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ABSTRACT

Several promising schemes for high-gradient
acceleration of charged particles in planar electromagnetic
structures have been recently proposed. In this paper we
investigate, by both computer simulation and theoretical
analysis, the longitudinal and transverse wake-fields
experienced a relativistic charged  particle in a planar
structure. We show that, in the limit of a large aspect
ratio beam, the net deflecting wake-fields vanishes.
Practical implications of this result for short wavelength
advanced accelerators are discussed.

I. INTRODUCTION

The use of planar structures for advanced accelerator
applications has been discussed recently in the context of
both metallic, disk-loaded millimeter wave structures for
linear collider applications[1] and high gradient dielectric
loaded-structures excited by lasers[2]. It has been noted
that this type of electromagnetic structure may have
advantages over the usual axisymmetry, in ease of
external power coupling, and lowered space-charge
forces[2]. More importantly, it has also been speculated[1-
2] that the transverse wake-fields associated with this class
of structure are mitigated, thus diminishing the beam
break-up (BBU) instability which typically limits the
beam current in short wavelength accelerators. This
instability arises from off-axis beam current excitation of
dipole mode wake-fields which in turn steer trailing
particles; a measure of the strength of this problem is the
amplitude of the transverse wake-fields.

In this paper we show, by both theoretical and
computational analysis, that the transverse wake-field
amplitude is in fact diminished for asymmetric
( σ x >> λ0 / 2π > σ y ) relativistic bunched beams indeed

mitigate transverse wake-fields in planar structures.
Indeed, in the limit of a structure and beam which is much
larger in x  than in y , the transverse wake-fields vanish,
in analogy to the monopole modes of axisymmetric
structures.  We begin our analysis in Section II by
considering the wake-fields of a very wide beam and
structure in this limit. In Section III, we generalize the
treatment of the wake-fields to analyze the effects of finite
horizontal beam size through a Fourier decomposition of
the beam and wakes.  Finally, these results are used to
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illustrate the mitigating effects on multi-bunch BBU, and
beam-loading phenomena in general, that a slab-
symmetric, highly asymmetric beam linear accelerator
design allows.

II. THE LIMIT OF THE INFINITELY WIDE
BEAM IN A PLANAR STRUCTURE

The structure considered here is a plane-symmetric
dielectric-loaded geometry, with a dielectric material of
permittivity ε > 1 ( µ = 1) in the regions a ≤ y ≤ b , a

vacuum gap ( ε = 1) and conducting boundaries at y = b .

This structure is chosen both for ease of calculation and
because of the recent interest displayed in dielectric-loaded
devices[1,3-5]. In the usual fashion, the Cerenkov
radiation induced wake-fields are assumed to travel in the
beam propagation direction z , with phase velocity equal
to the beam velocity, with both ultrarelativistic,
vφ = vb ≅ c . Instead of the common Green function

approach to calculation of the wake-field response, we
analytically calculate the wake-fields by use of energy
balance arguments, requiring only that we determine the
mode characteristics of the structure, then summing the
wake-field coupling of each mode with a further
convolution integral over the beam current profile.

We begin by examining the limiting case of no x
dependence of the structure, beam, or resultant mode. By
assumption, the longitudinal and temporal dependence of
the n-th mode excited by the beam is of the form
exp iknζ[ ] , where ζ ≡ z − ct , and kn = ωn c . The excited

modes in this limit are purely transverse magnetic (TM),
because the existence of nonvanishing Bz  implies

through the condition   
r
∇ ⋅

r
B = 0  a nonvanishing By ,

giving rise to a horizontal force, which is forbidden by
symmetry. In fact, it is straightforward to show that these
conditions also imply that the net vertical force associated
with such a wake-field vanishes, as Bx = −Ey . We shall

verify below that this behavior is obtained in the limit of
a very wide, yet finite sized, beam.

For the TM case we need only to consider the
vertical dependence of the longitudinal electric field to
determine the mode fields completely. Inside of the gap
( y < a), we have

Ez,n = E0 exp iknζ[ ] , (1)
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where E0  is an arbitrary amplitude, while in the dielectric
( a < y < b ) we must have

Ez,n = AnE0 exp iknζ[ ]sin sy,n y − b( )[ ]  (2)

with sy,n = kn ε − 1 . Application of the boundary

conditions at y = a  (continuity of Ez  and Dy , which is

trivially derived from Ez  from the relation   
r
∇ ⋅

r
D = 0 )

allows determination of the eigenvalue of each mode
through the transcendental relation

cot kn ε − 1 b − a( )( ) = kna
ε − 1
ε

, (3)

and the amplitude of the longitudinal electric field within
the dielectric,

An = csc sn b − a( )[ ]. (4)

Once the fields have been determined, the response
of the structure to the passage of an ultrarelativistic,
horizontally oriented line charge of constant density
(ρe = λδ y − y0( )δ ζ( )) within the vacuum gap ( y0 < a )

can be calculated by energy balance. It can be shown that
for a linear wake-field[6] the net decelerating field on a
line charge associated with a wake amplitude of E0  is
Edec = E0 2 .  We can equate this energy loss per unit
length with the field energy per unit length left behind as

λEdec = uem − Sz( )∫ dy , where the longitudinal

Poynting flux Sz = 4π( )−1 Ey Hx ,  and the EM energy

density  uem = 1
2 ε Ez

2 + Ey
2( ) + µHx

2[ ] , with   Hx = −εEy .

The longitudinal wake-field behind the charge obtained
from this expression is simply

Wz,n = Ez,n = 4πλ
a + εAn

2 b − a( )
cos knζ[ ]Θ −ζ( ) , (5)

where Θ  is the Heaviside function which explicitly
shows the causal nature of the wake-fields. It should be
noted from this expression that the longitudinal wake-field
is largest for the lowest frequency mode in general. For
the slab-symmetric, laser-pumped accelerator proposed in
Ref. 2, however, the examples given have the device
operating on a higher frequency mode of the structure.
This could pose a beam-loading problem, as the beam
gains energy from a mode which it is poorly coupled to,
in comparison to the modes which it loses energy to in
the form of wake-fields.

To obtain the full wake-field response from a beam
with an arbitrary current profile ( ρe = λδ y − y0( ) f ζ( ) ),

we must perform a longitudinal convolution over the
point response,

Wz = f ′ζ( )
ζ

∞

∫
n
∑ Wz,n ′ζ − ζ( )d ′ζ .  (6)

The predictions of Eq. 6 have been verified by use of
numerical  simulation of the wake-fields in a planar
structure, performed using a custom 2-D finite difference
time domain code. The beam is assumed to be a rigid
current distribution, infinitesimally thin in the vertical
( y ) direction and with a fixed offset from the symmetry
plane y = 0 . The beam is also taken to be ultra-
relativistic and travelling in the +z   direction, with a
gaussian longitudinal of standard deviation σ z . The line

charge density of the beam in x  is normalized to 2 πσ z

statcoul/µm, with σ z  in µm. The fields are advanced
using the standard leapfrog time integration algorithm.
Figure 1 shows a false-color contour map of Wz  for a
case similar to the infrared wavelength examples given in
Ref. 2. One can clearly see the Cerenkov nature of the
wake-field in the dielectric, which displays the expected
propagation angle,  as well as the feature that, even
though the beam current is asymmetric with respect to the
y = 0  plane, the excited longitudinal wake is nearly
symmetric (after propagation away from the simulation
boundary).

Figure 1. False color contour map of Wz  for a slab-
symmetric structure with vacuum gap half-height a = 2.5
µm, dielectric (of permittivity ε = 4 ) in the regions
a < y < b  between the gap and the conducting boundaries

at y = b = 5  µm, from time-domain electromagnetic field

solver. The ultra-relativistic beam distribution is infinite

in x , with line charge density λ = dq dx = 2 πσ z ,

infinitesimal in y  (at y = 1 µm) and gaussian in z  with
standard deviation σ z = 0.5  µm, centered about z = 27.5
µm. The color map in linear and in spectral order.

Figure 2 shows the net vertical wake-field
Wy = Ey + Bx  excited by the beam in this case; one can

see that Wy  essentially vanishes inside of the vacuum
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gap. Figure 3 displays a comparison between the
simulation and analytical results for Wz  in this case.  The
results are in good agreement, with some discrepancies
due to the transient fields found in the time-domain
simulation which are not present in the analytical
treatment.

Figure 2.  False color contour map of Wy  for  structure

and beam described in Figure 1.   The transverse wake-
field essentially vanishes in the vacuum gap for an
infinitely wide (in x ) beam. The lack of full cancellation
of Ey + Bx  is due mainly to the electric and magnetic

field centers in the calculation being one-half of a spatial
and time step apart.

The wake-fields due to a beam of finite horizontal
extent can be found by generalizing the above analysis to
beams of horizontally harmonic charge profile, e.g.
ρe,kx

= λ kx( )cos kx x( )δ y − y0( )δ ζ( ), where λ  is now

the peak line charge density. This profile can be viewed as
a Fourier component of a finite beam, i . e .
ρe x( ) = ρe,kx

∑ cos kx x( ) , where we implicitly assume

that the waveguide now has conducting side-walls with
separation in Lx  (allowed wave-numbers kx = mπ / Lx ,
m = 1,3,5... ) and the beam distribution in x  is centered
and symmetric within these walls. Partial wake-fields
obtained from this harmonic analysis can therefore be
summed to find the complete wake-fields.

The longitudinal electric field associated with the n-
th mode of the wake-fields that the harmonic beam can
couple to has the following form in the vacuum region;

Ez,n = E0 exp iknζ[ ] cosh kx y( )
sinh kx y( )












cos kx x( ) .       (7)

The cosh kx y( )  dependence indicates the monopole-like,

or accelerating, component (independent of y  in first order

for small vertical offsets) and the sinh kx y( )  is the dipole-

like, or deflecting component, which produces deflecting
forces nearly independent of y  for small vertical offsets.

Since the modes under consideration are not pure
TM, but are hybrid modes, we must find the longitudinal
magnetic field to specify all the fields. In the gap region,
this field has the form

Bz,n = E0 exp iknζ[ ] sinh kx y( )
cosh kx y( )












sin kx x( ) .     (8)

We again have obviously taken the ultra-relativistic
limit, and in this case one must be very careful in finding
the transverse components of the fields in the vacuum
region. They are:

Ex ,n = −i
knE0

2kx

exp iknζ[ ] cosh kx y( )
sinh kx y( )












sin kx x( )

Ey,n = −i
knE0

2kx

exp iknζ[ ] sinh kx y( )
cosh kx y( )












cos kx x( )            (9)

Bx ,n = iE0
kn

2kx

− kx

kn







exp iknζ[ ] sinh kx y( )
cosh kx y( )












cos kx x( )

By,n = −iE0
kn

2kx

+ kx

kn







exp iknζ[ ] cosh kx y( )
sinh kx y( )












sin kx x( )
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Figure 3. Comparison of the values of Wz   (as a function
of z  at y = 1 µm) given by time-domain electromagnetic
field solver and the predictions of Eqs. 5 and 6, for case of
Figs. 1 and 2.

It should be noted that one cannot obtain the case of
the uniform beam by taking the limit kx ⇒ 0  in Eqs. 9,

because these expressions were obtained by assuming that

kx >> kn / γ , where γ = 1 − β 2( )−1/ 2
 is the Lorentz factor

of the beam. One also obtains immediately from Eqs. 9
the gratifying result that the transverse forces on a
relativistic particle of charge q , due to the modes
described by Eqs. 8,
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Fx ,n = i
kx

kn

E0 exp iknζ[ ] cosh kx y( )
sinh kx y( )












sin kx x( )

Fy,n = −i
kx

kn

E0 exp iknζ[ ] sinh kx y( )
cosh kx y( )












cos kx x( )

,  (10)

vanish in the limit that kx ⇒ 0 , as we had found in the
uniform line charge ( kx = 0 ) beam case. This is perhaps
the primary result in this paper, simply stated; for highly

asymmetric ( σ x >> σ y , with associated kx ~ σ x
−1 the

Gaussian beams typical of a linear collider) beams in slab-
symmetric structures, transverse wake-fields are strongly
suppressed. In fact, since all wake-fields are proportional

to λ , the transverse wake-fields scale as σ x
−2 . This result

mitigates one of the major objections to use of high
frequency accelerating structures, that the transverse wake-
fields scale prohibitively with frequency. This objection
holds for cylindrically symmetric structures, but can be
greatly eased by use of slab structures.
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Figure 4. Comparison of the values of (a) Wz  and
(b) Wy ≡ Fy / q  (as a function of z  at y = 1 µm) given by

time-domain electromagnetic field solver and the
predictions of Eqs. 6 and 12, for the identical structure and
beam of Figs. 1-3, but with beam charge distribution
modulated with kx = 0.4  µm-1.

The fields in the dielectric, unlike those in the gap,
can be found by standard wave-guide analysis; for brevity
their derivation is omitted.  Following the same
prescription used to obtain Eqs. 3-5, we obtain a
transcendental expression for the eigenvalues of the
symmetric modes,

cot ε − 1( )kn
2 − kx

2 b − a( )





coth kxa( ) ε − 1( ) kn

kx
( )2

− 1 =

ε − 1( )
2ε

kn

kx







2

+ 1.                                                        (11)

The eigenvalues of the antisymmetric modes are simply
obtained by substitution of tanh kxa( )  for coth kxa( )  in

Eq. 11.  The longitudinal wake-fields associated with the
symmetric modes are

  

Wz,n kx( ) =                                                                     (12)

4πλ cosh(kx y0 ) cosh(kx y) cos kx x( )cos(knζ )Θ(−ζ )
sinh 2kxa[ ]

2kx

kx
kn( )2

+ 1[ ] + ε cosh2 kxa( )
sin2 sn b−a( )[ ] + sinh2 kxa( )

cos2 sn b−a( )[ ][ ] kx
sn( )2

+ 2[ ] b−a
2( )+K

sin 2sn b−a( )[ ]
4sn

sinh2 kxa( )
cos2 sn b−a( )[ ] − ε cosh2 kxa( )

sin2 sn b−a( )[ ][ ] kx
sn( )2

+ 4εkxsn

kn
2 ε −1( )

cosh kxa( )sinh kxa( )
sin sn b−a( )[ ]cos sn b−a( )[ ]







those of the antisymmetric modes are obtained by
substitution of sinh kx ỹ( )  for cosh kx ỹ( )  and vice versa,

where ỹ  takes on the values of a, y,  and y0  in Eq. 12.
A discrete sum and convolution integral similar to

Eq. 6 which sums over both symmetric and
antisymmetric modes, as well as the beam charge
distribution, must be performed to obtain the full wake-
fields for a beam of finite extent in configuration space.
The resultant expressions have also been compared to
simulations of this periodic (in x) system, with Wy  and

Wz  obtained by both methods shown in Figure 4. The
algorithm in the numerical simulations used in this case
is based on discretizing the Maxwell equations after
Fourier transforming with respect to x . The discrepancies
in the two approaches due to transient effects are slightly
more pronounced in this case, but again the agreement is
quite good. Parametric studies with computer simulations
have also verified the suppression of transverse wake-
fields for wide beams.

IV. CONCLUSIONS

In conclusion, we have theoretically and
computationally analyzed the transverse wake-fields in a
slab-symmetric dielectric-loaded structure.  We have found
a suppression of the transverse wake-fields for wide beams
(with small horizontal spatial frequencies) in these
structures. This result allows the more serious
consideration of short wavelength advanced accelerator
schemes, which have potential application to linear
colliders as well as radiation producing accelerators (FELs,
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Compton scattering sources), as it mitigates the
scaling[7] of the transverse wakes which limit the current
in cylindrically symmetric devices,  from

′W⊥ ≡ ∂ yWy ∝ k⊥
3 ∝ k0

3  ( k⊥  is the transverse wavenumber

of the mode, analogous to our present kx ) in the

cylindrical case, to ′W⊥ ∝ kx
3 ∝ σ x

−3  in the slab case. In
short wavelength accelerators, the limitations on injector
pulse length implies that a macroscopic pulse is to be
captured and accelerated in the structure as a multiple
micro-pulse train. For this reason, the limit on accelerated
charge comes from multi-bunch beam breakup. Following
the treatment by Ruth and Thompson[8], we have derived
a limit on the stable propagation distance before onset of
multibunch BBU instability in a channel with only
ponderomotive electromagnetic focusing[2] to be

zBBU ≅ σ x
3k⊥a Nre [9], where N  is the number of

electrons per microbunch and we consider only the effect
of the lowest frequency asymmetric mode. The equivalent
expression for a cylindrical structure is

zBBU ≅ a2 4Nrek⊥ , which displays the disadvantage

relative to the slab case in scaling the structure to high
frequency.

TABLE I. Comparison beam breakup of cylindrical and
slab symmetric resonant standing wave accelerator with an
average accelerating gradient of 1 GV/m, fundamental
wavelength λ0 = 2π k0 = 10.6 µm , a = 2.5 µm , quality
factor Q = 500 , and beam loading voltage of ten percent;
only lowest frequency dipole-like mode is considered.

SLAB CASE
( σ x = 100 µm )

CYLINDRICAL
CASE

Average current
eNc / λ0

630 mA 16 mA

Transverse wake
′W⊥ / eN

30 V / mm2 / fC 105  V / mm2 / fC

Stability length
zBBU

6.2 cm 0.52 mm

To illustrate this comparison, we give a list of
parameters describing two equivalent designs with slab
and cylindrical geometry, respectively, in Table 1. In both
designs, we consider a resonant standing wave (to provide
ponderomotive focusing) accelerator with an average accel-
erating gradient of 1 GV/m, wavelength
λ0 = 2π k0 = 10.6 µm ,  a = 2.5 µm , quality factor
Q = 500 , and beam loading voltage of ten percent.  It can
be seen that in the slab case, with a beam width of
σ x = 100 µm ,  much higher average current can be
accelerated at this beam loading level, and it can be
propagated stably longer.  These advantages, we believe,
present significant motivation for further work in this
field; plans have been made to test these results using
asymmetric, high charge beams, producing cm
wavelength wake-fields, in the near future at the Argonne
Wake-field Accelerator facility[10].

Extensions of this theoretical work on wake-fields in
slab-symmetric structures is presently underway, both by
these authors and A. Chao[11].  These efforts include the
treatment of Gaussian beams, which produce diffractive
wakes which have useful analogies to Gaussian
electromagnetic modes in lasers.  We have also undertaken
an analysis of the flute instability[12] found in this type
of system which is driven preferentially by the transverse

wake-fields with kx ∝ a−1 .   This instability, which

causes the beam to break up into filaments (as opposed to
the multibunch BBU discussed above, in the entire bunch
train undergoes a dipole instability) can be stabilized by
Landau damping. This implies a minimum horizontal
temperature (minimum emittance, maximum beta-
function) to achieve stability.
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