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ABSTRACT

A Hamiltonian perturbation analysis of the beam-
beam interaction with a horizontal crossing angle is
performed. The beam-beam tune shifts and resonances
that result from a crossing angle are determined.

I. INTRODUCTION

Many storage ring colliders are being designed to
reach high luminosity through the use of a large number
of closely spaced bunches. This introduces a potential
problem of parasitic collisions near the interaction point,
but these parasitic collisions can be avoided by having
the beams cross at an angle rather than head-on (Figure
1). The contributions to the tune shifts and the beam-
beam resonances introduced by a crossing angle are
analyzed in this paper.

The beam-beam interaction with a crossing angle has
been studied by a number of authors, [1] - [4]. This paper
is closest to that of Sagan et al [2] which obtained some
of the results presented here. The notation and method
are discussed extensively in references [5] and [6].

1. PERTURBATION FORMALISM

The Hamiltonian of a particle in beam 1 is
H=Ho - Ne Vg
Y

where Hg is the Hamiltonian of the transverse motion in
the absence of the beam-beam interaction, Vgg is the
beam-beam potential, N is the number of particles in
beam 2, r¢ is the classical particle radius, and vy is the
energy in units of rest energy. The betatron motions in
the absence of the beam-beam interaction can be written
in terms of the action-angle variables {Ix, Wx} {ly, Wy} of
the unperturbed Hamiltonian, Hp,

Xg = A 21 By cosWy; yg =,/2lyBy cosyy, . (1)

These expressions are used in a perturbation analysis of
The beam-beam potential is
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The sum is over all turns and the variables in this
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Figure 1. Beams crossing at an angle 2¢.

equation are: o = the RMS bunch length of beam 2; s =
coordinate along the reference orbit; C = the collider
circumference; ¢ = speed of light; and T = displacement
of the collision point given in terms of the synchrotron
oscillation amplitude, T, and tune, Qs, by
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= < cos(2mQs).
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The potential VE depends at the displacements of the
particle from the center of beam 2
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where oy and oy are the RMS transverse sizes of beam 2.
Using the expressions in eg. (1) as approximations for
the betatron motions and assuming that the crossing is in
the x-dimension, the potential can be rewritten

* H 2By ycos GyH

Fe] &P
o\<20x+qx2cry+q) 7 20%+a g

E (sSin2¢ ++/2Pyl  cosB, )2 Q
20X+q @

Fourier transforming the x expression with respect to s
gives
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_ Following the usual procedure of Fourier transforming
Vg With respect to Yy, Yy and s gives an expression for
Vg in terms of Fourier coefficients each of which is
related to the resonance

PQx +rQy +mQg=n
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where p, r, m, and n are integers. Making a change of
variables { = w/sin2¢ this expression is

VBB:% Z Idzupr(liyaZ)

m,n,p,r=— oo
xexp(—(kprm +7sin2¢)202 /8)
X iMI (Kprm +{sin2¢)Tc/ 2)
><exp(i(pL|JX +rdy —2m(n - mQg)s/ C))

where
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o E 2IyByCOSZGYE
E 20§ +9 E
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Korm = 27N = mQs) / C+ p(1/ By = 2MQyq / C)
+r(1/ By —2mQyq / C).

The quantities B; and B; are the B-functions at the
collision point, and Qxo and Qyo are the tunes in the
absence of the beam-beam interaction.

The resonance pQx + rQy + mQs = n occurs for
values of the tune where the phase is stationary, i.e.

d
< (PUx *+ 1y ~2M(n-mQ5)s/ C) =0,
and the average value of the beam-beam potential is

given by the term in the serieswithp=r=m=n=0.
Perform a Taylor expansion in powers of sin2¢
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The first term in the Taylor seriesis
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The integral is

J’dZUpr(IX,Iy,Z):
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The second term in the Taylor series is
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where
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Equations (2) - (5) contain the results. These
frightening looking expressions can be interpreted to give
useful information about the beam-beam interaction.

I1. DISCUSSION

A. Tune Shifts
The tune shifts as a function of amplitude are

_ CNr¢ a<\788>
oy aly

AQ, = - ;
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where <\7 BB> is given by egs. (2) - (5) evaluated with p
=r=m=n=0.

The tune shifts are the same as for head-on collisions
because there are no contributions from the second term
in the Taylor series, the term proportional to sin2¢. This
follows from the parity of the 8y integrands. In the case of
AQy the integral is
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because the argument is an odd function of 6x. The
horizontal tune shift, AQy, is proportional to
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Evaluating the integrals AQy = 0 because the arguments
of both integrals are odd functions of 6.

The tune shifts from the head-on collisions have been
calculated in numerous references and are given here for
completeness. They are

AQy _
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The functions By, ..., Ay are
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The variables in these equations are R = 0y/0y; &x and &y
are the beam-beam strength parameters; and ex and ey are
the emittances. The functions 15 are related to modified
Bessel functions

IR(x) =€ 1n(x).

B. Beam-Beam Resonances

Possible resonances can determined from the parity
of the integrands in egs. (3) and (5). The integrand of eq.
(3) is an even function of By and an even function of 6y.
The only allowed resonances for head-on collisions must
have both p and r equal to even integers. The integrand
of eg. (5) is an odd function of 64 and an even function of
By. The alowed resonances must have r equal to and
even integer and p equal to an odd integer.

The crossing angle has introduced new beam-beam
resonances that have odd horizontal order and Fourier
expansion coefficients proportional to sin 2¢. There are
both betatron, m = 0, and synchrobetatron, m # 0,
resonances. The appearance of odd order betatron
resonances can be understood because there is a phase
shift of 1 across the interaction region. The
synchrobetatron resonances arise from modulation
introduced by the synchrotron oscillations. They depend
on the synchrotron amplitude and have zero Fourier
expansion coefficient when T=0.

C. Remarks

The crossing angle has not changed the tune shifts, so
the beam-beam footprint, the area of the tune plane
occupied by the beam, is the same as for head-on
collisions. The effect of the crossing angle has been to
introduce odd horizontal order resonances. These
additional resonances could lower the beam-beam limit.

TeV33 is considering using both horizontal and
vertical crossing angles. The vertical crossing angle will
introduce odd order vertical resonances as well, and there
is a till larger probability of a reduced beam-beam limit.
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