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−11.8 events with a significance of 1.88σ

was measured using an unbinned extended maximum likelihood fit. An up-

per limit on the branching fraction is set at the 90% confidence level of

B(B → γγ) < 3.2 × 10−7. This is about two times more stringent than the

best upper limit of less than 6.2× 10−7 published by the Belle collaboration.
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Chapter 1

Introduction

This chapter introduces the Standard Model of particle interactions,

the CKM matrix for quark mixing, and the dynamics of electroweak decays

which are responsible for the decay B → γγ. It then describes the physics of

e+e− collisions in relation to B physics and concludes with a description of

the theoretical and experimental background of the decay B → γγ.

1.1 The Standard Model

To understand the structure of natural world three questions need an-

swering:

1. What are the particles that comprise matter?

2. What are the forces that those particles interact by?

3. How can the interactions of the particles and forces be calculated?

The Standard Model (SM) is the present theoretical framework that answers

these questions. It describes the particles that make up matter (quarks and

leptons), the forces through which the particles interact called strong, weak,

and electromagnetic, and how to calculate these interactions. Together with

the general relativistic description of gravity (GR), the two theories give an

almost complete description of the natural world.
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The SM is a quantum field theory where the interactions between the

particles arise due to the local gauge symmetry of the Lagrangian under the

group SU(3) × SU(2) × U(1). The SU(3) subgroup governs the strong in-

teractions while the SU(2)× U(1) subgroup describe the combined weak and

electromagnetic interactions. Each subgroup is associated with a number of

spin-1 gauge bosons that mediate the interactions between particles, where

the number is equal to the number of generators of the group structure. The

strong force is mediated by eight massless gluons, g, the weak force by the mas-

sive W± and Z0 bosons, and the electromagnetic force by a single massless

photon, γ.

The Lagrangian, L, of a massless fermion field is given by

L0 = iψ̄nγ
µ∂µψn, (1.1)

where repeated Greek indices are summed over, γµ are the Dirac gamma ma-

trices and ψn represents a quark or lepton field. By requiring that L obey

various symmetries other terms are added that represent the various interac-

tions. Finally, to account for the masses of the fermions and gauge bosons,

two scalar Higgs fields are introduced.

The force responsible for the decay analyzed in this thesis, B → γγ,

is the electroweak force where the interactions are based on the combined

symmetry group SU(2) × U(1). The theory was developed in the 1960s by

Glashow, Salaam, and Weinberg and is given the name GSW theory [1–3].

The three generators of the SU(2) group correspond to a triplet of vector

bosons that couple to weak isospin quantum numbers

Wµ =







W µ
1

W µ
2

W µ
3






. (1.2)

2



while the U(1) generator contributes a single vector boson, Bµ, that couples

to weak hypercharge. The corresponding electroweak interaction term in the

Lagrangian is given by

LEW = −i[gW χ̄γµ(1− γ5)χτ ·Wµ +
g′

2
f̄γµfB

µ] (1.3)

where gW and g′ are the SU(2) and U(1) coupling constants, γµ are the Dirac

gamma matrices, τ are the three Pauli matrices, and f are the up and down

components of the SU(2) weak doublets, χ, of quarks and leptons. The three

generations of the quark doublets and singlets include

Q =

(

u

d

)

L

(

c

s

)

L

(

t

b

)

L

and q = uR, dR, sR, cR, bR, tR

while the three lepton weak doublets consist of a massive lepton and its asso-

ciated neutrino and the charged singlets

L =

(

νe
e

)

L

(

νµ
µ

)

L

(

ντ
τ

)

L

and ℓ = eR, µR, τR.

where L means left-handed and R means right-handed.

The algebra of the SU(2) weak isospin is identical to that of spin-1
2

fermions. In a similar fashion to the construction of the raising and lower

operators in spin space, the first and second component of the W triplet can

be combined to produce charge raising and lowering operators that correspond

to the physical charged vector bosons W±. All weak isospin fermion doublets

are invariant under this transformation. The charged current interaction is

a vector-minus-axial interaction, and the Lagrangian for this interaction be-

comes

LCC = gW [f̄γµ(1− γ5)W+
µ f + f̄γµ(1− γ5)W−

µ f ]. (1.4)

3



The 1 − γ5 term operates on the isospin doublets, and projects out the left-

handed component. This shows that the charged weak interaction operates

exclusively on the weak isospin doublets.

In the GSW theory, the SU(2) × U(1) symmetry is broken resulting

in the mixing of the W 3
µ with the Bµ through the weak angle, θW . They

form two linear combinations that correspond to the massive neutral boson

mediating the neutral weak interaction, Zµ, the massless photon that mediates

the electromagnetic interaction, Aµ,

Aµ = Bµ cos θW +W 3
µ sin θW

Zµ = −Bµ sin θW +W 3
µ cos θW (1.5)

The origin of this symmetry breaking is the Higgs mechanism [4–6]. It is

responsible for the masses of the fermions and the W± and Z0 gauge bosons

that mediate the weak force. The details of this process are beyond the scope of

this thesis. The Higgs boson, the gauge boson associated with this symmetry

breaking is yet to be observed in 2010 but its observation is the main goal for

the Large Hadron Collider at CERN, currently beginning to take data.

1.2 The CKM Mechanism

The charged currents described in the previous section seem to operate

only within generations of fermions (i.e. u↔ d). Experimentally it is observed

that generation changing charged currents do exist as evidenced by the decay

K+ → µ+νµ, which is an example of a s → u transition. The description

of these flavor changing processes in the quark sector is explained using the

Cabbibo-Kobayashi-Maskawa (CKM) mechanism [7, 8].
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The CKM mechanism states that the flavor eigenstates that partici-

pate in the weak interactions are not the same as the mass eigenstates of the

Hamiltonian. Stately differently, the physical particles that are measured are

actually mixtures of different flavor eigenstates. The relation between the mass

and flavor eigenstates is given by the CKM matrix:







d′

s′

b′







mass

=







Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb













d

s

b






(1.6)

When this new term is included into charged weak interaction term of the

Lagrangian, eq. (1.4) becomes.

Lcharged = gW [ūLi γ
µW+

µ Vijd
L
j + d̄Li γ

µW−
µ V

∗
iju

L
j ]. (1.7)

The strengths of the flavor changing charged currents are then determined by

the magnitudes and phases of the off-diagonal elements of the CKM matrix.

The CKM matrix is a 3×3 complex unitary matrix. A unitary 3×3

matrix can be parameterized in terms of three real parameters and six complex

phases. The three real parameters are analogous to the angles in a three

dimensional rotation. For the complex phases, five can be removed through

redefinitions of the relative phases between the quark fields leaving a single

complex phase. If this phase is non-zero this allows for an asymmetry under

the combined operation of charge conjugation (C) and parity reversal (P). The

CKM matrix can thus be parameterized using the following notation

VCKM =









c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13









, (1.8)

where cij = cos θij, sij = sin θij, and δ is the complex phase.
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The three angles, θij, characterize the amount of mixing between the

quark generations. They are experimentally found to be small: s12 ≈ 0.22,

s23 ≈ 0.05, and s13 ≈ 0.01 which allows for an expansion, due to Wolfen-

stein [9], of the CKM elements in (1.8) in the parameter λ that makes clear

their relative magnitudes:

VCKM =









1− 1
2
λ2 λ Aλ3(ρ− iη)

−λ 1− 1
2
λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1









+O(λ4), (1.9)

The parameters A, ρ, and η are of order unity, with η parameterizing CP

violation in the Standard Model.

There are six equations that result from the unitarity constraint on the

CKM matrix:
∑

i

VijV
∗
ik = 0. (1.10)

Each equation represents a triangle in the complex plane whose area is related

to the CP violating phase. The important equation for B physics is where

k = b, representing the decay of a b type quark and given by the equation:

VudV
∗
ub + VcdV

∗Vcb + VtdV
∗
tb = 0 (1.11)

Using the Wolfenstein parameterization of this equation, the triangle can be

represented in the complex ρ − η plane as shown in Figure 1.1. The experi-

mental measurement of the angles and sides of this triangle is a stringent test

of CP violation due to the CKM picture of the Standard Model.

1.3 Flavor Changing Neutral Currents

Flavor Changing Neutral Currents (FCNC) are processes that change

the flavor of a fermion without changing the charge, e.g., b → d. These
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Figure 1.2: Standard Model Feynman diagram for the decay B̄0 → γγ, which
is also a flavor changing neutral current transition.

transitions do not occur in the SM at tree level but are allowed in higher-

order processes involving a charged W and quark loop. As such, they are

highly suppressed compared to other weak interactions by means of the GIM

mechanism [10]. The decay B → γγ is one such example and is called an

effective flavor-changing neutral current. A Feynman diagram showing this

decay along with the W − q loop is shown in Figure 1.2. These types of

decays are suppressed by at least a factor of gW compared to tree level weak

decays due to the extra vertex factor associated with the loop. An additional

suppression occurs due to the small size of the off-diagonal CKM factor in the
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decay amplitude Although the combined suppressions make FCNC processes

very rare, they are important because the rates of these processes are sensitive

to new physics. The particles from new physics scenarios can take the place

of the SM model bosons in the loop at the same level and have a measurable

effect on the decay rates. Therefore a measurement of the rate at an enhanced

level could provide hints at the type of physics beyond the SM. The work

presented in this thesis is an attempt to measure the branching fraction of the

flavor changing neutral current B → γγ.

1.4 e+e− Physics

The two mile long linear accelerator at SLAC National Accelerator Lab-

oratory accelerates electrons and positrons to high energies for use in colliding

beam experiments. When the electrons and positrons are at sufficient energies

to produce the desired physics, they are each injected into storage ring with a

circumference of 2.2 km. For BABAR these energies correspond to 9.0 and 3.1

GeV for the electron and positron beam, respectively. Each ring circulates the

electrons and positrons in opposite directions and brings them into collision

at the heart of the BABAR detector called the interaction point (IP). Chapter

2 goes into the details of the PEP-II accelerator and BABAR detector.

The electrons and positrons at BABAR are brought into collision with

a center-of-mass energy of 10.58 GeV, which corresponds to the mass of the

Υ (4S) meson. The label Υ refers to a meson composed of a b and b̄ quark. The

(4S) label refers to the fourth excited state of this resonance which is similar

to an excited state in a hydrogen atom. Figure 1.3 shows the energies of the

different Υ resonances. The 4S resonance energy is important for B physics

because the energy is large enough to produce a light qq pair, allowing the
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Figure 1.3: Upsilon resonances as a function of the center-of-mass-energy.
The Υ (4S) resonance is important because there is enough energy to be able
to produce a pair of B mesons.

Table 1.1: Phyical properties of B mesons and their quark content.

B+ (ub̄) B− (ūb) B0 (db̄) B̄0 (d̄b)

mass (GeV/c2) 5.2792± 0.0003 5.2795± 0.0003
lifetime (τ) (s) (1.638± 0.011)× 10−12 (1.525± 0.009)× 10−12

Υ (4S) to decay to a pair of B mesons. Some physical properties of B mesons

are given in Table 1.1

The use of an electron-positron collider provides many advantages over

hadron colliders for precision measurements. The interaction of an electron and

positron produces a virtual photon or Z0 boson which then immediately decays

into the particles that can be detected by BABAR. In contrast, in a hadron

collider like in the LHC, the interactions are governed by QCD processes, where

the colliding hadrons fragment creating a large number of secondary particles

9



that flow along jets. This makes the background for lepton colliders much

lower than for hadron collisions, allowing for complete event reconstruction.

1.5 The Decay B → γγ

In the standard model, the decay B → γγ proceeds through the second

order radiative weak transition b → dγγ, followed by an annihilation. An

example Feynman diagram for this process is shown in Figure 1.2. This mode

is theoretically interesting because it allows for a study of the non-trivial QCD

effects of the B decay with a kinematically simple hadron-less two-photon final

state. Additionally, since the two-photon final state can be in a CP -even or

CP -odd final state, this decay could be a non-traditional channel to study CP

violation.

The physics of heavy quark transitions is often done in the framework of

Operator Product Expansion (OPE) [11]. This is based on the assumption that

the short-distance perturbative effects in QCD can be separated or factored

out from the long-distance non-perturbative piece. The effective Hamiltonian

of the transition can then be written as the sum over products of coefficients,

Ci(µ), called Wilson coefficients and local operators, Oi(µ). The Ci(µ) char-

acterize the short-distance perturbative QCD effects above the energy scale

µ. The operators, Oi(µ), then characterize the long-distance non-perturbative

physics below the µ energy scale. This parameterization is said to “integrate

out” the particles of rest mass greater than µ. For B decays this energy scale is

the mass of the b-quark, mb, and it integrates out contributions from particles

that are heavy compared to mb such as the W , Z and t quark. The effective

Hamiltonian for this scheme applied to a B → γγ transition can be written
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as [12]

Heff =
GF√
2

∑

j

V ∗
jdVjb

[

Cj
1Oj

1 + Cj
2Oj

2 +
8
∑

i=3

CiOi

]

+ h.c. (1.12)

where j is a quark flavor index representing either a u or c quark, GF is the

Fermi coupling constant and V is a CKM matrix element. The most important

terms for and b→ dγγ transition is the seventh term, C7O7, called the magnetic

penguin operator, and the four-quark operators, Qj
1,2. Using this formalism a

estimate of the branching fraction for B → γγ is calculated to be

B(B → γγ) = (3.1+6.4
−1.6)× 10−8. (1.13)

1.5.1 New Physics Enhancements

The small size of the BABAR dataset makes a measurement of the

branching fraction of B → γγ at the SM level unlikely. However, several

new physics scenarios can provide enhancements to the rate by up to an order

of magnitude. Since flavor changing neutral currents occur beginning at the

one-loop level in the SM, new heavy particles such as a non-SM Higgs or a

SUSY particle can enter the loop in place of the up-type quark. These new

contributions would add extra terms to the amplitude in the and could alter

the rate. Therefore any difference in the SM and observed rates could provide

evidence for new physics.

One scenario showed that with the addition of a second weak Higgs

doublet, the branching fraction could be enhanced up to the level of 10−7 [13].

Another calculation of the branching fraction uses a SM scenario but adds an

additional space dimension. In this case the exchange of scalar Higgs parti-

cles within the loop gives an enhancement of the branching fraction of about

6% [14].
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Table 1.2: Current published experimental results for B → γγ from BABAR

and Belle. All upper limits are given at 90% CL.

Experiment B(B → γγ)

L3 Collaboration [17] < 3.9× 10−5

BABAR [16] < 1.7× 10−6

Belle [15] < 6.2× 10−7

1.5.2 Previous Searches

The branching fraction for the decay B → γγ has not been measured

as of 2010. Several previous attempts to observe this decay mode have been

attempted, but in each case an upper limit was set. The most recent result

comes from Belle analyzed using a dataset corresponding to an integrated

luminosity of 104 fb−1. An upper limit on the branching fraction was set at

less than 6.2 × 10−7 at the 90% CL [15]. A previous search for this decay by

the BABAR Collaboration was done using a smaller dataset corresponding to

an integrated luminosity of 20 fb−1. Again, the results were consistent with

zero signal events and an upper limit of less than 1.7 × 10−6 at 90% CL was

set [16]. The previous results are shown in Table 1.2. This thesis will describe

the search for the decay B → γγ using the BABAR dataset whose integrated

luminosity of 425.7 fb−1 is four times larger than was used for the current best

upper limit.
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Chapter 2

The B Factory and the BABAR Detector

To study the physics processes described in the Chapter 1, large num-

bers of B mesons must be produced. The B-Factory, consisting of the PEP-II

accelerator and the BABAR detector, located at the SLAC National Accelerator

Laboratory1 in Menlo Park, CA was designed and constructed for this pur-

pose. This chapter will introduce the experimental apparatus used to produce

B mesons and detect their decay products.

2.1 The PEP-II Accelerator

The PEP-II (Positron-Electron Project II) accelerator is an asymmetric

circular e+e− collider shown in Figure 2.1. It consists of a high energy ring

(HER) of 9.0GeV electrons and a low energy ring (LER) of 3.1GeV positrons

circulating in opposite directions. The beams are brought into collision near

the center of the BABAR detector at a center-of-mass energy of 10.58GeV which

corresponds to the mass of the Υ (4S). The Υ (4S) decays nearly 100% of the

time into a pair of BB mesons (mB = 5.279GeV/c2). The rest frame of the

Υ (4S) is Lorentz boosted from the lab frame by a factor of βγ = 0.56 because

of the asymmetric energies of the beams. This boost causes the BB pair to

travel far enough apart before they decay for the tracker to be able separate

1The name of the lab was changed in 2008 from the Stanford Linear Accelerator Center.
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Figure 2.1: PEP-II is the circular blue/red ring.

the decay vertices. This ability to separate the vertices is necessary for the

measurement of time-dependent CP violating decays.

2.2 The BABAR Detector

The BABAR detector was designed for the primary physics goal of mea-

suring CP violating asymmetries in the decays of neutral B mesons. Addition-

ally, with the high luminosity achieved by PEP-II, large samples of charm and

τ events are available for precision studies as well as for rare decay searches, in-

cluding the decay B → γγ. To achieve this large physics program the detector

was designed to satisfy the following requirements

• A large geometrical acceptance including small polar angles relative to
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the boost direction;

• Excellent reconstruction efficiency for charged particles down to 60 MeV/c

and for photons to 20 MeV;

• Very good momentum resolution to separate small signals from back-

ground;

• Good energy and angular resolution for photon detection from π0, η, and

radiative decays;

• Good vertex resolution from the tracker;

• Very good particle identification over a wide range of energies.

To accomplish all of the requirements, the BABAR detector is composed of

several individual sub-detectors that work in tandem covering different tasks.

The inner detector contains the tracking system, which is made up of a sil-

icon vertex tracker (SVT), and a drift chamber (DCH), a particle ID detec-

tor using internally reflected Cherenkov light (DIRC), and an electromagnetic

calorimeter (EMC). These components are surrounded by a super conducting

magnet producing a field of 1.5T. The outermost sub-detector is steel flux re-

turn instrumented for muon and neutral hadron identification. The detector

surrounds the interaction region (IR) and is offset in the direction of the LER

by 0.37cm in order to maximize the acceptance of the Υ (4S) decay. Figure 2.2

shows the detector in cross section.

2.2.1 SVT: Silicon Vertex Tracker

The inner most sub-detector is the silicon vertex tracker which was

designed to provide precise reconstruction of charged particle trajectories and
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Figure 2.2: The BABAR Detector.
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decay vertices near the IP. The SVT is constructed of five layers of two-sided

silicon sensors. The five layers are arranged into modules containing 6, 6, 6,

16, and 18 units from inner to outer radius. The sensors on opposite sides

of each layer are oriented perpendicularly to each other. For example on one

side the strips run parallel to the beam axis and measure the azimuthal angle

φ, while on the opposite side the strips are transverse to the beam axis and

measure the z position. Figure 2.3 shows the design and orientation of the

SVT in the longitudinal and transverse planes.

The three inner layers of the SVT are flat strips of silicon mounted

as close to the beam pipe as possible to minimize the impact of multiple

scattering. The outer layers 4 and 5 have an arched design chosen to minimize

the amount of silicon necessary for full solid angle azimuthal coverage and

to increase the crossing angle for particles near the edge of acceptance. The

innermost layer is 3.4 cm in radius compared to the beam pipe radius of 2.78

cm, while the outermost layer is at a radius of 14.4 cm. Figure 2.3(a) shows

an asymmetric orientation of the SVT in z because the Lorentz boost has the

decay products preferentially moving in the forward direction. The polar angle

coverage of the SVT is 20 < θ < 150 degrees which corresponds to 90% of the

solid angle in the CM frame.

The SVT is made of 104 silicon wafer sensors that are 300 µm thick

which constitutes a total area of silicon equal to 0.96 m2 corresponding to

about 4% of a radiation length. The wafers are built upon n-type substrate

with p+ and n+ strips on opposite sides. When a charged particle passes

through a wafer it creates many electron-hole pairs whose charge is read out

through the front end electronics. If the total charge is greater than some

threshold, typically about 0.4 fC, the event is recorded as a hit.
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Due to its close proximity to the beam line the SVT is particularly

vulnerable to radiation damage. In order to monitor the accumulated radiation

dose a set of 12 silicon PIN monitoring diodes and two chemical vapor deposit

(CVD) diamond sensors are installed between the beam pipe and innermost

layer of the SVT. The radiation sensors have the ability to abort the PEP

beams if the radiation in the environment becomes bad enough to have the

ability to cause damage to the SVT.

The resolution of the SVT is dependent on the distance between readout

strips which for the innermost(outermost) layer is 50(210) µm. The φ and z

resolution of each layer is shown in Figure 2.4. The mean separation in z

between the two B decay vertices is about 250 µm, which the SVT resolution

of between 15–40 µm is sufficient to distinguish.

2.2.2 DCH: Drift Chamber

The Drift Chamber is used to measure, with high precision, the trajec-

tories of charged particles and their energy loss due to ionization. It is solely

responsible for the reconstruction of decay vertices for particles with lifetimes

long enough to travel outside the SVT volume. Together the DCH and the

SVT make up the tracking system for BABAR. Figure 2.5 shows the DCH in

longitudinal cross section.

The DCH is a cylinder 276.4 cm long with an inner(outer) radius of

23.6(80.9) cm, containing 7104 drift cells. The drift cells are arranged into

10 superlayers which each contains 4 layers of cells. Figure 2.6 shows the

layout of the innermost 4 superlayers of the drift cells. Each cell is hexagonal

in shape with dimensions 11.9 × 19.0 mm along the radial and azimuthal

directions, respectively. Each cell is composed of one tungsten-rhenium sense
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Figure 2.5: Longitudinal cross section of the Drift Chamber with dimensions
given in mm and degrees. The center of the DCH is offset 370 cm from the IP.

wire, maintained at high voltage, surrounded by six aluminum wires.

The DCH is filled with an 80:20 mixture of helium and isobutane gas

that the charged particles ionize as they traverse the chamber.

2.2.3 DRC: Detector of Internally Reflected Cherenkov Light

The CP -violating and rare B decays discussed in the previous chapter

require knowledge of the flavor of the B meson in the decay, and so the ability

to distinguish between charged pions and kaons is essential. The Detector of

Internally Reflected Cherenkov light (DRC) was designed for particle identi-

fication above momentum of 700 MeV/c where the DCH is no longer able to

distinguish between the two species using dE/dx measurements.

When a charged particle moves through a medium at a velocity greater

than the speed of light in that medium it emits photons called Cherenkov light.
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The angle between the velocity of the particle and the direction in which the

photons are emitted, θc, is given by

cos θc =
1

nβ
=

c

nv
, (2.1)

where n is the index of refraction of the medium, v is the particle’s velocity,

and c the speed of light. Different species of particles can be identified by a

measurement of their momentum and θc.

The DRC concept is based on the principle that the incident and re-

flected angles of light from a flat surface are equal in magnitude. As a particle

passes through the DRC material, Cherenkov photons are emitted and trans-

mitted by total internal reflection to the back of the detector where they are

imaged in a standoff box filled with purified water by an array of photomul-

tiplier tubes (PMTs). By using the timing of the electronic signals and the

position and angles from the tracking system, the Cherenkov angles θc and φc

can be calculated and can be used in the identification of the particle species.

Here φc is the azimuthal angle of a Cherenkov photon around the track direc-

tion.

The DRC is constructed of 144 bars arranged into a 12 sided polygon

barrel that is coaxial with the BABAR z-axis. Each bar is made of fused syn-

thetic silica with index of refraction, n = 1.473. The bars are 17-mm-thick,

35-mm-wide, and 4.9-m-long and constructed of 4 smaller bars of length 1.225-

m-long glued end to end. Figure 2.7 shows a schematic of the DRC longitudinal

cross section and bar box.
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Figure 2.7: The left figure shows a schematic of the DRC longitudinal cross
section. The right figure shows a schematic of one of the 12 bar boxes.

2.2.4 EMC: Electromagnetic Calorimeter

2.2.4.1 Design and Layout

The most important system for the measurement of the branching frac-

tion of B → γγ is the electromagnetic calorimeter (EMC). Positioned just

outside the DRC radius, it is a total absorption calorimeter responsible for the

measurement of photon energies as well as the identification of electrons from

other charged tracks by using energy deposition and shower shape along with

momentum measurements from the tracking system.

The design goals were excellent EM shower detection efficiency, energy

and angular resolution from 20MeV up to 9GeV. This allows for the recon-

struction of π0 and η decays into two photons. The electron identification is

used for flavor tagging of B mesons decaying into semi-leptonic states, as well

as for the study of rare decays of B and D mesons.

The EMC is constructed from 6580 cesium iodide crystals doped with

0.1% thallium, CsI(Tl). These are total-absorption scintillating crystals mean-

ing that the incident particle is destroyed and its energy is converted into
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Figure 2.8: A drawing of an EMC crystal and the photodiode readout attached
to the back.

scintillation photons. The scintillation photons can be detected using photo-

diodes and related to the incident particle energy. This material was chosen

because its properties allow for very good energy and angular resolution at

BABAR energies. Additionally its short radiation length allows a small volume

of calorimeter to fully contain the EM showers thus reducing the cost and

size of the subsystem and detector. The crystals, shown in Figure 2.8, have a

trapezoidal cross section to minimize dead space in azimuthal coverage. The

crystals range in length from 16.0 radiation lengths, X0, in the rear of the

calorimeter up to 17.5 X0 in the forward section. This corresponds to crystal

lengths of 29.6 to 32.4 cm, respectively. The average dimensions of a crystal

front(back) face are 4.7× 4.7 cm2( 6.0× 6.1 cm2).

The crystals are arranged in two mechanically independent structures
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Figure 2.9: A longitudinal view of the EMC showing its’ top half with dimen-
sions given in mm. The calorimeter is symmetric around the z-axis which is
the horizontal dotted line going through the interaction point.

called the barrel and endcap. A schematic drawing of a longitudinal cross-

section is shown in Figure 2.9. The barrel is a cylinder of inner radius 92

cm composed of 48 rings along the beam axis each with 120 crystals. The

endcap is a conic section with eight rings along the z-axis each composed of

80, 100, or 120 crystals depending on the radial distance from the beam line.

All crystal axes are pointed towards the interaction point with a slight non-

projectivity, ranging from 15–45 mrad, to minimize the chance for particles to

traverse the gaps between the crystals. In the azimuthal direction the crystals

are completely projective. This geometry provides full azimuthal coverage and

from 15.8◦ to 141.8◦ polar angle coverage which corresponds to 90% solid angle

coverage in the center-of-mass frame.

When a photon or electron enters the calorimeter it loses energy mainly

through pair production and brehmsstrahlung processes. The energy loss con-

tinues as the particle moves through the crystal creating a shower of photons
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and e+e− pairs until the incident particle energy reaches a critical value which

is about 10MeV in CsI(Tl). The scintillation photons are collected by two sil-

icon photodiodes glued to the rear face of the crystal. These diodes are run at

50 V and have a quantum efficiency of 85% at the peak wavelength of CsI(Tl)

scintillation, about 565 nm. Additionally each crystal is wrapped in a reflector

material to keep the scintillation light inside the crystal and a aluminum foil

layer to shield them from electronic interference.

2.2.4.2 EMC Calibration

The calibration of the EMC is done in two stages. First, the measured

photodiode signal is related to the incident energy of individual crystals. This

is done at a low and high energy point due to the non-uniformity of the crys-

tal light yields. The crystal response in between is then calculated using a

logarithmic interpolation. The low energy single crystal calibration uses a

6.13MeV photon produced in the decay of a neutron irradiated fluid called

Fluorinert through the reaction

19F + n → 16N+ α, 16N → 16O∗ + β, 16O∗ → 16O+ γ.

The activated fluid is circulated through the detector passing the front face

of the crystals and the response is measured. The high energy single crystal

calibration (3-8 GeV) is done using Bhabha events (e+e− → e+e−). The

calibration constants constrain the deposited energy of the e± to that predicted

by a GEANT based MC simulation as a function of polar angle.

Second, a correction for energy loss in dead material, shower leakage,

and energy not associated with the cluster is calculated relating the deposited

cluster energy to that of the incident electron or photon. In the low energy
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region from 70 MeV to 2 GeV, the calibration is done using a sample of

symmetric π0s. Here the invariant mass of the two photons is constrained

to be PDG π0 mass. In the high energy region from 400 MeV to 6 GeV,

the calibration is done using a sample of e+e− → µµγ events. The measured

photon energy is related to the incident energy by kinematically fitting the

µµγ particles.

2.2.4.3 EMC Performance

The performance of the EMC is measured by the resolution. At low

energies, the resolution is measured directly from the 6.13MeV photons used

in the single crystal calibration. For high energies the resolution is derived

from Bhabha events. An overall fit to the resolution measurements of the

EMC results in:

σE
E

=
(2.32± 0.30)%

4

√

E(GeV)
⊕ (1.85± 0.12)%, (2.2)

The angular resolution uses symmetric π0 and η decays to two photons where

the angular distribution can be calculated. The resolution function is found

to be equal in polar and azimuthal angle and is given by the relation:

σθ = σφ =

(

3.87± 0.07
√

E(GeV)
+ 0.00± 0.004

)

mrad. (2.3)

2.2.5 IFR: Instrumented Flux Return

The outermost subsystem is the Instrumented Flux Return (IFR). It

is designed to detect muons with a high efficiency and neutral hadrons over a

wide range of momenta and angles. It also serves to contain the flux of the

1.5 T magnetic field produced by the superconducting solenoid. Good muon
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Figure 2.10: Schematic drawings for the IFR barrel and endcap forward (FW)
and backward (BW) doors. All dimensions are in mm.

detection is important for tagging the flavor of the B mesons that undergo

semi-leptonic decays, as well as rare decays of B and D mesons. The ability to

identify K0
L
also is essential for study of CP eigenstates in exclusive B decays.

The IFR is a hexagonal barrel section with three regions in z and two

endcap modules segmented into west and east sides with six vertical regions

in each as shown in Figure 2.10. The barrel and endcap modules have a total

of 19 and 18 layers of steel interleaved with detectors respectively. The width

of the steel layers vary with the radial distance from the IP. The innermost

layer of steel is 2 cm in width while the outermost layer has a thickness of 10

cm. This was done as Monte Carlo studies showed this improved muon and

K0
L
identification.

The detectors in between steel layers in both the barrel and endcap

were originally resistive plate chambers (RPCs) but in 2004 and 2006 the bar-
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Figure 2.11: Cross section of an RPC.

rel RPCs were replaced with limited streamer tubes (LSTs) due to a degra-

dation in RPC performance. Both types of detectors work by detecting a

discharge (streamer) created by a charged particle passing through the gas in

each RPC/LST.

The RPCs are made of Bakelite and graphite surrounding a 2-mm gap

that contains a mixture of 56.7% argon, 38.8% freon, and 4.5% isobutane. A

cross section of a typical RPC is shown in Figure 2.11. The RPCs are capable

of readout in two dimensions by having orthogonal aluminum readout strips

on either side of the module.

The LSTs are tubes of polyvinyl chloride with a cross-section of 15×17

mm2, and length 38 cm. The tubes are connected end-to-end in groups of 4 to

give a total length of ∼ 3.5 m. A flat module is made by placing 8 tubes next

to each other into a honeycomb structure. The inner surface of each tube is

coated with graphite to act as a cathode, while a 100 µm silver plated anode

wire runs down the center and is kept at high voltage, 5500 V. The tube is

filled with a gas mixture of 89% carbon dioxide, 8% isobutane, and 3% argon.

Again two-dimensional readout is available by running aluminum strips along
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the bottom of the tubes, perpendicular to the anode wire directions.

2.2.6 Trigger and Data Flow

The trigger is designed to recognize the signature of interesting physics

events among the thousands of interactions that take place each second and

save those events to disk for later analysis. It is a two level system that is made

of a hardware based selector called the Level 1 trigger (L1), and a software

based selector called the Level 3 trigger (L3).

2.2.6.1 Level 1

The Level 1 trigger is a hardware based trigger that uses information

from charged tracks in the DCH, clusters in the EMC, and tracks in the IFR

to make a decision on whether the event should be considered for further

analysis. Each of the three subsystem has their own trigger called the Drift

Chamber Trigger (DCT), Electromagnetic Calorimeter Trigger (EMT), and

the Instrumented Flux Return Trigger (IFT), respectively. These triggers each

generate a summary of the energy and position of tracks or clusters and send

the information, called a primitive, to the Global Level Trigger (GLT).

The GLT synchronizes the information from the primitives and provides

basic matching between the positions of tracks and clusters in the different

systems. It then produces specific triggers dependent on the content of the

event and passes this information to the Fast Control and Timing System

(FCTS). The FCTS can mask triggers or pre-scale them depending of the

physics processes that are of interest during running. If a trigger remains after

the FCTS, the event is given an L1 Accept signal and is read out for processing

by the L3 trigger.
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The L1 trigger is designed with an output rate of about 1 kHz at design

luminosity, but near the end of the data taking period in 2007/2008 with PEP-

II delivering luminosity around 1034 cm−2s−1 it was operating at about 3.5 kHz.

The L1 trigger is greater than 99.9% efficient for BB events, greater than 98%

efficient for e+e− → qq (q = u, d, s, c), and greater than 94.5% for τ+τ− events.

2.2.6.2 Level 3

The Level 3 trigger (L3) is implemented in software and uses the output

of the Level 1 trigger as input and has access to all of the event information

to determine it’s output. L3 performs initial events reconstruction and classi-

fication, selection using filters, and monitoring. The L3 trigger is comprised

of three phases.

1. Events are classified into L3 input lines by combining the output lines

of the FCTS using a logical OR.

2. For each of the L3 input line, a pass/fail flag is assigned to the line.

3. L3 output lines are formed by a logical OR of flags from the input lines

that were run in the previous step. If the event passes the L3 output it

is written to disk for analysis.

After passing through both L1 and L3 triggers, BB events have an

efficiency of greater than 99.9%, e+e− → qq (q = u, d, s, c) have and efficiency

greater than 95%, and τ+τ− events are 92% efficient. At design luminosity

the L3 output has about 13% of events useful for physics analysis and 40% are

useful for calibration and diagnostics.
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2.2.6.3 Data Flow

Events that pass the L3 selection are passed to a program that writes

them to an extended tagged container (XTC) file. Each file contains about one

hours worth of colliding beam data called a run. All XTC files are then sent to

a computing farm where they undergo further processing and reconstruction.

Initially, some events are taken from the run and used to calibrate the

subsystems in a process known as prompt calibration (PC). This is done to

calibrate each subsystem as the detector conditions changed with time. PC

is done on a rolling basis, meaning that the calibrations are occurring when-

ever BABAR is recording data. The second step in this process is called event

reconstruction (ER), which takes the raw data from the XTC files and turns

is into the lists of particles used in physics analysis. A detailed description of

this process is given in the next chapter.
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Chapter 3

Data Processing

The data recorded by the detector are signals from phototubes, sense

wires, photodiodes, resistive plate chambers, and silicon strip sensors. To

turn these into objects that can be used in a physics analysis, particles and

their associated 4-momentum, requires a large set of software tools. This

chapter describes the event reconstruction techniques used in BABAR to turn

those electronic signals into charged tracks and neutral clusters. Additionally,

the algorithm used for B counting is discussed. Lastly, a brief description of

the simulation of BABAR data used to study specific signal and background

processes is discussed.

3.1 Event Reconstruction

All events that pass the L3 trigger are written out to disk for recon-

struction. Initially the data passes through a calibration phase called prompt

calibration (PC) that implements many of the calibrations discussed in the

previous chapter. Afterwards, usually within a 48 hours, the data is sent to a

computing center in Padova, Italy for event reconstruction. The next sections

describe the steps used to turn the raw measurements made by the detector

into lists of reconstructed particles for physics analysis. The output of the

reconstruction are stored in ROOT [18] collections.
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3.1.1 Photon Reconstruction

Photons are detected in the EMC from their scintillation photons after

undergoing an electromagnetic shower. The energy is usually contained within

a number of adjacent crystals called a cluster. Any crystal inside a cluster

where the adjacent crystal energies are smaller is referred to as a bump. Con-

sequently a cluster can contain more than one bump. Cluster reconstruction

starts by finding crystals whose energy is greater than 10 MeV. The cluster

is then built by adding neighboring crystals whose energy is at least 1.0 MeV

or if they are contiguous with crystals of energy greater than 3.0 MeV. If the

cluster contains a single bump then the full energy of the cluster is associated

with the bump. For clusters with multiple bumps the detected energy is split

between them using an iterative algorithm. This method assigns a weight, wi,

to each crystal and the energy of the bump is given as Eb =
∑

iwiEi, where i

is the index of all crystals in the cluster. The weights are given by the equation

wi = Ei

exp(−2.5ri/rM)
∑

j Ej exp(−2.5rj/rM)
(3.1)

where j is an index referring to all crystals in the cluster, rj is the radius from

the bump center to the center of the jth crystal, and rM is the Molière radius of

CsI(Tl) (3.8 cm). Initially all weights are set to one, iterated through, and the

bump centroid is recalculated. The iteration stops when the bump centroid is

constant within 1 mm. A bump is associated with a charged track by project-

ing the track helix onto the front face of the EMC. If the distance between the

bump centroid and track impact are consistent with the momentum and angle

of the track, the cluster is associated with the charged particle. If no tracks

in the event are consistent then the cluster is assumed to be a photon.

Additionally, the shape of the cluster is also relevant and is character-

ized quantities called the lateral moment (LAT), and the second moment. The
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LAT [19] is defined as the ratio of all but the two highest energy crystals in

the cluster, weighted by the square of the distance to the cluster center to the

sum of all crystal energies in the cluster weighted by the square of the distance

between the center of adjacent crystals which is 5.0 cm. This is given by the

equation

LAT =

N
∑

i=3

Eir
2
i

N
∑

i=3

Eir
2
i + E1r

2
0 + E2r

2
0

, where E1 ≥ E2 ≥ . . . ≥ EN , (3.2)

Here Ei is the energy of a crystal in the cluster, ri is the distance from the

ith crystal center to the bump crystal center, and r0 is the distance between

crystal centers.

The second moment is the ratio of the sum of the crystal energies

weighted by the square of the angular distance from the center of the cluster

to the cluster energy and is given by the equation

2nd Moment =

∑

i

Eiα
2
i

∑

i

Ei

. (3.3)

During reconstruction lists of photons are created by selecting clusters

based on their energy and lateral moment. All clusters in an event not matched

to a track are placed on a list called CalorClusterNeutral (CCN). This list

can contain clusters with any number of bumps. All clusters in the CCN list

that contain only a single bump are placed in a list called CalorNeutral (CN).

This list is further refined to a list called GoodPhotonLoose (GPL) by selecting

those single bump clusters with energy greater than 30 MeV and with LAT

less than 0.8. The photons used for this analysis are selected from the GPL list.
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3.1.2 Track Reconstruction

A charged particle moving in the presence of a magnetic field will follow

the trajectory of a helix, which can be parameterized by five quantities: (1) pT ,

the transverse momentum, (2) dip angle, λ, is the angle between the transverse

and longitudinal momentum, (3) d0, the distance of closest approach (DOCA)

to the origin in the x−y plane, (4) φ0 is the azimuthal angle at d0, (5) z0 is the

distance of closest approach to the origin in the z direction. These parameters

are used to parameterize the trajectory of the particle by

x = r sinφ− (r + d0) sinφ0

y = −r cosφ− (r + d0) cosφ0

z = z0 + l tanλ

px = pT cosφ

py = pT sinφ

pz = pT tanλ (3.4)

where r is the radius of the track, given by r = pT/qBz, and φ = φ0+ l/r with

l the parameter along the track.

Charged tracks are reconstructed using the output of the Level 3 DCH

trigger. A helical fit is done on the track segments using a Kalman filter

method [20] that takes into account measurement uncertainties as well as un-

certainties due to multiple scattering and energy loss. The tracks are then

extrapolated into the SVT, where they are added to the tracks from the stan-

dalone SVT tracking. Finally the full track is refit using the information from

both the SVT and DCH. Tracks in the SVT not matched to any DCH track

are also refit and are kept as SVT-only tracks. All reconstructed tracks in
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the event are put into a list called ChargedTracks (CT) where by default all

particles are assigned a mass equal to a pion. Other lists are constructed by

requiring the tracks to pass some predefined selection criteria. This analysis

uses a subset of this list called GoodTracksLoose (GTL). The tracks in this

list are required to have |d0| < 1.5 cm, |z0| < 2.5 cm, pT < 0.05 GeV/c, and

|p| < 10 GeV/c.

3.2 B Counting

To measure the branching fraction for some process

X → Y + Z + . . . (3.5)

one needs to know the number of parent particles, X, produced. For a mea-

surement of B(B → γγ) this means the number of B0 and B0 mesons in the

data sample needs to be known. In BABAR only the total number of BB pairs

is counted so to get the number of neutral B mesons a measurement of the

Υ (4S) → B0B0 branching fraction is also necessary.

B counting at BABAR is done by comparing data taken at the Υ (4S)

resonance energy, called on-resonance, with that taken 40 MeV below, called

off-resonance. In on-resonance data, the number of BB events is equal to the

total number of hadronic events (defined below) minus the number of non-

BB hadronic events. The number of non-BB hadronic events is found by

luminosity scaling the off-resonance data up to the on-resonance energy.

The number of Υ (4S) produced, NΥ , is given by the equation

NΥ = Non −Mon ·Roff · κ , (3.6)

where Non is the number of on-resonance hadronic events, Mon is the number

of on-resonance µ-pairs, Roff is the ratio of hadronic events to µ-pairs in
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off-resonance data, and κ is a constant to account for the differences in cross-

section and efficiencies at the different CM energies.

The hadronic events above are defined as follows. The event is required

to have at least three tracks in the tracking volume. The event shape variable

called R2, which is the ratio of the second to zeroth Fox-Wolfram moment, is

required to be less than 0.5. R2 is a measure of the sphericity of an event [21].

Also the primary event vertex, found using charged tracks, is required to be

within 0.5 cm of the IP in the x−−y-plane and six cm in the z-plane and the

total energy measured in the detector must be greater than 4.5 GeV. About

95% of simulated Υ (4S) → BB events pass the above selections.

Muon pairs are selected using the following criteria. The two highest

momentum tracks in an event must have |~p| greater than 4 and 2 GeV/c,

respectively. The total amount of energy deposited in the EMC by the tracks

must add to less than 2 GeV, and the invariant mass of the two tracks must

be greater than 7.5 GeV/c2. Additionally, the two tracks must be back to back

in the center-of-mass frame to within 10◦.

3.3 Data Simulation

The simulation of BABAR data proceeds through two steps.

1. Physics processes such as particle decay and B mixing are generated

using EvtGen [22].

2. Particles produced in (1) are propagated through a detailed model of the

BABAR detector using a GEANT4 simulation [23].
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The EvtGen package generates physics processes using decay amplitudes, in-

stead of probabilities, allowing for interference in the decay. This requirement

is a must in order to correctly simulate the mechanics of the B-mixing or a

time dependent decay. The GEANT4 toolkit models the passage of particles

through matter, simulating processes like multiple scattering, brehmsstrahlung,

and photon conversion.

Simulated data are produced in amounts with respect to the overall

recorded luminosity of the detector. For decays of the Υ (4S) to charged and

neutral B pairs the equivalent luminosity of the simulated samples is about

three times the data. Continuum data, e+e− → qq (q = u, d, s) is produced

with the same luminosity as the recorded data, while heavier e+e− → cc is

produced at a level of twice the data. e+e− → τ+τ− events are produced at

about half the amount of data. To track the changes in the detector conditions

throughout the data taking period from 1999–2008 from radiation damage and

mechanical problems the simulated data samples are broken down by time

period. This means that the running conditions of the detector are present in

the simulated data for a certain set of the events.

3.4 Datasets

Table 3.1 shows the size, in integrated luminosity and number of BB

pairs, of the on and off-resonance datasets used in this analysis. The number

of BB pairs is calculated using the prescription described in Section 3.2 and

the luminosity is calculated using Bhabha events. The amount of simulated

data produced to study background distributions of continuum and exclusive

decay processes is shown in Tables 3.2 and 3.3.
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Table 3.1: Total integrated luminosity of each run period in on and off-
resonance data. For on-resonance data the number of BB pairs is calculated
using the technique described in Section 3.2. The off-resonance data is taken
with a center-of-mass energy approximately 40 MeV below the on-resonance
data.

On-resonance Off-resonance
Run L [ fb−1 ] NBB L [ fb−1 ]

1 20.4 22,396,342 2.6
2 61.1 67,394,307 6.9
3 32.3 35,569,248 2.5
4 100.3 110,449,802 10.1
5 133.2 147,190,396 14.5
6 78.4 84,358,838 7.8

Total 425.7 467,358,933 44.4

Table 3.2: The number of continuum (e+e− → qq) and BB MC events pro-
duced at the on-resonance center of mass energy for each data taking period
of BABAR. The equivalent luminosities of each sample are calculated using the
given cross-sections.

Run B0B0 B+ B− uds cc τ+τ−

1 37,058,000 35,862,000 47,180,000 58,900,000 20,378,000
2 100,100,000 101,758,000 130,858,000 168,844,000 55,546,000
3 48,296,000 48,394,000 66,892,000 83,974,000 27,988,000
4 165,722,000 167,568,000 213,380,000 252,830,000 90,032,000
5 240,768,000 243,210,000 317,846,000 366,758,000 132,232,000
6 132,270,000 128,586,000 162,156,000 201,162,000 69,030,000

Total 724,214,000 725,378,000 938,312,000 1,132,468,000 395,206,000

σ [nb] 0.525 0.525 2.09 1.30 0.90

L [ fb−1 ] 1379.5 1381.7 448.9 871.1 439.1
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Table 3.3: The number of exclusive MC events generated in the full BABAR
simulation and the luminosity of a on-resonance dataset required to contain
that number of events. A branching fraction of 1 × 10−7 is defined for signal
MC in this table. All other branching fractions are taken from the PDG except
where noted. A branching fraction with a less than sign is an upper limit at
the 90% confidence level. The mode number is an internal BABAR bookkeeping
system for the production of simulated data.

Mode B Equivalent
Number

Decay Nevt (×10−7) L [ fb−1 ]

1764 B0 → γγ 1,962,000 1.0 18,685,700
1043 B0 → π0 π0 3,889,000 16.2± 3.1 2,286,300
2623 B0 → ηη 434,000 5± 3 [24] 229,630
2624 B0 → ηπ0 203,000 9± 4 [25] 128,888
1983 B0 → ρ0γ 587,000 8.6± 1.5 650,055
995 B±→ ρ±γ 587,000 9.8± 2.5 601,127
1940 B±→ ρ±π0 3,889,000 109.0± 14.0 339,799
1984 B0 → ωγ 587,000 4.4+1.8

−1.6 1,270,560
1587 B±→ K± π0 3,889,000 129.0± 6.0 287,117
3134 B0 → K∗0 γ 5,828,000 401.0± 20.0 138,416
3135 B±→ K∗± γ 5,828,000 403.0± 26.0 137,729
1442 B0 → K0

S
π0 3,931,000 33.9± 2.1 764,042

10174 B0 → K0
S
η 650,000 < 1.1 5,627,705
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Chapter 4

Event Selection

This chapter describes the selection of events used to measure B(B →
γγ). It begins with a description of the reconstruction of B candidates using

from the charged tracks and neutral cluster described in Chapter 3. Then

descriptions of all event cuts are given. Additionally, a description of the

backgrounds from exclusive MC modes is discussed. Finally, the effect of all

selections on signal MC is shown.

4.1 B Candidate Reconstruction

The B mesons used in this analysis are reconstructed by kinematically

combining photons, i.e. adding their 4-momentum. The charged tracks and

neutral clusters from reconstruction are used to create intermediate short lived

particles. These intermediate particles are then combined again, and again to

create a decay chain all the way back to the B meson parent particle.

An algorithm called Add4 is used to reconstruct the decay of B → γγ.

This algorithm works by simply adding the 4-momentum of two candidates to-

gether to create a potential parent candidate. In BABAR, all photon candidates

from the GPL list have their momentum calculated as if they were produced at

the origin of the BABAR coordinate system. In reality, the origin is not where

the photons would be produced in a real B decay because the IP is offset from
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the origin. To correct for this difference, the photon momentum are corrected

by using the event vertex as the production point and recalculating. These

‘corrected’ photon candidates are then combined by the Add4 algorithm.

For each pairing of the photons in an event, a parent candidate 4-

momentum is created. Most of these pairings are combinations of photons

that do not correspond to any true B meson in the event. What is needed is a

way to separate the random unphysical pairings from events that correspond

to signal decays. The primary means for doing this is to find variable distribu-

tions that are different for correctly reconstructed B decays from incorrectly

reconstructed states. In BABAR there are two widely used variables that have

this feature (1) mES, the beam energy substituted mass, and (2) ∆E, the dif-

ference in energy of the reconstructed B meson and half the center of mass

energy.

The beam energy substituted mass is defined as

mES ≡
√

E∗2
beam − ~p∗B (4.1)

where E∗
beam is the center-of-mass beam energy, and ~p∗B is the center-of-mass

3-momentum of the B candidate. For a correctly reconstructed B meson decay

this variable will peak at the true B mass, mB = 5.279 GeV/c2.

The other quantity, ∆E, is defined as

∆E ≡ E∗
B − E∗

beam (4.2)

where the asterisks denote the quantity is measured in the CM frame. In the

center of mass frame for on-resonance data the beam energy is equal to one-

half the Υ (4S) mass which should be the B mass. This quantity measures

how close the CM energy of the reconstructed B candidate is to the expected
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energy as determined by the measurement of the beam energy. For a correctly

reconstructed B candidate this variable should peak at zero.

4.2 Event Preselection

To reduce the number of events that are analyzed a process called a

skim is run over all reconstructed events. The skim looks at event related

quantities to determine if it could be a candidate signal event. If the event

carries a signature of a B → γγ decay, two high energy neutral clusters, the

photons are combined to form B meson candidates. If the B passes preliminary

cuts on mES and ∆E the event is saved for further analysis.

Events that are consistent with Υ (4S) → BB are selected through the

use of two filters called BGFMultiHadron and BGFNeutralHadron. The filter

is a binary tag associated with the event, meaning an event either passes

the filter or is rejected. The BGFMultiHadron tag selects events that contain

several charged hadrons. Events must contain more than two charged tracks,

mainly to reject Bhabha scattering. The filter requires events to have an

R2/R0 < 0.98, where Rl =
∑

i,j

|p∗i ||p
∗

j |

s
Pl(cos θ

∗
ij). Pl is the l

th order Legendre

polynomial, p∗i and p∗j are the center-of-mass momentum of two particles, θ∗ij

is the angle between the momentum, and s is the center of mass energy. The

sum runs over all charged particles in the event.

The BGFNeutralHadron filter is used select events with neutral hadrons

and is orthogonal to BGFMultiHadron. This filter requires events to have no

more than two charged tracks and looks at neutral clusters with energy greater

than 100 MeV. Neutral clusters with energy greater than 500 MeV are labeled

as photons. Events that have two tracks must also contain at least two photons

or three neutral clusters. Events with one track must contain at least two
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photons or four clusters, and no track events must have at least three photons

or six clusters. Finally the ratio R2/R0 is required to be less than 0.95 where

now the sum runs over both charged and neutral clusters. Events selected for

analysis are required to pass one of these filters.

If an event passes one of these filters then a B meson is reconstructed us-

ing photons from two lists named GoodPhotonLoose and gammaConversionDefault

described in Section 3.1. Photons on the combined list with center-of-mass en-

ergy in the range 1.15 ≤ E∗ ≤ 3.5 GeV, are pairwise combined by adding their

4-momentum to create a B meson candidate. If there are more than two pho-

tons in this energy range then more than one B candidate can be formed. All

B candidates are saved for further analysis that pass

• 5.1 < mES < 5.3 GeV/c2

• |∆E| < 0.5 GeV.

The effect of the skim selection on signal and background MC and

on/off-resonance data samples is shown in Table 4.1.

At this stage an event can contain more than one B candidate although

this is rare. In signal MC, 0.06% of events have more than one B candidate

and in uds MC the percentage is 1.03%. Figure 4.1 shows the distribution of

B candidates per event for signal, uds, cc, and τ+τ− MC samples after the

skim selections. To avoid a bias when selecting a B from multiple candidate

events only events where exactly one B candidate is reconstructed are used in

this analysis. In signal MC this selection is greater than 99.9% efficient.
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Table 4.1: Efficiency of the skim selection on signal MC, background MC, and
on-resonance and off-resonance data.

Dataset Pre-skim Post-skim ǫ[%]

B → γγ 1,962,000 1,371,411 69.9

B0B0 MC 724,332,000 1965 0.00027
B+B− MC 725,378,000 2537 0.00035
cc MC 1,132,468,000 335,466 0.030
uds MC 938,312,000 1,028,134 0.110
τ+ τ− MC 395,206,000 216,475 0.055

OffPeak Data 607,063,825 162,673 0.027
OnPeak Data 6,363,687,525 1,692,603 0.021
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Figure 4.1: The number of B candidates per event that pass all of the skim
cuts.
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4.3 Event Categories

The photons used to reconstruct the B candidates are detected using

two orthogonal methods and as such require different techniques to analyze.

The first kind of photon is one that travels through the detector volume and un-

dergoes an electromagnetic shower in the EMC volume which is reconstructed

as a high energy cluster. These photons are present as GPL photons. The

second type is a photon which undergoes a conversion to an e+e− pair through

interactions with the material in the detector. Figure 4.2 shows the amount of

material, in radiation lengths, in front of each detector subsystem as a function

of polar angle. A photon has a higher probability of converting the more ma-

terial that it traverses. The tracks from the daughter leptons are detected by

the tracking system and are combined into the parent photon using geometric

constraints on the track and an invariant mass constraint. These photons are

present in the GCD list.

Four event categories are defined based on whether one of the photons

used to reconstruct the B candidate undergoes a pair-conversion.

1. Both photon candidates are directly detected photons in the EMC.

2. The lower lab energy photon candidate undergoes pair-conversion.

3. The higher lab energy photon candidate undergoes pair-conversion

4. Both photon candidates undergo a conversion to an e+e− pair.

Table 4.2 shows the fraction of events in each category for signal MC. Only

events from category 1 where the B candidate is reconstructed from GPL pho-

tons are used in the measurement. An attempt was made to incorporate events
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Figure 4.2: Amount of material, in radiation lengths, in front of each subsys-
tem in the detector as a function of polar angle.

with photon conversions, but they were not used as the improvement to the

upper limit was negligible. That work is presented in Appendix A.

4.4 Initial Selection

Loose cuts on photon quantities are made to clean up the sample of

photons in the dataset. They are made by comparing distributions in signal

Table 4.2: The fraction of events, in signal MC, in each of the four categories.

Class Fraction of Signal Events

1 0.922
2 0.030
3 0.046
4 0.002
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and background MC with the aim of keeping virtually all signal events while

removing obvious backgrounds. No event shape variables are used at this

stage. Two types of selections are defined: (1) event level selections and (2)

photon selections.

As a bookkeeping tool, each B candidates daughter photons are labeled

according to their energy in the lab frame. The photon with the higher (lower)

lab energy is called gamHigh (gamLow).

4.4.1 Event Level Selection

These cuts are applied at the event level before any cuts on the photon

clusters are applied. They are designed to remove specific kinds of background

events.

• Number of GoodTracksLoose ≥ 3

This cut helps in removing τ+τ− events.

• Total Event Energy < 15.0 GeV

The total event energy should add up to the sum of the beam energy, but

in practice it is lower due to the detector acceptance and neutrinos going

undetected. This cut helps to remove events where the long scintillation

time of the CsI(Tl) crystals can fake an energy deposit in the calorimeter

from an out of time cluster. Section 4.5 describes out of time clusters.

4.4.2 GoodPhotonLoose Selection

These cuts remove events where the cluster of a high energy photon

candidate is poorly reconstructed and to suppress backgrounds from merged

π0s and neutral hadrons.
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• # of Crystals the Cluster > 10

A photon interacting with the crystals in the EMC will undergo and

electromagnetic shower that is usually contained within several adjacent

crystals, mean of around 20, as is shown in Figure 4.4. This cut is

designed to remove high energy clusters where all the energy is deposited

within a small number of crystals which is inconsistent with the cluster

shape produced from a photon.

• Cluster Lateral Moment, 0.1 ≤ LAT ≤ 0.6

A high energy photon in the EMC will have a definite distribution of the

Lateral moment (3.2), that for BABAR should peak around 0.4. The cut

on the cluster lateral moment is used to reject clusters where the shape

is inconsistent with that of a high energy photon.

• Cluster time, 6100 ≤ t ≤ 6450

The long scintillation time of the CsI(Tl) EMC crystals and the high

luminosity running of the PEP-II accelerator allows for the potential of

events to overlap in time. This mainly occurs with Bhabha and two-

photon events (e+e− → γγ) which can fake a signal. This cut rejects

events where the photon cluster time is inconsistent with being from the

current event. The cluster time is described in Section 4.5.

• Cluster Isolation: > 25 cm

This selects events where the distance between the signal photon cluster

and the nearest charged or neutral cluster in the event is larger than

25 cm. The purpose is to suppress backgrounds from merged π0s and

neutral hadrons.
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• EMC Fiducial Acceptance: 0.4 < θ < 2.4 rad

This cut selects only those events where the cluster is fully contained

within the EMC volume. This removes the extreme forward and back-

ward sections of the calorimeter. In the forward section the inner three

rings of the endcap are poorly calibrated due to the material in front of

the crystals. Additionally, Figure 4.6 shows that applying the polar an-

gle cut greater than 0.4 radians removes pile-up events that have cluster

energies comparable to a signal photon that could potentially produce

a fake signal. The extreme backward edge of the calorimeter is also re-

moved, to ensure that the entire cluster is contained within the crystals

for an accurate measure of the cluster energy.

Figures 4.3 and 4.4 show the distributions of these variables for signal and

background MC. The background MC is a combination of uds, cc, τ+τ−, and

BB MC that is weighted to a luminosity equivalent to the on resonance data

of 425.7 fb−1.

4.5 Event Pileup

The high luminosity running of the PEP-II accelerator and the long

scintillation time of the CsI(Tl) EMC crystals presents a problem for events

that occur very close in time. If the shower from a near by in time event is

still present when a consecutive event is recorded, a fake signal can occur. For

example, if a Bhabha scattering event, e+e− → e+e−, were nearby in time

the tracks of the leptons would no longer be detected but the crystals may

still be scintillating producing an energy deposit in the EMC. With no tracks

matched to the crystals this would be reconstructed as a photon when there
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Figure 4.3: Distribution of variables used for initial selection in signal and
background MC. The arrow indicates the value of the cut. If two arrows are
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across the calorimeter barrel.
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was not one initially. If the initial cluster has a high enough energy, the left

over scintillation may produce a cluster that could fake a signal photon. At the

Υ (4S) resonance the main processes that contribute to this type of behavior

are Bhabha scattering, e+e− → e+e−, and e+e− → γγ due to their large

cross sections. Additionally these are two body processes and their kinematics

are very similar to the signal process B → γγ. The out-of-time clusters are

rejected using cuts on the energy of the event and a ‘time’ quantity associated

with the EMC cluster.

The total energy for an event is equal to the sum of the beam energies,

although it is usually smaller due to the detector acceptance and the presence

of neutrinos. Since out-of-time clusters are contributing extra energy, the

total measured energy of the subsequent event where a fake signal could be

measured will be larger. Therefore selecting events below an energy threshold

can aid in rejection.

The EMC reconstruction software calculates a ‘time’ quantity associ-

ated with each reconstructed cluster. This is a derived quantity that is not

directly a measure of the overall event time but is useful. Instead, this quan-

tity is calculated in the feature extraction of the front end electronics on the

detector. It is an energy weighted average of samplings of the crystal signal

waveforms with respect to the time of the L1 trigger. For out-of-time clusters,

the time value will be different than for in-time clusters due to their peaks

occurring at different time.

Figure 4.5 shows a scatter plot of the total energy in an event versus the

time of EMC clusters. Events that are outside of the red box are considered

out-of-time. This shows that a cut on both the energy of less than 15 GeV

and time of 6100 < t < 6450 ns are effective at rejecting pileup events.
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Figure 4.5: Time of the cluster versus the total energy in the event (sum
of charged and neutral particle energies). Events outside the red box are
considered out-of-time events.

Figure 4.6 shows the energy of out-of-time clusters as a function of the

cluster polar angle, θ. This plot indicates the most of the out-of-time cluster

energy is large, above 5 GeV, making it less likely to fake a signal event. It

also shows the presence of out-of-time clusters with energies that could more

easily fake signal clusters at polar angles below 0.4 rad. This is the motivation

for selecting only those events where the photon clusters polar angle is greater

than 0.4 rad.

4.6 π0 and η Rejection

The major source of background photons for this analysis come from

the decays of high energy π0s and ηs as shown in Figure 4.7. Background from
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Figure 4.6: Lab energy of the out-of-time clusters from Bhabha and γγ events
versus the lab polar angle θ of the cluster. The cutoff in energy below 1.6 GeV
is a consequence of event selection for the pileup cluster study.

these decays are normally rejected by pairing the signal photon candidate

with the other photons in the event and calculating the invariant mass. If

the mass is within a window of the π0 or η mass, the event is removed. The

efficiency of rejecting π0s and ηs can be improved by using a likelihood ratio

rejection technique that uses energy of the non-signal photon in addition to

the the invariant mass. This technique was developed for a branching fraction

measurement of the mode B → ρ(ω)γ [26, 27] at BABAR.

The likelihood ratio is defined to be a ratio of probabilities for the signal

photon candidate to be produced from the decay of a π0 or η, and from the
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Figure 4.7: Origin of the signal photon candidate from background MC. More
than 90% of the photons in the background originate from the high energy
decays of π0 and ηs.

signal decay, B → γγ. It is defined as

LR(θ) ≡ Pb(M(γsγ2), Eγ2 |θ)
Ps(M(γsγ2), Eγ2|B → γγ) + Pb(M(γsγ2), Eγ2|θ)

(4.3)

where θ is a label for either π0 or η, M(γsγ2) is the invariant mass of the

photon pair, and Eγ2 is the lab energy of the non-signal photon. Ps and Pb are

probabilities density functions constructed from two-dimensional histograms

normalized to one. The signal probability, Ps, gives the probability for the

signal photon candidate to have been produced from the decay B → γγ. The
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background probability, Pb, gives the probability for the photon to have been

produced from a π0 or η decay depending on the value of the label θ. A

likelihood ratio value close to zero indicates the photon is more likely to have

been produced in a signal decay, while a value close to one means it was more

likely to be produced from a π0/η decay.

The probability density function for signal, Ps, is constructed using

signal MC. For each event, the signal photon candidate is paired with all non-

signal photon candidates in the event and the reconstructed invariant mass and

lab energy of the soft photon is recorded. The distributions of these quantities

from signal MC are shown in red in Figures 4.8 and 4.9

The probability density function for π0 (η), Pb, is constructed from

uds, cc, and τ+τ− MC. The signal photon candidate is required to come from

a π0 (η) decay and the second photon from the decay is also required to be

within the calorimeter volume. If both of these conditions are met then the

reconstructed invariant mass and lab energy of the non-signal photon candidate

are recorded. The distribution of inputs to the π0 (η) PDFs are shown in blue

in Figures 4.8 and 4.9.

Each signal photon candidate is paired with all non-signal photon can-

didates in the event and both a π0 and η likelihood ratio is calculated for each

pairing. The largest value of each likelihood ratio is associated with the sig-

nal photon candidate corresponding to the most π0 and η-like pairings in the

event. The π0 and η likelihood ratio distributions are shown in Figure 4.10.

The π0 (η) distribution in blue(green) is for photons from continuum MC that

are required to be produced in a π0 (η) decay. The signal distributions in

red are for photons from signal MC that are required to come from the sig-

nal decay, B → γγ. Figure 4.11 shows the advantage of using the likelihood

59



ratio rejection technique over just an invariant mass cut. At all signal efficien-

cies, the likelihood ratio provides superior rejection of photons from π0 and η

decays.

4.7 Merged π0s

The primary source of background photons come from the decay of high

energy π0s. When the opening angle of the daughter photons is small enough,

the EMC is unable to resolve them and the resulting cluster can be mistaken

for a high energy photon and fake a signal event. This type of event is referred

to as a merged π0 and can be rejected by cutting on a quantity called the

merged π0 consistency [28]. The consistency is calculated from the energy and

second moment, eq. (3.3), of the cluster. The consistency is defined between

zero, merged π0-like, and one, photon-like. Figure 4.12 shows the distribution

of the merged π0 consistency for signal and background MC. The consistency

is calculated during the reconstruction of data the described in Section 3.1 and

is available to all analyses involving high energy photons. The distribution of

the merged π0 consistency is shown in Figure 4.12. The large zero bin is due

to a technical problem that occurs when this quantity is persisted in the data.

If the calculated consistency is less than 0.01, the value is not stored. These

candidates are assigned a consistency value of 0.

4.8 Rejection of Continuum Background

The B mesons produced in Υ (4S) decays are almost at rest in the

center-of-mass frame and decay isotropically. In contrast, particles produced

in continuum events are collimated in jets along the axis of the initial qq
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Figure 4.8: Distributions of inputs to the likelihood ratio PDFs for the larger
lab energy signal photon candidate. (Top) signal, (middle) π0, and (bottom)
η. The left column shows the invariant mass distribution of the signal photon
candidate with another photon in the event. The right column shows the
distribution of the non-signal photon candidates reconstructed lab energy.

pairs. These different topologies make rejecting continuum events possible

using quantities related to the event shape.
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Figure 4.9: Distributions of inputs to the likelihood ratio PDFs for the smaller
lab energy signal photon candidate. (Top) signal, (middle) π0, and (bottom)
η. The left column shows the invariant mass distribution of the signal photon
candidate with another photon in the event. The right column shows the
distribution of the non-signal photon candidate reconstructed lab energy.

A multivariate classifier called a Neural Network (NN)1 is used to reject

1Boosted and Bagged Decision Trees were also investigated as to whether they would
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Figure 4.10: Likelihood ratio distributions for signal photon candidates from
signal and background MC. (Left) Output π0 likelihood ratio for signal and
continuum + BB MC. The signal photon candidates in the blue distribution
are required to originate from a π0 decay. (Right) η likelihood ratio distribution
for signal and continuum + BB MC. The photon in the green distribution is
required to come from an η decay.

continuum (e+e− → qq) and e+e− → τ+τ− events. A multivariate classifier

acts like a function in the sense that it takes a vector of quantities as input

and outputs a single number that describes the input in terms of signal and

background. For this analysis the input is a vector of event shape quantities

and the output will be a number between zero and one that describes whether

provide better signal to background separation. The NN offered larger background rejection
for all signal efficiencies.
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Figure 4.11: Signal efficiency versus π0 and η rejection for the likelihood ratio
and a cut on the invariant mass of the photon pairings. At all signal efficiencies
that likelihood ratio provides superior rejection over the invariant mass cut.

the event resembles signal (near one) or background (near zero). The computer

package StatPatterRecognition [29] was used to construct, train, and test the

Neural Network. This package is a computer program developed for high

energy physics experiments and written in the C++ language that provides

advanced statistical tools to aid in the separation of signal and background.
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Figure 4.12: Distribution of the merged π0 consistency in signal and back-
ground MC. The background MC sample is weighted to the on-resonance lu-
minosity of 425.7 fb−1. The signal distribution is scaled to the same height
as the background distribution. The large zero bin is due to the fact that
consistency values less than 0.01 are not stored and are assigned a value of
zero.

The signal events used in training and testing the the NN are selected

from signal MC while the background is a combination of uds, cc, and τ+τ−

MC events. They are required to pass the skim and initial selections described

in Sections 4.2 and 4.4. Additionally a cut on the merged π0 consistency for

both photons of less than 0.1 is applied. The remaining events are randomly

divided into two disjoint sets called a training and testing set. The random

division is to ensure that for each set all parts of the MC datasets are sampled.
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Table 4.3: Breakdown of the number of events used for the neural network
training and testing samples for each MC mode.

MC sample Nevents

signal 22,600
uds 19,200
cc 2,000

τ+τ− 1,400

The training set is used to tune the parameters of the NN for optimal signal

and background separation while the testing dataset is used as an independent

sample to verify the performance. The relative proportions of uds, cc, and

τ+τ− events in the background training and testing set are calculated to be

the same as expected in on-resonance data with the same selections applied.

Table 4.3 shows the make up of the training and testing sets.

The event shape quantities used as inputs to the NN were chosen by

comparing the distributions in signal and background MC. Those variables

that showed an ability to distinguish between signal and continuum MC were

used and are described below. Figures 4.13–4.17 show a comparison of their

distributions in signal and continuum MC with off-resonance data overlaid.

The off-resonance data contains only continuum events and matches the con-

tinuum MC.

• Cluster isolation from nearest neutral cluster

This quantity measures the linear distance between the centroid of a

signal photon candidate cluster and the nearest photon cluster. The

other photon is from the CalorNeutral list. This distance is calculated

for each of the signal photon candidates. The CalorNeutral list is de-
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scribed in Section 3.1.1.

• Cluster isolation from nearest charged cluster

This quantity measures the linear distance between the centroid of a

signal photon candidate cluster and the nearest cluster that is associated

with a charged track. This distance is calculated for each of the signal

photons.

• B momentum polar angle

The quantity is the polar angle of the momentum vector of the recon-

structed B momentum in the laboratory frame.

• R2 in the CM frame

This quantity is the ratio of the 2nd to the 0th Fox-Wolfram moment

of the event calculated in the center of mass frame. The Fox-Wolfram

moments of order ℓ (ℓ = 0, 1, 2...) are given by:

Hℓ =
∑

i,j

|~pi||~pj|
s

Pℓ(cos θij) (4.4)

where the summation is over all final state particles in the event, ~pi and

~pj are the momenta of particles i and j, θij is the angle between them,

s is the center-of-mass energy, and Pℓ are the Legendre polynomials of

order ℓ.

• Event Sphericity in the CM frame

The sphericity of an event is a measure of the total p2⊥ with respect to the

event axis. For events with an isotropic distribution, i.e. signal events,

S should be closer to 1, while for jet-like continuum events the value of

S will be closer to zero. The sphericity tensor is given by the formula:

Sαβ =

∑N

i p
α
i p

β
i

∑N

i |~pi|2
, (4.5)
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where the indices α, β = 1, 2, 3 denote the x, y, and z components of the

3-momentum of the ith particle in the event. This is a 3× 3 tensor and

can be diagonalized resulting in three eigenvalues: λ1, λ2, and λ3 with

the following relations:

λ1 ≥ λ2 ≥ λ3 (4.6)

λ1 + λ2 + λ3 = 1 (4.7)

The event sphericity is defined to be

S =
3

2
(λ1 + λ2). (4.8)

• Rest of Event Sphericity in CM frame

This is the event sphericity, eq. (4.5), in the CM frame where the sum

runs over all charged and neutral particles in the rest of the event (ROE),

where the ROE is defined to be all charged tracks and neutral clusters

excluding the two signal candidates.

• Thrust axis polar angle with gamHigh removed

The thrust, T , of a set of particles with momentum, ~pi, is given by

T =

∑

i

|n̂ · ~pi|
∑

j

|~pj|
(4.9)

where n̂ is a unit-vector in the direction that maximizes the value of T ,

called the thrust axis. Events with many particles lying along a certain

axis have a larger thrust than events with a more isotropic distribution.

BB events decay isotropically and will have smaller thrust values than

jet-like continuum events.
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This quantity is the polar angle of the thrust axis for all particles in the

event except for the higher lab energy signal photon.

• Thrust axis polar angle with gamLow removed

This quantity is analogous to the quantity above except that the lower

lab energy photon rather than the higher lab energy photon is removed

from the summation in eq. (4.9).

• 2nd Angular Moment of Rest of Event Thrust axis

Useful topological variables that measure the angular distribution of en-

ergy and momentum flow in an event are called angular moments and

are given by

Lℓ =

N
∑

i

|~pi| cosℓ θi

N
∑

i

|~pi|
, (4.10)

where the summation is over all particles, ~pi is the momentum of the ith

particle, and θi is the angle of the particle momentum with respect to

the thrust axis. The NN used in this analysis uses the second angular

moment with ℓ = 2.

• Rest of Event 1st Angular Moment with gamHigh removed

This is the angular moment, (4.10), with ℓ = 1 where the summation

is over all particles in the event except for the two signal photons. The

thrust axis is defined by all particles in the event except for the higher

lab energy signal photon.

• Rest of Event 2nd Angular Moment with gamHigh removed

This is the same as above except with ℓ = 2 in (4.10).
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• Rest of Event 3rd Angular Moment with gamHigh removed

This is the same as above except with ℓ = 3 in (4.10).

• R′
2 of event in recoil frame of gamLow

This quantity is the ratio of the second to zeroth order Fox-Wolfram

moment, eq. (4.4), with the momentum and angles measured in the

center-of-mass frame. The summation runs over all particles in the event

except for the lower lab energy signal photon.

• Event ~pT

This is the total momentum of the event that is perpendicular to the z-

axis. This quantity is calculated using all charged and neutral particles

in the event.

• Total Missing Energy of event

This quantity is a measure of the total energy in an event minus the

beam energy.

• # of Neutrals

This is the number of objects in the CalorNeutral list, which is de-

scribed in Section 3.1.1.

• # of GoodTracksLoose

This is the number of charged tracks in the event on the GoodTracksLoose

list, which is described in Section 3.1.2.

The training is done by systematically varying the configuration of the

NN’s internal parameters such as the number of hidden layers, the number

of nodes in a layer, and the number of training cycles and comparing the
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Figure 4.13: Input variables distributions to the NN classifier for signal MC,
continuum MC, and offPeak data. The Continuum MC is a weighted sample
of uds, cc, τ+τ− MC. All distributions are normalized to unity.
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Figure 4.14: Input variables distributions to the NN classifier for signal MC,
continuum MC, and offPeak data. The Continuum MC is a weighted sample
of uds, cc, τ+τ− MC. All distributions are normalized to unity.
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Figure 4.15: Input variables distributions to the NN classifier for signal MC,
continuum MC, and offPeak data. The Continuum MC is a weighted sample
of uds, cc, τ+τ− MC. All distributions are normalized to unity.
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Figure 4.16: Input variables distributions to the NN classifier for signal MC,
continuum MC, and offPeak data. The Continuum MC is a weighted sample
of uds, cc, τ+τ− MC. All distributions are normalized to unity.
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Figure 4.17: Input variables distributions to the NN classifier for signal MC,
continuum MC, and offPeak data. The Continuum MC is a weighted sample
of uds, cc, τ+τ− MC. All distributions are normalized to unity.
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quadratic loss per event as a function of the number of training cycles. The

quadratic loss per event is defined as

L = (y − f(x))2 (4.11)

where y is the the true class of the event, one for signal and zero for back-

ground, and f(x) is the output of the NN. For a properly trained NN, the loss

per event as a function of the number of training cycles should decrease and

asymptotically converge to a stable value. The NN configuration that has the

smallest loss per event is chosen as optimal. Figure 4.18 shows the training

loss per event for the NN used in this analysis. This NN configuration has

400 cycles, and a 19 : 35 : 1 configuration meaning one input layer with 19

nodes, one hidden layer with 35 nodes, and one output layer with one node.

Figure 4.19 shows the output distribution of the optimal NN on the testing

sample and Figure 4.20 shows the signal efficiency vs. the background rejection

performance for the NN.

4.9 Optimization of Final Cuts

The values of the cuts on the π0 and η likelihood veto, NN output,

and the number of GTL are optimized using a figure of merit (FOM) called the

Punzi FOM [30] defined as

Punzi ≡ εsig

a/2 +
√
B
, (4.12)

where εsig is the efficiency of the cuts on signal MC, B is the number of

background events passing the cuts in the signal region. The value a is the

number of sigmas corresponding to one-sided Gaussian tests at significance α.

The optimization described here uses a value of a = 3. This FOM is useful for

76



 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0  50  100  150  200  250  300  350  400

Q
ua

d 
Lo

ss

training cycle

NN: cycles 400 structure 19:35:1 LR 0.01 LRinit 0.1

quadratic loss vs training cycle

Figure 4.18: The quadratic loss per event as a function of the number of
training cycles for the optimal neural network.

any search, and for the mode B → γγ in particular, since no assumption on

the branching fraction is required.

The optimization uses signal MC for the calculation of the signal effi-

ciency, and on-resonance sideband data to calculate B. The on-resonance data

sideband regions are defined through fits to the mES and ∆E distributions in

signal MC. The signal mES distribution is fit with a Crystal Ball shape [31–33]

and a ±3σ window around the peak of the distribution is taken as the signal

region. This corresponds to mES greater than 5.27 GeV/c2. The Crystal Ball

77



 NN output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11

10

210

310

410

SPR: Neural Network

Signal MC Background MC

Figure 4.19: The Neural Network output distributions for signal and contin-
uum MC. The distributions are scaled to unit area. Signal is red and Back-
ground is blue.

shape is defined as

f(x;α, n, x̄, σ) = N ·
{

exp
(

− (x−x̄)2

2σ2

)

, for x−x̄
σ
> −α

A · (B − x−x̄
σ
)−n, for x−x̄

σ
≤ −α

(4.13)

where A =

(

n

|α|

)n

· exp
(

−|α|2
2

)

and B =
n

|α| − |α|.

Similarly, the signal ∆E distribution is fit with a doubled sided Gaus-
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Figure 4.20: The signal efficiency versus background rejection of the neural
network for the testing sample.

sian function with a low side tail parameter that is known in BABAR as the

Cruijff shape and is given by

Cruijff(x;µ, σL,R, αL,R) = exp

[

−(x− µ)2

2σ2
L,R + αL,R(x− µ)2

]

(4.14)

where µ is the mean, σ is the gaussian width, and α is the tail parameter.

The subscripts L and R denote the left and right side of the distribution peak,

respectively. Again a ±3σ window around the peak is defined as the signal

79



]2 [GeV/cES m
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.3

E
 [G

eV
]

∆ 

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

E low∆

sideband

E high∆

sideband

 sidebandESm  signalESm

S
ignal B

ox

Figure 4.21: Definition of signal region and sidebands shown with signal MC.
The signal region is defined as a ±3σ window from fits the mES and ∆E
distributions. The mES sideband is less than 5.27 GeV/c2. The ∆E sidebands
are the regions where ∆E < −0.3 and ∆E > 0.1312 GeV.

box which corresponds to −0.3 ≤ ∆E ≤ 0.1312 GeV. Figure 4.21 shows the

region topology for the mES–∆E space for signal MC.

The values of the cuts are optimized through an iterative process. One

cut is varied over a range with all other cuts held constant. The value of the

cut in the range that maximizes the FOM is chosen as optimum and assigned

to the variable. The process is repeated to find the optimum value for the

next cut again holding all other cuts constant. This process is repeated until

all values are stable through consecutive iterations.
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The events used to optimize the cut values are required to pass the

skim and initial selections described in Sections 4.2 and 4.4 as well as a cut

on the merged π0 consistency less than 0.01. A fit region is also defined such

that mES is

• mES ≥ 5.2 GeV/c2

• −0.5 ≤ ∆E ≤ 0.5 GeV

The signal efficiency, εsig, is calculated from signal MC as the ratio of

events in the signal region to the total number generated during simulation

production. To get the number of events in the signal region a 1 dimensional

unbinned extended maximum likelihood fit is performed on the signal mES

distribution using a Crystal Ball shape. The ratio of the area of the PDF

in the signal region to the area in the fit region is multiplied by the fit yield

to find the number of signal events that pass the selections. This number is

used to calculate the efficiency. Figure 4.22 shows an example of a fit to the

mES distribution in signal MC using a Crystal Ball shape for a cut on the π0

likelihood veto less than 0.8.

This analysis is performed ’blind’ and so the data inside the signal

region is not accessible during event selection. The number of background

events, B, is estimated using the data in the ∆E sideband in a two step

process. First, the mES distribution in on-resonance ∆E sideband data is

fit with an ARGUS shape [34] using a one dimensional unbinned extended

maximum likelihood fit. The ARGUS shape is given by

f(x;m, p, c) = N · x ·
(

1−
( x

m

)2
)p

· exp
(

c

(

1−
( x

m

)2
))

. (4.15)
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Figure 4.22: A fit to the mES distribution in signal MC with a Crystal Ball
shape. This figure shows the fit after a cut on the π0LR < 0.8 has been
applied.

The parameters of the ARGUS are fixed to the sideband fit values and the

PDF is refit to the blinded ∆E signal region allowing the normalization to

float. The shape of the mES distribution is assumed to be the same in the

signal and sideband regions. A knowledge of the number of events above 5.27

GeV/c2 in the sideband region and the ratio of the area under the PDFs in the

signal and sideband region allow the number of background events, B, to be

estimated. Figure 4.23 shows an example of the fits to the mES distribution

for both the ∆E sideband and blinded signal regions. again for a cut on the

π0 LR less than 0.8.
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(a) On-resonance ∆E sideband fit
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(b) On-resonance blind signal fit

Figure 4.23: (a) A fit to on-resonance ∆E sideband data using an ARGUS
shape. (b) The ARGUS shape fit to the blinded signal mES distribution with
the parameters fixed from the sideband fit.
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Table 4.4: Selection variables and their final cut values. The values of the π0

and η LR are chosen as the average of the individual values obtained for the
gamHigh and gamLow values.

Selection Variable Optimized Value

# of B cands 1
nGTL ≥ 3

Event Energy < 15.0 GeV
Dist. to Charged > 25 cm
Dist. to Neutral > 25 cm

~pθ 0.4 < θ < 2.4
Cluster LAT 0.15 ≤ LAT ≤ 0.5
Cluster time 6200 ≤ time ≤ 6350
# of Crystals > 10

merged π0 Consistency < 0.01
π0LR ≤ 0.84
η LR ≤ 0.84

SPR NN ≥ 0.54

Figures 4.24–4.26 show the FOM as a function of the cut on the op-

timized variable. The final cuts are shown with an arrow and are listed in

Table 4.4 along with the non-optimized cuts. Additionally, as a check, the op-

timization was run over the other cuts that were not optimized. No indication

was found that the initial cut values were not appropriate. Cluster time, as

discussed previously was not optimized so there are no plots for this variable.

For the number of crystals, the data–MC agreement is not very good and the

cut on this variable is not optimized either. The value of 10 was chosen look-

ing at a sample of ‘clean’ photons in a data sample from e+e− → µµγ. This

value keeps all “good” photons in both data and MC. The FOM plots for the

non-optimized variables are in Appendix B.
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Figure 4.24: Figure of merit as a function of the cut on the optimized variables.
Different assumed signal BF are shown to verify that the optimized values don’t
depend on the branching fraction. The final optimized values are taken where
the histogram peaks and shown by the arrow.
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Figure 4.25: Figure of merit as a function of the cut on the optimized variables.
Different assumed signal BF are shown to verify that the optimized values don’t
depend on the branching fraction. The final optimized values are taken where
the histogram peaks and shown by the arrow.
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Figure 4.26: Figure of merit as a function of the cut on the optimized variables.
Different assumed signal BF are shown to verify that the optimized values don’t
depend on the branching fraction. The final optimized values are taken where
the histogram peaks and shown by the arrow.
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4.10 Signal Efficiency

The equation to calculate the branching fraction for B → γγ is given

by

B(B → γγ) =
Nsig

εsig · 2 ·NB0B0

(4.16)

where Nsig is the number of signal events, 2 ·NB0B0 is the number of neutral B

mesons in the data sample, and εsig is the signal efficiency derived from signal

MC. The total number of signal events that pass the final selections is 551152

out of a total of 1962000 events generated. This gives a total signal efficiency

of 26.7±0.03%. Table 4.5 shows the efficiencies of the final cuts on signal MC.

4.11 Peaking Backgrounds

Decay processes that contain high energy photons could potentially

pass all final cuts and mimic a signal event. To see which decays contribute

the final cuts were applied to exclusive B MC collections to determine the

number of events that are expected in the on resonance data. When the mode

has an upper limit published, that number is used as the assumed branching

fraction for a worst case scenario. The expected number of peaking events

in the fit region is 3.13 ± 0.53. This is comparable to the number of signal

events expected, and so a peaking component is included in the fit. Because

the mES and ∆E peaking background distributions, shown in Figure 4.27, can

not be easily fit with a function, a histogram PDF is used to model the shapes.

Table 4.6 shows a summary of the expected numbers of events for each mode

in on-resonance data. The individual mode mES and ∆E distributions and

the event scatter in the mES ×∆E plane are shown in Appendix D.
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Table 4.5: Performance of each cut on signal MC. The efficiencies are calcu-
lated with respect to the total number of signal events generated in the full
BABAR MC simulation. All cuts include the cuts listed above them.

# of events Generated: 1,962,000
# of events passing Skim: 1,371,411 (ε = 0.699)

nB=1: 1,370,618 (ε = 0.698)

Cumulative
Cut Value

# pass ε
nGTL ≥ 3 1,063,339 0.542
Etot < 15.0 GeV 1,054,073 0.537
Dist to charged > 25 cm 1,010,012 0.515
Dist to neutral > 25 cm 899,871 0.459
~p polar angle 0.4 < θ < 2.4 834,201 0.425
Lateral Moment 0.15 ≤LAT≤ 0.5 798,601 0.407
cluster time 6200 ≤ t ≤ 6350 ns 775,818 0.395
# of Crystals > 10 775,817 0.395
merged π0 Cons. < 0.01 767,376 0.391
π0 LR ≤ 0.84 690,796 0.352
η LR ≤ 0.84 559,712 0.285
Neural Net ≥ 0.54 523,286 0.267

Total Signal Efficiency 0.267
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Figure 4.27: mES and ∆E distributions of a luminosity weighted combination
of exclusive modes listed in Table 4.6.
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Table 4.6: Number of events passing the optimized cuts for each exclusive MC dataset and the number
expected in our fit and blinded signal region for a dataset of 425.7 fb−1. The errors are from the branching
fractions. The value of L factor is derived by dividing the on-resonance luminosity by the equivalent
luminosity of the exclusive mode dataset. If no events pass the selections, we assume one event. The
equivalent luminosity of each dataset is given in Table 3.3. Plots of mES, ∆E, and the 2D mES-∆E plane
for the events surviving the cuts for each mode are shown in Appendix D.

Bassumed In Fit Region In Signal Region
Num Mode 10−7 Ngen L factor N Nexp N Nexp

1043 B0 → π0 π0 16.2± 3.1 3,889,000 0.000186 3574 0.665± 0.128 2139 0.398± 0.077
2623 B0 → ηη 5± 3[24] 434,000 0.0005 601 0.310± 0.186 246 0.127± 0.076
2624 B0 → ηπ0 9± 4[25] 203,000 0.002 353 0.699± 0.313 168 0.333± 0.150
1940 B±→ ρ±π0 109.0± 14.0 3,889,000 0.0013 418 0.524± 0.072 71 0.089± 0.016
995 B±→ ρ±γ 9.8± 2.5 587,000 0.00071 233 0.174± 0.032 18 0.013± 0.004
1983 B0 → ρ0γ 8.6± 1.5 587,000 0.00065 0 < 0.00065 0 < 0.00065
1984 B0 → ωγ 4.4+1.8

−1.6 587,000 0.00033 1821 0.610± 0.347 622 0.208± 0.119
1587 B±→ K± π0 129.0± 6.0 3,889,000 0.0015 0 < 0.0015 0 < 0.0015
3135 B±→ K∗± γ 403.0± 26.0 5,828,000 0.0031 28 0.087± 0.017 3 0.009± 0.005
3134 B0 → K∗0 γ 401.0± 20.0 5,828,000 0.0031 19 0.059± 0.014 1 0.003± 0.003
1442 B0 → K0

S
π0 33.9± 2.1 3,931,000 0.00039 0 < 0.0004 0 < 0.0004

10174 B0 → K0
S
η < 1.1 650,000 0.00007 79 < 0.0059 22 < 0.0016

Total Expected 3.13± 0.53 1.18± 0.22
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Chapter 5

Fitting the Data

This section describes the fitting strategy employed to extract a signal

yield from the data. It also discusses the technique used to validate and check

for biases in the fit. Finally, a the procedure used to set an upper limit on the

branching fraction for B → γγ is discussed.

5.1 Maximum Likelihood Fit

To extract a signal yield from the on-resonance data, an unbinned ex-

tended maximum likelihood fit [35] is performed. For this technique, loose

selections are imposed on the discriminating variables in the data so a larger

selection of events are present where the shapes can be fit. For each variable x

in the fit, a probability density function (PDF), Pj(x, ~αj), is constructed that

describes the distribution for each class of events j, where j can be signal,

background, or peaking background. The parameters of the PDF, ~αj, are cho-

sen for the best fits the distribution in data, and are either fixed beforehand

from a source other than the data or are determined during the fit.

A likelihood function for each event in the fitted sample is computed

at the values of the fit variables and has the form

Li = NsigPsig(xi, ~αsig) +NbkgPbkg(xi, ~αbkg) +NpeakPpeak(xi), (5.1)

where Nsig, Nbkg, and Npeak, are the number of events for signal, background,
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Table 5.1: Components of the total PDF used in the maximum likelihood fit.

Observable Signal Background Peaking

mES Crystall Ball ARGUS
Histogram

∆E Cruijff Polynomial O(1)

and peaking background components. The values of the N ’s are called yields.

The total likelihood for the sample is then the product of the likelihoods for

the individual events. A factor is multiplied to the likelihood product that

describes the Poissonian nature of the yields with respect to the overall number

of events in the data sample. The total likelihood is:

L =
e−N

N !

N
∏

i=0

(NsigPsig(xi, ~αsig) +NbkgPbkg(xi, ~αbkg) +NpeakPpeak(xi)) (5.2)

where N = Nsig +Nbkg +Npeak.

The maximum likelihood fit works by finding the maximum of this

function with respect to the PDF parameters, ~αj and the yields. This fit is

done with the Minuit package [36] which uses an iterative instead of ana-

lytical method for finding extremum and so what is actually occurring is a

minimization of the negative logarithm of this function.

5.2 PDFs

This section describes the PDFs used to fit the mES and ∆E distribu-

tions. A summary of this information is listed in Table 5.1.
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Table 5.2: Values of the fixed signal PDF parameters for the mES Crystal Ball
and ∆E Cruijff shapes. The values are obtained from fits to signal MC.

Parameter Value

Signal mES: Crystal Ball
α 1.066 ± 0.027
µ 5.279 ± 0.00004
n 4.07 ± 0.19
σ 0.0033 ± 0.00003

Signal ∆E: Cruijff
αL 0.218 ± 0.006
αR 0.129 ± 0.003
µ −0.008 ± 0.002
σL 0.101 ± 0.002
σR 0.038 ± 0.001

5.2.1 Signal PDFs

The signalmES distribution is described by a Crystal Ball shape, (4.13).

The parameters are fixed in the final fit to the values determined from a fit to

signal MC in the range 5.2–5.3 GeV/c2. Figure 5.1(a) shows the fit to signal

MC and values of the parameters used in the fit for the signal yield.

The signal ∆E distribution is described best by a double sided Gaussian

function with a low side tail parameter that is known in BABAR as a Cruijff

shape, eq. (4.14). These parameters are fixed to values determined from a fit

over the entire ∆E range in signal MC shown in Figure 5.1(b). Although the

shape of the Cruijff on the low ∆E side of the peak is not in perfect agreement,

the discrepancy will be dealt with as a systematic by varying the PDF, but

the systematic error is expected to be small. All signal parameters are fixed

in the final fit and are listed in Table 5.2.
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Figure 5.1: Signal mES and ∆E PDF shapes from a fit to signal MC after all
final cuts are applied.
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5.2.2 Background PDFs

The backgroundmES distribution is fit with an ARGUS shape, eq. (4.15),

with the endpoint fixed to 5.29 GeV/c2 and the slope allowed to float in the

final fit. Figure 5.2(a) shows the fit to the combined ∆E sideband in on-

resonance data. The parameters listed in the figures are used to generate the

background distributions for the toy MC studies.

The background ∆E distribution is fit with a first order polynomial.

The slope is determined from the mES sideband in on-resonance data, mES <

5.27GeV/c2, and is floated in the final fit. Figure 5.2(b) shows the fit to the

mES sideband.

5.2.3 Peaking Background PDFs

The number of peaking background events in the signal region, 1.18±
0.22, is comparable to the number of signal expected, 4.59, using the SM

branching fraction. These events are dealt with by taking advantage of the

difference in shapes of the signal and peaking background distributions. A 2D

histogram PDF in mES and ∆E is used with the normalization fixed to the

expected number of events from MC. Figure 5.3 show the 1D projections of

the histogram PDF using a 25 bins which is also used for the final fit.

5.3 Fit Validation

To validate and check for biases in the maximum likelihood fit a series

of “toy” MC experiments were performed. This technique involved generating

mock datasets by randomly sampling the PDFs of the fit model and then fitting

the datasets with the full extended maximum likelihood fit. The PDFs used
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Figure 5.2: Background mES and ∆E PDF shapes from a fit to on-resonance
sideband data after all final selections are applied. The mES projection is over
the ∆E combined sideband data, while the ∆E projection is over the mES

sideband data.
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Figure 5.3: 1D projections of the histogram PDF used in the fit as the peaking
background component. The number of bins in the PDF is 25.
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to generate the toy datasets are set to those values expected from data. The

known values of the generated signal and background yields can be compared

to those returned from the fit. By running many such toy experiments, the

distributions of a quantity called the pull give a measure of the performance

of the fit. For some parameter of interest, x, the pull is defined as

Pull ≡ xfit − xgen
σxfit

(5.3)

and should follow a Gaussian distribution with mean zero (no bias) and width

equal to one (fit error is consistent with resolution of distribution).

Two types of toy experiments are performed: (1) pure toy experi-

ments were the signal and background events are sampled from the PDFs

and (2) signal-embedded toy experiments where the background events are

sampled from the background PDF while the signal events are randomly se-

lected from the MC. This section describes the results for both the pure and

signal-embedded toy MC studies. Example fits to the toy datasets are shown

in Appendix E.

5.3.1 Pure Toy MC

To check that the fit model is performing accurately 2000 pure toy

MC experiments are performed. For each experiment a dataset containing the

total number of events expected was generated from the PDF shapes listed

in Section 5.2. The number of signal events generated is dependent on the

assumed branching fraction for B → γγ. Three different branching fractions

were tested. The yields and pulls for all three assumed signal branching frac-

tion are shown Figures 5.4–5.6 with the results summarized in Table 5.3.
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Figure 5.4: Yields, yield errors, and pull plots with a Gaussian fit overlaid for
pure toy MC experiments assuming a signal branching fraction of 1 × 10−8.
The left column of plots is for the signal yield and the right column is for
background. The number of signal events was generated according to a Poisson
distribution with a mean value of 1.21.
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Figure 5.5: Yields, yield errors, and pull plots with a Gaussian fit overlaid for
pure toy MC experiments assuming a signal branching fraction of 5 × 10−8.
The left column of plots is for the signal yield and the right column is for
background. The number of signal events was generated according to a Poisson
distribution with a mean value of 6.03.
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Figure 5.6: Yields, yield errors, and pull plots with a Gaussian fit overlaid for
pure toy MC experiments assuming a signal branching fraction of 1 × 10−7.
The left column of plots is for the signal yield and the right column is for
background. The number of signal events was generated according to a Poisson
distribution with a mean value of 12.1.
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Table 5.3: Summary of results for pure Toy MC experiments using the optimized cuts. All parameters
come from a fit to the distributions of the pure toy studies.

Bassumed Generated Mean (fit) Width (fit) Pull Mean Pull width

1× 10−8 NS 1.21 0.599± 0.206 8.73± 0.15 −0.150± 0.024 1.001± 0.017
NB 1297 1297± 0.8 36.31± 0.63 0.001± 0.022 0.974± 0.015

5× 10−8 NS 6.03 5.524± 0.217 9.294± 0.157 −0.131± 0.024 0.958± 0.017
NB 1293 1293± 0.9 37.78± 0.68 −0.016± 0.023 1.005± 0.016

1× 10−7 NS 12.1 11.5± 0.2 10.14± 0.19 −0.115± 0.024 0.999± 0.016
NB 1287 1287± 0.9 36.96± 0.66 −0.003± 0.023 1.024± 0.017
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5.3.2 Signal-Embedded Toy MC

To check that the fit model does not introduce a bias on the signal

yield and account for correlations among the fit variables or other improperly

modeled effects, 2000 signal-embedded toy MC experiments are performed.

For each experiment a dataset containing the total number of events expected

in on-resonance data was generated from the PDF shapes listed in Section 5.2.

Instead of generating the signal events from the PDFs, they are embedded into

the background dataset directly from the signal MC. The number of signal

events generated is dependent on the assumed branching fraction for B → γγ.

Three different branching fractions were tested. The yields and pulls for all

three assumed signal branching fraction are shown Figures 5.7–5.9 with the

results summarized in Table 5.4.
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Figure 5.7: Yields, yield errors, and pull plots with a Gaussian fit overlaid for
signal-embedded toy MC experiments assuming a signal branching fraction of
1× 10−8. The left column of plots is for the signal yield and the right column
is for background. The number of signal events was generated according to a
Poisson distribution with a mean value of 1.21.
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Figure 5.8: Yields, yield errors, and pull plots with a Gaussian fit overlaid for
signal-embedded toy MC experiments assuming a signal branching fraction of
5× 10−8. The left column of plots is for the signal yield and the right column
is for background. The number of signal events was generated according to a
Poisson distribution with a mean value of 6.03.
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Figure 5.9: Yields, yield errors, and pull plots with a Gaussian fit overlaid for
signal-embedded toy MC experiments assuming a signal branching fraction of
1× 10−7. The left column of plots is for the signal yield and the right column
is for background. The number of signal events was generated according to a
Poisson distribution with a mean value of 12.1.
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Table 5.4: Summary of results for signal embedded Toy MC experiments using the optimized cuts. All
parameters come from a fit to the distributions of the embedded toy MC experiments.

Bassumed Generated Mean (fit) Width (fit) Pull Mean Pull sigma

1× 10−8 NS 1.21 0.746± 0.205 8.838± 0.146 −0.101± 0.024 1.016± 0.017
NB 1297 1298± 0.8 36.47± 0.65 0.003± 0.022 0.998± 0.017

5× 10−8 NS 6.03 6.158± 0.217 9.42± 0.16 −0.044± 0.024 0.982± 0.016
NB 1293 1293± 0.8 35.95± 0.64 −0.004± 0.022 0.994± 0.017

1× 10−7 NS 12.1 13.14± 0.23 9.851± 0.159 0.037± 0.024 0.987± 0.017
NB 1287 1287± 0.9 37.59± 0.63 −0.029± 0.023 1.038± 0.017
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5.4 Upper Limit

The SM expectation for the branching fraction of B → γγ is about

3 × 10−8, and in the absence of a substantial enhancement only a few signal

events are expected. The equation for the branching fraction is given by

B(B → γγ) =
Nsig

2 ·NB0B0 · ǫsig
(5.4)

where Nsig is the signal yield of the maximum likelihood fit, ǫsig is the signal

efficiency determined from signal MC, and NB0B0 is the number of neutral B

meson pairs in the data sample. For the SM branching fraction only a few

signal events are expected and so an upper limit is set. To calculate the upper

limit, the likelihood function from the EML fit is integrated from zero up to

90% of its total area. This value corresponds to the 90% confidence level

upper limit. An example of the likelihood curve from a signal-embedded toy

MC experiment is shown in Figure 5.10. The blue curve is the likelihood where

the peak corresponds to the signal yield of the fit. The red line is drawn at the

value of Nsig where 90% of the area under the curve lies to the left. This value

of Hsig is used in eq. (5.4) to calculate the upper limit at the 90% confidence

Figure 5.11 shows the distribution of the upper limits for each assumed signal

branching fractions for pure and signal embedded studies calculated this way.

In these plots, the value of NB0B0 is 226.2 × 106, and ǫsig is 0.267. The mean

values of the upper limit distributions are shown in Table 5.5.
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Table 5.5: Mean of the upper limit distributions in Figure 5.11 using the stated
B → γγ branching fractions.

Expected UL @ 90% CL (×10−7)
Assumed BF

pure Toy MC signal-embedded Toy MC

1× 10−8 1.56 1.55
5× 10−8 1.85 1.93
1× 10−7 2.30 2.38
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Likelihood function from single toy MC

Figure 5.10: Example likelihood function from a signal-embedded toy MC
experiment. The maximum of the blue curve is the signal yield, and the red
line indicated the value where 90% of the area under the curve is to the left
corresponding to the 90% confidence level upper limit on the signal yield.
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Figure 5.11: Distribution of the upper limits calculated for the toy MC exper-
iments by integrating the likelihood function up to 90%. The top plot is for
pure toy MC and the bottom is for signal-embedded toy MC.
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Chapter 6

Results

This chapter describes the result of the maximum likelihood fit to the

unblinded dataset. The process of using the signal yield from the fit to set an

upper limit on the branching fraction of B → γγ is then described. Finally,

the identified sources of systematic errors are discussed and the procedure for

incorporating them into the final limit is discussed.

6.1 Fit to Unblinded Data Sample

In on-resonance data, 1679 events remain in the fit region after the

final cuts listed in Table 4.4 are applied. The data is fit with the extended

maximum likelihood fit described in Chapter 5, and the signal yield is found

to be 21.3+12.8
−11.8 events with a significance of 1.88σ. The projection of the PDF

onto the fit variables mES and ∆E is shown in Figure 6.1. A more instructive

way to see the signal events is to apply a cut to the non-plotted variable in the

signal region and redraw the projection, i.e., apply a cut on ∆E to be in the

signal region, −0.3 < ∆E < 0.1312 GeV, and draw the mES projection. This

is shown in Figure 6.2. The likelihood curve from the maximum likelihood fit

is shown in Figure 6.3. Unfortunately, the low significance value of the result

does not allow for us to claim an observation of this branching fraction so an

upper limit is set using the procedure described in Section 5.4.
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Figure 6.1: The projection of the PDF onto mES and ∆E. This plot shows
all three components of the total PDF (signal, background, and peaking back-
ground) as dashed lines and the sum total as the solid blue line.
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Figure 6.2: Projections of the PDFs onto mES and ∆E when a cut is applied
to the other variable. For themES projection the range of ∆E is −0.3 < ∆E <
0.1312 GeV. For the ∆E projection there is a cut on mES of greater than 5.27
GeV/c2.
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Figure 6.3: Likelihood curve from the extended maximum likelihood fit to the
unblinded on-resonance data sample. The peak of the curve represents the
signal yield. The red (green) line shows the point below where 90 (95)% of
the area is.

6.2 Systematic Errors

In addition to the statistical errors due to the finite size of the data

sample, there is an additional uncertainty due to systematic effects that must

be applied. Differences in the data and MC distributions of the variables lead

to an error in the determination of the efficiency, signal yield and ultimately

to a determination of the upper limit for this mode. The following were con-

sidered as sources of systematic errors. A summary of the systematic errors is

given in Table 6.1.
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Table 6.1: This table shows the systematic errors calculated for this analysis.
Multiplicative errors are effects that modify the efficiency used in the branch-
ing fraction calculation. Additive errors directly affect the signal yield, Nsig.
The total systematic error is the sum in quadrature of the multiplicative and
additive errors in units of events.

Source Systematic Error

Multiplicative Errors (%)
B-counting 1.6
Track eff. 0.14
Single γ eff. 3.4
Cluster Time 1.0
π0/η LR 2.0
Neural Network 3.0
Additive Errors (nEvents)
Fit Sys. 0.55

6.2.1 B Counting

The determination of the number of BB events in BABAR data is equal

to (467.4 ± 5.14) × 106 with a relative uncertainty of 1.1%. To calculate the

number of neutral Bs from the luminosity the latest Υ (4S) branching fraction

from the PDG is used: B(Υ (4S) → B0B0) = (48.4 ± 0.6)%. The number of

B0B0 pairs is calculated to be (226.2 ± 3.7) × 106 with a systematic error of

1.6%.

6.2.2 Tracking Efficiency

The tracking efficiency can affect this analysis as there is a requirement

on the minimum number of GoodTracksLoose in the event greater than two.

The charged particle tracking group in BABAR has studied the track finding

efficiency using τ decays, and found that no efficiency correction should be
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applied. However, a systematic error for the GoodTracksLoose list of 0.236%

per track, should be applied. This will only affect events with 3 tracks. In

signal MC this corresponds to 19.7% of events after the initial selections are

applied. A systematic error of 3 · 0.236% · 0.197 = 0.14%.

6.2.3 Single Photon Efficiency

Systematic uncertainties for the selections on the photon are deter-

mined using e+e− → µµγ control samples made from the BABAR Neutral par-

ticles working group. The efficiency is calculated for data and MC when all

final selections are applied and the ratio is 0.987. We apply this difference as

a systematic error. Additionally the selection on the distance to the nearest

charged and neutral cluster of 25 cm is made. This selection was studied in

a previous BABAR analysis and a 2% discrepancy between data and MC was

found. These errors are added in quadrature for the total photon selection sys-

tematic error. The systematic error assigned is
√

2 · (1.3%2 + 2%2) = 3.4%.

6.2.4 Cluster Time

Since cutting on cluster time is unusual within BABAR, this cut was

investigated as a possible source of systematic error. The efficiencies of the

cluster time cut (applied to both photons) is compared between signal MC

and the on-resonance data by using a sample of events in which both photon

candidates are consistent with begin from the decay of a π0, although they

do not have the same parent. Such candidates are unlikely to be out of time.

The π0 likelihood ratio is reversed to to select such events. The MC efficiency

of this cut is 0.969± 0.004 and for data it is 0.972± 0.005. The ratio is then

1.006± 0.007 and a systematic error of 0.7% is assigned for each photon. The
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total systematic error for both photons is the sum in quadrature and gives

1.0%.

6.2.5 π0/η LR

The π0/η LR veto systematic effect was studied in a BABAR analysis of

the decay B → ργ [26, 27]. The effect was estimated by embedding high energy

photons from B → ρ/ωγ signal MC into B → Dπ MC and data samples. The

systematic error for this selection is taken from this source. A 1% systematic

error was quoted for both the π0 and η LR vetoes. These errors are added in

quadrature for each photon and an overall systematic error of 2.0% is assigned.

6.2.6 Neural Network

MC simulated events are used to train and test the SPR Neural Network

classifier and so differences between the data and MC need to be accounted

for. To determine the systematic uncertainty for the NN response, the relative

efficiency between data and a luminosity weighted MC sample in the fit region,

with the signal region excluded, is computed. With all final cuts applied, the

efficiency of the NN cut at 0.54 is found to be 0.209 ± 0.004 in on-resonance

data and 0.214±0.004 in background MC. The relative efficiency is calculated

to be 0.977 ± 0.026. No efficiency correction is applied and a 3% systematic

error is assigned.

6.2.7 Fit systematics

A source of systematic error are the differences between the PDFs used

in the maximum likelihood fit and the true distributions in the data. These

differences may cause a bias in the signal yield and affect the branching frac-
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tion calculation. All fixed parameters are possible sources of these systematic

errors. Also, an error on the peaking background yield or for the pdf shapes

would result in a systematic error. We have estimated the systematic errors

in the fit using embedded toys.

To study the effect of fixing the PDF shapes from the signal MC dis-

tributions, all parameters listed in Table 5.2 are varied by ±1σ and the on-

resonance data sample is refit and the difference in the signal yield is calcu-

lated. After this procedure is run for all fixed parameters, the systematic error

is given by adding in quadrature all the differences. To estimate this error,

the parameter variations are run using signal-embedded toy MC datasets and

the results were found to be 0.16 and 0.2 events when correlations are and

are not taken into account between the PDF parameters, respectively. The

distribution of the systematic errors for the toy MC experiments is shown

in Figure 6.4. When this procedure was run on the unblinded on-resonance

dataset, the systematic error on Nsig was found to be equal to 0.27 and 0.56

events when correlations are and are not included, respectively.

In addition to changing the signal shape parameters, different shapes

were fit to the signal ∆E distribution. Figure 6.5 shows the signal ∆E dis-

tribution overlaid with a Cruijff, Crystal Ball, and Novosibirsk shape. The

Cruijff shape was replaced with a Crystal Ball shape, and the difference in the

signal yield of about −0.15 events was observed in signal-embedded toy MC

experiments. This shift may indicate a small bias that may be included as

an additional systematic error. Figure 6.6 shows the difference in signal yield

between the Cruijff and Crystal Ball shape.

Since the peaking background shape and yield are fixed from MC this

becomes a possible source of systematic error. The error for this will be based
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Figure 6.4: The systematic error on the signal yield is found by varying the
fixed signal parameters by ±1σ from their central values for 2000 signal-
embedded toy MC studies. The blue histogram takes into account the cor-
relations between the parameters while the red histogram does not.

on varying the peaking yield and shape in the fit. As shown in Table 4.6,

3.13± 0.53 events are expected in our fit region. As a worst case scenario the

errors are added linearly to give 3.13± 1.11 events. The systematic error will

be estimated using this larger variation. Figure 6.7 shows the difference in

the signal yield is about 0.15 events when the peaking component is varied by

±1σ.

Additionally the peaking shape is varied by replacing the shape in Fig-

ure 4.27 by the exclusive mode with the most peaking exclusive mode which is
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Figure 6.5: The ∆E distribution in signal MC fit with a Crystal Ball, Cruijff
and Novosibirsk shape. The Cruijff is found to give the best fit.

the B → π0 π0 shape shown in Figure 6.8. The difference in the signal yields

for a peaking background estimate of 3.13 events and 3.13 ± 1σ is shown in

Figure 6.9. The mean value of 0.46 events events is taken as the basis for the

systematic error estimate.

The total fit systematic error is based on three components. From

varying the fixed parameters in the signal pdf an error of 0.27 events is found,

0.15 events from the choice of a Cruijff shape for signal ∆E, and 0.46 events

from the peaking background yield and pdf shape. Theses errors are added in

quadrature to obtain the total fit systematic error of 0.55 events.
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Figure 6.6: Difference in signal yield when the signal ∆E distribution is fit
with a Cruijff or Crystal Ball shape to the same dataset.

The toy results have the benefit of averaging over many toys, while the

data is a single experiment that may fluctuate. The method used to calculate

the fit systematic is given by the formula

Fit Syst. Error =
√
0.272 + 0.152 + 0.462 = 0.55 events. (6.1)

6.3 Upper Limit with Systematic Errors

To incorporate the systematic error into the upper limit, the likelihood

function from the EML fit, shown in Figure 6.3, is convolved with a Gaussian

shape whose width is equal to the total systematic error. The systematic error
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Figure 6.7: Difference in the signal yield when fitting the same toy dataset
and the peaking yield is fixed to ±1σ from its mean value of 3.13 events. The
red dashed line is a Gaussian fit to the distribution with the fit parameters
listed in the legend.

from all multiplicative sources is 5.3% which corresponds to 1.13 events. The

additive systematic error, found by varying the fixed parameters of the fit, is

0.55 events. These are added in quadrature to give a total systematic error of

1.26 events. The likelihood curve from the fit to on-resonance data is smeared

by convolving it with a Gaussian of width 1.26. Figure 6.10 shows the result of

the likelihood convolution. The smeared likelihood curve essentially rests on

top of the original curve showing the the systematic errors are small compared

to the statistical error. The upper limit including systematic errors is obtained
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Figure 6.8: ∆E and mES histogram PDFs used as the peaking background
shape. The shapes are from the B → π0 π0 exclusive MC mode.
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Figure 6.9: Difference in the signal yield when the expected peaking back-
ground yield is varied by ±1σ from its mean value of 3.13 and the mES and
∆E PDF shapes are modeled by the B → π0 π0 shape of Figure 6.8.

by integrating the smeared likelihood curve up to 90%. The value of the signal

yield where this occurs is 39.19 events and using equation (5.4) the branching

fraction upper limit is calculated to be

B(B → γγ) < 3.2× 10−7 (@ 90% CL). (6.2)
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vertical cyan line and is equal to Nsig = 39.19 events.

6.4 Conclusions

This thesis discussed a search for the rare effective flavor changing neu-

tral current decay B → γγ. With the dataset recorded by the BABAR detector,

a signal yield of 21.3+12.8
−11.8 events with a significance of 1.88σ was extracted

from the on-resonance data. An upper limit on the branching fraction is set

at the 90% confidence level to be less than 3.2× 10−7. Even with the limited

statistics dataset this limit is about twice as stringent as the previous best

limit of less than 6.2 × 10−7 published by the Belle Collaboration. Unfortu-
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nately this result is unable to definitively say anything about potential new

physics beyond the Standard Model.

This analysis was performed on a data sample of integrated luminosity

equal to 425.7 fb−1, which corresponds to the entire Υ (4S) dataset recorded

by BABAR during its lifetime, and is dominated by statistical uncertainties.

As such, further improvements on the measurement of the branching fraction

are possible by analyzing the Belle Collaboration data of BB events which is

currently slightly less than twice as large as BABAR at about 750 fb−1. In or-

der to gain significant reduction on the statistical error a new generation of B

Factories is required with the ability to record much large datasets. Currently

there are two proposals with this goal in the planning stages. The first is an

upgrade to the existing KEKB machine in Japan which would increase the

instantaneous luminosity to around 1036 cm−2 s−1 [37]. The other is new B

factory, called SuperB, which would reuse some of the current BABAR detector

hardware while utilizing a new accelerator design to achieve a similar lumi-

nosity [38]. With these high luminosity machines a dataset with an integrated

luminosity of tens of ab−1 is foreseen after some years of operation, which

would lead to a reduction in experimental uncertainties by at least an order

of magnitude from current results. Not only could this lead to a measurement

of the branching fraction for B → γγ, but also other rare decays sensitive to

new physics would be possible to observe.
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Appendix A

Photon Conversions

When a photon travels through material, there is a non-zero probability

it will interact with a nucleus and undergo a conversion to an electron-positron

pair through the reaction γ+N → e+e−+N . The measure of this probability is

called the radiation length, X0, usually expressed in units of g cm−2. For a high

energy photon it is defined as 7/9 of the mean free path for pair production.

The BABAR detector is a massive object and consequently for any parti-

cles produced near the IP to reach the calorimeter it must pass through some

amount of material. The amount of material the particle must traverse is de-

pendent on the polar angle of its trajectory. Figure 4.2 shows the amount of

material, in radiation lengths, in front of each sub-detector. Because this is

a nonzero amount of material, some photons will undergo a conversion to an

e+e− pair. For this analysis, this means that a signal event could go unde-

tected affecting our efficiency and ability to make the best branching fraction

measurement possible. These types of events can be recovered though, since

the e+e− pair is detected by the tracking system. By placing basic kinematic

constraints on the two tracks, such as invariant mass and distance of closest

approach, a list of converted photon candidates can be built. For this reason

the photon candidates used to reconstruct the B candidates in this analysis

are drawn from two orthogonal lists. The GoodPhotonLoose candidates are

measured as clusters in the EMC. The gammaConversionDefault photon can-
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didates are made by pairwise combination of tracks. Since each B candidate

is made from two photon candidates and there are two categories of photon

candidates, the B candidates can be classified into four categories

Category 1 Both photon candidate daughters are GPL photon candidates.

Category 2 The higher lab energy photon candidate is a GPL photon and

the lower lab energy photon candidate is a conversion.

Category 3 The lower lab energy photon candidate is a GPL photon and the

higher lab energy photon candidate is a conversion.

Category 4 Both photon candidate daughters are converted photon candi-

dates.

Only categories 1, 2 and 3 are relevant since the probability that both photons

undergo a conversion is very small (about 0.2% from signal MC). The distri-

bution of event categories in signal MC shows that more than 99.9% of events

are in these three categories. Table 4.2 shows the content of event categories

in signal MC and Figure A.1 shows the distribution of event categories for

signal, cc, τ+τ−, uds, B+B−, and B0B0 MC samples.

The event category distributions between different MC samples in Fig-

ure A.1 are very different in shape. This is not intuitive since the process

that produces the photon should not influence the way that it moves through

the detector material. Therefore, the source of the photon should not effect

whether it undergoes a conversion. In particular the distributions in cc, and

generic BB MC show a much larger fraction of events in categories two, three,

and four. This reason for this is due to the way the converted photon list is

constructed. The GCD list is made by a pairwise combination of tracks from
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Figure A.1: Distribution of event categories in signal, cc, τ+τ−, uds, B+B−,
and B0B0 MC. Bins 1, 2, 3, and 4 correspond to event categories 1, 2, 3 and
4, respectively.
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Table A.1: Mean number of ChargedTracks per event in different MC samples.

MC sample Track Mult.

signal 5.6
uds 5.4
cc 7.2

τ+τ− 3.2
BB 8.8

the ChargedTracks list. Each track is assigned the electron mass hypothesis,

its 3-momentum recalculated, and the tracks are combined. If the invariant

mass of the pair is less than 30 MeV/c2, and the tracks satisfy some geometri-

cal constraints on their distance of closest approach, the resulting candidate is

placed on the GCD list. What this shows is that events with more tracks closer

together have a larger chance of producing false conversion candidates. Ta-

ble A.1 shows the multiplicities of tracks/event for the different MC samples.

The cc and BB samples have a higher track multiplicity and therefore have a

higher portion of events in the conversion categories.

We can get a better handle on exactly what types of tracks the photon

conversions are being reconstructed from by looking at the MC Truth infor-

mation. The production of the MC datasets proceeds in two stages, described

in Section 3.3. In the first stage, when EvtGen produces the physics processes,

a list of the particles produced by the simulator are persisted with the event

in the datastore. The list of particles is accessible at later times to be able to

compare what was generated with respect to what was reconstructed. What

this means is that the identities of the particles used to create the photon

conversion candidate can be recovered and tested to see whether they were

truly electrons and positrons or just a random track combination that passed
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the cuts. What is actually stored is a quantity called the Lund ID. It is a

unique identifier label for each particle, e.g, electrons have a Lund ID of 11

and positrons have a Lund ID of -11. When the reconstructed charged tracks

used to create the converted photon candidates are matched to their generated

partners we see that in non-signal processes the majority of particles used are

pions. Figure A.2 shows the Lund IDs of the particles that were used to create

the conversions.

To clean up the list and select only true photon conversions, particle

identification (PID) is applied to the daughter particles of the conversion. All

charged tracks in BABAR are run through PID algorithms during reconstruc-

tion and a bit mask integer of which selectors the track passed is persisted in

the datastore with the charged track. Since photons that undergo a conversion

produce and e± pair, conversion candidates whose daughter constituents pass

an electron selector are kept as true conversions. The algorithm chosen to

identify real conversions is called eLHSelector. This algorithm uses informa-

tion from the DCH, DRC, and EMC to decide whether the track and cluster

have the characteristics associated with an electron. Both daughter tracks are

required to pass this selector which gives a signal efficiency of 69.9%. The

distribution of event categories after the selector is applied is shown in Fig-

ure A.3. The event categories for all MC samples is now very similar to signal.

For the daughter charged tracks that pass the PID selector, the Lund ID of

those remaining shows that they are almost all e±, Figure A.4. The pollution

from pions and Ks is consistent with the efficiency of this selector.
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Figure A.2: Lund ID of the generated particle used to create a photon con-
version candidate. Electrons and Positrons have a Lund ID of 11 and −11,
respectively, π± Lund IDs are ±221, and K± Lund ID are ±321.
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Figure A.3: Distribution of event categories in signal, cc, τ+τ−, uds, B+B− and
B0B0 MC after the electron PID algorithm has been applied to the daughter
tracks used to create the photon conversion candidate. Bins 1, 2, 3 and 4
correspond to event categories 1, 2, 3 and 4, respectively.
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Figure A.4: Lund ID of the generated particles used to create a photon con-
version candidate. The Lund ID of e± = ±11, π± = 221, and K± = ±321.
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A.1 Distance to Nearest Cluster

Since a photon conversion candidate is not reconstructed from an EMC

cluster, the distance to the nearest charged and neutral cluster used to cal-

culate a neural network response is not an available quantity. To be able to

use the same neural network for categories two and three events as with cate-

gory one events, a method to calculate this distance from a converted photon

was developed. This method uses the direction of the photon momentum at

its point of conversion to find where the centroid of the cluster would have

occurred. This calculated cluster centroid is called the expected cluster cen-

troid. The expected centroid is found by locating the point of the front face

of the EMC crystal the photon would have entered had it not undergone a

conversion. The x, y, and z coordinates of the centroid are then calculated by

extrapolating 12.5 cm into the crystal along the line from the photon conver-

sion to the point on the front face of the crystal. The distance is calculated

from the linear distance between this point and the centroid of the nearest

cluster, whether charged or neutral.

To test if this method works, it is applied to GPL photons with whose

distance it can be compared. Figure A.5 shows a comparison between the

distance calculated from the reconstructed cluster centroid of a GPL photon to

the distance from the method outlined above to calculate the shower centroid

which shows very good agreement.

Figure A.6 shows the distances calculated for the converted photon

candidates overlaid on the distance histogram from Figure A.5. The shapes of

the distance distributions are not the same because the events were sampled

from different distributions. The probability to convert depends on the amount

of material the photon traverses. Consequently, the photons that travel in the
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Figure A.5: Distance between the cluster centroid and the nearest charged
(left) and neutral (right) clusters in the EMC for signal MC. The dashed lines
show the distance using the cluster centroid calculated from the EMC cluster.
The solid lines show the distance using the expected cluster centroid calculated
from the direction of the photon momentum. These plots show photons from
category one. The peak in the distributions at about 210 cm is consistent with
the nearest EMC object on the opposite side of the calorimeter.

most forward direction, i.e., smaller polar angle, are more likely to undergo a

conversion, as can be seen from Figure 4.2. When the distance distributions

for converted photons were compared to the non-converted photon sample
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Figure A.6: Distance between cluster centroid and nearest charged (left) and
neutral (right) cluster centroid in the EMC for signal MC. The magenta his-
togram is the distances for the converted photons using the expected cluster
centroid. The peak near 10 cm in the neutral distance plot is due to the
brehmsstrahlung from the daughter electrons.

in bins of polar angle, θ, and energy, the agreement was better, although not

identical due to the coarse binning used. The distribution is better for the lower

energy photon, gamLow, than for the higher energy photon, gamHigh, due to

geometry considerations as well. The more forward photon is always the higher

energy photon and will have a large probability of converting. At smaller polar
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angles the sampling populations are dissimilar and the disagreement is more

pronounced. With a method to calculate the distance for converted photons, a

NN response can be calculated for category two and three events which allows

them to be included in the likelihood fit.

A.2 Maximum Likelihood Fit with Conversions

The same PDF shapes used for category one events are also used to

parameterize the category two and three mES and ∆E distributions. These

distributions are narrower in events with a converted photon due to the better

resolution of the tracking systems than the EMC. Because of the difference in

the two types of event categories the mES and ∆E distributions have different

PDF parameterizations and are shown in Figures A.7–A.10 for signal and

background.

The fitting model is also changed because of this difference. The fit

becomes a 2D simultaneous extended maximum likelihood fit where the data

is split into two categories by whether or not the event has a conversion.

When testing this scenario, a peaking component was not included in the

overall PDF. A simultaneous fit means that the distributions of the different

categories are fit separately, but the yields are connected. For example, the

overall signal yield, Nsig, is related to the individual signal yields for categories

one, N1
sig and two plus three, N2+3

sig by the relation Nsig = N1
sig + N2+3

sig . The

relative signal yield, the fraction of events in categories two plus three to that

of category one, is fixed to the value 5.1% found from signal MC. For the

background yield, Nbkg = N1
bkg + N2+3

bkg , but the relative yield is not fixed.

Because we have added new information to the likelihood function, eq. (5.2)
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Figure A.7: Signal mES PDF shapes from signal MC using a crystal ball PDF.
The final cuts are applied to the MC sample and 2D fit is performed to calculate
the parameters.
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Figure A.8: Signal ∆E PDF shapes from signal MC using a Cruijff PDF. The
final cuts are applied to the MC sample and 2D fit is performed to calculate
the parameters.
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Figure A.9: Background mES PDFs from onPeak sideband data. The final
cuts are applied and a 2D fit is performed to calculate the parameters. The
endpoint is fixed to 5.279 GeV/c2.
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becomes

L =
e−N

N !

2
∑

c=1

N
∏

i=0

(N c
sigPc(xi, ~αi) +N c

bkgPc(xi, ~αi)) (A.1)

where i is the index of each data point x, ~α are the floating parameters in the

fit, c is a label for the event categories which for this analysis c is equal to two.

Again all signal shape parameters for the mES and ∆E distributions are fixed

in the fit.

A.3 Toy Studies and Upper Limits

In analog to Section 5.3, 2000 pure and signal-embedded toy MC studies

were run to validate the fitter and check for biases in the yields. The results

of the validation studies showed no bias in the yields and that the fit was

working as expected. Figure A.11 shows an example of a simultaneous fit to

a signal-embedded toy MC dataset with an assumed signal branching fraction

of 5 × 10−8. For each toy MC experiment an upper limit on the branching

fraction was calculated by integrating the likelihood function up to 90% of

its area. It was then compared to upper limits obtained for toy studies that

excluded events with conversions. The goal was to see if by including these

events a better upper limit could be obtained. Figure A.12 shows a comparison

between the upper limits with and without converted photon events. There

is no difference in the limit obtained and for this reason these events were

excluded from the main analysis.
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Figure A.10: Background ∆E PDFs from onPeak sideband data. The final
cuts are applied and a 2D fit is performed to calculate the parameters.
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Figure A.11: Example of one of the 2000 signal embedded toy MC fit that
were run assuming a signal branching fraction of 5× 10−8.
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Figure A.12: Comparison of upper limits at 90% CL with and without photon
conversions included in the event sample.
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Appendix B

Non-optimized Variable Figure of Merit Plots

In addition to the variables whose cuts were determined by the opti-

mization procedure described in Section 4.9, the same technique was applied

to the other variables that were not optimized, e.g., photon momentum polar

angle. This was done as a check that the chosen cut values were correct, and no

evidence was found that those values should be changed. The following plots

show the figure of merit as a function of the cut value for the non-optimized

variables.

In the figures of this appendix, there are large spikes in the FOM values

for certain cuts. These features correspond to failed fits from the optimization

and should be ignored. If, during the optimization, a fit failed and produced

an errant figure of merit value it was ignored when finding the maximum of

the FOM. For these plots no time was spent to fixing the issue of failed fits,

unlike the optimized variables, and so the failed fit spikes remain.
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Figure B.1: Figure of Merit as a function of variable cut value. The plots are
flat in this region meaning that the initial cut chosen is also the final cut. The
spikes in the plots correspond to failed fits of the mES distribution during the
optimization.
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Figure B.2: Figure of Merit as a function of variable cut value. The plots are
flat in this region meaning that the initial cut chosen is also the final cut. The
spikes in the plots correspond to failed fits of the mES distribution during the
optimization.
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Figure B.3: Figure of Merit as a function of variable cut value. The plots are
flat in this region meaning that the initial cut chosen is also the final cut. The
spikes in the plots correspond to failed fits of the mES distribution during the
optimization.
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Figure B.4: Figure of Merit as a function of variable cut value. The plots are
flat in this region meaning that the initial cut chosen is also the final cut. The
spikes in the plots correspond to failed fits of the mES distribution during the
optimization.
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Appendix C

Final Cut Efficiencies

This appendix shows the efficiencies of the final cuts on uds, cc, τ+τ−,

and B0B0 and B+B− MC both individually and cumulatively.
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Table C.1: Cumulative efficiencies for uds, cc, τ+τ−, and BB MC samples. Each row has all cuts listed
above applied when calculating the efficiency. Ngen is the number of events generated of this type of MC
process. All efficiencies are normalized to the number of events that pass the skim selections, Nskim.

uds cc τ+τ− BB
Ngen 938,312,000 1,132,468,000 395,206,000 1,449,710,000
Nskim 1,028,134 335,466 216,475 4,502

Cut Value Npass ε Npass ε Npass ε Npass ε

Class 1 Cuts
# Bs / event nB=1 1017506 0.990 332115 0.990 214464 0.991 4369 0.970
Both γs GPL TRUE 658646 0.641 86192 0.257 151316 0.699 796 0.177
Event Level Cuts
nGTL ≥ 3 511210 0.497 70574 0.210 40312 0.186 731 0.162
Etot < 15.0 GeV 506086 0.492 69677 0.208 40092 0.185 467 0.104
Neural Net ≥ 0.54 14396 0.014 3229 0.010 576 0.003 278 0.062
Cuts applied to both photons
Dist to charged > 25 cm 12503 0.012 2888 0.009 438 0.002 211 0.047
Dist to neutral > 25 cm 9059 0.009 2268 0.007 363 0.002 153 0.034
~p polar angle 0.4 < θ < 2.4 8512 0.008 2108 0.006 328 0.002 140 0.031
Lateral Moment 0.15 ≤Lat≤ 0.5 4566 0.004 1343 0.004 224 0.001 59 0.013
cluster time 6200 ≤ t ≤ 6350 ns 4449 0.004 1290 0.004 214 0.001 57 0.013
# of Crystals > 10 4446 0.004 1290 0.004 214 0.001 57 0.013
merged π0 Cons. < 0.01 3638 0.004 1129 0.003 193 0.001 51 0.011
π0 LR ≤ 0.84 2115 0.002 664 0.002 149 0.001 12 0.003
η LR ≤ 0.84 1141 0.001 394 0.001 139 0.001 9 0.002
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Table C.2: Efficiencies of the final cuts for uds, cc, τ+τ−, and generic BB MC samples applied individually.
Ngen is the number of events generated of this type of MC process. All efficiencies are normalized to the
number of events that pass the skim selection, Nskim.

uds cc τ+τ− BB
Ngen 938,312,000 1,132,468,000 395,206,000 1,449,710,000
Nskim 1,028,134 335,466 216,475 4,502

Cut Value Npass ε Npass ε Npass ε Npass ε

Class 1 Cuts
# Bs / event nB=1 1017506 0.990 332115 0.990 214464 0.991 4369 0.970
Both γs GPL TRUE 658646 0.641 86192 0.257 151316 0.699 796 0.177
Event Level Cuts
nGTL ≥ 3 511210 0.776 70574 0.819 40312 0.266 731 0.918
Etot < 15.0 GeV 652494 0.991 85148 0.988 150772 0.996 525 0.660
Neural Net ≥ 0.54 11946 0.030 4361 0.051 2392 0.016 349 0.438
Cuts applied to both photons
Dist to charged > 25 cm 566475 0.860 76519 0.888 133122 0.880 559 0.702
Dist to neutral > 25 cm 179281 0.272 30984 0.359 33744 0.223 322 0.405
~p polar angle 0.4 < θ < 2.4 592651 0.900 78413 0.910 137202 0.907 449 0.564
Lateral Moment 0.15 ≤Lat≤ 0.5 495610 0.752 61777 0.717 119778 0.792 269 0.338
cluster time 6200 ≤ t ≤ 6350 ns 638621 0.970 83318 0.967 145919 0.964 414 0.520
# of Crystals > 10 657188 0.998 85738 0.995 151014 0.998 436 0.548
merged π0 Cons. < 0.01 224418 0.341 37989 0.441 42655 0.282 482 0.606
π0 LR ≤ 0.84 94469 0.143 16541 0.192 14281 0.094 206 0.259
η LR ≤ 0.84 383738 0.583 51386 0.596 109283 0.722 467 0.587
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Appendix D

Peaking Backgrounds

This appendix contains the mES and ∆E distributions for all of the ex-

clusive MC modes that were investigated in the study of peaking backgrounds

done in Section 4.11. After the final selections are applied to each MC sample

the mES and ∆E distributions are plotted along with the distribution of event

in the fit plane. The 1D plots are scaled to the expected number of events

expected in the on resonance data. The black histograms represent the events

in the whole fit plane while the solid red histograms correspond to the events

inside the signal box which is defined as

5.27 ≤ mES ≤ 5.29 GeV/c2

−0.3 ≤ ∆E ≤ 0.1312 GeV (D.1)

Figure D.1 shows the sum of all exclusive MC after being scaled to an equiv-

alent luminosity equal to the on resonance data sample of 425.7 fb−1.
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Figure D.1: mES and ∆E distributions of a luminosity weighted combination
of modes listed in Table 4.6.
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Figure D.2: Distribution of events in B0 → π0 π0 MC that survive the opti-
mized cut variables. The 1D histogram axis shows the numbers of event after
being scaled to luminosity to find the expected numbers in data.
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Figure D.3: Distribution of events in B0 → ηη MC that survive the optimized
cut variables. The 1D histogram axis shows the numbers of event after being
scaled to luminosity to find the expected numbers in data.
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Figure D.4: Distribution of events in B0 → ηπ0 MC that survive the optimized
cut variables. The 1D histogram axis shows the numbers of event after being
scaled to luminosity to find the expected numbers in data.
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Figure D.5: Distribution of events in B± → ρ±γ MC that survive the opti-
mized cut variables. The 1D histogram axis shows the number of events after
being scaled to luminosity to find the expected numbers in data.
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Figure D.6: Distribution of events in B0 → ρ0γ MC that survive the optimized
cut variables. The 1D histogram axis shows the number of events after being
scaled to luminosity to find the expected numbers in data. No events from
this sample pass the optimized cuts.
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Figure D.7: Distribution of events in B0 → ωγ MC that survive the optimized
cut variables. The 1D histogram axis shows the number of events after being
scaled to luminosity to find the expected numbers in data.
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Figure D.8: Distribution of events in B± → ρ±π0 MC that survive the opti-
mized cut variables. The 1D histogram axis shows the number of events after
being scaled to luminosity to find the expected numbers in data.
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Figure D.9: Distribution of events in B± → K±π0 MC that survive the opti-
mized cut variables. The 1D histogram axis shows the number of events after
being scaled to luminosity to find the expected numbers in data. No events
from this sample pass the optimized cuts.
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Figure D.10: Distribution of events in B0 → K∗0γ MC that survive the opti-
mized cut variables. The 1D histogram axis shows the number of events after
being scaled to luminosity to find the expected numbers in data.
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Figure D.11: Distribution of events in B± → K∗±γ MC that survive the
optimized cut variables. The 1D histogram axis shows the number of events
after being scaled to luminosity to find the expected numbers in data.
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Figure D.12: Distribution of events in B0 → K0
S
η MC that survive the opti-

mized cut variables. The 1D histogram axis shows the number of events after
being scaled to luminosity to find the expected numbers in data.
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Figure D.13: Distribution of events in B0 → K0
S
π0 MC that survive the opti-

mized cut variables. The 1D histogram axis shows the number of events after
being scaled to luminosity to find the expected numbers in data. No events
from this sample pass the optimized selections.
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Appendix E

Sample Toy MC fits

Each toy MC experiment proceeds by generating a dataset from the

PDFs, or for signal-embedded toy MC from the background PDF and embed-

ding into that dataset a number of signal events selected from the full BABAR

simulation. Each dataset is fit with the full 2D extended maximum likelihood

fit comprising a signal, background and peaking component. This appendix

shows some examples of the fit for the pure and signal-embedded toy MC

studies run in Section 5.3 for all three assumed signal branching fractions.
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Figure E.1: Some example fits from the pure toy MC when assuming a signal
branching fraction of 1× 10−8.
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Figure E.2: Example of pure toy MC fits generated with an assumed signal
branching fraction of 5× 10−8.
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Figure E.3: Example pure toy MC fits generated with an assumed signal
branching fraction of 1× 10−7.
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Figure E.4: Example of signal embedded toy MC fits generated with an as-
sumed signal branching fraction of 1× 10−8.

174



Total
Signal

Background
Peaking Bkg

)2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )
2

E
ve

nt
s 

/ (
 0

.0
03

6 
G

eV
/c

0

10

20

30

40

50

60

70

80

90

-810× projection of signal embded Toy MC: BF = 5ESm

)2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )
2

E
ve

nt
s 

/ (
 0

.0
03

6 
G

eV
/c

0

10

20

30

40

50

60

70

80

90

-810× projection of signal embded Toy MC: BF = 5ESm

 E (GeV)∆
-0.5 -0.4 -0.3 -0.2 -0.1 -0 0.1 0.2 0.3 0.4 0.5

E
ve

nt
s 

/ (
 0

.0
4 

G
eV

 )

0

10

20

30

40

50

60

70

80

-810×E projection of signal embded Toy MC: BF = 5∆

 E (GeV)∆
-0.5 -0.4 -0.3 -0.2 -0.1 -0 0.1 0.2 0.3 0.4 0.5

E
ve

nt
s 

/ (
 0

.0
4 

G
eV

 )

0

10

20

30

40

50

60

70

80

-810×E projection of signal embded Toy MC: BF = 5∆

)2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )
2

E
ve

nt
s 

/ (
 0

.0
03

6 
G

eV
/c

0

10

20

30

40

50

60

70

80

90

-810× projection of signal embded Toy MC: BF = 5ESm

)2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )
2

E
ve

nt
s 

/ (
 0

.0
03

6 
G

eV
/c

0

10

20

30

40

50

60

70

80

90

-810× projection of signal embded Toy MC: BF = 5ESm

 E (GeV)∆
-0.5 -0.4 -0.3 -0.2 -0.1 -0 0.1 0.2 0.3 0.4 0.5

E
ve

nt
s 

/ (
 0

.0
4 

G
eV

 )

0

10

20

30

40

50

60

70

80

90

-810×E projection of signal embded Toy MC: BF = 5∆

 E (GeV)∆
-0.5 -0.4 -0.3 -0.2 -0.1 -0 0.1 0.2 0.3 0.4 0.5

E
ve

nt
s 

/ (
 0

.0
4 

G
eV

 )

0

10

20

30

40

50

60

70

80

90

-810×E projection of signal embded Toy MC: BF = 5∆

)2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )
2

E
ve

nt
s 

/ (
 0

.0
03

6 
G

eV
/c

0

10

20

30

40

50

60

70

80

-810× projection of signal embded Toy MC: BF = 5ESm

)2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )
2

E
ve

nt
s 

/ (
 0

.0
03

6 
G

eV
/c

0

10

20

30

40

50

60

70

80

-810× projection of signal embded Toy MC: BF = 5ESm

 E (GeV)∆
-0.5 -0.4 -0.3 -0.2 -0.1 -0 0.1 0.2 0.3 0.4 0.5

E
ve

nt
s 

/ (
 0

.0
4 

G
eV

 )

0

10

20

30

40

50

60

70

80

-810×E projection of signal embded Toy MC: BF = 5∆

 E (GeV)∆
-0.5 -0.4 -0.3 -0.2 -0.1 -0 0.1 0.2 0.3 0.4 0.5

E
ve

nt
s 

/ (
 0

.0
4 

G
eV

 )

0

10

20

30

40

50

60

70

80

-810×E projection of signal embded Toy MC: BF = 5∆

Figure E.5: Example of signal embedded toy MC fits generated with an as-
sumed signal branching fraction of 5× 10−8.
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Figure E.6: Example of signal embedded toy MC fits generated with an as-
sumed signal branching fraction of 1× 10−7.
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