Index of /archive/2000

<table>
<thead>
<tr>
<th>Name</th>
<th>Last modified</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent Directory</td>
<td>25-Oct-2000 21:14</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0308/</td>
<td>08-Mar-2000 12:26</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0502/</td>
<td>22-May-2000 14:12</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0522/</td>
<td>22-May-2000 13:31</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1206/</td>
<td>06-Dec-2000 23:46</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Apache/1.3.12 Server at www.slac.stanford.edu Port 80
Glossary of Teleconferencing and Telecommunications Terms from Halhed Enterprises Inc.

Packetized Desk Top Video Conferencing

- MBONE
 - MBONE FAQs,
 - Map of the Major MBONE Nodes & Links,
 - Map of the ESnet MBONE Backbone,
 - MBONE Information Web Server (MIWeb) provides and coordinates information on MBone and related activities
 - MBONE Agenda
 - Multicasting and MBONE Article for Boardwatch Magazine, August 1997,
- IP Multicast Streamlines Delivery of Multicast Applications a White paper from Cisco.
- ANL paper on Desktop Video,
- White Pine’s Cu-SeeMe desktop video product,
- U.K. Pilot Mbone Jottings,
- Protocol Independent Multicasting (PIM),
- Multimedia Networking References,
- Internet Phone FAQ & more information
- Desktop Videoconferencing: Technology and Use for Remote Seminar Delivery

Room Type Video Conferencing

- Energy Research Video Collaboration Services,
- Review the VCS Schedule
- VCS Usage Statistics
- DOE Televideo Services

Les Cottrell & Charles Granieri

First-Name.Last-Name Form of SLAC Email Addresses

SLAC / October, 1997

Now email addresses for SLAC computer account holders can take the form first-name.last-name@SLAC.Stanford.Edu. For example, email to Jane A. Doe can be addressed as:

Jane.Doe@SLAC.Stanford.Edu

This address form is an addition to, not a replacement for, the existing form. It was implemented in response to requests to allow SLAC’s system to more conveniently find the proper email address for someone. It’s easy to guess this kind of address if one knows the first and last name of the person and is also easy to remember. This form will be familiar to many people as it is used elsewhere; for example, CERN has been using it for some time.

Email addresses of the new form are case-insensitive just as existing addresses are.

What is My New Email Address?

If you had a SLAC email address on or before September 23, 1997, you can see the new form of your email address as follows:

- Enter the UNIX command:

 mailrouter -n your-last-name

- Or, enter your last name in the query box on the Web page at http://www.slac.stanford.edu/comp/net/slaonly/mailrouter.html

For example, the name vinson will return, among others, the lines:

ilse <-> ilse@mailbox.slac.stanford.edu (Ilse Vinson)
Ilse.Vinson --> ilse@mailbox.slac.stanford.edu (Ilse Vinson)

where the "+" indicates the primary email address. The primary email address appears in the "From:" field of the message header and in the response from the commands person, finger. Example:

ilse@vesta04 $ person ilse

name ext email ms qrp bldg room page

---------- ---- ------------------ ---- ---- ---- ---- ---- ----

Vinson, Ilse 2368 ILSE@SLAC.STANFORD.EDU 97 SCS 050 308

ILSE@SLAC.STANFORD.EDU is an alias for the real primary address ilse@mailbox.slac.stanford.edu

If you received a SLAC email account after September 23, 1997, you will be contacted after November 21, 1997.

How Do I Make the New Email Address My Primary One?

To make your new email address the primary one, give the UNIX command:

```bash
mailrouter -m -e your-first-name.your-last-name -p your-real-primary-email-address
```

For example:

```bash
mailrouter -m -e ilse.vinson -p ilse@mailbox.slac.stanford.edu
```

changes the primary address from ilse@slac.stanford.edu to ilse.vinson@slac.stanford.edu Note that mail addressed to ilse@slac.stanford.edu would still be delivered.

If you don’t have access to UNIX, send your request for change in primary email address to

postmaster-request@SLAC.Stanford.Edu

How Do I Change My New Email Address?

If you want the new form of your address to be different, send your requested change to postmaster-request@SLAC.Stanford.Edu by November 21, 1997.

What About Duplicates?

In case of duplicates, the message you sent will be returned with an informative system message asking you to make a choice of addressees. For example, assuming there were two people named Bill Smith at SLAC, Bill E. and Bill O., email addressed to:

```
Bill.Smith@SLAC.Stanford.Edu
```

might be returned with a message like:

```
--

Your message cannot be delivered to the following recipients:

Recipient address: Bill.Smith@SLAC.Stanford.EDU

Reason: Ambiguous, choose one of:

bsmith@SLAC.Stanford.Edu (Bill E. Smith)

billsmith@SLAC.Stanford.Edu (Bill O. Smith)

--
```

Teresa Downey
This is file /afs/slac.stanford.edu/www/archive/2000/0502/README

Copied /afs/slac/www/comp/security/* tree into
/afs/slac/www/archive/2000/0502/comp/security
on 2 May 2000. See .../0502/ls-security-production for a
list of its contents. (Can be checked against a
list of the archived copy in .../0502/ls-security-archive.)

Copied /afs/slac/www/comp/policy/* tree into
/afs/slac/www/archive/2000/0502/comp/policy
on 2 May 2000.

N.B.: The "ls" files were renamed 22 May 2000 for increased
recognizability and moved into the .../CONTEXT subdir.

This is a superset of Lynda Winslow's
request. See /afs/slac/www/archive/2000/0502/CONTEXT
for context information about this archiving task, e.g.,
requesting email.

The production files were copied from UNIX WWW production
space into UNIX WWW archive space. Cut-and-paste of the
main UNIX commands to perform the task with their outputs
are below. Different windows were used for input and output
subdir trees. Within the commands and output section, comments
are prefixed by three asterisks ("***").

WATCH OUT: One hidden directory,
/afs/slac/www/comp/security/.archive, created by
John Halperin, was not initially copied.

Also, the content of symlinks (one?)
rather than the links themselves were copied ("-h" option
on "cp" command was not used). See "N.B." notes, as well
as for other explanations of possible confusions.

*** UNIX Archiving Commands for .../security: Input:

1197 cassandra /comp/security> date
Tue May 2 12:22:11 PDT 2000
1198 cassandra /comp/security> pwd
/afs/slac.stanford.edu/www/comp/security
1199 cassandra /comp/security> ls -l
 total 210
 drwxrwxrwx 2 rdc system 6144 Oct 26 1999 CSA 10-27-99/
drwxrwxrwx 2 rdc system 4096 Oct 26 1999 Export-RC/
-rw-r--r-- 1 jxh sf 25314 May 03 1995 GoodTimesHoax_FAQ
drwxrwxrwx 2 rdc system 4096 Oct 26 1999 SecStanddown/
drwxr-xr-x 3 wbj sf 2048 Mar 23 16:23 csc-policies/
-rw-r--r-- 1 wbj sf 7125 Nov 17 1997 grep
-rw-r--r-- 1 jxh sf 5573 Oct 27 1997 mxconnns.html
-rw-r--r-- 1 rdc sf 7276 Mar 31 1998 nssecurity.html
-rw-r--r-- 1 rdc sf 3596 Apr 10 1998 passpolicy.html
-rw-r--r-- 1 rdc sf 2274 Mar 19 1999 password-changing.html

9/13/01
-rw-r--r-- 1 rdc sf 8975 Mar 31 1998 password.html
-rw-rw-r-- 1 rdc sf 7621 Aug 06 1999 passwordl.html
drwxrwxrwx 2 jxh sf 2048 Jun 22 1995 satan.tutorials/
-rw-r--r-- 1 jxh sf 9366 Oct 26 1999 security.html
drwxrwxrwx 2 wbj sf 2048 Sep 03 1999 slaconly/
-r--r--r-- 1 jxh sf 5096 May 30 1998 websec.html1201 cassandra

1201 cassandra /comp/security> ls lq
Volume Name Quota Used % Used Partition
www 3000000 179332 60% 42%
1202 cassandra /comp/security> ls listacl
Access list for . is
Normal rights:
g-www:g-comp-security rlidwka
g-www:g-scs-security rlidwka
system:slac rl
system:administrators rlidwka
system:authuser rl

1203 cassandra /comp/security> du -k
35 ./satan.tutorials
15 ./slaconly
9 ./csc-policies/archive
30 ./csc-policies
42 ./archive
12970 ./CSA 10-27-99
2447 ./SecStanddown
2668 ./ExportRC
18294 .

*** N.B.: The total production of 18294 does not match the total
*** for the archived total of 18260 at least because:
*** 1) Didn't "cp -PR", h to force copying of sym link;
*** instead the file pointed to was copied. Compare
*** ls-sec-prod and ls-sec-arch under
*** ./slaconly/password.html
*** 2) /afs/slac/www/comp/security/.archive, created by
*** jxh, was not copied to the archive by default.
*** I have subsequently copied it by hand but have
*** not updated the ls-sec-prod & ls-sec-arch files.
*** See below.

1206 cassandra /comp/security> ls -LR | wc
322 2736 20447
1207 cassandra /comp/security> pwd
/afs/slac.stanford.edu/www/comp/security
1208 cassandra /comp/security> date
Tue May 2 12:55:29 PDT 2000
1209 cassandra /comp/security>

1255 cassandra /comp/security> date
Tue May 2 14:07:43 PDT 2000
1256 cassandra /comp/security> pwd
/afs/slac.stanford.edu/www/comp/security
1257 cassandra /comp/security> ls -la

**

total 222
drwxrwxrwx 9 root system 2048 Mar 10 15:54 ./
drwxrwxrwx 19 tonyj ey 2048 Feb 29 12:06 ../
drwxr-xr-x 2 jxh sf 2048 May 29 1998 .archive/
drwxrwxrwx 2 rdc system 6144 Oct 26 1999 CSA 10-27-99/
drwxrwxrwx 2 rdc system 4096 Oct 26 1999 Export-RC/
1260 cassandra /comp/security> du -k
1261 cassandra /comp/security> ls -la .archive
1262 cassandra /comp/security> ls -l .archive
1263 cassandra /comp/security> pwd
1264 cassandra /comp/security> date
Tue May 2 14:28:23 PDT 2000

*** UNIX Archive Commands for .../security: Output:

335 cassandra /2000/0502> date
Tue May 2 12:37:27 PDT 2000
336 cassandra /2000/0502> pwd

9/13/01
/afs/slac.stanford.edu/www/archive/2000/0502
359 cassandra /2000/0502> ls -l
total 54
drwxr-xr-x 2 winters sf 2048 May 02 12:19 CONTEXT/
-rw-r--r-- 1 winters sf 2725 May 02 12:35 README
drwxr-xr-x 4 winters sf 2048 May 02 11:48 comp/
-rw-r--r-- 1 winters sf 2047 May 02 12:33 ls-sec-prod
359 cassandra /2000/0502> ls -l CONTEXT
total 12
-r--r--r-- 1 winters sf 5179 May 02 12:19 jmdeken.eml
359 cassandra /2000/0502> ls -l comp
total 8
drwxr-xr-x 2 winters sf 2048 May 02 11:48 policy/
drwxr-xr-x 8 winters sf 2048 May 02 12:26 security/
359 cassandra /2000/0502> ls -l comp/security
total 210
drwxrwxrwx 2 winters sf 6144 Oct 26 1999 CSA 10-27-99/
drwxrwxrwx 2 winters sf 4096 Oct 26 1999 Export-RC/
-r--r--r-- 1 winters sf 25314 May 03 1995 GoodTimesHoax_FAQ
drwxrwxrwx 2 winters sf 4096 Oct 26 1999 SecStanddown/
drwxr-xr-x 3 winters sf 2048 Mar 23 16:23 csc-policies/
-rw-r--r-- 1 winters sf 7125 Nov 17 1997 grep
-rw-r--r-- 1 winters sf 5573 Oct 27 1997 mxconns.html
-rw-r--r-- 1 winters sf 7276 Mar 31 1998 nsecurity.html
-rw-r--r-- 1 winters sf 3596 Apr 10 1998 passpolicy.html
-rw-r--r-- 1 winters sf 2274 Mar 19 1999 password-changing.html
-rw-r--r-- 1 winters sf 8975 Mar 31 1998 password.html
-rw-rw-r-- 1 winters sf 7621 Aug 06 1999 password1.html
drwxrwxrwx 2 winters sf 2048 Jun 22 1995 satan.tutorials/
-rw-r--r-- 1 winters sf 9366 Oct 26 1999 security.html
drwxrwxrwx 2 winters sf 2048 Sep 03 1999 slaconly/
-rw-r--r-- 1 winters sf 5096 May 30 1998 websec.html
359 cassandra /2000/0502> fs listquota
Volume Name Quota Used % Used Partition
www.arc.00 70000 18317 26% 42%
359 cassandra /2000/0502> fs listacl
Access list for . is
Normal rights:
g-www rliwk
system:slac rl
system:administrators rliwk
system:authuser rl
359 cassandra /2000/0502> ls -lr comp/security >ls-sec-arch
364 cassandra /2000/0502> du -k comp/security/
12970 comp/security//CSA 10-27-99
2668 comp/security//Export-RC
2447 comp/security//SecStanddown
9 comp/security//csc-policies/archive
30 comp/security//csc-policies
35 comp/security//satan.tutorials
23 comp/security//slaconly
18260 comp/security/
365 cassandra /2000/0502> ls -l
total 94
drwxr-xr-x .2 winters sf 2048 May 02 12:19 CONTEXT/
-rw-r--r-- 1 winters sf 2725 May 02 12:35 README
drwxr-xr-x 4 winters sf 2048 May 02 11:48 comp/
-rw-r--r-- 1 winters sf 20472 May 02 12:41 ls-sec-arch
-rw-r--r-- 1 winters sf 20447 May 02 12:33 ls-sec-prod
373 $cassandra$ /2000/0502> diff ls-sec-prod ls-sec-arch | head -36
2,18c2,18
< drwrxrwrxw 2 rdc system 6144 Oct 26 1999 CSA 10-27-99/
< drwrxrwrxw 2 rdc system 4096 Oct 26 1999 Export-RC/
< -r-r-r- -- 1 jxh sf 25314 May 03 1995 GoodTimesHoax_FAQ
< drwrxrwrxw 2 rdc system 4096 Oct 26 1999 SecStanddown/
< drwrxrwrxw 3 wbj sf 2048 Mar 23 16:23 csc-policies/
< -rw-r-r- -- 1 wbj sf 7125 Nov 17 1997 grep
< -rw-r-r- -- 1 jxh sf 5573 Oct 27 1997 mxconns.html
< -rw-r-r- -- 1 rdc sf 7276 Mar 31 1998 nsecurity.html
< -rw-r-r- -- 1 rdc sf 3596 Apr 10 1998 passpolicy.html
< -rw-r-r- -- 1 rdc sf 2274 Mar 19 1999 password-changing.html
< -rw-r-r- -- 1 sf 8975 Mar 31 1998 password.html
< -rw-r-rw- 1 rdc sf 7621 Aug 06 1999 passwordl.html
< drwrxrwrxw 2 jxh sf 2048 Jun 22 1995 satan.tutorials/
< -rw-r-r- -- 1 jxh sf 9366 Oct 26 1999 security.html
< drwrxrwrxw 2 wbj sf 2048 Sep 03 1999 slaconly/
< -r-r-r- -- 1 jxh sf 5096 May 30 1998 websec.html
< . /CSA 10-27-99;

> drwrxrwrxw 2 winters sf 6144 Oct 26 1999 CSA 10-27-99/
> drwrxrwrxw 2 winters sf 4096 Oct 26 1999 Export-RC/
> -rw-r-r- -- 1 winters sf 25314 May 03 1995 GoodTimesHoax_FAQ
> drwrxrwrxw 2 winters sf 4096 Oct 26 1999 SecStanddown/
> drwrxrwrxw 3 winters sf 2048 Mar 23 16:23 csc-policies/
> -rw-r-r- -- 1 winters sf 7125 Nov 17 1997 grep
> -rw-r-r- -- 1 winters sf 5573 Oct 27 1997 mxconns.html
> -rw-r-r- -- 1 winters sf 7276 Mar 31 1998 nsecurity.html
> -rw-r-r- -- 1 winters sf 3596 Apr 10 1998 passpolicy.html
> -rw-r-r- -- 1 winters sf 2274 Mar 19 1999 password-changing.html
> -rw-r-r- -- 1 winters sf 8975 Mar 31 1998 password.html
> -rw-r-rw- 1 winters sf 7621 Aug 06 1999 passwordl.html
> drwrxrwrxw 2 winters sf 2048 Jun 22 1995 satan.tutorials/
> -rw-r-r- -- 1 winters sf 9366 Oct 26 1999 security.html
> drwrxrwrxw 2 winters sf 2048 Sep 03 1999 slaconly/
> -r-r-r- -- 1 winters sf 5096 May 30 1998 websec.html
> comp/security/CSA 10-27-99:

*** NB: "cp -P" preserves the date but not the creator or ACLs.***

I need to learn how to use tar to preserve those data.

374 $cassandra$ /2000/0502> ls -LR comp/security | wc
 322 2734 20472

377 $cassandra$ /2000/0502> wc ls-sec-arch
 322 2734 20472 ls-sec-arch
378 $cassandra$ /2000/0502> wc ls-sec-prod
 322 2736 20447 ls-sec-prod
379 $cassandra$ /2000/0502> pwd
/afs/slac.stanford.edu/www/archive/2000/0502
380 $cassandra$ /2000/0502> date
Tue May 2 12:54:51 PDT 2000

447 $cassandra$ /2000/0502> date
Tue May 2 14:11:48 PDT 2000
448 $cassandra$ /2000/0502> pwd
/afs/slac.stanford.edu/www/archive/2000/0502
449 $cassandra$ /2000/0502> ls -l comp/security/ .archive
total 80
-r-r-r- -- 1 winters sf 5456 Jun 04 1997 mxconns.html.1
*** Only difference in kilobytes now is for .../slaconf,
*** presumably due to different treatment of symbolic link.

451 cassandra /2000/0502> ls -la comp/security

Total 222

drwxr-xr-x 9 winters sf 2048 May 02 14:08 ./
drwxr-xr-x 4 winters sf 2048 May 02 11:48 ../
drwxr-xr-x 2 winters sf 2048 May 29 1998 .archive/
drwxrwxrwx 2 winters sf 6144 Oct 26 1999 CSA 10-27-99/
drwxrwxrwx 2 winters sf 4096 Oct 26 1999 Export-RC/
drwxrwxrwx 2 winters sf 25314 May 03 1995 GoodTimesHocan FAQ
drwxrwxrwx 2 winters sf 2048 Oct 26 1999 SecStanddown/
drwxr-xr-x 3 winters sf 2048 Mar 23 16:23 csc-policies/
-rw-r--r-- 1 winters sf 7125 Nov 17 1997 grep
-rw-r--r-- 1 winters sf 5573 Oct 27 1997 mxconns.html
-rw-r--r-- 1 winters sf 7276 Mar 31 1998 nsecurity.html
-rw-r--r-- 1 winters sf 3596 Apr 10 1998 passpolicy.html
-rw-r--r-- 1 winters sf 2274 Mar 19 1999 password-changing.html
-rw-r--r-- 1 winters sf 8975 Mar 31 1998 password.html
-rw-r--r-- 1 winters sf 7621 Aug 06 1999 password1.html
-rw-r--r-- 1 winters sf 2048 Jun 22 1995 satan.tutorials/
-rw-r--r-- 1 winters sf 9366 Oct 26 1999 security.html
-rw-r--r-- 1 winters sf 2048 Sep 03 1999 slaconf/
-rw-r--r-- 1 winters sf 5096 May 30 1998 webspic.html

452 cassandra /2000/0502> pwd
/afs/slac.stanford.edu/www/archive/2000/0502

453 cassandra /2000/0502> date
Tue May 2 14:22:27 PDT 2000

*** UNIX Archiving Commands for .../policy: Input:

1209 cassandra /comp/security> cd/policy
1210 cassandra /comp/policy> date
Tue May 2 12:57:20 PDT 2000
1211 cassandra /comp/policy> pwd
/afs/slac.stanford.edu/www/comp/policy

1213 cassandra /comp/policy> fs lq
Volume Name Quota Used % Used Partition
www 300000 179332 60% 42%
1214 cassandra /comp/policy> fs la

9/13/01
Access list for . is
Normal rights:
 g-www:comp-policy rlidwka
 system:slac rl
 system:administrators rlidwka
 system:authuser rl
1215 cassandra /comp/policy> ls -l
total 234
-rw-rwxr-x 1 cottrell sf 14312 Aug 28 1998 Image4.gif*
-rw-r--r-- 1 rdc sf 1654 May 06 1998 NT-Update-Policy.html
-rw-r--r-- 1 cottrell sf 1393 Dec 15 1997 block-email.html
-rw-r--r-- 1 boheism sf 2957 Mar 21 1996 node-names
-rw-r--r-- 1 rdc sf 2028 May 06 1998 policy.html
-rw-rwxrwx 1 cottrell sf 82432 Aug 28 1998 shared-phones.doc*
-rw-rwxrwx 1 cottrell sf 3843 Aug 28 1998 shared-phones.html*
-rw-r--r-- 1 rdc sf 8728 Jan 25 10:36 use.html

1224 cassandra /comp/policy> ls -lR | wc
9 74 564

1225 cassandra /comp/policy> cd..
1226 cassandra /www/comp> du -k policy
119 policy
1227 cassandra /www/comp> cd policy
1228 cassandra /comp/policy> pwd
/afs/slac.stanford.edu/www/comp/policy

*** UNIX Archive Commands for .../policy: Output:

381 cassandra /2000/0502> pwd
/afs/slac.stanford.edu/www/archive/2000/0502
382 cassandra /2000/0502> date
Tue May 2 13:01:00 PDT 2000
383 cassandra /2000/0502> ls -l
total 110
drwxr-xr-x 2 winters sf 2048 May 02 12:19 CONTEXT/
-drw-r--r-- 1 winters sf 9329 May 02 12:58 README
-drwxr-xr-x 4 winters sf 2048 May 02 11:48 comp/
-drw-r--r-- 1 winters sf 564 May 02 13:00 ls-pol-prod
-drw-r--r-- 1 winters sf 20472 May 02 12:41 ls-sec-arch
-drw-r--r-- 1 winters sf 20447 May 02 12:33 ls-sec-prod

408 cassandra /comp/policy> pwd
410 cassandra /comp/policy> cd ../..
411 cassandra /2000/0502> ls -l
total 116
drwxr-xr-x 2 winters sf 2048 May 02 12:19 CONTEXT/
-drw-r--r-- 1 winters sf 11310 May 02 13:07 README
-drwxr-xr-x 4 winters sf 2048 May 02 11:48 comp/
-drw-r--r-- 1 winters sf 564 May 02 13:19 ls-pol-arch
-drw-r--r-- 1 winters sf 564 May 02 13:00 ls-pol-prod
-drw-r--r-- 1 winters sf 20472 May 02 12:41 ls-sec-arch
-drw-r--r-- 1 winters sf 20447 May 02 12:33 ls-sec-prod
412 cassandra /2000/0502> wc ls-pol-arch
 9 74 564 ls-pol-arch

413 cassandra /2000/0502> wc ls-pol-prod
 9
 4 564 ls-pol-prod
414 cassandra /2000/0502> chmod a-w ls- *
415 cassandra /2000/0502> ls -l
total 116
 drwxr-xr-x 2 winters sf 2048 May 02 12:19 CONTEXT/
-rw-r--r-- 1 winters sf 11310 May 02 13:07 README
 drwxr-xr-x 4 winters sf 2048 May 02 11:48 comp/
-r--r--r-- 1 winters sf 564 May 02 13:19 ls-pol-arch
-r--r--r-- 1 winters sf 564 May 02 13:00 ls-pol-prod
-r--r--r-- 1 winters sf 20472 May 02 12:41 ls-sec-arch
-r--r--r-- 1 winters sf 20447 May 02 12:33 ls-sec-prod
416 cassandra /2000/0502> cd comp/policy
417 cassandra /comp/policy> fs la
Access list for . is
Normal rights:
 g-www rlidwka
 system:slac rl
 system:administrators rlidwka
 system:authuser rl
418 cassandra /comp/policy> fs lq
Volume Name Quota Used % Used Partition
 www.arc.00 70000 18466 26% 42%
419 cassandra /comp/policy> cd ..
421 cassandra /0502/comp> du -k policy
119 policy
430 cassandra /comp/policy> ls -l | wc
 9 74 564
431 cassandra /comp/policy> pwd

454 cassandra /2000/0502> fs listquota
Volume Name Quota Used % Used Partition
 www.arc.00 70000 18520 26% 42%
455 cassandra /2000/0502> pwd
/afs/slac.stanford.edu/www/archive/2000/0502
456 cassandra /2000/0502> date
Tue May 2 14:43:20 PDT 2000

*** README file created 2 May 2000 by Joan M. Winters, SLAC Computing Services

*** Rename "ls" files to more mnemonic names.

1305 cassandra /2000/0502> date
Mon May 22 12:32:23 PDT 2000
1306 cassandra /2000/0502> pwd
/afs/slac.stanford.edu/www/archive/2000/0502
1307 cassandra /2000/0502> ls -l
total 132
 drwxr-xr-x 2 winters sf 2048 May 02 14:40 CONTEXT/
-rw-r--r-- 1 winters sf 20327 May 02 17:50 README

9/13/01
drwxr-xr-x 4 winters sf 2048 May 02 11:48 comp/
-r----r--- 1 winters sf 564 May 02 13:19 ls-pol-arch
-r----r--- 1 winters sf 564 May 02 13:00 ls-pol-prod
-r----r--- 1 winters sf 20472 May 02 12:41 ls-sec-arch
-r-r-r-r--- 1 winters sf 20447 May 02 12:33 ls-sec-prod

1319 cassandra /2000/0502> mv ls-pol-arch ls-policy-archive
1320 cassandra /2000/0502> mv ls-pol-prod ls-policy-production
1321 cassandra /2000/0502> mv ls-sec-arch ls-security-archive
1322 cassandra /2000/0502> mv ls-sec-prod ls-security-archive
overwrite ls-security-archive? no
1323 cassandra /2000/0502> ls -l
total 132

drwxr-xr-x 2 winters sf 2048 May 02 14:40 CONTEXT/
-rw-r-r-- 1 winters sf 20327 May 02 17:50 README

1324 cassandra /2000/0502> mv ls-sec-prod ls-security-production

1431 cassandra /2000/0502> pwd
/afs/slac.stanford.edu/www/archive/2000/0502
1432 cassandra /2000/0502> date
Mon May 22 14:11:49 PDT 2000
1433 cassandra /2000/0502> whoami
winters
1434 cassandra /2000/0502> ls -l
total 136

drwxr-xr-x 2 winters sf 2048 May 02 14:40 CONTEXT/
-rw-r-r-- 1 winters sf 22254 May 22 14:11 README

1435 cassandra /2000/0502> mv ls* CONTEXT/.
1436 cassandra /2000/0502> ls -l
total 52

drwxr-xr-x 2 winters sf 2048 May 22 14:12 CONTEXT/
-rw-r-r-- 1 winters sf 22254 May 22 14:11 README
drwxr-xr-x 4 winters sf 2048 May 02 11:48 comp/

1437 cassandra /2000/0502> ls -l CONTEXT

1438 cassandra /2000/0502> rm CONTEXT/ls
rm: Remove CONTEXT/ls? y
1439 cassandra /2000/0502> ls -l CONTEXT/

1440 cassandra /2000/0502> ls -l

1441 cassandra /2000/0502> ls -l CONTEXT

total 106

-r----r--- 1 winters sf 5179 May 02 12:19 jmdeken.eml
-r----r--- 1 winters sf 0 May 22 12:33 ls
-r----r--- 1 winters sf 564 May 02 13:19 ls-policy-archive
-r----r--- 1 winters sf 564 May 02 13:00 ls-policy-production
-r----r--- 1 winters sf 20472 May 02 12:41 ls-security-archive
-r-r-r-r--- 1 winters sf 20447 May 02 12:33 ls-security-production
-r-r-r-r--- 1 winters sf 4441 May 02 14:40 lynda.eml

rm: Remove CONTEXT/ls? y
1442 cassandra /2000/0502> ls -l CONTEXT/
total 106

-r-r-r-r--- 1 winters sf 5179 May 02 12:19 jmdeken.eml
-r-r-r-r--- 1 winters sf 564 May 02 13:19 ls-policy-archive
-r--r--r-- 1 winters sf 564 May 02 13:00 ls-policy-production
-r--r--r-- 1 winters sf 20472 May 02 12:41 ls-security-archive
-r--r--r-- 1 winters sf 20447 May 02 12:33 ls-security-production
-r--r--r-- 1 winters sf 4441 May 02 14:40 lynda.eml

1440 cassandra /2000/0502> date
Mon May 22 14:14:53 PDT 2000

1776 cassandra /0522/CONTEXT> chmod u+w winters.eml
1777 cassandra /0522/CONTEXT> ls -l
 total 156
-rw-r--r-- 1 winters sf 20745 May 26 19:37 find-nmrf-archive
-rw-r--r-- 1 winters sf 20743 May 26 19:39 find-nmrf-production
-rw-r--r-- 1 winters sf 14470 May 26 19:29 ls-nmrf-archive
-rw-r--r-- 1 winters sf 14470 May 22 13:21 ls-nmrf-production
-rw-r--r-- 1 winters sf 5859 May 26 20:25 winters.eml

1778 cassandra /0522/CONTEXT> chmod u-w *
1779 cassandra /0522/CONTEXT> ls -l
 total 156
-r--r--r-- 1 winters sf 20745 May 26 19:37 find-nmrf-archive
-r--r--r-- 1 winters sf 20743 May 26 19:39 find-nmrf-production
-r--r--r-- 1 winters sf 14470 May 26 19:29 ls-nmrf-archive
-r--r--r-- 1 winters sf 14470 May 22 13:21 ls-nmrf-production
-r--r--r-- 1 winters sf 5859 May 26 20:25 winters.eml

1780 cassandra /0522/CONTEXT> cd ..
1781 cassandra /2000/0522> pwd
/afs/slac.stanford.edu/www/archive/2000/0522
1782 cassandra /2000/0522> ls -l
 total 34
drwxr-xr-x 2 winters sf 2048 May 26 20:25 CONTEXT/
drwxr-xr-x 3 winters sf 13222 May 26 20:10 README
drwxr-xr-x 2 winters sf 2048 May 22 13:32 xorg/

1783 cassandra /2000/0522> fs la
Access list for . is
Normal rights:
 g-www rliwka
 system:slac rl
 system:administrators rliwka
 system:authuser rl

*** README file updated 22 May 2000 by Joan M. Winters, SLAC Computing Services
*** Update included this last section and some comments throughout.

9/13/01
As discussed (now that I have enough room :-)), I've copied the entire production UNIX AFS WWW trees related to computing security at:

/afs/slac.stanford.edu/www/comp/security
/afs/slac.stanford.edu/www/comp/policy

into the UNIX AFS WWW archive at:

/afs/slac.stanford.edu/archive/2000/0502/comp/security
/afs/slac.stanford.edu/archive/2000/0502/comp/policy

This is a superset of what Lynda requested. Since the whole computing security Web area is being revised, it seemed reasonable to take an archival copy of the entire pair of spaces now.

For details on the process, see:

/afs/slac.stanford.edu/archive/2000/0502/README

N.B.: The archived files may link outside of .../archive space if they use fully qualified links. You can tell whether you're inside the archive or outside by the URL. Check to see if it includes the word "/archive". If so, you're inside.

The pages may also include current, not archived, images, if the links use fully qualified or partially qualified URL. Relative URL should point to archived images. To detect misleading, current images, you need to read the source (or remember [sometimes a riskier business...]).

Joan

----- Original Message -----
From: Lynda Winslow
To: winters@SLAC.Stanford.EDU
Sent: Saturday, April 22, 2000 10:28 PM
Subject: security files to archive

Hi Joan,

Here's the list of security files to copy into an archive (since they will be restructured and changed) so far:

* Changing passwords:
 http://www.slac.stanford.edu/comp/security/password-changing.html,
 vintage '98

* Password policy:
 http://www.slac.stanford.edu/comp/security/passpolicy.html, vintage
 '97

* Policies and Practices (its awful title is 'Netscape: HTML document for the World-Wide Web') at

9/13/01
* The "official" version of Richter's statement points to a page titled "Computing Policies" at http://www.slac.stanford.edu/comp/policy/policy.html, and that page needs to be archived and taken down.

* Windows NT security fixes page (http://www.slac.stanford.edu/comp/policy/NT-Update-Policy.html) is vintage 98. It needs a little formatting. If it is still correct, that's all.

So, none of these are in the www2 space!
And when I look around in that part of the web space, I'm not sure where I may be working yet for the security group. I guess maybe we'll wait on that.

Simba
Index of /archive/2000/0502/comp/policy

<table>
<thead>
<tr>
<th>Name</th>
<th>Last modified</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent Directory</td>
<td>02-May-2000</td>
<td>11:48</td>
<td>-</td>
</tr>
<tr>
<td>Image4.gif</td>
<td>28-Aug-1998</td>
<td>16:37</td>
<td>14k</td>
</tr>
<tr>
<td>NT-Update-Policy.html</td>
<td>06-May-1998</td>
<td>15:14</td>
<td>2k</td>
</tr>
<tr>
<td>block-email.html</td>
<td>15-Dec-1997</td>
<td>11:24</td>
<td>1k</td>
</tr>
<tr>
<td>node-names</td>
<td>21-Mar-1996</td>
<td>23:21</td>
<td>3k</td>
</tr>
<tr>
<td>policy.html</td>
<td>06-May-1998</td>
<td>15:22</td>
<td>2k</td>
</tr>
<tr>
<td>shared-phones.doc</td>
<td>28-Aug-1998</td>
<td>16:36</td>
<td>81k</td>
</tr>
<tr>
<td>shared-phones.html</td>
<td>28-Aug-1998</td>
<td>16:37</td>
<td>4k</td>
</tr>
<tr>
<td>use.html</td>
<td>25-Jan-2000</td>
<td>10:36</td>
<td>9k</td>
</tr>
</tbody>
</table>

Apache/1.3.12 Server at www.slac.stanford.edu Port 80
Windows NT Security Fixes

The Windows NT operating system is complex to maintain. Weaknesses have been and will continue to be exploited and improperly maintained systems put SLAC’s computing infrastructure at risk.

Policy

All NT servers and workstations shall be maintained at the current stable Service Pack for the release it is running; and all appropriate security related hotfixes shall be installed.

Exceptions on the basis of critical application requirements may be granted by the Domain Administrator and will be reviewed by the SLAC Computer Security Officer.

Windows NT systems will be audited by the SLAC Computer Security Officer and administrators shall demonstrate to the satisfaction of the Computer Security Officer that NT systems under their responsibility have appropriate service fixes installed.

The SLAC Computer Security Officer will maintain a list of security-related fixes with an explanation of the problems they address.

SCS recommends the use of SMS in order to reduce the time necessary to install fixes and maintain required documentation, and will work with domain administrators to implement SMS appropriately for their domain.

Owner: Bob Cowles
Last Modified May 6, 1998
EMAIL Blocking at SLAC

SLAC 21 August 1997

SLAC blocks email from any domain which delivers Unsolicited Commercial Email (spam) to SLAC and which has not delivered any legitimate email to SLAC during the previous 30 days. Once a domain has been blocked any attempts to deliver mail to SLAC will be terminated and an appropriate error message will be generated for the sending domain postmaster and user (if valid).

This action became necessary due to the increasing volume of unwanted email coming into SLAC. The emails are often offensive to SLAC users, they can interfere with legitimate work and delivery of such messages via SLAC computers constitutes abuse of Government property.

For more information on the volume of spams being seen, the error messages that may be seen by a user sending email through a "spamming domain", and how to find out more see: Email at SLAC

If you have further questions contact the SLAC Postmaster, Teresa Downey, either via email (Postmaster@SLAC.Stanford.Edu) or via telephone (x2903).

Richard Mount
Director, SCS
In order to associate clusters of workstations together, we encourage groups to establish a naming "theme" for Ethernet nodes within the group. This can be very helpful for SCS in diagnosing problems and as a means in general for determining whom to contact for any transaction concerning a particular node. It does, however, restrict choices for naming isolated nodes (so as to avoid collisions with established themes) and requires some care in choosing a theme. The choice should include enough candidates to accommodate all of the nodes anticipated in the group; on the other hand, it should not be so vast and nebulous as to preempt a major portion of the language.

As keeper of node names, the networking group must ultimately be the final judge on whether a proposed name or theme infringes upon existing themes. The summary below is a matrix of existing themes with a few examples of actual node names. This list shall be considered definitive; new themes, once they have been accepted, will be appended to the list.

<table>
<thead>
<tr>
<th>Group</th>
<th>Theme</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason Cluster</td>
<td>Names of elementary particles</td>
<td>kaon, bstar, bzero</td>
</tr>
<tr>
<td>B Factory</td>
<td>Names of birds</td>
<td>condor, penguin, crow</td>
</tr>
<tr>
<td>Tau-Charm</td>
<td>Names of painters</td>
<td>picasso, goya</td>
</tr>
<tr>
<td>SLD</td>
<td>Names of musical composers</td>
<td>bach, ravel</td>
</tr>
<tr>
<td>BES</td>
<td>Names of gem stones</td>
<td>topaz</td>
</tr>
<tr>
<td>Theory Group</td>
<td>The string "th" followed by the machine type ("next") followed by a letter or number or blank</td>
<td>thnext, thnextb</td>
</tr>
<tr>
<td>Acc. Physics</td>
<td>Names of famous accelerator physicists</td>
<td>hansen, courant</td>
</tr>
<tr>
<td>Group A Nexts</td>
<td>The string "ea" followed by the machine type ("next") followed by a letter</td>
<td>eanexta, eanextm</td>
</tr>
<tr>
<td>Group A RS/6000</td>
<td>Sesame Street characters</td>
<td>bigbird</td>
</tr>
<tr>
<td>Group B</td>
<td>The string "eb" followed by the machine type ("next") followed by a letter</td>
<td>ebnextk, ebnextm</td>
</tr>
<tr>
<td>Group E</td>
<td>Names of lizards and reptiles</td>
<td>iguana, gecko</td>
</tr>
<tr>
<td>Group G</td>
<td>The string "eg" followed by the machine type ("next") followed by a number</td>
<td>egnext1, egnext2</td>
</tr>
<tr>
<td>Group CD</td>
<td>Names of galactic X-ray sources (the brightest in the sky being Scorpio X1, hence sco-x1)</td>
<td>sco-x1</td>
</tr>
<tr>
<td>Group</td>
<td>Description</td>
<td>Examples</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>Group RD</td>
<td>The string "rd" followed by a number</td>
<td>rdl, rd2</td>
</tr>
<tr>
<td>SCS</td>
<td>Greek and Roman mythological names</td>
<td>sisyphus, circe</td>
</tr>
<tr>
<td>ES & H</td>
<td>Names of plants</td>
<td>elm, pine</td>
</tr>
<tr>
<td>CAD Group</td>
<td>A prefix string designating group or area followed by the machine type ["sun"] followed by a number</td>
<td>eldsun1, mesun1</td>
</tr>
</tbody>
</table>
Computing Policies

06 May 1998

Welcome | Highlighted | Detailed | What's New | Search | Phonebook

This is an early version of a Web page to centralize pointers to statements of Policy.

Use of SLAC Information Resources

Memo signed by Burton Richter in January, 1998

The primary SLAC policy statement governing the use of information resources.

Other Policy Statements

Stanford University policy

The "Computer and Network Usage Policy" for users of Stanford computing and network resources, signed by the President.

Windows NT Update Policy

Draft policy on maintaining security patches and fixes on Windows NT systems attached to the SLAC network.

Owner: Bob Cowles
The following notice applies to all users of SLAC information resources, authenticated or not, authorized or not.

NOTICE TO USERS

This computer system and/or its connection to the network of the Stanford Linear Accelerator Center (SLAC) is for authorized use only. Users (authorized or unauthorized) have no explicit or implicit expectation of privacy.

Any or all uses of this system or network and all stored or transmitted files may be intercepted, monitored, recorded, copied, audited, inspected, and disclosed to authorized site, government, and law enforcement personnel. By using this system or network, the user consents to such interception, monitoring, recording, copying, auditing, inspection, and disclosure at the discretion of authorized personnel.

Unauthorized or improper use of this system may result in administrative disciplinary action and civil and criminal penalties. By continuing to use this system you indicate your awareness of and consent to these terms and conditions of use. LOG OFF IMMEDIATELY if you do not agree to the conditions stated in this warning.

More detailed SLAC policy and rules for computing, including appropriate use, may be found at http://www.slac.stanford.edu/comp/security/csc-policies/info-res-use.html

The following notice applies to all members of the SLAC Community, including employees, collaborators, and other authorized users of SLAC information resources.

Use of SLAC Information Resources

Burton Richter, January 1998

Working at SLAC we have certain responsibilities imposed on us by Stanford University, and the U. S. Department of Energy regarding the use of information resources. As Director of the Laboratory, I want to remind everyone of these responsibilities and the serious consequences to us as individuals if we do not adhere to the regulations that govern us.

SLAC information resources are government property and, as such, are subject to "appropriate use" requirements found in federal law and the provisions of the SLAC contract pertaining to the proper use, protection, accountability and disposition of government property. These laws and policies apply to all data-communication and telecommunication facilities and services (including, but not limited to, e-mail, telephones, voice mail, faxes, SLAC data, networking services, storage media, computers and associated peripherals and software), whether for administration, research, teaching or other purposes. Connecting equipment not owned by SLAC to SLAC networks is a use of SLAC information resources.

Any member of the SLAC community who, without authorization, threatens the access and sharing of information is engaging in unethical and unacceptable conduct. Such unethical conduct includes destroying, altering, dismantling or damaging SLAC information resources, or.

interfering with access to or use of these SLAC resources.

The following is an outline of some of the responsibilities of those who use SLAC information resources.

This document, together with more detailed policy and security information including a link to the Stanford University Computer and Network Usage Policy, may be accessed at: http://www.slac.stanford.edu/comp/policy/policy.html, which will contain relevant new information as it develops.

General

- Suspected misuse of SLAC information resources must be reported at once. This is an affirmative duty. The SCS Help Desk (Ext. HELP [4357]) can ensure that you are put in contact with the proper authority for receiving such a report.
- SLAC information resources -- including browsing the World Wide Web (WWW) -- may only be used for work related to SLAC business. Minor incidental personal use is allowed if it satisfies the following criteria:
 - It does not impact or interfere with the employee's legitimate job performance;
 - It does not impact or interfere with the work of any other employee or the correct functioning of any SLAC information resource;
 - It does not support running a business or paid consulting;
 - It does not involve illegal activities or violate SLAC policy;
 - It does not involve any activity that will potentially embarrass SLAC, DoE or Stanford University or result in a loss of public trust.

- Confidential information such as data that might give unfair advantage to a vendor, e-mail, and personnel records is stored on SLAC computers:
 - Users should take appropriate steps to protect confidential information for which they are responsible. For information concerning the protection of data from unauthorized use, contact the SCS Help Desk.
 - Users should not attempt to gain unauthorized access to confidential information. Users suspecting that they have accidentally gained access to confidential information should not use or disseminate the information and should report the incident to security@slac.stanford.edu.

Computer Hardware and Software

- SLAC computer accounts are normally intended for use only by the individual assigned to that account. Each account holder is responsible for the resources used by that account and for taking necessary precautions to prevent others from using the account. Shared accounts require adequate justification and explicit authorization. Users shall not seek to gain or enable unauthorized access to information resources.
- Passwords must be chosen with care and not divulged to anyone. Different classes of system, for example business systems, scientific computing systems and accelerator control systems have different requirements on user passwords. Users are responsible for following the password policies for the systems on which they have accounts.
- Users shall not interfere with the intended use of SLAC information resources or without authorization: destroy, alter, dismantle, disfigure, prevent rightful access to, or otherwise interfere with the integrity of computer-based information and/or information resources.
Unauthorized copying of copyrighted software is strictly prohibited.

Electronic Communications

- Because electronic communications (e-mail, news groups, contributions, etc.) pertain to SLAC business, their content reflects on SLAC. Therefore, it is important that such items be professional and not personal in nature. Use of SLAC's electronic communication facilities to send fraudulent, harassing, obscene, threatening, racial, sexual or other unlawful messages is prohibited and illegal, as is use of SLAC information resources for lobbying of any kind.

- Electronic communication files such as e-mail are not intended for general dissemination. Unauthorized perusal of such files is not permitted. Conversely, sensitive data should not be sent as e-mail because no means of storage or transmission available at SLAC is completely secure.

- *SLAC's contract with the government makes virtually all information on SLAC computer systems, including e-mail, available to the government. It is not SLAC policy to routinely monitor e-mail. However, SLAC cannot and does not guarantee the privacy of e-mail communications.*

- E-mail may be discoverable in a legal proceeding and in some circumstances, e-mail may be retrievable even after it has been "deleted".

SLAC requires that users act in accordance with these responsibilities, SLAC policy, University policy, and relevant laws and contractual obligations. In order to assure all relevant parties that no misuse of resources occurs, SLAC reserves the right to sample stored or in-transit data at any time. Improper use of computing facilities may lead to disciplinary actions up to and including termination and/or legal action.

Burton Richter Director

Stanford Linear Accelerator Center
Index of /archive/2000/0502/comp/security

<table>
<thead>
<tr>
<th>Name</th>
<th>Last modified</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent Directory</td>
<td>02-May-2000 11:48</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CSA 10-27-99/</td>
<td>26-Oct-1999 16:51</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Export-RC/</td>
<td>26-Oct-1999 17:01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GoodTimesHoax_FAQ</td>
<td>03-May-1995 09:57</td>
<td>25k</td>
<td>-</td>
</tr>
<tr>
<td>SecStanddown/</td>
<td>26-Oct-1999 16:52</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>csc-policies/</td>
<td>23-Mar-2000 16:23</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>grep</td>
<td>17-Nov-1997 14:00</td>
<td>7k</td>
<td>-</td>
</tr>
<tr>
<td>mxconns.html</td>
<td>27-Oct-1997 19:13</td>
<td>5k</td>
<td>-</td>
</tr>
<tr>
<td>nsecurity.html</td>
<td>31-Mar-1998 15:26</td>
<td>7k</td>
<td>-</td>
</tr>
<tr>
<td>passpolicy.html</td>
<td>10-Apr-1998 11:58</td>
<td>4k</td>
<td>-</td>
</tr>
<tr>
<td>password-changing.html</td>
<td>19-Mar-1999 08:32</td>
<td>2k</td>
<td>-</td>
</tr>
<tr>
<td>password.html</td>
<td>31-Mar-1998 14:13</td>
<td>9k</td>
<td>-</td>
</tr>
<tr>
<td>password1.html</td>
<td>06-Aug-1999 00:52</td>
<td>7k</td>
<td>-</td>
</tr>
<tr>
<td>satan.tutorials/</td>
<td>22-Jun-1995 14:15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>security.html</td>
<td>26-Oct-1999 17:26</td>
<td>9k</td>
<td>-</td>
</tr>
<tr>
<td>slaconly/</td>
<td>03-Sep-1999 22:38</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>websec.html</td>
<td>30-May-1998 00:19</td>
<td>5k</td>
<td>-</td>
</tr>
</tbody>
</table>

Apache/1.3.12 Server at www.slac.stanford.edu Port 80
Click here to start

Table of Contents

Computer Security at SLAC
Organizational Placement
Security Staff
Security
Largest local impediments
Security Issues
Clear Text Passwords
Network
Network DMZ
Network (cont)
Hosts
General Host Principles
Host Policies
Intrusion Detection (Unix)
Host Policies
Applications - Web Servers
Applications - Email
Information Sources
Information Dissemination

Author: Bob Cowles
Email: rdc@slac.stanford.edu

Incident on 2 June 1998

Management Priorities

Constraints

Threat Analysis

Layered Solution - “Plan A”

PPT Slide

PPT Slide

Plan A Features

Plan A Features (cont)

Summary - Cooperation

Summary - What has been started

Summary - What Remains

Concerns

How can DOE help? - Don’t

How can DOE help? - Do
SAFEGUARDS & SECURITY Export Controls (What the heck is this?)

10/26/99

Click here to start

Table of Contents

SAFEGUARDS & SECURITY Export Controls (What the heck is this?)

What are we worried about? The wrong people getting stuff they shouldn’t.

SECURITY & EXPORT CONTROLS

An EXPORT is anything you give away, talk about, or sell in another country….

…and you have to get a license to “export” if what you’re conveying or the country you’re dealing with is on an export regulator’s list

EXPORT CONTROLLED TECHNOLOGY & INFORMATION

So much for REAL exports. The regulators are also worried about DEEMED EXPORT.

“DEEMED EXPORT” the release, even through conversation, of export controlled material to a foreign national in the United States

TYPICAL “Deemed” EXPORTS:

Other Types of Deemed Export:

How do you know if export controls apply?

ACTIVITIES NOT SUBJECT TO EXPORT CONTROL

Fundamental Research

Fundamental Research

Public Domain Information

Technology or information that is not subject to export controls may be freely released

Any Questions? Call x4343

Unclassified Cyber Security

10/26/99

Click here to start

Table of Contents

Unclassified Cyber Security

Contents

Policies - Use

Policies - Communications

Policies - Notices

PPT Slide

Policies - Consequences

Policy - Passwords

Passwords (cont)

Unencrypted Passwords & Sessions

Unencrypted Passwords (cont)

Preparation

Disaster

Mistake

Malicious

Malicious -2

Malicious -3

Hacked! What to do

New Environment

Author: Bob Cowles

Email: rdc@slac.stanford.edu

SysAdmin Role

Cyber Security - Summary

PPT Slide
Index of /archive/2000/0502/comp/security/csc-policies

<table>
<thead>
<tr>
<th>Name</th>
<th>Last modified</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent Directory</td>
<td>02-May-2000 14:08</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>archive/</td>
<td>23-Mar-2000 15:58</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>info-res-use.html</td>
<td>25-Jan-2000 10:36</td>
<td>9k</td>
<td></td>
</tr>
<tr>
<td>remote-access.html</td>
<td>13-Feb-1997 16:51</td>
<td>7k</td>
<td></td>
</tr>
<tr>
<td>slac-policies.html</td>
<td>18-Feb-1997 09:29</td>
<td>1k</td>
<td></td>
</tr>
</tbody>
</table>

Apache/1.3.12 Server at www.slac.stanford.edu Port 80
SLAC Remote Access Server Security Policies

Approved by ADCC: August 9, 1996

Why do we need to Worry about Remote Access Security?

From time to time, SLAC users have expressed interest in setting up their own SLIP/PPP service or other remote access service (such as the Windows NT Remote Access Server) on one of their machines on the SLAC network in order to provide access to an offsite machine such as a home computer. This would allow a dialin connection directly to a server on the SLAC network, inside the protective Internet firewall screen and not subject to the normal SLAC firewall protections. Such a server could be a potential back door to the entire SLAC network. If not carefully configured, an onsite remote access server would be a serious security risk to all of SLAC’s distributed environment.

Currently, SCS does not have the expertise or resources to configure, check, or otherwise manage such remote access servers, and we feel that it is better to put our resources into bringing up the new ISDN service, continuing to support AppleTalk Remote Access (ARA), and providing pointers on how to use external SLIP/PPP services, e.g. through campus.

Those who wish to set up remote access servers must obtain prior approval from the Security Committee and meet reasonable guidelines. Such servers must be carefully administered, otherwise crackers may exploit weaknesses to gain unauthorized access to SLAC computers, networks, and/or file systems. In the worst case this could result in the release of sensitive information, modification or destruction of data stored on SLAC’s computers, or even damage to apparatus controlled by these computers.

Government laboratories such as SLAC have proven to be tempting targets for crackers. In 1995 an intrusion into SLAC’s network from the Internet resulted in SLAC having to sever its connection to the Internet for several days, inconveniencing many remote collaborators who were prevented from performing their normal work at SLAC. In addition considerable time had to be expended checking for and removing effects of the break-in and beefing up security to prevent similar intrusions in the future. Although this attack was probably not performed via a remote access server, it is to everyone’s benefit to take reasonable precautions to prevent such intrusions taking place in the future.

The policies described below have been developed to minimize the exposure to remote access server breakins with an acceptable expenditure of effort/resources, while maintaining an environment in which the potential of remote access servers can be effectively exploited by SLAC groups. It must be understood that there is an implicit conflict between the requirements of security, the desire to exploit new technology for SLAC’s research and administrative needs, and the limited manpower to support new technologies. Even with the implementation of the policies described here, it is not possible to completely assure the security of SLAC’s network environment. The level of security described here is thought to be adequate for most of SLAC’s current requirements, however it is probably not adequate for applications which deal with highly sensitive information or where human safety may be affected.

Policies

In order to provide reasonable security and availability, we recommend that:

- SCS provides support for a few ways to access nodes at SLAC via dialin. This should minimize the demand for non-SCS remote access servers. Currently this includes:
 - An AppleTalk Remote Access (ARA) server within the firewall which requires username and password and in some cases dial back.
 - Documentation and/or pointers on how to access SLAC via SLIP/PPP services or Internet service Providers all outside the firewall.
 - An ISDN pilot with dialback where the "servers" are inside the SLAC firewall.
- Requirements for additional remote access servers should be documented and brought to the Security Committee for discussion and approval if appropriate. Guidelines for appropriateness will need to be worked out based on experience.
- No new remote access servers should be set up at SLAC without review and approval by the Security Committee and/or some higher authority.
- Any SLAC remote access server will be maintained by staff who will:
 - keep the operating system at a level supported by the vendor;
 - keep current with security patches, evaluate and expeditiously apply as appropriate;
 - have a thorough understanding of the vendor’s remote access server system, and particularly those aspects which affect security;
 - ensure that the remote access server can be used only by persons authorized to use SLAC’s computer and network resources;
 - ensure that the server properly restricts access to information;
 - ensure the administrator of the server, or a designate, will be available during working hours to expeditiously resolve problems;
 - keep and make available a current list of phone numbers where administrators or designates may be reached in a critical situation outside normal hours;
 - provide the ability to audit use via logs and to monitor exceptions;
 - If account/passwords are the chosen method of enhancing security then the user accounts and passwords must be well managed, this includes:
 - keeping a time stamped permanent record of all the accounts that have been created, together with access priviledges if appropriate
 - ensuring an account is removed or disabled when the owner should no longer have access to it (e.g. the owner is no longer associated with SLAC);
 - ensuring accounts are not shared by multiple users;
 - ensuring the passwords meet good practices.
 - If dialback is the chosen method of improving security, then the number to be dialed should be removed when a user should no longer have access.
- If all the remote accesses to a server are guaranteed to be restricted to the server itself (i.e. users connecting to the remote access server cannot access any other part of the SLAC network or the Internet by any means (e.g. FTP, finger, telnet, NFS)) then some of the above restrictions may be eased as we understand the issues more.

If an unauthorized remote access server is discovered, an attempt will be made to contact the owner(s) via phone and Email. If successful the owner will be apprised of the policies on remote access servers and requested to disable the remote access pending authorization. If the attempt to reach the owner(s) is unsuccessful or the user does not disable remote access, then measures will be undertaken to limit the effect (e.g. the server will be barred from the network pending authorization), and the Security Committee will be notified.

Acknowledgements

Much of the first section was derived from a similar section authored by Tony Johnson in the Web Security Document. We have had useful discussions with Dennis Wisinski on Windows NT Remote Access Services.

Les Cottrell and John Halperin
Policies and Practices

"Use of SLAC Information Resources" by Burton Richter
A summary of pertinent information for proper use of SLAC computers and networks

Policies for specific areas of computing

- Remote Access Services
 Policy for establishing Remote Access Services to machines at SLAC
- General Web Security Policies
 Policies concerning Web Security needs, Web Servers, and CGI Scripts
- User Home Pages
 Policy regarding content of User Home Pages for SLAC employees

Owner: Bill Johnson

This page was originally compiled by Bill Johnson.

SLAC (Last revised 18 February 1997)
NAME
mxconns - an X11 connection monitor

SYNOPSIS
mxconns [-dispno n] [-hunt] [-verbose]

DESCRIPTION
mxconns is an X11 proxy, i.e., a virtual X11 server (or "display") which can be used as a protective
front end for your real X11 server. Each time an X11 application connects to this virtual display,
mxconns asks you if the new connection should be accepted. If so, mxconns relays the connection
through to your real X11 display.

To use mxconns, start it up on a Unix machine at SLAC with the DISPLAY pointing to your real
X11 display, then start all new X11 applications with their DISPLAY pointing to mxconns's
virtual display. (See the "Examples" section below.) It's also a good idea to make sure your real
display is secured by using "xhost -".

mxconns puts up a small control window which shows all the X11 connections being relayed.
Double-clicking on an active connection will close it. Closing the mxconns control window itself
will close all the connections and terminate mxconns.

OPTIONS
-dispno n
specify the display number of the virtual display to be created; the default is 5. (The display
number is the number after the ":" in the standard X11 display name, e.g., the "0" in
"ncd24.slac.stanford.edu:0". Unlike real display numbers, virtual display numbers usually
would not be 0.)

-hunt
try all virtual display numbers, starting with the value given as -dispno, until an unused
number is found.

-verbose
print the full name of the created virtual display in the same format (hostname:number) that
is used by the DISPLAY environment variable; this is useful with the -hunt option.

EXAMPLES

1. If you're using an NCD XTerminal at SLAC with a xterm shell window on vesta02, and you want
to run a shell at ajax.state.edu with the display sent back to your NCD:

 vesta02% mxconns -hunt -verbose &
 vesta02.SLAC.Stanford.EDU:7

 [The preceding line is a message from mxconns which gives the name of the virtual display that it
 has created. You will need this information to set the DISPLAY variable on ajax.]

 vesta02% telnet ajax.state.edu

 [login at ajax, then continue as follows]
ajax\$ setenv DISPLAY vesta02.slac.stanford.edu:7
ajax\$ xterm -name ajax &

[A dialog box will ask you to OK the connection with ajax.state.edu.]

2. If you need to open an X application from an OpenVMS machine outside SLAC, first logon to a Unix machine at SLAC. Set the DISPLAY environment variable to point to the machine on your desk and start mxconn

set display/create/transport=tcpip -
/node=vesta02.slac.stanford.edu/server=7

You will then be able to run your X application.

3. In a csh or tcsh script, start up mxconn and capture the resulting virtual DISPLAY value to use in a subsequent rsh command:

set rmdisplay=`mxconn -hunt -verbose &`
set cmd="xterm -display $rmdisplay \"< /dev/null >& /dev/null &"

SEE ALSO
X(n), xauth(n), xhost(n).

BUGS
1. The mxconn control window must not be iconified, otherwise the dialog box for accepting new connections won't appear. (However, it's OK to bury the control window beneath other windows.)

2. mxconn does not recognize standard X Toolkit options such as -display.

PROGRAM AUTHORS
Original code (xconn) by der Mouse (mouse@collatz.mcrcim.mcgill.edu).
Motif rewrite by Vaughan Clarkson (vaughan@ewd.dsto.gov.au).
Fixes, extensions and documentation by Lionel Cons (Lionel.Cons@cern.ch).
Minor fixes and modifications by John Halperin (jxh@slac.stanford.edu).

[SLAC] [SLAC Computer Security]

This page last revised 27 October 1997.
John Halperin - <jxh@slac.stanford.edu>

Changing Passwords

Everyone is encouraged to change their password to a "strong" password of 7 or 8 characters in length (there are problems with passwords longer than 8 characters on some systems). For more information on passwords, see the web page at http://www.slac.stanford.edu/comp/security/passpolicy.html If you have a common password for your accounts, be sure to change them all. Due to various restrictions on acceptable passwords, it is best to start by changing your VMS password (if you have a VMS account), then your Windows NT password (if you have a Windows NT account, and finally your Unix password.

- To change your VMS password, use the 'set password' command and follow the prompts.
- To change your Windows NT password, press Ctrl+Alt+Del and select Change Password from the displayed dialog box.
- To change your Unix password, login to VESTA, enter the 'password' command and follow the prompts.
- If you don't use Unix but have a POP (Eudora) account, you can use Eudora to change your POP and Unix password -- look for "Change Password..." under the "Special" menu.

Remember that changing your Unix password will also change your email password if you use a POP or IMAP client, e. g. Eudora or Netscape Messenger, but it will not change your Windows NT or VMS password. Some systems propagate your password to other systems, so it may take up to 60 minutes for password changes to take effect. Please note that computer accounts for accessing MCC systems and for Windows NT accounts with update permission for PeopleSoft in BIS should NOT have a common password with your other accounts.

Owner: Bob Cowles

Created 10 April 1998
Suggestions for Selecting Good Passwords

This article on choosing good passwords is by Lionel Cons of group CN/SW at CERN. It appeared in CERN Computer Newsletter 210. Mr. Cons kindly allowed us to adapt it for SLAC users.

Introduction

A good password:

- is not guessable by any program in a reasonable time (less than one week)
- is easily remembered (so there is no need to write it down)
- is private (it is used and known by one person only)
- is secret (it does not appear in clear text in any file or program or on a piece of paper pinned to the terminal).

Remark: even if you use very good passwords you should change your passwords from time to time (at least twice a year).

Why you should choose good passwords

The use of a bad password may allow someone to use your account and therefore to use, modify, corrupt or destroy any of your files or any files that you are allowed to modify.

As many of the computers at SLAC are connected together, the mis-use of one account on one computer may lead to problems for several accounts on several machines, including big, expensive ones.

As stated in the 'Computer Account Responsibilities' form (a set of rules agreed by every user of a SLAC computer requiring an account) every user must take care of protecting his/her account and data. If you use a bad password, you allow someone to use or mis-use SLAC facilities and you are responsible for that. Furthermore, if someone using your account caused problems, you will be accused of this and you've got no means to prove that it was not you!

How many passwords should you have?

You will probably hear conflicting advice on this topic. On the one hand, having one good password that you can remember is a convenience, helps keep you from the hassle of getting your passwords reset if you forget them, and helps keep you from committing the security breach of writing your passwords down. One the other hand, if someone does obtain your password, they have access to all of your accounts on all systems. This is one of the primary ways that hackers jump from system to system and site to site.

It also doesn't matter how hard your password is to guess. One of the primary methods used by hackers today to collect passwords are 'sniffers' on the ethernets of places they've broken into. We try hard to keep them off of the SLAC network, but if you log in via the network from another site, or from home using a service provider, you expose your password to potentially being 'sniffed'. There have been a half-dozen such cases among the SLAC users in the past year, so it is a very real risk.

A good compromise is to have one password for each security 'domain' that you deal with. A security domain can be thought of as an area that has distinct security requirements that should keep it separate from other things that you do. For instance, if you have several accounts for general use, email, etc. at SLAC, they could all use the
Suggestions for Selecting Good Passwords

same password. If you had another account at SLAC that had administrator or super-user privileges on a machine, then that is a separate domain and should have a different password. An account that lets you alter information in SLAC’s business system or control the accelerator should be kept separate from your POP mail account. Accounts at SLAC should have different passwords from accounts at other places. You especially should not have the same password on an online service provider as you do on your SLAC account. Passwords for web-based services and other internet services are generally not very secure and shouldn’t be reused for your SLAC accounts.

If you’re unsure about the security requirements of systems that you have access to, ask your system administrator whether there are any guidelines, or possibly even some strict requirements, about password selection and management that should apply to you.

How to choose a password that is not easily guessable

The programs that try to guess passwords (or the attacker of a machine) do not try all existing passwords, they only try a large number (10^8) of “frequently used” passwords. So if you stay out of this search space you are safe; to do so you can follow the following guidelines:

First, here is what you should NOT do:

- Don’t use your login name in any form (as-is, reversed, capitalized, doubled, with a prefix, with a suffix, etc.).
- Don’t use in any form your first or last name and, more generally, any information easily obtained about you. This includes license plate numbers, telephone numbers, social security numbers, the make of your car, the name of the street you live on, the name of your spouse or of your children, etc.
- Don’t use a word contained in any dictionary of any language, spelling lists, or other lists of words (acronyms, sequences of letters like ‘abcdef’ or ‘qwerty’, place names, car names, cartoon heroes, etc.).
- Don’t use a password shorter than six characters or with only alphabetic characters or only digits.

Then, here is what you should do:

- Do use a password with mixed-case alphabets, digits, punctuation.
- Do use long passwords (with more than 6 characters).

Important note: please remember that each operating system impose its own restrictions:

- UNIX: you can use all printable characters, case IS significant and only the first 8 characters will be used, so in the password ‘computer+3,Z’ only ‘computer’ is significant and the remaining characters will be ignored.
- VM: you can use only alphanumeric characters, case IS NOT significant and the maximum length is 8.
- VMS: you can use all printable characters, case IS NOT significant and you can use long passwords (up to 32 characters).

Finally, here are some methods for making passwords:

- Choose a line or two from a song or poem, and use the first letter of each word. For example, 'In Xanadu did Kubla Kahn a stately pleasure dome decree' becomes 'lxdkKaspdd'.
- Alternate between one consonant and one or two vowels, up to eight characters, do use mixed-case. This

provides nonsense words that are usually pronounceable, and thus easily remembered (ex: 'roUtboo', 'quADpop', and so on).

- Choose two short words (or a big one that you split) and concatenate them together with a punctuation character between them (or a digit if you can only use alphanumeric characters). For example: 'dog+F18' or 'comP7UTer'. Note that 'dog', 'F18' or 'computer' are in dictionaries but as the passwords use punctuation or digits, mixed-case character, they are really hard to guess.

Remark: if you use mixed-case characters, do not use the following methods:

- all lowercase or all uppercase
- only the first or the last character in uppercase
- only vowels in uppercase
- only consonants in uppercase.
Guide to Changing Passwords for SLAC Computer Users

5 Jun 98, updated 22 Jul 99

Because of their open environments, many machines at educational institutions are vulnerable to attack. SLAC users logging in from these open environments or from machines provided by a conference should minimally use Secure Shell software (e.g. ssh, teraterm pro) so their passwords are not sent in an unencrypted form. Users attending a conference where a secure login program such as ssh is not available should consider borrowing a laptop from the Help Desk (if you are not familiar with setting up IP addresses and modem properties in Windows, don't leave this until the last minute!).

Passwords for accounts that have roughly the same level of security (e.g., Unix, Eudora, Windows NT) may be the same, and there are reasonable productivity advantages from using the same password for all these systems. The password used for these systems should be different than that used for non-SLAC accounts you may have access to. (Most recent security incidents are the result of having the same password on external accounts which were compromised.)

If you have passwords for Mission Critical Systems (e.g. Accelerator Controls, Business Information Systems), **they should be different** than any of your other passwords, and it is strongly suggested you use a different algorithm for selecting these passwords.

Eudora accounts are basically Unix accounts, sometimes of a restricted nature. If you are an Eudora user, you can change your password by selecting "Special" then "Change password..." and follow the prompts. Unix users need to login to a 'vesta' (not a Solaris machine) and issue the 'password' command. We have implemented restrictions for Windows NT passwords to enforce some of these rules, so people with both Windows NT and Unix or email accounts may want to pick an NT password before using the same password for Unix and email. The Windows NT passwords must be at least 7 characters long (for a number of reasons, do not try to set passwords longer than 8 characters):

1. Password must be 7 or 8 characters in length.
2. Password must contain **three of the four** following character sets:
 - English upper case (A-Z),
 - English lower case (a-z),
 - Numerics (0-9), and
 - Special characters such as punctuation symbols.

Examples of insecure passwords:

- Merman
- *vincent
- 52598134
- PArAde
- trebor1
- lJimmy2

Examples of secure passwords:

3. A combination of all above criteria would result in a more secure password (recommended for all users). The password for NT must contain characters from at least 3 of the sets and must not contain a string derived from your name or userid. For best results, do not place the "unusual" characters only at the beginning or end of the password. Note that some systems (e.g. VMS and Oracle) may treat upper and lower case characters in the password as the same. There also may be some restrictions on the special characters (Oracle does not allow slash (/), at-symbol (@), ampersand (&), or quote (") in passwords).

4. DO NOT USE Birthdays, names or other passwords which would be easy to guess, the idea is to choose something which does not reside in any dictionary or in any language.

5. Never write your password down, i.e., DO NOT PUT A POST-IT WITH YOUR PASSWORD WRITTEN ON IT AND ATTACH IT TO YOUR MONITOR (or under your mousepad).

If you have a Windows NT account change that password FIRST, then change your Unix, Eudora, etc.

Password changes should go into effect within 30 minutes.

Changing Your Password

To change your password in Windows NT:

1. Log into your account as usual, from an NT machine Do not log in from a MAC or from Win 95/98 to change your Windows password (the change may appear to be successful but could leave you with an old or null NT password). Be sure you are not logged onto a Windows machine in any other location (and do not have scheduled processes running) or after you change your password there will be a conflict causing your account to be locked.

2. Once logged in, press the CTRL-ALT-DEL keys all at once.

3. Click the "Change Password" button in the dialog box that comes up.

4. Follow the prompt to change your password using the criteria above, using TAB or mouse to change fields.

5. If you are going to change your Eudora password too, do that now and then LOGOFF; otherwise just LOGOFF for 30 minutes.

Password changes should go into effect within 30 minutes.

To change your password in Eudora and Eudora Pro:

If you login to Unix, this will change your Unix and AFS passwords as well. If your AFS and Unix/Eudora passwords are not the same, you will receive an error message.

1. Start Eudora as Usual.
2. Go to the Special Menu and Select "Change Password".
3. Follow the prompt to change your password using the criteria above.
4. LOGOFF of NT for 30 minutes to allow passwords to resynchronize.
Password Change Instructions

Password changes should go into effect within 30 minutes.

To change your password in Unix:

1. Log into your Unix shell on a vesta machine (use 'ssh' rather than 'telnet', if possible, so your new password is encrypted as it travels across the network).
2. Type: "password"
3. Follow the prompt to change your password using the criteria above.

To change your MCC or "SCP" password:

1. Start a terminal session on mcc
2. Type "set password" and follow the prompt.

To change your password in VMS:

1. Start a VMS Session
2. At the prompt type "set password" and follow the prompt.

Contact your System Administrator or the SCS help desk (ext. 4357) for questions on changing passwords.

Page owner: Bob Cowles.
Index of /archive/2000/0502/comp/security/satan.tutorials

<table>
<thead>
<tr>
<th>Name</th>
<th>Last modified</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent_Directory</td>
<td>02-May-2000</td>
<td>14:08</td>
<td>-</td>
</tr>
<tr>
<td>FTP_vulnerabilities...</td>
<td>31-Mar-1995</td>
<td>01:14</td>
<td>2k</td>
</tr>
<tr>
<td>NFS_export_to_unpriv...</td>
<td>31-Mar-1995</td>
<td>01:14</td>
<td>3k</td>
</tr>
<tr>
<td>NFS_export_via_portm...</td>
<td>31-Mar-1995</td>
<td>01:14</td>
<td>2k</td>
</tr>
<tr>
<td>NIS_password_file_ac...</td>
<td>31-Mar-1995</td>
<td>01:14</td>
<td>2k</td>
</tr>
<tr>
<td>REXD_access.html</td>
<td>31-Mar-1995</td>
<td>01:14</td>
<td>2k</td>
</tr>
<tr>
<td>SATAN_password_discl...</td>
<td>11-Apr-1995</td>
<td>01:13</td>
<td>6k</td>
</tr>
<tr>
<td>Sendmail_vulnerabilities...</td>
<td>03-Apr-1995</td>
<td>02:28</td>
<td>2k</td>
</tr>
<tr>
<td>TFTP_file_access.html</td>
<td>31-Mar-1995</td>
<td>01:14</td>
<td>1k</td>
</tr>
<tr>
<td>remote_shell_access...</td>
<td>31-Mar-1995</td>
<td>01:14</td>
<td>2k</td>
</tr>
<tr>
<td>unrestricted_NFS_exp...</td>
<td>31-Mar-1995</td>
<td>01:14</td>
<td>2k</td>
</tr>
<tr>
<td>unrestricted_X_serv...</td>
<td>31-Mar-1995</td>
<td>01:14</td>
<td>2k</td>
</tr>
<tr>
<td>unrestricted_modem.html</td>
<td>31-Mar-1995</td>
<td>01:14</td>
<td>1k</td>
</tr>
<tr>
<td>writable_FTP_home_di...</td>
<td>01-Apr-1995</td>
<td>01:14</td>
<td>1k</td>
</tr>
</tbody>
</table>

Apache/1.3.12 Server at www.slac.stanford.edu Port 80
SLAC Firewall

Last Update: September 3, 1999

Welcome | Highlighted | Detailed | Search

[SLAC Computing | SLAC Computer Networking]

All Internet traffic between SLAC and the external world goes through a firewall router. Among other things this router blocks spoofing of IP packets which arrive from outside but are allegedly "from" SLAC. The firewall also blocks several insecure protocols, the most important of which are:

- Telnet
- The "r-commands": rsh, rlogin, rexec, rep, and rdist. (rsh is blocked for outgoing as well as incoming connections.)
- NFS
- Microsoft Windows networking services (e.g. file and print access)
- TFTP and BOOTP (used for booting Xterminals)
- X11 and XDMCP
- FTP except to registered SLAC FTP servers
- WWW (HTTP), except to registered SLAC Web servers
- Mail (SMTP), POP, and IMAP, except via designated SLAC mail gateways
- Finger
- Simple Network Management Protocol (SNMP)

In addition, the following services, although not blocked by the firewall, only allow access to computers attached to the SLAC network:

- SLAC Web pages marked as being "slaonly".
- Web access to some SPIRES and CANDO databases.
- Most of SLAC's AFS file system, except that /afs/slac.stanford.edu/public/* is world-visible.

If you want more details on what services are blocked if you are outside SLAC's Internet security firewall then contact John Halperin. or send email to security@slac.stanford.edu.

[Feedback]
Owners: John Halperin and Bob Cowles
Security and the Web

Last revised $Date: 1998/05/30 07:19:26 $ (GMT)

Contents

- General Web Security Information
- CGI Scripts
- Java

General Web Security Information

See Lincoln Stein's highly-regarded *The World Wide Web Security FAQ*. This document is recommended for all Web users, and it should be considered a must-read for CGI script authors and Web masters.

CGI Scripts

- **WWW Security FAQ** (Lincoln Stein) -- see the sections on "CGI Scripts" and "Safe Scripting in Perl". **Anyone writing CGI scripts should read and understand this document.**
- **Safe CGI Programming** (Paul Phillips) -- oriented towards Perl, C, and C++ programmers
- **Writing More Secure CGI Scripts** (Les Cottrell) -- oriented towards REXX programmers
- **SLAC's CGI Script Security Wrapper** (Les Cottrell) -- information about a wrapper program used at SLAC to provide some security enhancements

Java

"Java" is an object-oriented programming language invented by Sun Microsystems. It is designed to be platform- and CPU-independent.

Note: Do not confuse Java with Netscape's JavaScript; they are entirely different.

Java "applets" are Java programs that are loaded over a network. In the context of the Web, applets are downloaded from Web servers and are executed by the user's Java-enabled browser. **It is important to understand that applets run on your own machine and with your own account and access permissions.** From a security standpoint, this is very different than CGI scripts, which run on the server machine under some system account.

Applets are designed to run with greater security constraints than Java programs that are loaded from the computer's own filesystem. However, there have been many problems with the security of actual Java implementations, including Netscape's. Because of these problems, we recommend that you disable both Java and JavaScript in your Netscape browsers. If they are not disabled, it is important that you restrict your "surfing" to pages and sites that you know and trust. (As of October, 1996, this

recommendation applies to all current Java- or JavaScript-capable Netscape browsers.)

Java References

- Applets Security FAQ (Sun)
- Princeton research on Java security problems including "Java Security: From HotJava to Netscape and Beyond" (5/96 paper) and "Security Flaws in Sun's HotJava Browser" (11/95 paper)
- General Information about Java (Sun) -- White paper

Welcome | Highlighted | Detailed | Search

[Computing Security at SLAC | SLAC WWW Support | Computer Networking]

[Feedback]

John Halperin
This is file /afs/slac.stanford.edu/www/archive/2000/0522/README

The Task Force includes SLAC among other organizations; hence .../nmtf is in the /xorg part of the production SLAC WWW information architecture.

See .../0522/CONTEXT/ls-nmtf-production for a list of the original tree's contents. Can be checked against a list of the archived copy in .../0522/CONTEXT/ls-nmtf-archive. Similar information is in the find-nmtf-production and find-nmtf-archive pair of files. These are output of the "find" command, recommended by Bob Cook to be more human- and machine-readable than the output of "ls".

Bob Cook says gtar is more reliable than "cp -pr", or even "cp -prh", under all possible circumstances. Since I do not have privileges, the original user and group values are not preserved; but they are recorded in the "ls" or "find" outputs in .../CONTEXT.

This archive is a superset of Lynda Winslow's request. See /afs/slac/www/archive/2000/0522/CONTEXT for context information about this archiving task, e.g., requesting email.

The production files were copied from UNIX WWW production space into UNIX WWW archive space. Cut-and-paste of the main UNIX commands to perform the task with their outputs are below. Within the commands and output section, comments are prefixed by three asterisks ("***").

*** UNIX Archiving Commands for .../xorg/nmtf:
*** Archive tree setup by winters:

1350 cassandra /archive/2000> date
Mon May 22 12:48:39 PDT 2000
1351 cassandra /archive/2000> pwd
1352 cassandra /archive/2000> ls -l
total 8
 d-rwxr-xr-x 3 winters sf 2048 Mar 08 12:26 0308/
 d-rwxr-xr-x 4 winters sf 2048 May 22 12:34 0502/
1353 cassandra /archive/2000> mkdir 0522
1354 cassandra /archive/2000> cd 0522
1355 cassandra /2000/0522> axe README &
[4] 10306
1356 cassandra /2000/0522> mkdir CONTEXT
1357 cassandra /2000/0522> whoami
winters
1361 cassandra /xorg/nmtf> date
Mon May 22 13:17:28 PDT 2000
1362 cassandra /xorg/nmtf> pwd
/afs/slac.stanford.edu/www/xorg/nmtf
1363 cassandra /xorg/nmtf> fs listacl
Access list for . is
Normal rights:
g-ww: g-admin r lidwka
g-ww: g-scs r lidwka
system:slac r l
system:administrators r lidwka
system:authuser r l

*** Decided to create ls of production space without "-h" option to include attributes of any actual pages displayed now (vs. sym link attributes).
*** Comments welcome.
1364 cassandra /xorg/nmtf> ls -1R /afs/slac/www/archive/2000/0522/CONTEXT/ls-nmtf-p
1365 cassandra /xorg/nmtf> ls -1 /afs/slac/www/archive/2000/0522/CONTEXT/*
-rw-r-r-- 1 winters sf 14470 May 22 13:21 /afs/slac/www/archive/2000/0522
1366 cassandra /xorg/nmtf> wc /afs/slac/www/archive/2000/0522/CONTEXT/ls-nmtf-produ

1377 cassandra /xorg/nmtf> date
Mon May 22 13:27:20 PDT 2000
1378 cassandra /xorg/nmtf> du -k .
777 ./eowg-nov96
864 ./escc-princeton-96
12938 .
1379 cassandra /xorg/nmtf> pwd
/afs/slac.stanford.edu/www/xorg/nmtf

1384 cassandra /2000/0522> pwd
/afs/slac.stanford.edu/www/archive/2000/0522
1385 cassandra /2000/0522> date
Mon May 22 13:28:58 PDT 2000
1386 cassandra /2000/0522> ls -l
total 10
drwxr-xr-x 2 winters sf 2048 May 22 13:21 CONTEXT/
-rw-r--r-- 1 winters sf 2702 May 22 13:30 README
1387 cassandra /2000/0522> ls -1 CONTEXT/
total 30
-rw-r--r-- 1 winters sf 14470 May 22 13:21 ls-nmtf-production
1388 cassandra /2000/0522> head CONTEXT/ls-nmtf-production
total 22598
-rw-r--r-- 1 cottrell sf 688 Oct 25 1996 agenda-96-10.txt
-rw-r--r-- 1 cottrell sf 2597 Apr 20 1997 agenda-97-04.txt
-rw-r--r-- 1 cottrell sf 984 Dec 15 1995 alerts.html
-rw-r--r-- 1 cottrell sf 976 Dec 15 1995 analysis.html
-rwxrwxrwx 1 cottrell sf 1014 Apr 25 1997 attendees-97-04.txt
-rw-r--r-- 1 cottrell sf 1050 Dec 15 1995 budget.html
-rw-r--r-- 1 cottrell sf 1533 Oct 12 1995 charter-actions.html
-rw-r--r-- 1 cottrell sf 904 Jul 03 1995 charter-goals.html
-rw-r--r-- 1 cottrell sf 1392 Dec 15 1995 complex.html
1389 cassandra /2000/0522> mkdir xorg
1390 cassandra /2000/0522> cd xorg
1391 cassandra /0522/xorg> mkdir nmtf
1392 cassandra /0522/xorg> cd
1393 cassandra /archive/2000> ls -1r xorg
ls: 0653-341 The file xorg does not exist.
1394 cassandra /archive/2000> cd 0522
1395 cassandra /2000/0522> ls -1r xorg
total 4

9/13/01
drwxr-xr-x 2 winters sf 2048 May 22 13:32 nmtf/
1396 cassandra /2000/0522> fs listquota /afs/slac/www/xorg/nmtf
Volume Name Quota Used % Used Partition
www.xorg.nmtf 25000 12938 52% 40%

1411 cassandra /xorg/nmtf> ls -l | grep "/"
drwxr-xr-x 2 cottrell sf 4096 Nov 19 1996 eowg-nov96/
drwxr-xr-x 2 cottrell sf 4096 Nov 05 1996 escc-princeton-96/
1412 cassandra /xorg/nmtf> pwd
/afs/slac.stanford.edu/www/xorg/nmtf
1413 cassandra /xorg/nmtf> date
Mon May 22 13:45:31 PDT 2000
1414 cassandra /xorg/nmtf> fs listacl eowg-nov96
Access list for eowg-nov96 is
Normal rights:
g-www:g-admin rldwka
g-www:g-scs rldwka
system:slac rl
system:administrators rldwka
system:authuser rl
1415 cassandra /xorg/nmtf> fs listacl escc-princeton-96/
Access list for escc-princeton-96/ is
Normal rights:
g-www:g-admin rldwka
g-www:g-scs rldwka
system:slac rl
system:administrators rldwka
system:authuser rl
1416 cassandra /xorg/nmtf> date
Mon May 22 13:46:46 PDT 2000

1443 cassandra /2000/0522> date
Mon May 22 14:15:20 PDT 2000
1444 cassandra /2000/0522> ls -l
total 20
drwxr-xr-x 2 winters sf 2048 May 22 13:21 CONTEXT/
-rw-r--r-- 1 winters sf 5400 May 22 14:00 README
drwxr-xr-x 3 winters sf 2048 May 22 13:32 xorg/
1445 cassandra /2000/0522> cd CONTEXT
1446 cassandra /0522/CONTEXT> ls -l
total 30
-rw-r--r-- 1 winters sf 14470 May 22 13:21 ls-nmtf-production
1447 cassandra /0522/CONTEXT> chmod u-w ls-nmtf-production
1448 cassandra /0522/CONTEXT> date
Mon May 22 14:15:50 PDT 2000
1449 cassandra /0522/CONTEXT> whoami
winters

1451 cassandra /0522/CONTEXT> ls -l
total 30
-rw-r--r-- 1 winters sf 14470 May 22 13:21 ls-nmtf-production
1452 cassandra /0522/CONTEXT> wc ls-nmtf-production
 220 1936 14470 ls-nmtf-production

*** README file created 22 May 2000 by Joan M. Winters, SLAC Computing Services
*** Introduction and ...archive/2000/0522 tree setup

9/13/01
*** As agreed with Les Cottrell, the owner of the nntf space,
*** Joan Winters made the archival copy, using gtar and find
*** for the first time under Bob Cook's watchful eye.

1662 cassandra /www/xorg> date
Fri May 26 18:06:27 PDT 2000
1663 cassandra /www/xorg> pwd
/afs/slac.stanford.edu/www/xorg
1664 cassandra /www/xorg> gtar cf - nntf | (cd =1; gtar xpf -)
Suspended
1665 cassandra /www/xorg> bg
[1] gtar cf - nntf | (cd =1; set hwd=$cwd:h; set prompt = "! `hostname` /$hwd:t/
1666 cassandra /www/xorg> jobs
[1] Running gtar cf - nntf | (cd =1; set hwd=$cwd:h; set p
1667 cassandra /www/xorg> du -sk nntf
12938 nntf
1668 cassandra /www/xorg>
[1] Done
1668 cassandra /www/xorg> pushd
1669 cassandra /0522/xorg> pwd
/afs/slac.stanford.edu/www/archive/2000/0522/xorg
1670 cassandra /0522/xorg> ls -l
total 12
drwxrwxrwx 4 winters sf 6144 Oct 07 1999 nntf/

1672 cassandra /0522/xorg> du -sk nntf
12938 nntf

1687 cassandra /xorg/nntf> du -sk /afs/slac/www/xorg/nntf
12938 /afs/slac/www/xorg/nntf
1688 cassandra /xorg/nntf> pwd
/afs/slac.stanford.edu/www/archive/2000/0522/xorg/nntf

1724 cassandra /2000/0522> cd xorg
1725 cassandra /0522/xorg> cd nntf
1726 cassandra /xorg/nntf> pwd
/afs/slac.stanford.edu/www/archive/2000/0522/xorg/nntf
1727 cassandra /xorg/nntf> ls -1R >/afs/slac/www/archive/2000/0522/CONTEXT/ls-nntf-a
1728 cassandra /xorg/nntf> head ...//CONTEXT/ls-nntf-archive
total 22598
-rw-r--r-- 1 winters sf 688 Oct 25 1996 agenda-96-10.txt
-rw-r--r-- 1 winters sf 2597 Apr 20 1997 agenda-97-04.txt
-rw-r--r-- 1 winters sf 984 Dec 15 1995 alerts.html
-rw-r--r-- 1 winters sf 976 Dec 15 1995 analysis.html
-rwxrwxrwx 1 winters sf 1014 Apr 25 1997 attendees-97-04.txt*
-rw-r--r-- 1 winters sf 1050 Dec 15 1995 budget.html
-rw-r--r-- 1 winters sf 1533 Oct 12 1995 charter-actions.html
-rw-r--r-- 1 winters sf 904 Jul 03 1995 charter-goals.html
-rw-r--r-- 1 winters sf 1392 Dec 15 1995 complex.html
1729 cassandra /xorg/nntf> head ...//CONTEXT/ls-nntf-production
total 22598
-rw-r--r-- 1 cottrell sf 688 Oct 25 1996 agenda-96-10.txt
-rw-r--r-- 1 cottrell sf 2597 Apr 20 1997 agenda-97-04.txt
-rw-r--r-- 1 cottrell sf 984 Dec 15 1995 alerts.html
-rw-r--r-- 1 cottrell sf 976 Dec 15 1995 analysis.html
-rw-r--r-- 1 cottrell sf 1014 Apr 25 1997 attendees-97-04.txt*
-rw-r--r-- 1 cottrell sf 1050 Dec 15 1995 budget.html
-rw-r--r-- 1 cottrell sf 1533 Oct 12 1995 charter-actions.html
-rw-r--r-- 1 cottrell sf 904 Jul 03 1995 charter-goals.html
Purpose

Counts the number of lines, words, and bytes or characters in a file.

Syntax

```
wc [ -c | -m ] [ -l ] [ -w ] [ File ... ]
```

```
wc -k [ -c ] [ -l ] [ -w ] [ File ... ]
```

Description

By default, the wc command counts the number of lines, words, and bytes in the files specified by the File parameter. The command writes the results to standard output and keeps a total count for all named files. If you specify any flags, the ordering of the flags determines the ordering of the output.
When you use the file parameter, the wc command displays the file
names as well as the requested counts. If you do not specify a file
name for the File parameter, the wc command uses standard input.
*** Omitted rest of output with further details.

1764 cassandra /0522/CONTEXT> date
Fri May 26 19:58:36 PDT 2000
1765 cassandra /0522/CONTEXT> pwd
/afs/slac.stanford.edu/www/archive/2000/0522/CONTEXT
1766 cassandra /0522/CONTEXT> whoami
winters
1767 cassandra /0522/CONTEXT> cd..
1768 cassandra /2000/0522> cd xorg/nmtf
1769 cassandra /xorg/nmtf> ls -l mtg-berkeley-96.html
-rw-r--r-- 1 winters sf 7839 May 17 1996 mtg-berkeley-96.html
1770 cassandra /xorg/nmtf> pwd
/afs/slac.stanford.edu/www/archive/2000/0522/xorg/nmtf
1771 cassandra /xorg/nmtf> ls -l /afs/slac/www/xorg/nmtf/mtg-berkeley-96.html
-rw-r--r-- 1 cottrell sf 7839 May 17 1996 /afs/slac/www/xorg/nmtf/mtg-be

*** README file updated 26 May 2000 by Joan M. Winters, SLAC Computing Services
*** .../archive/2000/0522/xorg/nmtf tree populated.

Index of /archive/2000/0522/CONTEXT

<table>
<thead>
<tr>
<th>Name</th>
<th>Last modified</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent Directory</td>
<td>22-May-2000 13:31</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>find-nmtf-archive</td>
<td>26-May-2000 19:37</td>
<td>20k</td>
<td></td>
</tr>
<tr>
<td>find-nmtf-production</td>
<td>26-May-2000 19:39</td>
<td>20k</td>
<td></td>
</tr>
<tr>
<td>ls-nmtf-archive</td>
<td>26-May-2000 19:29</td>
<td>14k</td>
<td></td>
</tr>
<tr>
<td>ls-nmtf-production</td>
<td>22-May-2000 13:21</td>
<td>14k</td>
<td></td>
</tr>
<tr>
<td>winters.eml</td>
<td>26-May-2000 20:25</td>
<td>6k</td>
<td></td>
</tr>
</tbody>
</table>

Apache/1.3.12 Server at www.slac.stanford.edu Port 80
Index of /archive/2000/1206

<table>
<thead>
<tr>
<th>Name</th>
<th>Last modified</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent Directory</td>
<td>06-Dec-2000 23:01</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>README</td>
<td>07-Dec-2000 00:23</td>
<td>6k</td>
<td></td>
</tr>
<tr>
<td>archive.du</td>
<td>06-Dec-2000 23:46</td>
<td>1k</td>
<td></td>
</tr>
<tr>
<td>archive.ls</td>
<td>06-Dec-2000 23:22</td>
<td>2k</td>
<td></td>
</tr>
<tr>
<td>epac/</td>
<td>05-Dec-2000 08:05</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>jxh</td>
<td>12-Jan-1996 18:52</td>
<td>1k</td>
<td></td>
</tr>
<tr>
<td>prod.du</td>
<td>06-Dec-2000 23:15</td>
<td>1k</td>
<td></td>
</tr>
<tr>
<td>prod.jxhdu</td>
<td>06-Dec-2000 23:17</td>
<td>1k</td>
<td></td>
</tr>
<tr>
<td>prod.ls</td>
<td>06-Dec-2000 23:09</td>
<td>2k</td>
<td></td>
</tr>
</tbody>
</table>

Apache/1.3.12 Server at www.slac.stanford.edu Port 80

Some UNIX commands to copy EPAC from AFS WWW production to archive space
as per request from Charles C.
Young and Jean Deken:

22 cassandra /2000/1206> pwd
/afs/slac.stanford.edu/www/archive/2000/1206
23 cassandra /2000/1206> date
Wed Dec 6 23:08:10 PST 2000
24 cassandra /2000/1206> who am i
winters pts/3 Dec 06 22:57

27 cassandra /2000/1206> ls -l /afs/slac/www/grp/rd/epac/* > prod.ls
28 cassandra /2000/1206> ls -l

```
-rw-r--r-- 1 winters sf 1995 Dec 06 23:09 prod.ls
```

31 cassandra /2000/1206> fs 1q /afs/slac/www/grp/rd/epac
Volume Name Quota Used % Used Partition
www.grp.rd.epac 100000 31035 31% 71%
32 cassandra /2000/1206> fs 1q
Volume Name Quota Used % Used Partition
www.arc.00 70000 31575 45% 71%
33 cassandra /2000/1206> cp -p -r /afs/slac/www/grp/rd/epac . &

[3] 17448
34 cassandra /2000/1206> jobs
[1] + Running axe jxh
[2] - Running axe README
35 cassandra /2000/1206> du -k /afs/slac/www/grp/rd/epac > prod.du &

[4] 24618
36 cassandra /2000/1206> jobs
[1] + Running axe jxh
[2] - Running axe README
37 cassandra /2000/1206> ~jxh/bin/afsdru /afs/slac/www/grp/rd/epac > prod.jxhdu &

[5] 24620
[4] Done
38 cassandra /2000/1206> jobs
[1] + Running axe jxh
[2] - Running axe README
43 cassandra /2000/1206> cp -p /nfs/junodata/u8/sf/winters/wwwspace/jxh

44 cassandra /2000/1206> ls -l

```
-rw-r--r-- 1 winters sf 1897 Dec 06 23:18 README
-drwxr-xr-x 6 winters sf 2048 Dec 05 08:05 epac/
-rw-r--r-- 1 winters sf 438 Jan 12 1996 jxh
-rw-r--r-- 1 winters sf 459 Dec 06 23:19 prod.du
-rw-r--r-- 1 winters sf 512 Dec 06 23:17 prod.jxhdu
-rw-r--r-- 1 winters sf 1995 Dec 06 23:09 prod.ls
```

48 cassandra /2000/1206> ls -l *.ls
-rw-r--r-- 1 winters sf 2051 Dec 06 23:22 archive.ls
-rw-r--r-- 1 winters sf 1995 Dec 06 23:09 prod.ls

53 cassandra /2000/1206> wc archive.ls
36 228 2051 archive.ls
54 cassandra /2000/1206> wc prod.ls
36 234 1995 prod.ls

56 cassandra /2000/1206> tail prod.du
1894 /afs/slac/wwwgrp/rd/epac/LOI
17 /afs/slac/wwwgrp/rd/epac/Meeting/200011/vti_cnf
23730 /afs/slac/wwwgrp/rd/epac/Meeting/200011
45 /afs/slac/wwwgrp/rd/epac/Meeting/199809
3 /afs/slac/wwwgrp/rd/epac/Meeting/_vti_cnf
23782 /afs/slac/wwwgrp/rd/epac/Meeting
4 /afs/slac/wwwgrp/rd/epac/Proposal/_vti_cnf
5259 /afs/slac/wwwgrp/rd/epac/Proposal
35 /afs/slac/wwwgrp/rd/epac/Proposal
31035 /afs/slac/wwwgrp/rd/epac

57 cassandra /2000/1206> tail prod.jxhdus
1894 /afs/slac/wwwgrp/rd/epac/LOI
17 /afs/slac/wwwgrp/rd/epac/Meeting/199809
23730 /afs/slac/wwwgrp/rd/epac/Meeting/200011/vti_cnf
23782 /afs/slac/wwwgrp/rd/epac/Meeting
3 /afs/slac/wwwgrp/rd/epac/Proposal/_vti_cnf
4 /afs/slac/wwwgrp/rd/epac/Proposal
5259 /afs/slac/wwwgrp/rd/epac/Proposal
31035 /afs/slac/wwwgrp/rd/epac

58 cassandra /2000/1206> fs lq
Volume Name Quota Used % Used Partition
www.arc.00 70000 62675 90% 71%

[2] 24598

64 cassandra /2000/1206> tail archive.du
1894 /afs/slac/www/archive/2000/1206/epac/LOI
17 /afs/slac/www/archive/2000/1206/epac/Meeting/200011/vti_cnf
23730 /afs/slac/www/archive/2000/1206/epac/Meeting/200011
45 /afs/slac/www/archive/2000/1206/epac/Meeting/199809
3 /afs/slac/www/archive/2000/1206/epac/Meeting/_vti_cnf
23782 /afs/slac/www/archive/2000/1206/epac/Meeting
4 /afs/slac/www/archive/2000/1206/epac/Proposal/_vti_cnf
5259 /afs/slac/www/archive/2000/1206/epac/Proposal
35 /afs/slac/www/archive/2000/1206/epac/Proposal
31035 /afs/slac/www/archive/2000/1206/epac
[2] - Done

65 cassandra /2000/1206> ls -l
total 30
-rw-r--r-- 1 winters sf 3770 Dec 06 23:33 README
-rw-r--r-- 1 winters sf 580 Dec 06 23:46 archive.du
-rw-r--r-- 1 winters sf 2051 Dec 06 23:22 archive.ls
drwxr-xr-x 6 winters sf 2048 Dec 05 08:05 epac/
-rw-r--r-- 1 winters sf 438 Jan 12 1996 jxh
-rw-r--r-- 1 winters sf 459 Dec 06 23:15 prod.du
-rw-r--r-- 1 winters sf 512 Dec 06 23:17 prod.jxhdu
-rw-r--r-- 1 winters sf 1995 Dec 06 23:09 prod.ls

66 cassandra /2000/1206> wc archive.du
11 22 580 archive.du

67 cassandra /2000/1206> wc prod.du
11 ?? 459 prod.du

68 cassandra /2000/1206> pwd
/afs/slac.stanford.edu/www/archive/2000/1206

9/13/01
cassandra /2000/1206> date
Wed Dec 6 23:52:07 PST 2000
70 who am i
winters pts/3 Dec 06 22:57
71 man wc

Purpose

Counts the number of lines, words, and bytes or characters in a file.

Syntax

wc [-c|--m] [-1] [-w] [File ...]
wc -k [-c] [-l] [-w] [File ...]

*** [...]

*** Note some of the detailed numbers don't quite match. This may be OK
*** but I haven't had time to check out completely.

6 Dec 2000

Joan M. Winters
from JXH: The only difference between du and afsdu is that afsdu does not include in its totals bytes from sub-afs-vols and du does.

Neither includes the total space that sym links point to; both include the trivial amount of bytes that the sym links take for themselves.

Always use "du -k" to get equivalent numbers for ~jxh/bin/afsdu!! (Gives numbers in KB.)