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1 Executive Summary

Motivation. Data generated from real-world photovoltaic (PV) systems represent signif-
icant opportunities for the industry—from digital operations and maintenance to real-time
planning and forecasting. However, these data also come with substantial, unique challenges.
A particular challenge is the analysis of unlabeled PV performance data, which we define as
time-series measurements of real power production (or sometimes current or voltage) that
do not have corresponding meteorological measurements (irradiance, temperature, etc.) or
system configuration information (sometimes called system metadata). These challenges
are amplified in the distributed rooftop sector, in which data quality, completeness, and
metadata can be very poor.

At the same time, the distributed rooftop solar market is growing rapidly, with 3.2 GWdc
of residential PV installed in the U.S. in 2020, the largest year on record [1]. While utility
solar continues to contribute the majority of new installations, 46% of new installed capacity
in 2020 (5.3 GWdc) were non-utility, distributed systems [1]. As such, it is critical for the
industry and research community to develop analytical solutions that are robust to the
unique data challenges for distributed PV data and that are scalable to fleet-sized analysis.

Goals. We seek to develop novel algorithms and software, which automate the performance
and reliability analysis for photovoltaic (PV) systems with unlabeled performance data. This
automated approach will drastically reduce the engineering work required to identify and
quantify system loss factors. There are three major goals:

1. Data onboarding, cleaning, processing automation

2. Signal-processing-based loss factor identification and estimation

3. Estimation of missing system metadata (location and orientation)

Major accomplishments.

• Development of ”optimization-based signal decomposition” (OSD) framework for esti-
mating hidden signal components in time-indexed signals (possibly vector valued with
missing data)

• Application of OSD to various performance and reliability subproblems (string failure
analysis, clipping, analysis, soiling analysis, shade analysis...)

• Development of software tools (Solar Data Tools, Statistical Clear Sky, and PV System
Profiler)

• Development of “statistical clear sky fitting” (SCSF) algorithm, that fits a clear sky
baseline to unlabeled power data

• Peer-reviewed publication of methodology that uses SCSF to infer system degradation
(or irradiance sensor drift) from unlabeled data

• Publication of latitude, longitude, tilt, and azimuth estimation methodology
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2 Background
There are some similarities between this project and other open-source PV data analytics
software projects such as RdTools [2] and Pecos [3]. In all three projects, the overarching
goal is to streamline the extraction of useful information from time-series PV data. RdTools
is more focused on automating certain performance analysis tasks, while Pecos is more fo-
cused on automating certain data onboarding, visualization, and cleaning tasks. PVInight
covers both these topics. Below we discuss the simiarlities and differences between these two
projects and PVInsight. Then, we also summarize recent research on aglorithms and statis-
tical estimation that touch on similar topics to those in PVInsight. In all cases, PVInsight
takes a unique approach to the analysis or estimation problem by only assuming access to
unlabeled time-series data.

2.1 Software packages

RdTools. RdTools is an open-source library to support reproducible technical analysis of
time series data from photovoltaic energy systems [2]. Originally focused on implementing
a particular approach to analyzing long-term system degradation, the project has recently
expanded into soiling rate analysis in addition to long-term degradation. Specifically, the
software will assist the user with generating a system performance index [4] from labeled
production data provided by the user. Having generated this performance index, the user
may than request an analysis of degradation using a year-on-year analysis [5] or soiling using
a recently proposed algorithm called “stochastic rate and recovery” [6]. In addition, the
software automates some data onboarding and cleaning/filtering tasks.

The major difference between RdTools and the approach to degradation and soiling
analysis taken in PVInsight is the requirement for labeled PV data, which is necessary to
construct a performance index. The analytical approaches undertaken in RdTools all assume
access to a (well-designed) performance index.

The PVInsight and RdTools teams have been collaborating closely over the project pe-
riod; the teams co-authored a paper on degradation rate estimation that compares the
PVInsight approach to the RdTools approach in 2020 [7]. As discussed in §7, the SLAC and
NREL teams are joining forces in PVInsight Phase 2, to continue validate, compare, and
contrast these differing methods to analyzing degradation and soiling.

Pecos. Pecos is an open source Python package designed to process large volumes of PV
time-series data on a regular schedule and alert system operators when the system has
changed [3]. The software can be used to automate a series of quality control tests and
generate custom reports which include performance metrics, test results, and graphics. Sim-
ilar to the PVInsight package Solar Data Tools, Pecos provides built in plotting functions
that are useful for quickly visualizing PV power data. Both packages recommend the use of
heatmaps to visualize multi-month (or longer) periods of sub-daily power measurements, as
shown in figure 1. However, Solar Data Tools includes subroutines for automatically convert-
ing scalar time series into a format for viewing as a heatmap, including special consideration
from missing data (see §4.2.1). As another similarity, both packages include functionality for
detecting timestamp errors and have various methods for implementing data quality checks.

The functions in Pecos are intended to assist with automating user-defined data pro-
cessing tasks; they do not directly provide insight into PV system health. No PV-specific
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Figure 1: A heatmap view of power measurements over 4.28 years for a representative PV
system, made with Solar Data Tools. White pixel represent missing data. Both Solar Data
Tools and Pecos recommend the use of heatmaps for plotting long periods of power data.

performance analylsis algorithms are implemented (such as soiling loss estimation, for exam-
ple); it would be up to the user to define such analytics in Pecos. Additionally, PVInsight is
unique in its focus on developing and providing data onboarding and quality checking that
are developed specifically for unlabeled PV data.

An illustrative example of the difference between Pecos and Solar Data Tools is the
handling of data quality checks. Pecos provides an interface for the user to define their own
quality check procedure (such as out-of-bounds check, or comparison to a model) which can
be automated for running reports and generating dashboard. Solar Data Tools, in contrast,
provides an automatic check in the form of an algorithm that fits a data-driven baseline that
predicts the number of non-zero power measurements that are expected on a given day of
the year (the baseline is 365-day periodic and smooth) and flags for user days that have
too many or too few non-zero measurements, as shown in figure 2. (Solar Data tools also
provides an interface for user-defined rules as well.) The smooth, orange trend in the figures
is the estimated baseline for “daily signal density,” or the fraction of non-zero values in a
24-hour period. The optimization-based signal decomposition (OSD) framework is used to
estimate this baseline, which is discussed more in §4.1.

While there is some overlap in the general goals of the projects, PVInsight takes an ap-
proach that is more closely coupled to solving problems related to unlabeled PV data. So
while both packages help to automate the data on-boarding, cleaning, and visualization pro-
cess, PVInsight also presents fundamentally novel algorithms and approaches for providing
automatic quality checks.

2.2 Algorithms and papers

Degradation analysis. A large number of researchers have proposed various approaches
and methods for estimating the long-term degradation rate of a PV system from measured
power data. During the course of the project, we participated in a large survey of such meth-
ods, led by the International Energy Agency Photovoltaic Power Systems Programme (IEA-
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Figure 2: A visualization of the Solar Data Tools quality check procedure on the data set
shown in figure 1. The orange line is the data-driven baseline, and the dashed lines show
the outlier selection rules.

PVPS), Task 13.2, “Performance, Operation and Reliability of Photovoltaic Systems” [8].
The approach to analyzing degradation taken in PVInsight (the “SCSF apppoach”) [7] differs
from the other approaches considered in the IEA-PVPS review by not assuming access to
any sort of irradiance data, which we consider to be a form of “labeled” data for PV systems.
This allows our method to estimate the drift for irradiance sensors as well as degradation in
PV system power.

There are some conceptual similarities between the SCSF approach to degradation analy-
sis and more traditional PI-based analyses that substitute a well-designed clear sky model for
the measured irradiance trend [9]. There is a basic underlying assumption in both approaches
that the actual year-to-year variation in on-site clear sky irradiance is stable. Recent work
has shown that this assumption is reasonable for more than 3 years of production data [10].
Again, the SCSF degradation estimator differs from these other published approaches in that
no site information or model is required, and the “clear sky component” is inferred from the
data itself, rather than being generated by an external clear sky model [11].

Soiling analysis. Recent work at estimating soiling from PV system production data are
represented by [6, 12]. In these papers, periods of soiling and cleaning events are inferred
from the data using various techniques, and then the periods between cleaning events are
analyzed to extract soiling rates. These papers always operate on a performance index,
which requires labeled PV data to generate. Additionally, the work by other researchers in
this space can be best described as “collections of heuristics”.

By applying the OSD framework to the soiling estimation problem, we achieve two im-
provements over the existing methods. The PVInisght formulation of soiling estimation
(presented as a work-in-progress at 2021 PVSC [13] with full manuscript in process) is appli-
cable to both labeled and unlabeled production data. Additionally, we formulate the entire
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estimation process (from a time-series representation or either power or PI to segmented
periods of soiling and recovery) as a single, formal mathematical optimization problem,
providing a much stronger mathematical foundation than other methods. The PVInsight
approach to soiling estimation will be described in more detail in §4.4.2.

Location and orientation estimation. Previous research on estimating the location,
tilt, and azimuth of fixed-tilt PV systems from their power data can be found in [14, 15].
In PVInsight, we took a fresh look at the problem, greatly simplifying the estimation steps
and governing equations and validating the new approach on a much larger data set. [16].
Furthermore, we implemented the algorithms in the open-source software package, PV Sys-
tem Profiler. Previously published papers did not provide code implementations of their
proposed methods, leaving the implementation up to others.

3 Project Objectives
Our goal is to make sure that distributed, smaller-scale PV systems do not become stranded
assets. There are a rapidly increasing number of rooftop PV systems that have internet
connection and are generating time series data sets of power generation, sometimes with
related measurements like DC current and voltage. However, it is difficult for industry to
make use of this data as the well-known methods for analyzing PV system performance
typically rely on calculating a performance index [4], which requires access to what we refer
to as labeled PV data. In a PV performance context, labeled data are measurements of power
combined with the information necessary to model the system (sometimes called “system
metadata”) and correlated environmental measurements, typically some aspect of irradiance
and temperature.

Obtaining labeled data for smaller scale, distributed PV systems is often difficult or
impossible. For this reason, we have sought to develop tools to manage and analyze unlabeled
PV data, primarily by modeling and analyzing the time-dependent statistics of the signals,
rather than by applying a performance index approach1. We model these time-dependent
statistics to define signal decomposition problems, which we solve through an optimization-
based framework (OSD) that has been developed under this project and will be discussed in
§4.1.

In addition to developing a statistical framework suitable to analyzing unlabeled PV
data, we have applied to framework to numerous PV performance analysis tasks, as will be
detailed in §4. We have also taken these algorithms and implemented them in open-source
software, making them available to researchers in both academia and industry. Our primary
piece of software, Solar Data Tools, has received hundreds of downloads and is being tested
and applied in a number of industry settings.

We sought to develop algorithms and software that enable the quick analysis of unlabeled
PV power data. The tools are intended to reduce the time to analysis for new data sets and
to enable the automation of analysis of fleets of heterogenous PV systems. We hope that
the software created through this project will assist industry, academia, and system owners

1It is worth noting that there are, in fact, time-dependent statistics in performance index signals that
may be modeled, it is simply the case that in the majority of published literature and well-known practices,
no time-dependencies are utilized. A notable exception is the year-on-year methodology [17] underpinning
RdTools, which models the yearly periodicity in PI signals that often occurs due to imperfect normalization.
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to make use of and gain insight from PV production data.
Finally, we conclude by noting that while the approaches in PVInsight are motivated

by the needs of distributed PV with respect to unlabeled data, the approaches and tools
developed under this project are also applicable to the large-scale utility PV systems. One
area of note is in the area of soiling analysis, in which special sensors are needed to carry out
a standard analysis (typically a reference cell, module, or string that is regularly cleaned).
These sensors are often not present at utility PV plants, and so they required a solution
for unlabeled data as well. Another application is the use of SCSF-degradation analysis to
evaluate irradiance sensor drift.

3.1 Task list.

Task 1 Form a technical advisory committee (TAC) and collect feedback on technical
scope

Task 2 Data set collection, on-boarding, and baselining

Task 2.1 Obtain fleet-scale data set(s) from industry partners to support algorithm
development and software testing

Task 2.2 Research dimensionality reduction techniques for PV signals and develop
baselining algorithm

Task 2.3 Publish methods for on-boarding, cleaning, pre-processing, and baselin-
ing data

Task 3 Develop algorithms and software to estimate PV system location and orienta-
tion

Task 3.1 Obtain ground truth for system parameter estimation for validation of
algorithms

Task 3.2 Development and validation of algorithm(s) to estimate the latitude,
longitude, tilt, and azimuth of fixed-tilt PV systems

Task 4 System loss factor disaggregation using signal processing based techniques

Task 4.1 Develop formulation for optimization-based signal decomposition (OSD)
framework

Task 4.2 Develop methods for estimating shade losses, soiling lossing, inverter
clipping, long-term degradation, inverter faults, and data acquisition sytsem errors
in fixed-tilt and tracking PV systems.

Task 4.3 Validation of scalability and accuracy of loss factor disaggregation

Task 5 Disseminate results through publishing software, publishing papers, attending
conferences/tradeshows, and communicating with the TAC

Task 6 Obtain validation data set of >500 unique PV systems and fully validate PVIn-
sight algorithms

Task 7 Release version 1.0 of Solar Data Tools and integrate algorithms into analylsis
system with convenient object-oriented API suitable for applications such as Jupyter
notebooks and large-scale scripting

3.2 Milestone list

Milestone 1 (1/1/19) Write white paper describing the identified research gaps, ad-
justed project scope and specific feedback from the participants.
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Milestone 2 (4/1/2019) Present initial results of solar clear sky baselining methodol-
ogy to TAC as draft journal paper.

Milestone 3 (7/1/2019) Draft paper and present initial results on the fixed parameter
estimation methodology.

Milestone 4 (10/1/2019, yearly) Targeting to achieve the following errors in Task 3:
azimuth of less than 10, errors in tilt of less than 5, errors in latitude of less than 5, and
errors in longitude of less than 3 for 85% of systems and demonstrate the completed
system fingerprinting and ideal signal generation for a minimum of 150 systems.

Milestone 5 (1/1/2020) Present initial results on loss factor disaggregation in a white
paper to be reviewed by stakeholders and the TAC, with approaches for estimating
shading, soiling, inverter clipping, long-term degradation, inverter faults, and data ac-
quisition system errors.

Milestone 6 (4/1/2020) Validate and evaluate limits of performance disaggregation
algorithms, targeting less than one hour of processing time to apply algorithms to a
system with at least 2 years of data at 5-minute intervals

Milestone 7 (7/1/2020) Publish documented PVInsight code to a publicly available
online repository.

Milestone 8 (10/1/2020, yearly) Submit papers on loss factor disaggregation and ca-
pacity factor estimation for peer review in academic journals or conference proceedings.

Milestone 9 (1/1/2021) Have plan in place for validating all algorithms, including
validation procedures and identifying necessary data sets

Milestone 10 (4/1/2021) Complete validation on data set of >500 unique PV systems.
Develop methods for obtaining ground truth on all PVInsight algorithms and perform
statistical validation as described in Task6.

Milestone 11 (7/1/2021) Finalize software to integrate PVInsight algorithms into
streamlined, automated process

Milestone 12 (10/1/2021, yearly) Finalize documentation and industry feedback

4 Project Results and Discussion
In this section, we present the major technical results of the project. We found that the task
strcture we planned for ourselves in 2018 was an effective tool for guiding the progress of the
research over the past three years. However, it is not the best organizational structure to
communicate the achievements and products of the project. So, we briefly describe how the
manuscript will proceed and how the topics relate to the tasks and milestones defined in §3.

In §4.1, we will discuss the optimalization-based signal decomposition (OSD) framework,
which is fundamental to much of the rest of the project and officially fulfills subtask 4.1, but
actually ended up supporting work throughout tasks 2, 3, and 4. We will spend a bit more
time on this topic then may otherwise seem typical for a single subtask, as the methods and
results became so fundamental to all aspects of the technical work.

In §4.2, we will describe data onboarding and processing methods encompassed in Solar
Data Tools, which officially supports subtask 2.3. This software itself has be come a front-end
entry point to all analysis we do on PV data in the project. Then in §4.3, we will describe
the research on statistical clear sky baselining and the associated software package (which
is now integrated as a component of Solar Data Tools), supporting subtask 2.2. In §4.4 we
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describe the procedure for estimating systems losses, which relates to subtask 4.2. Finally,
§4.5 explains the methodology for estimating latitude, longitude, tilt, and azimuth, relating
to task 3. Discussion of the software development, conferences, and papers that supported
tasks 1, 5, and 7 will be in §5.

4.1 Optimization-based signal decomposition (OSD)

In support of analyzing unlabeled time-series data, and in collaboration with Prof. Stephen
Boyd from the Electrical Engineering department at Stanford University, we developed a
framework for decomposing vector-valued time-series or signals, possibly with missing entries,
into hidden components. A monograph of this topic, written by Bennet Meyers and Stephen
Boyd in nearing publication. A public lecture hosted by SLAC is available online, which is
a preview of the coming manuscript and explains the major aspects of the research [18].

We briefly note that we did not set out with the intention of developing a new framework
for signal decomposition at the beginning of the project. We expected to “develop a signal
processing based approach” for “decomposing PV loss factors.” We mentioned in the pro-
posal and the statement of projects objectives that we expected to apply a method known a
contextually supervised source separation (CSSS) [19] to this problem. As the project devel-
oped and through conversations with Prof. Boyd, it became clear that OSD, which we will
define shortly, would be better fit for analysis problems we wished to tackle in PVInsight.
Briefly, OSD addressed the needs of the project as follows:

• OSD is a more general, extensible framework than CSSS, allowing for the expression
of a larger class of decomposition problems.

• OSD is designed from the ground up to handle missing values in a mathematically
rigorous way.

• The OSD problem structure yields a scalable algorithm for solving the estimation
problems (CSSS proposed no such specialized algorithm and instead used a commercial
interior-point solver [19]).

The forthcoming monograph will go into great detail on the theory and application of OSD.
For this report, we summarize the basic concepts of OSD.

4.1.1 Definition of vector signal decomposition over missing data

Consider a vector time series or signal, possibly with missing entries, y1, . . . , yT ∈ (R∪{?})p.
We use the value ? to denote a missing entry in the signal, and say that entry yt,i is known
if yt,i ∈ R, and unknown if yt,i =?. We define K as the set of indices corresponding to
known values, i.e., K = {(t, i) | yt,i ∈ R}. We define U as the set of indices corresponding
to unknown or missing values, i.e., U = {(t, i) | yt,i =?}. We represent the signal compactly
as a T × p matrix y ∈ (R ∪ {?})T×p, with rows yT1 , . . . , y

T
T .

We will model the given signal y as a sum (or decomposition) ofK components x1, . . . , xK ∈
RT×p,

yt,i = (x1)t,i + · · ·+ (xK)t,i, (t, i) ∈ K.

We refer to this constraint, that the sum of the components matches the given signal at its

known values, as the consistency constraint. We introduce the notation
K
= to mean that the
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left and righthand sides agree on the known entries, so the consistency constraint above can
be written as

y
K
=x1 + · · ·+ xK . (1)

Note that the components x1, . . . , xK do not have missing values. Indeed, we can interpret
the values

ŷt,i = x1t,i + · · ·+ xKt,i, (t, i) ∈ U , (2)

as estimates of the missing values in the original signal y. (This will be the basis of a
validation method described in the monograph.)

4.1.2 Component classes

The K components are characterized by functions φk : RT×p → R∪{∞}, k = 1, . . . , K. We
interpret φk(x) as the loss of or implausibility that xk = x. In some cases we can interpret
the classes statistically, with φk(x) the negative log-likelihood of x for signal class k, but this
does not have to be the case. Roughly speaking, the smaller φk(x) is, the more plausible it
is. Infinite values of φk(x) are used to encode constraints on components. We refer to x as
feasible for component class k if φk(x) < ∞, and we refer to {x | φk(x) < ∞} as the set of
feasible signals for component class k. When a component class takes on the value ∞ for
some x, we say that it contains or encodes constraints; when φk does not take on the value
∞, we say the component class has no constraints, or has full domain. We will assume that
every component class has at least one feasible point, i.e., a point with finite loss.

The monograph contains many examples of component class losses, but for now we men-
tion a few simple examples.

Mean-square small class. One simple component class has the mean-square loss

φ(x) =
1

Tp

∑
t,i

(xt,i)
2 =

1

Tp
‖x‖2F , (3)

where ‖ · ‖F denotes the Frobenius norm, the squareroot of the sum of squares of the entries.
(To lighten the notation, we drop the subscript k when describing a general component class.)
All signals are feasible for this class; roughly speaking, smaller signals are more plausible
than larger signals. We call this the component class of mean-square small signals.

We will assume that the first class is always mean-square small, with loss function (3).
We interpret x1 as a residual in the approximation

y ≈ x2 + · · ·+ xK ,

and φ1(x
1) as the mean-square error.

Mean-square smooth class. The component class of mean-square smooth signals has
loss

φ(x) =
1

(T − 1)p

T−1∑
t=1

‖xt+1 − xt‖22, (4)

the mean-square value of the first difference. Here too all signals are feasible, but smooth
ones, i.e., ones with small mean-square first difference, are more plausible.
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Boolean signal class. As one more simple example, consider the component class with
loss function

φ(x) =

{
0 xt,i ∈ {0, 1} for all t, i
∞ otherwise.

(5)

This component class consists only of constraints, specifically that each entry is either 0 or
1. It has a finite number, 2Tp, of feasible signals, with no difference in plausibility among
them. We refer to this class as the Boolean component class.

4.1.3 Signal decomposition problem

We will estimate the components x1, . . . , xK by solving the optimization problem

minimize φ1(x
1) + · · ·+ φK(xK)

subject to y
K
=x1 + · · ·+ xK ,

(6)

with variables x1, . . . , xK . We refer to this problem as the signal decomposition (SD) problem.
Roughly speaking, we decompose the given signal y into components so as to minimize the
total implausibility. The SD problem is always feasible, but it need not have a unique
solution. We refer to a solution of the SD problem as an optimal signal decomposition.

Solving the signal decomposition problem. If the class losses φk are all convex func-
tions, the SD problem (6) is convex, and can be efficiently solved globally [20]. In other cases
it can be very hard to find a globally optimal solution, and we settle for an approximate so-
lution. In the OSD monograph, we will describe a method that solves the SD problem when
it is convex (and has a solution), and approximately solves it when it is not. Our method
is based on ADMM [21], an operator splitting method that handles each of the component
classes seperately. This allows us to parallelize the method, gives a very convenient software
architecture, and makes it easy to modify or extend it to many component classes.

4.1.4 OSD in PVInsight

We utilize the OSD framework extensively throughout PVInisght analytics. One such ex-
ample has already been shown in figure 2, which shows the use of OSD to flag days with
operational issues with Solar Data Tools. Other uses of OSD will be explained in more detail
in the rest of this report.

Currently, the software implementations of OSD in PVInsight are not using the algorithm
to be proposed in the coming monograph. Instead, the applications in PVInsight have been
prototyped using CVXPY [22, 23] and Mosek [24]. These implementations may be found in
solardatatools.signal decompositions. As described in §7, a major aspect of PVInsight
phase 2 will be the implementation of the proposed algorithm throughout PVInsight software,
removing the software dependency on Mosek.

4.2 Data onboarding

The ability to quickly onboard, clean, and standardize unlabeled PV data sets is not just
an opperational problem in the industry, but it is also a practical problem for carrying out
the research and analysis proposed in PVInsight. Solar Data Tools [25, 26] is an automatic
data processing pipeline application, written in open source Python. This software takes as
an input generic, tabular PV performance time series data, typically a power signal at some
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1 import pandas as pd

2 from solardatatools import DataHandler

3 df = pd.read_csv("PVDataExample.csv")

4 dh = DataHandler(df)

5 dh.run_pipeline(power_col="ac_power_01")

Figure 3: A basic instantiation of the DataHandler class from Solar Data Tools.

Table 1: Summary of algorithms in the Solar Data Tools processing pipeline

Tool Standardize Clean Label OSD
Time stamp cleanup X

Sampling rate detection X
Matrix embedding X

Missing data X
Time shift X X

Data quality X X
Clear/cloudy X X

Inverter clipping X X
Capacity change X X

sampling frequency, possibly with some missing or corrupted data. No site model, system
metadata, or reference irradiance or temperature data is required, so the software can work
with distributed rooftop data as well as centralized power plant data. The software can
process correlated data columns along with power data, when available. A typical usage is
shown in figure 3. The DataHandler class is instatiated on a Pandas DataFrame [28, 29]
containing PV data in tabular form. The example shown in figure 3 assumes “wide-form”
data, with each row corresponding to a unique time stamp and each column representing a
different measurement (power signals, voltage signals, temperature signas, etc). Solar Data
Tools can also accept “long-form” data, with each row representing a single measurement
from one sensor so that time stamps are repeated in subsequent rows to record values from
different sensors2. The software will convert long-form data to wide-form before proceeding.

When the run pipeline method in line 5 of figure 3 is run, the software initiates a serial
data processing pipeline that standardizes, cleans, and labels the input data. This process is
summarized in table 1 and typically takes on the order of 10-30 seconds for typical data sets
on a standard laptop. The column labeled “OSD” inidicates subroutines in the pipeline that
make use of optimization-based signal decomposition (see §4.1). After running the pipeline,
the DataHandler object may be used as an entry point to further investigation and analysis,
including data set summarization, visualization/plotting, and loss factor analysis.

In the following sections, we document each of the items described in table 1. Two of
these subroutines—data quality labeling and inverter clipping labeling—are loss factors that

2Long-form data is less common in the solar industry, but it is often the form returned by queries to
key-value databases such as Apache Cassandra or Google Bigtable.
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are identified in task 4.2.

4.2.1 Standardize

Time stamp cleanup. As described in §4.1.1, we define time-series signals mathemati-
cally as collections of vectors that are indexed by time. So, our data must occur on regular
intervals, such as one value every minute or every hour, for example. This is generally a safe
assumption for PV performance data sets, which are typically generated by data aqcuisition
systems (DAS) installed at the point of power generation. These DAS are usually pro-
grammed to record the average measured power over a set interval, with the most common
choices for PV data being 1-minute, 5-minute, 15-minute, and 60-minute intervals. Unfortu-
nately, this idealized description is rarely experiences in practice. In reality, data sets have
various time-index inconsistencies. Time stamps may be missing or repeated. Sometimes,
records are recorded at odd intervals, such as every 5 minutes plus or minus 60 seconds or
so.

So, the first thing the pipeline does is rebuild the time axis of the input data frame.
This code can be found in the definition of the standardize time axis function in the
solardatatools.time axis manipulation module [25]. The software infers the scan rate
or rates from the data by looking at the time between consecutive stamps, picking the most
common value if there are multiple rates. Then, a new time axis is generated starting at
midnight on the first day and ending at one timestamp before midnight on the last day,
using the standard frequency. We then utlitize the Pandas reindexing function using the
keyword arguments method="nearest" and limit=1. This forces the data into the regular
time index, using the closest available value for each time stamp and not filling in any gaps,
which are left as NaN values and are treated as ? in OSD.

Matrix embedding. We find that a useful and compact way to represent a multi-year
PV power data set is by embedding it in a matrix P ∈ (R ∪ {?})m×n where m is the
number of measurements on each day (24-hour period starting and ending at midnight)
and n is the number of days in a data set. For example, the heatmap shown in figure 1
is just an image representation of a a 96 × 1562 matrix. The data has a 15-minute scan
rate, so there are 96 measurements per day, and there are 1562 days in the data set. When
other data columns are to be analyzed (such as correlated irradiance and temperature),
the software generates matrices of equivalent shape for the other measurements. Having
first standardized the time axis of the data, reshaping the scalar signal into the appropriate
shape is straight forward because the new time axis is designed to have exactly mn entries.
This is easily achieved with the numpy.reshape function [30]. This code may be found in
solardatatools.matrix embedding.make 2d. This matrix embedding of the power data is
our “standardized form” of the data. Data cleaning and labeling operations in Solar Data
Tools assume this matrix form, as do subsequent analyses like Statistical Clear Sky.

4.2.2 Clean.

Data filling Some data operations expect the measured signal to be real-valued every-
where, with no missing values or NaN values (while OSD is designed to directly handle
missing values, see §4.1). So, we generate a copy of the data with the missing values filled
in, Pfilled ∈ Rm×n. We infill the missing values by the following rules:

• night time values are filled with zeros
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Figure 4: The raw matrix embedding of a PV power data set with multiple time
shift errors. There is a “one off” error in mid-2014 followed by daylight savings
shifts twice a year for each of the following years. This is generated with the
solardatatools.DataHandler.plot heatmap function.

• daytime values are filled by linear interpolation

• days that are completely missing are filled with zeros.

This is implemented in solardatatools.data filling. After the pipeline is complete, the Data

Handler class instance maintains two attributes, raw data matrix and filled data matrix

corresponding to the original matrix embedding and the infilled version respectively. An
example of the raw data matrix and the filled data matrix is shown in figures 4 and 5
respectively.

Time shift detection and correction. Time shifts are a common error in PV data sets
that occur when the local DAS clock time is changed for some reason. This often occurs
due to local daylight savings time, where the local clock time is changed by an hour twice
a year, but it can occur for other reasons as well. The Solar Data Tools pipeline includes
an algorithm that automatically detects when these shifts occur and “corrects” them by
adjusting the time stamps so that the shifts are removed.

The matrix-embedding of the power signals makes these issues quite clear. An example
of a data set with both types of time shift errors is shown in figure 4. In figure 5, we show
how the algorithm corrects the time shift errors for this example. (Note that this data set
also has a capacity change in 2013, which will be discussed in more detail in §4.2.3.) There
is a large one-time shift in the first half of 2014. After that event, the data set starts to
exhibit yearly daylight savings shifts as well, seen as a shift up (earlier) in the fall and a shift
down (later) in the spring. The algorithm correctly identifies all 7 time shift events in this
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Figure 5: The filled and time-shift-corrected matrix embedding of the PV power
data set shown in figure 4 after the application of the Solar Data Tools data clean-
ing subroutines. The time shifts have been eliminated. This is generated with the
solardatatools.DataHandler.plot heatmap function.

data set and removes them.
The algorithm is an application of OSD, and the implementation can be found in

solardatatools.algorithms.time shifts. First, the measured power signal is converted
into a daily estimation of solar noon time. This can be done by inferring sunrise and sunset
times in the data using a simple threshold and taking the average (“sunrise-sunset method”
or “srss”) or by calculating the energy-weighted mid-point of the day (“energy center-of-
mass” or “com”). The user may select either method, and the default is “srss”. This daily
solar noon signal is then used as an input to OSD. We dicompose the signal into residual,
seasonal baseline, and piecewise constant (PWC) terms, as shown in figure 6. The PWC
component uses a cost function defined as

φ(x) = ‖Dx‖1 , (7)

where D ∈ R(m−1)×m is the first-order difference matrix. The `1-norm encourages sparsity
in the first difference of the component, which results in a signal that is piecewise constant.
When the PWC component changes value, a time shift is detected. The magnitude of that
change is used by the algorithm to correct the time stamps.

4.2.3 Label

Data quality. The “data quality” quality label is a Boolean value assigned to each day in
the data set (each column of the embedded power data matrix) that is True when the day
has not experienced an inverter or DAS outage and is False if an inverter or DAS outage has
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Figure 6: Illustration of OSD applied to the problem of finding
time shifts in PV power data sets. This is generated with the
solardatatools.DataHandler.plot time shift analysis results function.

occured. We define a True value to correspond to one or both of the following conditions:

1. the day is an outlier in the fraction on non-zero power measurements, relative to a
seasonal baseline

2. the day is an outlier in the fraction of the daylight hours during which the power
followed a linear trend with respect to time

The first condition catches when the inverter is off for longer than it should be during a
certain season, indicative of an inverter outage. It also catches where there are too many
non-zero values, which typically occurs when there has been a DAS malfunction has caused
a “hold value” to be recorded. This occurs when the measurements are not updating but
the DAS thinks the last measured power is still the current power. The second condition
catches when there has been a linear interpolation infill, which is a common choice in many
DAS and database systems. We utilize linear interpolation in our own data infill procedure,
as described in §4.2.2. The process for generating the final Boolean label is represented as a
process diagram in figure 7. The code implementation is in solardatatools.data quality.

The first condition is checked by fitting a seasonal baseline to a daily signal representing
the fraction of non-zero values in each day (“signal density,” as in the inverse of sparsity),
as shown in figure 2. We use an asymmetric cost function for the residuals, to model the
fact that clouds tend to reduce the signal density, not not incraese it, relative to the clear
sky baseline. See solardatatools.data quality.make density scores.

The second condition is checked by taking the first-order difference of the power matrix
down each column, which can be efficiently implemented in vectorized numpy. This is done
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start P daily density OSD baseline density metric

low power filter first diffs linearity metric

AND thresholdquality labelstop

Figure 7: Process flow diagram for generating the data quality metric in Solar Data Tools.
Red rounded rectangles are start/stop nodes. Blue parallelograms are input/output nodes.
Yellow rectangles represent operations on the data. The input P is a power signal embedded
in a matrix.

after first filtering the measured power data to remove low power values below a thresh-
old (0.5% of the estimated system capacity). Then the first-order differences are rounded
to four significant digits and the mode of the first differences is calculated for each day.
Finally, a “linearity metric” is generated by calcuating what fraction of the non-zero val-
ues correspond to first order differences that are equal to the daily mode. This calculate
the fraction of the day spend on a single linear trend. See solardatatools.data quality

.make linearity scores.
We finally define simple thresholding rules on these two metrics, as shown in figure 8.

Days with a lineararity score less than 0.1 and a density score between 0.6 and 1.05 receive
a True label, while the remaining points receive a False label. The points the scatter plot
are colored according to the clusters found with DBSCAN [31] as implemented in Scikit
Learn [32]. We generally expect the main cluster (label 0, blue in the plot) to be within
the decision boundaries. If it is not, the software will raise a warning for the user. In
this example, the user may want to manually inspect the orangle cluster (label 1) as that
grouping of days has an abnormally large linearity score.

Clear/cloudy. The second labeling operation performed by the pipeline is another Boolean
label; it is True if the day is (mostly) clear, and it is False if the day is mostly cloudy. Only
days that have quality=True are assigned a clearness label. The code implementation may
be found at solardatatools.clear day detection.

Clear days are identified as those days that both

• have a high energy content relative to a seasonal baseline

• are smaller with respect to the smoothness measure ‖D2x‖22, where D2 ∈ R(m−2)×m is
the second-order finite difference matrix.

This is based on the observation that cloudy days can be smooth (if it is highly overcast)
or high-energy (if the clouds are intermittent or localized in the morning or afternoon), but
they generally are not both high energy and smooth. Days that are both close to the energy
baseline and are small with respect to the smoothness metric are given the flag clear=True.
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Figure 8: A scatter plot of linearity scores versus density scores
for the data set shown in figure 5. This is generated with the
solardatatools.DataHandler.plot data quality scatter function.

The procedure for estimating the seasonal energy baseline is based on OSD and is very
similar to the procedure for estimating the signal density baseline described in §4.2.3. The
daily signal that is derived from the the mesaured power, in this case, is simply the energy.
The OSD problem formulation is identical. Both subroutines use
solardatatoos.signal decompositions.tl1 l2d2p365.

Inverter clipping. The third labeling operation also sets a Boolean label; it is True if the
day has experienced inverter clipping, and it is False if the day has not experienced inverter
clipping. As in §4.2.3, only days that have quality=True are assigned a clipping label. The
code implementation may be found at solardatatools.algorithms.clipping.

We identify clipping points by their tendency to generate many power data points at
nearly the same value. This creates one or more “point-masses” in the distribution of power
values for that system. We emphasize the “or more,” as our experience has shown us
that re-configuring the system size and clipping point during operation is not uncommon
in distributed PV systems. An example is shown in figure 9. Here we show the cumulative
density function (CDF) and histogram for the power measurements (normalized to [0, 1])
for a PV system that was reconfigured over it’s five-and-a-half year history with 4 different
clipping set points. In addition, there were also periods of time where the inverter clipping
was turned off, and the system experienced no clipping.

The point masses are detected by fitting an OSD model with a piecewise linear component
to the empirical CDF. This component is modeled using the cost

φ(x) =
∥∥D2x

∥∥
1
, (8)

which is the `1-norm of the second-order differences of the signal. This cost selects for
components that are sparse in the second derivative, or piecewise linear (PWL). The OSD
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Figure 9: Four point masses in the power data from a site with four clipping set
points, as seen in the cumulative density function (left) and the data histogram
(right). The orange lines were estimated using OSD. This is generated with the
solardatatools.DataHandler.plot daily max cdf and pdf function.

formulation is implemented in solardatatools.signal decompositions.make l2 l1d2.
After fitting the OSD model, the PWL component estimate is analyzed, and the break-

points for the linear models are identified as point-masses, if they are larger than a threshold.
Finally, days that generate more than 10% of their energy at or near a power point-mass are
identified as clipping=True days.

After the pipeline is complete, the user may wish to run the solardatatools.DataHandler
.find clipped times function, which goes back and labels each individual power value as
clipped or not, rather than entire days. This generates a matrix of Boolean values of the
same shape as the power data matrix that is True if the corresponding power measurement
was impacted by inverter clipping.

Capacity changes. The fourth and final label assigned by the Solar Data Tools pipeline
is a categorical assignment into capacity clusters, or periods of time during which the system
appeared to be at a single capacity value. The apparent capacity of a system can change for
many reasons, e.g. from installing additional panels (an increase in capacity) or a string fail-
ure (a decrease in capacity). This process is distinct from other changes in apparent output,
such as long-term degradation or soiling. In this subroutine, we are specifically looking for
“step-changes” in apparent capacity, which we model in OSD as a PWC component. The
code implementation may be found in solardatatools.algorithms.capacity changes,
and the OSD formulation is in solardatatools.signal decomposition.tl1 l1d1 l2d2p365.

As with the other OSD implementations discussed so far (with the exception of clipping),
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Figure 10: Capacity clustering analysis on the data presented in figures 4 and 5. Two
capacity clusters were found in this data, labeled with 0 and 1. This is generated with the
solardatatools.DataHandler.plot capacity change analysis function.

the input signal y in this subroutine is a scalar daily signal, calculated from the measured
power. In this case, the daily signal the maximum power measured each day. We note that
each of the daily calculations discussed so far can be expressed as a (pseduo-)norm of the
columns of the power data matrix. The fraction of non-zero values (§4.2.3), the daily energy
(§4.2.3), and the daily maximum values correspond to the (appropriately scaled) `0-, `1-,
and `∞-norms respectively3.

After calculating the daily maximum power, we fit an OSD model with asymmetrical
residuals, a PWC component, and a smooth component that is 365-day periodic. The PWC
component provides the detection of capacity changes, as shown in figure 10. After applying
OSD, labels are assigned to each day identifying the day as belonging to a particular capacity
cluster. For many basic loss factor analyses (e.g. degradation or soiling) having any capacity
changes in the data is problematic. So, the purpose of this labeling operation is two-fold:
(1) changes in capacity are flagged for an analyst as potential operational issues and (2)
data sets without capacity changes may be further analyzed for more subtle operational and
under-performance issues.

4.3 Statistical clear sky power baseline

Statistical clear sky fitting (SCSF) is an algorithm that estimates a clear sky performance
signal from the measured power of a PV system [33, 7]. The algorithm uses only observed

3The `p-norm of a vector x ∈ Rm is defined, for p ≥ 1, by ‖x‖p = (
∑m

i=1 |xi|p)
1/p

, with the appropriate
limit taken for p =∞. Following tradition, we define the `0-pseudo-norm as the number of nonzero elements
of the vector x. This measure of sparsity is not a true norm.
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power output, and assumes no knowledge of weather, irradiance data, or system configu-
ration metadata. This is a novel approach to understanding the clear sky behavior of an
installed PV system, that does not rely on traditional atmospheric and geometric modeling
techniques. The algorithm is contained in a stand-alone software package called Statis-
tical Clear Sky [34]. The algorithm may be invoked from Solar Data Tools by running
the .fit statistical clear sky model method on a DataHandler class instance after the
pipeline has completed.

The signal model used in SCSF is not an OSD formulation. As detailed in [33], the data
model is derived from a generalized low rank modeling framework [35]. An example of a
statistical clear sky model and the input data are shown in figure 11. We draw attention to
the fact that this model of system clear sky behavior includes the effects of nearby object
shading, seen clearly in this example during the winter season. Note how the estimated clear
sky baseline recreates the features in the data induced by the shade. This example also
illustrates how SCSF may be used as a data imputation method. The dark bands seen in
the top plot (measured power) are caused by periods of missing data (see §4.2.2). We see in
the bottom plot that the SCSF model estimates what the clear sky power should have been
during these times.

Applications. There are many applications of SCSF. The most immediate, for the pur-
poses of the PVInsight project is the estimation of long-term degradation (see §4.4.1). SCSF
is also useful for establishing a baseline for statistical power forecasting [36]. The data im-
putation nature of the method may also be exploited to make forecasts of future expected
clear sky system response, which may be used to build systems for detecting outages and
operational issues. We are continuing to look at ways to improve and apply this methodology.

4.4 Loss factor estimation

In this section, we describe the statistical signal processing approach we have taken to identi-
fying and estimating the loss factors listed in task 4.2. Each loss factor estimation algorithm
is a stand-alone analysis. For example, the long-term degradation may be analyzed for a
system without analyzing soiling, and vice versa. All methods except long-term degradation
involve OSD in the estimation process. The last two methods have already been discussed
in §4.2 and are included in this section for the sake of completeness.

4.4.1 Long-term degradation

The long-term degradation rate of a PV system is generally defined as a single value, given
as a percentage change in energy output of the system each year, typically on the order of
0.5–1.5% per year [9]. As discussed in §2.2, the approach taken in PVInsight differs from
other published work in the focus on estimating the quantity when it is not possible to
construct a performance index from the power data.

We estimate the year-over-year percent change in energy output of the system by includ-
ing that quantity as a parameter in the SCSF model [7]. By using a holdout methodology, we
are able to generate empirical uncertainty bounds on the degradation estimate that have been
shown to be in good agreement with established methods [8]. For example, the degradation
rate for the data set shown in figure 11 is −0.87 ± 0.15%. The uncertainty analysis is con-
trolled by the bootstrap=N keyword arguement in statistical clear sky.SCSF.execute.

Recent, unpublished work has found that correcting for soiling trends in the data before
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Figure 11: An example of a statistical clear sky model. This is generated with the
statistical clear sky.SCSF.plot measured clear matrices function.
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running the SCSF degradation analysis improves the results by lowering the empirical un-
certainty. The implementation of the soiling detection algorithm described in 4.4.2 includes
helper functions for correcting data by removing the effects of soiling.

4.4.2 Soiling

We have designed an algorithm based on OSD that identifying soiling in daily performance
data. The algorithm generates as estimate of the reduction in energy output by the system
over time due to soiling, expressed as a fraction between 0 and 1. Notably, the algorithm
works on both unlabeled power data as well as on performance index data, which is more
commonly analyzed for soiling trends (see §2.2). We use an OSD model with the following
components:

• asymmetric residuals

• piecewise constant, non-positive, with an absolute value penalty

• smooth, 365-day periodic

• linear

A full paper on this topic is still in progress and will completed after the OSD monograph,
which it will require as a reference. Preliminary results were presented at the 2021 Photo-
voltaic Specialists Conference [13]. In that manuscript, we present data from a soiling test
site in Qatar, which has two identical PV systems, one of which was cleaned regularly and
the other of which was allowed to soil. We present in [13] that the OSD analysis of the
PI generated by normalizing the soiled system by the cleaned system matches the results
calculated by a human analyst (in a fraction of the time). This estimation of the soiling
trend from the soiling-PI data is shown in figure 12. This was not presented at the con-
ference, but we have also applied the same OSD formulation to the unlabeled daily energy
signal from the soiled test system, shown in figure 13. We find that the estimate of the
soiling trend from the energy data closely matches the trend estimated from the soiling-PI,
as shown in figure 14. The code implementation of the soiling algorithm may be found in
solardatatools.algorithms.soiling.

4.4.3 Shade

We have developed an algorithm for identifying shade in unlabeled PV power signals, and
estimating the amount of energy lost to shade relative to an unshaded baseline. The algo-
rithm may be found in solardatatools.algorithms.shade, but the approach has not been
published in a paper or presented at a conference, yet. The core of the algorithm is again
OSD, but unlike in all the other examples mentioned so far, this is the first example to have
a vector-valued signal (all other examples have been on scalar signals). The formulation of
the OSD model is significantly more complex than other examples discussed in this report,
and we will decline to explain the details in this report. Instead, we will focus on presenting
compelling results that illustrate the capabilities of the algorithm.

In figure 15, we annotate a heatmap of power production using the shade algorithm to
identify periods of signicant shade losses. Qualitatively, we find that the annotation matches
the patterns of power loss visible to the eye in the heatmap, and we have found that this
holds true for many examples we have evaluated so far. In figure 16, we present an analysis
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Figure 12: An extraction of a piecewise linear soiling trend from a soiling performance index,
generated from the labeled data available from the Qatar test site. The periods of soiling
and recovery, as well as the estimated soiling rates, closely match the results calculated by
a human analyst.
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Figure 13: The dailly energy recorded from the soiled system at the Qatar test site. The
fit OSD model with the residuals removed is shown in orange (soiling component, seasonal
component, and linear component).
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Figure 14: Comparing the estimation of the soiling trend estimated from the unlabeled
energy data to the trend derived from the soiling performance index.
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Figure 15: A heatmap of PV power annotated to mark periods of time that are significantly
shaded.
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Figure 16: Analysis of the shade OSD components that estimates the seasonal energy lost
to shade.

of the signal decomposition that shows the energy lost to shade through different times of
year. We are currently working on a manuscript documenting this work and on validating
the algorithm against PV sites with known model configurations.

4.4.4 Inverter clipping

See §4.2.3.

4.4.5 Inverter and data aquisition faults

See §4.2.3.

4.5 System location and orientation estimation

We have developed three algorithms for estimating latitude, longitude, and system orien-
tation for fixed-tilt systems, based only on measured power data (and knowledge of the
local times zone where the time stamps for the measurements were generated). These
algorithms have been published in [16], and the code implementation is in a standalone
software package called PV System Profiler [37]. Validation results are availbe in the
paper. The algorithms may be invoked directly from Solar Data Tools by through the
DataHandler methods estimate latitude, estimate longitude, estimate orientation,
and estimate location and orientation. The latitude and longitude estimators are com-
pletely stand alone; they can be estimated indepenently and do not depend on anything
other than the power data. The location estimator (tilt and azimuth) requires latitude as an
input. The software allows the user to either estimate location based on the latitude derived
from the data or based on a known latitude.

4.5.1 Sunrise and sunset estimation

Our main contribution to this area of research is establishing the fundamental importance of
accurately estimating sunrise and sunset times and providing a robust algorithm based on
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Figure 17: Using holdout validation to selection a turn-on threshold for a data set. The blue
line represents the holdout validation used in OSD. The orange line shows what the actual
error is versus the true sunrise and sunset times (only possible to calculate if actual latitude
and longitude are known). The dashed lines show the parameter value picked through
holdout validation (blue) and the best parameter value if the true values were known ahead
of time (orange).

OSD for doing so. The number of daylight hours a location sees on a given day of the year
only depends on its latitude, while the time of solar noon on a given day of year depends
only on the longitude. Both these quantities are calculated from sunrise and sunset times
(the difference and the average respectively).

Other researchers have used a simple threshold to estimate the sunrise and sunset times
each day, e.g. 1% of the maximum value or 50 watts-per-square-meter of irradiance. Because
we assume unlabeled data, we do not assume access to irradiance data, and so we must define
a threshold based on the power signal along. However, practical experience has shown that
different systems have different turn on characteristics, meaning that different data instances
would have a different optimal turn-on threshold.

Therefore, we use OSD with holdout validation to test the prediction error of different
turn on thresholds, and chose the one that minimized the holdout error. After selecting a
threshold value, we run the OSD model with all available data to obtain a robust estimate of
sunrise and sunset times that is smooth and 365-day periodic. This algorithm is implemented
in solardatatools.algorithms.sunrise sunset estimation. When we have access to the
true location of a site, the software will automatically display the true value in addition to
the estimated values.

In figure 17, we show holdout validation results for selecting the turn-on threshold for
the data set shown in 15. We see that the holdout validation provides a noisy estimate of
the true error versus turn-on value, and that the value selected through holdout validation
(blue dashed line) is close to the best possible value (orange dashed line). In figure 18, we
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show result of running the final OSD estimation after selecting an optimal threshold. The
RMS error in estimated sunrise and sunset times for this example over the entire data set is
about 0.1, or about 6 minutes.

4.5.2 Latitude

The latitude of a system on a given day is related to the number of daylight hours and the
declination angle by

N =
2

15
cos−1 (− tanφ tan δ) , (9)

where N is the number of daylight hours, φ is the latitude, and δ is the declination angle [38].
The declination angle is a function of the day of the year [39, 40] and is therefore known. An
estimate of N is generated for each day in the data set according to the procedure described
in §4.5.1. We then solve (9) for φ on each day, and the final estimate of system latitude is
taken as the median of these values.

4.5.3 Longitude

The longitude of a system on a given day is related to the difference between solar time and
standard time by

solar time− standard time = 4 (ψST − ψ) + E, (10)

where ψST is the standard meridian for the local time zone, ψ is the longitude and parameter
E is the equation of time. The equation of time is related to parameter B by

E = 229.2(0.000075 + 0.001868 cosB − 0.032077 sinB

−0.014615 cos 2B − 0.04089 sin 2B),
(11)

where B is defined as

B =
n− 1

360− 365
, (12)

and n is the day of the year [38]. The difference between solar time and standard time on a
given day is equivalent to the time at which solar noon occurs on that day (by definition).
So, we estimate solar noon each day as described in §4.5.1, and then we solve (10) for ψ on
each day. The final estimate of system longitude is the median of these daily values.

4.5.4 Tilt and azimuth

The angle of incidence of a system is related to its latitude, tilt, azimuth, declination angle,
and hour angle by

cos θ = sin δ sinφ cos β − sin δ cosφ sin β cos γ+

cos δ cosφ cos β cosω + cos δ sinφ sin β cos γ cosω+

cos δ sin β sin γ sinω,

(13)

where θ is the angle of incidence, β is the tilt, γ is the azimuth, φ is the latitude, and ω is
the hour angle (defined as 15̊ × number of hours before/after noon) [38]. The unknowns in
this equation are therefore θ, β and γ. We provide a method for estimating cos(θ) from the
observed power, then allowing us to estimate β and γ through non-linear least squares.
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Figure 18: Application of OSD to sunrise and sunset time estimation, and the derived values
of solar noon and number of daylight hours. The green dots are the values obtained through
applying the optimized threshold to the data. The blue lines are the estimate generated by
OSD. The orange lines are the true values for this site location.
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Figure 19: Visualization of the method for estimating k, the parameter that relates measured
power and angle of incidence. The black line is estimated using signal decomposition.

To estimate cos θ from the measured power data, we assume a very simple model relating
angle-of-incidence and power

p = k cos θ, (14)

where p is the system power and k is a parameter we’d like to estimate. Given an estimate
for k, we can plug (14) into (13), and solve for the remaining parameters. We estimate k as
follows:

1. calculate the daily maximum power output

2. utilize OSD to generate a smoothed, robust estimate of daily maximum power

3. the maximum value of the smoothed estimate is taken to be k

This processes is visualized for a representative site in Figure 19.
The explicit assumption in this process is that the angle-of-incidence is equal to zero

(cos θ = 1) at least one time over the course of an entire year. This is a reasonable assumption
for many PV systems located in North America. To support this assertion, we show here
an analysis of two representative locations, Miami, FL and Olympia, WA. Figures 20 and
21 show the maximum value of cos θ for various tilts and azimuths in Miami and Olympia
respectively. In Figures 22 and 23, the tilts and azimuths corresponding to max(cos θ) ≥ 0.99
are marked in white, representing the space of tilts and azimuths at these locations for which
the assumption is valid.

Finally, the parameters β and γ are estimated by applying non-linear least-squares to (13),
using the algorithm implemented in the Scipy Optimize package [41].

5 Significant Accomplishments and Conclusions
This project lies at the intersection of three domains: PV system performance, signal process-
ing/data analysis, and coding/software development. We have made significant contributions
to the area of signal processing and optimization-based data analytics. These contributions
have been motivated by a particular data challenge that is practically impacting the PV in-
dustry today and by solving particular estimations problems of interest to digital operations
and maintenance of PV fleets. To make these contributions generally useful to industry and
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Figure 20: Maximum value cos θ observed
in a year as a function of tilt and azimuth
for a PV system located in Miami, FL.

Figure 21: Maximum value cos θ observed
in a year as a function of tilt and azimuth
for a PV system located in Olympia, WA.

Figure 22: Configurations of tilt and az-
imuth that produce cos θ ≈ 1, as a func-
tion of tilt and azimuth for a PV system
located in Miami, FL.

Figure 23: Configurations of tilt and az-
imuth that produce cos θ ≈ 1, as a func-
tion of tilt and azimuth for a PV system
located in Olympia, WA.
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the research community, we have make code implementation and software development a
priority of the project, rather than an afterthought or something left to future researchers
and engineers.

Optimization-based signal decomposition. The development of optimization-based
signal decomposition (OSD) and the forthcoming monograph are highly significant devel-
opments that have enabled the majority of the algorithms developed in this project and
are expected to have wide-ranging impacts in many areas in addition to PV data science.
This research is related to many generalized methods that are applied throughout numerous
domains such as trend filtering, seasonal-trend decomposition, regularized regression, sparse
dictionary methods, contextually supervised source separation and more. These connections
and relationships are explained in the monograph, and OSD may be thought as a general
framework that includes all these specific methods as subtypes. That is, these methods may
be themselves expressed as OSD problems. In this way, OSD generalizes and ties together
many previously proposed analytical methods, while providing an extensible language for de-
signing new analytics as well as a dedicated algorithm for solving the induced optimization
problem.

Applications of OSD to PV data science. OSD has enabled numerous approaches
that are well-suited for analyzing the performance and reliability of PV systems based on
unlabeled power data, as detailed in §4.2 and §4.4. We are still in the process of finalizing the
manuscripts for the soiling and shade loss factor estimation algorithms, but the algorithms
themselves are published in open-source code and have been internally validated.

Development of open-source software. The project has produces three open-source
software packages: Solar Data Tools (SDT), Statistical Clear Sky, and PV System Profilier.
SDT is the main piece of software, which contains the DataHandler object, for managing the
data processing pipeline and for invoking the other analyses. As of September 2021, SDT
had about 300 downloads per month on PyPI and 179 downloads in total on Anaconda. The
project has also been starred 23 times on GitHub.

Statistical clear sky fitting algorithm. The development of the statistical clear sky
fitting (SCSF) algorithm, and it’s related application to estimating PV system degradation
has made a significant impact on the PV data science community. The paper on applying
SCSF to degradation analysis [7] has already been cited 17 times as of September 2021.

Estimation of system location and orientation from data. While other researchers
have shown that it is possible to estimate location and orientation of a PV system from
measured power data, the existing methods were complex to implement and had not been
released in software (open-source or otherwise). We made a significant contribution to this
particular area of research by presenting a novel approach, based on OSD, for inferring daily
sunrise and sunset times from power data using OSD (see § 4.5.1) that is far more accurate
than previously established methods. Additionally, we have implemented our approaches in
the PV System Profiler Python package, and streamlined the integration of the algoriothms
with the SDT DataHandler, allowing the methods to be easily used by others.
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6 Budget and Schedule
The following numbers are subect to change due to pending Year End closing. Travel,
supplies, and other were underspend because of COVID-19. Most spending were on personnel
and fringe that we were able to cover from areas of underspending.

Table 2: Budget and spending

Categories Budget Spent Unspent
Personnel 499,338 523,148 (23,810)
Fringe 126,144 148,454 (22,310)
Travel 30,000 9,560 20,440
Equipment - - -
Supplies 110,000 72,940 37,060
Contractual 50,000 11,000 39,000
Construction - - -
Other 57,171 - 57,171
Total direct 872,653 765,103 107,551
Indirect 517,347 581,279 (63,932)
Total 1,390,000 1,346,382 43,618

Table 3: Schedule

Categories 10/1/2018–9/30/2019 10/1/2019–9/30/2020 10/1/2020–9/30/2021
Personnel 217,981 221,371 59,986
Fringe 53,776 54,972 17,396
Travel 15,000 15,000 -
Equipment - - -
Supplies 55,000 55,000 -
Contractual 25,000 25,000 -
Construction - - -
Other 28,094 29,077 -
Total direct 394,852 400,420 77,382
Indirect 225,580 229,149 62,618
Total 620,431 629,569 140,000

7 Path Forward
We are very pleased to report that PVInsight Phase 2, covering FY’22-24, has been ap-
proved by the U.S. Department of Energy’s Solar Energy Technologies Office. In Phase
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2 of PVInsight, we will be building on the work and experience of PVInsight, developing
algorithms and tools to solve modern data challenges in the residential, commercial, and
utility sectors of the photovoltaic (PV) solar industry. We will develop data science tools
to enable cost-effective, fleet-scale operations and maintenance for all PV systems, inclu-
sive of those systems that have lower data quality, are not well modeled, and are lacking
reliable environmental data. We will continue to develop and improve the OSD framework
for analyzing PV performance signals, which enables the analysis of unlabeled time-series
data. Additionally, we are bringing the NREL RdTools developers in as project partners,
and we will be working together to solve problems about scaling PV data science software to
large-scale cloud deployments and develop standardized methods and metrics for comparing
and contrasting the accuracy, performance, and data requirements of algorithms in the PV
data science community.

We anticipate three outcomes from the next phase of research: (1) develop a novel ap-
proach to fleet-scale probabilistic modeling of power production, suitable for large scale fault
detection and forecasting, (2) build the software and deployment packages to run algorithms
developed under PVInsight (SETO #34368) and RdTools (SETO #30311 and #34348) on
modern, large-scale cloud computing environments, and (3) building a public-facing valida-
tion hub, for testing and comparing statistical algorithms specifically related to retrospective
performance analysis and real-time fault detection. Of critical importance to the second goal
is the removal of MOSEK from the PVInsight software requirements. This work will focus
on implementing the proposed ADMM-based algorithm for solving OSD problems discussed
in §4.1.3.

8 Publications and Other Results
Papers.

• Peer-reviewed journal articles: [7]

• Conference proceedings: [33, 26, 16, 13, 16, 42, 43]

Talks and workshops.

• B. Meyers, “Tools for PV Data Science: Applied math, statistics, and signal processing
for gaining insight from PV data,” February 2019, PV Reliability Workshop

• B. Meyers, M. Deceglie, C. Deline, and D. Jordan, “Signal Processing on PV Time-
Series Data: Robust Degradation Analysis without Physical Models,” June 2019, 46th
IEEE Photovoltaic Specialists Conference

• B. Meyers, E. Apostolaki-Iosifidou, L. Schelhas, “Solar Data Tools: Automatic Solar
Data Processing Pipeline,” June 2020, 47th IEEE Photovoltaic Specialists Conference

• B. Meyers, “PVInsight: Data Driven Aproaches for Analyzing PV System Performance
and Reliability,” October 2020, SPI Smart Energy Week Virtual Microconference: Is
Data the New Bacon?

• B. Meyers and E. Kam-Lum, “Preliminary Application of PVInsight Automated Ma-
chine Learning for Soiling Detection in Desert Climate,” February 2021, PV Reliability
Workshop
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• B. Meyers and S. Boyd, “Signal Decomposition via Distributed Optimization,” April
2021, Invited talk at SLAC AI Seminar Series (online: https://ml.slac.stanford.

edu/ai-seminar)

• B. Meyers, “Identification of Best Plane-of-Array Irradiance Sensor for PV System
Performance Analytics,” June 2021, 48th IEEE Photovoltaic Specialists Conference

Software.

• Solar Data Tools, “Automatic handling of PV data preprocessing, cleaning, and filter-
ing, as well as tools for executing other PVInsight algorithms,” https://github.com/

slacgismo/solar-data-tools, DOI: 10.5281/zenodo.5534917

• Statistical Clear Sky, “Implements statistical clear sky fitting (SCSF) algorithm,”
https://github.com/slacgismo/StatisticalClearSky, DOI: 10.5281/zenodo.5056944

• PV System Profiler, “Implements estimation algorithms for determining system lat-
itude, longitude, tilt, and azimuth from measured power,” https://github.com/

slacgismo/pv-system-profiler, DOI: 10.5281/zenodo.5484417
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