Matter and Energy in the Universe: What We Know and How We Know It

(A Tour of Modern Cosmology)

Quarknet Workshop @ SLAC June 25, 2005 Ted Baltz

The Universe is Expanding

- Hubble: galaxies have a "redshift" proportional to their distance from us
 - doppler shift in radiation emitted by the galaxy

$$\frac{\lambda'}{\lambda} = \sqrt{\frac{1 + v/c}{1 - v/c}} \approx 1 + \frac{v}{c}$$

- Key fact: as the universe expands, it also cools
 - Wavelengths expand along with everything else: longer wavelength (redder) = lower energy
 - "co-moving" coordinates expand along with universe
 - → radiation: T ~ 1 / size

Evolution of Matter and Radiation Densities with Expansion

- The cosmological scale factor a(t) gives the size as a function of time
- Energy densities:
 - Matter $\rho \propto a^{-3}$
 - Radiation $\rho \propto a^{-4}$
- Vacuum energy is constant!
- Familiar Hubble "constant"

$$H(t) = \frac{\dot{a}}{a}$$

 Einstein's General Relativity gives a(t) given rho:

$$H^{2} = \frac{8\pi G}{3} \rho \qquad \text{radiation: } a(t) \propto t^{1/2}$$

$$\text{matter: } a(t) \propto t^{2/3}$$

$$\text{vacuum: } a(t) \propto e^{Ht}$$

Density of "Normal" Matter in the Universe

- Most of the mass in atoms is in the nucleus
 - protons and neutrons (baryons)
 - electrons are very light
- What is the baryon density in the universe?
 - "Big-bang nucleosynthesis"
- Nuclear reactions common at temperatures of 10 billion deg.
 - Early universe, seconds old
- We have two clocks!
 - Hubble expansion
 - Neutron lifetime
- Use these to constrain density

Big Bang Nucleosynthesis

- Hubble expansion clock
 - radiation dominated universe: H ~ T²
 - photon number density ~ T³
- Neutron lifetime clock
 - mean life 15 minutes
- One input parameter: how many baryons per photon?
 - early on this is all protons and neutrons
- Calculate relative abundances of light isotopes:
 - H, He4, D, He3, Li7
- Now go measure!

Cosmic Deuterium Abundance

- **Deuterium depends on** baryon density
- It is not made in stars
- **Deuterium atom is slightly** different: energy levels slightly shifted
 - deuteron is twice as heavy as proton
 - energy shift one part in 3600
- Observe both H and D and calculate ratio
 - high redshift objects should give a good estimate of the primordial ratio

Cosmic Densities

- Measure densities relative to the "critical" density
 - → h (=0.7) is Hubble constant in units of 100 km / s / Mpc
 - proton mass is 0.938 GeV

$$\rho_c = \frac{3H^2}{8\pi G} = 1.05 \times 10^{-5} h^2 \text{ GeV cm}^{-3}$$

- Density parameters Ω
 - often we use Ωh^2

$$\Omega_{X} = \frac{\rho_{X}}{\rho_{c}}$$

- $\Omega = 1$ is a "flat" universe
- Baryons have Ω =0.044
- This is far less than the total: stay tuned!

- Background radiation left from the hot early universe
 - Photons: Cosmic Microwave Background Ω=0.0001
 - 400 photons / cc
 - "easy" to measure: temperature of the microwave radiation
 - Neutrinos
 - similar number density to photons
 - mass (heaviest) somewhere in the range milli-eV to ~ 2 eV

What Are Galaxies Made Of?

- We now know the baryon density: could galaxies be made of baryons?
- Overwhelming evidence indicates "no"
- Oldest evidence from Zwicky (1930s!)
 - M / L in galaxy clusters is 100x or more than solar
 - Light: "easy"
 - Mass from size, velocity and virial theorem

$$\frac{GM}{R} \sim v^2$$

Baryon Fraction in Clusters of Galaxies

- Galaxy clusters are rare
 - 1e15 solar masses
 - → 1000s of galaxies
 - most baryons are in hot gas
- Gas shines in X-rays
 - how bright? proportional to the total mass in gas
 - how hot? virial theorem again (replace "v" with "T") and get the total mass
- These disagree: baryons are about 1/5 of the total mass in clusters
- Next: more evidence for "1/5"

Spiral Galaxy Rotation Curves

- Baryons in spiral galaxies mostly in stars; not much gas available
- Stellar density falls exponentially
- Rotation velocities are constant!
 - → rho ~ 1 / r² implied

- Doppler shifts used to get velocities
 - Atomic H (21 cm, Hα)
 - Molecules (CO)
- Milky Way rotates at 220 km / s
- Andromeda is a bit faster at 240 km / s

Large Scale Structure

- How do galaxies cluster on the largest scales?
 - measure 100,000+ redshifts
 - there is a characteristic scale for the clustering

$$R \sim \Omega_{CDM} h$$

- Ω =0.3 fits well
- galaxies are made of "cold" matter: neutrinos are too light and must be subdominant
 - limit is $\sim 1/3$ as much as baryons
 - this limits the neutrino mass better than is possible in the lab: m < 0.2 eV</p>

Cosmic Microwave Background

- CMB ties together all these lines of evidence
- Pattern of fluctuations of microKelvin size encodes:
 - baryon density
 - matter density
 - total density
- Acoustic oscillations
 - slightly overdense region wants to collapse under its gravity
 - gas pressure opposes collapse
 - this is an oscillator

Cosmic Microwave Background II

- The CMB is "emitted" when the universe becomes transparent
 - Hydrogen must recombine: this happens as T falls
 - At emission, CMB has a wavelength of 5 microns (mid-infrared)
- We can calculate the wavelength of oscillations
 - related to age of universe at the time of CMB emission
- From wavelength, we can get the geometry of the universe

Cosmic Microwave Background III

- Space can be curved
 - positive: objects appear larger than they are
 - parallel lines converge
 - negative: objects appear smaller than they are
 - parallel lines diverge
- We know the redshift of the CMB accurately, and we know how to calculate distance
- CMB tells us that space is flat, and $\Omega=1$
- We're still missing most of the stuff!!!

2-D Examples of Curved Spaces $\Omega_0 > 1$ Positive (Spherical) Negative (Hyporbolic)

What Are We Missing???

- Baryons: 4%
 - Known to exist
- Neutrinos: < 1.5%
 - Known to exist
- Photons: 0.01 %
 - Known to exist
- Dark Matter: 23%
 - Known to be unknown
- "Dark Energy": 73%
 - This doesn't cluster much

What If We Have Gravity Screwed Up? Could We Not Need Dark Matter?

- MOND (MOdified Newtonian Dynamics)
- Gravitational acceleration has a minimum ~ cH
 - spiral galaxies fit perfectly, clusters have problems
- If baryons and dark matter can be observed to be segregated, there is no hope for MOND

What Could the Dark Matter Be? Good Candidates from Particle Physics

- Supersymmetry?
 - Fixes a serious problem in the Standard Model
 - Why is the weak force so strong?
- Naturally get particles in the 10 GeV – TeV range
 - lightest new one is stable!
- Repeat the BBN exercise (with new interactions) to get the dark matter density
- Compelling conclusion for massive relic particles:

$$\Omega_{X} \sim \frac{1}{\sigma} \sim \left(\frac{M}{\text{TeV}}\right)^{2}$$

- Axions?
 - Fixes a serious problem in the Standard Model
 - Why no electric dipole moments?
- Very light particles
 - micro-milli eV
- Made very cold, never in thermal equilibrium
- As dark matter, can be detected by converting axion to microwave photon in a strong magnetic field
 - and having the best radio ever built!

What Could the Dark Matter Be? "Candidates" Not Ruled Out

- Dark Matter is "cold" and nearly non-interacting
 - not difficult to arrange for particles of any mass
- Fluid on galaxy scales
 - discreteness effects appear with DM "particles" of 10,000 solar masses (or so)
 - this is 1e70 eV
- Classical (not quantum) on galaxy scales
 - fermions > 25 eV or so
 - Pauli exclusion principle!

- bosons > 1e-22 eV
- no that's not a typo
- QM wavelength < kpc or so to confine particle to galaxy
- 90+ orders of magnitude uncertainty
- Most of this isn't terribly likely, but until we have data...

Weakly Interacting Massive Particles: (WIMPs)

- 100 GeV range: many search strategies:
 - accelerators: make dark matter in the lab @ LHC!
 - underground: look for dark matter particles making the Milky Way
 - VERY weakly interacting, moving 200 km / s (go underground to filter out cosmic rays)
 - in the sky: look for high energy particles coming from (rare) dark matter annihilations
 - gamma rays, antiprotons, positrons...

Dark Energy: Even More Mysterious Than Dark Matter

- Dark Matter, while exotic, could be particles
 - we know about particles
- Dark Energy doesn't behave like any known form of matter
 - it's pressure is negative!
- We know from the CMB that the universe is actually dominated by dark energy at the present day
- How can we learn more?

Back To The Hubble Expansion

- Redshift as a function of distance is not linear
 - small deviations from linearity encode the expansion history
- In a matter or radiation dominated universe, expansion decelerates
- Expansion is now accelerating
 - negative pressure required
 - same conditions as cosmic inflation in the exceedingly early universe

The Universe Is Accelerating

- Dark Energy became dominant at z = 0.4
 - deceleration stopped, acceleration began
- The material causing this has p = -rho (or pretty close)
- Quantum mechanics predicts just such a material: the energy of the vacuum
 - the prediction is 120!!! orders of magnitude too large
- We can hope that future measurements clear this up

