SASS Seminar 2016.11.02

Extra Dimensions and the Hierarchy Problem

Jong Min Yoon SLAC / Stanford University

$$\psi(x,y) = \frac{2}{\sqrt{L_x L_y}} \sin\left(\frac{\pi n_x x}{L_x}\right) \sin\left(\frac{\pi n_y y}{L_y}\right)$$
$$E = \frac{\hbar^3 \pi^3}{2m} \left(\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2}\right)$$

$$E = \frac{\hbar^3 \pi^3}{2m} \left(\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2} \right)$$

$$E = \frac{\hbar^3 \pi^3}{2m} \left(\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2} \right)$$

$$E = \frac{\hbar^3 \pi^3}{2m} \left(\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2} \right)$$

Extra Dimensions

- First proposal: Kaluza and Klein in 1920's
 - An attempt to unify EM and Einstein gravity
 - Kaluza-Klein states: the "tower" of states
- Most notably used in string theory for a consistent quantum gravity
 - Compactified extra dimensions
 with size Planck scale 10¹⁹ GeV or 10⁻³⁵ m
- In late 1990s, a different approach was introduced
 - Mainly focused on solving the Hierarchy Problem
 - Most notably, ADD and RS
- AdS/CFT correspondence brought an alternative interpretation
 - Dual to the strongly interacting 4D theories

Kaluza-Klein Reduction

- Consider that the 5th dimension y is compact with the topology of a circle with radius R
- Consider a 'massless' scalar theory

$$S_5 = \int d^4x dy \; \partial^M \phi^{\dagger} \partial_M \phi \quad M = 0, 1, 2, 3, 5$$

• Since the 5th dimension is a circle, we can expand the scalar field in a Fourier series

$$\phi(x,y) = \frac{1}{\sqrt{2\pi R}} \sum_{n=-\infty}^{\infty} e^{iny/R} \phi^{(n)}(x)$$

Kaluza-Klein Reduction

 Inserting the Fourier expansion in the Action and integrate out the y coordinate, we get

$$S_{5} = \int d^{4}x \left| \partial_{\mu} \phi^{(0)} \right|^{2} + \sum_{n \neq 0} \left[\left| \partial_{\mu} \phi^{(n)} \right|^{2} - \left(\frac{n}{R} \right)^{2} \left| \phi^{(n)} \right|^{2} \right]$$

- One massless mode, and "tower" of massive modes with mass n/R
- Below the energy ~1/R, i.e. in low energy effective theory, we can neglect the KK modes
 - So we don't 'see' the extra dimension in lower energies

Hierarchy Problem

- Theoretical physicists expect that the fundamental dimensionful scales should be 'naturally' of a similar order, if there is no reason for them to be different.
 - e.g. symmetry protects one parameter much smaller than others
- Gravity is much weaker than the other forces
 - Gravity 10⁻²⁴ weaker than the weak force
- Planck scale 10¹⁹ GeV vs Higgs boson mass 125 GeV
 - Quantum field theory expects quantum corrections of the mass of Higgs boson to be of order Planck scale
 - somehow, different quantum corrections cancel each other –
 with the first 17 digits exactly same
 - fine-tuning problems, problem of naturalness

ADD Model

- Arkani-Hamed, Dimopoulos, Dvali in 1998
 - "The Hierarchy problem and new dimensions at a millimeter"
 - Current scitation: 5867
- Assume a $D=4+\delta$ dimensional spacetime, with δ compactified spatial dimensions
- Gravity can propagate in the extra dimensions, but the other forces are localized in 4D subspace
- Then the 'real' Planck scale in D dimension can be much smaller than the 'effective' Planck scale in 4d

ADD Model

With three spatial dimensions,

$$F = -\frac{G_N M m}{r^2} = -\frac{\hbar c}{M_4^2} \frac{M m}{r^2}$$

• With δ extra dimensions, each with size R,

$$F = -\frac{\hbar c}{M_D^{2+\delta}} \frac{Mm}{r^{2+\delta}} \text{ for } r < R$$

$$F = -\frac{\hbar c}{M_D^{2+\delta}} \frac{Mm}{r^2 R^{\delta}} \text{ for } r > R$$

$$M_{4,\text{eff}}^2 = M_D^{2+\delta} R^{\delta}$$

• Setting M_D around the electroweak scale TeV,

$$\delta = 1, 2, ..., 6 \rightarrow R \sim 10^9 \text{ km}, 0.5 \text{ mm}, ..., 0.1 \text{ MeV}^{-1}$$

ADD Model; current constraints

- Indeed, no one tested gravity at mm scale at that time!
- Direct measurements of gravity at sub-mm distances
 - R < 37 µm for δ =2, corresponding to $M_D > 3.6 \,\mathrm{TeV}$
- Astrophysical and Cosmological constraints
 - Very energetic settings can produce KK gravitons
 - From supernova SN1987A, $M_D>27~(2.4)~{\rm TeV}~{\rm for}~\delta=2~(3)$
 - Other constraints from neutron star reheating, relic KK graviton, collider signals, etc

RS Model

- Randall and Sundrum in 1999
 - "A Large mass hierarchy from a small extra dimension"
 - Current scitation: 7290
- Assume a 4+1 dimensional spacetime, where the fifth dimension is an 'warped' interval $y \in [0, \pi R]$
 - y = 0: UV boundary
 - $y = \pi R$: IR boundary
- The original RS model assume all Standard model particles reside in the IR boundary

RS Model

The metric of the system

$$ds^2 = e^{-2ky} dx^{\mu} dx_{\mu} - dy^2$$
 $y \in [0, \pi R]$

- The length '1' in y is equivalent to the length $e^{k\pi y}$ in x
- 4D Energy scales M_{Pl} at y = 0 $\rightarrow M_{Pl}e^{-k\pi R}$ at y = πR
- Note $e^{-33} \sim 10^{-16}$
- Therefore, if we confine the higgs field in the IR brane, the difference between the Planck scale and the weak scale is naturally explained with a number of order ~30
- Gravity in the bulk KK gravitons
 - Current experimental limit ~ 2.7 TeV

Extension of RS model: Fields in the 5D bulk

- The original RS model assumes that all Standard model particles reside in the IR boundary
- To solve the Hierarchy problem, only the Higgs field has to be localized there
- Putting other fermion and gauge boson fields in the bulk will give us a massless mode, and a tower of KK modes for each field.
- We recognize the massless mode to be the Standard Model particles, and other KK states are so heavy that we have not detected them yet.
 - Current limit on KK gluon 2.8 TeV, KK fermion 900 GeV

Fields in the 5D bulk: Models of Flavor Hierarchy

- At this stage, the standard model particles are massless modes of the 5D bulk fields.
- They obtain the mass (smaller than KK states) from the Higgs field vacuum expectation value
- Their shape in the y direction determines how much they overlap with the Higgs field → their mass
- The y-profile is dependent exponentially on a parameter in 5D Lagrangian
 - Natural explanation of the Flavor Hierarchy,
 i.e. mass of top quark ~ 10⁴ times mass of up quark

Fields in the 5D bulk: Models of Flavor Hierarchy

Holographic Interpretation of RS

- The AdS/CFT correspondence provides the connection between the warped extra-dimensional models and strongly coupled theories in 4D.
- There, we recognize
 - KK states and IR localized states composite fields
 - UV localized states elementary fields
- Model-building in the RS geometry as a dual theory to the composite higgs theories.

Summary

- Extra dimensions can bring a bold solution to various problems in physics
- Hierarchy problem
- ADD large extra dimensions dilutes gravity
- RS Warping the 5th dimension changes the hierarchy to its log
- To those who still think extra dimension is too speculative
 - as a mathematical tool to study previously incalculable 4D theories
- We might detect KK states in LHC!

THANK YOU