Index of /archive/1992/SLACVM

<table>
<thead>
<tr>
<th>Name</th>
<th>Last modified</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>👈 Parent Directory</td>
<td>31-Jan-1997 09:49</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>📂 spicell/</td>
<td>22-Jul-1998 02:16</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>📂 www.console</td>
<td>12-Feb-1992 08:06</td>
<td>49k</td>
<td>-</td>
</tr>
<tr>
<td>📂 www.console.readme</td>
<td>12-Aug-1997 17:05</td>
<td>2k</td>
<td>-</td>
</tr>
<tr>
<td>📂 www/</td>
<td>25-Jan-1997 22:47</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>📂 www/test/</td>
<td>25-Jan-1997 22:47</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Apache/1.3.12 Server at www.slac.stanford.edu Port 80
About www.console File

This file, WWW CONSOLE, is a spooled console that Joan M. Winters captured during her very early use of the SLACVM WWW linemode browser, presumably on 12 Feb 1992. The file has been on a winters minidisk since then, possibly all that time on the winters 400 minidisk. The WWW CONSOLE file was copied 12 Aug 1997 to the UNIX AFS production Web space at /afs/slac/www/archive/1992/SLACVM/www.console to preserve it after SLACVM goes away.

The spooled console shows possibly her first use of WWW. The SLACVM WWW command goes to the CERN home page, not to the SLAC Home Page (which apparently did not yet exist). SLAC SPIRES is link number 15 on the CERN home page. In addition, she explored various parts of the CERN Web that described WWW and tried out WWW browser subcommands including HELP.

The WWW session terminated with an abend. Some aspects of her VM/the SLAC VM environment standard at the time were shown upon re-IPL. It is likely that the WWW invoking EXEC resided on the BEBO 191 minidisk (belonging to Bebo White).

Output from XSHOW LISTFILE WWW CONSOLE * command issued on SLACVM 12 Aug 1997 showing attributes of the file follows:

<table>
<thead>
<tr>
<th>FILENAME</th>
<th>FILETYPE</th>
<th>FM</th>
<th>FORMAT</th>
<th>LRECL</th>
<th>RECS</th>
<th>BLOCKS</th>
<th>DATE</th>
<th>TIME</th>
<th>LABEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWW</td>
<td>CONSOLE</td>
<td>M0</td>
<td>V</td>
<td>82</td>
<td>1196</td>
<td>26</td>
<td>2/12/92 16:06:09</td>
<td>JCW400</td>
<td></td>
</tr>
</tbody>
</table>

From the file 59F HIST1992 showing the installation history on the standard system minidisk 59F, it seems that Bebo first installed the WWW invoking EXEC, browser, and HELP file in March. Here's the extract:

26Mar92 14:58:56 BEBO OWN WWW *
26Mar92 14:59:40 BEBO ADD WWW EXEC A BEBO 0191
 Interface exec to WWW
26Mar92 15:00:21 BEBO ADD WWW MODULE A BEBO 0191
 WWW browser (with CERN front page)
26Mar92 15:01:08 BEBO ADD WWW HELPCMS A BEBO 0191
 help file for WWW

By Joan M. Winters
12 Aug 1997
CERN INFORMATION - SELECT BY NUMBER

Help <1> On this program, or the World-Wide Web project <2>.

Phone book <3> People, phone numbers, accounts and email addresses. See also the analytical Yellow Pages <4>, or the same index in French: Pages Jaunes <5>.

"XFIND" index <6> Index of computer centre documentation, newsletters, news, help files, etc...

News <7> A complete list of all public CERN news groups, such as news from the CERN User's Office <8>, CERN computer center news <9>, student news <10>. See also private groups <11> and Internet news <12>.

FROM OTHER SITES
See online data by subject <13>, pointers to other forms of online data <14>, and the following specific databases:

SLAC SPIRES <15> The High Energy Physics preprint index at Stanford Linear Accelerator, California. (This is the same information available via the QSPIRES facility on BITNET. Include the word "FIND" as the first keyword, eg: K FIND AUTHOR FRED.)

DESY documents <16> Documents and help files from the DESY lab in Hamburg.

VMS Help <17> VMS help data now available via a WWW gateway.

Hacker Jargon <18> An index to a cross-referenced set of hacker terms. A demonstration of the WWW gateway to the Graz Technical University Hyper-G database.

<ref.number>, Quit, or Help:
2

WORLD WIDE WEB

The WorldWideWeb (W3) is a wide-area hypermedia <1> information retrieval initiative aiming to give universal access to a large universe of documents.

GENERAL PROJECT INFORMATION
See also: an executive summary <2> of the project, Mailing lists <3> you can join, Policy <4>, latest W3 news <5>.

Project Status <6> A list of project components and their current state. (e.g. Line Mode <7>, NeXTStep <8>, Daemon <9>)

People <10> A list of people involved in the project.
History <11> A summary of the history of the project.

TECHNICAL DETAILS

How to provide data <12> How can I make my own data available on the web?

Protocols <13> A description of the network protocols used.

HTML format <14> A description of the mark-up language used for some documents and for search hit-lists.

Addressing <15> The syntax of W3 document addresses.

Design Issues <16> A list of decisions to be made when designing or selecting a hypertext/IR system. See also related products <17> .

Design notes <18> Notes of meetings, etc, mostly historical.

<ref.number>, Back, <RETURN> for more, Quit, or Help:

Data sources <19> Sources of data on the web itself

News <20> Some internet/usenet newsgroups of possible interest to the WorldWideWeb project.

Coding standards <21> A basic style guide for W3 code contributors.

DISTRIBUTION
See the README <22> file, and copyright <23> notice. Tar files are available by anonymous ftp from info.cern.ch in directory /pub .

<End>

<ref.number>, Back, Quit, or Help:

Summary -- /WWW

WORLWIDEWEB - SUMMARY

The WWW <1> project merges the techniques of information retrieval and hypertext to make an easy but powerful global information system.

The project is based on the philosophy that much academic information should be freely available to anyone. It aims to allow information sharing within internationally dispersed teams, and the dissemination of information by support groups. Originally aimed at the High Energy Physics community, it has spread to other areas and attracted much interest in user support, resource discovery and collaborative work areas.

Reader view

The WWW world consists of documents, and links. Indexes are special documents which, rather than being read, may be searched. The result of
such a search is another ("virtual") document containing links to the
documents found. A simple protocol ("HTTP <2> ") is used to allow a
browser program to request a keyword search by a remote information
server.

The web contains documents in many formats. Those documents which are
hypertext, (real or virtual) contain links to other documents, or places
within documents. All documents, whether real, virtual or indexes, look
similar to the reader and are contained within the same addressing scheme.

To follow a link, a reader clicks with a mouse (or types in a number if
he or she has no mouse). To search and index, a reader gives keywords (or
other search criteria). These are the only operations necessary to access
the entire world of data.

Information provider view
The WWW browsers can access many existing data systems via existing
protocols (FTP, NNTP) or via HTTP and a gateway. In this way, the critical
mass of data is quickly exceeded, and the increasing use of the system by
readers and information suppliers encourage each other.

Making a web is as simple as writing a few SGML <3> files which point to
your existing data. Making it public involves running the FTP or HTTP
daemon <4> , and making at least one link into your web from another. In
<ref.number>, Back, <RETURN> for more, Quit, or Help:

 daemon <4> , and making at least one link into your web from another. In
fact, any file available by anonymous FTP can be immediately linked into
a web. The very small start-up effort is designed to allow small
contributions. At the other end of the scale, large information providers
may provide an HTTP server with full text or keyword indexing. This may
allow access to a large existing database without changing the way that
database is managed. Such gateways have already been made into Digital's
VMS/Help, Technical University of Graz's "Hyper-G", and Thinking Machine's
"W.A.I.S." systems.

The WWW model gets over the frustrating incompatibilities of data format
between suppliers and reader by allowing negotiation of format between a
smart browser and a smart server. This should provide a basis for
extension into multimedia, and allow those who share application standards
to make full use of them across the web.

This summary does not describe the many exciting possibilities opened up
by the WWW project, such as efficient document caching, the reduction of
redundant out-of-date copies, and the use of knowledge daemons. There is
more information in the online project documentation, including some
background on hypertext and many technical notes.

Try it
You can try the simple line mode browser <5> by telnetting to
info.cern.ch with user name "www" (no password). You can also find out
more about WWW in this way.

It is much more efficient to install the browser on your own machine. The
line mode browser is currently available in source form by anonymous FTP
from node info.cern.ch [currently 128.141.201.74] as
/pub/WWWLineMode_v.vv.tar.z.

(v.vv is the version number - take the latest.)

Also available is a hypertext editor <6> for the NeXT using the NeXTStep
graphical user interface in file
<ref.number>, Back, <RETURN> for more, Quit, or Help:
list

HYPERTEXT REFERENCES :=
[1] TheProject.html
[2] Protocols/HTTP/AsImplemented.html
[5] LineMode/Browser.html

<ref.number>, Back, <RETURN> for more, Quit, or Help:
2

The HTTP Protocol As Implemented In W3

HTTP AS IMPLEMENTED IN WWW

This document defines the Hypertext Transfer protocol (HTTP) as currently implemented by the WorldWideWeb <1> initaitive software. This is a subset of the proposed <2> full HTTP protocol. No client profile information is transferred with the query. Future HTTP protocols will be back-compatible with this protocol.

The protocol uses the normal internet-style telnet protocol style on a TCP-IP link. The following describes how a client acquires a (hypertext) document from an HTTP server, given an HTTP document address <3>.

CONNECTION
The client makes a TCP-IP connection to the host using the domain name <4> or IP number <5>, and the port number <6> given in the address.

During development, the default HTTP TCP port number is 2784 -- this will change when an official port number is allocated.

The server accepts the connection.

Note: HTTP currently runs over TCP, but could run over any connection-oriented service. The interpretation of the protocol below in the case of a sequenced packet service (such as DECnet(TM) or ISO TP4) is that that the request should be one TPDU, but the repose may be many.

REQUEST
The client sends a document request consisting of a line of ASCII characters terminated by a CR LF (carriage return, line feed) pair. A well-behaved server will not require the carriage return character.

This request consists of the word "GET", a space, the document address <7>, omitting the "http://", host and port parts when they are the coordinates

just used to make the connection. (If a gateway is being used, then a full
document address may be given specifying a different naming scheme).

The search functionality of the protocol lies in the ability of the
addressing syntax to describe a search on a named index <8>.

<ref.number>, Back, <RETURN> for more, Quit, or Help:

A search should only be requested by a client when the index document
itself has been described as an index using the ISINDEX tag <9>.

RESPONSE
The response to a simple GET request is a message in hypertext mark-up
language (HTML <10>). This is a byte stream of ASCII characters.

Lines shall be delimited by an optional carriage return followed by a
mandatory line feed character. The client should not assume that the
carriage return will be present. Lines may be of any length. Well-behaved
servers should restrict line length to 80 characters excluding the CR LF
pair.

The format of the message is HTML - that is, a trimmed SGML document. Note
that this format allows for menus and hit lists to be returned as
hypertext. It also allows for plain ASCII text to be returned following
the PLAINTEXT tag <11>.

The message is terminated by the closing of the connection by the server.

Well-behaved clients will read the entire document as fast as possible.
The client shall not wait for user action (output paging for example)
before reading the whole of the document. The server may impose a timeout
of the order of 15 seconds on inactivity.

Error responses are supplied in human readable text in HTML syntax. There
is no way to distinguish an error response from a satisfactory response
except for the content of the text.

DISCONNECTION
The TCP-IP connection is broken by the server when the whole document has
been transferred.

The client may abort the transfer by breaking the connection before this,
in which case the server will not record any error condition.

Requests are idempotent <12>. The server need not store any information
about the request after disconnection.

<ref.number>, Back, Quit, or Help:
12

HYPERTEXT TRANSFER PROTOCOL

See also: Why a new protocol? <1>, Other protocols used <2>

This is a list of the choices made and features needed in a hypertext
transfer protocol. See also the HTTP protocol as currently implemented
<3>.

UNDERLYING PROTOCOL
There are various distinct possible bases for the protocol - we can choose

Something based on, and looking like, an Internet protocol. This has
the advantage of being well understood, of existing implementations
being all over the place. It also leaves open the possibility of a
universal FTP/HTTP or NNTP/HTTP server. This is the case for the
current HTTP.

Something based on an RPC standard. This has the advantage of making
it easy to generate the code, that the parsing of the messages is done
automatically, and that the transfer of binary data is efficient. It
has the disadvantage that one needs the RPC code to be available on
all platforms. One would have to choose one (or more) styles of RPC.
Another disadvantage may be that existing RPC systems are not
efficient at transferring large quantities of text over a stream
protocol unless (like DD-OC-RPC) one has a let-out and can access the
socket directly.

Something based on the OSI stack, as is Z39.50. This would have to be
run over TCP in the internet world.

Current HTTP uses the first alternative, to make it simple to program, so
that it will catch on: conversion to run over an OSI stack will be simple
as the structure of the messages is well defined.

IDEMPOTENT?

Another choice is whether to make the protocol idempotent or not. That is,
does the server need to keep any state informat about the client? (For
example, the NFS protocol is idempotent, but the FTP and NNTP protocols
are not.) In the case of FTP the state information consists of

<ref.number>, Back, <RETURN> for more, Quit, or Help:
RDR FILE 1133 SENT FROM MAILER PUN WAS 6161 RECS 0036 CPY 001 M NOHOLD NOKEEP
15:47:08 * MSG FROM MAILER : * New mail from <lee_collins1@gateway.qm.apple.com>

are not.) In the case of FTP the state information consists of
authorisation, which is not trivial to establish every time but could be,
and current directory and transfer mode which are basically trivial. The
proposed protocol IS idempotent.

This causes, in principle, a problem when trying to map a non-idempotent
system (such as library search systems which stored "result sets" on
behalf of the client) into the web. The problem is that to use them in
an idempotent way requires the re-evaluation of the intermediate result
sets at each query. This can be solved by the gateway intelligently
caching result sets for a reasonable time.

REQUEST: INFORMATION TRANSFERRED FROM CLIENT

Parameters below, however represented on the network, are given in upper
case, with parameter names in lower case. This set assumes a model of
format negotiation in which in which the client says what he can take, and
the server decides what to give him. One imagines that each function would
return a status, as well as information specified below.

When running over a byte stream protocol, SGML would be an encoding
possibility (as well as ASN/1 etc).

GET document name Please transfer a named document back. Transfer
the results back in a standard format or one which
I have said I can accept. The reply includes the
format. In practice, one may want to transfer the
document over the same link (a la NNTP) or a
different one (a la FTP). There are advantages in
each technique. The use of the same link is standard, with moving to a different link by negotiation (see PORT <4>).

SEARCH keywords Please search the given index document for all items with the given word combination, and transfer the results back as marked up hypertext. This could elaborate to an SQL query. There are many advantages in making the search criterion just a subset of the document name space.

<ref.number>, Back, <RETURN> for more, Quit, or Help:
list

HYPERTEXT REFERENCES :=

[3] HTTP/AsImplemented.html
[4] HTTP.html#5

<ref.number>, Back, <RETURN> for more, Quit, or Help:
3

The HTTP Protocol As Implemented In W3

HTTP AS IMPLEMENTED IN WWW

This document defines the Hypertext Transfer protocol (HTTP) as currently implemented by the WorldWideWeb <1> initiative software. This is a subset of the proposed <2> full HTTP protocol. No client profile information is transferred with the query. Future HTTP protocols will be back-compatible with this protocol.

The protocol uses the normal internet-style telnet protocol style on a TCP-IP link. The following describes how a client acquires a (hypertext) document from an HTTP server, given an HTTP document address <3>.

CONNECTION
The client makes a TCP-IP connection to the host using the domain name <4> or IP number <5>, and the port number <6> given in the address.

During development, the default HTTP TCP port number is 2784 -- this will change when an official port number is allocated.

The server accepts the connection.

Note: HTTP currently runs over TCP, but could run over any connection-oriented service. The interpretation of the protocol below in the case of a sequenced packet service (such as DECnet(TM) or ISO TP4) is that the request should be one TPDU, but the reponse may be many.

REQUEST
The client sends a document request consisting of a line of ASCII characters terminated by a CR LF (carriage return, line feed) pair. A
well-behaved server will not require the carriage return character.

This request consists of the word "GET", a space, the document address <7>,
, omitting the "http://", host and port parts when they are the coordinates
just used to make the connection. (If a gateway is being used, then a full
document address may be given specifying a different naming scheme).

The search functionality of the protocol lies in the ability of the
addressing syntax to describe a search on a named index <8>.

<ref.number>, Back, <RETURN> for more, Quit, or Help:

A search should only be requested by a client when the index document
itself has been described as an index using the ISINDEX tag <9>.

RESPONSE
The response to a simple GET request is a message in hypertext mark-up
language (HTML <10>). This is a byte stream of ASCII characters.

Lines shall be delimited by an optional carriage return followed by a
mandatory line feed character. The client should not assume that the
carriage return will be present. Lines may be of any length. Well-behaved
servers should restrict line length to 80 characters excluding the CR LF
pair.

The format of the message is HTML - that is, a trimmed SGML document. Note
that this format allows for menus and hit lists to be returned as
hypertext. It also allows for plain ASCII text to be returned following the
PLAINTEXT tag <11>.

The message is terminated by the closing of the connection by the server.

Well-behaved clients will read the entire document as fast as possible.
The client shall not wait for user action (output paging for example)
before reading the whole of the document. The server may impose a timeout
of the order of 15 seconds on inactivity.

Error responses are supplied in human readable text in HTML syntax. There
is no way to distinguish an error response from a satisfactory response
except for the content of the text.

DISCONNECTION
The TCP-IP connection is broken by the server when the whole document has
been transferred.

The client may abort the transfer by breaking the connection before this,
in which case the server will not record any error condition.

Requests are idempotent <12> . The server need not store any information
about the request after disconnection.

<ref.number>, Back, Quit, or Help:

4

BNF -- /Addressing

W3 ADDRESS SYNTAX: BNF

This is a BNF-like description of the W3 addressing syntax <1> . We use a
vertical line "|" to indicate alternatives, and [brackets] to indicate
optional parts. Spaces are representational only: no spaces are actually allowed within a W3 address. Single letters stand for single letters. All words of more than one letter below are entities described elsewhere in the syntax description. (Entity names are here linked to their definitions, probably making this difficult to read with the line mode browser.)

An absolute address specified in a link is an anchoraddress <2>. The address which is passed to a server is a docaddress <3>.

anchoraddress docaddress <4> [# anchor <5>]
docaddress httpaddress <6> | fileaddress <7> | newsaddress <8> | telnetaddress <9> | gopheraddress <10> | waisaddress <11>
httpaddress http: // hostport <12> [/ path <13>] [? search <14>]
fileaddress file: // host <15> / path <16>
newsaddress news: group <17>
waisaddress waisindex | waisdoc
waisdoc wais: // hostport <21> / database <22> / wtype <23> / digits <24> / path <25>
grouppart * | group <26> | article <27>

<ref.number>, Back, <RETURN> for more, Quit, or Help:
list

HYPERTEXT REFERENCES :=

[1] Addressing.html
[2] #47
[3] #22
[4] #22
[5] #20
[6] #1
[7] #51
[8] #92
[9] #55
[10] #72
<ref.number>, Back, <RETURN> for more, Quit, or Help:
help

WWW Line Mode Browser: COMMANDS AVAILABLE Version 0.14

You are reading document:
'http://info.cern.ch/hypertext/WWW/Addressing/BNF.html'

<RETURN> Produces the next page of the remaining text.
TOP Returns to the first page of the present document.
LIST Produces a list of hypertext references which have been accumulated from the text already shown on the screen.
<number> Select a referenced document by number (from 1 to 29)
RECALL Gives a list of the previous nodes visited.
RECALL <number> Returns to a previously visited document numbered in the recall list.
HOME Returns to the starting node
BACK Moves back to the previous node
Q Quits the program.

<ref.number>, Back, <RETURN> for more, Quit, or Help:
recall

HISTORY OF PREVIOUS NODES :-

1) CERN Information
2) The World Wide Web project
3) Summary -- /WWW
4) The HTTP Protocol As Implemented In W3
5) (No title)
6) The HTTP Protocol As Implemented In W3
7) BNF -- /Addressing

<ref.number>, Back, <RETURN> for more, Quit, or Help:
recall 5

(No title)

HYPERTEXT TRANSFER PROTOCOL

See also: Why a new protocol? <1>, Other protocols used <2>

This is a list of the choices made and features needed in a hypertext
transfer protocol. See also the HTTP protocol as currently implemented
<3>.

UNDERLYING PROTOCOL

There are various distinct possible bases for the protocol – we can choose

Something based on, and looking like, an Internet protocol. This has
the advantage of being well understood, of existing implementations
being all over the place. It also leaves open the possibility of a
universal FTP/HTTP or NNTP/HTTP server. This is the case for the
current HTTP.

Something based on an RPC standard. This has the advantage of making
it easy to generate the code, that the parsing of the messages is done
automatically, and that the transfer of binary data is efficient. It
has the disadvantage that one needs the RPC code to be available on
all platforms. One would have to chose one (or more) styles of RPC.
Another disadvantage may be that existing RPC systems are not
efficient at transferring large quantities of text over a stream
protocol unless (like DD-OC-RPC) one has a let-out and can access the
socket directly.

Something based on the OSI stack, as is 239.50. This would have to be
run over TCP in the internet world.

Current HTTP uses the first alternative, to make it simple to program, so
that it will catch on: conversion to run over an OSI stack will be simple
as the structure of the messages is well defined.

IDEMPOTENT ?

Another choice is whether to make the protocol idempotent or not. That is,
does the server need to keep any state informat about the client? (For
example, the NFS protocol is idempotent, but the FTP and NNTP protocols are not.) In the case of FTP the state information consists of
<ref.number>, Back, <RETURN> for more, Quit, or Help:

are not.) In the case of FTP the state information consists of
authorisation, which is not trivial to establish every time but could be,
and current directory and transfer mode which are basically trivial. The proposed protocol IS idempotent.

This causes, in principle, a problem when trying to map a non-idempotent
system (such as library search systems which stored "result sets" on
behalf of the client) into the web. The problem is that to use them in
an idempotent way requires the re-evaluation of the intermediate result
sets at each query. This can be solved by the gateway intelligently
 caching result sets for a reasonable time.
REQUEST: INFORMATION TRANSFERRED FROM CLIENT
Parameters below, however represented on the network, are given in upper
case, with parameter names in lower case. This set assumes a model of
format negotiation in which in which the client says what he can take, and
the server decides what to give him. One imagines that each function would
return a status, as well as information specified below.

When running over a byte stream protocol, SGML would be an encoding
possibility (as well as ASN/1 etc).

GET document name Please transfer a named document back. Transfer
the results back in a standard format or one which
I have said I can accept. The reply includes the
format. In practice, one may want to transfer the
document over the same link (a la NNTP) or a
different one (a la FTP). There are advantages in
each technique. The use of the same link is
standard, with moving to a different link by
negociation (see PORT <4>).

SEARCH keywords Please search the given index document for all
items with the given word combination, and
transfer the results back as marked up hypertext.
This could elaborate to an SQL query. There are
many advantages in making the search criterion
just a subset of the document name space.

<ref.number>, Back, <RETURN> for more, Quit, or Help:

(No title)

HYPERTEXT TRANSFER PROTOCOL

See also: Why a new protocol? <1>, Other protocols used <2>

This is a list of the choices made and features needed in a hypertext
transfer protocol. See also the HTTP protocol as currently implemented
<3>.
UNDERLYING PROTOCOL
There are various distinct possible bases for the protocol - we can choose

Something based on, and looking like, an Internet protocol. This has
the advantage of being well understood, of existing implementations
being all over the place. It also leaves open the possibility of a

universal FTP/HTTP or NNTP/HTTP server. This is the case for the
current HTTP.

Something based on an RPC standard. This has the advantage of making
it easy to generate the code, that the parsing of the messages is done
automatically, and that the transfer of binary data is efficient. It
has the disadvantage that one needs the RPC code to be available on
all platforms. One would have to chose one (or more) styles of RPC.
Another disadvantage may be that existing RPC systems are not
efficient at transferring large quantities of text over a stream
protocol unless (like DD-OC-RPC) one has a let-out and can access the
socket directly.

Something based on the OSI stack, as is Z39.50. This would have to be
run over TCP in the internet world.

Current HTTP uses the first alternative, to make it simple to program, so
that it will catch on: conversion to run over an OSI stack will be simple
as the structure of the messages is well defined.

IDEMPOTENT ?

Another choice is whether to make the protocol idempotent or not. That is,
does the server need to keep any state informat about the client? (For
example, the NFS protocol is idempotent, but the FTP and NNTP protocols
are not.) In the case of FTP the state information consists of

<ref.number>, Back, <RETURN> for more, Quit, or Help:

are not.) In the case of FTP the state information consists of
authorisation, which is not trivial to establish every time but could be,
and current directory and transfer mode which are basically trivial. The
proposed protocol IS idempotent.

This causes, in principle, a problem when trying to map a non-dempotent
system (such as library search systems which stored "result sets" on
behalf of the client) into the web. The problem is that to use them in
an idempotent way requires the re-evaluation of the intermediate result
sets at each query. This can be solved by the gateway intelligently
caching result sets for a reasonable time.

REQUEST: INFORMATION TRANSFERRED FROM CLIENT

Parameters below, however represented on the network, are given in upper
case, with parameter names in lower case. This set assumes a model of
format negociation in which in which the client says what he can take, and
the server decides what to give him. One imagines that each function would
return a status, as well as information specified below.

When running over a byte stream protocol, SGML would be an encoding
possibility (as well as ASN/1 etc).

GET document name: Please transfer a named document back. Transfer
the results back in a standard format or one which
I have said I can accept. The reply includes the
format. In practice, one may want to transfer the
document over the same link (a la NNTP) or a
different one (a la FTP). There are advantages in
each technique. The use of the same link is
standard, with moving to a different link by
negociation (see PORT <4>).

SEARCH keywords: Please search the given index document for all
items with the given word combination, and
transfer the results back as marked up hypertext.
This could elaborate to an SQL query. There are many advantages in making the search criterion just a subset of the document name space.

<ref.number>, Back, <RETURN> for more, Quit, or Help:
4

(No title)

HYPERTEXT TRANSFER PROTOCOL

See also: Why a new protocol? <1>, Other protocols used <2>

This is a list of the choices made and features needed in a hypertext transfer protocol. See also the HTTP protocol as currently implemented <3>.

UNDERLYING PROTOCOL
There are various distinct possible bases for the protocol - we can choose

Something based on, and looking like, an Internet protocol. This has the advantage of being well understood, of existing implementations being all over the place. It also leaves open the possibility of a universal FTP/HTTP or NNTP/HTTP server. This is the case for the current HTTP.

Something based on an RPC standard. This has the advantage of making it easy to generate the code, that the parsing of the messages is done automatically, and that the transfer of binary data is efficient. It has the disadvantage that one needs the RPC code to be available on all platforms. One would have to chose one (or more) styles of RPC. Another disadvantage may be that existing RPC systems are not efficient at transferring large quantities of text over a stream protocol unless (like DD-OC-RPC) one has a let-out and can access the socket directly.

Something based on the OSI stack, as is Z39.50. This would have to be run over TCP in the internet world.

Current HTTP uses the first alternative, to make it simple to program, so that it will catch on: conversion to run over an OSI stack will be simple as the structure of the messages is well defined.

IDEMPOTENT
Another choice is whether to make the protocol idempotent or not. That is, does the server need to keep any state format about the client? (For example, the NFS protocol is idempotent, but the FTP and NNTP protocols are not.) In the case of FTP the state information consists of

Protocol Specifications relevant to HyperText

RELEVANT PROTOCOLS

The WorldWideWeb <1> system can pick up information from many information sources, using existing protocols. Among these are file and news transfer protocols.

FILE TRANSFER
The file transfer protocol currently most used for accessing fairly stable public information over a wide area is "Anonymous FTP". This means the use of the internet File Transfer Protocol without authentication. As the WWW
project currently operates for the sake of public information, anonymous FTP is quite appropriate, and WWW can pick up any information provided by anonymous FTP. FTP is defined in RFC 959 <2> which includes material from many previous RFCs. (See also: file address syntax <3>). See also the prospero project and the shift <4> project, for more powerful file access systems.

NETWORK NEWS
The "Network News Transfer Protocol" (NNTP) is defined in RFC 977 <5> by Kantor and Lampsley. This allows transient news information in the USENET news format to be exchanged over the internet. The format of news articles is defined in RFC 850, Standard for Interchange of USENET Messages <6> by Mark Horton. This in turn refers to the standard RFC 822 <7> which defines the format of internet mail messages. (See news address syntax <8>)

SEARCH AND RETRIEVE
The WWW project defines its own protocol for information transfer, which allows for negotiation on representation. This we call HTTP, for HyperText Transfer Protocol <9>. See also HyperText Transfer Format <10>, and the HTTP address syntax) <11>

Whilst the HTTP <12> protocol provides an index search function, another common protocol for index search is Z39.50, and the version of it used by the WAIS <13> project. (See also the WAIS-WWW gateway <14>).

<End>

<ref.number>, Back, Quit, or Help:
9

The HTTP Protocol As Implemented In W3

HTTP AS IMPLEMENTED IN WWW

This document defines the Hypertext Transfer protocol (HTTP) as currently implemented by the WorldWideWeb <1> initiative software. This is a subset of the proposed <2> full HTTP protocol. No client profile information is transferred with the query. Future HTTP protocols will be back-compatible with this protocol.

The protocol uses the normal internet-style telnet protocol style on a TCP-IP link. The following describes how a client acquires a (hypertext) document from an HTTP server, given an HTTP document address <3>.

CONNECTION
The client makes a TCP-IP connection to the host using the domain name <4> or IP number <5>, and the port number <6> given in the address.

During development, the default HTTP TCP port number is 2784 -- this will change when an official port number is allocated.

The server accepts the connection.

Note: HTTP currently runs over TCP, but could run over any connection-oriented service. The interpretation of the protocol below in the case of a sequenced packet service (such as DECnet(TM) or ISO TP4) is that that the request should be one TPDU, but the reposc may be many.

REQUEST
The client sends a document request consisting of a line of ASCII
characters terminated by a CR LF (carriage return, line feed) pair. A
well-behaved server will not require the carriage return character.

This request consists of the word "GET", a space, the document address <7>
, omitting the "http: host and port parts when they are the coordinates
just used to make the connection. (If a gateway is being used, then a full
document address may be given specifying a different naming scheme).

The search functionality of the protocol lies in the ability of the
addressing syntax to describe a search on a named index <8> .

<ref.number>, Back, <RETURN> for more, Quit, or Help:

A search should only be requested by a client when the index document
itself has been described as an index using the ISINDEX tag <9>
RESPONSE

The response to a simple GET request is a message in hypertext mark-up
language (HTML <10>). This is a byte stream of ASCII characters.

Lines shall be delimited by an optional carriage return followed by a
mandatory line feed character. The client should not assume that the
carriage return will be present. Lines may be of any length. Well-behaved
servers should restrict line length to 80 characters excluding the CR LF
pair.

The format of the message is HTML - that is, a trimmed SGML document. Note
that this format allows for menus and hit lists to be returned as
hypertext. It also allows for plain ASCII text to be returned following
the PLAINTEXT tag <11> .

The message is terminated by the closing of the connection by the server.

Well-behaved clients will read the entire document as fast as possible.
The client shall not wait for user action (output paging for example)
before reading the whole of the document. The server may impose a timeout
of the order of 15 seconds on inactivity.

Error responses are supplied in human readable text in HTML syntax. There
is no way to distinguish an error response from a satisfactory response
except for the content of the text.

DISCONNECTION

The TCP-IP connection is broken by the server when the whole document has
been transferred.

The client may abort the transfer by breaking the connection before this,
in which case the server will not record any error condition.

Requests are idempotent <12> . The server need not store any information
about the request after disconnection.

<ref.number>, Back, Quit, or Help:
recall

HISTORY OF PREVIOUS NODES :-

1) CERN Information
2) The World Wide Web project

8/29/01
3) Summary -- /WWW
4) The HTTP Protocol As Implemented In W3
5) (No title)
6) The HTTP Protocol As Implemented In W3
7) BNF -- /Addressing
8) (No title)
9) Protocol Specifications relevant to HyperText
10) The HTTP Protocol As Implemented In W3

<ref.number>, Back, Quit, or Help:
recall 9

Protocol Specifications relevant to HyperText

RELEVANT PROTOCOLS

The WorldWideWeb <1> system can pick up information from many information sources, using existing protocols. Among these are file and news transfer protocols.

FILE TRANSFER

The file transfer protocol currently most used for accessing fairly stable public information over a wide area is "Anonymous FTP". This means the use of the internet File Transfer Protocol without authentication. As the WWW project currently operates for the sake of public information, anonymous FTP is quite appropriate, and WWW can pick up any information provided by anonymous FTP. FTP is defined in RFC 959 <2> which includes material from many previous RFCs. (See also: file address syntax <3>). See also the prospero project and the shift <4> project, for more powerful file access systems.

NETWORK NEWS

The "Network News Transfer Protocol" (NNTP) is defined in RFC 977 <5> by Kantor and Lampsley. This allows transient news information in the USENET news format to be exchanged over the internet. The format of news articles is defined in RFC 850, Standard for Interchange of USENET Messages <6> by Mark Horton. This in turn refers to the standard RFC 822 <7> which defines the format of internet mail messages. (See news address syntax <8>)

SEARCH AND RETRIEVE

The WWW project defines its own protocol for information transfer, which allows for negotiation on representation. This we call HTTP, for HyperText Transfer Protocol <9> .See also HyperText Transfer Format <10> , and the HTTP address syntax <11> .

Whilst the HTTP <12> protocol provides an index search function, another common protocol for index search is 239.50, and the version of it used by the WAIS <13> project. (See also the WAIS-WWW gateway <14>).

<End>

<ref.number>, Back, Quit, or Help:
10

HyperText Mark-up Language

HTML

The WWW <1> system uses marked-up text to represent a hypertext document
for transmission over the network. The hypertext mark-up language is an SGML <2> format. This defines the basic syntax used. The particular language, the set of tags and the rules about their use, and their significance is not part of the SGML standard. There being no standard on this, we have adopted a set which seems sensible. We call them HTML -- hypertext markup language. HTML is not an alternative to SGML, it is a particular format within the SGML rules (an SGML "DTD"). HTML parsers should ignore tags which they do not understand, and ignore attributes which they do not understand of tags which they do understand.

See also:

The tags <3> A list of the tags used in HTML with their significance.

Example <4> A file containing a variety of tags used for test purposes, and its source text <5>.

DEFAULT TEXT

Unless otherwise defined by tags, text is transmitted as a stream of lines. The division of the stream of characters into lines is arbitrary, and only made in order to allow the text to be passed through systems which can only handle text with a limited line length. The recommended line length for transmission is 80 characters. The division into lines has no significance (except in the case of example sections <6> and PLAINTEXT <7>) apart from indicating a word end. Line breaks between tags have no significance.

<End>

<ref.number>, Back, Quit, or Help:
4

Hypertext HTML formatting example

TEST DATASET

This is an example bit of hypertext - compare the formatted version with the original HTML source <1>. Let's try introducing an initial paragraph between the H1 and the H2 headings.

This file was typed into WWW (on the NeXT) and saved.

INTRODUCTION

This file contains a test set of HTML mark-up, as a test of hypertext browsers and an example of the syntax of the tags. See also:

An arbitrary news article <2>

The newsgroup on hypertext <3>

More details about the WWW project. <4>

That is the end of the list.

SOME ANCHORS

Anchors come in two forms: whole nodes or parts of nodes. The line mode browser can't currently (Nov 91) jump to a part of a node: it always
jumps to the top.
Leading to whole nodes
Here is an anchor which leads to the VM FIND command. <5> Note the nested
highlighting (hp2) within the anchor. If you want to click on this, <6>
you will go to the system default page.
Leading to anchors within nodes
Now THIS <7> leads to anchor #2 in this file, and if you want to click on
THIS, <8> you should go to the system default page with anchor #2
selected. Now the word "destination" is a named destination anchor,
connected to the word "source" <9>. Clicking on the destination shouldn't
do anything. Selecting the source should lead to the destination.

Now let's go through the limited set of markup tags which we accept. The
title, "Hypertext HTML formatting example" was between TITLE tags. "Test
Dataset" at the top of this page was a Level One Heading {H1}. The quick

list
recall

?????

quit
hx

hx
CMS

CMS

jk1jkl
SCSABN: invalid FCB (6) at X'0000CB', processing terminated
SCSABN: recursive abend during abend recovery
HCPGIR450W CP entered; disabled wait PSW 00060000 15E4E3E2
IPL CMS
SLAC XA CMS 5.6 11/01/91 15:32

TEST disk for testing files prior to installing on the U or Y disks.

CMS29E (59C R) RO
CMS5A5 (1A7 P) RO

660 USERS, 295 LOGGED, 365 DISC, 0 DIALED, 0 NET
AVGPROC-100% 03
XSTORE-000320/SEC MIGRATE-0006/SEC
XSTORE MDC READS-000169/SEC WRITES-000009/SEC HIT RATIO-099%
STORAGE-031% PAGING-0020/SEC STEAL-000% DORMANT-00642
Q0-00000(00000)
Q1-00003(00000)
Q2-00002(00000) EXPAN-002 E2-00000(00000)
Q3-00017(00000) EXPAN-002 E3-00000(00000)
PROC 0001-100% PROC 0000-100%
PROC 0002-100%

Conference LEPNEWS has 45 new items.
Conference PUBEEXECs has 73 new items.
Conference XA-ASM has 8 new items.
Conference XA-FORT has 15 new items.

FILES: 0058 RDR, 0001 PRT, NO PUN

Ready;

vmstatus restore

Disk S(190) could not be accessed

Ready;

qdiskid

<table>
<thead>
<tr>
<th>Label</th>
<th>CCU</th>
<th>Mode</th>
<th>Stat</th>
<th>Owner</th>
<th>Vaddr</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMP193</td>
<td>193</td>
<td>A</td>
<td>R/W</td>
<td>Tdisk</td>
<td>-</td>
</tr>
<tr>
<td>JCW198</td>
<td>198</td>
<td>B</td>
<td>R/W</td>
<td>WINTERS</td>
<td>0198</td>
</tr>
<tr>
<td>JCW192</td>
<td>192</td>
<td>D</td>
<td>R/W</td>
<td>WINTERS</td>
<td>0192</td>
</tr>
<tr>
<td>BEB191</td>
<td>195</td>
<td>E</td>
<td>R/O</td>
<td>BEBO</td>
<td>0191</td>
</tr>
<tr>
<td>JCW194</td>
<td>194</td>
<td>J</td>
<td>R/W</td>
<td>WINTERS</td>
<td>0194</td>
</tr>
<tr>
<td>JCW400</td>
<td>400</td>
<td>M</td>
<td>R/W</td>
<td>WINTERS</td>
<td>0400</td>
</tr>
<tr>
<td>JCW191</td>
<td>191</td>
<td>N</td>
<td>R/W</td>
<td>WINTERS</td>
<td>0191</td>
</tr>
<tr>
<td>MAIL</td>
<td>1A6</td>
<td>O</td>
<td>R/O</td>
<td>RENATA</td>
<td>0195</td>
</tr>
<tr>
<td>CMS5A5</td>
<td>1A7</td>
<td>P</td>
<td>R/O</td>
<td>XAMAIN</td>
<td>05A5</td>
</tr>
<tr>
<td>CMS29E</td>
<td>59C</td>
<td>R</td>
<td>R/O</td>
<td>MAINT</td>
<td>028E</td>
</tr>
<tr>
<td>MNT190</td>
<td>190</td>
<td>S</td>
<td>R/O</td>
<td>XAMAIN</td>
<td>0190</td>
</tr>
<tr>
<td>CMS59E</td>
<td>59E</td>
<td>T</td>
<td>R/O</td>
<td>STDISK</td>
<td>049E</td>
</tr>
<tr>
<td>CMS59F</td>
<td>59F</td>
<td>U</td>
<td>R/O</td>
<td>$UDISK</td>
<td>049F</td>
</tr>
<tr>
<td>CMS59E</td>
<td>19E</td>
<td>Y/S</td>
<td>R/O</td>
<td>SYDISK</td>
<td>029E</td>
</tr>
<tr>
<td>JCW223</td>
<td>223</td>
<td>Z</td>
<td>R/W</td>
<td>WINTERS</td>
<td>0223</td>
</tr>
</tbody>
</table>

Ready;

1

CMS PRESERVE A1

FAQ MAIL A0

Ready;

qdiskid

<table>
<thead>
<tr>
<th>Label</th>
<th>CCU</th>
<th>Mode</th>
<th>Stat</th>
<th>Owner</th>
<th>Vaddr</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMP193</td>
<td>193</td>
<td>A</td>
<td>R/W</td>
<td>Tdisk</td>
<td>-</td>
</tr>
<tr>
<td>JCW198</td>
<td>198</td>
<td>B</td>
<td>R/W</td>
<td>WINTERS</td>
<td>0198</td>
</tr>
<tr>
<td>JCW192</td>
<td>192</td>
<td>D</td>
<td>R/W</td>
<td>WINTERS</td>
<td>0192</td>
</tr>
<tr>
<td>BEB191</td>
<td>195</td>
<td>E</td>
<td>R/O</td>
<td>BEBO</td>
<td>0191</td>
</tr>
<tr>
<td>JCW194</td>
<td>194</td>
<td>J</td>
<td>R/W</td>
<td>WINTERS</td>
<td>0194</td>
</tr>
<tr>
<td>JCW400</td>
<td>400</td>
<td>M</td>
<td>R/W</td>
<td>WINTERS</td>
<td>0400</td>
</tr>
<tr>
<td>JCW191</td>
<td>191</td>
<td>N</td>
<td>R/W</td>
<td>WINTERS</td>
<td>0191</td>
</tr>
<tr>
<td>MAIL</td>
<td>1A6</td>
<td>O</td>
<td>R/O</td>
<td>RENATA</td>
<td>0195</td>
</tr>
<tr>
<td>CMS5A5</td>
<td>1A7</td>
<td>P</td>
<td>R/O</td>
<td>XAMAIN</td>
<td>05A5</td>
</tr>
<tr>
<td>CMS29E</td>
<td>59C</td>
<td>R</td>
<td>R/O</td>
<td>MAINT</td>
<td>028E</td>
</tr>
<tr>
<td>MNT190</td>
<td>190</td>
<td>S</td>
<td>R/O</td>
<td>XAMAIN</td>
<td>0190</td>
</tr>
<tr>
<td>CMS59E</td>
<td>59E</td>
<td>T</td>
<td>R/O</td>
<td>STDISK</td>
<td>049E</td>
</tr>
<tr>
<td>CMS59F</td>
<td>59F</td>
<td>U</td>
<td>R/O</td>
<td>$UDISK</td>
<td>049F</td>
</tr>
<tr>
<td>CMS59E</td>
<td>19E</td>
<td>Y/S</td>
<td>R/O</td>
<td>SYDISK</td>
<td>029E</td>
</tr>
<tr>
<td>JCW223</td>
<td>223</td>
<td>Z</td>
<td>R/W</td>
<td>WINTERS</td>
<td>0223</td>
</tr>
</tbody>
</table>

Ready;

q cons

CONS 0009 ON LDEV L041F TERM START
 0009 CL T NOCONT NOHOLD COPY 001 READY FORM STANDARD
 0009 TO WINTERS RDR DIST BIN 048 FLASHC 000 DEST OFF
 0009 FLASH CHAR MDPY 0 FCB
 0009 3215 NOEOF OPEN 1131 NOKEEP NOMSG NONAME

Ready;

sp cons close
About www.console File

This file, WWW CONSOLE, is a spooled console that Joan M. Winters captured during her very early use of the SLACVM WWW linemode browser, presumably on 12 Feb 1992. The file has been on a winters minidisk since then, possibly all that time on the winters 400 minidisk. The WWW CONSOLE file was copied 12 Aug 1997 to the UNIX AFS production Web space at /afs/slac/www/archive/1992/SLACVM/www.console to preserve it after SLACVM goes away.

The spooled console shows possibly her first use of WWW. The SLACVM WWW command goes to the CERN home page, not to the SLAC Home Page (which apparently did not yet exist). SLAC SPIRES is link number 15 on the CERN home page. In addition, she explored various parts of the CERN Web that described WWW and tried out WWW browser subcommands including HELP.

The WWW session terminated with an abend. Some aspects of her VM/the SLAC VM environment standard at the time were shown upon re-IPL. It is likely that the WWW invoking EXEC resided on the BEBO 191 minidisk (belonging to Bebo White).

Output from XSHOW LISTFILE WWW CONSOLE * command issued on SLACVM 12 Aug 1997 showing attributes of the file follows:

FILENAME FILETYPE FM FORMAT LRECL RECS BLOCKS DATE TIME LABEL
WWW CONSOLE M0 V 82 1196 26 2/12/92 16:06:09 JWC400

From the file 59F HIST1992 showing the installation history on the standard system minidisk 59F, it seems that Bebo first installed the WWW invoking EXEC, browser, and HELP file in March. Here's the extract:

26Mar92 14:58:56 BEBO OWN WWW *
26Mar92 14:59:40 BEBO ADD WWW EXEC A BEBO 0191
 Interface exec to WWW
26Mar92 15:00:21 BEBO ADD WWW MODULE A BEBO 0191
 WWW browser (with CERN front page)
26Mar92 15:01:08 BEBO ADD WWW HELPCMS A BEBO 0191
 help file for WWW

By Joan M. Winters
12 Aug 1997

Index of /archive/1992

<table>
<thead>
<tr>
<th>Name</th>
<th>Last modified</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent Directory</td>
<td>25-Oct-2000 21:14</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>SLACVM/</td>
<td>22-Jul-1998 01:46</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Apache/1.3.12 Server at www.slac.stanford.edu Port 80
Index of /archive/1992/SLACVM

<table>
<thead>
<tr>
<th>Name</th>
<th>Last modified</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent Directory</td>
<td>31-Jan-1997 09:49</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>spicell/</td>
<td>22-Jul-1998 02:16</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>www.console</td>
<td>12-Feb-1992 08:06</td>
<td>49k</td>
<td></td>
</tr>
<tr>
<td>www.console.readme</td>
<td>12-Aug-1997 17:05</td>
<td>2k</td>
<td></td>
</tr>
<tr>
<td>www/</td>
<td>25-Jan-1997 22:47</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>www/test/</td>
<td>25-Jan-1997 22:47</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Apache/1.3.12 Server at www.slac.stanford.edu Port 80
<table>
<thead>
<tr>
<th>Name</th>
<th>Last modified</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent Directory</td>
<td>22-Jul-1998 01:46</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>191/</td>
<td>22-Jul-1998 01:53</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>192/</td>
<td>22-Jul-1998 03:12</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Apache/1.3.12 Server at www.slac.stanford.edu Port 80
Index of /archive/1992/SLACVM/spicell/191

<table>
<thead>
<tr>
<th>Name</th>
<th>Last modified</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent Directory</td>
<td>22-Jul-1998 02:16</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>r10498/</td>
<td>22-Jul-1998 01:51</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>unix-commands</td>
<td>22-Jul-1998 01:53</td>
<td>1k</td>
<td></td>
</tr>
</tbody>
</table>

Apache/1.3.12 Server at www.slac.stanford.edu Port 80
Index

of /archive/1992/SLACVM/spicell/191/rl0498

<table>
<thead>
<tr>
<th>Name</th>
<th>Last modified</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent Directory</td>
<td>22-Jul-1998 01:53</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>README</td>
<td>21-Jul-1998 18:44</td>
<td>23k</td>
<td></td>
</tr>
<tr>
<td>lasting.globalv</td>
<td>30-May-1990 02:11</td>
<td>1k</td>
<td></td>
</tr>
<tr>
<td>load.map</td>
<td>12-Dec-1991 10:03</td>
<td>1k</td>
<td></td>
</tr>
<tr>
<td>profile.exec</td>
<td>12-Dec-1991 10:06</td>
<td>2k</td>
<td></td>
</tr>
<tr>
<td>profile.xedit</td>
<td>30-Nov-1989 06:49</td>
<td>7k</td>
<td></td>
</tr>
<tr>
<td>spicel91.backup</td>
<td>21-Jul-1998 18:28</td>
<td>2k</td>
<td></td>
</tr>
<tr>
<td>spicell.conslast</td>
<td>11-Dec-1991 16:34</td>
<td>1k</td>
<td></td>
</tr>
<tr>
<td>spicell.lastnews</td>
<td>11-Dec-1991 16:33</td>
<td>1k</td>
<td></td>
</tr>
<tr>
<td>spicell.netlog</td>
<td>20-Dec-1991 03:30</td>
<td>1k</td>
<td></td>
</tr>
<tr>
<td>winters.filelist</td>
<td>21-Jul-1998 18:49</td>
<td>1k</td>
<td></td>
</tr>
<tr>
<td>winters.jcw119</td>
<td>21-Jul-1998 18:44</td>
<td>9k</td>
<td></td>
</tr>
<tr>
<td>winters.ls</td>
<td>22-Jul-1998 01:51</td>
<td>1k</td>
<td></td>
</tr>
</tbody>
</table>

Apache/1.3.12 Server at www.slac.stanford.edu Port 80
On 22 Jul 1998 restored currently existing backup copy #16 (on tape
 cartridge RL0498) of userid SPICELL minidisk 191 via the CMS RECOVER
 command to WINTERS virtual reader, and from there to WINTERS 294 (a
 SPACE TEMPDISK) using a "RECEIVE / (OLDDATE)" command within RDRLIST.
The VM backup tape was taken 1/7/92.

Then copied all the RECOVERed files plus five files on the recovery
 and migration process from SLACVM to UNIX. Used an NFS mount ?? in
 UNIX of the SLACVM WINTERS 294 minidisk, followed by a UNIX copy of
 all those files to the subdirectory
 summary of UNIX commands is in file unix-commands.)

SPICELL 191 may have been used in very early development of the
 experimental WWW system at SLAC. SPICELL 191 is not an "INSTALL"
 disk.

More specifically, from the CMS RECOVER list of backup tapes on 7/22/98
 selected:

16) SPICELL 0191 dumped to file 90 of tape RL0498 on 01/07/92 at 19:32:12

See file spicell191.backup for the entire list of currently existing
 backups (created from XSHOW capture of RECOVER command output).

RECOVER submitted VM batch job JCM119 from userid WINTERS on 7/22/98.
The job was run shortly afterwards. Its batch console output is in file
 winters.jcm119.

There were a total of ?? files on the SLACVM SPICELL 191 minidisk of
 1/7/92. In inverse chronological order since last update, here are
 the files (from "FILELIST (STATS) command output"):

<table>
<thead>
<tr>
<th>Filename</th>
<th>Filetype</th>
<th>Fm Format</th>
<th>LRECL</th>
<th>Records</th>
<th>Blocks</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>???</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* As defined in "HELP CMS FILELIST", the STATS option produces
the following output:

STAts

lists the following information about the specified files:

- File identifier or directory identifier
- Format and logical record length of the file
- Number of records and number of blocks in the file
- Date and time of last update.

See the "Examples" for a sample display using the STATS option.

To find fairly often the author(s) of one of these executable files:

- Look in comments near the top (or bottom) for an EXEC's "owner",
the person(s) with primary responsibility for the file at the time
the file was created or most recently updated before this backup
was made.
For a list of all the files recovered plus three files created related to the recovery plus a record of the WINTERS CMS environment in which the recovery occurred (in file CMS PRESERVE), see winters.filelist (created by SAVEing the output of a FILELIST command). A list of all the files on the backup tape (which seems to be the same?? as all the files recovered) is in the batch job output winters.jcw119.

For a list of all the files moved to UNIX (which should include all the files in the winters.filelist file), see winters.ls (which also lists the unix-commands file, plus).

In summary, for more details about the recovery from VM backup and move from SLACVM to SLAC UNIX, see the following files:

README [created in SLACVM about entire migration, named README RL0498S]
 cms.preserve
 spice191.backup ??
 winters.jcw119
 winters.filelist

unix-commands [created in UNIX]
 winters.ls

See also files in subdirectory /afs/slac/www/archive/SLACVM for generally applicable information.

22 Jul 1998

Joan M. Winters
DMSLIO201W The following names are undefined:
IBMBLIIA
/* SLAC new-user PROFILE EXEC */
/* This file is installed as PROFILE EXEC on the 191 disk of each */
/* new VM account. Executed at logon, commands in the PROFILE */
/* help establish an initial working environment for the account. */
/* */
/* DON'T ERASE THIS FILE. If the commands below don't meet your */
/* needs, the file may be edited and replaced. */
/* */
/* Master copy of new-user PROFILE maintained by VM userid */
/* BILLIE, SCS Computing Services */
/* */
/* Revision History: 0 11 March 1988, first working version */
/* 1 23 October 1989, XA-Conversion changes */
/* 2 21 Feb. 1990, XA-Conversion - Removed */
/* 3 23 Feb. 1990, Removed ref. to FORTMOD2 */
/* */
/* ** */
/* Trace R */
/* Don't echo these commands to the console */
/* Following things not done in batch */

If ^XFLAG(BATCH) then do

QCONSOLE /* Determine and set up for terminal type */
Pull . contype .
If contype = 'TTY' then EXEC ASCII NOQTERM NOCLEAR
Else if contype = 3270 then EXEC 3270 NOQTERM NOCLEAR RESET

/* Only do news/mail if there's really a terminal there. */
If contype ^= 'DISC' then do
DROPBUF 0 /* Clear stack buffers before news & mail */
End /* contype ^= 'DISC' */
End /* processing for non-BATCH */

/* C compiler stuff */
'GIME C370'

/* SET UP TCP ACCESS */
/* "GIME TCPMNT 582" tyh */
"GIME TCPAPPL "
"GLOBAL TXTLIB IBMLIB CMSLIB EDCBASE COMMTEXT VSPASCAL AMPLANG"
'QCONSOLE'

pull . cons .

if cons = 'DISC' then do
'EXEC RUNDAEMO'
end

Return
&TRACE OFF
* This profile was set up for D. Phillips, by T. Beeman 12/29/81
* LAST MODIFIED, 3/5/84 BY L. ADDIS FOR GROUP $LI
&IF &N = 0 &EXIT
*
* FIND THE OPTIONS LIST (IF ONE EXISTS) AND BREAK IT OFF FOR LATER
&PAREN = &LOCATION OF (&ARGSTRING
&IF &PAREN = 0 &GOTO -FINDASTER
&OPTIONS = &SUBSTR OF &ARGSTRING &PAREN *
&PAREN = &PAREN - 1
&ARGSTRING = &SUBSTR OF &ARGSTRING 1 &PAREN
&STACK LIFO &ARGSTRING
&READ ARGS
*
* OPTIONS ARE GONE. USE HEURISTICS TO DETERMINE FILE NAME.
-FINDASTER
&AST = &LOCATION OF + &ARGSTRING
&IF &AST = 0 &IF &N >= 2 &GOTO -LOAD (NO SEARCHING IS NEEDED)
&IF &.I = . &ARGS &I 1 * *
&COMMAND DESBUF
&COMMAND SET CMSTYPE HT
&COMMAND LISTX &1 &2 &3 (STACK FIFO FORMAT SYSTEM
& = &RC
&COMMAND SET CMSTYPE RT
&IF &.I = 0 &GOTO -NOTFOUND (NOTHING CAME BACK FROM LISTX)
*---
&COMMAND SENTRIES
&N = &RC
&IF &N = 1 &GOTO -JUSTONE (ONE FILENAME IN STACK - EDIT IT)
*---
*
* THE STACK CONTAINS MORE THAN ONE ENTRY. UNSTACK AND PUT THEM INTO
* THE ARRAY(I) VARIABLES.
&type Multiple files match given filename:
&I = 1
&LOOP -ENDLOOP &N
 &READ STRING &LINE
&type &I &LINE
&ARRAY&I = &SUBSTR OF &LINE 1 20
-ENDLOOP &I = &I + 1
*
* THE USER CAN TYPE UP TO 10 NUMBERS IN ANY ORDER, OR ALL. THE FILES
* WILL BE BROUGHT INTO THE EDITING RING IN THE ORDER SPECIFIED, WITH
* THE FINAL FILE BEING CURRENT.
* AN EMPTY LINE RESPONSE DEFAULTS TO THE FIRST FILE IN THE LIST.
*
-ASKWANTS
&type Which one(s) do you want? (Nos., A(11), Q(quit), or R(edisplay))
&READ VAR &W0 &W1 &W2 &W3 &W4 &W5 &W6 &W7 &W8 &W9 &W10
&Q = &SUBSTR OF . &W0 1 2
&IF &Q = . &Q &GOTO -QUIT
*---
&IF &W0 = . &W0 = 1
&IF &Q ^= .R &GOTO -CHEKFORALL (NO REDISPLAY - KEEP CHECKING)
&I = 1
&LOOP -ENDREDIS &N
&type &I &ARRAY&I
-ENDREDIS &I = &I + 1
&GOTO -ASKWANTS
*---
-CHEKFORALL
 &IF &Q ^= .A &GOTO -WANTLIST (USER GAVE US A LIST)
 &STACK &ARRAY1
 &READ ARGS
 &I = 2
 &LOOP -ENDALL &IN
 &STACK XEDIT &ARRAY&I
 -ENDALL &I = &I + 1
 &STACK XEDIT &ARRAY1
 &GOTO -LOAD (DONE MESSING AROUND - LOAD THE EDITOR)

* UNWRAP THE W(I) LIST AND STACK 'XEDIT' SUBCOMMANDS FOR THE EDITOR TO READ
* ONCE IT IS RUNNING. THEY WILL CREATE THE RING FOR THE USER.

-WANTLIST
 &TYPEWO = &TYPE OF &W0
 &IF &TYPEWO = NUM &GOTO -FIRSTOK
 &TYPE '&W0 ' is invalid. (Must be an integer, ALL, or QUIT.)
 &GOTO -ASKWANTS

-FIRSTOK
 &STACK &ARRAY&W0
 &READ ARGS
 &I = 1
 &LOOP -ENDWANTS 10
 &IF .&W1 = . &GOTO -ENDWANTS
 &STACK XEDIT &ARRAY&W&I
 -ENDWANTS &I = &I + 1
 &STACK XEDIT &ARRAY&W0
 &GOTO -LOAD

* EXACTLY ONE FILE MATCHED THE SPECIFIED LISTX PATTERN. STACK A MESSAGE
* TELLING THIS TO THE USER. IT WILL BE IN THE DISPLAY AREA OF A 3270.

-JUSTONE
 &READ ARGS
 &STACK COMMAND MSG One file found: &1 &2 &3
 &GOTO -LOAD

-NOTFOUND
 &TYPE FILE &1 &2 &3 NOT FOUND
 -QUIT
 &ARGS $DUMMY$$ $DUMMY$$ S
 &QUITFLAG = YES

 -LOAD
 LOAD &1 &2 &3 &OPTIONS
 &IF &RC ^= 0 &EXIT &RC
 &IF .&QUITFLAG ^= .YES &GOTO -DEFAULTS
 &STACK LIFO QUIT
 &EXIT &RC

COMMAND QUIT

* NOW WE HAVE A FILE. SET UP THE DEFAULTS.
*

-DEFAULTS
 TRANSFER TERMINAL FN FT FM RECFM LRECL SIZE LINE
 &READ VAR &TERM &FN &FT &FM &RECFM &LRECL &SIZE
 &IF &TERM ^= TYPEWRITER &GOTO -TYPE

* DISPLAY TERMINAL HANDLING
SET NULL ON
SET ENTER IGNORE COMMAND CURSOR CMDLINE 1 PRIORITY 10
SET CASE M RESPECT
* SET CMDLINE TOP
SET NUMBER ON
* MAKE THE CURRENT LINE IN XEDIT ABOUT 1/3 DOWN FROM TOP
* TRANSFER LSCREEN
* &READ VARS &NLINL
* &CURLIN = &NLINL + 4
* &CURLIN = &DIV OF &CURLIN 3
* SET CURLINE ON &CURLIN
* &KURLIN = &CURLIN - 3
* DOWN &KURLIN
* &MAXLIN = &NLINL - 2
* &IF &CURLIN >= &MAXLIN &SKIP 4
 SET CURLINE ON 10
* &SCLLIN = &CURLIN + 1
 SET SCALE ON 11
* SET SCALE ON &SCLLIN
* SET SCALE OFF
* &SKIP 1
* SET SCALE OFF
* IF THE LRECL IS > 80 THEN TRY TO PUT AS MUCH ON THE SCREEN AS POSSIBLE
* &IF &LRECL LE 80 &GOTO -SKIPWIDE
* SET PREFIX OFF
 VERIFY OFF 1 *
-SKIPWIDE
* &IF &FT = EXEC SET PREFIX ON
* &IF &FT = XEDIT SET PREFIX ON
* &IF &FT = SCRIPT SET PREFIX ON
* &IF &FT = TEX SET PREFIX ON
SET PREFIX ON
&GOTO -REJOIN

* ASCII TERMINAL HANDLING
-TYPER
 &TYPE &FN &FT &FM (&SIZE LINES), &RECFM &LRECL
 SET COLPTR OFF
 SET MACRO ON

* CONTROL REJOINS HERE FOR BOTH TERMINAL TYPES
* CONVENIENT SYNONYMS: A (AGAIN), TA (TYPE ALL)
* HANDLING OF SPECIAL FILETYPES
-REJOIN
 &IF &TERM = DISPLAY SET SCALE ON
 &IF &FT = PASCAL SET CASE M I

 &IF &FT = LISTING SET VERIFY 2 *
 &IF &IF = FILE SET VERIFY 2 *
 &IF &FT = MYCARDS SET CASE UPPER
 &IF &FT = MYCARDS SET LRECL 80
 &IF &FT = SASLOG SET VERIFY 2 *
 &IF &FT = FORTRAN SET CASE UPPER
 &IF &FT = XEDIT SET CASE UPPER
 &IF &FT = EXEC SET CASE MIXED
 &IF &FT = SCRIPT SET CASE M I
 &IF &FT = TEX SET CASE M I
 &IF &FT = MYCARDS SET SERIAL OFF
* SET SYN A 1 =
* SET SYN 1:
* SET SYN TA 2 --* T*

* SET MY SYNONYMS
SET SYN BOTTOM 1 BOTTOM
SET SYN BACKWARD 4 BACKWARD
SET SYN LWYLBR 1 RSMLIST
SET SYN PWYLBR 1 RSMLIST
* SET SYNONYM LIST 1 RSMLIST
SET SYN LOCATE 2 LOCATE
SET SYN POINT 2 SET POINT

* SET MY PREFIX SYNONYMS
SET PREFIX SYN B P
SET PREFIX SYN L /
SET PREFIX SYN R "
SET SYN SCRIPT 2 XSCRIPT
SET TABS 1 5 10 15 20 25 30 35 40 50 60 70 80

* THE PF KEYS ARE DEFINED FOR MOVING QUICKLY AROUND IN A FILE. SCHEMATICALLY
* THEY ARE:

* MOVE PAPER FORWARD -------> A LINE 10 LINES A PAGE
* MOVE PAPER BACKWARD------ A LINE 1 IE RAE

* MOVE CURSOR TO THE -------> PREV WD NEXT WD END OF LINE

* SET PF1 ?
SET PF4 TOP
SET PF5 BOTTOM
SET PF6 TABKEY
SET PF7 INSCR B
SET PF8 INSCR F
SET PF9 SPLITJOIN
SET PF10 MACRO ENDLINE
SET PF11 CURSOR CO

SET PF12 FILE
SET PF13 VER 1 70
SET PF14 VER 51 120
SET PF15 VER 91 150
SET PF16 U10
* SET PF17 *I
* SET PF18 TOP
* SET PF19 MACRO ENDLINE
SET PF20 RIGHT 20
SET PF21 LEFT 20
SLACPREF
&IF &TERM = DISPLAY SHOWPF ON

&EXIT 0
There are 29 copies of SPICELL 191 on backup tapes. They are:

1) SPICELL 0191 dumped to file 207 of tape RL2746 on 10/03/95 at 18:22:00
2) SPICELL 0191 dumped to file 210 of tape RL1813 on 07/04/95 at 18:05:01
3) SPICELL 0191 dumped to file 221 of tape RL1565 on 04/04/95 at 20:02:12
4) SPICELL 0191 dumped to file 218 of tape RL2991 on 01/03/95 at 21:09:07
5) SPICELL 0191 dumped to file 277 of tape RL3151 on 10/04/94 at 18:24:37
6) SPICELL 0191 dumped to file 217 of tape RL1810 on 07/06/94 at 17:53:47
7) SPICELL 0191 dumped to file 137 of tape RL3319 on 04/06/94 at 00:14:06
8) SPICELL 0191 dumped to file 161 of tape RL3137 on 01/06/94 at 03:21:58
9) SPICELL 0191 dumped to file 322 of tape RL2982 on 10/06/93 at 04:34:49
10) SPICELL 0191 dumped to file 24 of tape RL2709 on 07/06/93 at 15:24:44
11) SPICELL 0191 dumped to file 35 of tape RL1750 on 04/06/93 at 13:28:30
12) SPICELL 0191 dumped to file 45 of tape RL2516 on 01/05/93 at 14:53:27
13) SPICELL 0191 dumped to file 51 of tape RL1534 on 10/07/92 at 00:38:18
14) SPICELL 0191 dumped to file 50 of tape RL1373 on 07/07/92 at 18:42:04
15) SPICELL 0191 dumped to file 65 of tape RL1782 on 04/07/92 at 19:00:29
16) SPICELL 0191 dumped to file 90 of tape RL0498 on 01/07/92 at 19:32:12
17) SPICELL 0191 dumped to file 89 of tape RL0749 on 10/02/91 at 01:11:20
18) SPICELL 0191 dumped to file 230 of tape RL1202 on 07/03/91 at 07:12:02
19) SPICELL 0191 dumped to file 456 of tape RL0784 on 04/03/91 at 06:08:25
20) SPICELL 0191 dumped to file 118 of tape RL2272 on 01/03/91 at 04:38:31
21) SPICELL 0191 dumped to file 33 of tape RL2122 on 10/03/90 at 15:01:58
22) SPICELL 0191 dumped to file 34 of tape RL1997 on 07/03/90 at 13:30:12
23) SPICELL 191 dumped to file 3 of tape RL1872 on 04/03/90 at 19:16:38
24) SPICELL 191 dumped to file 51 of tape RL1645 on 01/02/90 at 17:14:51
25) SPICELL 191 dumped to file 9 of tape RL1474 on 10/03/89 at 18:12:59
26) SPICELL 191 dumped to file 52 of tape RL1313 on 07/05/89 at 21:54:23
27) SPICELL 191 dumped to file 13 of tape RL1109 on 04/05/89 at 11:56:31
28) SPICELL 191 dumped to file 91 of tape RL0586 on 01/03/89 at 22:48:03
29) SPICELL 191 dumped to file 21 of tape SL0153 on 10/04/88 at 10:19:38

Which one of the above do you wish to restore?
{ 1 - 29 , <CR>=none }
Note QSPIRES MAIL A disc from QSPIRES at SLACVM on 12/20/91 11:30:29
----- Execute "R$COV191"

** RECOVER SPICELL 191 to TDISK **
DASD 0555 DEFINED
TAPE 0F13 ATTACHED TO BATCH08A 0181
TAPE 0181 ON DEV 0F13 3490 R/W SUBCH = 000D
MNTREQ1001 01:29:34 Mounting volume RL0498 on device 181, SL NoRing
MNTVER1071 01:30:10 Remounting volume RL0498 on device 181; intervention required
MNTVER1071 01:30:37 Volume RL0498 on device 181 has been verified
Rewind complete
RESTORING LXA191
DATA DUMPED 01/07/92 AT 19.32.07 GMT FROM LXA191 RESTORED TO SCRATCH
INPUT CYLINDER EXTENTS OUTPUT CYLINDER EXTENTS
 START STOP START STOP
 0000 0000 0000 0000
END OF RESTORE
END OF JOB
01:32:07 * MSG FROM VMSETUPA: VMSCAN0011 VMSETUP REQUEST FOR WINTERS JCW119 WILL BE
TAPE 0181 DETACHED BY VMSETUPA
CARD DUMP LASTING GLOBALV Z1
PUN FILE 0625 SENT TO WINTERS RDR AS 7295 RECS 0002 CPY 001 Y NOHOLD NOKEEP
CARD DUMP LOAD MAP Z5
PUN FILE 0626 SENT TO WINTERS RDR AS 7296 RECS 0003 CPY 001 Y NOHOLD NOKEEP
CARD DUMP PROFILE EXEC Z2
PUN FILE 0627 SENT TO WINTERS RDR AS 7297 RECS 0023 CPY 001 Y NOHOLD NOKEEP
CARD DUMP PROFILE XEDIT Z1
PUN FILE 0628 SENT TO WINTERS RDR AS 7298 RECS 0090 CPY 001 Y NOHOLD NOKEEP
CARD DUMP SPICELL CONSLAST Z1
PUN FILE 0629 SENT TO WINTERS RDR AS 7299 RECS 0003 CPY 001 Y NOHOLD NOKEEP
CARD DUMP SPICELL LASTNEWS Z1
PUN FILE 0630 SENT TO WINTERS RDR AS 7300 RECS 0004 CPY 001 Y NOHOLD NOKEEP
CARD DUMP SPICELL NETLOG Z0
PUN FILE 0631 SENT TO WINTERS RDR AS 7301 RECS 0004 CPY 001 Y NOHOLD NOKEEP
FILENAME FILETYPE FM FORMAT LRECL RECS BLOCKS DATE TIME LABEL
LASTING GLOBALV Z1 V 24 1 1 5/30/90 9:11:23 LXA191
LOAD MAP Z5 F 100 2 1 12/12/91 18:03:45 LXA191
PROFILE EXEC Z2 V 69 50 2 12/12/91 18:06:33 LXA191
PROFILE XEDIT Z1 V 79 235 4 11/30/89 14:49:13 LXA191
SPICELL CONSLAST Z1 F 80 3 1 12/12/91 0:34:30 LXA191
SPICELL LASTNEWS Z1 V 12 1 1 12/12/91 0:33:19 LXA191
SPICELL NETLOG Z0 V 77 2 1 12/20/91 11:30:29 LXA191
----- Batch return code = 0.
----- System cleanup $BCLEAN.

*
* End execution of JCW119 for WINTERS at 01:32:08 on 22/07/90.
*
* Actual CPU time (mm:ss[.th]): Virtual = 00:00.38 , Total = 00:00.60

* I/O counts: SIO=000387 RDR=000000 PRT=00086 PCH=000204

* Space used on A-disk at job end: 48K

* I/O counts on units still available
* Spool units
* 0009: 66 000C: 0 000D: 9 000E: 0
* 00AE: 0
* Dasd units
* 059E(T): 12 059F(U): 6 05A0(V): 27 05A1(R): 18

<table>
<thead>
<tr>
<th>Mode</th>
<th>User</th>
<th>Group</th>
<th>Size</th>
<th>Date/Time</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>-r-r-r--</td>
<td>winters</td>
<td>sf</td>
<td>23296</td>
<td>Jul 21 18:44</td>
<td>REAUME</td>
</tr>
<tr>
<td>-r-r-r--</td>
<td>winters</td>
<td>sf</td>
<td>25 May 30 1990</td>
<td>lasting.globalv</td>
<td></td>
</tr>
<tr>
<td>-r-r-r--</td>
<td>winters</td>
<td>sf</td>
<td>202 Dec 12 1991</td>
<td>load.map</td>
<td></td>
</tr>
<tr>
<td>-r-r-r--</td>
<td>winters</td>
<td>sf</td>
<td>2212 Dec 12 1991</td>
<td>profile.exec</td>
<td></td>
</tr>
<tr>
<td>-r-r-r--</td>
<td>winters</td>
<td>sf</td>
<td>7206 Nov 30 1989</td>
<td>profile.xedit</td>
<td></td>
</tr>
<tr>
<td>-r-r-r--</td>
<td>winters</td>
<td>sf</td>
<td>2430 Jul 21 18:28</td>
<td>spice191.backup</td>
<td></td>
</tr>
<tr>
<td>-r-r-r--</td>
<td>winters</td>
<td>sf</td>
<td>243 Dec 11 1991</td>
<td>spicell.conslast</td>
<td></td>
</tr>
<tr>
<td>-r-r-r--</td>
<td>winters</td>
<td>sf</td>
<td>13 Dec 11 1991</td>
<td>spicell.lastnews</td>
<td></td>
</tr>
<tr>
<td>-r-r-r--</td>
<td>winters</td>
<td>sf</td>
<td>156 Dec 20 1991</td>
<td>spicell.netlog</td>
<td></td>
</tr>
<tr>
<td>-r-r-r--</td>
<td>winters</td>
<td>sf</td>
<td>1080 Jul 21 18:49</td>
<td>winters.filelist</td>
<td></td>
</tr>
<tr>
<td>-r-w-r--</td>
<td>winters</td>
<td>sf</td>
<td>9709 Jul 21 18:44</td>
<td>winters.jcwl19</td>
<td></td>
</tr>
<tr>
<td>-r-w-r--</td>
<td>winters</td>
<td>sf</td>
<td>0 Jul 22 01:51</td>
<td>winters.ls</td>
<td></td>
</tr>
</tbody>
</table>
UNIX Command Summary with an Extract of Output

Commands used to copy files RECOVERed from CMS Backup to WINTERS 294 (a SPACE TEMPDISK), from that SLACVM minidisk on to UNIX AFS WWW archive space:

The commands (almost always) and output were cut and pasted from the xterm (or aixterm) window where the work was executed. Text in square brackets ([]) is commentary.

pwd
date
vmnfs refresh winters.294
 [SLACVM.SLAC.STANFORD.EDU]
Disk WINTERS.294 refreshed.
cp -p /nfs/slacvm/ascii/winters.294/* .
chmod a-x *
mv readme.r10498s README
ls -l > winters.ls
671 cassandra /191/r10498> chmod u-w winters.ls
wc winters.ls
 13 110 825 winters.ls
673 cassandra /191/r10498> wc winters.filelist
 10 130 1080 winters.filelist

[Dashing along, omitted generating CMS PRESERVE...]

Note the date of this file, unix-commands, has been updated since the file winters.ls was created. README is also likely to be updated, too.

22 Jul 1998

Joan M. Winters
Index of /archive/1992/SLACVM/spicell/192

<table>
<thead>
<tr>
<th>Name</th>
<th>Last_modified</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>📁 Parent Directory</td>
<td>22-Jul-1998 02:16</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>📁 r11414/</td>
<td>22-Jul-1998 03:04</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>📁 r11559/</td>
<td>22-Jul-1998 03:39</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Apache/1.3.12 Server at www.slac.stanford.edu Port 80
Index of /archive/1992/SLACVM/spicell/192/rl1414

<table>
<thead>
<tr>
<th>Name</th>
<th>Last modified</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent Directory</td>
<td>22-Jul-1998 03:12</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>README</td>
<td>21-Jul-1998 19:30</td>
<td>10k</td>
<td></td>
</tr>
<tr>
<td>a.c</td>
<td>16-Oct-1991 11:13</td>
<td>1k</td>
<td></td>
</tr>
<tr>
<td>a.errs</td>
<td>16-Oct-1991 11:15</td>
<td>1k</td>
<td></td>
</tr>
<tr>
<td>a.exec</td>
<td>01-Nov-1991 07:13</td>
<td>1k</td>
<td></td>
</tr>
<tr>
<td>a.text</td>
<td>16-Oct-1991 11:15</td>
<td>1k</td>
<td></td>
</tr>
<tr>
<td>binlist.html</td>
<td>06-Dec-1991 13:11</td>
<td>1k</td>
<td></td>
</tr>
<tr>
<td>binlist.index</td>
<td>06-Dec-1991 13:00</td>
<td>1k</td>
<td></td>
</tr>
<tr>
<td>bsdtypes.h</td>
<td>15-Oct-1991 11:01</td>
<td>3k</td>
<td></td>
</tr>
<tr>
<td>cc2.exec</td>
<td>30-Oct-1991 06:18</td>
<td>1k</td>
<td></td>
</tr>
<tr>
<td>cc_all.exec</td>
<td>14-Oct-1991 08:29</td>
<td>1k</td>
<td></td>
</tr>
<tr>
<td>chmod.exec</td>
<td>04-Nov-1991 03:35</td>
<td>4k</td>
<td></td>
</tr>
<tr>
<td>cms.preserve</td>
<td>06-Nov-1991 09:06</td>
<td>1k</td>
<td></td>
</tr>
<tr>
<td>cobj.rmap</td>
<td>16-Oct-1991 11:46</td>
<td>1k</td>
<td></td>
</tr>
<tr>
<td>default.html</td>
<td>06-Dec-1991 13:15</td>
<td>1k</td>
<td></td>
</tr>
<tr>
<td>dload.exec</td>
<td>01-Nov-1991 07:15</td>
<td>1k</td>
<td></td>
</tr>
<tr>
<td>edcxv.c</td>
<td>16-Oct-1991 11:08</td>
<td>1k</td>
<td></td>
</tr>
<tr>
<td>edcxv.text</td>
<td>05-Dec-1991 08:03</td>
<td>1k</td>
<td></td>
</tr>
<tr>
<td>fsearch.orig</td>
<td>06-Nov-1991 04:04</td>
<td>5k</td>
<td></td>
</tr>
<tr>
<td>fget.exec</td>
<td>06-Dec-1991 12:45</td>
<td>1k</td>
<td></td>
</tr>
<tr>
<td>fget.orig</td>
<td>06-Nov-1991 09:08</td>
<td>5k</td>
<td></td>
</tr>
<tr>
<td>findgate.c</td>
<td>06-Nov-1991 09:05</td>
<td>7k</td>
<td></td>
</tr>
<tr>
<td>findgate.c2</td>
<td>14-Oct-1991 08:28</td>
<td>7k</td>
<td></td>
</tr>
<tr>
<td>findgate.orig</td>
<td>04-Nov-1991 03:30</td>
<td>7k</td>
<td></td>
</tr>
<tr>
<td>findgate.slacvm</td>
<td>06-Nov-1991 05:57</td>
<td>7k</td>
<td></td>
</tr>
<tr>
<td>findgate.text</td>
<td>05-Dec-1991 08:02</td>
<td>9k</td>
<td></td>
</tr>
<tr>
<td>fsearch.exec</td>
<td>09-Dec-1991 10:10</td>
<td>1k</td>
<td></td>
</tr>
<tr>
<td>fsearch.save</td>
<td>06-Nov-1991 06:06</td>
<td>5k</td>
<td></td>
</tr>
<tr>
<td>httdaemon.c</td>
<td>15-Oct-1991 11:10</td>
<td>16k</td>
<td></td>
</tr>
<tr>
<td>httdaemon.c2</td>
<td>15-Oct-1991 08:45</td>
<td>16k</td>
<td></td>
</tr>
<tr>
<td>File</td>
<td>Date</td>
<td>Time</td>
<td>Size</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>htdaemon.module</td>
<td>05-Dec-1991</td>
<td>08:03</td>
<td>128k</td>
</tr>
<tr>
<td>htdaemon.text</td>
<td>05-Nov-1991</td>
<td>06:37</td>
<td>14k</td>
</tr>
<tr>
<td>httpc.c</td>
<td>16-Oct-1991</td>
<td>10:04</td>
<td>7k</td>
</tr>
<tr>
<td>httpc.h</td>
<td>14-Oct-1991</td>
<td>08:47</td>
<td>2k</td>
</tr>
<tr>
<td>httpc.text</td>
<td>05-Nov-1991</td>
<td>06:38</td>
<td>6k</td>
</tr>
<tr>
<td>hutils.h</td>
<td>14-Oct-1991</td>
<td>08:47</td>
<td>2k</td>
</tr>
<tr>
<td>load.map</td>
<td>05-Dec-1991</td>
<td>07:55</td>
<td>1k</td>
</tr>
<tr>
<td>make.exec</td>
<td>19-Sep-1991</td>
<td>07:06</td>
<td>1k</td>
</tr>
<tr>
<td>mycc.exec</td>
<td>16-Oct-1991</td>
<td>11:28</td>
<td>1k</td>
</tr>
<tr>
<td>nicfounl.exec</td>
<td>24-Sep-1991</td>
<td>04:01</td>
<td>5k</td>
</tr>
<tr>
<td>q.q</td>
<td>16-Oct-1991</td>
<td>10:22</td>
<td>4k</td>
</tr>
<tr>
<td>run.exec</td>
<td>19-Sep-1991</td>
<td>07:19</td>
<td>1k</td>
</tr>
<tr>
<td>rundaemon.exec</td>
<td>06-Nov-1991</td>
<td>09:03</td>
<td>1k</td>
</tr>
<tr>
<td>setup.exec</td>
<td>05-Nov-1991</td>
<td>06:57</td>
<td>1k</td>
</tr>
<tr>
<td>spicel92.backup</td>
<td>21-Jul-1998</td>
<td>18:58</td>
<td>1k</td>
</tr>
<tr>
<td>spires.html</td>
<td>09-Dec-1991</td>
<td>09:20</td>
<td>1k</td>
</tr>
<tr>
<td>spires.index</td>
<td>12-Dec-1991</td>
<td>07:59</td>
<td>1k</td>
</tr>
<tr>
<td>string.h</td>
<td>16-Oct-1991</td>
<td>10:07</td>
<td>6k</td>
</tr>
<tr>
<td>tcp.h</td>
<td>14-Oct-1991</td>
<td>08:47</td>
<td>5k</td>
</tr>
<tr>
<td>terryh.tyh239</td>
<td>14-Nov-1991</td>
<td>10:43</td>
<td>11k</td>
</tr>
<tr>
<td>unix-commands</td>
<td>22-Jul-1998</td>
<td>03:08</td>
<td>4k</td>
</tr>
<tr>
<td>winters.filelist</td>
<td>21-Jul-1998</td>
<td>19:57</td>
<td>5k</td>
</tr>
<tr>
<td>winters.jcw120</td>
<td>21-Jul-1998</td>
<td>19:11</td>
<td>25k</td>
</tr>
<tr>
<td>winters.ls</td>
<td>22-Jul-1998</td>
<td>03:04</td>
<td>3k</td>
</tr>
</tbody>
</table>
On 22 Jul 1998 restored currently existing backup copy #16 (on tape
cartridge RL1414) of userid SPICELL minidisk 192 via the CMS RECOVER
command to WINTERS reader, and from there to WINTERS 294 (a
SPACE TEMPDISK) using a "RECEIVE / (OLDDATE" command within RDRLIST.
The VM backup tape was taken 1/8/92.

Then copied all the RECOVERed files plus five files on the recovery
and migration process from SLACVM to UNIX. Used an NFS mount ?? in
UNIX of the SLACVM WINTERS 294 minidisk, followed by a UNIX copy of
all those files to the subdirectory
summary of UNIX commands is in file unix-commands.)

SPICELL 192 may have been used in very early development of the
experimental WWW system at SLAC. SPICELL 192 is not an "INSTALL"
disk.

More specifically, from the CMS RECOVER list of backup tapes on 7/22/98
selected:

16) SPICELL 0192 dumped to file 51 of tape RL1414 on 01/08/92 at 01:02:19

See file spicell192.backup for the entire list of currently existing
backups (created from XSHOW capture of RECOVER command output).

RECOVER submitted VM batch job JCW120 from userid WINTERS on 7/22/98.
The job was run shortly afterwards. Its batch console output is in file
winters.jcw120.

After the recovered files were RECEIVED, QUERY DISK A showed:

<table>
<thead>
<tr>
<th>LABEL</th>
<th>VDEV M</th>
<th>STAT</th>
<th>CYL</th>
<th>TYPE</th>
<th>BLKSIZE</th>
<th>FILES</th>
<th>BLKS</th>
<th>USED-(%)</th>
<th>BLKS</th>
<th>LEFT</th>
<th>BLK TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPC294</td>
<td>294 A</td>
<td>R/W</td>
<td>20</td>
<td>3390</td>
<td>4096</td>
<td>50</td>
<td>144-04</td>
<td>3456</td>
<td>3600</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There were a total of 47 files on the SLACVM SPICELL 192 minidisk of
1/8/92. In inverse chronological order since last update, here are the
files (from "FILELIST (STATS" command output*):

<table>
<thead>
<tr>
<th>Filename</th>
<th>Filetype</th>
<th>Fm</th>
<th>Format</th>
<th>LRECL</th>
<th>Records</th>
<th>Blocks</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPIRES</td>
<td>INDEX</td>
<td>A1</td>
<td>V</td>
<td>43</td>
<td>12</td>
<td>1</td>
<td>12/12/91</td>
<td>15:59:13</td>
</tr>
<tr>
<td>FSEARCH</td>
<td>EXEC</td>
<td>A1</td>
<td>V</td>
<td>40</td>
<td>7</td>
<td>1</td>
<td>12/09/91</td>
<td>18:10:32</td>
</tr>
<tr>
<td>SPIRES</td>
<td>HTML</td>
<td>A1</td>
<td>V</td>
<td>74</td>
<td>9</td>
<td>1</td>
<td>12/09/91</td>
<td>17:20:32</td>
</tr>
<tr>
<td>DEFAULT</td>
<td>HTML</td>
<td>A1</td>
<td>V</td>
<td>81</td>
<td>13</td>
<td>1</td>
<td>12/06/91</td>
<td>21:15:48</td>
</tr>
<tr>
<td>BINLIST</td>
<td>HTML</td>
<td>A1</td>
<td>V</td>
<td>73</td>
<td>13</td>
<td>1</td>
<td>12/06/91</td>
<td>21:11:53</td>
</tr>
<tr>
<td>BINLIST</td>
<td>INDEX</td>
<td>A1</td>
<td>F</td>
<td>80</td>
<td>8</td>
<td>1</td>
<td>12/06/91</td>
<td>21:00:22</td>
</tr>
<tr>
<td>FGSET</td>
<td>EXEC</td>
<td>A2</td>
<td>V</td>
<td>60</td>
<td>16</td>
<td>1</td>
<td>12/06/91</td>
<td>20:45:45</td>
</tr>
<tr>
<td>HTDAEMON</td>
<td>MODULE</td>
<td>A1</td>
<td>V</td>
<td>65535</td>
<td>5</td>
<td>32</td>
<td>12/05/91</td>
<td>16:03:14</td>
</tr>
<tr>
<td>EDCXV</td>
<td>TEXT</td>
<td>A1</td>
<td>F</td>
<td>80</td>
<td>9</td>
<td>1</td>
<td>12/05/91</td>
<td>16:03:06</td>
</tr>
<tr>
<td>FINDGATE</td>
<td>TEXT</td>
<td>A1</td>
<td>F</td>
<td>80</td>
<td>113</td>
<td>3</td>
<td>12/05/91</td>
<td>16:02:49</td>
</tr>
<tr>
<td>LOAD</td>
<td>MAP</td>
<td>A1</td>
<td>F</td>
<td>100</td>
<td>2</td>
<td>1</td>
<td>12/05/91</td>
<td>15:55:46</td>
</tr>
<tr>
<td>TERRYH</td>
<td>TYH239</td>
<td>A1</td>
<td>F</td>
<td>132</td>
<td>87</td>
<td>3</td>
<td>11/14/91</td>
<td>18:43:33</td>
</tr>
<tr>
<td>FGSET</td>
<td>ORIG</td>
<td>A2</td>
<td>V</td>
<td>78</td>
<td>132</td>
<td>2</td>
<td>11/06/91</td>
<td>17:08:04</td>
</tr>
<tr>
<td>CMS</td>
<td>PRESERVE</td>
<td>A1</td>
<td>V</td>
<td>65</td>
<td>30</td>
<td>1</td>
<td>11/06/91</td>
<td>17:06:02</td>
</tr>
<tr>
<td>FINDGATE</td>
<td>C</td>
<td>A1</td>
<td>V</td>
<td>78</td>
<td>245</td>
<td>2</td>
<td>11/06/91</td>
<td>17:05:49</td>
</tr>
<tr>
<td>RUNDAEMON</td>
<td>EXEC</td>
<td>A1</td>
<td>V</td>
<td>33</td>
<td>5</td>
<td>1</td>
<td>11/06/91</td>
<td>17:03:09</td>
</tr>
</tbody>
</table>

8/29/01
FSEARCH SAVE A1 V 76 123 2 11/06/91 14:06:50 SPC2
FINDGATE SLACVM A1 V 78 245 2 11/06/91 13:57:17 SPC2
FEARCH ORIG A1 V 76 125 2 11/06/91 12:04:44 SPC2
SETUP EXEC A1 V 62 4 1 11/05/91 14:57:21 SPC2
HTTCP TEXT A1 F 80 77 2 11/05/91 14:38:12 SPC2
HTDAEMON TEXT A1 F 80 183 4 11/05/91 14:37:48 SPC2
CMOD EXEC A2 V 68 203 2 11/04/91 11:35:12 SPC2
FINDGATE ORIG A1 V 78 245 2 11/04/91 11:30:12 SPC2
DLOAD EXEC A1 V 64 4 1 11/01/91 15:15:36 SPC2
A EXEC A1 V 68 10 1 11/01/91 15:13:32 SPC2
CC2 EXEC A1 V 58 8 1 10/30/91 14:18:05 SPC2
CPOBJ RMAP A1 F 80 3 1 10/16/91 18:46:59 SPC2
MYCC EXEC A1 V 63 51 1 10/16/91 18:28:29 SPC2
A ERRS A1 V 49 1 1 10/16/91 18:15:35 SPC2
A TEXT A1 F 80 5 1 10/16/91 18:15:35 SPC2
A C A1 F 80 5 1 10/16/91 18:10:27 SPC2
EDC XV C A1 F 80 5 1 10/16/91 18:08:43 SPC2
Q Q A1 F 80 52 2 10/16/91 17:22:58 SPC2
STRING H A2 F 80 75 2 10/16/91 17:07:43 SPC2
HTTCP C A1 V 79 282 2 10/16/91 17:04:54 SPC2
HTDAEMON C A1 V 85 639 5 10/15/91 18:10:19 SPC2
BSQDTYPES H A1 V 70 120 1 10/15/91 18:01:30 SPC2
HTDAEMON C2 A1 V 85 639 5 10/15/91 15:45:38 SPC2
HTTCP H A1 V 78 94 1 10/14/91 15:47:38 SPC2
TCP H A1 V 91 180 2 10/14/91 15:47:28 SPC2
HTUTILS H A1 V 79 85 1 10/14/91 15:47:21 SPC2
CC_ALL EXEC A1 V 81 13 1 10/14/91 15:29:29 SPC2
FINDGATE C2 A1 V 78 245 2 10/14/91 15:28:41 SPC2
NICFOUN1 EXEC A2 V 78 125 2 9/24/91 11:01:53 SPC2
RUN EXEC A1 V 74 21 1 9/19/91 14:19:57 SPC2
MAKE EXEC A1 V 51 6 1 9/19/91 14:06:07 SPC2

* As defined in "HELP CMS FILELIST", the STATS option produces the following output:

STAts
lists the following information about the specified files:

- File identifier or directory identifier
- Format and logical record length of the file
- Number of records and number of blocks in the file
- Date and time of last update.

See the "Examples" for a sample display using the STATS option.

N.B.: The oldest SLAC pages probably shown to the world re the Fri, 13 Dec 91 17:55:53 GMT+0100 announcement
to www-interest@cernvax.cern.ch and www-talk@cernvax.cern.ch,
Cc: pfkeb@kaon.slac.stanford.edu (Paul Kunz):

> There is an experimental W3 server for the SPIRES High energy Physics
> preprint
> database, thanks to Terry Hung, Paul Kunz and Louise Addis of SLAC. It's
> only just
> been put up, so don't expect perfection. With the w3 line mode browser,
> follow a
> link to it from our home page, then type for example
> K FIND AUTHOR KUNZ
>

8/29/01
the "FIND" is necessary at the moment, though it may change later.
>
- Tim
>
Paul Kunz wrote a few days ago:-
>
"The SLAC Library maintainer of SPIRES databases, Louise Addis, is absolutely delighted. She will ask for a permanent VM service machine and finish off the polishing. Things are really moving now."
>
"By the way, we certainly have the impression that accessing SPIRES from www on a UNIX machine is faster than using a terminal logged into SLACVM. Even a real 3278 terminal is not as fast. Actually, accessing CERNVM FIND via www seems faster than logging into cernvm and doing the same command as well."

I haven't found any ownership noted in the files. The people involved were probably Terry Hung, Paul Kunz, and Louise Addis as the email says.

For a list of all the files recovered plus three files created related to the recovery plus a record of the WINTERS CMS environment in which the recovery occurred (in file CMS PRESERVE), see winters.filelist (created by SAVEing the output of a FILELIST command). A list of all the files on the backup tape (which seems to be the same as all the files recovered) is in the batch job output winters.jcw120.

For a list of all the files moved to UNIX (which should include all the files in the winters.filelist file), see winters.ls (which also lists the unix-commands file, plus).

In summary, for more details about the recovery from VM backup and move from SLACVM to SLAC UNIX, see the following files:

README [created in SLACVM about entire migration, named README RL1414]
cms.preserve

spice192.backup ??
winters.jcw120
winters.filelist

unix-commands [created in UNIX]
winters.ls

See also files in subdirectory /afs/slc/w/www/archive/SLACVM for generally applicable information.

22 Jul 1998

Joan M. Winters
main (argc)
 int argc;
{
 printf("here here");
}
Warning! line 5: Symbol 'printf' assumed external