same time, the beamline was kept operational.

The Radiation Physics department, in particular Stan Mao and Heinz Hastings, had the final responsibility of ensuring that the area was safe for the experiment. Failure in any of these efforts would have meant failure for the UCLA experimenters who had been planning for months and had trucked their prototype to SLAC from UCLA.

This was the first of two experiments that were done during the SPPS installation. A second experiment, Magnetic Electron Pulse Duration Diagnostic Test (T465), by Roger Carr and Hans-Christof Stiegemann (both SSRL) was also able to obtain data. In the past, many Test Beam experiments have been conducted in FFTB and ESA but these two were under unusual pressure because of the installation work.

The main objective for this research is to develop methods that will lead to a very compact calorimeter with good energy resolution, high granularity, good hermeticity, the ability to work in magnetic fields and provide test response and affordability. Although the final design of a particular calorimeter is driven by the physics program for a given experiment, the conceptual requirements above should be common for the next generation of detectors for high energy physics and relativistic heavy ion experiments.

The density of the medium in the calorimeter tower defines its dimensions. To keep a calorimeter compact one wants to make the medium as dense as possible, at the same time keeping the ratio between the active and passive materials at a reasonable level so that fluctuations in visible energy will not dominate the energy resolution.

The final composite has a density of approximately 11 g/cm³. The dimensions of active medium are 22x22x120 mm³. The tower depth is equivalent to a thickness of about 20 radiation lengths. There are 508 single-cell, square 0.25 x 0.25 mm² Bicron BCF-12 scintillating fibers inside of each tower spaced by 1 mm. A relatively simple technique was used to combine the tungsten powder and fibers together. First, all fibers were placed between two meshes which defined the spacing between the fibers. Then one of these meshes and one end of the fibers were epoxied to one end of a brass container. The second mesh was movable and used to keep the spacing between the fibers uniform while the container was filled with powder. Tungsten powder flowed through this mesh to fill the space in between the fibers while the mesh was pulled to the top of the container.

Defining the Objectives

The purpose of the T466 test run was to study the performance of a small prototype electromagnetic calorimeter used to measure electron energy. The UCLA IEP group built this prototype using a new technique that utilized tungsten powder and imbedded scintillating fibers.

Testing the Calorimeter

During 36 hours of beam time at the FFTB, 360k total events were taken for 10, 5 and 1 GeV electron energies. The calorimeter towers were scanned in both the longitudinal and transverse directions to get information about uniformity of response.

Preliminary results show that energy resolution of prototype towers is around 20 percent/sqrt(E), which is twice as much as expected. However, a large variation of response was observed across the surface, in particular when the beam pointed in between the towers. Both longitudinal and transverse scans indicate that the medium of the towers is far from homogeneous.

Thus, a better technique to combine fibers with powder needs to be developed. The light yield from the towers is around 400 photoelectrons per GeV, which is approximately 70 percent of what was expected. Although the desired energy resolution for this prototype was not reached in our first attempt, the information from the T466 test run should allow us to set requirements for the uniformity of the density and fiber spacing inside the towers in order to achieve the design goal.

An Ideal Environment

The FFTB is a unique facility that provides an ideal environment for experimental tests. The highly adjustable beam allows users to study all-important aspects of a detector and decide unambiguously whether the test run was a success or not. The FFTB test run was kept around 1.3 electrons per pulse. The typical amplitude spectra from the calorimeter towers for 5 GeV and 10 GeV electrons are shown in the graph. The nice thing about working with such intensity is that it allows users to decide unambiguously whether the test run was a success or not. The FFTB is a unique facility that provides an ideal environment for experimental tests. The highly adjustable beam allows users to study all-important aspects of a detector and decide unambiguously whether the test run was a success or not.
Synchronized Swimmer Heads to Olympics

By Linda Di Sllane White

In 1999 after much discussion with her husband Cindy Lowe (NLC) made the difficult decision to move to Santa Clara, son and home in Texas to come to California with her 15-year-old daughter Sara, the youngest person ever to make the Junior National Swim Team.

One year later the rest of the family joined them here, as Sara needed to be in this area to train for synchronized swimming. Local training facilities are at the San Jose State University pool and the International Center at Santa Clara.

Happily, the Lowe family's hard work and sacrifice paid off handsomely. Sara was chosen for the 2004 U.S. Olympic Synchronized Swimming Team on an audition. A remarkable achievement for one so young. At age 15, Sara is teamed with her 19-year-old sister, Kasey, the youngest person ever to make the Junior National Swim Team.

Sara didn't start synchronized swimming until she was 11 years old, which is a pretty late for this sport. Sara couldn't even swim. In order to swim, Sara had to take swimming lessons and practice swimming until she was 11 years old, which was a pretty late start for this sport.

Sara's family moved to California because of Sara's passion for synchronized swimming. Local training facilities are at the San Jose State University pool and the International Center at Santa Clara.

For more information, see: http://www.usasyncrho.org

SLAC Logo Items Available at New SLAC Guest House

Friends of the Linear Accelerator is pleased to announce that a selection of SLAC Logo Items is now available at the Olympic Team trains at the Olympic Training Center in Colorado Springs, CO.

Once the 2004 Summer Olympics are over, Sara will have just one week break before she starts school at Stanford. She deferred entering Stanford for two years because of her Olympic training. In fact, Stanford will be the first brick and mortar school Sara has attended since 9th grade, according to Cindy. Her studies since then have been largely focused on synchronized swimming.

Sara is a multi-talented young woman who, with the help of her devoted family, will no doubt find that the sky is the limit.

For more information, see: https://www-internal.slac.stanford.edu/sem/Sem-Main.html

Lesson Learned:

Extension Cords

By Joseph Keavy

On December 31, 2002, a fire in a single-family dwelling in Newport, Ohio resulted in the death of an 8-year-old boy. Investigators determined the cause of the blaze to be a frayed electrical extension cord used to power Christmas tree lights.

In August 1998, a 34-year-old construction worker in Fraser Valley, British Columbia was killed as he tried to unplug a sewing machine from a homemade extension cord. Current from a hand contact on the cord flowed from his hands to his thigh, which was touching a grounded object.

On September 15, 1992, a 38-year-old welder in Wisconsin was electrocuted while connecting a faulty 440V extension cord to a faulty power cord for a rolling metal-feeding machine. Defects in the metal socket housing on the extension and power cords allowed current to pass between his right and left hands. A co-worker had reported the broken extension cord as unsafe shortly before the accident but had made no moves to take it out of service.

To get an idea of the challenge that lies ahead, look at Sara's schedule for the rest of 2003. She will participate in the Rome Open in June; the HNA World Meet in July; and the Pan Am Games in August, with nothing but hard training in between. The Olympic Team trains at the Olympic Training Center in Colorado Springs, CO.

SLAC@Pac Day Shines

By Erin Smith

On June 1 over 1300 SLAC employees, family and friends attended the annual SLAC@Pac baseball game at Pacific Bell Park. It was a beautiful Mediterranean day, the kind of warm, sunny, light-breezy day that those of us that live and work in the Bay Area look forward to.

The lucky spectators from SLAC had the opportunity to witness the Giants make a comeback in the 9th inning of a game that saw more players left on base than scored, eight extra-base hits and four double plays. The Giants picked up a game in the standings to lead Los Angeles in the National League West by 4 1/2 games. Even if you don't care for baseball, PacBell Park is a place to go and have a lot of fun. Besides the game, many employees took the chance to sample the excellent food at the stadium, such as the signature Gilroy Garlic Fries and the classic ballpark hot dogs and lemonade. Others took their children and grandchildren to the Coca-Cola Fan Lot for entertainment and a ride on the slides.

For more information, see: https://www-internal.slac.stanford.edu/edw/SEM-Main.html

SEMI: Staying Satisfied

By Beth Skegg

SEMI Engineering and Maintenance (SEM) is the group responsible for responding to the needs of some 3000 people at SLAC. We track each request that is received to ensure a timely response and, on the whole, we achieve satisfaction in over 95% of the 8000 requests we handle each year. It is testament to the hard work of the 100+ people in our group that we’ve achieved such a high level of customer satisfaction.

We also track requests that are not completed to the satisfaction of the requester. Reviewing the service system data, in fact, reveals that a group of less than 10 individuals account for essentially 100% of the unsatisfied inputs. This consumes a disproportionate amount of SEM resources to work on the problems of a few, to the detriment of other requests.

Putting your problem in the proper overall perspective will help us all progress towards our ideal of a professional work environment and allow the service people to help you in an atmosphere of mutual respect.

We welcome comments and suggestions that help us serve you better and if a request is not carried out to your satisfaction please let us know. Adding a brief reality check (and a deep breath) as you communicate your problem will help us process service staff requests in the most timely and effective manner.

For more information on SEM, see: https://www-internal.slac.stanford.edu/sem/SEM-Main.html

SEMI: Staying Satisfied

By Beth Skegg

SEMI Engineering and Maintenance (SEM) is the group responsible for responding to the needs of some 3000 people at SLAC. We track each request that is received to ensure a timely response and, on the whole, we achieve satisfaction in over 95% of the 8000 requests we handle each year. It is testament to the hard work of the 100+ people in our group that we’ve achieved such a high level of customer satisfaction.

We also track requests that are not completed to the satisfaction of the requester. Reviewing the service system data, in fact, reveals that a group of less than 10 individuals account for essentially 100% of the unsatisfied inputs. This consumes a disproportionate amount of SEM resources to work on the problems of a few, to the detriment of other requests.

Putting your problem in the proper overall perspective will help us all progress towards our ideal of a professional work environment and allow the service people to help you in an atmosphere of mutual respect.

We welcome comments and suggestions that help us serve you better and if a request is not carried out to your satisfaction please let us know. Adding a brief reality check (and a deep breath) as you communicate your problem will help us process service staff requests in the most timely and effective manner.

For more information on SEM, see: https://www-internal.slac.stanford.edu/sem/SEM-Main.html

Friends of the Linear Accelerator is pleased to announce that a selection of SLAC Logo Items is now available at the Olympic Guest House. Items include t-shirts, sweatshirts and sweatpants in several combinations of the two SLAC logo styles. The Gift Shop also has more of the SLAC 40th Anniversary t-shirts and mugs.

Since the gift shop is open 24 hours a day, 365 days a year, everyone will now have a convenient way to get their own SLAC logo merchandise.

You can purchase your personal credit or debit card to make your purchase!
Inspiration Blooms at SLAC

Garden

By Joni White

My interest in the SLAC Garden Club sprouted as I noticed a tray of vegetable starts on the desk of a SLAC colleague. Among other things she had tomatoes and basil ready to plant. Now, tomatoes and basil being two of my favorite summer flavors, I had to ask what they were for. Her answer: the SLAC Garden.

The Garden is located behind the new SLAC Guest House. Take a walk through BR-12 and follow the path up the staircase—you’ll find a stunning garden right there. The garden boasts spectacular views of the Bay and is filled with plots containing flowers and vegetables.

I found Club Secretary Jeff Corbett (SSRL) and friends busy putting in some tomato plants. There were a lot of plants, so I asked if he really liked tomatoes. He said that the plot is shared with other garden enthusiasts, and introduced Doug Kelsey (SSRL), who was pulling up carrots. Explaining their thoughts on planting large quantities in the garden, Corbett said: “you plant some for yourself, some for the animals, some for other people—you should have enough.

Many varieties of flowers give the garden a lush colorful appearance. The Garden Club has about 40 members, with a dozen or so on the waiting list for open 10’ x 20’ plots. Annual dues of $12 per plot go toward compost, tools and supplies. To plants. Another SLAC garden enthusiast, Piero Piazzotta (SSRL), shares one of his favorite snail deterrents. First, circle the planted areas with a copper strip...then hook up a 1.5v battery. Works every time!

But the real secret of the SLAC Garden isn’t the food, the sunshine or the outstanding view. Working in the garden (and it is hard work), helps take your mind off problems you’ve been struggling with and allows you to focus on something else for a little while. When you do that, issues seem more clear and you can return to work with a fresh perspective.

For further information about the Garden Club, see: http://www-project.slc.stanford.edu/garden/

Rattlesnakes 101: Avoiding Snakes and Treating Snakebites

By Joseph Kenny and Kirk Stoddard

SLAC and its surroundings contain a remarkable variety of wildlife that overall is willing to coexist with us.

Snakes are among the host of wild animals that can be encountered, especially as more people work outside during the warm, dry season. All snakes can bite if confronted or threatened; a few (gopher snakes) can actually do some damage, but only rattlesnakes are actually poisonous. To avoid snakebites entirely, follow these few simple rules, especially from April through September while snakes are most active:

• If you find a snake inside a building, avoid it, warn others in the building, and call the Main Gate (Ext. 2551) for assistance. If you come across a snake outdoors, slowly and quietly move away and give it a chance to escape. A snake can strike about half its length, so if you do encounter one, wait it out, giving it at least a 6-foot gap.

• In buildings with easy access to the outdoors (such as the Klystron Gallery) avoid putting your hands into dark places without inspecting these spots first with a flashlight.

• Stay out of tall grass, underbrush, piles of logs, rocks, branches or other debris. Stick to clearings, paths and mowed areas.

• If you must walk through brush or tall grass, wear boots and long pants, watch your step. Remember that snakes blend well into their surroundings. Shuffle your feet and make noise to announce your presence and give animals time to avoid you.

• Don’t pick up or otherwise bother any snake, even a dead one.

Wildlife Habitat

Remember that snakes are protected by Stanford University policy and are not to be killed, captured or harmed in any way. If one should be encountered in an office or hallway (which has happened), or on a manicured lawn or along a walkway, please call the Main Gate (Ext. 2551), and Security will get the critter relocated to the wild.

-Rick Yeager

Time to Apply for the Ashley Career Development Fellowship

By Carmella Huser

Applications are now being accepted for the 4th annual Alonzo W. Ashley Career Development Fellowship. This endowed fellowships was established in 1999 in honor of Alonzo W. Ashley. During his 30-year career at SLAC, Ashley (HR) pioneered programs that promoted diversity and encouraged career development for employees and career exploration for talented students.

Continuing the spirit of Ashley’s work, the Fellowship allows an employee one year to engage in activities that will enhance his or her career at SLAC. Activities could include attending school, participating in on-the-job training, creating training or other programs for employees, participating in a job rotation, or engaging in other career enhancing activities proposed by the Fellow.

The person selected for the Fellowship will receive his or her regular salary for the year and participate in the normal salary and career evaluation cycles.

All employees who have worked at SLAC for at least three years and who have demonstrated contributions to diversity at SLAC or in the community are eligible to apply for the Ashley Fellowship.

Approval of one's supervisor and of others involved in the proposed activities is required. Applicants must describe the proposed activities in detail, explain how these activities will develop the applicant's career and show how they will contribute to the SLAC mission. In addition, applicants must describe the contributions they have made to diversity at SLAC or in the community.

Applications Due July 11

Application forms are available on-line (http://www-group.slc.stanford.edu/hr/) or from the Human Resources Department. Proposals must be submitted to Carmella Huser, Manager of Employee Relations and Training, MS 11, by July 11. The fellowship will be notified by August 1. The Fellowship year normally runs from September 1 to August 31.

Past Ashley Fellows include William Colombo (AD) and Nick Arias (NLC). Pauline Wethington (COM), the current Ashley Fellow, founded and directed the Academic/Career Counseling Center that offers confidential career and academic counseling to SLAC employees. Details of Wethington's Fellowship program appeared in recent issues (TIP, May 16, 2003).

The Ashley Career Development Fellowship offers a unique opportunity for eligible employees to explore a career path that would not normally be available to them. Employees are encouraged to apply.

For more information, see: http://www-group.slc.stanford.edu/hr/fellowship/ashelfellowship.html
POLICIES AND PROCEDURES UPDATE

Recording Time During Leave-Without-Pay Days

We are approaching the time when our high energy physics staff will be taking leave-without-pay days (June 30–July 3). In order to assure accurate accounting of these days and to ensure that you receive appropriate holiday pay and leave accruals, the Personnel Department has added a new code, letter ‘U’ for ‘unpaid shut down’.

On your time report, yellow (for Exempt), green (for Non-exempt), purple (for BU) use code ‘U’ in the ‘Other Leave’ box and record the number of leave-without-pay hours.

Thank you for your cooperation.

Contact:
Cory Perretas (for last names A-K), Ext. 2303
Bernie Espritu (for last names L-Z), Ext. 2433
Ellen Remerata, Ext. 5194
Carol Tam, Ext. 2473

Privacy Concerns—Personal Mail Delivered to SLAC

“Does personal mail delivered to me at SLAC carry the same (legal) privacy protections as mail delivered to my home address? In other words, can I be assured no one will open my personal mail here?” The answer to both questions is “No.”

What to Expect in the Workplace

The legal assumption is that anything delivered to the workplace has to do with business and is work-related, so it is entirely appropriate to expect that support staff and others may open the mail as part of their duties. A company’s mail-handling procedures may properly include the opening of all incoming mail by someone other than the addressee.

For example, an Administrative Associate (AA) may routinely open all mail received for distribution within his or her department. In so doing, the AA might discover that a particular piece of mail really ought to go to someone in another department, so it is then forwarded.

This is very different from breaking into someone’s home mail box or otherwise getting into personal mail without permission in a situation where there is an enforceable expectation of privacy. There is no such privacy right in a federally funded workplace like SLAC (see more about SLAC policy below).

Exceptions to this general rule are envelopes marked “Confidential” or “To Be Opened By Addressee Only.” These are to be opened only by the intended recipient unless a support staff person has been authorized to open such mail.

Personal Mail Should Not Be Sent to SLAC

SLAC’s policy is that your personal mail should not be sent here. Consequently, anything delivered to SLAC will be presumed work related and treated accordingly.

This restriction includes non-work material, magazines, bills, periodicals and packages (for example, monthly book, wine, or food club deliveries). It would be inappropriate to make the taxpayers pay for this non-work-related activity, and its receipt would place an undue burden on our Mail Services staff.

Contact: Rachel Claus, SLAC Legal Counsel, Ext. 4343, rachelc@slac.stanford.edu

From the Benefits Office:

HAVE QUESTIONS ABOUT INVESTING YOUR RETIREMENT?

Representatives from Fidelity, Vanguard and TIAA-CREF will be holding individual counseling sessions at SLAC.

Please contact the individual companies directly to set up an appointment:

Fidelity
July 2
August 26
September 3
(800) 642-7131

Vanguard
No SLAC dates scheduled
Campus dates are available
(800) 662-0106, ext. 14500

TIAA-CREF
July 17
August 21
September 25
(800) 842-4007

www.tiaa-cref.org/moc

All sessions will be held at:
Building 280, Module A, Room 180

MILESTONES

Service Awards
5 Years
Aldrich, Jeff (MFD), 6/22
Grail, Thomas (AD), 6/22
Hammer, Robert (MFD), 6/22
Hollenbeck, Michael (ESRD), 6/22
Hogan, Mark (ARDB), 6/23
Jacobson, Mark (SSRL), 6/29
Rarback, Harvey (ASD), 6/22
Stefan, Peter (ESRD), 6/29

10 Years
George, Martin (ESRD), 6/21
Woods, Michael (EA), 6/20

15 Years
Lee, Charlotte (EC), 6/20

20 Years
Burke, David (NLC), 6/26

35 Years
Hammer, Earl (ESD), 6/21

40 Years
Koontz, Ronald (KY), 6/24

Deceased
Robert Bell (formerly BBar), age 69, June 2, 2003

To submit a Milestone, see:
See Awards and Honors at:
http://www.slac.stanford.edu/slacaward/

Upcoming Events

Mon. June 23, 4:15 p.m.
SLAC, Panofsky Auditorium
(Seminar/Retreats-524)
SLAC DEPARTMENTAL COLLOQUIUM
S. Fearnak, BU Public Health Dept.
“Epidemiology”

Tues. June 24, 4:00 p.m.
SLAC, Green Room
SLAC PHYSICS MEETING
Lab Community, SLAC and more
Scientific Discussion Hour

Thur. June 26, 4:35 p.m.
SLAC, Orange Room (Retirements-400)
SLAC ACCELERATOR SEMINAR
S. Krensky, Brookhaven Nat’l Lab
“SASE Statistics”

July 7 - 11, 9:00 a.m.
SLAC, Panofsky Auditorium
SLAC PHYSICS MEETING
Marcello Giorgi, INFN-U of Pisa/SLAC
BBar Detector Collaboration Meeting

Wed. July 23, 8:00 a.m. - 3:00 p.m.
SLAC, Panofsky Auditorium, Lobby
SLAC/STANFORD BLOOD DRIVE
Linda Ahlf, SLAC
Call x2354 for BLOOD DRIVE emergency after 3:00 p.m.
Please see addendum for more information.

Effective June 2 the Transportation Office Hours will be from 7:00 a.m. thru 3:00 p.m. If there is an emergency after 3:00 p.m., please call the SCM Service Desk at Ext. 8901.

The Interaction Point

Editorial Team
Neil Calder
Nina Adelman Solar
Katherine Bellavin
Vickie Flynn

Contributing Editors
Ziba Mahdavi
Linda DeShaw White
Writers
Heather Woods

Photography/Graphics
Diana Rogers
Michael Hyde

Distribution
Clark Jergensen

The Interaction Point is published bimonthly every first and third Friday. Submissions are due the second and fourth Tuesdays of each month. Send submissions to tip@slac.stanford.edu, or mail to TIP Editor, MS 58, Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, CA 94025.

TIP is available online at:
http://www2.slac.stanford.edu/tip/