BaBar Dedication Honors International Collaboration

CAPPING OFF AN EVENTFUL week of the Lepton-Photon Symposium on the Stanford Campus, the BaBar Dedication was held on The Green at SLAC. With flags waving in the background, speakers on the platform praised the many individuals and groups involved in constructing the $110 million detector. The week was a great success and SLAC acknowledges all the hard-working committee members even though these pages are too few to list all their names and contributions. The BaBar Detector began taking data at the B Factory (PEP-II) facility on May 26, 1999.

On the platform, (l to r) Martha Krebs, Director of DOE’s Office of Science, praised the Lab, the leadership of Burton Richter, and offered insights about future issues facing science. Jonathan Dorfan, Director-Designate of SLAC, offered his heartfelt congratulations to all involved. Peter Rosen, DOE’s Office of Science, also was involved.

Even though most Dedication participants sported BaBar caps, they still clustered under the shade of this magnificent old oak while listening to the speeches.

Diana Gregory did not ride her bike to the event but found a dry space on the grass, while other SLAC staff members positioned themselves under the tree.

Staff, collaborators, and conference attendees joined the celebration.
Report on Safety Discussions

THE ANNUAL SAFETY AND Environmental Discussions held on March 12, 1999, gave SLAC employees, users, and contractors the opportunity to discuss safety, health, and environmental concerns in 84 different discussion groups. Out of 165 identified issues, 63 are being addressed on a site-wide level and 102 are being handled by the group or division that identified the concern. This keeps many people very busy, but participants can be proud that they continue to help SLAC become an even safer place to work.

If you’re wondering about the issues that received the “most votes,” just read on!

Slips, Trips and Falls (21 issues)

Many of the issues were related to concerns about slippery wooden stairs and walkways, as well as insufficient parking lot and pathway lighting and the absence of walkways between specific buildings. These issues have either been addressed or are already underway as part of the pathway and lighting project. In addition, some issues will be referred to the Operating Safety Committee’s Pathway and Lighting subcommittee for reply, and Rick Challman will publish an update this fall on the progress of the project.

Hazardous Waste/Hazardous Material Management (20 issues)

These issues included concerns about inconsistent techniques for storage and handling of lead, improper storage and labeling of solvents and lubricants, and lack of knowledge of procedures for disposing of small quantities of hazardous waste such as epoxy cans, paint cans, adhesives, or batteries. The corrective actions include creation of a task force to review and develop policy on lead contamination and handling hazards, increased training of personnel in hazardous material management, and assistance from an ES&H specialist in hazardous waste disposal.

Transportation Safety (18 issues)

The concerns in this area related primarily to pedestrian safety on site (walking on the loop road and at crosswalks), vehicle speeding, and traffic at the Main Gate. As part of the corrective action, the stop or yield signs at the Main Gate have been reconfigured so that the signs are in accordance with standard usage at a 3-way intersection. Traffic enforcement will also be increased. Finally, sidewalk maintenance issues were entered into the new Safety Actions for Facilities (SAF) system, a Facilities work safety ticket program.

Industrial Hygiene (18 issues)

These were primarily indoor air quality issues, including complaints of respiratory problems and allergies that could be a result of HVAC system problems. The complaints came from groups in several different buildings. The SHA division has hired a consultant to investigate these complaints and to examine the indoor air quality in these buildings.

So How Are We Doing?

As of August 1999, 42% (43 of 102) of the 1999 division-level tasks and 22% (15 of 67) of the group-level tasks have been completed. Many of the open tasks are scheduled for completion before the end of the year, or are being addressed as part of the site-wide pathways and lighting project. You can check on the status of issues at http://www.slac.stanford.edu/esh/standdown/standdown.html. Click on “S&E Discussion Searchable Database” and then to find out about your group’s discussion items, click on “Issues” and enter the last name of the discussion leader for your group; use the pull-down menu choice “SLSAFT99” for the Audit ID, then click the “Search” button. Contact Ellen Moore at x4298 or via e-mail at emoore@slac.stanford.edu if you have any problems finding the information.

Looking for Lost Phones

TELECOMMUNICATIONS IS CONTINUING ITS efforts to document the location of every phone which is in our PBX system. We’ve made good progress but still have about 15% of our lines undocumented. We update the following file every few days to show which lines remain “lost” (see http://www.slac.stanford.edu/~teresa/unknown-phones.prn). We don’t want to be paying for any unused phone lines and really need the help of every member of the SLAC community to identify the location of these lines. If you have drawings or listings which show the phone numbers in a “little used” area then please compare that against our list of “unknowns” and let us know about any you find.

Eventually we will be disabling the lines which we cannot identify and after a period of time they will be removed completely from the PBX system. We would certainly not want to disconnect any line which is needed, especially if it is a phone set up for safety or emergency purposes.

Please contact Teresa Downey at x2903 or via e-mail at Teresa.Downey@slac.stanford.edu.
AS THE SLAC ARCHIVES and History Office goes about its work of processing the Lab’s historical records, we sometimes encounter mysteries. When this occurs, we do our best to make sense of the confusion by consulting with the creators of documentation, with project leaders, and with other knowledgeable staff members.

Sometimes a mystery appears to be solved by such consultations. We say the mystery appears to be solved, because sometime later, perhaps during processing of another collection, the mystery comes back, murkier than ever.

One such mystery the Archives has recently unraveled is the mystery of MARK. Or, as a staff member put it, “Who is this Mark fellow, and why does he have so much equipment?” We have encountered photographs, documents, and publications referring variously to MARK I, MARK II, MARK III, and even MARK IV. Some of the dates of use and creation conflicted, and some of the photos appear to depict a completely different apparatus with the same name.

The answer is that there are two MARK “families” at Stanford University. MARK is the name that has been given to several generations of both accelerators and detectors created and used at Stanford University at the High Energy Physics Laboratory—now the W. W. Hansen Experimental Physics Laboratory (HEPL) and here at SLAC. The accelerators were all built on campus at HEPL, and were progenitors of the two-mile accelerator that was built at SLAC. The detectors have all (so far) been built at SLAC.

The two MARK family genealogies are as follows:

Accelerators at HEPL

MARK I 1947 Electrons first successfully accelerated using a waveguide accelerator

MARK II 1949 First successful operation

MARK III 1949 Construction begins
1950 First successful operation
1963-64 Disassembled and re-built with new accelerator sections

MARK IV 1954 Support received from AEC to build as a test-bed for the two-mile accelerator
1964 Dismantled

Detectors at SLAC

MARK I 1973 Installed at SPEAR
1977 Dismantled and removed from SPEAR

MARK II 1977 Installed at SPEAR
1979 Moved to PEP at beginning of PEP program
1982 Selected to be first detector at SLC
1985 Upgraded and tested at PEP
1986 Installed in Collider Experimental Hall
1987 Rolled onto the SLC beamline
1990 Moved off the SLC beamline to the east end of the Collider Hall

MARK III 1978 Work begun on detector
1981 Installed at SPEAR
1998 Dismantling begun

Work Safe, Work Smart

Two injuries involving days away from work have been reported since the date of 7/15/99, according to Sharon Haynes, Worker’s Compensation Coordinator. One incident occurred on 7/12/99, but was not reported until 7/17/99; the other incident occurred on 7/20/99. The number of calendar days between claims, respectively, is 35 days and 8 days. SLAC’s record number of days between claims remains at 150 days.
A Postage Stamp from SLAC

SLAC HAS THE NOBEL Prizes for its work but until now, no postage stamp. That will change in September when the United States Postal Service issues the 1960's "Celebrate the Century" stamp sheet. One of the fifteen stamps in the set will be about lasers. The stamp itself is a painting based on a photo that appeared in a 1966 National Geographic Magazine article that showed Bill Herrmannsfeldt operating the SLAC Laser Alignment System. Because a stamp cannot picture a living person, and it is not Bill who is being honored, the likeness has been changed so that it does not look like Bill did in 1966. It resembles the Bill Herrmannsfeldt of 1999 even less. The original photo was taken by National Geographic photographe Jack Fields and appeared on page 876 of the December 1966 issue. Of those who originally worked on the development of the laser alignment system, Bill and Martin Lee are still at SLAC in ARD-A.

If you haven't been to the AHO site recently, take a look. A link to the site is located under Scientific Information/Programs and Collaboration on the detailed home page (www.slac.stanford.edu/detailed.html) or go directly to the site at www.slac.stanford.edu/history. The site was developed to provide users of AHO with the necessary policy and procedures requirements. But Jean Deken (SLAC Archivist) and Laura O'Hara (Assistant Archivist) have gone well past that purpose and provide us with information and links to science history and a bit about SLAC's history, including our Nobel Prize winning physicists and (finally) an explanation of a beam tree. One of the new features is a searchable index of archived photographs. You can now search the photo archive by keywords, content, photographer, date, negative number, or by citation. Aren't databases wonderful! Also, check out the "More Resources" page, with links to sites covering the history of science, archive, and history web sites at other labs. A SLACspeak link is also provided. If you're not familiar with this tool, it is a glossary of SLAC-related and HEP-related acronyms and terms, managed by AHO. The SLACspeak revised interface is much easier to use for those of us without intimate knowledge of SPIRES commands. Although still a work in progress (as are most good web sites), congratulations to AHO for providing SLAC with this wonderful resource.

--Ruth McDunn

SLAC Milestones

STEPPING UP
Dorfan, Jonathan, from Director-Designate to Director, 9/1/99

RETIRED
Niermeyer, Cheryl, BSD, 7/14/99
Raman, Arsella, TIS, 8/3/99

DECEASED
Abley, Barth, MFD, 7/14/99
Brown, John, Retired, 7/28/99
Sherman, Larry, TDO, 7/31/99

Do you have a milestone you would like published in TIP? Email tip@slac.stanford.edu to have it included.

The Interaction Point® 1999, is published by Stanford Linear Accelerator Center. Editor-in-chief, P.A. Moore; Production Editor, Vickie Flynn. Deadline for articles is the fifteenth of every month. Items are published on a space-available basis and are subject to edit. Submissions may be sent electronically to tip@slac.stanford.edu or by SLAC ID mail to TIP, MS 20. Phone 650-926-4208.