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ABSTRACT

A Hamiltonian perturbation analysis of the beam-
beam interaction with a horizontal crossing angle is
performed.  The beam-beam tune shifts and resonances
that result from a crossing angle are determined.

I. INTRODUCTION

Many storage ring colliders are being designed to
reach high luminosity through the use of a large number
of closely spaced bunches.  This introduces a potential
problem of parasitic collisions near the interaction point,
but these parasitic collisions can be avoided by having
the beams cross at an angle rather than head-on (Figure
1).  The contributions to the tune shifts and the beam-
beam resonances introduced by a crossing angle are
analyzed in this paper.

The beam-beam interaction with a crossing angle has
been studied by a number of authors, [1] - [4].  This paper
is closest to that of Sagan et al [2] which obtained some
of the results presented here.  The notation and method
are discussed extensively in references [5] and [6].

II. PERTURBATION FORMALISM

The Hamiltonian of a particle in beam 1 is

H = H0 − Nrc
γ

ṼBB

where H0 is the Hamiltonian of the transverse motion in
the absence of the beam-beam interaction, ṼBB is the
beam-beam potential, N is the number of particles in
beam 2, rc is the classical particle radius, and γ is the
energy in units of rest energy.  The betatron motions in
the absence of the beam-beam interaction can be written
in terms of the action-angle variables {Ix, ψx} {Iy, ψy} of
the unperturbed Hamiltonian, H0,

xβ = 2Ixβx cos ψx ; yβ = 2Iyβy cos ψy .
(1)

These expressions are used in a perturbation analysis of
ṼBB.

The beam-beam potential is

ṼBB = 2

πσL
2 VF (x, y,s)

n=−∞

∞
∑ e

(−2(s−(nC+cτ))2 /σL
2 )

.

The sum is over all turns and the variables in this
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Figure 1: Beams crossing at an angle 2ϕ.

equation are: σL ≡ the RMS bunch length of beam 2; s ≡
coordinate along the reference orbit; C ≡ the collider
circumference; c ≡ speed of light; and τ  ≡ displacement
of the collision point given in terms of the synchrotron
oscillation amplitude, τ̂ , and tune, Qs , by

τ = τ̂
2

cos(2πnQs ) .

The potential VF depends at the displacements of the
particle from the center of beam 2

VF = dq

(2σx
2 + q)(2σy

2 + q)0

∞

∫ exp − x2

2σx
2 + q

+ y2

2σy
2 + q

























where σx and σy are the RMS transverse sizes of beam 2.
Using the expressions in eq. (1) as approximations for

the betatron motions and assuming that the crossing is in
the x-dimension, the potential can be rewritten

VF = dq
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Fourier transforming the x expression with respect to s
gives

VF = π
2π

1
sin 2ϕ

dq
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Following the usual procedure of Fourier transforming
ṼBB with respect to ψx, ψy and s gives an expression for
ṼBB in terms of Fourier coefficients each of which is
related to the resonance

pQx + rQy + mQs = n
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where p, r, m, and n are integers.  Making a change of
variables ζ  = ω/sin2ϕ  this expression is

ṼBB = 1
C m,n,p,r=−∞

∞
∑ dζ

−∞
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× exp −(kprm + ζ sin 2ϕ)2 σL
2 8( )

× imJm ((kprm + ζ sin 2ϕ)τ̂c / 2)

× exp i(pψx + rψy − 2π(n − mQs )s / C)( )
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and

kprm = 2π(n − mQs ) / C + p(1 / βx
* − 2πQx0 / C)

+r(1 / βy
* − 2πQy0 / C) .

The quantities βx
*  and βy

*  are the β-functions at the
collision point, and Qx0 and Qy0 are the tunes in the
absence of the beam-beam interaction.

The resonance pQx + rQy + mQs  = n occurs for
values of the tune where the phase is stationary, i.e.

d
ds

(pψx + rψy − 2π(n − mQs )s / C) = 0 ,

and the average value of the beam-beam potential is
given by the term in the series with p = r = m = n = 0.

Perform a Taylor expansion in powers of sin2ϕ

ṼBB = ṼBB sin 2ϕ=0
+ sin 2ϕ ∂ṼBB

∂sin 2ϕ
sin 2ϕ=0

+... .

The first term in the Taylor series is

ṼBB sin 2ϕ=0
=
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The second term in the Taylor series is
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                                                                                         (5)

Equations (2) - (5) contain the results.  These
frightening looking expressions can be interpreted to give
useful information about the beam-beam interaction.

III. DISCUSSION

A. Tune Shifts
The tune shifts as a function of amplitude are

∆Qx = − CNrc
2πγ

∂ ṼBB

∂Ix
; ∆Qy = − CNrc

2πγ

∂ ṼBB

∂Iy

where ṼBB  is given by eqs. (2) - (5) evaluated with p
= r = m = n = 0.

The tune shifts are the same as for head-on collisions
because there are no contributions from the second term
in the Taylor series, the term proportional to sin2ϕ .  This
follows from the parity of the θx integrands.  In the case of
∆Qy the integral is
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∆Qy ~ dθx
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because the argument is an odd function of θx.  The
horizontal tune shift, ∆Qx, is proportional to
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Evaluating the integrals ∆Qx = 0 because the arguments
of both integrals are odd functions of θx.

The tune shifts from the head-on collisions have been
calculated in numerous references and are given here for
completeness.  They are

∆Qy
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The functions Bx, ..., Ay are

Βx (η) = η Ix εx

η + R2 (1 − η)
; Βy (η) = η Iy εy ;

Αy (η) = η
Iy εy

η + (1 − η) / R2 ; Αx (η) = η Ix εx .

The variables in these equations are R = σy/σx; ξx and ξy
are the beam-beam strength parameters; and εx and εy are
the emittances.  The functions In

e  are related to modified
Bessel functions

In
e (x) = e−xIn (x) .

B. Beam-Beam Resonances
Possible resonances can determined from the parity

of the integrands in eqs. (3) and (5).  The integrand of eq.
(3) is an even function of θx and an even function of θy.
The only allowed resonances for head-on collisions must
have both p and r equal to even integers.  The integrand
of eq. (5) is an odd function of θx and an even function of
θy.  The allowed resonances must have r equal to and
even integer and p equal to an odd integer.

The crossing angle has introduced new beam-beam
resonances that have odd horizontal order and Fourier
expansion coefficients proportional to sin 2ϕ.  There are
both betatron, m = 0, and synchrobetatron, m ≠ 0,
resonances.  The appearance of odd order betatron
resonances can be understood because there is a phase
shift of π  across the interaction region.  The
synchrobetatron resonances arise from modulation
introduced by the synchrotron oscillations.  They depend
on the synchrotron amplitude and have zero Fourier
expansion coefficient when τ̂ = 0 .

C. Remarks
The crossing angle has not changed the tune shifts, so

the beam-beam footprint, the area of the tune plane
occupied by the beam, is the same as for head-on
collisions.  The effect of the crossing angle has been to
introduce odd horizontal order resonances.  These
additional resonances could lower the beam-beam limit.

TeV33 is considering using both horizontal and
vertical crossing angles.  The vertical crossing angle will
introduce odd order vertical resonances as well, and there
is a still larger probability of a reduced beam-beam limit.
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