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ABSTRACT

Chiral lagrangians provide a model independent descriptionof
the strongly interacting symmetry breaking sector. In this work
it is first reviewed the LHC sensitivity to the chiral parameters
(in the hardest case of non-resonant low-energy WW scattering).
Later it is shown how to reproduce or predict the resonance spec-
trum by means of dispersion theory and the inverse amplitude
method. We present a parameter space scan that covers many
different strong WW scattering scenarios.

I. CHIRAL LAGRANGIANS

A. Introduction

In the Standard Model (SM) there is an spontaneous symmetry
breaking of the gaugeSU (2)L�U (1)Y group down toU (1)EM .
The underlying theory that produces this mechanism is unknown
to a large extent. Basically, what we know is the following:

� There is a system with a global symmetry breaking from a
groupG down to another oneH producing three Goldstone
bosons (GB).

� The scale of this new interactions is v ' 250GeV.
� The electroweak � parameter is very close to one.

This last requirement is most naturally satisfied if the elec-
troweak Symmetry Breaking Sector (EWSBS) respects the so
called custodial symmetry SU (2)L+R [1]. Demanding just
three GB, we are lead to G = SU (2)L � SU (2)R and H =
SU (2)L+R [2, 3].

That is the very same breaking pattern of chiral symmetry in
QCD with two massless quarks. It is well known that a rescaled
version of QCD is not valid as an EWSBS. However, we still can
borrow the formalism of chiral lagrangians [4], known as Chiral
Perturbation Theory (ChPT), which works remarkably well for
pion physics [5].

Our case is different to QCD since, among other things, the
GB disappear in the Higgs mechanism. They become the longi-
tudinal components of the gauge bosons. Hence, if we want to
probe an strong EWSBS, we actually have to look at interactions
of longitudinal gauge bosons. (We will denote bothW and Z by
V ). Indeed if the EWSBS is strongly interacting, we expect an
enhancement in VL production. That is why we are interested in
VLVL scattering.
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B. The Low energy Theorems

The chiral lagrangian is built as a (covariant) derivative ex-
pansion out of GB fields. Only those operators respecting the
above symmetry pattern and Lorentz invariance are allowed (we
are also neglecting CP violation). Thus, there is only one possi-
ble term with two derivatives:

L
(2) =

v2

4
trD�UD

�U y (1)

where the GB fields �i are collected in the SU (2) matrix U =
exp(i�i�i=v) and D� is the usual covariant derivative.

The above lagrangian is able to describe the very low energy
behavior of the EWSBS. However it will be useful when only
the GB and the gauge fields are relevant at low energies. That is
the case of the strong EWSBS since the other particles affecting
V V scattering (like resonances) are expected at the TeV scale.

It is important to remark that the lagrangian in Eq.1 only de-
pends on the symmetry structure and the scale. Its predictions
for VLVL scattering are therefore universal. The two derivatives
become external momenta and thus this term yieldsO(p2) con-
tributions, which are called the Low Energy Theorems (LET)
[2].

C. The O(p4) lagrangian.

The lagrangian in Eq.1 is that of a non-linear � model. Thus,
in a strict sense it is non-renormalizable. However, all the diver-
gencies appearing at one loop areO(p4) and can be absorbed in
the parameters of the L(4) lagrangian. If we were to consider
two loops with L(2) we would need the L(6) lagrangian and so
on. The relevant point is that up to a given order in the external
momenta the calculations can be renormalized and are finite.

There are many terms in theL(4) lagrangian [6], although for
V V scattering at O(p4) it is enough to consider:

L
(4) = L1

�
trD�UD

�U y
�2

+ L2

�
trD�UD

�U y
�2

+ tr
�
(L9LW

�� + L9RB
�� )D�UD�U

y
�

+ L10trU yB��UW�� (2)

whereW�� andB�� are the strength tensors of the gauge fields.
Only the values of the Li parameters depend on the underlying
theory.

For our purposes, we are only interested in L2 and L1, which
are the ones that enter the V V fusion calculations. The others
are related to anomalous couplings. Their values can be esti-
mated for the minimal SM (MSM) with a heavy Higgs [7] as
well as for QCD-like models (using the ChPT parameters [8]).
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Table I: Chiral Parameters for different reference models.

L1 L2
MSM (MH � 1 TeV) 0.007 -0.002
QCD-like -0.001 0.001

In Table I we give some reference values. Notice that in the lit-
erature it is also frequent to extract a 16�2 factor so that the Li
are of order unity.

Using the lagrangians in Eqs.1 and 2 we can calculate the V V
elastic scattering amplitudes. Indeed they are obtained as a trun-
cated series in p=4�v, as follows:

t(s) ' t(0)(s) + t(1)(s) +O(p6) (3)

Where t(0)(s) is O(p2) and reproduces the LET. It is obtained
from L(2) at tree level. The t(1)(s) contribution is O(p4) and
comes from the L(4) at tree level and L(2) at one loop. If we
made one more loop we would getO(p6) contributions, and we
would need the L(6) lagrangian, etc...

Note that a naive estimate of the applicability range is 4�v <�
3TeV. However, the existence of resonances will limit the effec-
tiveness of the approach up to <� 1:5TeV.

D. Chiral parameters at LHC

The goal of future accelerators is to determine the nature of the
EWSBS. As we have seen, chiral lagrangians provide a model
independent formalism. We always deal with the same set of op-
erators and only the actual values of the parameters depend on
the fundamental theory.

As we have already stressed the most natural channel to look
for strong EWSBS interactions is VLVL scattering. The most
striking experimental feature would be the appearance of reso-
nant states. However, it is not assured that they could be directly
seen in the next generation of colliders. Even though they are
expected at the TeV scale, they can be higher that the planned
energy reach. In that case one is left with a non-resonant be-
havior, where different models will be hard to distinguish. Then
the effective lagrangians become a natural and systematic tool
to parametrize and maybe disentangle the experimental results.

Indeed there are already some studies of the capability of LHC
to measure the chiral parameters [9]. In Table II are listed the
number of events produced with various non vanishing values
of L2 or L1. Following reference [9] we have recalculated the
results for 100fb�1 of integrated luminosity at

p
14TeV. That

corresponds to one experiment collecting data at full design lu-
minosity during one year.

The numbers in Table II are those of the cleanest leptonic de-
cays of subprocesses whose final state is either W�Z or ZZ:

q�q0 !W�Z q�q ! ZZ gg ! ZZ

W�Z !W�Z ZZ ! ZZ

W�
 !W�Z W+W� ! ZZ

They have been calculated from the lagrangian in Eqs.1 and 2 at
tree level (except gluon fusion, that only occurs at one loop). All
possible initial and final helicity combinations have been consid-
ered. We use the effective W approximation, but not the Equiv-
alence Theorem. By the cleanest leptonic modes we mean the

Table II: Number of events and statistical significances for dif-
ferent values of L2 and L1 at LHC.

10�2 -10�2 5� 10�3 -5� 10�3

L1
W�Z0 !W�Z0 22 58 23 41
total W�Z0 104 139 105 122
r5jW�Z0 0.7 2.6 0.6 1.0
r5jW�Z0 tagging 1.0 4.2 0.9 1.7
W+W� ! Z0Z0 21 7 13 6
Z0Z0 ! Z0Z0 6 6 1 1
total Z0Z0 46 32 33 26
r5jZ0Z0 3.8 0.9 1.2 0.1
r5jZ0Z0 tagging 6.6 1.8 2.3 0.2

L2
W�Z0 !W�Z0 36 80 27 47
total W�Z0 118 162 109 129
r4jW�Z0 0.7 4.8 0.2 1.7
r4jW�Z0 tagging 1.0 7.5 0.3 2.7
W+W� ! Z0Z0 12 7 9 7
Z0Z0 ! Z0Z0 6 6 1 1
total Z0Z0 37 32 30 27
r4jZ0Z0 1.9 0.9 0.5 '0
r4jZ0Z0 tagging 3.5 1.8 0.9 0.1

W ’s and theZ’s decaying to �ee; ��� and e�e+; ���+, respec-
tively. The corresponding branching ratios are BR(WZ)=0.013
and BR(ZZ)=0.0044. We have also imposed a set of minimal
cuts: Mmax

V V = 1:5TeV; PZ
T min = 300GeV; yVmax = 2. Further

details of the calculation can be found in [9].
The statistical significances are defined with respect to the

”zero” model (when all theLi are set to zero). In [9] they are also
given with respect to the SM with MH ' 1TeV. Note that the
zero model is nothing but the LET predictions or the MH !1
limit of the MSM. The statistical significances are defined as:

ri =
jN (Li)� N (0)j
p
N (0)

(4)

In Table II we have listed two sensitivities for each process de-
pending on whether there is forward jet tagging available or not.
This detector feature is very important to separate those events
coming from V V fusion from those coming from quarks. We
have given numbers for no jet tagging at all and 100% efficiency
tagging, so that the real number will lie somewhere in between.

The analysis is simplified in the sense that only one Li is dif-
ferent from zero at a time. However, there are issues that could
improve the sensitivity that we have not addressed. We have
only restricted ourselves to leptonic modes, and we have not
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studied the W+W� or the W�W� final states. The sensitiv-
ities only refer to separate channels and a simultaneous fit to all
them would be a considerable improve. There is still open the
possibilityof final state polarization analysis that would enhance
the longitudinal modes. Finally we are also confident that more
elaborated cuts will also enhance the signal. Therefore, we think
that the numbers in Table II can be considered as a conservative
estimate of the LHC capabilities.

From Table II we can thus see that the 10�2 values are at hand
at the 3� level, both for L2 and L1. Combining the two experi-
ments and one or two years of running even the 5� level seems
attainable.

It is convenient at this point to look back at Table I and notice
that the expected values lie on the range 10�2 to 10�3. There-
fore, we can easily reach the beginning of the interesting region.
Notice also that the two reference models have different signs
in their parameters. Fortunately the experimental signature is
radically different when changing the sign of the parameters. It
seems feasible to differentiate positive from negative signs.

To go down to the level of Li = 5� 10�3 its harder, but not
impossible. The 3� level seems reachable in three or four years
in many channels, by combining the two experiments. We have
not listed the results for 10�3 since that level of precision seems
extremely hard to access [9].

It is important to remark again that this is a preliminary and
conservative result. We can conclude that even in the non-
resonant scenario, LHC will be able to test at least part of the
chiral parameter space in the interesting region. It is also clear
that the study of this kind of physics will require the ultimate
machine performance.

As we will see in the next section the determination of L1 and
L2 will be very helpful to disentangle the nature of an strong
EWSBS. Even if the LHC energy reach is not enough to observe
resonances directly, their existence can be established by means
of dispersion theory.

II. UNITARITY AND RESONANCES

A. Elastic unitarity

Up to now we have not considered possible resonant states.
Resonances are one of the most characteristic features of strong
interactions. In our case, we expect them to appear at the TeV
scale. For instance, the MSM becomes strong when MH '

1TeV. In such case we expect a very broad scalar resonance
around 1 TeV. In QCD-like models one expects a vector reso-
nance around 2 TeV.

From now on it will be very convenient to use amplitudes of
definite angular momentum J . As far as we also have a con-
served SU (2)L+R symmetry in the EWSBS, we can also de-
fine a weak isospin I. In analogy to �� scattering, we will then
have three possible isospinchannels I = 0; 1; 2. At low energies
we are only interested in the lowest J , and thus we will concen-
trate on the tIJ = t00; t11 and t20 partial waves. Indeed we will
present our results in terms of their complex phases, which are
know as phase shifts.

Chiral lagrangians by themselves are not able to reproduce

resonances. Their amplitudes are obtained as polynomials in the
momenta and masses, and therefore they do not even satisfy the
elastic unitarity condition:

ImtIJ (s) = �(s)jtIJ (s)j
2 (5)

where �(s) is the two body phase-space. Nevertheless, they sat-
isfy it perturbatively

Imt(1)
IJ

(s) = �(s)jt
(0)

IJ
(s)j2 (6)

Resonances are closely related to the saturation of unitarity.
That is why we have to unitarize the chiral amplitudes. There
are many procedures in the literature to impose Eq.5 which very
often lead to different results. Obviously, that is one of the main
criticisms to unitarization.

There is, however, a method that has been tested in ChPT and
is able to reproduce the � and K� resonances. It is based on dis-
persion theory and apart from satisfying Eq.5, it also provides
the correct unitarity cut on the complex s plane, as well as poles
in the second Riemann sheet.

B. The inverse amplitude method

If we consider an amplitude in the complex s plane, the ex-
istence of a threshold is reflected as a cut in the real positive
axis. The amplitude has two Riemann sheets that are connected
through the cut. By crossing symmetry, there is also another cut
on the left real axis.

A dispersion relation is nothing but the Cauchy theorem ap-
plied in one of the sheets. Thus, the values of that function in
any point will be given by the integrals of Imt(s) over the cuts.
Of course, these values are not known exactly, and with our
chiral expansion we only get a crude approximation replacing
Imt(s) ' Imt(1)(s)

The relevant point is to realize that the inverse amplitude can
be calculated exactly on the elastic cut. Indeed, using Eqs.5 and
6 we find

Im
1

tIJ
= �

ImtIJ
j tIJ j2

= �� = �
Imt(1)

IJ

j t
(0)

IJ
j2

(7)

Apart from poles, the cut structure of the amplitude t(s) and
that of the function j t(0)

IJ
j
2 =tIJ (s) are the same. Their right

cut contributions only differ on a sign, and therefore, solving for
t(s) one obtains [10, 8]:

tIJ '
t
(0)

IJ

1� t
(1)

IJ
=t

(0)

IJ

(8)

Notice that if we expand again at small momenta, we recover
the chiral expansion in Eq.3. Therefore, the Inverse Amplitude
Method (IAM) displays the correct low energy behavior. We can
perform again the very same analysis of the preceeding section.
The difference from ChPT appears at higher energies, but now
we have several advantages:

� It satisfies the elastic unitarity constraint.
� The elastic right cut has been calculated exactly.
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Figure 1.-a) �11 phase shift in �� scattering. The data comes
from: [13] (4), [14] (�); b)�1=2;1 in�K scattering. [15] (�),[16]
(4). The dotted curves are plain ChPT. The others are the IAM
with two sets of chiral parameters.

� It can reproduce poles.

Remember that the amplitude is extended continuously to the
second Riemann sheet through the cut. Hence, from the second
point above, we expect to obtain a very good approximationnear
the cut in the second Riemann sheet. But resonances are char-
acterized as poles close to the real axis and in the second sheet.
That is why this method is able to reproduce resonances.

Of course, the method has several limitations too [8]. First,
the left cut is still an approximation. Next, we have neglected
possible poles in G, which are indeed present [11]. Fortunately
these effects are not dominant at high energies, where the right
cut and resonance contributions dominate. They will however
introduce some uncertainty in the position and width of the res-
onances. There are also other rather technical issues that we will
not address here [8].

Let us now review how the IAM works. We want to know how
well it reproduces the high energy behavior using only low en-
ergy data, since that could be the situation at LHC. In particular,
we are interested on whether we can establish the existence of
resonances even though they are not directly seen.

C. The IAM in Chiral Perturbation Theory

When it is applied to pion physics [12, 8], the IAM is able
to reproduce a � resonance just using low energy data. In Fig-
ure 1.a, the results of plain ChPT are plotted as a dotted line. It
has been calculated with the parameters proposed in [17], which
have been obtained only from low energy data (<�400 GeV). The
other two lines are the IAM prediction. The dashed one has been
obtained with the same parameters and the continuous one with
an slightly different set [18]. As far as the only input in the cal-
culations is low energy data, the existence of the � can be seen
as a prediction of the IAM. The qualitative behavior of the phase
shift is obviously correct. Notice that the value of its mass does
not lie very far from the actual value. The theoretical error is
hard to estimate, but we have found, varying the parameters in-
side their error bars, that it is never bigger than 20% [8].

Of course, it is possible to get a better fit (see [8]) but then high
energy data should also be used as an input.

The case of �� scattering is specially relevant since it can be
described with the very sameSU (2) scheme of symmetry break-
ing of the EWSBS. However, the IAM also works in other mod-
els. In Figure 1.b it is shown how it is also possible to reproduce
the K�(892) resonance in �K elastic scattering using SU (3)
ChPT [12, 8]. The uncertainties are again of the same order.

It can also be checked [8] that the amplitudes present the ap-
propriate analytical structure including the corresponding poles
in the second Riemann sheet.

We have therefore shown that the IAM is not just a simple nu-
merical trick to unitarize amplitudes. It contains all the analytic
structure needed to extract the correct high energy behavior from
low energy data.

D. Resonances in the strong EWSBS.

Throughout this section we will be using the Equivalence The-
orem [19]. It states that theVLVL amplitudes are those of GB up
to O(MV =

p
s). At high energies those terms can be neglected

and the VLVL amplitudes look exactly as those of �� scattering
in the massless limit.

At first sight it is not evident that such a high energy limit
can be used with a low energy approach like chiral lagrangians.
However, it has been shown [3, 20] that there is a common ap-
plicability window, and that the theorem remains the same when
working at lowest order in the electroweak couplings, which is
our case.

Let us then apply the IAM to the reference models of Table
I. In Figure 2 we can see (solid lines) how the IAM yields an
scalar resonance in the Higgs model, and a technirho in the QCD
model [21]. There are no other resonances present. We have
found again that the IAM yields the correct result. Let us then
scan the parameter space to get a qualitative description of the
general resonance spectrum of an strong EWSBS.

We will only concentrate on the (I; J) = (0; 0) and (1; 1)
channels. The I = 2 channel is more subtle and will be given
elsewhere.

In Figure III we have plotted in theL1; L2 plane the expected
unitarity behavior up to 3 TeV of the V V amplitudes. There are
several possibilities: No resonance (white), a saturation of uni-
tarity (black), a broad resonance (light) or a narrow resonance
(dark). By narrow or broad, we mean that the width is smaller
or bigger than 25% of the mass, respectively. We understand by
saturation that the unitarity bound is reached, but a resonance
there would have a width of 75% its mass or more. We have
also shown the position of the SM withMH = 800 to 1200GeV
(black dots), as well as QCD-like models with 3 or 5 technicol-
ors (black triangles).

From the graphs it seems that there are many different phe-
nomenological scenarios. Maybe there is just one resonance,
two resonances or no resonances at all. It could happen that one
channel saturates unitarity while the other has a resonance, etc...

In conclusion, the effective lagrangian approach supple-
mented with the IAM, emerges as a very powerful and simple
tool to explore a great variety of strongly interacting scenarios.
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Figure 2.- VLVL ! VLVL phase shifts in the heavy Higgs
SM (left) and a QCD-like model(right). Notice their respective
scalar and the vector resonances. The dashed lines are the chiral
amplitudes and the solid lines are the IAM results.

Figure 3.- Resonant states in the L1; L2 plane, both for the
(I; J) = (0; 0) and (1; 1) channels. The dark color areas corre-
spond to narrow resonances. Lighter areas are broad resonances
and black areas stand for saturation. White is no resonance or
saturation below 3TeV
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