Matter and Energy in the Universe: What We Know and How We Know It

(A Tour of Modern Cosmology)

Quarknet Workshop @ SLAC
June 25, 2005
Ted Baltz
The Universe is Expanding

- Hubble: galaxies have a “redshift” proportional to their distance from us
 - doppler shift in radiation emitted by the galaxy
 \[
 \frac{\lambda'}{\lambda} = \sqrt{\frac{1+v/c}{1-v/c}} \approx 1 + \frac{v}{c}
 \]
- Key fact: as the universe expands, it also cools
 - Wavelengths expand along with everything else: longer wavelength (redder) = lower energy
 - “co-moving” coordinates expand along with universe
 - radiation: \(T \sim 1/\text{size} \)
Evolution of Matter and Radiation Densities with Expansion

- The cosmological scale factor $a(t)$ gives the size as a function of time
- Energy densities:
 - Matter $\rho \propto a^{-3}$
 - Radiation $\rho \propto a^{-4}$
- Vacuum energy is constant!
- Familiar Hubble “constant”
 $$H(t) = \frac{\dot{a}}{a}$$
- Einstein's General Relativity gives $a(t)$ given rho:
 $$H^2 = \frac{8\pi G}{3} \rho$$
 - radiation: $a(t) \propto t^{1/2}$
 - matter: $a(t) \propto t^{2/3}$
 - vacuum: $a(t) \propto e^{Ht}$
Density of “Normal” Matter in the Universe

- Most of the mass in atoms is in the nucleus
 - protons and neutrons (baryons)
 - electrons are very light
- What is the baryon density in the universe?
 - “Big-bang nucleosynthesis”
- Nuclear reactions common at temperatures of 10 billion deg.
 - Early universe, seconds old
- We have two clocks!
 - Hubble expansion
 - Neutron lifetime
- Use these to constrain density
Big Bang Nucleosynthesis

- Hubble expansion clock
 - Radiation dominated universe: $H \sim T^2$
 - Photon number density $\sim T^3$
- Neutron lifetime clock
 - Mean life: 15 minutes
- One input parameter: how many baryons per photon?
 - Early on this is all protons and neutrons
- Calculate relative abundances of light isotopes:
 - H, He4, D, He3, Li7
- Now go measure!
Cosmic Deuterium Abundance

- Deuterium depends on baryon density
- It is not made in stars
- Deuterium atom is slightly different: energy levels slightly shifted
 - deuteron is twice as heavy as proton
 - energy shift one part in 3600
- Observe both H and D and calculate ratio
 - high redshift objects should give a good estimate of the primordial ratio

Fig. 6a
Cosmic Densities

- **Measure densities relative to the “critical” density**
 - $h (=0.7)$ is Hubble constant in units of 100 km / s / Mpc
 - Proton mass is 0.938 GeV
 \[
 \rho_c = \frac{3 H^2}{8 \pi G} = 1.05 \times 10^{-5} h^2 \text{ GeV cm}^{-3}
 \]

- **Density parameters Ω**
 - Often we use Ωh^2
 - $\Omega = 1$ is a “flat” universe
 - Baryons have $\Omega=0.044$
 - This is far less than the total: stay tuned!

- **Background radiation left from the hot early universe**
 - Photons: Cosmic Microwave Background $\Omega=0.0001$
 - 400 photons / cc
 - “easy” to measure: temperature of the microwave radiation
 - Neutrinos
 - Similar number density to photons
 - Mass (heaviest) somewhere in the range milli-eV to ~ 2 eV
What Are Galaxies Made Of?

- We now know the baryon density: could galaxies be made of baryons?
- Overwhelming evidence indicates “no”
- Oldest evidence from Zwicky (1930s!)
 - M / L in galaxy clusters is 100x or more than solar
 - Light: “easy”
 - Mass from size, velocity and virial theorem

\[\frac{GM}{R} \sim v^2 \]
Baryon *Fraction* in Clusters of Galaxies

- **Galaxy clusters are rare**
 - $1e15$ solar masses
 - 1000s of galaxies
 - most baryons are in hot gas
- **Gas shines in X-rays**
 - how bright? proportional to the total mass in gas
 - how hot? virial theorem again (replace “v” with “T”) and get the total mass
- These disagree: baryons are about $1/5$ of the total mass in clusters
- Next: more evidence for “$1/5$”
Spiral Galaxy Rotation Curves

- Baryons in spiral galaxies mostly in stars; not much gas available
- Stellar density falls exponentially
- Rotation velocities are constant!
 - $\rho \sim 1/r^2$ implied
- Doppler shifts used to get velocities
 - Atomic H (21 cm, Hα)
 - Molecules (CO)
- Milky Way rotates at 220 km / s
- Andromeda is a bit faster at 240 km / s
Large Scale Structure

- How do galaxies cluster on the largest scales?
 - measure 100,000+ redshifts
 - there is a characteristic scale for the clustering
 \[R \sim \Omega_{CDM} h \]
 - \(\Omega = 0.3 \) fits well
 - galaxies are made of “cold” matter: neutrinos are too light and must be subdominant
 - limit is \(\sim 1/3 \) as much as baryons
 - this limits the neutrino mass better than is possible in the lab: \(m < 0.2 \text{ eV} \)
Cosmic Microwave Background

- CMB ties together all these lines of evidence
- Pattern of fluctuations of microKelvin size encodes:
 - baryon density
 - matter density
 - total density
- Acoustic oscillations
 - slightly overdense region wants to collapse under its gravity
 - gas pressure opposes collapse
 - this is an oscillator
Cosmic Microwave Background II

- The CMB is “emitted” when the universe becomes transparent
 - Hydrogen must recombine: this happens as T falls
 - At emission, CMB has a wavelength of 5 microns (mid-infrared)
- We can calculate the wavelength of oscillations related to age of universe at the time of CMB emission
- From wavelength, we can get the geometry of the universe
Cosmic Microwave Background III

- **Space can be curved**
 - positive: objects appear larger than they are
 - parallel lines converge
 - negative: objects appear smaller than they are
 - parallel lines diverge
- **We know the redshift of the CMB accurately, and we know how to calculate distance**
- **CMB tells us that space is flat, and \(\Omega = 1 \)**
- **We're still missing most of the stuff!!!**
What Are We Missing???

- **Baryons:** 4%
 - Known to exist
- **Neutrinos:** < 1.5%
 - Known to exist
- **Photons:** 0.01%
 - Known to exist
- **Dark Matter:** 23%
 - Known to be unknown
- **“Dark Energy”:** 73%
 - This doesn't cluster much
What If We Have Gravity Screwed Up? Could We Not Need Dark Matter?

- MOND (MOdified Newtonian Dynamics)
- Gravitational acceleration has a minimum $\sim cH$
 - spiral galaxies fit perfectly, clusters have problems
- If baryons and dark matter can be observed to be segregated, there is no hope for MOND
What Could the Dark Matter Be? Good Candidates from Particle Physics

- Supersymmetry?
 - Fixes a serious problem in the Standard Model
 - Why is the weak force so strong?
- Naturally get particles in the 10 GeV – TeV range
 - lightest new one is stable!
- Repeat the BBN exercise (with new interactions) to get the dark matter density
- Compelling conclusion for massive relic particles:
 \[
 \Omega_x \sim \frac{1}{\sigma} \sim \left(\frac{M}{\text{TeV}} \right)^2
 \]

- Axions?
 - Fixes a serious problem in the Standard Model
 - Why no electric dipole moments?
- Very light particles
 - micro-milli eV
 - Made very cold, never in thermal equilibrium
- As dark matter, can be detected by converting axion to microwave photon in a strong magnetic field
 - and having the best radio ever built!
What Could the Dark Matter Be?
“Candidates” Not Ruled Out

- Dark Matter is “cold” and nearly non-interacting
 - not difficult to arrange for particles of any mass
- Fluid on galaxy scales
 - discreteness effects appear with DM “particles” of 10,000 solar masses (or so)
 - this is 1e70 eV
- Classical (not quantum) on galaxy scales
 - fermions > 25 eV or so
 - Pauli exclusion principle!

- bosons > 1e-22 eV
- no that's not a typo
- QM wavelength < kpc or so to confine particle to galaxy
- 90+ orders of magnitude uncertainty
- Most of this isn't terribly likely, but until we have data...
Weakly Interacting Massive Particles: (WIMPs)

- **100 GeV range: many search strategies:**
 - accelerators: make dark matter in the lab @ LHC!
 - underground: look for dark matter particles making the Milky Way
 - VERY weakly interacting, moving 200 km / s (go underground to filter out cosmic rays)
 - in the sky: look for high energy particles coming from (rare) dark matter annihilations
 - gamma rays, antiprotons, positrons...
Dark Energy: Even More Mysterious Than Dark Matter

- Dark Matter, while exotic, could be particles
 - we know about particles
- Dark Energy doesn't behave like any known form of matter
 - it's pressure is negative!
- We know from the CMB that the universe is actually dominated by dark energy at the present day
- How can we learn more?
Back To The Hubble Expansion

- Redshift as a function of distance is not linear
- Small deviations from linearity encode the expansion history
- In a matter or radiation dominated universe, expansion decelerates
- Expansion is now accelerating
 - Negative pressure required
 - Same conditions as cosmic inflation in the exceedingly early universe
The Universe Is Accelerating

- Dark Energy became dominant at $z = 0.4$
 - deceleration stopped, acceleration began
- The material causing this has $p = -\rho$ (or pretty close)
- Quantum mechanics predicts just such a material: the energy of the vacuum
 - the prediction is 120!!! orders of magnitude too large
- We can hope that future measurements clear this up