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I. INTRODUCTION Il. THE PLANAR WAKE THEOREM

In order to reach higher acceleration gradients in linear acceld N€ Planar wake theorem was proven in Ref. [4], but it is
erators, it is advantageous to use a higher accelerating RF ff2roduced here in more detail, starting with the Maxwell equa-
quency, which in turn requires smaller accelerating structurd@ns- From the symmetry of the problem, we know that the
As the structure size becomes smaller, rectangular struct Bl nonvanishing field components &g, . a_nde, and all
become increasingly interesting because they are easier to &nponents depend iny gn - and? (and are independent of
struct than cylindrically symmetric ones. [1,2] One drawbac%)' Thf’ charge density and_ current density are related by
of small structures, however, is that the wakefields generated ¢°>- 1he Maxwell equations then become

by the beam in such structures tend to be strongceRitly, it oE, OF,
has been suggested that one way of ameliorating this problem Oy | 9z = dmp
is to use rectangular structures that are very flat and to use flat 0B, 10K,
beams. [3] In the limiting case of a very flat planar geometry, 9 oo 0
the problem resembles a purely two-dimensional (2-D) prob- 0B, 10E,
lem, the wakefields of which have been studied in Ref. [4]. By + Pl rall —4mp
In this work we consider the purely 2-D problem that is OFE. OF 10B,
sketched in Fig. 1. The beam is considered to be infinitely E Y+ = % - 0 . (1)
long in the horizontak-direction; it propagates with the speed Y ‘ ¢
of light ¢ in the longitudinalz-direction fromz = —oco to The instantaneous Lorentz force components are given by
z = +oo. The beam distribution in thg-z plane is arbitrary. Fy(y,5,1) = eBEy+cBy

The environment consists of boundaries which are independent
of x, but are otherwise unrestricted; for example, in the Py, zt) = eB: . 2)

plane they can be of arbitrary shape, and they can be m@(ﬁnbining Egs. (1) and (2), we obtain
of metal, dielectric or plasma material. We do assume, how- ’

ever, that the beam trajectory is entirely in free space and that it 3& - e (i n lﬁ)

nowhere intersects the boundaries. A test charigethe beam oy 9z cot) °

(or trailing the beam) also moving in thedirection at the speed OF, 5 190

of light samples the force due to the wakefield generated by the 9. € (6_,2 + - g) Ly

beam. For these conditions, a theorem that we call the “planar OF 9 10

wake theorem” was proven in Ref. [4]. The theorem states that 6; = ¢ (6_z + E%) (Ey — B:) . 3)

the total transverse wake kick received by the test charge isinde-
pendent of the-positions of the beam and the test charge, and

is also independent ab, the longitudinal separation between””” / / /
the beam and the test charge (see Fig. 1). In addition, the t /
orem states that tHengitudinalwake kick is also independent

of y, though it does not say anything aboutilsdependence. /
In this report, in Section Il, we rederive the planar wake the 7 }‘ 4,‘ y

orem. In Section Ill, we add a corollary to the theorem, af=ree Space E%Ztr cees ,\l N
plicable to the case when, in addition to the above conditio éeaargflg;th: 9e €= % ~V=C X@—2
the boundaries also have up-down symmetry. For this case, wé Beam

will prove that the transverse wake kick not only is constant,

bqt in fact is equal to zero. The proof consists qf a simple a '//// % /
plication of the planar wake theorem. However, it was Ref. [ / %} ~

which triggered the present extension to the theorem. Fina //

in Section IV, we make additional observations concerning thg / %

wakefields in very flat 3-D accelerating structures. , ,
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Figure 1: A sketch of our 2-D problem, showing the beam and
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Note that the right hand sides of Eq. (3) all contain the operat@g) (b)

o 10
3: T oot

We are interested in the wake kieRp, which is obtained by /ﬁ

integrating the wake force along the path of the test charge from N R A

z=—00t0z=+o0,i.e. Test ty Yo Test -iy
Charge e «— Charge e

[e) o— \/=C
cApy . (y, D) = / Fy.(y,D+ett)dt | 4) <—D—>‘\
—00 Rod
e Beam Aq

wherey is the vertical coordinate of the test charge d@ni the
longitudinal separation between the driving beam and the test
charge. (Our convention is such that, for a test charge trailing
the driving beam)) < (.) Substituting Egs. (3) into Eq. (4) we
obtain integrals of the form

Figure 2: Two exactly soluble cases.

due to the wakefield generated by a rod beaen ¢ne that is in-

oo o 16 finitely long inz and a delta function in thg andz-directions)
dt G(z,1) ,
z=D+ct

P + e of line charge density, is given by

— 00

which in all cases equals zero, since the integrand is pro-

portional to the total derivativéG(D + ct,t)/dt and since cApy (4, y0, D < 0) = 2meXo  for Fig. 2(a) @)
G(D + ct, t) approaches zero g — co. It therefore follows meAo  forFig. 2(b)
that

wherey, is they-offset of the rod beam. We note that the trans-
verse wake kick is independent ¢f y, and D, as the planar
wake theorem states. Itis also interesting that the result, Eq. (7),
) does not depend am, the wedge angle. Although Eq. (7) ap-
which proves the planar wake theorem. plies only to a rod beam, the wake kick for a more gengral

The proof of the planar wake theorem parallels a similar, p§faam distribution can be obtained by simple superposition.
haps more familiar, result for the case of cylindrically symmet-

ric boundaries. In the cylindrically symmetric case, among the . A COROLLARY TO THE THEOREM
results that are obtained are that the wake kick of a monopole "~ *
beam is independent of the transverse position of both the beamhe planar wake theorem has an interesting corollary when
and the test charge, that the transverse wake kick of a dipthle 2-D boundaries have the additional property of up-down
beam depends linearly on the radial position of the driving beaymmetry, as is sketched in Fig. 3(a). In this case, the trans-
and is independent of the transverse position of the test chargsrse wake kicks due to the upper and the lower halves of the
and that the longitudinal and transverse wake kicks of any mblundaries cancedach other and the net transverse kick be-
tipole obey the Panofsky-Wenzel theorem. [5] comes zero. Note that the beam does not need to observe up-
Note that the boundary properties never enter into our praggwn symmetry and that it can have aff-set.
of the planar wake theorem; the theorem is valid independento prove this corollary, let us first consider a rod beam. Since
of the shape and material of the boundary. For example, the wake kick does not depend on thgositions of the beam
boundary can be only above or below the beam trajectory, oramd the test charge, we can choose to locate both along the sym-
both sides of the beam. It can also consist of several separatgry axisy — 0 without changing the result. But for such a
parts, as indicated in Fig. 1. It can be made of a fuzzy materiabnfiguration the transverse wake kick must vanish due to the
such as a gradually fading plasma. The boundary can even sspametry of the problem. Finally, we can extend this result to
arate parts of the beam, as long as the boundary is 2-D plaaararbitraryy-z beam distribution by applying superposition,
and as long as by changinghe beam path does not cross angnd the corollary follows.
boundary. Note that the corollary applies to the toiategratedwake
Also note that for our problem, the wake kick is also indepekick received by the test charge. Timstantaneousvake force
dent of they position of the driving beam. This isebause the is not necessarily zero. In case the boundary has translational
wakefield is a response to the primary field carried by the drisymmetry,i.e., is independent of the-position, the instanta-
ing beam, and the primary field at the boundaries is independrebus transverse wake force would, of course, also vanish. Note
of the y-position of the beam in a 2-D planar geometry. also that the up-down symmetry of the boundary is required for
In Ref. [4] two examples of 2-D planar wakefields with opethe corollary to hold; the transverse wake kick is not zero due
geometry were explicitly found by analytical methods. The the 2-D planar geometry alone. It vanishes only when the
boundaries in both cases are wedge-shaped, made of perfeadigitional requirement of up-down symmetry is applied.
conducting metal, and are only on one side of the beam path (se®&nother application of the planar wake theorem is when the
Figs. 2(a) and 2(b)). By solving the Maxwell equations it wasoundary on one side of the beam path is a perfectly conduct-
found that the transverse wake kigceived by the test chargeing plate, as sketched in Fig. 3(b). In this case, one must have

dAp, O0Ap, O0Ap.
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Figure 4: A very flat rectangular structure which may behave as
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Figure 3: (a) An example of up-down symmetric boundaries,
for which the corollary to the planar wake theorem applies. (b)
Another example with a perfectly conducting plate on one side

of the beam path.

Ap, « §(D). To demonstrate this, consider a test charge that
travels immediately next to the surface of the plate. For this test

charge,F’, necessarily vanishes and thiig, = 0. An appli-
cation of the planar wake theorem then predikis = 0 for a
test charge with any vertical positign The only way this can
happen is wher\p, (D) x §(D).

2. Even in a purely 2-D structure it may turn out that an ini-

tial, slight un-evenness of the beam distribution in the
direction, or a tilt of the beam in the-y plane, leads to
unstable growth as the beam propagates down the linear
accelerator. This question requires a study of collective in-
stabilities. [7,8]

. Although the net transverse wake kick will tend to vanish

in a flat, rectangular structure, it may turn out that the lon-
gitudinal wake kick is larger than desirable. (For the purely
2-D examples of Fig. 2, for example, the longitudinal kick
actually diverges. [4])

4. For the case of cylindrical symmetry a so-called “single

mode” rf cavity has been proposed. [9] It is a cavity that
features few or no higher order modes at the cost of a sig-

We have shown that in a purely 2-D planar geometry, if the
boundaries have up-down symmetry, then the transverse wake-
fields are zero. With the accelerating structures for future linear

nificant reduction in shunt impedance. With a very flat,
rectangular structure it is conceivable that we can avoid the
transverse wakefield problem with little sacrifice in shunt
impedance.
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