Strong WW Scattering
Chiral Lagrangians, Unitarity and Resonances *

J. R. Peléez
Theoretical Physics Group
Ernest Orlando Lawrence Berkeley National Laboratory
University of California, Berkeley, California 94720

ABSTRACT

Chiral lagrangiansprovideamode independent descri ption of
the strongly interacting symmetry breaking sector. In thiswork
it isfirst reviewed the LHC sensitivity to the chiral parameters
(inthe hardest case of non-resonant low-energy WW scattering).
Later it isshown how to reproduceor predict the resonance spec-
trum by means of dispersion theory and the inverse amplitude
method. We present a parameter space scan that covers many
different strong WW scattering scenarios.

. CHIRAL LAGRANGIANS

A. Introduction

Inthe Standard Model (SM) thereisan spontaneous symmetry
bresking of thegauge SU (2), x U (1)y groupdownto U (1) gas.
Theunderlyingtheory that producesthismechanism isunknown
to alarge extent. Basically, what we know isthe following:

e Thereisasystem with a global symmetry breaking from a
group G downto another one H producingthree Goldstone
bosons (GB).

e Thescale of thisnew interactionsisv ~ 250GeV.

e Theedectroweak p parameter isvery closeto one.

This last requirement is most naturaly satisfied if the elec-
troweak Symmetry Breaking Sector (EWSBS) respects the so
called custodial symmetry SU(2)r+r [1]. Demanding just
three GB, weareleadto G = SU(2)L x SU(2)g and H =
SU(2)r+r [2,3].

That is the very same breaking pattern of chira symmetry in
QCD with two massless quarks. It iswell known that arescaled
versionof QCD isnotvaidasan EWSBS. However, we till can
borrow the formalism of chiral lagrangians[4], known as Chira
Perturbation Theory (ChPT), which works remarkably well for
pion physics[5].

Our case is different to QCD since, among other things, the
GB disappear in the Higgs mechanism. They become the longi-
tudinal components of the gauge bosons. Hence, if we want to
probean strong EWSBS, we actually havetolook at interactions
of longitudinal gauge bosons. (Wewill denoteboth W and Z by
V). Indeed if the EWSBS is strongly interacting, we expect an
enhancement in Vz, production. That iswhy we areinterestedin
VL Vi, scattering.
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B. TheLow energy Theorems

The chiral lagrangian is built as a (covariant) derivative ex-
pansion out of GB fields. Only those operators respecting the
above symmetry pattern and Lorentz invariance are alowed (we
are aso neglecting CP violation). Thus, thereis only one possi-
ble term with two derivatives:

1)2
£® = S rD.UD* Ut 1)
where the GB fields «* are collected in the SU(2) matrix U =
exp(in'o’/v) and D, isthe usual covariant derivative.

The above lagrangian is able to describe the very low energy
behavior of the EWSBS. However it will be useful when only
the GB and the gaugefields are relevant at low energies. That is
the case of the strong EWSBS since the other particles affecting
V'V scattering (like resonances) are expected at the TeV scale.

It isimportant to remark that the lagrangian in Eq.1 only de-
pends on the symmetry structure and the scale. Its predictions
for V;, Vi scattering are therefore universal. Thetwo derivatives
become external momenta and thusthisterm yields O(p?) con-
tributions, which are called the Low Energy Theorems (LET)

[2].
C. TheO(p*) lagrangian.

Thelagrangian in Eq.1 isthat of a non-linear o model. Thus,
inastrict senseitisnon-renormalizable. However, al thediver-
gencies appearing at one loop are O(p*) and can be absorbed in
the parameters of the £(#) lagrangian. If we were to consider
two loops with £(2) we would need the £(®) lagrangian and so
on. Therelevant point isthat up to a given order in the externa
momenta the cal cul ations can be renormalized and are finite.

There are many termsin the £(%) lagrangian [6], although for
V'V scattering at O(p*) it isenough to consider:

£®)

= L, (rD,UD*U")* + L, (rD,UD* U1
tr [(Lor W** + LorB**)D,UD,U"|

LiottUT B UW,,
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+ )

where WH#¥ and B* arethe strength tensors of the gaugefields.
Only the values of the L; parameters depend on the underlying
theory.

For our purposes, we are only interested in L, and Ly, which
are the ones that enter the V'V fusion calculations. The others
are related to anomalous couplings. Their values can be esti-
mated for the minimal SM (MSM) with a heavy Higgs[7] as
well as for QCD-like models (using the ChPT parameters [8]).
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Tablel: Chiral Parameters for different reference models.

I I,
MSM (Mz ~ 1 TeV) | 0007 -0.002
QCD-like -0.001 0.001

In Table | we give some reference values. Noticethat in thelit-
erature it isalso frequent to extract a 16«2 factor so that the L;
are of order unity.

Using thelagrangiansin Egs.1 and 2 we can calculatethe V'V
elagtic scattering amplitudes. Indeed they are obtained asatrun-
cated seriesin p/4wv, asfollows:

t(s) = t(s) + M) (s) + O(p°) ©)
Where 1(°)(s) is O(p?) and reproduces the LET. It is obtained
from £(2) at tree level. The ¢(*)(s) contribution is O(p*) and
comes from the £(4%) at tree level and £(?) at one loop. If we
made one more loop we would get O(p®) contributions, and we
would need the £(®) lagrangian, etc...

Note that a naive estimate of the applicability rangeis4rv <
3TeV. However, theexistence of resonanceswill limit the effec-
tiveness of the approach upto < 1.5TeV.

D. Chira parametersat LHC

Thegoa of futureaccel eratorsisto determinethenatureof the
EWSBS. As we have seen, chira lagrangians provide a model
independent formalism. We aways deal withthe same set of op-
erators and only the actual values of the parameters depend on
the fundamental theory.

Aswe have dready stressed the most natural channel to look
for strong EWSBS interactions is V; Vi, scattering. The most
striking experimental feature would be the appearance of reso-
nant states. However, it isnot assured that they could be directly
seen in the next generation of colliders. Even though they are
expected at the TeV scae, they can be higher that the planned
energy reach. In that case one is left with a non-resonant be-
havior, where different model swill be hard to distinguish. Then
the effective lagrangians become a natural and systematic tool
to parametrize and maybe disentangle the experimenta results.

Indeed thereare already some studies of the capability of LHC
to measure the chiral parameters [9]. In Table Il are listed the
number of events produced with various non vanishing values
of L, or L. Following reference [9] we have recalculated the
results for 100fb=" of integrated luminosity at 4/14TeV. That
corresponds to one experiment collecting data at full design lu-
minosity during one year.

The numbersin Table |1 are those of the cleanest |eptonic de-
cays of subprocesses whosefind stateiseither W*Z or ZZ:

qq/—>W:tZ q§ — ZZ 99 — ZZ
wtz ~w*z 77 - 77
WEy - Wtz wtw- - 22

They have been calculated fromthelagrangianin Egs.1 and 2 at
treelevel (except gluonfusion, that only occursat oneloop). All
possibleinitia and final helicity combinationshave been consid-
ered. We use the effective W approximation, but not the Equiv-
alence Theorem. By the cleanest |eptonic modes we mean the

Table I1: Number of events and statistical significances for dif-
ferent values of L, and L; a LHC.

1072 ]-1072 [ 5x1073 [ -5 x 1073
Ly

wizo - wiz° | 22 58 23 41
total W+ 2° 104 | 139 105 122
- 0.7 | 26 0.6 10
75w+ 20 tagging 10 | 42 0.9 17
wiw- - 2°2° | 21 7 13 6

7°7° — 7°72° 6 6 1 1

total Z7°Z° 46 32 33 26
75| 70 70 38 | 09 12 0.1
Ts |ZUZU tagging 6.6 1.8 2.3 0.2

Ly

Wizo - w*z° | 36 80 27 47
total W+ 2° 118 | 162 109 129
Talyt 7o 0.7 | 48 0.2 17
T4l 20 tagging 10 | 75 0.3 2.7
wWiw- — 2°2° | 12 7 9 7

7°7° — 7°72° 6 6 1 1

total Z7°2° 37 32 30 27
74| 70 70 19 0.9 05 ~0
7‘4|Zuzn tagging 35 1.8 0.9 0.1

W'sandthe Z'sdecayingtovee, v pande~et, p~pt, respec-
tively. The corresponding branching ratios are BR(WZ)=0.013
and BR(Z22)=0.0044. We have aso imposed a set of minimal
cuts: MPe* = 1.5TeV, PZ_ . = 300GeV, y), .. = 2. Further
details of the calculation can be foundin [9].

The dtatistical significances are defined with respect to the
"zero” mode (whenall the L; areset to zero). In[9] they arealso
given with respect to the SM with Mg ~ 1TeV. Note that the
zero modd isnothing but the LET predictionsor the Mg — oo
limit of the MSM. The gtatistical significances are defined as:

[V (Li) — N(0)]

- (@)

Ty —

In Tablell wehavelisted two sensitivitiesfor each processde-
pending on whether thereisforward jet tagging availableor not.
This detector feature is very important to separate those events
coming from V'V fusion from those coming from quarks. We
have given numbersfor nojet tagging at al and 100% efficiency
tagging, so that the real number will lie somewhere in between.

The analysisis simplified in the sense that only one L; isdif-
ferent from zero at atime. However, there are issues that could
improve the sensitivity that we have not addressed. We have
only restricted ourselves to leptonic modes, and we have not
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studied the W+ W= or the W= W fina states. The sensitiv-
itiesonly refer to separate channels and a simultaneousfit to all
them would be a considerable improve. There is still open the
possibility of final state polarization analysi sthat would enhance
the longitudinal modes. Finally we are a so confident that more
elaborated cutswill a so enhance thesignal. Therefore, wethink
that the numbersin Table |l can be considered as a conservative
estimate of the LHC capabilities.

From Table Il we can thus see that the 10~ 2 values are at hand
at the 3o level, both for L, and L, . Combining the two experi-
ments and one or two years of running even the 50 level seems
attainable.

Itisconvenient at thispoint to look back at Table | and notice
that the expected valueslie on therange 10~2 to 10~2. There-
fore, we can easily reach the beginning of theinteresting region.
Notice also that the two reference models have different signs
in their parameters. Fortunately the experimental signatureis
radically different when changing the sign of the parameters. It
seems feasible to differentiate positive from negative signs.

To go downtotheleve of L; = 5 x 102 itsharder, but not
impossible. The 3o level seems reachable in three or four years
in many channels, by combining the two experiments. We have
not listed the resultsfor 10~2 sincethat level of precision seems
extremely hard to access [9].

It isimportant to remark again that thisis a preliminary and
conservative result. We can conclude that even in the non-
resonant scenario, LHC will be able to test at least part of the
chira parameter space in the interesting region. It isalso clear
that the study of this kind of physics will require the ultimate
machine performance.

Aswewill seein the next section the determination of L1 and
L, will be very helpful to disentangle the nature of an strong
EWSBS. Evenif the LHC energy reach isnot enough to observe
resonances directly, their existence can be established by means
of dispersion theory.

1. UNITARITY AND RESONANCES
A. Eladtic unitarity

Up to now we have not considered possible resonant states.
Resonances are one of the most characteristic features of strong
interactions. In our case, we expect them to appear at the TeV
scale. For instance, the MSM becomes strong when Mg
1TeV. In such case we expect a very broad scalar resonance
around 1 TeV. In QCD-like models one expects a vector reso-
nance around 2 TeV.

From now on it will be very convenient to use amplitudes of
definite angular momentum J. As far as we also have a con-
served SU(2)L+r Symmetry in the EWSBS, we can aso de-
fineaweak isospin I. In analogy to == scattering, we will then
havethreepossibleisospinchannelsI = 0, 1, 2. Atlow energies
weare only interested in the lowest J, and thuswe will concen-
trateonthet;; = too, 111 and t5o partial waves. Indeed we will
present our resultsin terms of their complex phases, which are
know as phase shifts.

Chiral lagrangians by themselves are not able to reproduce

~

resonances. Their amplitudesare obtained as polynomiasinthe
momenta and masses, and therefore they do not even satisfy the
elagtic unitarity condition:

Imtz;(s) = o(s)[trs(s)|? 5

where o (s) isthetwo body phase-space. Neverthel ess, they sat-
isfy it perturbatively
M) (s) = ()| () (6)

Resonances are closely related to the saturation of unitarity.
That iswhy we have to unitarize the chiral amplitudes. There
are many proceduresin theliteratureto impose Eq.5 which very
often lead to different results. Obvioudly, that is one of themain
criticisms to unitarization.

There is, however, amethod that has been tested in ChPT and
isableto reproduce the p and K* resonances. Itisbased on dis-
persion theory and apart from satisfying Eq.5, it also provides
the correct unitarity cut on the complex s plane, aswell aspoles
in the second Riemann sheet.

B. Theinverse amplitude method

If we consider an amplitude in the complex s plane, the ex-
istence of a threshold is reflected as a cut in the red positive
axis. The amplitude has two Riemann sheets that are connected
through the cut. By crossing symmetry, there is also another cut
on theleft rea axis.

A dispersion relation is nothing but the Cauchy theorem ap-
plied in one of the sheets. Thus, the values of that function in
any point will be given by the integrals of Imt(s) over the cuts.
Of course, these values are not known exactly, and with our
chiral expansion we only get a crude approximation replacing
Imt(s) ~ Imt(1)(s)

The relevant point isto redlize that the inverse amplitude can
be calculated exactly on the dastic cut. Indeed, using Egs.5 and
6 wefind

1 Imt Ime(")
AL @)
try | 227 | |7 I

Apart from poles, the cut structure of the amplitude ¢(s) and
that of the function | tg‘?,) |2 /t15(s) are the same. Their right
cut contributionsonly differ on asign, and therefore, solving for
t(s) oneobtains[10, 8]:

)
iy~ — 5oy 8
1— 17 /1)

Notice that if we expand again a small momenta, we recover
the chiral expansion in Eq.3. Therefore, the Inverse Amplitude
Method (IAM) displaysthecorrect |ow energy behavior. We can
perform again the very same analysis of the preceeding section.
The difference from ChPT appears a higher energies, but now
we have severa advantages:

o It satisfies the el astic unitarity constraint.
e Thedasticright cut has been calculated exactly.
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Figure 1.-a) 6,1 phase shift in =« scattering. The data comes
from: [13] (A), [14] (0); b)é1 /3,1 inwK scattering. [15] (e),[16]
(). The dotted curves are plain ChPT. The others are the IAM
with two sets of chiral parameters.

e It can reproduce poles.

Remember that the amplitude is extended continuously to the
second Riemann sheet through the cut. Hence, from the second
point above, we expect to obtainavery good approximation near
the cut in the second Riemann sheet. But resonances are char-
acterized as poles close to the real axisand in the second sheet.
That iswhy thismethod is able to reproduce resonances.

Of course, the method has severa limitationstoo [8]. First,
the left cut is ill an approximation. Next, we have neglected
possible polesin G, which are indeed present [11]. Fortunately
these effects are not dominant at high energies, where the right
cut and resonance contributions dominate. They will however
introduce some uncertainty in the position and width of theres-
onances. There arealso other rather technical issuesthat wewill
not address here [8].

Let usnow review how thel AM works. Wewant to know how
well it reproduces the high energy behavior using only low en-
ergy data, sincethat could bethesituationat LHC. In particular,
we are interested on whether we can establish the existence of
resonances even though they are not directly seen.

C. ThelAM in Chiral Perturbation Theory

When it is applied to pion physics [12, 8], the IAM is able
to reproduce a p resonance just using low energy data. In Fig-
ure 1., theresults of plain ChPT are plotted as adotted line. It
has been cal culated with the parameters proposed in [17], which
have been obtained only from | ow energy data (<400 GeV). The
other twolinesarethe | AM prediction. The dashed one hasbeen
obtai ned with the same parameters and the continuous one with
an dightly different set [18]. Asfar asthe only input in the cal-
culationsislow energy data, the existence of the p can be seen
asaprediction of thel AM. The qualitative behavior of the phase
shiftis obvioudly correct. Notice that the value of its mass does
not lie very far from the actual value. The theoretical error is
hard to estimate, but we have found, varying the parameters in-
sidetheir error bars, that it is never bigger than 20% [8§].

Of coursg, itispossibleto get abetter fit (see[8]) but then high
energy data should also be used as an input.

The case of == scattering is specialy relevant since it can be
described withthevery same ST (2) scheme of symmetry break-
ing of the EWSBS. However, thel AM a so worksin other mod-
els. InFigure1.bitisshown how it isalso possibleto reproduce
the K*(892) resonance in =K elastic scattering using SU(3)
ChPT [12, 8]. The uncertainties are again of the same order.

It can also be checked [8] that the amplitudes present the ap-
propriate anaytical structureincluding the corresponding poles
in the second Riemann sheet.

We have therefore shown that the |AM isnot just asimple nu-
merical trick to unitarize amplitudes. It contains all the analytic
structureneeded to extract the correct high energy behavior from
low energy data.

D. Resonancesin the strong EWSBS.

Throughout thissection wewill be usingthe Equivalence The-
orem[19]. It statesthat the V;, Vi, amplitudesare those of GB up
to O(My /+/s). At high energies those terms can be neglected
and the V;, V;, amplitudeslook exactly asthose of == scattering
in the massless limit.

At first sight it is not evident that such a high energy limit
can be used with alow energy approach like chiral lagrangians.
However, it has been shown [3, 20] that there is a common ap-
plicability window, and that the theorem remains the same when
working at lowest order in the electroweak couplings, whichis
our case.

Let us then apply the IAM to the reference models of Table
I. In Figure 2 we can see (solid lines) how the IAM yields an
scalar resonancein the Higgsmodel, and atechnirho inthe QCD
model [21]. There are no other resonances present. We have
found again that the IAM yields the correct result. Let us then
scan the parameter space to get a qualitative description of the
general resonance spectrum of an strong EWSBS.

We will only concentrate on the (I, J) (0,0) and (1,1)
channels. The I = 2 channel is more subtle and will be given
elsawhere.

In Figurelll we have plottedinthe Ly, Lo planethe expected
unitarity behavior upto 3 TeV of the V'V amplitudes. There are
severa possibilities: No resonance (white), a saturation of uni-
tarity (black), a broad resonance (light) or a narrow resonance
(dark). By narrow or broad, we mean that the width is smaller
or bigger than 25% of the mass, respectively. We understand by
saturation that the unitarity bound is reached, but a resonance
there would have a width of 75% its mass or more. We have
also shown the position of the SM with Mg = 800 to 1200GeV
(black dots), as well as QCD-like models with 3 or 5 technicol-
ors (black triangles).

From the graphs it seems that there are many different phe-
nomenological scenarios. Maybe there is just one resonance,
two resonances or no resonances at al. It could happen that one
channel saturates unitarity whilethe other has aresonance, etc...

In conclusion, the effective lagrangian approach supple-
mented with the IAM, emerges as a very powerful and simple
tool to explore a great variety of strongly interacting scenarios.
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Figure 2.- V1,V — ViV, phase shifts in the heavy Higgs
SM (left) and a QCD-like model (right). Notice their respective
scalar and the vector resonances. The dashed linesare the chiral
amplitudes and the solid linesare the IAM results.
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spond to narrow resonances. Lighter areas are broad resonances
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I |
-0.01 0.005

1. REFERENCES

[1] PSikivieet a. Nucl. Phys. B173 (1980) 189.

[2] M.S.Chanowitz, M.Golden and H.Georgi, Phys.Rev. D36 (1987)
1490.

A.Dobado and J.R.Pelaez, Nucl. Phys. B425 (1994) 110.

A.Dobado and M.J.Herrero, Phys. Lett. B228 (1989) 495 and B233
(1989) 505; J.Donoghue and C.Ramirez, Phys. Lett. B234 (1990)
361.

S.Weinberg, Physica 96A (1979) 327; J.Gasser and H.Leutwyler,
Ann. of Phys. 158 (1984) 142; Nucl. Phys. B250 (1985) 465 and
517.

T.Appelquist and C.Bernard, Phys. Rev. D22 (1980) 200;
A.C.Longhitano, Nucl. Phys. B188 (1981) 118.

M.J.Herrero and E.Ruiz Morales, Nucl.Phys. B418 (1994) 431,
Nucl.Phys. B437 (1995) 3109.

A.Dobado and J.R.Pelaez, hep-ph/9604416.

CMS Technical Proposal. CERN/LHC94-38.LHCC/P1. (1994);
A.Dobado, M.JHerrero, JR.Pelaez, E.Ruiz Morales and
M.T.Urdiales Phys. Lett. B352 (1995) 400; A.Dobado and
M.T.Urdiales Z. Phys. B71 (1996) 659.

[10] TranN. Truong, Phys. Rev. Lett. 61 (1988) 2526, ibid D67 (1991)
2260.

[11] M.Boglione and M.R.Pennington, hep-ph/9607266.

[12] A.Dobado, M.J.Herrero and T.N.Truong, Phys. Lett. B235 (1990)
134; A.Dobado and J.R.Peléaez, Phys. Rev. D47 (1992) 4883.

[13] Protopopescu et al., Phys.Rev. D7 (1973) 1279.

[14] PEstabrooksand A.D.Martin, Nucl.Phys. B79 (1974) 301.
[15] R. Mercer et al., Nucl. Phys. B32 (1971) 381.

[16] P Estabrookset al., Nucl. Phys. B133 (1978) 490.

[17] C.Riggenbach, J.F.Donogue, J.Gasser and B.Holstein, Phys.Rev.
D43 (1991) 127.

[18] J.Bijnens, G.Colangelo, J.Gasser, Nucl. Phys. B427 (1994) 427.

[19] JM. Cornwall, D.N. Levin and G. Tiktopoulos, Phys. Rev. D10
(1974) 1145; C.E.Vayonakis, Lett. Nuovo Cim. 17 (1976) 383;
B.W. Lee, C. Quigg and H. Thacker, Phys. Rev. D16 (1977) 1519;
M.S. Chanowitz and M.K. Gaillard, Nucl. Phys. B261 (1985) 379.

[20] H.J.He, Y.P. Kuangand X.Li,Phys.Lett B329 (1994) 278.

[21] A.Dobado, M.JHerrero, T.N.Truong, Z. Phys. C50 (1990) 129;
A.Dobado, M.J.Herrero, J.Terron, Z. Phys. C50 (1991) 205; ibid
465.

(3]
(4]

(5]

(6]

(7]

(8]
(9]

842



