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Abstract

We constrain the apex of the Cabibbo-Kobayashi-Maskawa unitarity triangle with

measurements of B → K∗π amplitudes from analyses of B0 → K+π−π0 and B0 →
KSπ

+π− decays. This constraint is consistent with the world average. The B0 →
K+π−π0 decay mode is reconstructed from a sample of 454 million B0B

0
events

collected by the BABAR detector at SLAC. We measure direct CP violation in B0 →
K∗+π− decays at the level of 3σ when measurements from both B0 → K+π−π0 and

B0 → KSπ
+π− decays are combined.
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Chapter 1

Introduction

In the Standard Model, CP violation in weak interactions is parametrized by an ir-

reducible complex phase in the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing-

matrix [1]. The unitarity of the CKM matrix is typically expressed as a triangle

relationship among its parameters where decay amplitudes involving the heaviest

generation of quarks are sensitive to the angles of the triangle denoted α, β, γ. Re-

dundant measurements of the parameters of the CKM matrix are an important test of

the Standard Model since violation of the unitarity condition would be an indication

of new physics processes.

A copious source of heavy quark decays have been supplied by the B factory ex-

periments BABAR and BELLE located at SLAC and KEK respectively. In addition

to a myriad of other physics topics, these experiments have been enormously suc-

cessful in measuring the angles β and α. The angle β is measured in decays such as

B0 → J/ψKS, exploiting the interference of B0B0 mixing, while α may be measured

combining information from B → ππ and B0 → π+π−π0 decays [2]. A summary of

existing constraints on the CKM triangle is shown in Fig. 1.1.

As shown in Fig. 1.1 the measurement of the angle γ remains the most challeng-

ing. This angle is measured in the interference of CKM-favored b → c and CKM-

suppressed b → u transitions contributing to B+ → D0K+ and B+ → D0K+ decays

when the D decays to a CP eigenstate. The method proposed by Gronau, London

and Wyler (GLW) [3, 4] consists of reconstructing the D as a CP eigenstate such as

1
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Figure 1.1: Summary of existing constraints on the CKM triangle as compiled in [7].

π+π−, so that measurements of the corresponding CP asymmetries and branching

fractions can be used to extract γ. The extraction of γ in this case is not independent

of the strong phase difference between the b → c and b→ u transitions or the relative

size of the CKM and color-suppressed b → u transition. Unfortunately, the ratio of

amplitudes |A(B0 → D0K+)/A(B0 → D0K+)| ≈ 0.22 so that the sensitivity to γ in

the GLW method is limited in practice.

It is also possible to gain sensitivity to γ by reconstructing the D as a non CP

eigenstate such as K+π− where the decay D0 → K+π− is doubly CKM suppressed

(Atwood, Dunietz and Soni (ADS) [5]). This has the advantage of compensating for

the small ratio of B → DK decay amplitudes at the expense of an overall small

branching ratio. The most sensitive means of measuring γ to date, however, is to re-

construct the D in the Cabibbo-allowed decays D0 → KSπ
−π+ and D0 → KSK

+K−.

Sensitivity to both the ratio of B decay amplitudes and strong phase difference is en-

hanced by the presence of intermediate resonances interfering in the Dalitz plot (Giri,
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Grossman, Soffer, and Zupan (GGSZ) [6]). This technique has been used to measure

γ = 76◦±22◦±5◦ up to a two-fold ambiguity [7]. A summary of existing measurements

of γ are show in Fig. 1.2.
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Figure 1.2: Summary of existing measurements of the CKM angle γ as compiled
in [7].

This dissertation will discuss how sensitivity to the CKM angle γ can be found

using an isospin analysis of loop dominated penguin decays, B0 → K∗π. This novel

technique will be shown to be competitive with the GGSZ method given the avail-

able BABAR dataset, with the additional benefit of sensitivity to new physics processes

contributing to B0 → K∗π amplitudes in penguin processes.

1.1 Outline

In Chapter 2, a theoretical introduction to CP violation is presented in addition to

the phenomenology relevant to extracting γ from B0 → K∗π decays. A description

of the BABAR detector is included in Chapter 3. The Dalitz analysis of the B0 →
K+π−π0 decay is presented in Chapter 4. This analysis measures the relative phases

and magnitudes of B0 → K∗π amplitudes contributing to the B0 → K+π−π0 final

state. In Chapter 5, we combine phases and amplitudes measured in the B0 →
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K+π−π0 and B0 → KSπ
+π− decays to constraint the CKM triangle. Measurements

of direct CP violation in B0 → K∗+π− decays from both the B0 → K+π−π0 and

B0 → KSπ
+π− final states are combined to show evidence of direct CP violation in

that decay process.



Chapter 2

Theory

In this chapter we summarize the theoretical description of the Standard Model of

particle physics with special attention paid to the subject of CP violation. Flavor

symmetry in strong interactions is reviewed in Section 2.2 before the phenomenolog-

ical description of a means of constraining CKM elements in Section 2.4.

2.1 The Standard Model

The Standard Model (SM) is the theory describing the interactions of fundamental

fermions (spin-1
2

particles) and forces via an SU(3)⊗SU(2)⊗U(1) gauge symmetry.

Each component of the gauge symmetry generates an interaction with a category of

fermion. The fermions that couple exclusively to the SU(2)⊗U(1) component are

known as leptons, while those that additionally couple to the SU(3) component or

strong force, are known as quarks. The fermions in the SM occur in 3 generations

each more massive than the last. The members of the lightest generation of quarks

are bound by the strong force into protons and neutrons and the lightest leptons are

the familiar electron (β particle) and electron-neutrino (νe). The forces of the SM

are themselves quantized so that the strong force is mediated by particles known as

gluons and the electro weak force (SU(2)⊗U(1)) is mediated by the W±, Z0 and

photon (γ particle). The forces are vector (spin-1) particles.

In addition to the fundamental forces and fermions, it has been proposed that

5
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the particles of the SM acquire mass when a scalar (spin-0) particle coupling to

the SU(2)⊗U(1) gauge symmetry has a non-zero vacuum expectation value. This

spontaneously breaks the SU(2)⊗U(1) symmetry resulting in massive W± and Z0

bosons and a massless photon. The additional scalar particle is known as the Higgs

boson whose direct detection is perhaps the most anticipated measurement in physics.

This dissertation will concern itself with the interesting consequences of the weak

interaction, which we now describe.

2.1.1 Properties of the weak interaction

The Glashow-Weinberg-Salam model of electroweak interactions describes the inter-

action of fermion fields via an SU(2)⊗U(1) gauge group in the SM. The covariant

derivative for a theory determined by this gauge symmetry is given by

Dµ = ∂µ − i
g√
2

(

W+
µ T

+ +W−
µ T

−)− i
g

cos θw

Zµ

(

T 3 − sin2 θwQ
)

− ieAµQ, (2.1)

where g is the weak coupling constant and the W±
µ , Zµ acquire masses from the

Higgs mechanism. The Aµ is the massless photon responsible for the electromagnetic

interaction. The electric charge quantum number of a fermion field is given by Q and

the weak mixing angle relating the W and Z masses is defined by mW = mZ cos θw.

T+, T− are the raising and lowering operators acting on SU(2) doublets of flavor while

the diagonalized generator of SU(2), T 3, returns the value of the SU(2) flavor charge of

a fermion field. Note that since the W vector boson couples to SU(2) flavor doublets

via the raising and lowering operators this interaction couples up-flavor fermions to

down-flavor fermions. This gives rise to charged flavor-changing currents in the SM.

It is interesting to consider how this theory transforms under the discrete symme-

tries of parity P and charge conjugation C. The operation of parity (mirror inversion)

reflects the spatial coordinates through the origin, P (t, x, y, z) = (t,−x,−y,−z).
This inverts the orientation of a particle’s spin relative to its momentum, or the

handedness. A theory that is invariant under parity makes no distinction between
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particles of left and right handedness. The operation of charge conjugation trans-

forms matter fields into antimatter fields in the Lagrangian of the theory. A theory

that is invariant under charge conjugation makes no distinction between matter and

antimatter. The relative abundance of matter over antimatter in the universe would

seem to indicate that a complete theory of particle interactions should violate C; else

equal amounts of matter and antimatter would have been created and annihilated

in pairs, via the electromagnetic interaction. Additionally, total interaction rates of

particles are calculated as sums over the spin states of the final state particles. This

implies that the combination of the transformations CP must also be violated in or-

der to avoid balancing the violation of C and hence to explain the relative abundance

of matter in the universe. The condition that C and CP (written CP) be violated

separately in order to explain a relative abundance of matter in the universe was first

shown by Sakharhov [8].

The concept that weak interactions (those described by the W±) violate P was

first suggested by Lee and Yang [9] and observed soon after by Wu [10] in the β decay

of Co60. Indeed the theory described by Eq. (2.1) would violate both P and C if it is

required that weak interactions couple only to left-handed matter and right-handed

antimatter. This is accomplished by the projection operator 1 − γ5 picking out the

left (right) handed components of the matter (antimatter) spinors. This is referred to

as the vector axial-vector (V-A) character of the weak interaction. The Lagrangian

for such a theory of weak interactions is

LW =
g√
2

(

ψuγ
µW+

µ (1 − γ5)ψd + ψdγ
µW−

µ (1 − γ5)ψu

)

, (2.2)

where u and d denote the SU(2) flavor of the fermion fields, ψ, ψ. Qualitatively it is

not difficult to see how Eq. (2.2) violates both C and P maximally. P transforms left-

handed matter into right-handed matter while C transforms left-handed matter into

left-handed antimatter; in each case a particle that couples to the weak interaction

via Eq. (2.2) is transformed into a particle that does not. This argument also shows

that the Lagrangian written in terms of the flavor-eigenstates ψu, ψd is invariant

under the composition CP since this transforms left-handed matter into right-handed
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antimatter. We now proceed to discuss the mechanism for CP violation in weak

interactions.

2.1.2 CP violation in weak interactions

Thus far only the vector bosons have explicitly acquired mass from the Higgs mech-

anism in the theory. The Higgs also couples to the fermions in the theory giving

fermion mass terms in the Lagrangian

LM = − v√
2

(

Gijψ
i

uψ
j
u + Fijψ

i

dψ
j
d

)

, (2.3)

where the vacuum expectation value of the Higgs is
〈

φ
〉

= v and the matrices Gij, Fij

are complex coupling constants between fermion fields of generations i, j. We produce

a change of basis via the unitary matrices Vd, Vu such that

V †
d

Fv√
2
Vd = Md, V

†
u

Gv√
2
Vu = Mu, (2.4)

where the mass matrices Mu,d are diagonal and real. We now make the change of

variables ψu → V †
uu, ψu → Vuu (similarly for the d-type fermions). Making this

replacement explicit in Eq. (2.2) gives

LW =

ng
∑

i,j

g√
2

(

Vijuiγ
µW+

µ (1 − γ5)dj + V ∗
ijdjγ

µW−
µ (1 − γ5)ui

)

, (2.5)

where V = V †
uVd and the sum runs over the number of fermion generations ng in the

theory. For each i, j, CP transforms the first term in Eq. (2.5) into the second except

that the constants Vij, V
∗
ij are not transformed. Thus CP is violated for interactions

where Vij 6= V ∗
ij or equivalently where the coupling is not real. Although we have

explicitly used the Higgs mechanism to generate masses in the SM, the possibility

that this is not the true mechanism nature provides to generate mass in no way

violates the spirit of the derivation of the mixing matrix V . So long as the mass and

flavor eigenstates of the fermion fields are different a nontrivial mixing matrix may

be constructed.
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In general an ng × ng unitary complex matrix is given by n2
g parameters. It is

possible however to transform the phases of the fermion fields (u, d)i → eiφi(u, d)i

(U(1) symmetry) to eliminate 2ng − 1 parameters (an overall phase is a necessary

convention) in the matrix V . Of the remaining (ng − 1)2 parameters, ng

2
(ng − 1) of

them are given by real-valued Euler angles. Thus for a theory of ng generations of

fermions there are 1
2
(ng − 1)(ng − 2) complex phases in V . Indeed if there were only

two generations the matrix would be purely real and CP would not be violated. This

fact was first pointed out by Kobayashi and Maskawa [1] before there was experi-

mental evidence for a third generation of matter. Subsequently V is referred to as

the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix (Cabibbo having previously

described the mixing in two generations [11]).

2.1.3 The CKM triangle

Written explicitly in terms of the massive quarks the CKM matrix is given by

V =









Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb









. (2.6)

It is convenient to use the unitarity of the CKM matrix (V †V = 1) to write a rela-

tionship between its parameters:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (2.7)

This relationship corresponds to a triangle in the complex plane as shown in Fig. 2.1.

The angles of the triangle constructed from the relationship in Eq. (2.7) are given by
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Figure 2.1: The CKM triangle. The coordinates of the apex of the triangle are
denoted by (ρ, η).

α = Arg

(

− VtdV
∗
tb

VudV
∗
ub

)

,

β = Arg

(

− VcdV
∗
cb

VtdV∗
tb

)

,

γ = Arg

(

− VudV
∗
ub

VcdV∗
cb

)

, (2.8)

and satisfy the obvious relationship α+β+γ = 180◦. These angles may be measured

independently in different particle decays permitting a direct test of the mechanism

of CP violation in the SM. If the angles are not found to sum to 180◦ there must

be additional particles and couplings, not in the SM, contributing to the observed

decays. Thus the unitarity of the CKM triangle is an extremely powerful prediction,

making the study of CP violation a very interesting means of discovering new physics.

The measurement of the CKM angle γ will be the subject of this dissertation.

Other than unitarity, the SM places no constraints on the parameters of the CKM

matrix though it has been determined experimentally that these parameters are con-

veniently expressed as an expansion in the value of |Vus| = λ = 0.2205 ± 0.0018:
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V ≈









1 − λ2

2
λ Aλ3(ρ− iη)

−λ 1 − λ2

2
Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1









, (2.9)

where A = 0.824 ± 0.075 is also relatively well determined from experiment. This

scheme is known as the Wolfenstein [12] parametrization of the CKM matrix. The

parameters ρ, η 1 are the coordinates of the apex of the CKM triangle in the complex

plane and are much less well measured. Constraining these parameters (equivalently,

measuring α, β, γ) as redundantly as possible is the primary goal of the B-factory

experiments.

Finally, it is interesting to consider the area of the CKM triangle:

1

2
|VcdV

∗
cb||VudV

∗
ub| sin γ. (2.10)

If the CKM matrix was purely real, the area would be 0. Unitarity and the phase

invariance of the quark fields constrains the area to a maximum value of 1/(12
√

3) ≈
0.048. This provides a constraint on the maximum amount of CP violation in weak in-

teractions. The current experimental value of the area is ≈ 10−4. Why nature violates

CP 3 orders of magnitude less than is absolutely allowable in the weak interaction

remains an open question.

2.2 Mesons and SU(n) symmetry

As noted earlier, the quarks of the SM are strongly interacting. They form bound

states of pairs (mesons) or triplets (baryons) of quarks that are observed in nature.

The decays of mesons mediated by the weak interactions of the bound quarks provide

sensitivity to the elements of the CKM matrix and hence CP violation. Of particular

interest are the decays of mesons containing b quarks since these are sensitive to Vqb

in tree decays (See Fig. 2.3) and Vtq in loop (penguin) diagrams (See Fig. 2.4). The

1It is common to illustrate the constraints on the CKM triangle on the rescaled axes ρ = ρ(1− λ2

2 )

and η = η(1 − λ2

2 ) as done in Fig. 1.1
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B mesons are listed in Table 2.1.

Table 2.1: Properties of the Υ (4S) and B mesons. The conjugate mesons B− and B
0

are given by the conjugated quark contents of these mesons.
meson Quark content Mass ( GeV/c2) Lifetime (10−12 s)

Υ (4S) bb 10.58 ± 0.0035 10−8

B+ bu 5.2789 ± 0.0018 1.62 ± 0.06

B0 bd 5.2798 ± 0.0016 1.56 ± 0.06

B0
s bs 5.3696 ± 0.0024 1.61 ± 0.10

The Υ (4S) resonance is especially important experimentally. This resonance de-

cays almost completely to B0B
0

and B+B− pairs (50% each) and may be copiously

produced in e+e− collisions such as those at SLAC and KEK. The large sample of B

decays recorded in this way is necessary to measure the small effects of CP violation

with precision.

To the extent that the quark masses are much less than the strong interaction

energy scale the continuous symmetry acting on the n lightest quarks, SU(n), is

respected. This is known as isospin or SU(2) symmetry for the u and d quarks and

SU(3) when the more massive s quark is included. The u, d, s quarks belong to the

3 representation of SU(3) while the anti-quarks belong to the 3 representation. The

observed spectra of mesons may be constructed by taking the tensor product of these

representations to obtain 3 ⊗ 3 = 8 ⊕ 1 the octet and singlet depicted in Fig. 2.2.

Note that states of the same strangeness occupy SU(2) (isospin) subgroup represen-

tations of the larger SU(3) representation. From this it is clear that the K+, K0 and

K−, K
0

belong to spinor (I = 1
2
) representations of SU(2) while the π+, π−, π0 belong

to the isovector (I = 1) representation and the η, η′ are isosinglets (I = 0). A table

of the mesons relevant to this analysis is given in Table 2.2. A detailed description of

meson properties and explanation of the decomposition of representations of SU(n)

is included in Section 37 of the PDG [13].
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S = +1

S = 0

S = −1

Iz = −1

Iz = −1
2

Iz = 0

Iz = +1
2

Iz = +1 Iz = 0

⊕

K0 K+

π−

π0

η

π+

K− K
0

η′

Figure 2.2: SU(3) spectrum of spin-0 mesons. A separate octet and singlet exist for
spin-1 mesons with the substitutions K → K∗, π → ρ and η → ω. Here S denotes
the net strangeness of the meson as listed in Table 2.2.

2.3 Measurement of CKM parameters

The decay amplitude of a meson can be written as the sum of contributions from

different decay processes leading to the same final state f . Each decay process is

depicted diagrammatically as a Feynman graph. A general B decay amplitude is

given by

A(B → f) =
n
∑

j=1

Aje
i(δj+φj), (2.11)

where the δj parametrize the phase contribution of CP conserving processes and φj

the contribution of CP violating processes. In the SM the CP violating processes are

due to weak interactions and the φj correspond to the CKM angles α, β, γ, depending

on the decay. Since CP acts like complex conjugation on the CKM parameters, the

conjugate decay amplitude is given by
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Table 2.2: Properties of mesons important in this analysis. The total spin of the
meson is given by J and the transformation of the state under C and P are given
by C, P . Where a meson is not an eigenstate of C only P is given. Mesons detected
directly in BABAR are listed as Stable in BABAR while others are reconstructed from
their decay products. The K0 is experimentally observed as a linear combination of
short and long lived particles, KS, KL. The KL is Stable in BABAR and the KS decays
to π+π−, π0π0.

meson Quark content Mass ( MeV/c2) JPC Principle Decay

π± ud, du 139.57 0− Stable in BABAR

π0 1/
√

2(uu− dd) 134.98 0−+ γγ
K± su, us 493.68 0− Stable in BABAR

K0,K0 sd, sd 497.65 0− See caption

ρ± ud, du 775.8 1− π±π0

ρ0 1/
√

2(uu− dd) 775.8 1−− π+π−

K∗± su, us 891.66 1− K±π0,
( )

K 0π±

K∗0,K∗0 sd, sd 896.1 1− K±π∓,
( )

K 0π0

A(B → f) =

n
∑

j=1

Aje
i(δj−φj). (2.12)

The squares of decay amplitudes are proportional to the measurable branching frac-

tions so the CP asymmetry (expanded for two interfering contributions),

|A(B → f)|2 − |A(B → f)|2
|A(B → f)|2 + |A(B → f)|2

=
2A1A2 sin(δ1 − δ2) sin(φ1 − φ2)

A2
1 + A2

2 + 2A1A2 cos(δ1 − δ2) cos(φ1 − φ2)
, (2.13)

provides a direct measure of CP violation in a given B decay. This quantity has

been measured precisely for many different decay processes since many experimental

uncertainties cancel in the ratio of amplitudes. Unfortunately, the Aj, δj cannot be

reliably calculated, so despite the precision with which direct CP asymmetry can be

measured, it is very difficult to extract CKM parameters from these asymmetries.

One strategy to overcome this difficulty is to take advantage of the fact that the

mass and CP eigenstates of neutral B mesons are not the same so that the B0 and
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B
0

mesons mix with each other over time; i.e., B0 → B0, B0 → B0. The amplitude

of the now time-dependent CP asymmetry is sensitive to a single weak phase rather

than a weak and strong phase difference:

|A(t)(B → fCP)|2 − |A(t)(B → fCP)|2
|A(t)(B → fCP)|2 + |A(t)(B → fCP)|2

=

2ηf Im
(

e−2iβ Af

Af

)

1 +
∣

∣

Af

Af

∣

∣

2
sin(∆mdt) +

1 −
∣

∣

Af

Af

∣

∣

2

1 +
∣

∣

Af

Af

∣

∣

2
cos(∆mdt), (2.14)

where ηf = ±1 is the CP eigenvalue of the final state and ∆md is the mass difference

between the heavy and light B mass eigenstates. This method is of such importance

that both the BABAR and BELLE detectors are designed specifically to exploit it;

time-dependent CP asymmetries have been measured precisely to extract the CKM

angle β [14].

Rather than extracting CKM parameters from CP asymmetries, it is possible in

certain decay processes to measure the relative phases of intermediate amplitudes

contributing to a common final state. This occurs in 3-body decays where the final

state B → abc receives contributions from several intermediate resonances; i.e., B →
rabc, and B → arbc where rab → ab and rbc → bc. The relative phases of these

amplitudes can be measured in their interference over the available phase space of

the B → abc decay or Dalitz plot (See Section 2.5). In Section 2.4 we explain

how this strategy can be used to extract the CKM angle γ from the interference of

B0 → K∗+π− and B0 → K∗0π0 decays to the common final state B0 → K+π−π0.

2.4 Sensitivity to γ in B → Kππ decays

The tree contribution in B decays via the transition b → uus provides sensitivity to

the CKM angle γ. This is the case for the decays B0 → K∗+π− and B0 → K∗0π0

shown in Fig. 2.3. If the tree diagram was the sole contribution to the decay amplitude

in these cases one could use Eq. (2.12) to show that
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γ = −1

2
Arg

(

A(B → K∗0π0)

A(B → K∗0π0)

)

, (2.15)

where the phase of the B0 → K∗0π0 decay amplitude is determined relative to the

B0 → K∗+π− amplitude via interference on the B0 → K+π−π0 Dalitz plot. The

phase difference between B0 → K∗−π+ and B0 → K∗+π− also necessary to eval-

uate Eq. (2.15), would be determined from the interference of these decays on the

B0 → KSπ
+π− Dalitz plot.

u

u

s

d

b

d

W+B
0

π
0

K
∗0

u

u

s

d

b

d

W+

B
0

K
∗+

π
−

Figure 2.3: Tree Feynman diagrams contributing to B → K∗π decays. Note that in
each case the diagram is sensitive to V ∗

ubVus = Aλ4(ρ+ iη).

The total amplitude for B → K∗π decays; however, is dominated by doubly CKM en-

hanced quantum chromodynamic (QCD) and electroweak (EW) loop order diagrams

(penguins) shown in Fig. 2.4. These contributions prevent a model-independent mea-

surement of γ using Eq. (2.15).

It is possible to eliminate the QCD penguins from consideration by noting that

isospin is a good symmetry of the strong interaction, so the QCD penguin contribu-

tions must be ∆I = 0. Decomposing B → K∗π amplitudes in an isospin basis one can
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construct a linear combination of B0 → K∗0π0 and B0 → K∗+π− decay amplitudes

is pure ∆I = 1 and hence free of QCD penguin contributions [15]. The remaining

tree contribution is sensitive to γ, while the EW penguin (EWP) contribution may

be independently measured via an SU(3) decomposition of operators and strangeness

conserving B+ decay amplitudes [16].

u

u

s

d

b

d
W+

B
0

K
∗0

π
0

u

u

s

d

b

d

W+

B
0

π
−

K
∗+

Figure 2.4: Penguin Feynman diagrams contributing to B → K∗π decays. Note that
in each case the diagram is ∝ Aλ2αs where αs(mb) ≈ 0.22. The EWP diagrams are
identical to the QCD diagrams with the gluon is replaced by a photon. The EWP
diagrams are ∝ Aλ2αem where αem = 1/137.

Recall from Section 2.2 that B and K∗ mesons transform as I = 1
2

states while

π and ρ mesons transform as I = 1. We expand K∗π and ρK states in an isospin

basis by taking the tensor product of isospin states for each particle contributing to

the final state. For instance, a K∗+π− state may be expanded as
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|K∗+π−〉 =

∣

∣

∣

∣

1

2
1;

1

2
− 1

〉

=
1√
3

∣

∣

∣

∣

1

2
1;

3

2

−1

2

〉

+

√

2

3

∣

∣

∣

∣

1

2
1;

1

2

−1

2

〉

, (2.16)

where the Clebsch-Gordon coefficients are described in Section 35 of the PDG [13].

The decay amplitude operators can similarly be expanded in an isospin basis as

O∆I =
∆I
∑

Iz=−∆I

〈

∆I, Iz
∣

∣. (2.17)

The operators contributing to a transition from an I = 1
2

state (B meson) to a

combination of I = 1
2

and I = 3
2

states are O∆I=1 and O∆I=0. Note that only

the ∆I = 1 operator can contribute to a transition from a B meson to an I = 3
2

state so this isospin state must be free of QCD penguin contributions. We expand

B → K∗π amplitudes in an isospin basis in Table 2.3 using Eq. (2.17) and final state

decompositions as in Eq. (2.17).

Table 2.3: Isospin decomposition of B → K∗π amplitudes. The decomposition for
B → ρK amplitudes follows from the substitutions, K∗ → K and π → ρ.

A(B+ → K∗0π+) =
√

2
3 A

1
3
2

−
√

2
3 A

1
1
2

+
√

2
3A

0
1
2

A(B+ → K∗+π0) = 2
3A

1
3
2

+1
3A

1
1
2

−
√

1
3A

0
1
2

A(B0 → K∗+π−) =
√

2
3 A

1
3
2

−
√

2
3 A

1
1
2

−
√

2
3A

0
1
2

A(B0 → K∗0π0) = 2
3A

1
3
2

+1
3A

1
1
2

+
√

1
3A

0
1
2

The upper index of the isospin amplitudes in Table 2.3 denotes the ∆I of the transition

and the lower index denotes the isospin I of the final state. We seek to solve for

A1
3
2

(where we drop the unambiguous ∆I = 1 upper index) in terms of B decay

amplitudes whose relative phases are observable and whose CP-violating weak phase

may be extracted via the interference of CP conjugate amplitudes to a common final

state. Expressions for A 3
2

in terms of K∗π and ρK decay amplitudes satisfying these

conditions are
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A 3
2

=
1√
2
A(B0 → K∗+π−) + A(B0 → K∗0π0), (2.18)

A 3
2

=
1√
2
A(B0 → K+ρ−) + A(B0 → K0ρ0).

This disseration will concern itself primarily with the measurement of B → K∗π

decays though it is important to note that sensitivity to γ is also possible via the

measurement of B → ρK decay amplitudes. We now define the CP-violating weak

phase Φ 3
2

in analogy with Eq. (2.15) as

Φ 3
2

= −1

2
Arg

(

A 3
2

A 3
2

)

, (2.19)

which is equal to γ in the limit that EWP diagrams do not contribute to the decay

amplitudes. In Section 2.4.1 we discuss how EWP contributions affect the extraction

of CKM parameters from measurements of Φ 3
2

and how they can be independently

measured.

2.4.1 Corrections from EWP Operators

The CKM enhancement of the EWP largely compensates its αem suppression, result-

ing in a contribution roughly comparable to that of the tree. This fact means the

EWP contribution must be measured independently before Φ 3
2

can be related to the

CKM angle γ. The effective Hamiltonian describing b→ uus transitions is given by

H =
GF√

2

(

V ∗
ubVus[c1O1 + c2O2] − V ∗

tbVts

10
∑

i=3

ciOi

)

(2.20)

in the Operator Product Expansion [17]. The operators O1,2 have the flavor content

(bu)V −A(us)V −A and (bs)V −A(uu)V −A, respectively, and correspond to the tree dia-

grams in Fig. 2.3. The penguin operators are given by the Oi=3...10 where the i = 3...6

describe the QCD penguins and the i = 7...10 describe the EWP contributions. The

dominant EWP operators are proportional to the tree operators via the relationships
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O9,10 =
3

2
O1,2 + (∆I = 0 operators). (2.21)

The isospin amplitude A 3
2

may now be expressed in terms of CKM elements and tree

operators as

A 3
2

=
〈

f 3
2
|H∆I=1|B

〉

=
GF√

2

∑

i=+,−
(V ∗

ubVusCi −
3

2
V ∗

tbVtsC
EWP
i )

〈

f 3
2
|O∆I=1

i |B
〉

. (2.22)

where O∆I=1
± = 1

2
(O∆I=1

1 ± O∆I=1
2 ), C± = c1 ± c2, C

EWP
± = c9 ± c10. The I = 3

2
final

state f 3
2

enforces the ∆I = 1 constraint on the operators. Consequently, the QCD

penguin operators do not appear in Eq. (2.22). We have also neglected the EWP

operators O7,8 involving small Wilson coefficients. We can substitute the Wolfenstein

parameters for the CKM elements into Eq. (2.22) and use a relationship between

Wilson coefficients following the convention of [16]

CEWP
+

C+
= −C

EWP
−
C−

, (2.23)

to express the amplitude in an especially simple form:

A 3
2
∝ (ρ+ iη)(1 + r 3

2
) + C(1 − r 3

2
), where (2.24)

C =
3

2

CEWP
+

C+

1 − λ2

2

λ2
, r 3

2
=

〈

f 3
2
|C−O

∆I=1
− |B

〉

〈

f 3
2
|C+O∆I=1

+ |B
〉 . (2.25)

In terms of tree and penguin amplitudes the isospin amplitude is given by A 3
2

=

Teiγ − PEWP so from Eq. (2.24), the ratio of penguin to tree amplitudes is

PEWP

T
=

−C
√

ρ2 + η2

(1 − r 3
2
)

(1 + r 3
2
)
. (2.26)

An expression for Φ 3
2

can be derived using Eq. (2.19) and Eq. (2.24)
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Φ 3
2

= −1

2
arctan

(

I−R− − R+I+
R+R− + I+I−

)

, where (2.27)

R± = ρ+ C + (ρ− C)Re(r 3
2
) ± ηIm(r 3

2
), (2.28)

I± = (ρ− C)Im(r 3
2
) ± η(Re(r 3

2
) + 1).

Since knowledge of the ratio of hadronic matrix elements r 3
2

and C = −0.27 ±
0.007 [16] is required to evaluate Eq. (2.27), measurements of Φ 3

2
will be used to

constrain the apex of the CKM triangle ρ, η rather than as an explicit measurement

of the angle γ. It now remains to determine a strategy for measuring r 3
2
. Such a

strategy is possible due to an SU(3) expansion of the operators and states appearing

in Eq. (2.25) [16] which we disscus in Appendix A.

2.4.2 SU(3) expansion of the ratio r 3
2

The b → uus transition operators may be expanded in an SU(3) basis much in

the same way they are expanded in an SU(2) basis. Such operators are given by

3 ⊗ 3 ⊗ 3 = 15 ⊕ 6 ⊕ 3 ⊕ 3 expressed as a direct sum of irreducible SU(3) represen-

tations. The linear combinations of operators, O∆I=1
− and O∆I=1

+ , transform as 6 and

15 respectively since only the 6 and 15 representations contain SU(2) subgroup rep-

resentations transforming as ∆I = 1 [18]. The tensor product of SU(3) octet states,

K∗π, is decomposed as 8 ⊗ 8 = 27 ⊕ 10 ⊕ 10 ⊕ 8 ⊕ 8 ⊕ 1 where the I = 3
2

linear

combination of K∗π states, A 3
2
, simplifies to 27 ⊕ 10. B mesons transform as the

fundamental representation 3. An expression for r 3
2

in terms of SU(3) amplitudes is

given by

r 3
2

= −C−
C+

〈

10|6|3
〉

〈

27|15|3
〉 , (2.29)

where the SU(3) decompositions for the amplitudes and operators have been substi-

tuted into Eq. (2.25) and a table of SU(3) Clebsch-Gordon coefficients [18] has been
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used to simplify the expression. It is useful to note that a similar decomposition of

amplitudes is possible for ρK states. A relative minus sign between expressions for r 3
3

using K∗π and ρK states appears due to the fact that the
〈

10|6|3
〉

amplitude is anti-

symmetric under the exchange of quarks between vector and pseudoscalar mesons in

the SU(3) decomposition.

A table of SU(3) decompositions of amplitudes analogous to Table 2.3 [18] can be

used to express the SU(3) amplitudes appearing in Eq. (2.29) in terms of ∆S = 0,

B+ decay amplitudes where the EWP contribution is suppressed. Substituting these

decompositions into Table 2.3 [16] gives

r 3
2

=
[Aρ+π0 −Aρ0π+ ] −

√
2[A

K∗+K
0 −A

K+K
∗0]

Aρ+π0 + Aρ0π+

. (2.30)

This expression permits the measurement of r 3
2

from the B+ decay amplitudes dis-

cussed in Appendix A, and is generalizable to I = 3
2

amplitudes constructed from any

excited K∗ intermediate state by replacing the ρ with the corresponding resonance in

the same SU(3) octet as the excited K∗.

2.5 Dalitz Analysis of the Decay B → K+π−π0

In order to use the expressions in Eq. (2.18) to construct I = 3
2

amplitudes useful

in producing a constraint on the CKM triangle, we must measure the interference

of the B0 → K∗π (or B0 → ρK) amplitudes over the kinematic phase space of

their decay to a common final state. Such an analysis is possible by constructing

the two dimensional distribution of B0 → K+π−π0 decays in the invariant mass

pairs m2
K±π± = (pK± + pπ∓)2 and m2

K±π0 = (pK± + pπ0)2, typically denoted as x, y

respectively 2. The two dimensional, kinematic distribution of B decays is referred to

as a Dalitz plot. Dalitz analyses are commonly used to study the dynamics of 3-body

final states where the interference of several intermediate resonances contributing to

the final state are of interest. The relative phases and amplitudes of the resonances

are measured by modeling the total decay amplitude as a sum of isobars k, each given

2We use natural units where h̄ = c = 1 in our algebraic equations
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by

Ak = ake
iΦk

∫

DP

fk(J, x, y) dx dy. (2.31)

where ak, Φk are the amplitude and phase respectively. The decay kinematics of a

spin-J resonance are specified by fk(J, x, y). The isobar fraction FFk (CP-averaged

over B and B), and CP asymmetry, Ak
CP are given by

FFk =
|Ak|2 + |Ak|2

|∑j Aj |2 + |∑j Aj|2
, (2.32)

ACP(k) =
a2

k − a2
k

a2
k + a2

k

.

Due to interference, the fractions FFk do not in general add up to unity. The nomi-

nal Dalitz model for the decay B0 → K+π−π0 includes seven resonant intermediate

states: ρ−(770)K+, ρ−(1450)K+, ρ−(1700)K+, K∗+(892)π−, K∗0(892)π0, (Kπ)∗+0 π−,

(Kπ)∗00 π
0 and a non-resonant contribution, uniformly distributed over the Dalitz

plot. The notation for the (Kπ)∗0 isobar components, introduced by the BABAR ex-

periment [19], denotes each phenomenological amplitude describing the neutral and

charged Kπ scalar resonances by a superposition of an elastic effective range term,

and the K∗
0 (1430) scalar resonance. The kinematic parametrization of the resonances,

fk(J, x, y), are described in Section 2.5.1 and summarized in Table 2.5.

2.5.1 Decay Kinematics

The kinematic phase space available to an intermediate resonance (Dalitz distri-

bution) are specified by the fk(J, x, y) where the relative momenta of particles a

and b in the ac rest frame are defined as ~p and ~q respectively, in a general 3-

body decay B → abc. The angle between ~p and ~q is the helicity angle defined as

cos θH = ~p · ~q/(|~p||~q|).
We expand the kinematic distribution as a sum over the helicity states, denoted

by λ, of the intermediate resonance. For instance, a K∗0 resonance (formed in the
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K+π− system) is expressed as

fK∗0(J, x, y) =
∑

λ

〈

K+π−|K∗0
λ

〉

RK∗0(x)
〈

π0K∗0
λ |B0

〉

= Z(J, ~p, ~q)BB(L, ~p)BK∗0(L, ~q)RK∗0(x), (2.33)

where RK∗0(x) is the K∗0 mass distribution or line shape, Z(J, ~p, ~q) describes the

angular dependence of the decay, and BB(L, ~p), BK∗0(L, ~q) are Blatt-Weisskopf barrier

factors [20] for the transitions B0 → K∗0π0 and K∗0 → K+π− of orbital angular

momentum L. The momenta of the π0 and K+ in the K+π− rest frame are given by

~p and ~q, respectively.

Angular Distribution

We use the Zemach tensor formalism [21] for the angular distribution Z(J, ~p, ~q) of a

process by which a pseudoscalar B meson produces a spin-J resonance in association

with a bachelor pseudoscalar meson. For a spin-0 resonance the decay distribution

is isotropic and Z(0, ~p, ~q) = 1 while for a spin-1 resonance the distribution is derived

as [22]

Z(1, ~p, ~q) = (pB0 + pc)µ

∑

λ

ǫ∗µλ ǫ
ν
λ(pa − pb)ν

= (pB0 + pc)µ

[

− gµν +
(pa + pb)

µ(pa + pb)
ν

m2
ab

]

(pa − pb)ν

= (m2
bc −m2

ac) +
(m2

B0 −m2
c)(m

2
a −m2

b)

m2
ab

= −2|~p||~q| cos θH , (2.34)

where ǫ denotes the polarization vectors of the intermediate resonance and the helicity

state of a spin-1 resonance are λ = +1, 0,−1. The 4-momenta of the particles in the

decay B0 → abc are given by pj where j = B0, a, b, c. The angular distributions and

Blatt-Weisskopf barrier factors for resonances of spin-0, 1, 2 are shown in Table 2.4.
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Barrier Factor

The Schrödinger equation for a wave scattering from a potential V (r) can be expressed

in spherical coordinates and solved in terms of partial waves of definite angular mo-

mentum L. This formulation introduces an effective potential in the Schrödinger

equation from which the wave scatters:

UL(r) = V (r) +
h̄2L(L+ 1)

2Mr2
(for r > R), (2.35)

where M and R are the mass and radius of the scattering center (resonance). Since

the resonances decay to two pseudoscalar particles, the orbital angular momentum

of the final state, L, must be equal to the spin of the resonance, J . As a result the

transition amplitudes of waves scattering from the effective potential in Eq. (2.35)

acquire the Blatt-Weisskopf barrier factors listed in Table 2.4.

Table 2.4: The angular distributions and Blatt-Weisskopf barrier factors for a reso-
nance of spin-J decaying to two pseudoscalar mesons

Spin-J Z(J, ~p, ~q) B(J, ~q)

0 1 1

1 −2|~p||~q| cos θH

√

1+z2
o

1+z2

2 4
3|~p|2|~q|2(3 cos2 θH − 1)

√

9+3z2
o+z4

0

9+3z2+z4

The Blatt-Weisskopf barrier factors are normalized so as to be equal to 1 when mab =

M . We parametrize the barrier factors in terms of z = |~q|R and z0 = |~q0|R where |~q0|
is the value of |~q| when mab = M .
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Line Shapes

The line shapes of the K∗+(892) and K∗0(892) resonances are described by the rela-

tivistic Breit-Wigner (RBW) distribution:

RRBW(x, J,M,Γ0) =
1

M2 − x− iMΓ(x, J,Γ0)
. (2.36)

The Dalitz-dependence of the total width Γ(x, J,Γ0) can be ignored for high-mass

states. For the low-mass states which decay almost elastically, it is defined by

Γ(x, J,Γ0) = Γ0 M√
x

( |~q|
|~q0|

)2J+1

B(J, |~q|)2, (2.37)

where Γ0 = Γ(M2, J,Γ0). The RBW line shape is illustrated in Fig. 2.5 for the

K∗0(892) resonance.
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Figure 2.5: Amplitude and Phase of the K∗0(892) line shape as modeled by the RBW.

The Gounaris-Sakurai (GS) parametrization [23] is used to describe the Dalitz

distribution of the broad ρ−(770), ρ−(1450) and ρ−(1700) resonances decaying to two
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pions:

RGS(x, J,M,Γ0) =
1 + dΓ0

M

M2 + g(x) − x− iMΓ(x, J,Γ0)
, (2.38)

where the Dalitz-dependent width Γ(x, J,Γ0) is defined in Eq. (2.37). The expressions

of the constant d and the function g(x) in terms of M and Γ0 are given in [23]. The

parameters of the ρ line shapes, R,M,Γ0 are taken from τ decay and ππ scattering

in [24] and [25]. The GS line shape is illustrated in Fig. 2.6 for the ρ(770) resonance.
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Figure 2.6: Amplitude and Phase of the ρ(770) line shape as modeled by the GS.

An effective-range parametrization was suggested [26] for the Kπ scalar (J = 0)

amplitudes, (Kπ)∗+0 and (Kπ)∗00 which dominate for mKπ < 2 GeV/c2, to describe the

slowly increasing phase as a function of the Kπ mass. We use the parametrization as

in the LASS experiment [27], tuned for B decays:

RLASS(x,M,Γ0, a, r) =

√
x

|~q| cot δB − i|~q| + e2iδB

MΓ0 M
|~q0|

M2 − x− iMΓ(x, 0,Γ0)
, (2.39)
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where

cot δB =
1

a|~q| +
1

2
r |~q| , (2.40)

a is the scattering length, and r the effective range (Table 2.5). We impose a cutoff

for the Kπ S-waves at
√
x = 1.8 GeV/c2 so that

RLASS(
√
x > 1.8 GeV/c2,M,Γ0, a, r) = e2iδB

MΓ0 M
|~q0|

M2 − x− iMΓ(x, 0,Γ0)
. (2.41)

The LASS line shape is illustrated in Fig. 2.7 for the (Kπ)∗00 S-wave. The effect of

the cutoff at
√
x = 1.8 GeV/c2 is clearly visible.

The parameters describing the resonances contributing to the nominal Dalitz

model are summarized in Table 2.5. The D0, D+ resonances which also contribute to

the K+π−π0 final state are included as non-interfering amplitudes. These resonances

are are narrower than the detector resolution so their line shapes are modeled as

gaussians to good approximation. The D+ line shape is taken from a fit to simulated

data.
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Figure 2.7: Amplitude and Phase of the Kπ S-waves as modeled by the LASS
parametrization. The cutoff at mK+π− = 1.8 GeV/c2 is clearly visible.
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Table 2.5: The nominal model for the decay B0 → K+π−π0 comprises a non-resonant
(NR) amplitude and seven intermediate states. The three types of line shape are
described in the text. The masses and widths are from [13], except for the LASS
shape [27]. We use the same LASS parameters for both neutral and charged Kπ
systems. The Non-interfering resonances D0, D+ are included in the model and do
not affect the relative phases and amplitudes of other states.

Resonance Line shape Parameters
Spin-J = 1

ρ−(770) GS M = 768.5 MeV/c2

Γ0 = 148.2 MeV
R = 0 ( GeV)−1

ρ−(1450) GS M = 1439 MeV/c2

Γ0 = 550 MeV
R = 0 ( GeV)−1

ρ−(1700) GS M = 1795 MeV/c2

Γ0 = 278 MeV
R = 0 ( GeV)−1

K∗+(892) RBW M = 891.6 MeV/c2

Γ0 = 50 MeV
R = 3.4 ( GeV)−1

K∗0(892) RBW M = 891.6 MeV/c2

Γ0 = 50.5 MeV
R = 3.4 ( GeV)−1

Spin-J = 0

(Kπ)∗+0 , (Kπ)∗00 LASS M = 1415 MeV/c2

Γ0 = 300 MeV
cutoff mKπ = 1800 MeV/c2

a = 2.07 ( GeV/c)−1

r = 3.32 ( GeV/c)−1

NR Constant
Non-interfering Components

D0 M = 1862.3 MeV/c2 Double Gaussian
Γ0 = 7.1 MeV/c2 (From Data)

D+ M = 1864.4 MeV/c2 Double Gaussian
Γ0 = 9.9 MeV/c2 (From MC)
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2.5.2 Measurement of the isospin weak phase Φ 3
2

We now develop expressions for the isospin weak phase Φ 3
2

using equations Eq. (2.18)

and Eq. (2.19) in terms of observable amplitudes and phases given the isobar parametriza-

tion described in Section 2.5. These expressions will be used in the analysis Section 5.1

to produce a constraint on the CKM triangle.

Measurement of Φ 3
2

in B0 → K∗π decays

Applying the isobar parametrization of amplitudes Eq. (2.31) to the isospin triangle

relationship for B0 → K∗π decays in Eq. (2.18) gives

A 3
2

=
1√
2
|AK∗−π+|eiΦ

K∗−π+ + |AK∗0π0 |eiΦ
K∗0π0 , (2.42)

A 3
2

=
1√
2
|AK∗+π−|eiΦ

K∗+π− + |AK∗0π0 |eiΦ
K∗0π0 .

Since the relative phase between B0 → K∗±π∓ and B0 → K∗0π0 is observable the

K∗±π∓ phase is factored from the expressions in Eq. 2.42:

A 3
2

= (
1√
2
|AK∗−π+ | + |AK∗0π0 |ei∆Φ)eiΦ

K∗−π+ , (2.43)

A 3
2

= (
1√
2
|AK∗+π−| + |AK∗0π0|ei∆Φ)eiΦ

K∗+π− .

where ∆Φ = ΦK∗0π0 − ΦK∗+π− and ∆Φ = ΦK∗0π0 − ΦK∗−π+. We now substitute the

expressions in Eq. (2.43) into Eq. (2.19) using the identity a+ib =
√
a2 + b2ei arctan

(

b
a

)

and find

Φ 3
2

=
1

2

(

arctan

(

sin ∆Φ
|A

K∗+π− |√
2|A

K∗0π0 |
+ cos ∆Φ

)

− arctan

(

sin ∆Φ
|A

K∗−π+ |√
2|A

K∗0π0 |
+ cos ∆Φ

)

− ∆φK∗π

)

.

(2.44)

The phase difference ∆φK∗π = ΦK∗−π+ −ΦK∗+π− is measured in the Dalitz analysis of
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the decay B0 → Ksπ
+π− where the charge conjugatedK∗π amplitudes interfere. This

phase difference fixes the relative orientation of the isospin triangles shown in Fig. 2.8.

The remaining expression in Eq. 2.44, that we define as

∆φ 3
2

= arctan

(

sin ∆Φ
|A

K∗+π− |√
2|A

K∗0π0 |
+ cos ∆Φ

)

− arctan

(

sin ∆Φ
|A

K∗−π+ |√
2|A

K∗0π0 |
+ cos ∆Φ

)

, (2.45)

is expressed only in terms of the amplitudes and phases measured in the B0 →
K+π−π0 Dalitz analysis. The algebraic relationship between the B → K∗π ampli-

tudes and Φ 3
2

in Eq. (2.44) is illustrated in Fig. 2.8.
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Figure 2.8: Isospin triangles and phase differences among B0 → K∗π amplitudes.

Measurement of Φ 3
2

in B0 → ρK decays

The isospin phase Φ 3
2

may also be measured using the interference of B0 → ρK

intermediate states, though the measurement here is somewhat more subtle since

the B0 → ρ−K+ and B0 → ρ0K0 amplitudes do not share a common final state.

Expressing Eq. (2.18) in terms of the isobar amplitudes and phases gives
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A 3
2

=
1√
2
|Aρ+K−|eiΦ

ρ+K− + |A
ρ0K

0|eiΦ
ρ0K

0 , (2.46)

A 3
2

=
1√
2
|Aρ−K+|eiΦ

ρ−K+ + |Aρ0K0|eiΦ
ρ0K0 .

Since B0 → ρ−K+ and B0 → ρ0K0 both interfere with B0 → K∗+π− we factor

ΦK∗+π− from the expressions in Eq. 2.46. At this point, an argument identical to that

used construct Φ 3
2

from B0 → K∗π amplitudes may be used to show

Φ 3
2

=
1

2

(

arctan

( |Aρ−K+| sin ∆Φρ−K+ +
√

2|Aρ0K0| sin∆Φρ0K0

|Aρ−K+ | cos∆Φρ−K+ +
√

2|Aρ0K0| cos∆Φρ0K0

)

− arctan

( |Aρ+K−| sin∆Φρ+K− +
√

2|Aρ0K0 | sin∆Φρ0K0

|Aρ+K−| cos∆Φρ+K− +
√

2|Aρ0K0 | cos∆Φρ0K0

)

− ∆φK∗π

)

, (2.47)

where ∆Φρ−K+ = Φρ−K+ −ΦK∗+π−, ∆Φρ+K− = Φρ+K− −ΦK∗−π+ , ∆Φρ0K0 = Φρ0K0 −
ΦK∗+π−, and ∆Φρ0K0 = Φρ0K0 − ΦK∗−π+ . Unlike the expression of Φ 3

2
in terms of

B0 → K∗π amplitudes, expressions involving amplitudes measured in B0 → K+π−π0

and B0 → Ksπ
+π− cannot be easily isolated in Eq. (2.47). Measuring Φ 3

2
in this way

will require simultaneous knowledge of the correlations among the isobar amplitudes

in both the B0 → K+π−π0 and B0 → Ksπ
+π− Dalitz analyses.
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PEP-II and the BABAR Detector

In this section we describe the PEP-II accelerator and the BABAR detector comprising

the SLAC B factory. As discussed in Section 2.2 the Υ (4S) resonance decays almost

exclusively to B0, B0 and B+B− mesons whose decays can in turn be used to study CP

violation. The goal of the PEP-II accelerator is to supply e+, e− beams at the Υ (4S)

resonance with as high a luminosity as possible. The BABAR detector is designed to

identify and reconstruct the decays of the resulting B mesons with both high efficiency

and accuracy. The content of this section is described in detail in [28].

3.1 The PEP-II Accelerator

The PEP-II storage rings are supplied with electrons and positrons (e+, e−) from

the 3 km long Stanford Linear Accelerator (linac). Electrons are generated from a

thermionic cathode gun and are accelerated to an energy of 9 GeV via a process

designed to reduce their emittance. One third of the electron bunches emitted from

the gun are diverted to a tungsten target where pairs of electrons and positrons are

produced. The positrons are filtered from the electrons, returned to the beginning

of the linac, and accelerated to 3.1 GeV. The 9 GeV electron beam is transported

to the high energy storage ring (HER) while 3.1 GeV positrons are stored in the low

energy ring (LER) of PEP-II. The e+, e− beams are collided with each other at an

interaction region (IR) surrounded by the BABAR detector.

34
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The 9 GeV electron and 3.1 GeV positron beams collide with a center-of-mass

(c.m.) energy of 10.58 GeV, the mass of the Υ (4S) resonance (on-peak). The asym-

metric energy of the beams results in a Lorentz boost βγ = 0.56 to the Υ (4S) reso-

nance, making measurements of the relative lifetimes of the short lived B0, B0 mesons

possible. Measurements of the relative lifetimes of B0, B0 mesons where one is recon-

structed as a CP eigenstate and the other as a tagged flavor eigenstate permit the

measurement of the time dependent CP asymmetry discussed in Section 2.3. The de-

sign of the BABAR detector is optimized with the asymmetric production of B mesons

in mind. Approximately 10% of the data collected by BABAR are at energies 40 MeV

below the Υ (4S) resonance (off-peak) so that samples of e+e− → qq(q = u, d, s)

background events can be studied independently of samples containing B mesons.

The term B factory implies that PEP-II is able to supply steady beams at high

luminosity in order to acquire the statistics necessary to study rare CP-violating decay

processes. This requirement has led to a design with high beam currents (or many

bunches) of electrons (positrons) circulating in the HER (LER). The principle radio

frequency (RF) of the accelerator is 476 MHz, but due to the need to avoid parasitic

crossings of the beams away from the IR only every other bucket is filled. This

results in a bunch spacing of 4 ns. The need to maintain stability of the closely spaced

bunches in each beam has necessitated that the higher order RF modes in the cavities

be damped by wave guides terminating in ferrite loads. In addition to this a feedback

system detects the phase error of each of 1600 bunches with respect to the master RF

oscillator and applies a signal which corrects for their positions and energies. Finally,

the need to refill the storage rings, which originally required a 6 minute interruption

in data collection every hour has been overcome using a continuous (trickle) injection

scheme. This permits the luminosity to be maintained at its peak value for long

periods of time without the interuption of data collection. The efforts of the PEP-II

accelerator group have been responsible for supplying the high luminosities (up to

1.5× 1034/cm2/s) and subsequently large dataset (See Table 3.2) without which this

analysis would not be possible.
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3.2 The BABAR Detector

BABAR is a general purpose particle detector optimized for the study of CP-violation

in B meson decays. The detector is designed around a solenoidal magnetic field ge-

ometry and is optimized to measure the properties of particles resulting from the

asymmetric collision of e+e− beams in the laboratory frame. The small branching

fraction of B mesons to CP eigenstates in the presence of significant continuum back-

grounds places the following requirements on the detector design:

• Large acceptance of particles down to small angles relative to the boost direc-

tion, necessitating an asymmetric design of detector elements.

• Excellent reconstruction efficiency for both charged and neutral particles.

• Very good energy and momentum resolution for all particles in order to discrim-

inate B meson signal decays from the continuum background. Dalitz analyses

require good energy and momentum resolution in order to accurately recon-

struct the phase space of B meson decays.

• Excellent vertex resolution, both parallel and transverse to the beam axis.

• Efficient and reliable identification of particles resulting from B meson decays.

Especially important in this analysis is the identification of charged K (kaon)

and π (pion) mesons.

• A reliable trigger system capable of selecting events of interest with high effi-

ciency while rejecting background.

The detector subsystems relevant to this analysis ordered from the interior to

exterior of the BABAR experiment are as follows:

• The silicon vertex tracker (SVT) consists of five layers of double-sided silicon

strip detectors used to precisely reconstruct the verticies of B meson decays.

The SVT additionally provides some measurement of the ionization energy loss,

dE/dx used in particle identification.
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• The drift chamber (DCH) is a multi-wire proportional chamber used to measure

the momenta of charged particles in the solenoidal magnetic field. The DCH

also provides a measurement of dE/dx used in particle identification.

• The detector of internally reflected Cherenkov light (DIRC) provides a measure-

ment of the velocities of charged particles from the measured angle of emitted

Cherenkov light in a fused Silica bar. This novel subsystem permits discrimi-

nation between kaon and pion mesons from momenta of 500 MeV/c up to the

kinematic limit of 4.5 GeV/c. Accurate kaon and pion identification is crucial to

this analysis.

• The electro-magnetic calorimeter (ECAL) consists of CsI scintillators measuring

the energy of ionizing radiation. The ECAL additionally provides measurements

of the position of neutral pions and photons.

• The instrumented flux return (IFR) consists of resistive plate chambers (RPCs)

used to identify muons and other long-lived particles. The IFR is described in

detail in [28].

A schematic of the BABAR detector is shown in Fig. 3.1 and a detailed description of

the detector subsystems relevant to this analysis are included in the following sections.

The Super Conducting Solenoid

The measurement of the momenta of charged particles is facilitated by a 1.5T mag-

netic field in which the particles are bent. The solenoidal field is supplied by su-

perconducting niobium-titanium filaments wound into strands and finally into cables

measuring a total 10.3 km in length. The super conductor is cooled by Liquid Helium

circulated in channels welded to the support structure of the solenoid. The longitu-

dinal component of the field is uniform to within 2.5% and the azimuthal component

is not greater than 1mT inside the tracking volume.
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Figure 3.1: Longitudinal cross section of the BABAR detector. The z-axis coincides
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toward the center of the PEP-II rings. φ is the angle in the x-y plane and θ is the
angle in the z-y plane. Dimensions are in mm.

3.2.1 Silicon Vertex Tracker

The SVT provides precise measurements of charged particle trajectories (tracks) and

the decay verticies of B mesons close to the IR. The SVT additionally provides some

amount of particle identification via the measurement of dE/dx. The SVT provides

this information by measuring the charge taken from (deposited on) p+ (n+) type

strips on a 300µ thick n-type substrate due to the creation of electron-hole pairs from

the passage of ionizing radiation. The p+ and n+ type strips are located on opposite

sides of the substrate and are oriented orthogonally to each other. The φ strips are
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oriented parallel to the beam direction while the z strips are transverse to the beam

direction. The strips are spaced between 10 − 15µm (inner layers) and 40µm (outer

layers) apart on the substrate in order to provide the vertexing resolution required

for CP asymmetry measurements in B decays.

Individual double sided strip detectors are arranged in 5 layers around the beam

axis. The inner 3 layers are relatively close to the beam pipe and are designed

to provide the precise vertexing measurements necessary to study CP asymmetry

in B meson decays. The position information from the outer 2 layers is used to

reconstruct the tracks of particles with low momenta transverse to the beam (low

pt). The tracking information from the outer layers is also combined with that from

the DCH to improve overall track reconstruction. The SVT covers 90% of the total

solid angle in the c.m. frame while corresponding to only 4% of a radiation length of

traversed material. Transverse and longitudinal cross sections of the SVT are shown

in Fig. 3.2 and Fig. 3.3.

580 mm

350 mrad520 mrad

ee +-

Beam Pipe

Space Frame 

Fwd. support
        cone

Bkwd.
support
cone

Front end 
electronics

Figure 3.2: Longitudinal cross section illustrating the z coverage of the SVT.

The SVT is read out by a custom IC, the ATOM (A Time-Over-Threshold Ma-

chine). Charge pulse signals are readout from the SVT and sent to a programmable

threshold comparator which records the width of the pulse over threshold (Time-

Over-Threshold or ToT) in a circular memory buffer. Pulses are sampled at a rate

of 15Mhz. The ToT, time and strip address are readout upon receipt of the Level 1
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Figure 3.3: Transverse cross section illustrating the φ coverage of the SVT.

accept command from the data acquisition system.

In order to accurately reconstruct the tracks of charged particles the 340 individual

strip sensors comprising the SVT must be aligned relative to each other. The local

alignment of the sensors is performed with a sample of e+e− → µ+µ− events and

cosmic muons. Tracks from these events are fit using only the hit information from

the SVT. These hits and associated tracks are then used to fit for the most likely

value of the position and orientation of each sensor. The local alignment is relatively

stable and has been performed only rarely. Once the local alignment is complete the

SVT must also be globally aligned relative to the DCH since it is not structurally

supported by the rest of the BABAR detector. The global alignment is performed by

minimizing the difference between track parameters fit with only hits from the SVT

and DCH separately. Diurnal fluctuations of order .1mm in the relative position of

the SVT and DCH require the global alignment to be performed every 2-3 hours.

The resolution of the SVT is determined by measuring the distance between the

SVT hits used to reconstruct a given track and the track trajectory (in the plane

of the sensor) as determined by a fit to hits recorded in both the SVT and DCH.

The z and φ resolutions for track hits as a function of incident angle θ are shown

in Fig. 3.4. The measured resolution meets the requirements of CP violation studies
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in B decays. The ToT measurement may be used to obtain the pulse height in charge

from a look-up table of measured pulse heights. The pulse height directly corresponds

to the ionization energy loss dE/dx and provides a 2σ separation between kaons and

pions up to 500 MeV/c and between kaons and protons above 1 GeV/c.
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Figure 3.4: Hit resolution of the layers in the SVT. The z resolution is shown (right)
along with the φ resolution (left) in µm.
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3.2.2 Drift Chamber

The DCH is a multi-wire proportional chamber designed to provide precise measure-

ments of the momenta of charged particles in addition to particle identification from

measurements of dE/dx. The DCH measures the trajectory of charged particles by

the ionization of an inert gas mixture as the particle passes through the detector.

The ionized electrons from the gas drift towards the sense wires in the chamber held

at high voltage, and as they are accelerated ionize other molecules of gas producing

a shower of negative charge deposited on the sense wire. The sense wires are sur-

rounded by grounded field wires in a hexagonal pattern which attract the positively

ionized gas molecules produced in the shower. As the shower propagates toward the

wire the electrons are accelerated over increasingly small potential differences so that

the average potential drop of an electron is only 50V while the sense wire is held at

1960V. Conversely the positive ions in the shower are accelerated over increasingly

large potential differences (up to the sense wire potential), so that most of the cur-

rent read out from sense wire is induced from the motion of the positive charges.

The width of the current pulse is a measure of the position of charged particle as it

passed through the drift cell while the integral (total charge induced on the wire) is

a measure of the ionization energy loss, dE/dx. A longitudinal cross section of the

DCH is shown in Fig. 3.5. A transverse cross section illustrating the arrangement of

hexagonal drift cells is shown in Fig. 3.6.

The BABAR DCH uses a helium:isobutane mixture in an 80 : 20 ratio. This choice

of gas and low mass aluminum field wires results in a contribution of less than .2% of

a radiation length of material. The hexagonal drift cells are 11.9 and 19 mm along the

radial and azimuthal directions respectively, as shown in Fig. 3.6. The DCH consists

of 7104 such cells arranged in 40 clyindrical layers. The layers are grouped into 10

superlayers where two of the 4 layers in each superlayer are set at small stereo angles

relative to the other two axial layers. This arrangement permits the measurement of

both the z and φ trajectories of charged particles. The signals from the sense wires

are read out by a custom amplifier IC producing a discriminator output output signal

for the drift time and a shaped analog signal for the measurement of dE/dx.

Samples of cosmic muons and e+e− → e+e−, µ+µ− events are used to calculate
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Figure 3.5: Longitudinal cross section of the DCH. Dimensions are in mm.

isochrones (distances of equal drift time) from which the drift time to distance relation

is determined Fig. 3.7. The measurement of dE/dx as a function of momentum is

shown in Fig. 3.8 with Bethe-Bloch curves for particles of different masses super-

imposed. The dE/dx resolution, also shown in Fig. 3.8, is calculated for a sample of

e+e− → e+e− (Bhabha) events and is 7.5%.
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intermediate potential (340 V) to keep showers contained within the cells of a given
layer.
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Figure 3.8: dE/dx as a function of track momentum in the DCH with Bethe-Bloch
predictions overlaid (left). Difference between measured and expected dE/dx for
Bhabha events (right). The Gaussian fit has a width of 7.5%.
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The drift distance resolution obtained in Fig. 3.7 permits the trajectory of charged

particles with momenta transverse to the magnetic field to be measured with high

precision. The track position measurements (z,φ) near the IP are dominated by the

SVT while the pt measurement is dominated by the DCH drift distance resolution.

The resolution of pt for cosmic muons is well described by a linear function:

σpt

pt

= (0.13 ± .01)% pt + (0.45 ± 0.03)%. (3.1)

The momentum resolution of cosmic muons and the invariant mass resolution of

J/ψ → µ+µ− decays from BB events are shown in Fig. 3.9. Good momentum reso-

lution is required to accurately reconstruct the phase space of B decays (Dalitz plot)

and is extremely important in this analysis.
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Figure 3.9: pt resolution from cosmic events (left). Reconstructed J/ψ mass from
muons (right).

3.2.3 Detector of Internally Reflected Cherenkov Light

Charged particles of momenta greater than 700 MeV/c are identified in the BABAR ex-

periment by a novel device known as the DIRC. The DIRC exploits the fact that

charged particles traveling faster than the local phase velocity of light radiate pho-

tons (Cherenkov Light) at an angle θc relative to the momentum of the particle. The
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Figure 3.10: Schematic of the DIRC and radiator bar.

Cherenkov angle of emitted photons in a medium of index of refraction n for a particle

of velocity v is given by

cos θc =
1

nβ
, where β =

v

c
. (3.2)

The DIRC consists of long thin bars of fused silica (n = 1.473) in which charged parti-

cles emit Cherenkov light. For relativistic particles (β ≈ 1) some photons will always

lie within the incident angle of internal reflection for fused silica and be transported

to either end of the silica bars. Photons propagate through the silica until they reach

the end of the bar where they enter a water-filled expansion called the standoff box.

The standoff box exists to measure the Cherenkov angle, θc projected over a long

distance. Water is chosen to fill this distance since it has an index of refraction close

to that of fused silica and is readily available. A mirror is placed at the end opposite

the standoff box to collect light internally reflected toward the opposite end of the
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detector. The end of the standoff box is densely packed with photomultiplier tubes

(PMTs) which record the Cherenkov angle modified by refraction at the water-silica

exit boundary. Signals from the PMTs are amplified by an analog IC, and a digital

pulse timed with the peak of the PMT pulse is used to record the arrival time of each

Cherenkov photon. A schematic of the DIRC is shown in Fig. 3.10.

The measured Cherenkov angle as a function of momentum for charged tracks is

shown in Fig. 3.11. The efficiency for correctly identifying a kaon traversing the DIRC

and the probability of mis-identifying a pion as a kaon as a function of momentum

are shown in Fig. 3.12. The measurements of kaon efficiency and kaon-pion mis-

ID are determined from D0 → K−π+ decays, kinematically selected from inclusive

D∗ events. This selection guarantees that the sign of the charged particle correctly

identifies it as a kaon or pion, permitting the mis-ID and efficiency to be measured.
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Figure 3.11: Cherenkov angle as a function of track momentum. Predictions for
particles of different masses are overlaid.
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3.2.4 Electromagnetic Calorimeter

The EMC is designed to measure the energy of particles by producing an electro-

magnetic shower from their passage through a scintillator. Ideally, all of the energy

of a particle should be converted to a shower of photons from this process. The

BABAR EMC consists of an array of 6580 finely segmented thallium doped cesium

iodide (CsI(Tl)) crystals. These crystals permit the efficient measurement of electro-

magnetic showers with high resolution over the range from 20 MeV to 9 GeV. The

fine segmentation of the calorimeter permits the accurate measurement of the angular

positions (θ, φ) of photons from the decays of neutral particles π0, η. The accurate

reconstruction of neutral particles is critical for the study of rare B decays containing

one or more neutral mesons (e.g. B0 → K+π−π0).

The CsI(Tl) crystals are arranged in a cylindrical barrel and conical endcap. The

full coverage of this system corresponds to 90% of the total solid-angle in the c.m.

frame. Individual crystals are machined into trapezoids measuring 4.7 × 4.7 cm2 on

the front face and 6.1 × 6.0 cm2 on the back. The crystals range from 29.6 cm to

32.4 cm in length. CsI(Tl) has a high light yield producing 50, 000 photons per MeV

of particle energy. Scintillation photons produced in the crystals are detected with
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Figure 3.13: Longitudinal cross section of the EMC (left). Schematic of a wrapped
CsI(Tl) crystal and read out package (right). Dimensions are in mm.

two silicon PIN diodes glued to the back of each crystal. A diagram illustrating

the arrangement of crystals in EMC and read out of individual crystals is shown

in Fig. 3.13.

The photo-electric charge yield of the PIN diodes is converted into a measurement

of energy by calibrating the EMC with two sources at opposite ends of the energy

sensitivity range. A 6.13 MeV photon source, radioactive Fluorinert, is used to cali-

brate the EMC at low energy. The known relationship between the energy and polar

angle of Bhabha events is used to calibrate the EMC at high energy (3 − 9 GeV).

Corrections to the calibrated energy due to imperfect containment and absorption of

the shower are derived at low energies (E < .8 GeV) from π0 decays, constraining the

two-photon mass to be equal to the nominal π0 mass, and from e+e− → e+e−γ events

at high energies (.8 < E < 9 GeV). A correction applied to Monte Carlo simulations

of the calorimeter response is developed from e+e− → µ+µ−γ events and is discussed

in Appendix D.

The radioactive source, Bhabha events, and π0 mass are also used to determine

the resolution of the calorimeter. A fit to the energy dependence of the resolution

in Fig. 3.14 gives
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σE

E
=

(2.32 ± .3)%
4
√

E( GeV)
⊕ (1.85 ± .12)%. (3.3)

The two-photon invariant mass from π0 and η decays is used to infer the energy

dependence of the angular resolution shown in Fig. 3.14. The angular resolution as a

function of energy is given by

σφ,θ =
3.87 ± 0.07
√

E( GeV)
mrad. (3.4)
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Figure 3.14: Energy resolution in the EMC for photons and electrons from various
processes as a function of photon energy (left). Angular resolution of the EMC for
photons from π0 decays (right).

3.2.5 Trigger

In order to record events at the manageable rate of 120 Hz BABAR implements a trigger

system designed to select events of interest with high efficiency while rejecting beam-

induced background. Events are processed in a two tier trigger system consisting of a

Level 1 (L1) hardware trigger followed by a Level 3 (L3) software trigger. The total

trigger efficiency is greater than 99% for BB events and 95% for other qq (continuum)



CHAPTER 3. PEP-II AND THE BABAR DETECTOR 52

events. Nominally, the L1 trigger reduces the 20 kHZ beam-induced background rate

to an output rate of 1-5 kHz while the L3 performs a second stage rate reduction

to 120 Hz. Approximately 75% of the events triggered by L3 are of physical interest

while the remaining 25% are collected for the determination of luminosity, calibration

and diagnostics.

Table 3.1: Cross-Sections, production and trigger rates for processes at the Υ (4S)
resonance and luminosity of 3 × 1033 cm−2s−1.

Event Type Cross-Section (nb) Production Rate (Hz) L1 trigger Rate (Hz)

bb 1.1 3.2 3.2

uu, dd, cc, ss 3.4 10.2 10.1
e+e− 53 159 156
µ+µ− 1.2 3.5 3.1
τ+τ− 0.9 2.8 2.4

The L1 consists of a drift chamber trigger (DCT) and calorimeter trigger (EMT)

based on information from those sub-systems respectively. The DCT performs a fast

reconstruction of tracks from drift times and hits in the DCH. The output of the

DCT categorizes events by number and length of tracks in the event, in addition to

the number of tracks above a high transverse momentum threshold (pt > 800 MeV/c).

The EMT divides the calorimeter into 280 towers reporting the position and energy

in each tower summed for crystal energies greater than 20 MeV. Information from the

DCT and EMT is sent to a global trigger every 134 ns identifying events of physical

interest with specific triggers. Events which generate a L1 accept trigger are read out

in full to an online computer farm where a more complete event reconstruction and

analysis is performed (L3 trigger). The L3 executable takes on average 8.5 ms per

event per farm computer to complete before it is finally written out or rejected.

3.2.6 The BABAR Data Set

The PEP-II B factory at SLAC recorded data from October 1999 to April 2008 divided

into several periods of extended data collection known as Runs. The period of time

in between Runs was typically used for maintenance and upgrades of the accelerator
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and BABAR detector. The final Run period (Run 7) of data collection was used to

explore other Υ resonances, besides the Υ (4S). This dissertation is based on the data

collected in Runs 1-6. A summary of the data collected by the BABAR experiment is

shown in Table 3.2, and a plot illustrating the luminosity delivered by PEP-II and

recorded by BABAR as a function of time is shown in Fig. 3.15.

Table 3.2: Recorded Luminosity at the Υ (4S) resonance and corresponding number
of BB pairs determined to a precision of 1.1%. Run 7 is not used in this dissertation
is not reported.

Run Dates On-peak Off-peak NBB × 106

(fb−1) (fb−1)
1 Oct 1999-Oct 2000 20.4 2.6 22.4
2 Feb 2001-June 2002 61.1 6.9 67.4
3 Dec 2002-June 2003 32.3 2.47 35.56
4 Sep 2003-July 2004 100.3 10.1 110.45
5 Apr 2005-Aug 2006 133.3 14.5 147.2
6 Jan 2007-Sep 2007 66.1 4.6 71.4

Total - 413.4 41.2 454

3.2.7 Monte Carlo Simulation

In addition to the recorded data, simulated events known as Monte Carlo (MC) are

used to validate the analysis procedure and develop event selection criteria. MC is

generated using Version 4 of the GEANT [29] program to simulate the propagation of

particles in the detector given their known properties, so that the simulated events

may be reconstructed and selected in an identical manner to data. This permits

selection and reconstruction criteria to be developed so as to maximize the efficiency

of correctly reconstructing signal events while minimizing backgrounds.

We generate large samples of B0 → K+π−π0 decays with the model of interfering

resonances described in Section 2.5 to both develop selection criteria and validate the

analysis procedure. It is worth noting that the analysis software RooThreeBodyDalitz,

shares the EvtGen package in common with the MC generator so that the means of

generating the kinematic distributions of B decays and fitting them are identical.
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Figure 3.15: Luminosity delivered and recorded as a function of time.

This permits a robust validation of the analysis procedure by guaranteeing that the

fitted distribution of decays is identical to the generated distribution.

Backgrounds are studied in a large sample of B0B0 and B+B− simulated decays.

Backgrounds contributing a large number of expected events are further studied in

higher statistics samples of decays simulated with the specific background. These are

listed in Table 4.3 along with the simulation production (SP) catalog number used to

identify the collection of events.



Chapter 4

Dalitz Analysis of the Decay

B0 → K+π−π0

In this section the reconstruction and analysis of the phase space of the decay B0 →
K+π−π0 is presented using the BABAR dataset. The reconstruction and selection of

B0 → K+π−π0 decays is described in the first sections. The fit procedure used to

exact the amplitudes and phases of the intermediate amplitudes contributing to the

final state is described in the later half. This analysis is an update of the BABAR

analysis presented in [30] including Runs 5, 6 of the BABAR dataset. The B0 →
Ksπ

+π− Dalitz analysis, also necessary to produce the constraint on the CKM triangle

suggested in [15] is described in [31].

4.1 Event Selection

Hadronic continuum events produced via the non-resonant processes e+e− → qq (q =

u, d, s, c) at the Υ (4S) energy would overwhelm the number of resonantly produced

B decays in the absence of measurable quantities capable of discriminating between

events reconstructed from the two processes. In order to maximize the sensitivity of

the analysis to the magnitudes and phases of the interfering amplitudes contributing

to the final state, we develop a set of criteria that preferentially selects B0 → K+π−π0

decays from the continuum background. The criteria should also limit the number

55
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of events that are mis-reconstructed, both from other B decay modes, known as B-

backgrounds, and from the signal decay process itself, known as self cross-feed (SCF).

In this section we describe the process of event reconstruction and the selection criteria

used in this analysis.

4.1.1 Skim Selection

Since it is impractical to apply a set of selection criteria to the entire BABAR dataset, a

series of sub-sets have been created that loosely match the criteria of various B decays.

These sub-sets are known as skims. We apply our selection criteria to events which

have first passed the BToCPP skim, requiring events to contain three particles from

lists of charged track and π0 candidates. The mES (See Section 4.1.5) of the candidate

is required to be greater than 5.2 GeV/c2 and the total energy of the candidate in the

c.m. frame is required to be 4.99 < E∗ < 5.59 GeV. The skim passes nearly 100%

of signal decays and yet comprises only about 2% of the total BABAR dataset. More

stringent requirements of the particles used to reconstruct the B candidate are made

after events pass the skim.

4.1.2 Charged Particle Selection and ID

The charged kaon and pion daughter particles are selected from lists of reconstructed

particles meeting criteria that ensure the particle’s momenta are well measured. We

select charged tracks taken from the GoodTracksLoose list, which requires that tracks

have, 100 MeV/c < pt < 10 GeV/c, |z0| < 10 cm, |d0| < 1.5 cm and at least 12 hits in

the DCH.

Measurements of dE/dx in both the DCH and SVT (See Fig. 3.8) in addition

to the measurement of the Cherenkov angle in DIRC (See Fig. 3.11) are combined

to produce a likelihood estimator for the probability of a charged particle to be a

kaon, pion, or proton. We require that the kaons and pions used to reconstruct the

K+π−π0 final state pass the KaonLHTight and PionLHTight selectors respectively.

The kaon selector requires that LK/(LK + Lπ) > .9, LK/(LK + Lp) > .2 while the
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pion selector requires LK/(LK +Lπ) < .5, Lp/(Lp +Lπ) < .98 1 where LK , Lπ, Lp are

the likelihoods for a particle to be a kaon, pion or proton respectively. The selectors

also require that both the kaon and pion are not identified as electrons.

4.1.3 π0 Selection

The π0 is selected from the pi0AllLoose list, requiring the two-photon mass of can-

didates to be loosely consistent with the nominal π0 mass, 100 < mπ0 < 160 MeV/c2

and a c.m. energy greater than 200 MeV. It is important to note that B candidates

with a mis-reconstructed π0 are a significant source of SCF events. In order to reduce

the number of SCF candidates we additionally require

• The invariant mass of a π0 candidate to be consistent with nominal π0 mass at

the level of 3σ, |mπ0−mPDG

σm
π0

| < 3.

• The modulus of the cosine of the angle the decay photons make with the π0

momentum vector, | cos θ∗π0 |, to be less than 0.95.

4.1.4 B0 Canidate Reconstruction

B0 candidates are reconstructed by requiring that the K+, π− and π0 originate from

a common vertex within the beam spot. The 4-momenta of the K+, π− and π0 are fit

with this constraint, or vertexed, using the TreeFitter [32] algorithm given the mass

hypothesis of the daughter particles. The 4-momenta are fit a second time with the

additional constraint that that their invariant mass be consistent with the B mass.

The mass constrained 4-momenta are necessary to ensure that particles occupy only

physically allowed regions of the Dalitz plot, and are used to construct the Dalitz

distribution of the B0 decays.

It is important to note that the decay B0 → K+π−π0 is flavor specific. The

charge of the K or π determines the flavor of the B. This fact permits the flavor of

the other B produced in the decay of the Υ (4S) to be used as additional input in the

analysis. Events where the opposite B flavor has been reliably determined are less

1The selection cuts for particles of momenta greater than 2.5 GeV/c are functions of momentum.
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likely to be either continuum background or SCF. A neural network is trained using a

large sample of MC events with output into seven exclusive categories identifying the

flavor of the B. In order of purity from highest to lowest these are: Lepton, KaonI,

KaonII, KaonPion, Pion, Other, and Notag. The tagging categories identify the

flavor of the B in decay processes involving leptons, charged kaons and pions or other

charged particles whose sign indicates the B flavor. Each event is identified with the

tagging category of the other B determined from the neural network.

4.1.5 Kinematic Variables

At the Υ (4S) resonance, B mesons are characterized by two nearly independent kine-

matic variables, the beam energy substituted mass mES, and the energy difference

between the reconstructed B and beam, ∆E:

mES =
√

(s/2 + ~p0 · ~pB)2/E2
0 − p2

B, (4.1)

∆E = E∗
B −

√
s/2, (4.2)

where E and p are energy and momentum, the subscripts 0 and B refer to the e+e−-

beam system and the B candidate respectively; s is the square of the center-of-mass

energy and the asterisk labels the c.m. frame. We require that 5.272 < mES <

5.2875 GeV/c2.

In order to reliably fit the isobar amplitudes on the Dalitz plot it is important

to minimize and correct for any correlations of these kinematic variables with the

momenta of the daughter particles. The energy resolution of π0 particles varies as a

function of the π0 energy (See Fig. 3.14) or equivalently, the K+π− invariant mass,

mK+π−. This variation can be partially corrected by dividing ∆E by the per event

error σ∆E . Fig. 4.2 shows the ∆E/σ∆E distributions for different bins of the Dalitz

Plot.

The curves in Fig. 4.2 correspond to fits to the ∆E/σ∆E distribution with a Gaussian

and 1st order polynomial. The width of the Gaussian varies from .98 (high-energetic

π0’s) to 1.18 (low-energetic π0’s). We account for this dependence by translating the
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Figure 4.1: Distributions formES (left) and ∆E ′ (right) for signal MC (black), charged
B-background (blue) and off-peak data (red). The vertical green lines indicate the
selection criteria. The distributions are normalized to have unit area.

mean and modulating the width of the distribution as 3rd order polynomial functions

of m2
K+π−. We introduce the dimensionless quantity ∆E ′:

∆E ′ =

∆E
σ∆E

+m0 +m1x+m2x
2 +m3x

3

w0 + w1x+ w2x2 + w3x3
, (4.3)

where x = m2
K+π− and the coefficients, mi, wi are determined from fits to high statis-

tics signal MC. We require |∆E ′| ≤ 2.1. The fitted values of mi, wi which minimize

correlations with the Dalitz plot are shown in Table 4.1. Distributions of the kine-

matic variables mES and ∆E ′ are shown in Fig. 4.1.

4.1.6 Multivariate Continuum Suppression

To further enhance discrimination between signal and continuum, we train a neural

network (NN) [33] with six discriminating variables:

• The angle between the B momentum and e+ beam direction, θB,z.
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Table 4.1: Fitted values of mi, wi which minimize correlations of ∆E/σ∆E with the
Dalitz plot.

i mi × 10−3 wi × 10−3

0 246.36 1055.09
1 −2.72968 6.85963
2 1.14497 0.658859
3 −0.047 −0.025

• The angle between the B thrust axis and e+ beam direction, θT,z
2.

• The angle between the thrust axis of the rest of the event (ROE) and e+ beam

direction, θROE,z [2].

• The Legendre moments L0 and L2 defined as

Ln =
∑

i=ROE

|~p∗i | × |cos(θi)|n, (4.4)

where ~p∗i is the momentum of a particle i, in the event whose angle with the

B thrust axis is θi. The sum runs over all charged and neutral particles in the

event except for those in the B candidate.

• The flight distance between the two B mesons scaled by the error, ∆z/σ∆z .

The Legendre moments and angles, θB,z , θT,z and θROE,z effectively discriminate

signal from continuum since B mesons are produced nearly at rest in the c.m. frame,

and consequently the angular distribution of its decay is relatively isotropic. Con-

tinuum events in contrast are relatively jet like. The variable ∆z/σ∆z , measures the

characteristic life time of B mesons in the detector and has a relatively narrow distri-

bution for continuum events as compared to B events. Since the selection variables

must be uncorrelated with the Dalitz plot, the Dalitz positions of events are not used

in the NN. Distributions for the training variables are shown in Fig. 4.3.

2The trust axis maximizes the projection of the longitudinal momenta of the particles in question.
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The NN training has been performed using off-peak data and correctly recon-

structed signal MC events. The K± candidates in the off-peak events are required to

pass the KLHTight PID selector. The NN output distribution for truth matched sig-

nal events and off-peak data are plotted in Fig. 4.4, where the cut displayed is chosen

both to enhance signal purity and ensure that a manageable number of events enter

the ML fit. We require 0.6 < NN which removes 90% of the continuum background

while keeping 81% of the signal.
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Figure 4.2: ∆E/σ∆E distribution for correctly reconstructed MC events in differ-
ent bins of m2

K+π− (estimator of the π0 energy) fit with a Gaussian and a linear
polynomial.
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Figure 4.3: The distribution of cos θT,z (upper left), cos θROE,z (upper middle), cos θB,z

(upper right) L0 (lower left), L2 (lower middle) and ∆z/σ∆z (lower right). MC signal
events are shown in black, and off-peak data are shown in red.
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Figure 4.4: Output distribution for the Neural Network, using the 6 discriminating
variables defined in the text. MC signal are shown in black, and off-peak data are
shown in red. The vertical green line indicates the cut applied, 0.6 < NN .
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4.1.7 Best Candidate Selection
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Figure 4.5: Number of B candidates per event passing all selections, except mES.

Approximately 17% of the signal MC events which have B candidates passing all

selections except mES, contain multiple B candidates as shown in Fig. 4.5. Since

the continuum Dalitz plot is modeled from the mES sideband (5.2 ≤ mES ≤ 5.272)

of on-peak data, the mES cut is not applied in selecting the best B candidate. On

average such events contain 1.3 B candidates. Due to the specific kinematics of multi-

candidate events, their occurrence strongly depends on the location of the event in

the Dalitz plot. To prevent biasing the distributions (PDFs) of the variables that will

enter the maximum likelihood (ML) fit, we select the candidate with the minimum

value of

χ2 =
(mπ0 −mPDG

π0

σm
π0

)2
+ χ2

Vertex, (4.5)

were χ2
Vertex is the vertex likelihood returned by the TreeFitter algorithm. We select

the correct B candidate 48.02% of the time when more than one candidate is present.
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4.1.8 Selection Efficiency

The efficiencies of the selection and reconstruction requirements placed on B0 →
K+π−π0 candidates are summarized in Table 4.2. The efficiency to reconstruct and

select a true B0 → K+π−π0 decay is 22.45%, while the efficiency to reconstruct a

continuum event passing the BToCPP skim, as signal is 0.05%.

Table 4.2: Selection efficiencies relative to the previous cut with binomial errors for
signal MC, on-peak and off-peak data.

Cuts Relative Efficiencies (%)
εSignal MC εoff−peak εon−peak

Reconstruction 57.48 ± 0.02 20.97 ± 0.02 38.39 ± 0.01

KaonLHTight PID 78.79 ± 0.02 48.98 ± 0.06 49.13 ± 0.01
PionLHTight PID 90.52 ± 0.00 65.43 ± 0.00 66.17 ± 0.00

0.6<NN 80.86 ± 0.03 9.36 ± 0.06 10.53 ± 0.01
m(π0)χ <3 92.03 ± 0.02 79.27 ± 0.26 80.44 ± 0.06

cos θ∗π0 <0.95 98.06 ± 0.01 95.83 ± 0.15 95.83 ± 0.03
−2.1 < ∆E ′ < 2.1 83.44 ± 0.03 42.99 ± 0.37 42.98 ± 0.08
5.272< Best B mES <5.2875 89.91 ± 0.03 23.80 ± 0.48 14.77 ± 0.09

Total Efficiency 22.45 ± 0.02 0.049 ± 0.001 0.064 ± 0.000

The selection criteria applied to the skimmed on-peak data set yield a sample of 23268

events distributed over the Dalitz plot as shown in Fig. 4.6.

4.2 Dalitz Coordinates

Since the B is much more massive than the K and π mesons the accessible phase

space of charmless three-body B decays is very large. Most contributing resonances

have masses much lower than the B mass, consequently signal events cluster along the

Dalitz plot boundaries. This is also true for background events. Previous BABAR anal-

yses have shown that another set of variables, m′, θ′ defined by the mapping
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dx dy −→ dm′ dθ′, (4.6)

m′ ≡ 1

π
arccos

(

2
m−mmin

mmax −mmin
− 1

)

, θ′ ≡ 1

π
θH ,

are well suited to such configurations. These coordinates define the Square Dalitz Plot

(SDP) where m (=
√
x) and θH are the invariant mass and helicity angle of the K±π∓

system, respectively. The variables, mmax = mB −mπ0 and mmin = mK+ +mπ−, are

the kinematic limits of m. The new variables both range between 0 and 1. The

standard and square Dalitz plot of the selected events is shown in Fig. 4.6. The

determinant of the Jacobian of the transformation in Eq. (4.6) is given by

| detJ | = 2π2|~p||~q|m(mmax −mmin) sin(πm′) sin(πθ′), (4.7)

where ~p and ~q are the momenta of the π0 and K+ in the K+π− rest frame (See Sec-

tion 2.5.1).
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Figure 4.6: The standard (left) and square (right) Dalitz plots of the selected data
sample of 23683 events. The intermediate resonances are more spread out in the
square Dalitz plot. The D0 → K+π− narrow band is preserved with the choice made
for the m′ variable.



CHAPTER 4. DALITZ ANALYSIS OF THE DECAY B0 → K+π−π0 68

4.3 Mis-Reconstructed Signal Events

High statistics signal MC is used to distinguish between correctly reconstructed signal

and SCF events. A correctly reconstructed event where the three particles of the

B candidate match the generated ones, is called a truth-matched (TM) event. A

SCF event contains a B meson which decays to the signal mode, but one or more

reconstructed particles in the B candidate are not actually from the decay of that

B. Misreconstruction is primarily due to the presence of low momentum π0s and

π±s. Consequently, the efficiency ε(m′, θ′) to reconstruct an event either correctly or

incorrectly varies across the Dalitz plot. The fraction of SCF events fSCF(m′, θ′) is

high, where the quality of the reconstruction is poor, namely the slow π0, π± corners

of the Dalitz plot. Since it is important to keep a high efficiency in the Dalitz plot

corners where the low-mass vector resonances interfere, we cannot treat SCF events as

background in the analysis. Variations in the efficiency for TM and SCF events over

the Dalitz plot can be seen in Fig. 4.7 computed using high statistics MC samples.

The average efficiency over the Dalitz plot, for signal events (See Table 2.5)
〈

ǫ
〉

DP
, is

21%. The SCF fraction, averaged over the Dalitz plot,
〈

fSCF

〉

DP
is typically 9%.
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Figure 4.7: Selection efficiency, ǫ for TM events (left) and SCF events (right). The
maximum efficiency is 1.
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4.4 B-Related Backgrounds

In order to maintain sensitivity to interference over the entire Dalitz plot, no re-

strictions on any two-body invariant mass of the final state particles is imposed.

Consequently, large cross-feed backgrounds from other B decays occur. MC sam-

ples are used to study these backgrounds. We make conservative assumptions for

decay modes with unknown branching fractions. Inclusive and exclusive B decays

are grouped into 19 classes to be used in the fit. Those backgrounds whose contribu-

tions are expected to be large (200 or more events) are allowed to float in the fitting

procedure while all others are fixed. PDFs describing the mES, ∆E, Neural Network,

and Dalitz distributions for the 19 classes of B-background are shown in Appendix B.

Branching fractions, topological and kinematical similarities are studied to define the

B-background classes as follows:

• Class 1: Contains the modes B0 → K∗0γ, B0 → Xsdγ, and B+ → K∗+γ.

These decays are mis-reconstructed where either a π0 or π+ from the opposite

B has been included in the reconstruction. Consequently, this background has

a characteristically high ∆E distribution. The Dalitz distribution is sharply

peaked around the K∗ resonance (See Fig. B.1).

• Class 2: Contains both resonant (from the ρ) and non-resonant contributions

for B+ → π+π0π0. This decay is typically mis-reconstructed by substituting

a K for a slow π0. Consequently, this mode exhibits an upward sloping ∆E

distribution and its Dalitz distribution is concentrated in the slow π0 and K

regions (See Fig. B.2).

• Class 3: Contains resonant contributions from both K∗+ and f 0 for B+ →
K+π0π0. Since this mode is mis-reconstructed by substituting a π0 for a slow

π± the Dalitz distribution is concentrated in that region. See Fig. B.3

• Class 4: Contains both resonant (from the K∗+) and non-resonant contributions

for B0 → K+K−π0. This decay is mis-reconstructed by substituting a charged

pion for one of the kaons in the reconstruction. The ∆E distribution is low as

a result. The K∗+ resonance is visible in the Dalitz distribution (See Fig. B.4).
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• Class 5: This mode is mis-reconstructed with a slow π0 andK from the opposite

B in the Dalitz decay B+ → π+π+π−. The Dalitz distribution populates the

slow π0 region (See Fig. B.5).

• Class 6: This mode is mis-reconstructed with a slow π0 from the opposite B in

the Dalitz decay B+ → K+π+π−. The Dalitz distribution populates the slow

π0 region (See Fig. B.6).

• Class 7: This mode is mis-reconstructed with an additional slow π± from the

opposite B in the decay B+ → K+π0. Its Dalitz distribution populates the

slow π± region. Since the mis-reconstruction adds a particle to the true decay,

the ∆E distribution slopes sharply upward (See Fig. B.7).

• Class 8: Similar to Class 7, this mode is mis-reconstructed with an additional

slow π0 from the opposite B in the decay B0 → K+π−. Its Dalitz distribution

populates the slow π0 region. Since the mis-reconstruction adds a particle to

the true decay, the ∆E distribution slopes sharply upward (See Fig. B.8).

• Class 9: This mode is mis-reconstructed by substituting a K from the opposite

B for a charged pion in the decay B0 → π+π−π0. Since the K is more massive

than the pion it replaces, the ∆E distribution slopes upward (See Fig. B.9).

• Class 10: Includes the non-signal final state of the decays B0 → D0π0, Dρ, where

D0 → K+K−, K+π−π0 which are typically mis-reconstructed by omitting a K

or pion from the decay. Consequently, the ∆E distribution slopes downward.

The D resonance is visible in the Dalitz distribution (See Fig. B.10). The yield

of this background contribution is floated in the fit.

• Class 11: Includes the non-signal final state of the decays B0 → D−π+, D∗−π+,

where D∗, D∗− → π0D−, π−D
0

which are typically mis-reconstructed by substi-

tuting a slow kaon or π0 from the opposite B. The Dalitz distribution populates

those regions. See Fig. B.11 The yield of this background contribution is floated

in the fit.
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• Class 12: This mode is mis-reconstructed by substituting a slow pion from the

opposite B for the ρ and a1 in the decays B0 → K∗0ρ0, K+a−1 . Its Dalitz

distribution populates the slow π0 region (See Fig. B.12).

• Class 13: This mode mis-identifies the η as a π0 in the decay B0 → K+ηπ−.

Since the η is about 5 times the mass of the π0, the Dalitz distribution populates

a region above a certain π0 momentum threshold (See Fig. B.13).

• Class 14: The decay B+ → K+η
′

is mis-reconstructed by substituting a slow

π0 for the η
′
and including an additional π± from the opposite B. The Dalitz

distribution of this background populates the slow π0 region (See Fig. B.14).

• Class 15: The decays B0 → a+
1 π

−, ρ+ρ− are mis-reconstructed with an addi-

tional slow kaon from the opposite B to create this background. The Dalitz

distribution of this background populates the slow K region (See Fig. B.15).

• Class 16: The decay B+ → K∗0ρ+ is mis-reconstructed by substituting a π0

from the opposite B for the ρ+. The K∗ resonance is visible in the Dalitz

distribution (See Fig. B.16).

• Class 17: Mis-reconstructed decays of B0 → K∗0η,K∗+ρ−, K+a−1 , a
0
1K

+ pop-

ulate the slow π0 and π− regions of the Dalitz plot. This background is mis-

reconstructed by substituting either a slow π0 or π± for a more massive particle

and exhibits a downward sloping ∆E distribution (See Fig. B.17).

• Class 18: Mis-reconstructed decays of B+ → a0
1(K, π), ρ+ρ0, a+

1 π
0, π0π+Ks, π

0lν

generally include an additional slow K from the opposite B and their Dalitz

distribution populates that region (See Fig. B.18).

• Class 19 (Generics): Contains numerous many body decays of the B generated

from generic B0 and B± simulation production. The result is an irregularly pop-

ulated Dalitz plot and relatively flat ∆E and mES distributions. See Fig. B.19

The B-backgrounds and their expected yields are summarized in Table 4.3.
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SP# Class Description Eff.(%) B (×10−6) Expected Yield

1710 1 B0 → K∗0(→ K+π−)γ 0.55 28.7 ± 2.7 71.5 ± 6.7
6456 1 B0 → Xsdγ 0.07 355 ± 37 114.2 ± 11.9
1713 1 B+ → K∗+(→ K+π0)γ 0.03 12.7 ± 1.7 1.7 ± 0.2

1940 2 B+ → ρ+π0 0.19 10.9 ± 1.5 9.4 ± 1.3
1938 2 B+ → π+π0π0 (NR) 0.10 4.0 ± 4.0 1.9 ± 1.9

1941 3 B+ → K∗+(→ K+π0)π0 2.41 2.3 ± 0.8 25.2 ± 8.8
5068 3 B+ → f0(980)(→ π0π0)K+ 1.67 3.0 ± 1.0 22.7 ± 7.6

1945 4 B0 → K∗+(→ K+π0)K− 2.07 1.0 ± 1.0 9.4 ± 9.4
1221 4 B0 → K+K−π0 (NR) 1.81 0.5 ± 0.5 4.1 ± 4.1

6944 5 B+ → π+π+π− (Dalitz) 0.10 16.2 ± 1.5 7.9 ± 0.7

6846 6 B+ → K+π+π− (Dalitz) 0.66 54.8 ± 2.9 163.9 ± 8.7

1587 7 B+ → K+π0 1.12 12.8 ± 0.6 65.2 ± 3.1

1028 8 B+ → K+π− 0.60 19.4 ± 0.6 53.1 ± 1.6

6948 9 B0 → π+π+π0 (Dalitz) 0.92 26.0 ± 3.0 109.4 ± 12.6

10 States with a D0 522.1 ± 40.4

11 States with a D− 310.7 ± 13.8

2359 12 B0 → K∗0(→ K+π−)ρ0 0.26 3.9 ± 1.1 4.6 ± 1.3
7042 12 B0 → K+a−1 (→ ρ0π−) 0.13 6.7 ± 2.0 4.1 ± 1.2

5575 13 B0 → K+η(→ γγ)π− 0.14 12.5 ± 1.2 7.9 ± 0.8

1508 14 B+ → K+η′(→ ρ0γ)K− 0.23 20.6 ± 0.2 21.7 ± 0.2

2498 15 B0 → ρ+ρ− 0.18 23.1 ± 3.3 18.9 ± 2.7
4157 15 B0 → a+

1 π− 0.05 31.7 ± 3.7 8.0 ± 0.9

2244 16 B+ → K∗0(→ K+π−)ρ+ 0.31 6.1 ± 1.0 8.7 ± 1.4

4960 17 B0 → a+
1 (→ ρ+π0)K− 0.39 6.7 ± 2.0 11.9 ± 3.6

2499 17 B0 → K∗+(→ K+π0)ρ− (long.) 0.67 1.8 ± 1.3 5.5 ± 4.0
4874 17 B+ → a0

1K
+ 0.23 3.4 ± 3.4 3.6 ± 3.6

2390 18 B+ → ρ+ρ0 0.19 18.2 ± 3.0 15.5 ± 2.6
1058 18 B+ → π0lν 0.02 150 ± 60 12.4 ± 5.0
7073 18 B+ → π0π−Ks (Dalitz) 0.08 30.0 ± 30.0 11.5 ± 11.5
4156 18 B+ → a0

1π
+ 0.08 20.4 ± 5.8 7.8 ± 2.2

3584 18 B+ → a+
1 π0 0.12 5.0 ± 5.0 2.7 ± 2.7

19 Generic B 425.4 ± 425.4

Table 4.3: Exclusive neutral B background modes. Modes from each category are
taken as a single PDF, as a weighted sum of the individual contributions. Branching
fractions (B) are taken from the PDG [13] and, when available, from HFAG [34]. In
the cases where only an upper limit exists, we take it as the central value with 100%
error.
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4.5 The Maximum Likelihood Fit

The selected on-peak data sample consists of signal, continuum-background and B-

background components, separated by the flavor (charge sign of the K) and B-tagging

category of the tag side. We use mES, ∆E ′, the NN, and the Dalitz distribution

to discriminate signal from background. The Dalitz plot measurement permits the

determination of the relative phases and amplitudes among different intermediate

resonances. The signal likelihood consists of the sum of a TM and SCF component.

The fit strategy attempts to determine as many continuum shape and asymmetry

parameters as possible simultaneously with the signal parameters. This reduces sys-

tematic effects from the description of the dominant background. The likelihood Lc
i

for a single event i in tagging category c is the sum of the PDFs of all components:

Lc
i ≡ Nsigf

c
sig

[

(1 −
〈

fSCF

〉c

DP
)Pc

sig−TM,i +
〈

fSCF

〉c

DP
Pc

sig−SCF,i

]

+ N c
qq̄

1

2
(1 + qtag,iAqq̄, tag)Pc

qq̄,i

+
19
∑

j=1

NBjf
c
Bj

1

2
(1 + qtag,iAB, tag,j)Pc

B,ij ,

(4.8)

where Nsig is the total number of B0 → K+π−π0 signal events in the data sample; f c
sig

is the fraction of signal events that are tagged in category c;
〈

fSCF

〉c

DP
is the fraction

of SCF events in tagging category c, averaged over the DP; N c
qq̄ is the number of

continuum events that are tagged in category c; qtag,i is the tag flavor of the event, and

is equal to the charge of the kaon from the B0 decay; Aqq̄, tag parametrizes possible tag

asymmetry in continuum events; Pc
qq̄,i is the continuum PDF for tagging category c;

NB,j is the number of expected events in the B-background class j; f c
B,j is the fraction

of B-background events of class j that are tagged in category c; AB, tag,j describes a

possible tag asymmetry in the B-background class j; Pc
B,ij is the B-background PDF

for tagging category c and B-background class j.

The PDFs Pc
X (X = sig−TM, sig−SCF, qq̄, B) are the product of the four
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PDFs of the discriminating variables 3, P c
X,i(j)(xk) where x1 = mES, x2 = ∆E ′,

x3 = NN output and x4 = {m′, θ′} describes the Dalitz distribution. Explicitly we

have

Pc
X,i(j) ≡

4
∏

k=1

P c
X,i(j)(xk) , (4.9)

where i is the event index and j is a B-background class. The extended likelihood

over all tagging categories is given by

L ≡
7
∏

c=1

e−N
c

N
c

∏

i

Lc
i , (4.10)

where N
c

is the total number of events expected in tagging category c. Parametriza-

tion of the PDFs and corrections for their relative correlations are discussed in Sec-

tion 4.6.

4.6 PDF Parametrization

In this section we describe the mES, ∆E ′, NN, and Dalitz PDFs in Eq. (4.9) used in

this analysis. The likelihood model relies on the assumption that the variables used

in its construction are uncorrelated. Violation of this assumption will result in biases

of the fitted parameters. Where correlations exist, they are explicitly corrected for in

the relevant PDFs as discussed below.

It is often the case that a parametric description of a given PDF cannot be found

or would be too time consuming to create. In these cases we use a gaussian kernel

estimation (smoothing) [35] to generate the PDF. The smoothing describes the data

as a sum of gaussian PDFs centered at each data point with width h. Once the

sum of gaussians has been tabluated we generate a finely binned smoothed histogram

PDF from the kernel estimation. We adjust the smoothing parameter (proportional

to h) to achieve a satisfactory fit to the data. Unless otherwise noted the PDFs

3Not all the PDFs depend on the tagging category. The general notations P c
X,i(j) and Pc

X,i(j) are
used for simplicity.
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for the 19 classes of B-background are modeled with smoothed histograms shown in

Appendix B.

4.6.1 Dalitz Plot PDFs

Since the decay B0 → K+π−π0 is flavor-specific (the charge of the kaon identifies

the B flavor), the B0 and B0 Dalitz plots are independent. However, because the

backgrounds are essentially flavor blind, we get a more robust procedure by fitting

them simultaneously. We define the total amplitude,

A =
∑

k

ake
iΦkfk(m

′, θ′), (4.11)

where k runs over all of resonances in the model described in Section 2.5. It is enough

to describe only the B0 Dalitz plot PDF. A change from A to A accompanied by the

interchange of the charges of the kaon and pion gives the B0 PDF. The amplitudes

and phases are measured relative to the ρ−(770)K+ amplitude so that the phases

Φρ−K+ and Φρ+K− are fixed to 0 and the isobar amplitude, aρ−K+ is fixed to 1.

For an event i, we have

Psig−TM,i = εi (1 − fSCF,i) | detJi|
|Ai|2
|NTM|2

, (4.12)

Psig−SCF, i = εi fSCF,i
[| det J ||A|2 ⊗ RSCF]i

|NSCF|2 ⊗ RSCF
, (4.13)

where ⊗RSCF denotes convolution with a resolution function described below. J is the

Jacobian matrix of the transformation to the square Dalitz plot. The normalization

constants |NTM|2 and |NSCF|2 are given by:

|NTM|2 = Re
∑

κ,σ

aκaσe
i(Φκ−Φσ)〈ε (1 − fSCF) | detJ | fκfσ∗〉 , (4.14)

|NSCF|2 = Re
∑

κ,σ

aκaσe
i(Φκ−Φσ)〈ε fSCF | det J | fκfσ∗〉 , (4.15)
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where the indices κ, σ run over all resonances of the signal model. The expectation

values occurring in Eq. (4.14) and Eq. (4.15) are model-dependent and are computed

with high statistics MC integration over the square Dalitz plot:

〈ε (1 − fSCF) | detJ | fκfσ∗〉 =

∫ 1

0

∫ 1

0
ε (1 − fSCF) | detJ | fκfσ∗ dm′dθ′
∫ 1

0

∫ 1

0
ε | detJ | fκfσ∗ dm′dθ′

, (4.16)

and similarly for 〈εfSCF, | detJ | fκfσ∗〉, where all quantities in the integrands are

Dalitz plot dependent. Note that the integral in Eq. (4.16) depends on the line

shape parameters (mass, width, spin, ect.) assumed for the signal model. If these

parameters are determined from a fit to data, the evaluation of Eq. (4.16) would

iterative and time consuming. As a result, the parameters of the resonance line shapes

are held constant in the fit given that they have been previously well measured [13].

SCF Fractions

Eq. (4.8) invokes the DP-averaged SCF fraction
〈

fSCF

〉

DP
which is decay dynamics-

dependent, since it is obtained from an integral of the decay amplitude-squared over

the Dalitz plot

〈

fSCF

〉

DP
=

∫ 1

0

∫ 1

0
ε fSCF | det J | (|A|2 + |A|2) dm′dθ′

∫ 1

0

∫ 1

0
ε | detJ | (|A|2 + |A|2) dm′dθ′

. (4.17)

In principle
〈

fSCF

〉

DP
must be computed iteratively, though the remaining systematic

uncertainty after one iteration step is expected to be small. We determine the SCF

fractions separately for each tagging category from simulation using Eq. (4.17). The

fraction of total signal events and the DP-averaged SCF fraction are shown Table 4.4

for each tagging category.

Resolution

Studies in simulation have shown that the experimental resolutions of m′ and θ′

need not be introduced in the TM signal PDF. However, mis-reconstructed events
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Tagging fsig (%)
〈

fSCF

〉

DP
(%)

Category
Lepton 8.81 4.70
KaonI 10.89 7.07
KaonII 17.26 8.54
KaonPion 13.66 9.23

Pion 14.20 9.43
Other 9.48 9.88
NoTag 25.70 10.22

Table 4.4: The fraction of total signal events (fsig) and the DP-averaged SCF fraction
(
〈

fSCF

〉

DP
) in each tagging category. The fraction of total signal events is determined

from a fit to a subset of the BABAR data where both B mesons are fully reconstructed
known as the BReco dataset.

often incur large migrations, i.e. the reconstructed coordinates m′
r, θ

′
r are far from

the true values m′
t, θ

′
t. As shown in Fig. 4.8, migrations of 2.5% of the square Dalitz

coordinates are typically observed. This corresponds to a broadening of resonances by

800 MeV/c, much larger than their widths. We introduce a rank-4 resolution tensor,

RSCF(m′
r, θ

′
r;m

′
t, θ

′
t), which represents the probability to reconstruct at the coordinates

(m′
r, θ

′
r) an event that has the true coordinate (m′

t, θ
′
t). The tensor obeys the unitarity

condition

∫ 1

0

dm′
r

∫ 1

0

dθ′rRSCF(m′
r, θ

′
r;m

′
t, θ

′
t) = 1 ∀ m′

t, θ
′
t. (4.18)

In practice the resolution tensor is implemented as an array of 2-dimensional his-

tograms which store the probabilities as a function of the Dalitz coordinates. We

find that an array of 100 × 100 histograms representing bins of the true Dalitz coor-

dinate in m′, θ′, adequitely models the resolution of SCF events on the DP. RSCF is

convoluted with the signal model in the expression of PSCF in Eq. (4.13) to correct

for broadening of the SCF events.
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Figure 4.8: The width (RMS) of m′
reco −m′

truth for SCF events over the Dalitz plot
(left). The width (RMS) of θ′reco − θ′truth for SCF events over the Dalitz plot (right).
The units of the color axis are in 10−3.

Backgrounds

Except for events coming from exclusive B → D decays, all background Dalitz

PDF are modeled with smoothed, 2-dimensional histograms. The continuum dis-

tributions are extracted from a combination of off resonance data and a sideband

(5.20 < mES < 5.25 GeV/c2) of the on-resonance data from which the B-background

has been subtracted. The square Dalitz plot is divided into eight regions where differ-

ent smoothing parameters are applied in order to optimally reproduce the observed

wide and narrow structures by using a 2-dimensional kernel estimation technique [35].

For 0.64 < m′ < 0.66 and all θ′, a finely binned, unsmoothed histogram is used

to follow the peak from the narrow D0 continuum production. The B-background

(See Table 4.3) Dalitz PDFs are obtained from the MC simulation. For the compo-

nents which model b→ c decays with real D0 mesons, a fine grained binning around

the D mass is used to construct unsmoothed histograms.

4.6.2 Kinematic PDFs

The mES distribution for TM events is parametrized as

f(x = mES) = exp

[

− (x−m)2

2σ2
± + α±(x−m)2

]

, (4.19)

where m, the mean and σ±, the high and low side widths, are floated in the fit. For
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SCF events we use a smoothed histogram taken from the MC simulation.
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Figure 4.9: The mean (left) and RMS (right) of ∆E ′ for TM signal events as a
function of the Dalitz Plot.

∆E ′ is correlated with the Dalitz plot variables for TM events. The source of this

correlation is the underestimation of σ∆E for slow π0s and is illustrated in Fig. 4.2.

Though ∆E ′ was developed explicitly to correct for this correlation, the fundamen-

tally non-Gaussian shape of ∆E/σ∆E is difficult to uncorrelated form the Dalitz Plot

perfectly as shown in Fig. 4.9. To account for the remaining correlation, we choose

the combination of a Gaussian and 1st order polynomial PDF for ∆E ′:

f(x = ∆E ′) = exp

[

−(x−m)2

2σ2

]

+ ax+ b, (4.20)

m = m0 +m1mK+π−, σ = σ0 + σ1mK+π− ,

a = a0 + a1mK+π−, b = b0 + b1mK+π−.

The mean and standard deviation of the Gaussian and slope of the polynomial vary

linearly with m2
K±π∓ as shown in Eq. (4.20). The intercept and slope parameters,

a0,1, b0,1, m0,1, σ0,1 are floated in the fit. A non-parametric shape taken from the MC

simulation is used as the SCF ∆E ′ PDF.
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Backgrounds

We use the Argus function [36]

f(x =
mES

mmax
ES

) ∝ x
√

1 − x2e−ξ(1−x2), (4.21)

as the continuum mES PDF. The endpoint mmax
ES is fixed to 5.2897 GeV/c2 and ξ is

free in the fit. The ∆E ′ PDF is a linear polynomial whose slope is free to vary in the

fit. We use smoothed non-parametric distributions taken from the MC to describe

mES, and ∆E ′ for the B-background classes.

4.6.3 Neural Network PDFs

NN Output
0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.01

0.02

0.03

0.04

0.05

highmass
Entries  55201

Mean   0.7777

RMS    0.1219

Underflow       0

Overflow        8

Integral  5.519e+04

Figure 4.10: The NN output for events at low (solid) and high (dashed) ∆Dalitz.

The NN PDFs for TM, SCF and B-background events are non-parametric dis-

tributions taken from the MC. The shape of the NN distribution for continuum is

correlated with the event location in the Dalitz plot. The source of the NN correlation

with the Dalitz plot is the fact that events close to the borders of the Dalitz plot are

more jet like than those in the center of the Dalitz plot, where the three Mandel-

stam variables (invariant mass pairs) are of similar magnitude. Since the latter have

kinematics closer to a typical multi-body B-decay, they lead to increased (i.e., more
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signal-like) NN outputs than the former as shown in Fig. 4.10. The continuum NN

is thus correlated with the closest distance between the Dalitz position the event and

the boundary of the standard Dalitz plot, ∆Dalitz:

P(NN ; ∆Dalitz) = (1 −NN)k1 (4.22)

×(k2NN
2 + k3NN + k4),

ki = qi + pi · ∆Dalitz.

The ki are linear functions of ∆Dalitz where the qi and pi are varied in the likelihood

fit.

PDF parameters

The parameters of the PDFs are determined from a series of fits to the selected dataset

as described in Section D.4. The fitted parameters are shown in Table 4.5.

4.7 Fit Validation

Before fitting to data, the analysis is validated by fitting to pure toy MC samples gen-

erated from the PDF models supplied by the analysts and embedded toy MC samples

generated with full detector simulation. Fits are performed to MC samples generated

with the expected yields of signal, continuum, and B-backgrounds, fluctuated with

Poisson uncertainties. For an ensemble of fits, the average value of a fitted parameter

should be equal to the generated value. The distribution of the normalized residual

(pull)

px =
x−mx

σx
, (4.23)

is plotted for all fitted parameters x where mx is the generated value of the parameter

and σx is the per event error calculated from the minimization algorithm. Nominally

the definition of px implies a Gaussian distribution of mean 0 and width 1. A mean

value of px different from 0 indicates a bias in the fitting procedure, while a width
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Table 4.5: PDF shape parameters determined from fits to data.
Parameter Name Fit Result
m0(∆E

′) Signal 0.06 ± 0.05
m1(∆E

′) Signal −0.01 ± 0.004
σ0(∆E

′) Signal 1.011 ± 0.041
σ1(∆E

′) Signal −0.002 ± 0.004
a0(∆E

′) Signal −0.008 ± 0.027
Slope(∆E ′) Continuum −0.017 ± 0.007

m(mES) Signal 5279.21 ± 0.16 MeV/c2

σ−(mES) Signal 2.41 ± 0.14 MeV/c2

σ+(mES) Signal 2.92 ± 0.12 MeV/c2

Argus Slope(mES) Continuum −9.97 ± 5.84
q1(NN) Continuum 4.00 ± 0.12
p1(NN) Continuum −0.18 ± 0.11
q2(NN) Continuum 0.21 ± 0.01
p2(NN) Continuum −0.067 ± 0.003
q3(NN) Continuum −0.10 ± 0.06
p3(NN) Continuum 0.034 ± 0.039
q4(NN) Continuum 2.56 ± 0.23
p4(NN) Continuum −0.63 ± 0.14

different from 1 indicates that the error of the parameter is mis-estimated. Fits to

pure toy data sets guarantee that there is no bias intrinsic to the fitting machinery

developed for this analysis. Embedded toy data set fits ensure that the PDFs used in

the analysis are indeed good models of the distributions of the fit variables, and that

no un-corrected correlations exist among those variables. The MIGRAD routine of the

MINUIT minimization algorithm is employed to perform all fits in this analysis. The

HESSE routine is used for a calculation of the error matrix with non-gaussian errors.

4.7.1 Validation in Samples of Pure Toy MC

We generated 262 samples of pure toy events scaled to the full Runs 1-6 statistics

and expected resonance parameters. We fit each sample 20 times with randomized

initial parameters and select the fit with the lowest likelihood. The compiled results

of the fits, in terms of the fit fractions of resonances contributing to the Dalitz model,
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are summarized in Table 4.6. We observe slight pulls in the (Kπ)∗0π amplitudes, and

include them as a systematic error. The excited states, ρ(1450) and ρ(1700) are not

included in the model used to study pure toy fits.

Generated
Amplitude Fit Fraction (%) µPull σPull

〈

σ
〉

(%)
ρ+(770)K+ 22.8 −0.02 1.25 1.0
K∗+(892)π− 7.7 0.04 0.95 1.0
K∗0(892)π0 6.7 0.01 0.83 0.9
(Kπ)∗+0 π− 36.7 0.24 0.80 2.3
(Kπ)∗00 π

0 16.1 −0.23 0.97 1.6
NR 10.0 −0.14 1.05 1.5

Table 4.6: Summary of fit fractions for the resonant amplitudes from 262 toy datasets.
µPull and σPull denote the mean and width of the pull distribution respectively, while
the average error is denoted by

〈

σ
〉

.

4.7.2 Validation of the Fit Using Embedded MC

B-background samples are created by selecting events randomly from the background

SP modes listed in Table 4.3 and adding their expected yields. Due to limited statis-

tics only 100 such samples could be created with statistics corresponding to the ex-

pected yields, without severe over sampling. Since sufficient MC is unavailable for

the Generic B-background (Class 19), these events are generated as pure toy. The

B-background samples are then added to SP samples of signal events and pure toy

continuum, to create a 100 fully embedded samples. The results of fits to the fully

embedded datasets are summarized in Table 4.7. Plots of the pulls and errors for

the amplitudes and phases are shown in Fig. 4.11 - Fig. 4.17. Only small pulls are

observed for a few of the isobar parameters and these are quoted as systematic errors.

There is some indication that the errors returned from the fitting algorithm are under-

estimated for the isobar amplitudes in which case the quoted statistical uncertainty

of the measurement is conservative.
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Figure 4.11: (Kπ)∗+0 π− a (upper left), Φ (lower left), a (upper right) a (lower right)
Pull distributions of embedded toy fits with Gaussian curves overlaid.
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Generated
Amplitude Parameter Value µPull σPull

〈

σ
〉

a 35.36 0.11 0.61 7.42

(Kπ)∗+0 π− a 37.98 0.11 0.53 7.87

Φ -2.28 -0.32 0.94 0.34

Φ -2.96 -0.25 0.81 0.44
a 28.71 -0.07 0.59 6.05

(Kπ)∗00 π
0 a 24.21 -0.03 0.65 5.06

Φ 0.19 -0.10 0.91 0.33
Φ 0.40 0.03 0.89 0.46
a 0.75 0.09 0.60 0.16

K∗+(892)π− a 0.56 0.04 0.64 0.13

Φ 0.68 -0.28 0.96 0.39
Φ 0.58 -0.20 0.84 0.53
a 0.66 0.09 0.58 0.20

K∗0(892)π0 a 0.57 0.05 0.60 0.17

Φ 0.37 0.03 0.97 0.35
Φ 0.72 -0.04 0.83 0.51
a 11.30 0.34 0.73 2.84

NR
a 13.41 0.10 0.66 3.03

Φ 1.69 0.01 1.05 0.36

Φ 1.02 0.05 0.86 0.45
a 1.77 0.08 0.71 0.53

ρ−(1450)K+ a 1.39 -0.04 0.60 0.73

Φ -0.99 0.05 0.93 0.39
Φ -1.44 -0.12 0.77 0.68
a 0.83 -0.11 0.70 0.35

ρ−(1700)K+ a 0.61 -0.32 0.63 0.31

Φ -2.18 -0.15 0.98 0.47
Φ -2.14 0.01 0.69 0.87

ρ+(770)K+ a 0.83 -0.04 0.56 0.19

Table 4.7: Summary of fit results for the resonant amplitudes from 100 fully embedded
toy samples. µPull and σPull denote the mean and width of the pull distribution
respectively, while the average error is denoted by

〈

σ
〉

. The phases are given in
radians.
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Figure 4.12: (Kπ)∗00 π
0 a (upper left), Φ (lower left), a (upper right) a (lower right)

Pull distributions of embedded toy fits with Gaussian curves overlaid.
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Figure 4.13: K∗+(892)π− a (upper left), Φ (lower left), a (upper right) a (lower right)
Pull distributions of embedded toy fits with Gaussian curves overlaid.
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Figure 4.14: K∗0(892)π0 a (upper left), Φ (lower left), a (upper right) a (lower right)
Pull distributions of embedded toy fits with Gaussian curves overlaid.
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Figure 4.15: NR a (upper left), Φ (lower left), a (upper right) a (lower right) Pull
distributions of embedded toy fits with Gaussian curves overlaid.
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Figure 4.16: ρ−(1700)K+ a (upper left), Φ (lower left), a (upper right) a (lower right)
Pull distributions of embedded toy fits with Gaussian curves overlaid.
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Figure 4.17: ρ−(1450)K+ a (upper left), Φ (lower left), a (upper right) a (lower right)
Pull distributions of embedded toy fits with Gaussian curves overlaid.
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4.8 Fit Results

The maximum likelihood fit to the sample of 23268 selected B decays determines

the values of 34 amplitudes and phases, which include B0 → D−K+ and B0 →
D0π0 events, 18 PDF shape parameters (See Table 4.5), and the yields of signal,

continuum, and B-background (classes 9, 10, 19 only) events. Those B-backgrounds

not determined in the fit are fixed to their expected yields and varied systematically as

an additional source of systematic error. The fit is repeated 1000 times, starting from

input parameter values randomly chosen within wide ranges of one order of magnitude

above and below the nominal values for the amplitudes and within the [−π, π] interval

for the phases. Four solutions corresponding to different arrangements of interference

among the resonances in the Dalitz model are found. The best solution is separated

by 5.43 units of NLL (3.3σ) from the next best solutions. The fitted phases Φ, Φ, CP

asymmetries and fit fractions are given in Table 4.9 for the four solutions. The fitted

event yields for the best solution is given in Table 4.8.

Table 4.8: Fitted event yields for the best solution. Errors are statistical only. The
continuum background yields are separated by tagging category.

Parameter Name Fit Result
NLL −203025.722
N(B0 → K+π−π0) 4583 ± 107
N(class 10) 598 ± 56
N(class 11) 424 ± 77
N(class 19) 564 ± 112
N(cont-KaonI) 725 ± 32
N(cont-KaonII) 2194 ± 53
N(cont-KaonPion) 1982 ± 51
N(cont-Lepton) 54 ± 11
N(cont-NoTag) 7053 ± 92
N(cont-Other) 1896 ± 48
N(cont-Pion) 2380 ± 55

The validity of the fit is checked by generating 100 toy experiments with the fitted

yields and isobars of the best solution and observing that the NLL of the data fit is

consistent with the distribution of NLLs in the toy experiments. The distribution
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of likelihood ratios for data and toy experiments are in good agreement as shown

in Fig. 4.18. The goodness of fit to the Dalitz distribution is calculated with a χ2 of

772 for 644 bins where at least 25 events are guaranteed to exits in each bin.
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Figure 4.18: Distributions of the log likelihood for all events (left) and for events
excluding the D region 1.8 < mK+π− < 1.9 GeV (right). The data are shown as
points with error bars. The solid histograms show the projection of the fit result
where the signal model includes both TM and SCF contributions.. The dark and
light gray shaded areas represent the B background and continuum, respectively.

The Dalitz plot mass distributions are shown in Fig. 4.23. The ρ−, K∗+, and K∗0

are clearly visible in an enlargement of the low-mass resonance region (masses below

2.0 GeV/c2) in the mπ−π0 , mK+π0 , mK+π− distributions respectively. The distribu-

tions of the discriminating variables (mES, ∆E ′and NN) are shown in Fig. 4.19 and

projections of the Dalitz coordinates are shown in Fig. 4.20.



CHAPTER 4. DALITZ ANALYSIS OF THE DECAY B0 → K+π−π0 94

NN output

0.6 0.7 0.8 0.9 1 1.1 1.2

E
v

en
ts

/(
0

.0
1

 )

0

200

400

600

800

1000

1200 Data

Signal Model

B Background

Continuum

)2 (GeV/cESm

5.272 5.274 5.276 5.278 5.28 5.282 5.284 5.286 5.288
)

2
E

v
en

ts
/(

0
.6

4
 M

eV
/c

0

200

400

600

800

1000

1200

1400

1600

 E’∆

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E
v

en
ts

/(
0

.1
6

 )

0

200

400

600

800

1000

1200

Figure 4.19: NN distributions (top left) mES (top right) and ∆E ′ (bottom). The data
are shown as points with error bars. The solid histograms show the projection of the
fit result where the signal model includes both TM and SCF contributions. The dark
and light gray shaded areas represent the B-background and continuum, respectively.
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Table 4.9: Results of the four solutions of the fit. The fractions are the CP-averaged
isobar fractions (FFk). The phases Φ for the B0 decays and Φ for the B0 decays are
measured relative to B0(B0) → ρ∓π± in radians. The uncertainties are statistical
only. The correlation matrix for Solution-I is given in Appendix C

Amplitude Parameter Solution-I Solution-II Solution-III Solution-IV
NLL -203025.722 -203020.2928 -203018.6791 -203013.3964

ρ−(770)K+ FF (%) 13.77 ± 0.91 13.78 ± 1.56 13.42 ± 1.30 13.44 ± 2.29
ACP 0.20 ± 0.09 0.19 ± 0.11 0.18 ± 0.09 0.17 ± 0.12

Φ 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed)
Φ 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed)

ρ−(1450)K+ FF (%) 4.96 ± 2.17 4.18 ± 3.02 5.09 ± 1.49 4.29 ± 3.29
ACP -0.10 ± 0.32 0.09 ± 0.54 -0.09 ± 0.33 0.10 ± 0.55
Φ 1.30 ± 0.33 1.29 ± 0.32 1.25 ± 0.35 1.24 ± 0.37
Φ 2.20 ± 0.43 1.57 ± 0.39 2.20 ± 0.43 1.56 ± 0.38

ρ−(1700)K+ FF (%) 1.31 ± 1.18 0.54 ± 1.51 1.12 ± 0.88 0.32 ± 1.54
ACP -0.36 ± 0.57 0.61 ± 1.72 -0.62 ± 0.50 0.36 ± 2.37
Φ 0.32 ± 0.63 0.30 ± 0.61 -0.27 ± 0.83 -0.29 ± 0.99
Φ 0.87 ± 0.67 0.61 ± 2.86 0.88 ± 0.60 0.60 ± 2.78

K∗+(892)π− FF (%) 5.51 ± 0.79 5.53 ± 0.72 5.87 ± 1.01 5.89 ± 0.67
ACP -0.29 ± 0.11 -0.29 ± 0.11 -0.21 ± 0.11 -0.21 ± 0.11
Φ 0.58 ± 0.38 0.57 ± 0.38 3.01 ± 0.35 3.00 ± 0.37
Φ 0.68 ± 0.43 2.72 ± 0.44 0.68 ± 0.43 2.73 ± 0.44

K∗0(892)π0 FF (%) 4.59 ± 0.75 4.61 ± 0.68 4.65 ± 0.86 4.66 ± 0.63
ACP -0.15 ± 0.12 -0.16 ± 0.12 -0.14 ± 0.12 -0.14 ± 0.12
Φ 0.51 ± 0.32 0.50 ± 0.32 0.16 ± 0.32 0.16 ± 0.33
Φ 0.30 ± 0.35 0.29 ± 0.37 0.29 ± 0.36 0.28 ± 0.37

(Kπ)∗+0 π− FF (%) 23.69 ± 1.57 24.88 ± 2.25 24.90 ± 2.31 26.11 ± 1.27
ACP 0.07 ± 0.14 0.02 ± 0.15 0.12 ± 0.05 0.07 ± 0.05
Φ -2.92 ± 0.28 -2.93 ± 0.28 -0.66 ± 0.31 -0.67 ± 0.34
Φ -2.27 ± 0.38 -0.34 ± 0.44 -2.27 ± 0.38 -0.33 ± 0.43

(Kπ)∗00 π0 FF (%) 11.96 ± 1.58 17.86 ± 1.76 16.67 ± 1.61 22.71 ± 1.48
ACP -0.15 ± 0.10 -0.43 ± 0.08 0.18 ± 0.07 -0.13 ± 0.06
Φ 0.22 ± 0.29 0.22 ± 0.30 0.01 ± 0.24 0.01 ± 0.25
Φ 0.18 ± 0.30 0.36 ± 0.30 0.17 ± 0.30 0.36 ± 0.30

NR FF (%) 5.86 ± 1.11 4.06 ± 0.83 5.25 ± 1.07 3.45 ± 1.02
ACP 0.10 ± 0.16 0.62 ± 0.20 -0.01 ± 0.22 0.53 ± 0.24
Φ 0.84 ± 0.25 0.83 ± 0.25 -1.13 ± 0.27 -1.14 ± 0.29
Φ 1.52 ± 0.36 -1.07 ± 0.39 1.52 ± 0.36 -1.06 ± 0.38

D
0
π0 FF (%) 20.86 ± 3.69 20.71 ± 2.03 20.66 ± 1.10 20.51 ± 0.99

ACP 0.02 ± 0.04 0.03 ± 0.14 0.01 ± 0.11 0.02 ± 0.04
D−K+ FF (%) 0.94 ± 0.26 0.98 ± 0.28 1.00 ± 0.29 1.03 ± 0.28

ACP 0.19 ± 0.27 0.15 ± 0.25 0.23 ± 0.23 0.20 ± 0.24
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Figure 4.20: Dalitz projections for: m′(left), θ′(right). The data are shown as points
with error bars. The solid histograms show the projection of the fit result where
the signal model includes both TM and SCF contributions. The dark and light gray
shaded areas represent the B-background and continuum, respectively.

)2 (GeV/c-π+K
m

1 1.5 2 2.5 3 3.5 4 4.5 5

)
2

E
v

en
ts

/(
4

6
.8

0
 M

eV
/c

0

200

400

600

800

1000
Data

Signal Model

B Background

Continuum

)2 (GeV/c-π+K
m

0.6 0.8 1 1.2 1.4 1.6 1.8

)
2

E
v

en
ts

/(
2

4
.0

0
 M

eV
/c

0

50

100

150

200

250

300

350

400

450

Figure 4.21: mK+π− mass distributions for all events (left) and for events in mK+π− <
1.8 GeV/c2 (right). The data are shown as points with error bars. The solid histograms
show the projection of the fit result where the signal model includes both TM and
SCF contributions. The dark and light gray shaded areas represent the B-background
and continuum, respectively.
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Figure 4.22: mπ−π0 mass distributions for all events (left) and mπ−π0 < 2 GeV/c2

(right). The data are shown as points with error bars. The solid histograms show
the projection of the fit result where the signal model includes both TM and SCF
contributions. The dark and light gray shaded areas represent the B background and
continuum, respectively.
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Figure 4.23: mK+π0 mass distributions for all events (left) and mK+π0 < 1.8 GeV/c2

(right). The data are shown as points with error bars. The solid histograms show
the projection of the fit result where the signal model includes both TM and SCF
contributions. The dark and light gray shaded areas represent the B background and
continuum, respectively.
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4.9 Estimation of Systematic Uncertainty

In order to estimate the systematic uncertainty inherent in the analysis ansatz we per-

form a series of fits to the dataset with models which vary from those in the nominal

fitting procedure. For each parameter of interest (FF , ACP, Φ), the positive (nega-

tive) deviations from each effect are summed in quadrature to obtain total upward

(downward) systematic errors. We vary the number of resonances contributing to the

signal model, the line shape parameters of the resonances in the signal model, the

yields of the nominally fixed B-backgrounds, and the shape of the modeled continuum

Dalitz distribution. The intrinsic bias of the fit as measured in MC studies, is also

included as a source of systematic error. Tables of the systematic uncertainties are

shown in Table 4.12 - Table 4.14.

4.9.1 Dalitz Model

In addition to the resonances contributing to the nominal Dalitz model (Section 2.5.1)

it is also possible for the K∗0
2 (1430)π0, K∗+

2 (1430)π−, K∗0(1680)π0 and K∗+(1680)π−

intermediate decay amplitudes to contribute to the K+π−π0 final state. Since these

decays have small branching fractions and since the amount of time required for a fit

to data to converge is a rapidly increasing function of the number of fitted parameters,

we choose not to include them in the nominal Dalitz model. We estimate the effect of

excluding the contributions of the additional excited K∗ resonances by generating a

sample of 100 pure toy datasets including models of the additional K∗ contributions

and fitting these datasets with only the nominal Dalitz model.

In order to obtain the values of the amplitudes and phases for the additional K∗

states used to generate the toy samples, we perform a single fit to the dataset where

the additional K∗ states have been included. The FF , ACP, and phases determined

from this fit for the additional resonances are shown in Table 4.11. The improvement

in the NLL of the fit shown in Table 4.11 is due to the presence of the additional

resonances in the Dalitz model and is not due to the discovery of a more likely inter-

ference pattern of the nominal resonances. The significant improvement in likelihood

is observed only when all of the additional resonances are included in the fit and does
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Table 4.10: The line shape parameters of the additional K∗0
2 (1430), K∗+

2 (1430),
K∗0(1680) and K∗+(1680) resonances.

Resonance Line Shape Parameters
Spin-J = 1

K∗0(1680) RBW M = 1717 MeV/c2

Γ0 = 322 MeV
R = 1.5 ( GeV)−1

K∗+(1680) RBW M = 1717 MeV/c2

Γ0 = 322 MeV
R = 1.5 ( GeV)−1

Spin-J = 2

K∗0
2 (1430) RBW M = 1432 MeV/c2

Γ0 = 109 MeV
R = 1.5 ( GeV)−1

K∗+
2 (1430) RBW M = 1425 MeV/c2

Γ0 = 98.5 MeV
R = 1.5 ( GeV)−1

not reflect observation of any single resonant contribution.

We use the magnitues and phases for theK∗0
2 (1430)π0, K∗+

2 (1430)π−,K∗0(1680)π0

and K∗+(1680)π− amplitudes given in Table 4.11 to generate 100 pure toy datasets

including these resonant contributions. We then fit these data sets with only the

nominal model of resonances. The average observed shifts in the nominal magnitudes

and phases are recorded as Dalitz Model systematic uncertainties.

4.9.2 Line Shapes

Since recomputing the numerical Dalitz plot integrals in Section 4.6.1 is time con-

suming, we fix the parameters of the line shapes to the values given in Table 2.5 in

fits to data. We vary the masses and widths of the nominal resonances within their

measured uncertainties [13] in a series of fits to data by ±1σ to estimate the uncer-

tainty due to not fitting for the resonant masses and widths. Observed shifts in the
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Table 4.11: Results of the fit to data including the K∗0
2 (1430)π0, K∗+

2 (1430)π−,
K∗0(1680)π0 and K∗+(1680)π− amplitudes. The fractions are the CP-averaged iso-
bar fractions (FFk). The phases Φ for the B0 decays and Φ for the B0 decays are
measured relative to B0(B0) → ρ∓π± in radians. The uncertainties are statistical
only.

Amplitude Parameter Additional K∗ Solution
NLL -203049.546

K∗+(1680)π− FF (%) 0.84 ± 0.70
ACP -1.00 +2.00

−0.00

Φ -1.96 ± 3.14
Φ -2.14 ± 0.47

K∗0(1680)π0 FF (%) 0.66 ± 0.39
ACP -0.02 ± 0.51
Φ 1.34 ± 0.99
Φ 1.42 ± 0.57

K∗+
2 (1430)π− FF (%) 1.00 ± 0.80

ACP -0.47 ± 0.67
Φ -0.51 ± 0.55
Φ -0.21 ± 0.37

K∗0
2 (1430)π0 FF (%) 0.81 ± 0.59

ACP -0.70 ± 0.52
Φ 2.16 ± 0.74
Φ 2.18 ± 0.35

physical parameters are recorded as Line Shape systematic uncertainties.

4.9.3 B-backgrounds

Unless otherwise noted, the yields of the B-background contributions to the dataset

are fixed to their expected values given the measured branching fractions and effi-

ciencies shown in Table 4.3. To estimate the systematic uncertainty due to fixing

these yields, we float each of the B-background contributions in a series of fits to

data. We record the varations in the physical parameters as B-background systematic

uncertainties.
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4.9.4 Continuum Dalitz Model

Continuum events are the dominant background contributing 69% of the total 23468

selected events. Consequently, mis-modeling of the continuum Dalitz distribution

is an important source of systematic uncertainty in the measured amplitudes and

phases of the contributions to the signal Dalitz model. We estimate the systematic

uncertainty due to continuum Dalitz distribution mis-modeling due to both the kine-

matic differences between events selected inside and outside the mES signal region

and mis-estimation of the true Dalitz distribution from the smoothing procedure.

Due to the limited amount of off-peak events recorded at BABAR the continuum

Dalitz distribution is modeled from the mES sideband as described in Section 4.6.1.

Events in the mES sideband are necessarily higher momentum than those near the

signal peak and hence have a different Dalitz distribution. To quantify the effect of

modeling themES on-peak continuum Dalitz distribution with off-peak events we use a

high statistics sample of qq MC to create a model of the continuum Dalitz distribution

from the mES signal region. We then generate a sample of 100 toy datasets with

the mES signal region continuum Dalitz model and fit each of these with both the

signal region and off-peak models of the continuum Dalitz distribution. The average

difference observed in the physical parameters between fits with each of the continuum

Dalitz models is recorded as the Continuum Dalitz systematic uncertainty.

In order to study the effect of mis-modeling of the shape of the continuum Dalitz

distribution with the nominal smoothing parameter, we recreate the continuum Dalitz

PDF with smoothing parameters, 0.1 and 0.5. We refit the data using these alternate

continuum Dalitz PDFs and record the variations in the physical resonance parame-

ters as a PDF Shape Parameter systematic.

4.9.5 SCF Fraction

The SCF fractions listed in Table 4.4 are determined from high statistics samples of

MC which may not perfectly reflect the fraction of mis-reconstructed events in data.

We estimate effect of mis-estimating the SCF fractions in MC by are varying their

nominal values by ±10% in a pair of fits to data. The average shift in the physical
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parameters is recorded as a SCF Fraction systematic.

4.9.6 PID

The efficiency to identify a particle correctly (See Fig. 3.12) is slightly different for

MC and data. Since the efficiency across the Dalitz plot is measured in MC events we

must apply a weighting (ǫData/ǫMC) to each reconstructed event in order to produce a

corrected Dalitz plot efficiency. We refit the data with the PID corrected Dalitz plot

efficiecy and record the shift in the physical parameters as a PID systematic.

4.9.7 Fit Bias

The correlations between variables in the fit cannot be perfectly removed and result

in a small Fit Bias intrinsic to the analysis procedure. We record the pulls in physical

parameters shown in Table 4.7 as a source of systematic uncertainty.
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Table 4.12: Summary of systematic uncertainties associated with the B0 → ρ−K+

amplitudes. Uncertainties in the phases are given in radians
Amplitude Fit Fraction (%) ACP Φ Φ
ρ−(770)K+ DalitzModel 0.742 0.071 fixed fixed

B Backgrounds 0.048 0.005 fixed fixed
PDF Shape Parameters 0.459 0.022 fixed fixed

SCF Fraction 0.007 0.004 fixed fixed
PID Systematics 0.084 0.009 fixed fixed

LineShapes 0.232 0.013 fixed fixed
Fit Bias 0.436 0.007 fixed fixed

Continuum Dalitz 0.180 0.008 fixed fixed
Total 1.024 0.076 fixed fixed

ρ−(1450)K+ DalitzModel 0.778 0.016 0.444 0.084
B Backgrounds 0.148 0.009 0.009 0.016

PDF Shape Parameters 0.371 0.042 0.010 0.038
SCF Fraction 0.122 0.008 0.007 0.020

PID Systematics 0.200 0.026 0.013 0.008
LineShapes 0.496 0.044 0.092 0.094

Fit Bias 0.125 0.049 0.027 0.076
Continuum Dalitz 0.005 0.030 0.017 0.055

Total 1.040 0.090 0.455 0.164

ρ−(1700)K+ DalitzModel 0.239 0.067 0.285 0.214
B Backgrounds 0.071 0.012 0.034 0.060

PDF Shape Parameters 0.075 0.033 0.046 0.008
SCF Fraction 0.019 0.011 0.008 0.016

PID Systematics 0.028 0.021 0.026 0.007
LineShapes 0.411 0.169 0.183 0.149

Fit Bias 0.523 0.124 0.074 0.013
Continuum Dalitz 0.079 0.021 0.005 0.072

Total 0.720 0.225 0.352 0.278
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Table 4.13: Summary of systematic uncertainties associated with the B0 → K∗π
amplitudes. Uncertainties in the phases are given in radians

Amplitude Fit Fraction (%) ACP Φ Φ
K∗+(892)π− DalitzModel 0.045 0.008 0.281 0.327

B Backgrounds 0.038 0.001 0.016 0.017
PDF Shape Parameters 0.076 0.014 0.053 0.020

SCF Fraction 0.002 0.001 0.014 0.012
PID Systematics 0.041 0.000 0.006 0.015

LineShapes 0.077 0.007 0.165 0.076
Fit Bias 0.052 0.013 0.109 0.106

Continuum Dalitz 0.081 0.001 0.035 0.023
Total 0.162 0.022 0.350 0.354

(Kπ)∗+0 DalitzModel 1.082 0.003 0.324 0.626
B Backgrounds 0.093 0.001 0.013 0.015

PDF Shape Parameters 0.488 0.002 0.056 0.014
SCF Fraction 0.013 0.001 0.015 0.012

PID Systematics 0.277 0.001 0.002 0.009
LineShapes 0.207 0.005 0.144 0.060

Fit Bias 0.724 0.000 0.106 0.111
Continuum Dalitz 0.698 0.002 0.077 0.093

Total 1.597 0.007 0.382 0.646

K∗0(892)π0 DalitzModel 0.098 0.035 0.038 0.005
B Backgrounds 0.037 0.002 0.013 0.013

PDF Shape Parameters 0.061 0.004 0.023 0.011
SCF Fraction 0.012 0.001 0.002 0.004

PID Systematics 0.043 0.003 0.016 0.002
LineShapes 0.103 0.009 0.067 0.071

Fit Bias 0.244 0.013 0.023 0.012
Continuum Dalitz 0.197 0.006 0.112 0.083

Total 0.354 0.040 0.141 0.112

(Kπ)∗00 DalitzModel 0.544 0.020 0.242 0.158
B Backgrounds 0.112 0.006 0.014 0.020

PDF Shape Parameters 0.026 0.008 0.025 0.023
SCF Fraction 0.123 0.005 0.004 0.008

PID Systematics 0.129 0.004 0.001 0.005
LineShapes 0.370 0.026 0.065 0.099

Fit Bias 0.624 0.008 0.022 0.023
Continuum Dalitz 0.900 0.024 0.106 0.070

Total 1.295 0.044 0.274 0.202
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Table 4.14: Summary of systematic uncertainties associated with the NR amplitude
and non-interfering D contributions. Uncertainties in the phases are given in radians

Amplitude Fit Fraction (%) ACP Φ Φ
NR DalitzModel 0.131 0.016 0.226 0.018

B Backgrounds 0.057 0.002 0.010 0.015
PDF Shape Parameters 0.296 0.018 0.019 0.051

SCF Fraction 0.007 0.001 0.007 0.020
PID Systematics 0.086 0.003 0.000 0.009

LineShapes 0.270 0.025 0.138 0.073
Fit Bias 0.375 0.066 0.010 0.033

Continuum Dalitz 0.243 0.006 0.024 0.044
Total 0.623 0.075 0.267 0.109

D
0
π0 DalitzModel 0.233 0.000 - -

B Backgrounds 0.053 0.000 - -
PDF Shape Parameters 1.065 0.000 - -

SCF Fraction 0.062 0.000 - -
PID Systematics 0.026 0.000 - -

LineShapes 0.225 0.000 - -
Fit Bias 0.457 0.002 - -

Continuum Dalitz 0.401 0.000 - -
Total 1.271 0.002 - -

D−K+ DalitzModel 0.011 0.000 - -
B Backgrounds 0.002 0.000 - -

PDF Shape Parameters 0.048 0.000 - -
SCF Fraction 0.003 0.000 - -

PID Systematics 0.001 0.000 - -
LineShapes 0.010 0.000 - -

Fit Bias 0.314 0.051 - -
Continuum Dalitz 0.018 0.000 - -

Total 0.318 0.051 - -



Chapter 5

Results

In this section we combine the results of the B0 → K+π−π0 and B0 → KSπ
+π−

Dalitz analyses to produce a constraint on the CKM triangle and measurement of

the K∗+(892)π− CP asymmetry. The B0 → KSπ
+π− Dalitz analysis using the

BABAR dataset is presented in [31]. We summarize the results of the B0 → K+π−π0

Dalitz analysis and proceed to produce a measurement of ∆φ 3
2
. This result is com-

bined with measurements of ∆φK∗π [31] and r 3
2

(See Appendix A) to constrain the

CKM triangle. Measurements of the K∗+(892)π− CP asymmetry from the B0 →
K+π−π0 and B0 → KSπ

+π− Dalitz analyses are combined to show evidence of direct

CP violation in B0 → K∗+(892)π− decays.

The results of the B0 → K+π−π0 Dalitz analysis are summarized in Table 5.1.

The total branching fractions are calculated from the fit fractions via the relationship

Bk = FFk ×
NSig

NBB

〈

ǫ
〉

DP

, (5.1)

where we assume isospin symmetry in K∗ → Kπ decays. In addition to the system-

atic errors described in Section 4.9 we account for a 1.1% systematic error from B

counting, a 2% systematic from π0 efficiency, and a 0.236% systematic from tracking

efficiency in the calculation of the branching fraction systematic uncertainties. When

contributions from B0 → D−K+ and B0 → D0π0 decays are excluded, we measure a

signal yield of 3670± 96 (stat.)± 94 (syst.) events corresponding to a B0 → K+π−π0

106
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branching fraction of B(B0 → K+π−π0) = 38.5 ± 1.0 (stat.) ± 3.9 (syst.) × 10−6.
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5.1 Constraint on the Apex of the CKM triangle

The expression for ∆φ 3
2

in Eq. (2.45) is used to impose a constraint in a series of fits

to the selected B0 → K+π−π0 dataset. Values of ∆φ 3
2

are constrained in increments

of 3.6◦ where 30 fits for randomized initial values of the isobars are completed for each

point. The minimum value of the NLL for the 30 fits is recorded at each point and

twice the change in the NLL relative to the most likely value of ∆φ 3
2

is plotted against

the constrained values of ∆φ 3
2

(See Fig. 5.1). The amplitudes AK∗0π0 and AK∗+π−

represent the total amplitudes for K∗ decays. The B0 → K+π−π0 Dalitz analysis

reconstructs only the final state K+π−π0 so we must relate the partial amplitudes

measured, to the total amplitude via isospin in order to evaluate Eq. (2.45) correctly.

√

2

3
AK∗0 = AK∗0→K+π− (5.2)

√

1

3
AK∗+ = AK∗+→K+π0

We measure ∆φ 3
2

= −7+15
−18 (stat.) ± 15 (syst.)◦. It should be noted that the value of

∆φK∗π reported in [31] does not remove the mixing phase contribution 2β = 42.2◦ [34]

which must be subtracted in order to measure Φ 3
2
. The likelihood scans of ∆φ 3

2
and

∆φK∗π are combined using Eq. (2.44) to produce a likelihood scan of the phase Φ 3
2

in Fig. 5.1. We exclude the range −81◦ < Φ 3
2
< −35◦ at the level of 2σ.

At present we do not use Eq. (2.47) to measure Φ 3
2

from B0 → ρK decay amplitudes,

however we do produce scans of the phase difference between ρK andK∗π amplitudes,

∆Φρ−K+ = Φρ−K+−ΦK∗+π− and ∆Φρ+K− = Φρ+K−−ΦK∗−π+ using the B0 → K+π−π0

Dalitz analysis in Fig. 5.2. We measure ∆Φρ−K+ = −33± 22 (stat.)± 20 (syst.)◦ and

∆Φρ+K− = −39 ± 25 (stat.) ± 20 (syst.)◦ (See Table 5.1).

Finally, we use the measurement of Φ 3
2

shown in Fig. 5.1, the measurement of r 3
2
,

and Eq. (2.27) to produce a constraint on the apex of the CKM triangle. Two degen-

erate bands of likelihood are clearly visible as a result of the statistical degeneracy

in the measurement of ∆φK∗π in the B0 → KSπ
+π− analysis. The addition of data

from the BELLE experiment could eliminate this degeneracy significantly improving
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Figure 5.1: Likelihood Scans for ∆φ 3
2

(left) and Φ 3
2

(right). The statistical uncertainty
is shown in dashed lines and the total uncertainty is shown in solid. We measure
∆φ 3

2
= −7+15

−18 (stat.) ± 15 (syst.)◦ and exclude the range −81◦ < Φ 3
2
< −35◦ at the

level of 2σ.

the constraint.

5.2 Evidence of direct CP violation in B0 → K∗+π−

decays

Measurements of direct CP violation are made from analyses of both the B0 →
K+π−π0 and B0 → KSπ

+π− Dalitz plots. Since these analyses are independent up

to small detector effects the measurements of ACP may be combined for intermediate

resonances common to both. The combined measurement of direct CP violation for

B0 → K∗+(892)π− decays is found to be ACP(K∗+π−) = −0.24 ± 0.07 (stat.) ±
0.02 (syst.). Likelihood scans illustrating the measurement of ACP(K∗+π−) in B0 →
K+π−π0 and the combined result including the measurement in B0 → KSπ

+π− are

shown in Fig. 5.4.
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Figure 5.2: Likelihood Scans for ∆Φρ−K+ (left) and ∆Φρ+K− (right). The statistical
uncertainty is shown in dashed lines and the total uncertainty is shown in solid. We
measure ∆Φρ−K+ = −33± 22 (stat.)± 20 (syst.)◦ and ∆Φρ+K− = −39± 25 (stat.)±
20 (syst.)◦.

5.3 Conclusions

In summary, we analyze the Dalitz distribution for B0 → K+π−π0 decays from a

sample of 454 million BB pairs. We determine the branching fractions, CP asym-

metries and phase differences of seven intermediate resonances in addition to a NR

contribution. Combining this information with the phase difference ∆φK∗π [31] we

exclude the range −81◦ < Φ 3
2
< −35◦ at the level of 2σ, via K∗(892)π amplitudes. We

additionally measure the ratio of hadronic matrix elements r 3
2

= (0.21±0.13 (stat.) ±
0.77 (syst.) ± 0.06 (theo.)) ± i(1.45 ± 0.35 (stat.) ± 0.77 (syst.) ± 0.44 (theo.)) as

described in Appendix A. We combine the measurements of Φ 3
2

and r 3
2

to produce a

constraint on the CKM triangle. We observe a constraint consistent with the exist-

ing world average. Finally, we find evidence of direct CP violation in B0 → K∗+π−

decays, ACP(K∗+π−) = −0.24 ± 0.07 (stat.) ± 0.02 (syst.), combining measurements

from the B0 → K+π−π0 and B0 → KSπ
+π− [31] Dalitz analyses.
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Figure 5.3: The constraint of the apex of the CKM triangle given in Eq. 2.27 for the
measured values of Φ 3

2
and r 3

2
in
√

2log(L) = 1, 2 contours (darkest to lightest). The

⋆ indicates the world average value of the apex of the CKM triangle [7].
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Figure 5.4: Likelihood Scans for ACP(K∗+(892)π−) using only the B0 → K+π−π0

analysis (left) and the combined measurement with the B0 → KSπ
+π− analysis

(right). The statistical uncertainty is shown in dashed lines and the total uncertainty
is shown in solid. We measure ACP(K∗+π−) = −0.24 ± 0.07 (stat.) ± 0.02 (syst.)
combining measurements from both B0 → K+π−π0 and B0 → KSπ

+π− analyses
(left).



Appendix A

Measurement of r3
2

In this section we present a measurement of the ratio of hadronic matrix elements r 3
2
,

necessary to produce a constraint on the CKM triangle from measurements of Φ 3
2
.

The expression given in Eq. (2.30) relates r 3
2

to measurable B+ decay amplitudes. It

is important to note that for a general K∗π intermediate state, Eq. (2.30) must be

modified by replacing the B+ → (ρπ)+ amplitudes with B+ → (ρ′π)+ amplitudes,

where the ρ′ are the I = 1 states in the same SU(3) octet as the K∗. If a ρK

intermediate state is used to measure Φ 3
2

then the corresponding value of r 3
2

is given by

mulitiplying the expression in Eq. (2.30) by −1. Branching fractions and asymmetries

relevant in evaluating Eq. (2.30) are shown in Table A.1.

A.1 Strategy

The expression for r 3
2

in terms of B+ decay amplitudes is given in Eq. (2.30):

r 3
2

=
[Aρ+π0 −Aρ0π+ ] −

√
2[A

K∗+K
0 −A

K+K
∗0]

Aρ+π0 + Aρ0π+

. (A.1)

We seek to measure r 3
2

via the simplified expression:

r 3
2
≡ Aρ+π0 − Aρ0π+

Aρ+π0 + Aρ0π+

, (A.2)

114
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Table A.1: CP-averaged Branching fractions (B) and CP asymmetries for B → ρπ
and B → K∗K decays taken from [34]. Upper limits are quoted for those branching
ratios consistent with 0.

Decay Mode B (×10−6) ACP

B+ → ρ0π+ 8.3+1.2
−1.3 0.18+0.09

−0.17

ρ+π0 10.9+1.4
−1.5 0.02 ± 0.11

K+K
∗0

< 1.1 -
KSKSπ

+ < 0.51 -

K+K
0
π0 < 24 -

B0 → ρ±π∓ 23.0 ± 2.3 -
ρ0π0 2.0 ± 0.1 -

where the amplitude ratio

√
2
A

K∗+K
0 − A

K+K
∗0

Aρ+π0 + Aρ0π+

, (A.3)

will be estimated as a systematic error for both the real and imaginary parts of r 3
2
.

This ansatz is justified since the central value for B(B+ → K+K
∗0

) = 0.6±0.3(stat.)±
0.2(syst.) × 10−6 [37] is small compared with the ρπ branching fractions. Similarly,

the B+ → K∗+K
0

branching fraction, calculated from B(B+ → KSKSπ
+) = 0.25 ±

0.24(stat.) ± 0.09(syst.) × 10−6 [38], is also relatively small.

In order to exploit Eq. A.2 to meausre r 3
2

we must measure the magnitudes and

phase differences of the B+ → (ρπ)+ amplitudes. Since the amplitudes do not inter-

fere, we can only measure their phase difference indirectly via an isospin pentagon

relation:

Aρ+π0 + Aρ0π+ =
1√
2
(Aρ+π− + Aρ−π+) +

√
2Aρ0π0. (A.4)

Eq. A.2 may be used to derive a system of two equations that constrain r 3
2

in terms

of observable amplitudes:
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Im(r 3
2
)2 +

(

Re(r 3
2
) − |Aρ+π0 |2 + |Aρ0π+ |2

|Aρ+π0|2 − |Aρ0π+|2
)2

=
4|Aρ+π0 |2|Aρ0π+ |2

(|Aρ+π0 |2 − |Aρ0π+ |2)2
, (A.5)

Im(r 3
2
)2 + Re(r 3

2
)2 + 1 =

2(|Aρ+π0 |2 + |Aρ0π+ |2)
|Aρ+π0 + Aρ0π+ |2 . (A.6)

Note that relative phases appear in Eq. (A.6) only where Eq. (A.4) can be exploited

to measure the phase difference in B0 → (ρπ)0 amplitudes. The circular constraints

in Eq. (A.5) and Eq. (A.6) intersect in two points symmetric about the real axis, so

that r 3
2

is measured only up to the sign of its phase.

A.2 Measurement

Given the measured B+ → ρ+π0 and B+ → ρ0π+ branching fractions, (Table A.1)

only the right hand side of the isospin amplitude relationship in Eq. A.4 remains to be

determined. We perform a maximum likelihood fit to the bilinear interference terms

measured in the B0 → (ρπ)0 Dalitz analysis [39] with the full covariance matrix and

systematic uncertainties. The fitted amplitudes and phases are shown in Table A.2.

Table A.2: Fitted magnitudes and phases from the B0 → (ρπ)0 Dalitz analysis [39].
The phases Φ for the B0 decays and Φ for the B0 decays are measured relative to
B0 → ρ+π− in degrees. The error includes both the statistical and systematic errors
from [39]. The amplitudes are comparable to the bilinear interference terms in [39]
and are not scaled by the branching fractions listed in Table A.1.

|A| |A| Φ[◦] Φ[◦]

ρ+π− 0.87 ± 0.04 0.49 ± 0.07 0 (fixed) 1 ± 32
ρ−π+ 0.69 ± 0.06 0.87 ± 0.05 22 ± 30 −156 ± 30
ρ0π0 0.36 ± 0.07 0.40 ± 0.07 166 ± 40 −102 ± 43

We define the sum of amplitudes Aρ = Aρ+π0 +Aρ0π+ , and perform a series of fits

to produce a likelihood contour of |Aρ|2 vs. |Aρ|2 in Fig. A.1 where the B0 → (ρπ)0
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amplitudes in Table A.2 are scaled by the branching fractions in Table A.1.

2
ρA

0 5 10 15 20 25 30

-6
10×

2

ρ
A
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20

25

30

-6
10×

Figure A.1:
√

2log(L) = 1, 2, 3, 4, 5 contours (darkest to lightest) of |Aρ|2 vs. |Aρ|2.
The units are 10−6 and are directly comparable to branching fractions.

The expression for r 3
2

holds equally well for B → ρπ and B → ρπ amplitudes.

Consequently, we measure Re(r 3
2
) vs. Im(r 3

2
) in a series of fits constraining the values

of r 3
2

calculated with amplitudes and their CP conjugates to be the same. We correct

the values of |Aρ|2 and |Aρ|2 for the lifetime ratio τ+/τ 0 = 1.076 and include the

errors for the branching fractions and CP asymmetries for the B+ → (ρπ)+ decays

listed in Table A.1. Significance contours of r 3
2

are shown in Fig. A.2.

A.3 Systematics

We estimate the size of the systematic error due to ignoring the B+ → (K∗K)+

contributions in the expression for r 3
2

by generating a distribution of the real and

imaginary parts of Eq. (A.3) for 4×106, randomly sampled values of the B+ → K∗+K0
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Figure A.2:
√

2log(L) = 1, 2, 3, 4, 5 contours (darkest to lightest) of r 3
2
. The con-

tour on the right includes statistical errors in addition to a modest estimate of SU(3)
breaking (ms/mb ≈ 2.5%) while the contour on the right illustrates the more conser-
vative ms/ΛQCD ≈ 30% systematic uncertainty [16]. Note the contours are symmetric
about the real axis

and B+ → K+K∗0 amplitudes. Since no measurement of the relative phases exists, we

generate them with a flat prior distribution. The magnitudes of the B+ → (K∗K)+

amplitudes are generated using the central values, for B(B+ → K+K∗0), B(B+ →
KSKSπ

+) with gaussian errors. The value of |Aρ|2 is generated from the likelihood

contour shown in Fig. A.1. The distribution of toy events generated in this way is

used to produce a likelihood scan of the size of the systematic error. We plot twice

the change in the negative logarithm of the likelihood relative to the minimum for

the real and imaginary systematic uncertainty (See Eq. (A.3)) in Fig. A.3. Since the

expression of r 3
2

in terms of B+ decay amplitudes is the result of an SU(3) expansion

of operators and amplitudes, we quote a ms/ΛQCD ≈ 30% theory error due to SU(3)

breaking [16].

A.4 Conclusions

Finally, we measure the ratio of hadronic matrix elements:
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Figure A.3: Likelihood scan of the real part of Eq. (A.3) generated from 4 × 106

randomly sampled K∗+K
0

and K+K
∗0

phases. We take the deviation at 1σ, 0.77 as
a systematic error for the real and imaginary parts of r 3

2
.

Re(r 3
2
) = 0.21 ± 0.13 (stat.) ± 0.77 (syst.) ± 0.06 (theo.),

±Im(r 3
2
) = 1.45 ± 0.35 (stat.) ± 0.77 (syst.) ± 0.44 (theo.). (A.7)

We use Eq. (2.26) and the values of C = −0.27 ± 0.007 [16] and
√

ρ2 + η2 =

.405+0.035
−0.032 [7] to measure the I = 3

2
ratio of EWP penguin to tree amplitudes:

Re(PEWP/T ) = −0.21 ± 0.13 (stat.) ± 0.29 (syst.) ± 0.16 (theo.),

±Im(PEWP/T ) = −0.54 ± 0.05 (stat.) ± 0.29 (syst.) ± 0.04 (theo.). (A.8)

The K∗K systematic is the dominant source of error in this measurement and can

only be eliminated by measuring the K∗+K
0

and K+K
∗0

relative phases, though it

may be improved if smaller limits on the B+ → KSKSπ
+, K+K

∗0
branching fractions
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are set. A Dalitz analysis of the decay B+ → K+K
0
π0 would permit the measure-

ment of the relevant phase differences via the interference of the K∗+π0, K
∗0
π0, and

ρ+(1700)π0 intermediate states. Unfortunately, the small branching fractions for de-

cays via these states as shown in Table A.1, combined with the difficulty of efficiently

reconstructing the K+K
0
π0 final state make such an analysis impossible with the ex-

isting BABAR dataset. It is also not possible at this time to exploit measurements of

Φ 3
2

via the K∗(1430)π intermediate state since the B → a0(1450)π amplitudes have

not been measured.



Appendix B

B background PDFs

The classification of the B-backgrounds that contribute to the reconstructed K+π−π0

final state is described in Section 4.4. The PDFs in each of the discriminating variables

for these backgrounds are described by smoothed histograms with the exception of

those backgrounds whose Dalitz distribution contains a narrow resonance. The com-

posite PDF for each class is created by adding the event weighted contributions from

each of the decays contributing to that category.

121
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Figure B.1: Class 1 PDFs formES (upper left), ∆E ′ (upper right), NN output (middle
left), Dalitz Distribution (middle right), m′ Dalitz projection (lower left), θ′ Dalitz
projection (lower right). Histogram PDFs are displayed in solid black. Event weighted
MC is shown with red error bars.
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Figure B.2: Class 2 PDFs formES (upper left), ∆E ′ (upper right), NN output (middle
left), Dalitz Distribution (middle right), m′ Dalitz projection (lower left), θ′ Dalitz
projection (lower right). Histogram PDFs are displayed in solid black. Event weighted
MC is shown with red error bars.
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Figure B.3: Class 3 PDFs formES (upper left), ∆E ′ (upper right), NN output (middle
left), Dalitz Distribution (middle right), m′ Dalitz projection (lower left), θ′ Dalitz
projection (lower right). Histogram PDFs are displayed in solid black. Event weighted
MC is shown with red error bars.
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Figure B.4: Class 4 PDFs formES (upper left), ∆E ′ (upper right), NN output (middle
left), Dalitz Distribution (middle right), m′ Dalitz projection (lower left), θ′ Dalitz
projection (lower right). Histogram PDFs are displayed in solid black. Event weighted
MC is shown with red error bars.
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Figure B.5: Class 5 PDFs formES (upper left), ∆E ′ (upper right), NN output (middle
left), Dalitz Distribution (middle right), m′ Dalitz projection (lower left), θ′ Dalitz
projection (lower right). Histogram PDFs are displayed in solid black. Event weighted
MC is shown with red error bars.
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Figure B.6: Class 6 PDFs formES (upper left), ∆E ′ (upper right), NN output (middle
left), Dalitz Distribution (middle right), m′ Dalitz projection (lower left), θ′ Dalitz
projection (lower right). Histogram PDFs are displayed in solid black. Event weighted
MC is shown with red error bars.
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Figure B.7: Class 7 PDFs formES (upper left), ∆E ′ (upper right), NN output (middle
left), Dalitz Distribution (middle right), m′ Dalitz projection (lower left), θ′ Dalitz
projection (lower right). Histogram PDFs are displayed in solid black. Event weighted
MC is shown with red error bars.
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Figure B.8: Class 8 PDFs formES (upper left), ∆E ′ (upper right), NN output (middle
left), Dalitz Distribution (middle right), m′ Dalitz projection (lower left), θ′ Dalitz
projection (lower right). Histogram PDFs are displayed in solid black. Event weighted
MC is shown with red error bars.
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Figure B.9: Class 9 PDFs formES (upper left), ∆E ′ (upper right), NN output (middle
left), Dalitz Distribution (middle right), m′ Dalitz projection (lower left), θ′ Dalitz
projection (lower right). Histogram PDFs are displayed in solid black. Event weighted
MC is shown with red error bars.
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Figure B.10: Class 10 PDFs for mES (upper left), ∆E ′ (upper right), NN output
(middle left), Dalitz Distribution (middle right), m′ Dalitz projection (lower left), θ′

Dalitz projection (lower right). Histogram PDFs are displayed in solid black. Event
weighted MC is shown with red error bars.
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Figure B.11: Class 11 PDFs for mES (upper left), ∆E ′ (upper right), NN output
(middle left), Dalitz Distribution (middle right), m′ Dalitz projection (lower left), θ′

Dalitz projection (lower right). Histogram PDFs are displayed in solid black. Event
weighted MC is shown with red error bars.
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Figure B.12: Class 12 PDFs for mES (upper left), ∆E ′ (upper right), NN output
(middle left), Dalitz Distribution (middle right), m′ Dalitz projection (lower left), θ′

Dalitz projection (lower right). Histogram PDFs are displayed in solid black. Event
weighted MC is shown with red error bars.
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Figure B.13: Class 13 PDFs for mES (upper left), ∆E ′ (upper right), NN output
(middle left), Dalitz Distribution (middle right), m′ Dalitz projection (lower left), θ′

Dalitz projection (lower right). Histogram PDFs are displayed in solid black. Event
weighted MC is shown with red error bars.
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Figure B.14: Class 14 PDFs for mES (upper left), ∆E ′ (upper right), NN output
(middle left), Dalitz Distribution (middle right), m′ Dalitz projection (lower left), θ′

Dalitz projection (lower right). Histogram PDFs are displayed in solid black. Event
weighted MC is shown with red error bars.
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Figure B.15: Class 15 PDFs for mES (upper left), ∆E ′ (upper right), NN output
(middle left), Dalitz Distribution (middle right), m′ Dalitz projection (lower left), θ′

Dalitz projection (lower right). Histogram PDFs are displayed in solid black. Event
weighted MC is shown with red error bars.
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Figure B.16: Class 16 PDFs for mES (upper left), ∆E ′ (upper right), NN output
(middle left), Dalitz Distribution (middle right), m′ Dalitz projection (lower left), θ′

Dalitz projection (lower right). Histogram PDFs are displayed in solid black. Event
weighted MC is shown with red error bars.
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Figure B.17: Class 17 PDFs for mES (upper left), ∆E ′ (upper right), NN output
(middle left), Dalitz Distribution (middle right), m′ Dalitz projection (lower left), θ′

Dalitz projection (lower right). Histogram PDFs are displayed in solid black. Event
weighted MC is shown with red error bars.
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Figure B.18: Class 18 PDFs for mES (upper left), ∆E ′ (upper right), NN output
(middle left), Dalitz Distribution (middle right), m′ Dalitz projection (lower left), θ′

Dalitz projection (lower right). Histogram PDFs are displayed in solid black. Event
weighted MC is shown with red error bars.
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Figure B.19: Class 19 PDFs for mES (upper left), ∆E ′ (upper right), NN output
(middle left), Dalitz Distribution (middle right), m′ Dalitz projection (lower left), θ′

Dalitz projection (lower right). Histogram PDFs are displayed in solid black. Event
weighted MC is shown with red error bars.



Appendix C

Correlation Matrix

The correlation coefficients between the floated event yields and isobar parameters as

determined by the MINUIT minimization algorithm, are given in this section. These

coefficients correspond to the correlations for Solution-I in Table 4.9.
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Appendix D

Corrections to EMC Resolution in

Simulation

D.1 Introduction

In order to accurately select signal from continuum background events, the distribu-

tion of ∆E (See Eq. (4.1)) must be correctly modeled in Monte Carlo (MC). In many

exclusive analyses of B meson decays with neutral particles in the final state, it was

noticed that the ∆E distribtion in the MC does not describe the data distribution very

well. In order to select a clear sample to study this effect, the B0 → K∗0 → K±π∓γ

decay was chosen, since it has just one high energetic γ (EB
γ ≈ 2.6 GeV) as the only

neutral particle and hence has a clear separation of tracking and calorimeter effets.

Since only one neutral particle is involved, the effect of asymmetric resolution func-

tions is not obscured by the convolution of different asymmetric functions, so it can

be studied directly.

When comparing the ∆E distributions in the K∗γ sample in data and MC in all

available calibrations of the EMC, the MkIIComboCalibrator and the

PhotonClusterCalibrator in its versions before December 2006, a shift in the ∆E

distribution in the MC of −10 to −5 MeV with respect to the data can be observed.

Additionally, the MC distributoin appeared too steep on the positive side of ∆E.

Hence the idea was born to smear the MC events asymmetrically, in order to both
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shift the overall distribution upward and smear it out more on the upward side. Since

the K∗γ should be retained as a control sample, and since it has not the most optimal

statistics due to the small B → K∗γ BF, another control sample was used for the

determination of the best smearing function and the calculation of the best smearing

parameters.

The µµγ sample is used for this study because of the large number of events with

low background and the presence of an isolated photon. For each event the photon’s

energy Emeas is determined from the calorimeter. In addition, the muon momenta

together with the energy and momentum constraints are used to infer the photon’s

energy without using calorimeter information; this quantity is called Efit. We then

look at distributions of the ratio

x =
Emeas

Efit

. (D.1)

Distributions of this ratio show significant discrepancies between data and Monte

Carlo. In particular, the data distributions have a tail extending to high values of x.

Here we describe a technique by which the MCenergies are smeared in such a way

that the distributions of x are in better agreement with the data.

It should be noted that this study requires that the measured photon energy be

> 1GeV. A separate study in π0s is used to correct the MCenegy below 1 GeV.

The document is organized as follows: Section D.2 gives an overview over the

data sample used for the development of the smearing and the selection cuts applied.

Section D.3 describes the mathematical framework used for the optimization of the

smearing. Section D.4 shows the comparisons of the smeared MC with the data for

the most optimal smearing fuction. In Section D.5 we describe the validation of the

smearing with the independent sample of B0 → K∗0γ decays and in Section D.6 we

summarize the results.
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D.2 Data sample

This analysis is based on data and MC processed in release 18 for run cylces 1 through

5. The data are taken from the AllEvents skim list. The MC sample (SP5244)

requires that Eγ > 500 MeV. Events used in this study pass the following quality

cuts:

Table D.1: Selection cuts on the µµγ sample applied before smearing

Cuts Applied
Tau11 = true

ExclusiveIsr = true

0 < nlLen

SumE < 0.1
0.425 < btamfittheta < 2.4
0.4 < Enofit

miss

0.05 < btamfitprob

The variables used for the selection of the µµγ events are listed in Table D.1. The

tag bits Tau11 and ExclusiveIsr select a clean sample of events with exactly two

oppositely charged tracks. Tau11 allows for an ISR photon going down the beam pipe,

while ExclusiveIsr requires the existence of a photon candidate consistent with an

ISR photon. For the kinematic range Elab
γ > 1 GeV under study here, the sample is

almost entirely ExclusiveIsr = true.

In order to select clean µµγ events, where the reconstructed photon is the true ISR

photon, and where we have no large contribution from beam backgrounds, photon

splitting or FSR, the following cuts are applied in addition to the tag bits: 0 < nlLen

requires at least one neutral cluster on GoodPhotonLoose list, SumE < 0.1 requires

that the sum of the neutral energy in the detector apart from the highest energetic

neutral cluster does not exceed 100 MeV. The cut on btamfittheta requires that

the ISR photon actually lies in the fiducial volume of the detector. The cut on the

missing energy against the muon pair Enofit
miss before the kinematic fit excludes soft ISR.

Then, a kinematic fit of the two muons to the beam spot with the constraint that the
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missing momentum must have m = 0 is performed, and a cut on the fit probability

btamfitprob is applied.

D.3 Smearing method

This section describes the determination of parameters for a function that can be

used to smear the Monte Carlo. Figure D.1 illustrates the discrepency between data

and MCin the E/Efit distribution of the µµγ sample.
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Figure D.1: E/Efit distributions for MC(red) and data (black) without smearing
for the calorimeter endcap. (a) shows the distribution on a linear scale, (b) the same
distribution on a logarithmic scale.

The general shape needs to be altered, and particular attention has to be paid to

the peak position, which needs to be shifted to higher values, and the high-side tail,

where the monte Carlo falls short. Here we present the analytical technique used to

determine the parameters of an appropriate smearing function.

The ratios of Emeas to Efit in data and MC are called x and y, respectively:

x = (Emeas/Efit)data, (D.2)

y = (Emeas/Efit)MC. (D.3)

The variables x and y follow probability density functions f(x) and g(y), respectively.
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The disagreement between data and MC is essentially the statement that the distri-

butions f(x) and g(y) have different shapes. The goal of this study is to define a new

variable z, with a pdf s(z), such that the sum x′ = y + z has the same pdf as that of

x. That is, the variable z is used to smear the MC value y such that their sum has

the same distribution as that of the data.

The histogram of data values is a set of numbers ~n = (n1, . . . , nN) where ni is the

number of entries in the ith bin. The corresponding histogram for MC is represented

by another set of numbers ~µ = (µ1, . . . , µN). The µi are scaled so that the data and

MC histograms have the same area. The smeared histogram, i.e., the distribution of

x′ = y + z, is a third set of numbers ~ν = (ν1, . . . , νN ).

Now because x′ is defined as the sum y+ z, its distribution is given by the Fourier

convolution,

f(x′) =

∫

s(x′ − y) g(y) dy . (D.4)

In addition we can express f(x′) in terms of the conditional probability for x′ given

y, s(x′|y), as

f(x′) =

∫

s(x′|y) g(y) dy . (D.5)

Because here x′ is the sum y + z, one has that the conditional pdf s(x′|y) is equal to

the pdf s(z) = s(x′ − y).

In order to express these integral equations in terms of the histograms we define

the conditional probability to have x in bin i given that y is in bin j,

Sij = P (x in bin i |y in bin j) ≈ s(xi|yj)∆xi , (D.6)

where xi and yj are the centers of the bins and ∆xi is the bin width. We can therefore

relate the histograms of x′ and y by

νi(~θ) =

N
∑

j=1

Sij(~θ)µj , (D.7)

where ~θ represents a set of parameters that characterize the pdf s(z). We estimate
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the parameters ~θ by minimizing

χ2(~θ) ≡ −2 ln λ(~θ) = 2
N
∑

i=1

(

ni ln
ni

νi(~θ)
+ νi(~θ) − ni

)

. (D.8)

Now the aim is to discover an Sij(~θ) that can accomodate the high-side tail and

easily be applied as a correction within the BABAR framework. Three possible asym-

metric functions were found which were thought to be able to perform the smearing

accurately. These were the Johnson’s function, the Student’s t, a and a Left/Right

Asymmetric Gaussian. a symmetric Gaussian was used as a cross-check. The asym-

metric gaussian and the Student’s t provided the most accurate smearing, the func-

tional form of these distributions is shown below:

Sij(~θ) =







√

2
π

1
σ1+σ2

e−(i−j−ǫ)2/2σ2
1

√

2
π

1
σ1+σ2

e−(i−j−ǫ)2/2σ2
2

Asymmetric Gaussian. (D.9)

where ~θ = (ǫ, σ1, σ2). In the case of the Student’s t, ν controls the extent of the tails,

as ν goes to infinity the tail approaches a Gaussian form, and if ν is 1 then the tail

is that of a Cauchy distribution:

Sij(~θ) =
1

λ

Γ((ν + 1)/2)√
νπΓ(ν/2)

(1 +
t2

ν
)−(ν+1)/2 Student’s t. (D.10)

where t = i−j−e
λ

and, ~θ = (ǫ, λ, ν). For the smearing with the Student’s t function,

the suppression of large smearings to the positive side is softer than for a gaussian.

Hence, in order to avoid unphysiacally large smearing for a small number of events,

the Student’s t function was truncated at a value of ±12 % smearing. One example

for the smearing functions with physical parameters is shown in Figure D.2.

D.4 Results

The Left/Right asymmetric gaussian and the Student’s t showed the most accurate

results and so further work was then proposed on these two distributions.
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Figure D.2: Example smearing functions for (a) the left-right asymmetric gaussian
and (b) the Student’s t function.

The smearing was optimized in bins of run cycle, energy and theta of the photon

cluster, to accomodate the effect of different inaccuracies in the detector description

across the whole calorimeter. Angular binning was split into three regions, the End

Cap, the Forward Barrel, and the Backward Barrel. The energy binning differed in

different theta regions so as to get a large enough number of events to fit to.

A detailed comparison in terms of the χ2 values of the fitted MC of the smear-

ing with the asymmetric gaussian and the Student’s t is given in Table D.2. This

comparison has been performed with the September 2006 version of the

PhotonClusterCalibrator calibration. The results show that both distributions

reasonably smear the MC to the data, with a certain advantage for the Student’s t

function especially in the calorimeter endcap and for small or very large photon

energies.

Figures D.3 to D.5 show the unsmeared MC, the smeared MC and the data on a

logarithmic scale for all binned regions and energies. The final smearing parameters

have been developed on analysis release R22.0.0d and R18 data. All smearing is

performed after the December 2006 calibration is applied.

The plots shown on the previous pages are all the plots from Run 5 from the angu-

lar binned and theta binned smearings that were produced. The Student’s t function

seems to perform an accurate smearing. The table below shows the goodness-of-fit χ2
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Table D.2: χ2 values for the fits of the MC to the data in E/Efit for a saymmetric
gaussian and a Student’s t function. For all fits, the number of d.o.f is 203.

Region (GeV) Student’s t Asymmetric Gaussian
End Cap, 1 < E < 3 698 963
End Cap, 3 < E 304 369
Forward Barrel, 1 < E < 2 250 201
Forward Barrel, 2 < E < 3 267 250
Forward Barrel, 3 < E < 4 255 280
Forward Barrel, 4 < E < 5 244 206
Forward Barrel, 5 < E 230 556
Backward Barrel, 1 < E < 2 223 321
Backward Barrel, 2 < E < 3 267 265
Backward Barrel, 3 < E < 4 217 234
Backward Barrel, 4 < E 94 152

values for each binned smearing function; there are occasions where the asymmetric

gaussian does do slightly better but generally the Student’s t performs more accu-

rately and some of these are significant improvements over the asymmetric gaussian.

After consultation with EMC and Neutrals Group it was therefore decided to im-

plement the Student’s t smearing into the next simulation production as a Neutrals

correction.

D.5 Validation of the Smearing using B0 → K∗0γ →
K+π−γ

The smearing derived in the previous paragraphs has ben validated on the B →
K∗γ sample using the decay B0 → K∗0γ → K±π∓γ described in Section D.1.

Figure D.6 shows the ∆E distributions for the MC and the data without neu-

trals corrections. Edge corrections are applied. The December 2006 version of

PhotonClusterCalibrator has been used. This version of the calibration for the

first time avoids the −5 MeV shift of the MC with respect to the data, which was
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Figure D.3: E/Efit resolution plots of unsmeared MC, smeared MC and data for
Run 5 for the two energy bins of the calorimeter endcap.
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Figure D.4: E/Efit resolution plots of unsmeared MC, smeared MC and data for
Run 5 for different energy bins of the forward barrel.
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Figure D.5: E/Efit resolution plots of unsmeared MC, smeared MC and data for
Run 5 for different energy bins of the backward barrel.
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Figure D.6: Distributions of ∆E for the process B0 → K∗0γ → K+π−γ in (a)
MC and (b) Run1 to Run5 data. The December 2006 PhotonClusterCalibrator

calibration and the edge corrections are applied. No neutrals corrections are used on
the MC.

described in Section D.1. Figure D.6 (a) shows the MC distribution with a linear

function for the background and a Crystall Ball (CB) function for the signal fitted

in a binned ML fit. The most important fit parameters derived from that fit are the

mean of the gaussian part of the CB function of µMC = −8.5 ± 0.2 MeV and the

width of the gaussian part of σMC = 36.1 ± 0.1 MeV. This can be compared with

the parameters for the fit to Run 1 to Run 5 data in Figure D.6 (b), with a good

agreement in the mean of µDATA = −8.7±2.3 MeV and a very suboptimal agreement

in the width of σDATA = 44.1±2.2 MeV. The MC signal shape (magenta) is overlayed

to the fitted data line (blue), also showing the poor agreement.

The effect of the smearing is obvious from the comparison of the smeared MC

distribution with the data in Figure D.7. The same MC and data samples, calibration

and edge correction as in the unsmeared example above have been used. The MC

has a mean of µs
MC = −6.7± 0.2 MeV and a width of σs

MC = 46.0± 0.1 MeV. This is

both within 1 σ od the data values quoted above. Figure D.7 (b) shows the very good

agreement of the data distribution (fitted in blue) with the overlayed MC distribution

(magenta).
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Figure D.7: Distributions of ∆E for the process B0 → K∗0γ → K+π−γ in (a)
MC and (b) Run1 to Run5 data. The December 2006 PhotonClusterCalibrator

calibration and the edge corrections are applied. The neutrals corrections including
the smearing algorithm are used on the MC.

D.6 Conclusions

The asymmetric energy smearing of neutral clusters in the EMC cruciually improves

the MC simulation in the cluster energy range above 1 GeV. It has been motivated

by B → K∗γ decays and developed on a µµγ control sample. Different asymmetric

smearing functions have been tested. The best results have been achieved for a Stu-

dent’s t distribution with truncated tails, with parameters fitted independently for

different runs, energy ranges and polar angle. It has been shown that the smeared

distributions achieve a strong improvement in the MC simulation both for µµγ and

B → K∗γ. With this improvement, systematic studies of the uncertainties on selec-

tion efficiencies between data and MC and the evaluation of fits to variables like ∆E

are going to be strongly improved and simplified in the future.
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