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Abstract

Experimental data collected with the BABAR detector consisting of 470.9±2.8 million BB

events are used to measure the sum of seven exclusive B → Xd(s)γ transitions, where

Xd(s) is any non-strange (strange) charmless hadronic state. For each transition flavour,

measurements are made in the hadronic mass ranges 0.5 ≤ mX < 1.0 GeV/c2 and 1.0 ≤
mX ≤ 2.0 GeV/c2. These are extrapolated and combined in a model-dependent way to

obtain the ratio of the total branching fractions, B(B → Xdγ)/B(B → Xsγ) = 0.0456±
0.0110 ± 0.0097 where the first error is statistical and the second error is systematic.

This is interpreted as a measurement of the ratio of CKM matrix elements |Vtd/Vts| =

0.211± 0.023± 0.022± 0.001 where the final error is due to theoretical uncertainty.
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Chapter 1

Physics Background

This thesis presents a study of b → s/dγ electroweak radiative penguin decays using

e+e− collision data from the BABAR experiment. Due to quark confinement the process

is studied through analysis of the inclusive hadronic decays B → Xs/dγ, where Xs/d

represents any charmless hadronic system formed from the resultant s/d quark and

spectator quark of the B meson. This chapter motivates the study by discussing the

relevant physical theory. An overview of electroweak interactions in the Standard Model

(SM) is given and flavour mixing in the quark sector is considered from descriptions of

the Cabbibo-Kobayashi-Maskawa (CKM) matrix [2, 3] and resulting Unitarity Triangle

(UT) [4]. The phenomenology of inclusive B → Xs/dγ decays is discussed through an

introduction to rate calculations using operator product expansion. The relation of such

rates to the ratio of CKM matrix elements |Vtd/Vts| then directly motivates the analysis

described in subsequent chapters. Finally modelling of the photon energy spectrum is

discussed. The following overview of the relevant theory from the SM of particle physics

is largely based on the text books [5–7] and the content of lecture courses attended by

the author, the proceedings of which are available in [8, 9].

1.1 The Standard Model of Particle Physics

The fundamental constituents of matter, the quarks and leptons, are fermions which

form three generations as shown in table 1.1. Their interactions, with the exception of

gravity, are described by the Standard Model of particle physics. The SM is constructed

by performing gauge transformations on the free Dirac field equation of the fermion

spinors and then requiring the transformations be a local space-time symmetry of the

Lagrangian. This demands a covariant derivative which, when acting on the fermion

1
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(a)

Q 1 2 3

−1
3 d s b

+2
3 u c t

(b)

Q 1 2 3

−1 e− µ− τ−

0 νe νµ ντ

Table 1.1: The fundamental fermions of the SM are (a) the quarks and (b) the leptons.
Here they are shown in order of increasing generation from left to right (1-3) and are

classified into rows of equal electric charge, Q, given in units of the proton charge.

field, transforms as the field itself. The result is the introduction of terms in the La-

grangian whereby the spinors couple to vector gauge fields. The coupling strengths are

arbitrary and there exist as many gauge fields as there are generators of the symmetry

group defining the transformation. Kinetic terms for the freely propagating vector fields

also appear. The complete SM of strong and electroweak interactions requires local

gauge symmetry for transformations under

SU(3)C ⊗ SU(2)L ⊗ U(1)Y . (1.1)

The component SU(3)C represents the coupling of the quarks to the eight gluon vector

fields through the colour charge. The remaining SU(2)L×U(1)Y component forms the

Glashow-Salam-Weinberg (GSW) model [10–12] of unified electroweak interactions, the

structure of which is described below. Masses of the fermions and weak force mediators

are generated in the SM through electroweak spontaneous symmetry breaking (SSB)

through the Higgs mechanism [13], requiring the addition of the scalar Higgs field.

To date the SM has been incredibly successful in both accurately predicting and ac-

counting for the phenomenology in all experimental observations of the strong, weak

and electromagnetic interactions; however, the SM is not a complete theory, it requires

a number of arbitrary constants to be input from experimental measurements as it makes

no prediction of their magnitude. Furthermore loop corrections relating to calculations

of the Higgs mass are quadratically divergent in the SM1 unless its value is fine tuned

such that the divergences cancel. These are among the motivations for constructing new

physical theories which aim to go beyond the Standard Model (BSM) and provide a

more complete picture of fundamental physics. All such theories must reduce to the SM

in the correct limits so as to be consistent with the experimental data.
1The so called hierarchy problem.
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1.1.1 Electroweak Interactions

The GSW model of electroweak interactions considers left-handed fermion doublets and

right-handed fermion singlets, which for a single generation of quarks and leptons are,

ψL =

(
u

d

)
L

,

(
νe

e−

)
L

; ψR = e−R, uR, dR; (1.2)

plus corresponding antiparticles. Note that there are implicitly no right-handed neutri-

nos in the SM2. Interactions are described by the symmetry group,

SU(2)L ⊗ U(1)Y , (1.3)

where SU(2)L couples the left-handed fermion doublets to the gauge fields of the weak

isospin, I, and U(1)Y the fermions to the gauge field of the weak hypercharge, Y . Under

(1.3) the spinor fields of (1.2) transform as,

ψL → ψ′L ≡ eiY β(x)UL(x)ψL; UL(x) ≡ ei
σi
2
αi(x) (i = 1, 2, 3), (1.4)

ψR → ψ′R ≡ eiY β(x)ψR. (1.5)

In (1.4) and (1.5), Y and σi (the Pauli spin matrices) are the generators of the groups

U(1) and SU(2) respectively. The four gauge parameters of the transformation are β(x)

representing a local phase change, and αi(x) representing a local rotation of weak isospin.

The required covariant derivatives for the Lagrangian to remain locally invariant are,

D(L)
µ ψL ≡ [∂µ + igW̃µ(x) + ig′Y Bµ(x)]ψL; W̃µ(x) =

σi
2
W i
µ(x), (1.6)

D(R)
µ ψR ≡ [∂µ + ig′Y Bµ(x)]ψR. (1.7)

It can be seen that four vector gauge fields are introduced: the Bµ singlet and the W i
µ

triplet. Their respective coupling constants are g′ and g. In order for the covariant

derivative to transform as the fermion fields the gauge fields must transform as,

Bµ(x)→ B′µ(x) ≡ Bµ(x)− 1
g′
∂µβ(x), (1.8)

W̃µ(x)→ W̃ ′µ(x) ≡ UL(x)W̃µU
†
L(x) +

i

g
[∂µUL(x)]U †L(x). (1.9)

2Experimental evidence of neutrino flavour mixing suggests neutrinos do have finite mass [14]; how-
ever, this is not directly relevant to the discussion here and so ignored.
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From the above and by adding the correct gauge invariant kinetic terms for the vector

fields the electroweak Lagrangian is therefore,

LEW = iψLγ
µD(L)

µ ψL + iψRγ
µD(R)

µ ψR −
1
4
BµνB

µν − 1
4
W i
µνW

µν
i , (1.10)

where,

Bµν ≡ ∂µBν − ∂νBµ, (1.11)

W i
µν ≡ ∂µW i

ν − ∂νW i
µ − gεijkW j

µW
k
ν . (1.12)

Here εijk is the rank three Levi-Civita tensor. Gauge invariance and the different trans-

formation properties of right and left-handed spinors require the fermions and quanta

of the gauge fields in (1.10) to be massless. After SSB the gauge fields mix into physical

mass eigenstates,

W±µ =
1√
2

(W 1
µ ∓ iW 2

µ), (1.13)

Zµ = −Bµ sin θW +W 3
µ cos θW , (1.14)

Aµ = Bµ cos θW +W 3
µ sin θW . (1.15)

This introduces the weak mixing angle, θW , which is given by tan θW = g′/g. Finally

the respective couplings of the weak eigenstates of the fermions to the mass eigenstates

of the gauge fields, (1.13), (1.14) and (1.15), can be written down as,

− i g√
2
γµ

1
2

(1− γ5), (1.16)

−ig
cos θW

γµ
1
2

[I3(1− γ5)− 2Q sin2 θW ], (1.17)

− ieQγµ. (1.18)

Here Q = I3 +(Y/2) is the fermion electric charge. It can be seen that the weak charged

current, W±, couples only to left-handed fermion fields due to the (1 − γ5) term in

(1.16). The neutral weak current, Z0, couples to both left-handed fermions and charged

right-handed fermions. Finally the massless photon field, Aµ, only couples to the electric

charge.

1.1.2 Charged Current Weak Interactions of Quarks

SSB through the Higgs mechanism allows the introduction of gauge invariant Yukawa

terms in the Lagrangian for each fermion,

LY = −Yfψ
(f)
L ΦfR + h.c., (1.19)
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where h.c. stands for hermitian conjugate, Φ is the scalar Higgs SU(2)L doublet, Yf is

the Yukawa coupling for fermion f and ψ
(f)
L the fermion doublet containing fL. The

Higgs doublet results in mass terms for each fermion (excluding the neutrino which has

no right-handed field in the SM),

−
√

2
YfMW

g
(fLfR + fRfL) =

√
2
YfMW

g
ff, (1.20)

where MW is the mass of the charged current weak propagator. The fermion mass is

directly read from (1.20) as,

mf =
√

2
YfMW

g
(1.21)

The above holds for a single generation; however, in the three generation SM it is possible

to write Yukawa terms which mix quarks of different generations. In this scenario (1.19)

for the quarks becomes,

LY =
3∑

i,j=0

(Γuijψ
(u)i
L ΦujR + Γdijψ

(d)i
L ΦdjR + h.c.); u =


u

c

t

 , d =


d

s

b

 . (1.22)

The Γqij matrix elements mix generations i, j and represent couplings analogous to the

Yf of a single generation. It follows that the quark mass matrix has the form,

M q
ij =
√

2
ΓqijMW

g
. (1.23)

To obtain the physical mass eigenstates of the quarks the mass matrix is diagonalised

through the introduction of unitarity matrices, V q
L(R), such that,

V q
LM

qV q†
R =Mq

diag. (1.24)

The relation of the quark mass eigenstates to their weak eigenstates is then given by,

umL(R) = V u
L(R)uL(R); dmL(R) = V d

L(R)dL(R). (1.25)

1.1.2.1 The Cabibbo-Kobayashi-Maskawa Matrix

Given (1.25) it is possible to rewrite the electroweak interaction Lagrangian in terms

of the quark mass eigenstates. For neutral currents this has no effect, but for charged
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currents,

LCC = − g√
2
uLγ

µW+
µ dL + h.c. (1.26)

= − g√
2
umL γ

µW+
µ (V u

L V
d†
L )dmL + h.c. (1.27)

The up-type quarks thus couple to a linear combination of the down-type quarks and

the strength of these couplings are determined by the unitary CKM matrix, (V u
L V

d†
L ) =

VCKM [2, 3]. The CKM matrix can be written as,

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (1.28)

From (1.28) it follows that weak charged currents allow transitions between quarks

of different generations and that the coupling strengths of these flavour transitions are

determined by the weak coupling strength, g, scaled by the relevant CKM matrix element

Vij .

The most general form a unitarity 3 × 3 matrix can take is characterised by nine real

parameters: three moduli and six phases; however, in the case of the CKM matrix

the U(1) global symmetry of the Lagrangian means five of the phases are unobservable

as they can be ‘absorbed’ by redefining the phases of the quark fields. The CKM

matrix is therefore completely described by three moduli and one phase. The standard

representation as advocated by the Particle Data Group (PDG) [14] is,

VCKM =


c12c13 s12c13 s13e

−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

−iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13

 , (1.29)

where cij = cos θij , sij = sin θij . The angles θij are the three moduli and δ13 represents

the phase; i and j are generation indices. A common representation in the study of B

meson decays is that of Wolfenstein [15] using the parameters λ,A, ρ, η whereby,

s12 ≡ λ; s23 ≡ Aλ2; s13e
iδ13 ≡ Aλ3(ρ− iη). (1.30)

Taking λ ≈ 0.22 as an expansion parameter the form of (1.29) in this representation,

neglecting terms ≥ O(λ4) is,

VCKM =


1− 1

2λ
2 λ Aλ3(ρ− iη)

−λ 1− 1
2λ

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 . (1.31)
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Higher order expansions of the Wolfenstein parameterisation to O(λ6) exist and under

this scheme, to keep concise notation, it is convenient to define the terms [16],

ρ = ρ

(
1− λ2

2

)
; η = η

(
1− λ2

2

)
. (1.32)

1.1.2.2 CP Violation

Any local quantum field theory constructed in the Lagrangian formalism can be subject

to three discrete transformations: parity (P ), time reversal (T ) and charge conjugation

(C). Parity performs the operation P : (t → t; x → −x) and time reversal the oper-

ation T : (t → −t; x → x). Charge conjugation substitutes particle for antiparticle,

reversing the sign on all internal quantum numbers of the particle while leaving the

four-momentum, space-time coordinate and spin unchanged. The combined operation

CPT is always a symmetry of the Lorentz invariant Lagrangian [17].

It is possible to rewrite (1.27) as

L = − g√
2

[uiγµW+
µ (1− γ5)Vijdj + djγ

µW−µ (1− γ5)V ∗ijui]. (1.33)

Under the discrete transformation CP the terms in this equation transform as

ψiγ
µWµ(1− γ5)ψj

CP−→ ψjγ
µWµ(1− γ5)ψi; (1.34)

however, Vij and V ∗ij do not transform. It directly follows that the remaining phase in

the CKM matrix can result in the combined CP transformation not being a symmetry

of the Lagrangian. It is also required that none of the quarks are mass degenerate

and that none of the three CKM moduli are zero or π/2 as either would decouple the

flavour transition between at least two of the quarks allowing the final CKM phase to

be absorbed by a redefinition of quark field phase. CP asymmetry was first observed in

1964 in the neutral kaon system [18] and has since been seen by the BABAR experiment

in the neutral B meson system [19, 20]. Furthermore the BABAR collaboration have

also claimed evidence of CP asymmetry in the charged B meson system [21]. All these

results are consistent with the CKM formalism of the SM.

Experimentally there are three types of observable CP violation in the SM arising from

the CKM phase factor [4]. CP violation in decay, known as direct CP violation, occurs

when the amplitude, A, of a decay is not identical to the conjugate decay amplitude

A. CP violation in mixing, known as indirect CP violation, occurs in the mixing of

neutral mesons where the flavour eigenstates are different from the mass eigenstates.

This can be observed through the neutral meson weak eigenstate and its anti-particle
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partner decaying to the same CP eigenstate with different amplitudes. The decay B0 →
J/ψKS and its charge conjugate are an example of such a system. The final type of CP

violation occurs from a quantum mechanical interference of the first two. Theoretically

CP violation can occur in B → Xdγ transitions [22]; however, the BABAR dataset is

insufficient to render the required statistical sensitivity for such a measurement.

1.1.2.3 The Unitarity Triangle
2.2 The Cabibbo-Kobayashi-Maskawa Matrix 19

!

" #

$

A
%

(b) 7204A5
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&
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&
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&
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&
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#

"

0

0

(a)

Figure 2.1: The Unitarity Triangle. Figure (a) shows an unscaled version while Figure (b) shows

the rescaled triangle, where all sides are divided by [15].

are of comparable length. Figure 2.1 shows the Unitarity Triangle in the complex plane

and a version, where all sides are divided by 1. The apex of this rescaled triangle

in the complex plane is at in terms of the Wolfenstein parameters.

Using an improved parameterisation [16] where unitarity holds up to corrections of

the lengths of the sides of the Unitarity Triangle in the plane can be expressed

as

and (2.17)

with and .

It is therefore important to measure the angles and sides of the Unitarity Triangle in

order to determine the amount of CP violation in the SM and to see if consistent results are

found from different determinations. Precise measurements of the CKM matrix elements

are therefore necessary. Incompatible results for the angles or sides would imply new

physics.
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and (2.17)
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It is therefore important to measure the angles and sides of the Unitarity Triangle in

order to determine the amount of CP violation in the SM and to see if consistent results are

found from different determinations. Precise measurements of the CKM matrix elements

are therefore necessary. Incompatible results for the angles or sides would imply new

physics.

1The product is real up to

(b)

Figure 1.1: Sketch of the Unitarity Triangle from [4] showing it both as (a) an ar-
bitrary triangle in the complex plane and (b) normalised such that the apex lies at

(ρ, η).

CP violation in the SM is constrained by the unitarity of the CKM matrix, VCKMV
†
CKM =

I. It follows that testing the constraints of unitarity can test the SM picture of CP vi-

olation. There exist six orthogonality relations from unitarity which are each expressed

as the vanishing sum of three complex numbers and hence represented as six closed

triangles in the complex plane. Of particular interest to B meson decays is the relation,

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (1.35)

In the complex plane this relation is represented by the so called Unitarity Triangle

which is shown in figure 1.1 [4]. It can be seen that it is convenient to normalise the UT

by dividing each side by a factor VcdV ∗cb which results in the apex having coordinate (ρ, η)

in the Wolfenstein representation. This holds for higher order too so one could easily

write (ρ, η) as the apex. For very precise experimental measurements of CKM matrix

elements and UT triangle geometry the higher order parameterisation is preferred due

to its increased analytical accuracy.

Experimentally it is possible to independently measure the angles α, γ and β as well

as the triangle sides. Performing such measurements allows one to determine whether

they are consistent with a closed triangle and therefore whether the CKM matrix is

unitary and fully accounts for experimental observations of CP violation. The current
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Param Value

λ 0.2257+0.0009
−0.0010

A 0.814+0.021
−0.022

ρ 0.135+0.031
−0.016

η 0.349+0.015
−0.017

Table 1.2: Fitted values of the Wolfenstein parameters from experimental constraints
with associated errors [14].

published experimental data are consistent with the UT closing. Measurements for the

Wolfenstein parameters are given in table 1.2 [14]. The analysis in this thesis is used to

extract a measurement of the ratio of CKM parameters |Vtd/Vts|, the details of which are

discussed below. It can be seen from (1.31) that in the Wolfenstein parameterisation,∣∣∣∣VtdVts
∣∣∣∣ = λ

√
(1− ρ)2 + η2. (1.36)

Hence |Vtd/Vts| is directly proportional to the length of the side of the UT between

(ρ, η) and (1, 0) with λ as the scaling factor. The form of (1.36) at higher order with

ρ→ ρ and η → η is discussed below. Typically (1.36) is constrained experimentally from

|Vtd/Vts| ∝ (∆md/∆ms) where ∆md(s) is the mixing frequency of the neutral B0
d(s)B

0
d(s)

meson system [14]. An independent constraint can be obtained through measuring

the rates of electroweak penguin decays and this is the aim of the physics analysis

presented in subsequent chapters. Current experimental constraints on |Vtd/Vts| from

these different types of analysis are discussed in section 1.3.

1.2 Phenomenology of B → Xs/dγ Decays

Figure 1.2: Feynman diagram showing the SM loop process dominating the FCNC
transition b→ s/dγ.

The electroweak formalism of the SM results in there being no flavour changing neu-

tral currents (FCNC) at tree level. The transition b → s/dγ proceeds at leading order

through one-loop penguin processes involving the emission and reabsorption of a W

boson combined with an intermediate up-type quark as shown in figure 1.2. The CKM
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and mass dependance of the quark propagator in the loop results in different contribu-

tions from each of u, c and t, with the more massive t quark dominating. The process

b → s/dγ is thus higher order and suppressed in the SM, with the transition b → dγ

itself suppressed relative to its CKM favoured counterpart, b → sγ. It is possible that

contributions from BSM physics can lead to a measurable difference between the ex-

perimental rate and the calculated rate from pure SM contributions. Figure 1.3 shows

Figure 1.3: Examples of possible BSM contributions to b → s/dγ. The photon can
radiate from any charged leg.

possible contributions to the loop from certain supersymmetric models. The presence

of such particles can lead to a departure from unitarity of the flavour structure in the

quark sector, hence the measurement of these processes perform a stringent test on the

validity of the SM at higher order.

The pure electroweak process above is studied through the weak decays of B mesons of

the form B → Xs/dγ due to quark confinement. Consequently calculations of the ex-

pected SM rates must account for QCD corrections due to strong interactions between

the quarks and gluons. Such corrections are complicated by the non-perturbative nature

of long range QCD effects which are important when considering hadron decays. The

calculation is therefore a non-trivial combination of the electroweak and strong inter-

actions. In order to solve this the formalism of operator product expansion (OPE) is

employed.

1.2.1 Operator Product Expansion

Consider the amplitude A for a general weak meson i decaying to final state f . In the

OPE formalism this amplitude is expressed as [23],

A(i→ f) = 〈f |Heff |i〉 =
GF√

2

∑
i

V i
CKMCi(µ,MW ) 〈f |Qi(µ) |i〉 , (1.37)

where GF = (
√

2g2/8M2
W ) is the Fermi constant. The decay amplitude is modelled

through an effective theory governed by the Hamiltonian Heff . This factorises the

problem into Wilson coefficient functions, Ci and the matrix elements of local operators

Qi at a factorisation scale µ. Physically the Wilson coefficients contain the information
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on physics over short distances such as heavy virtual particle exchange (e.g. the W

boson or top quark) and short range QCD effects which due to asymptotic freedom can

be treated perturbatively. The Qi operators describe the long range interactions, in

particular non-perturbative QCD effects which are important in hadronic decays. By

definition A is independent of µ hence the scale dependance of Ci(µ) must cancel that

of Qi(µ). For B meson decays it is usual to take µ ∼ O(mb) where mb is the mass of

the b quark.

Figure 1.4: Feynman diagram showing the tree level weak transition b→ udu.

To illustrate the construction of such an effective theory consider the simple case of

the quark level transition b → udu shown in figure 1.4 which can contribute to the

combinatoric backgrounds of B → Xs/dγ decays if there is a π0 or η meson in the final

state. The evaluation of this Feynman diagram yields,

− g2

8
V ∗udVub[dγ

ν(1− γ5)u]
[

gνµ
k2 −M2

W

]
[uγµ(1− γ5)b], (1.38)

where k is the four-momentum transfer due to the weak boson. Since k2 < m2
b � M2

W

the following approximation is made,

gνµ
k2 −M2

W

−→ − gνµ
M2
W

≡ −
(

8GF√
2g2

)
gνµ. (1.39)

Thus the effective Hamiltonian can be written as,

Heff =
GF√

2
V ∗udVub(dαuα)V−A(uβbβ)V−A ≡

GF√
2
V ∗udVubO1, (1.40)

where α and β are colour indices and the V −A subscript implies the omitted γµ(1−γ5)

factors. Essentially the W boson has been removed as a degree of freedom from the

problem and the transition is described by the local four quark current-current operator

O1, shown in figure 1.5.

In this trivial case without QCD corrections the corresponding Wilson coefficient is unity.

To account for QCD corrections the effective theory is extended by considering gluon

exchanges, examples of which are shown in figure 1.6. The factorisable corrections in
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Figure 1.5: Four quark current-current operator for the weak transition b→ udu.

figure 1.6(a) result in the Wilson coefficient C1 acquiring scale dependance, i.e. C1(µ) 6=
1. The non-factorisable corrections of figure 1.6(b) require the addition of a second

current-current operator from operator mixing,

(a) (b)

Figure 1.6: QCD corrections to b → udu showing (a) factorisable and (b) non-
factorisable contributions.

O2 ≡ (uαdβ)V−A(uβbα)V−A. (1.41)

Hence the effective Hamiltonian becomes,

Heff =
GF√

2
V ∗udVub[C1(µ)O1 + C2(µ)O2]. (1.42)

Once the effective Hamiltonian has been constructed, as in the above example, the

problem becomes one of evaluating the Wilson coefficients and local operator matrix

elements. For the latter there are eight relevant operators in the evaluation of B → Xsγ

[24]. Firstly the two current-current operators Q1 and Q2,

Q1 = (sT ac)V−A(cTab)V−A, (1.43)

Q2 = (sc)V−A(cb)V−A, (1.44)

where Ta (a = 1 . . . 8) are the SUc(3) generators and imply the colour indices of the

analogous operator O2 above. Secondly there are four QCD penguin operators which

arise from diagrams such as that shown in figure 1.7 and have the form,
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Figure 1.7: The QCD penguin contributions to B → Xsγ, (a) the full SM contribution
and (b) the effective operator Q with the heavy degrees of freedom removed. Only the

dominant top quark loop is shown.

Q3 = (sb)V−A
∑
q

(qq)V−A, (1.45)

Q4 = (sT ab)V−A
∑
q

(qTaq)V−A, (1.46)

Q5 = (sb)V−A
∑
q

(qq)V+A, (1.47)

Q6 = (sT ab)V−A
∑
q

(qTaq)V+A. (1.48)

These differ from the current-current operators as there are additional right handed

contributions from γµ(1+γ5) terms (denoted V +A) and there is a sum over all qq pairs

that the gluon can produce. Finally there are contributions from photon and gluonic

magnetic penguin operators shown in figure 1.8 and which have the form,

Figure 1.8: The magnetic penguin contributions to B → Xsγ, (a) the full SM con-
tribution and (b) the effective operator Q with the heavy degrees of freedom removed.

The gauge boson leg is a photon for Q7 and a gluon for Q8.

Q7 =
e

8π2
mb(µ)sσµν(1 + γ5)bFµν , (1.49)

Q8 =
gs

8π2
mb(µ)sσµνT a(1 + γ5)bGaµν , (1.50)
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where e and Fµν (gs and Gaµν) are the electromagnetic (strong) coupling constant and

field strength tensor, respectively. For Q7 and Q8, mb(µ) is the running b quark mass.

The equivalent Qi operators for B → Xdγ are trivially obtained by substituting the s

quark above for a d quark.

1.2.1.1 Heavy Quark Expansion

The Qi operators represent the non-perturbative contributions to the decay B → Xs/dγ.

In the calculation of exclusive B meson decays the evaluation of Qi can represent a

significant and complex challenge; however, in the case of the inclusive decays considered

here the problem becomes much simpler. The branching ratio can be calculated using

an expansion in inverse powers of mb [25],

B(B → Xqγ) = B(b→ qγ) +O
(

1
m2
b

)
. (1.51)

This is known as heavy quark expansion (HQE). The leading term in (1.51) represents

the b quark decay which can be calculated in perturbation theory. In the limit mb →∞
the equivalence to the quark level decay is exact and calculations show that the O

(
1
m2
b

)
corrections are ∼ 3% [22]. Essentially the approximation relies on the fact that the b

quark decay is a short distance process whose decay time is much less than the timescale

of hadronisation to the final state Xq. The advantage of the HQE approximation is that

the Qi operators can effectively be calculated perturbatively. In particular their scale

dependence can be calculated and the cancellation of this dependance with the corre-

sponding Ci(µ) investigated. It follows that under this scheme the long range QCD

contributions to the decay B → Xs/dγ are well under control making the decay a labo-

ratory for the short range electroweak effects contained within the Wilson coefficients.

1.2.1.2 Wilson Coefficient Evaluation

The Ci(µ), which contain the short range QCD effects, are always calculable in per-

turbation theory due to asymptotic freedom of the strong coupling αs(µ), which at

scales µ ≥ O(1 GeV) can be used as an expansion parameter; however, at the scale

O(mb) � M (M = MW ,mt) large logarithms of the form ln(M/µ) multiply αs due

to the consequences of evaluating a renormalisable quantum field theory when different

scales are present [17]. To maintain the validity of perturbation theory, a renormal-

isation group analysis is performed allowing summation of the logarithm terms to all

orders [25]. The Ci(µ) are therefore evaluated with renormalisation group improved per-

turbation theory. The leading order (LO) term in such an analysis sums [αs ln(M/µ)]n
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contributions. LO calculations can contain large theoretical uncertainties due to leftover

µ dependance in the amplitude calculation. This is much reduced by additionally sum-

ming αs [αs ln(M/µ)]n contributions giving a next to leading order (NLO) calculation.

NLO evaluations for all the Ci(µ) relevant to the decay B → Xs/dγ have been made

[24].

1.2.2 Calculation of |Vtd/Vts|

OPE provides a framework to calculate expected SM rates for B → Xs/dγ and the

corresponding charge conjugate decay, B → Xs/dγ. The average branching ratio is

defined as,

〈B(B → Xs/dγ)〉 =
B(B → Xs/dγ) + B(B → Xs/dγ)

2
. (1.52)

It is possible to relate the ratio,

R(dγ/sγ) ≡ 〈B(B → Xdγ)〉
〈B(B → Xsγ)〉

, (1.53)

to the CKM parameter |Vtd/Vts| as shown by Ali et al [22]. A brief summary of their

derivation of this relation in terms of the Wolfenstein parameters ρ and η follows.

1.2.2.1 Decay Rates in B → Xγ

The effective Hamiltonian for the decay B → Xsγ leads to the following expression for

the decay rate,

Γ(b→ sγ) =
m5
bG

2
FαEM

32π4
|D(b→ sγ)|2, (1.54)

D(b→ sγ) = λt(AtRe + iAtIm) + λu(AuRe + iAuIm), (1.55)

where λq ≡ VqbV
∗
qs are the relevant CKM factors and the real functions Aq are con-

structed from the Wilson coefficients and matrix elements. The branching ratio is ex-

pressed in terms of the measured semileptonic branching ratio B(B → Xlνl),

B(B → Xsγ) =
Γ(B → Xsγ)

Γsl
B(B → Xlνl), (1.56)

where Γsl is the calculated semileptonic rate. This is now written to explicitly show

dependancies on the CKM matrix factors,

B(B → Xsγ) =
1
|Vcb|2

[Dt|λt|2 +Du|λu|2 +DrRe(λ∗tλu) +DiIm(λ∗tλu)], (1.57)
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where the D factors, which depend on various input parameters such as mt,mb,mc, µ

and αs, are calculated numerically in table 1 of [22]. The average branching ratio is

obtained from dropping the last term of (1.57) due to the corresponding conjugate term

having opposite sign. In fact due to the dominance of the leading term it is possible to

write,

〈B(B → Xsγ)〉 =
|λt|2

|Vcb|2
Dt. (1.58)

Following the same procedure for B → Xdγ gives,

〈B(B → Xdγ)〉 =
1
|Vcb|2

[Dt|ξt|2 +Du|ξu|2 +DrRe(ξ∗t ξu)], (1.59)

where ξq ≡ VqbV ∗qd. The D factors of (1.59) are identical to those of (1.57), however, the

CKM factors of (1.59) reduce the dominance of the leading term so all terms must be

retained.

1.2.2.2 |Vtd/Vts| from Inclusive Decays

From (1.58) and (1.59) it follows that,

R(dγ/sγ) =
|ξt|2

|λt|2
+
Du

Dt

|ξu|2

|λt|2
+
Dr

Dt

Re(ξ∗t ξu)
|λt|2

. (1.60)

This is rewritten in terms of the Wolfenstein parameters ρ and η [22],

R = λ2[1 + λ2(1− 2ρ)]
[
(1− ρ)2 + η2 +

Du

Dt
(ρ2 + η2) +

Dr

Dt
(ρ(1− ρ)− η2)

]
. (1.61)

Comparing the leading term of (1.60) to (1.61), the expression for |Vtd/Vts| as a function

of the higher order Wolfenstein parameters is found to be,

|ξt|2

|λt|2
= X2 = λ2

[
1 + λ2(1− 2ρ)

] [
(1− ρ)2 + η2

]
, (1.62)

where the definition X = |Vtd/Vts| is used to simplify the notation. Remaining terms

in (1.61) are also functions of ρ and η. If one were to measure R and calculate X

while constraining these terms with the current Wolfenstein parameter measurements

then the value of X obtained would not be truly independent. This is due to previous

measurements of X being used to evaluate the world averages of ρ and η. For this

analysis the extracted value of X is required to be independent. It is therefore proposed

to rewrite (1.61) as a function of X and an orthogonal coordinate which is chosen to be

the UT angle β. It is noticed from (1.62) that in the higher order Wolfenstein expansion

X is no longer directly proportional to the relevant side of the UT as was the case

for (1.36). Therefore redefinition of the coordinate system requires substitutions of the
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form,

(1− ρ) =
X

λ
cosβ + λ2fρ(X,β), (1.63)

η =
X

λ
sinβ + λ2fη(X,β), (1.64)

where the f functions account for the higher order corrections to (1.36). From (1.62), the

relation tanβ = η/(1−ρ) which is obtained from the UT geometry, assuming (X/λ) ∼ 1

and neglecting terms with multiplying factors > O(λ4), the f functions are derived to

be,

fρ(X,β) =
1
2
X

λ
cosβ

[
1− 2

X

λ
cosβ

]
, (1.65)

fη(X,β) =
1
2
X

λ
sinβ

[
1− 2

X

λ
cosβ

]
. (1.66)

Substituting for (1−ρ) and η in (1.61), again assuming (X/λ) ∼ 1 and neglecting terms

with multiplying factors > O(λ4), R is found to be a quadratic in X,

R = κ1X
2 + κ2X + κ3, (1.67)

where,

κ1 = 1 +
Du

Dt

(
1− 2λ2 cos2 β

)
− Dr

Dt

(
λ2 cos2 β + 1

)
, (1.68)

κ2 = λ cosβ
[
Du

Dt

(
3λ2 − 2

)
+
Dr

Dt

(
1 +

λ2

2

)]
, (1.69)

κ3 = λ2Du

Dt

(
1− λ2

)
. (1.70)

Numerical calculation of the above κ factors uses the world average measurements of λ

and sin 2β [14]. The factors Du/Dt and Dr/Dt are taken from table 1 of [22] assuming

µ = 2.5 GeV. The current world average of mc/mb = 0.30+0.02
−0.03 does not constrain the

numerical variations of the D factors as a function of mc/mb quoted in [22] and hence

uncertainty estimates for each D factor are made based on this variation. The complete

set of input parameters and their associated uncertainties are show in table 1.3 and

give κ1 = 1.4144, κ2 = −0.1049 and κ3 = 0.0048. Given the numerical evaluation of

the κ factors, (1.67) is inverted to obtain X as a function of R. The propagation of

uncertainties due to the input variables are estimated for the inverted equation. For

each input parameter, Z, the other parameters are held constant at their central values

and X is recalculated using Z ± 1σZ . Thus two extreme values of X are obtained and

the average of the difference of these extremes relative to the central value of X is taken

as the error on X due to the variation in Z. The parameters Du/Dt and Dr/Dt are
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Param Value Error

λ 0.2257 +0.0009
−0.0010

sin 2β 0.681 ±0.025
cosβ 0.931 +0.006

−0.007
Du
Dt

0.0995 +0.0005
−0.0002

Dr
Dt

−0.310 +0.090
−0.062

Table 1.3: Values of input parameters for the evaluation of the numerical κ factors
required to calculate X.

)!/s!R(d
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

|
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/V
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X=
|V

0.1

0.15

0.2

0.25

0.3

Figure 1.9: Calculated variation of |Vtd/Vts| as a function of R(dγ/sγ). The solid
line is the expected value with the dashed lines showing calculated error. The dotted

line shows |Vtd/Vts| =
√
R

varied simultaneously as their dependence on the uncertainty in mc/mb results in their

uncertainties being 100% correlated. The three individual uncertainties are added in

quadrature to obtain an overall error on X. The numerical evaluation of (1.67) with

corresponding uncertainties is shown in figure 1.9. For the range of R plotted, the

relative uncertainty on X is seen to vary with a maximum of O(9%) at lower R and a

minimum of O(0.2%) towards the centre of the distribution. Also plotted is the leading

term of (1.60), X =
√
R to illustrate the effect of higher order corrections. The dominant

uncertainties in figure 1.9 are due to uncertainties in the numerical evaluation of the D

factors. It follows that when corrections from the D factors become less important,
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i.e. when the calculated distribution coincides with the leading order distribution at

R ≈ 0.04, the theoretical uncertainty is significantly reduced.

1.2.2.3 |Vtd/Vts| from Exclusive Resonant B → Xs/dγ Decays

Figure 1.10: Feynman diagram showing weak annihilation contributions in the SM
to the decay B− → ρ−γ.

Previous measurements have used radiative penguin decays to extract X by taking the

ratio of exclusive resonant decays and applying the calculated theoretical relation [26],

Γ(B → ργ)
Γ(B → K∗γ)

= Sρ

∣∣∣∣VtdVts
∣∣∣∣2
(

1−m2
ρ/M

2
B

1−m2
K∗/M

2
B

)3

ζ2[1 + ∆R]. (1.71)

Here Sρ is an isospin factor dependent on the charge of the ρ meson, mρ(K∗) is the

mass of the ρ(K∗) meson, MB the mass of the B meson, ζ a form factor ratio, and

∆R a correction factor for weak annihilation contributions which are shown in figure

1.10. To date such measurements show no discrepancy between the extracted values

of X compared to those measured from B meson mixing. However, they are not as

competitive as the latter due to limited statistics in the measurement of B → ργ and

due to a relatively large theoretical error in ζ of ∼ 8%. The independence of different

operators contributing to the relevant rate calculations for these respective processes

means BSM physics could be observable in only one of these measurements and hence

the increased uncertainty in radiative penguin measurements does not diminish the

importance of their measurement. The significantly reduced theoretical error from the

ratio of inclusive decays in extracting X means that the value obtained from the analysis

presented here will be competitive with the measurement from exclusive decays.

1.2.3 Kagan-Neubert Model of Photon Energy Spectrum

The experimental interpretation of inclusive B → Xs/dγ decays must take account of

the spectrum of photon energy3, Eγ . A number of theoretical schemes can be used to
3Defined in the B meson rest frame.
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estimate this spectrum for B → Xsγ decays [27–29]. This analysis uses the model of

Kagan and Neubert (KN) which is comprehensively described in [27] and summarised

here. Although older than other schemes it is chosen as it is readily implemented in the

BABAR simulation framework and has been shown to be in reasonable agreement with

previous BABAR experimental investigations [30].

1.2.3.1 Photon Energy Spectrum

1.8 2. 2.2 2.4 2.6
0

2.

4.

6.

8.

10.

12.

14.

1.8 2. 2.2 2.4 2.6
0

1.

2.

3.

4.

1.8 2. 2.2 2.4 2.6
0

1.

2.

3.

4.

1.8 2. 2.2 2.4 2.6
0

1.

2.

3.

4.

1.8 2. 2.2 2.4 2.6
0

1.

2.

3.

4.

1.8 2. 2.2 2.4 2.6
0

2.

4.

6.

8.

10.

12.

14.

1.8 2. 2.2 2.4 2.6
0

2.

4.

6.

8.

10.

12.

14.

Figure 3: Theoretical predictions for the integrated B → Xsγ branching ratio (upper
plots) and the corresponding photon spectra (lower plots) for various choices of the
shape-function parameters (mb, µ2

π) and functional form, as explained in the text. The
calculation of the photon spectra will be discussed in Section 4.

description of the true spectrum in the sense of quark–hadron duality (see Section 5).
Comparing the two upper plots in Figure 3, we observe that the uncertainty due to
the value of the b-quark mass is the dominant one. Variations of the parameter µ2

π

have a much smaller effect on the partially integrated branching ratio, and also the
sensitivity to the functional form adopted for the shape function turns out to be small.
This behaviour is a consequence of global quark–hadron duality, which ensures that even
partially integrated quantities are rather insensitive to bound-state effects. The strong
remaining dependence on the b-quark mass is simply due to the transformation by Fermi
motion of phase-space boundaries from parton to hadron kinematics. We believe that the
spread of results obtained by varying mb between 4.65 and 4.95GeV (with µ2

π adjusted
as described above) is a fair representation of the amount of model dependence resulting
from the inclusion of Fermi motion. With a cutoff Emin

γ = 2.2GeV as used in the CLEO
analysis, and correcting for the small effect of the boost from the B rest frame to the
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Figure 1.11: Plots taken from Figure 3 of [27] showing normalised photon spectra
for B → Xsγ decays using various numerical parameterisations of the shape function
F (k) defined in (1.74). The left plot shows variations in mb with 4.65 GeV/c2 the
long-dashed line, 4.8 GeV/c2 the solid line and 4.95 GeV/c2 the short-dashed line. The
grey curve represents a Gaussian parameterisation of F (k) and is not relevant to the
discussion here. The right plot shows variations in µ2

π with 0.15 GeV2 the short-dashed
line, 0.30 GeV2 is the solid line and 0.45 GeV2 the long-dashed line.

The KN model calculates B(B → Xsγ) at NLO and then considers the phenomenological

contribution of so called ‘Fermi motion’ of the b quark to HQE. This motion is modelled

as a shape function, F (k), which governs the light-cone momentum distribution, k, of

the b quark within the B meson which has mass mB. The photon spectrum is then

calculated as a function of the parameter y = 2Eγ/mB from a convolution of the parton

model spectrum Pp(yp) and the shape function,

P (y) dy =
∫

dk F (k)[Pp(yp) dyp]yp=yp(k). (1.72)

Here yp(k) = 2Eγ/m∗B with effective mass m∗B = mB + k ensuring the Fermi motion

model gives the true kinematic limit Emaxγ = mB/2 rather than Emaxγ = mb/2 expected

from the parton model.
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The shape function is found to be theoretically constrained by the moments,

An =
∫

dk knF (k), (1.73)

with A0 = 1, A1 = 0 and A2 = 1
3µ

2
π. The KN model choses a parameterisation of F (k)

consistent with these constraints,

F (k) = N(1− x)ae(1+a)x; x =
k

Λ
, (1.74)

where N is a normalisation factor fixed by A0, Λ = mB −mb and A2 = Λ2/(1 + a). It

follows that F (k) is parameterised by (mb, µ
2
π).

Figure 1.11 shows various normalised evaluations of the photon spectra for B → Xsγ

decays. The effects of varying each shape function parameter, (mb, µ
2
π), while keep-

ing the other constant are shown. This analysis models the photon spectrum with

(4.65 GeV/c2,0.52 GeV2) based on fits to b → sγ and b → clν data [31]. For system-

atic studies these parameters are varied in a correlated way4 , according to their mea-

sured uncertainties, to give alternative photon spectra with (4.60 GeV/c2,0.60 GeV2) and

(4.70 GeV/c2,0.45 GeV2).

1.2.3.2 Hadronic Mass Spectrum

When considering different frames of reference (such as the B meson rest frame, the

Υ (4S) rest frame and the laboratory rest frame) it is useful to parameterise the photon

energy spectrum as a hadronic mass spectrum of the Xs/d system, mX . This is because

the Lorentz invariance of mX results in identical spectra in all rest frames. In the B

meson rest frame,

m2
X = m2

B − 2mBEγ . (1.75)

The left hand plot of figure 1.12 shows the mass spectrum corresponding to each of the

photon spectra in the left hand plot of figure 1.11. The treatment of mass spectra in [27]

recognises that their distribution assumes quark-hadron duality. However, the true mass

spectra will have contributions with Xs/d = V , where V is a vector resonance. Of these

only the lowest lying resonances, K∗(892), ρ and ω are narrow enough to significantly

distort the spectrum shape and potentially invalidate the assumption of quark hadron

duality. For this reason the hadronic mass is split into two regions, a low mass resonant

region and a high mass continuum of states. This is illustrated in the right hand plot of
4Although the parameters are essentially independent there is a naive expectation that µ2

π increases
as mb decreases. Previous BABAR analyses therefore make correlated systematic variations to reflect this
and this analysis maintains that convention.
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Figure 8: Theoretical predictions for the invariant hadronic mass spectrum for different
parameters of the shape function

is characterized by the condition that Emax
γ − Eγ = O(Λ̄), where Λ̄ = mB − mb. It is

in this region that the effects of Fermi motion are relevant and determine the shape of
the spectrum. In the endpoint region, the invariant mass of the hadronic final state is of
order mBΛ̄ " Λ2

QCD, implying that a large number of final states are kinematically ac-
cessible. Under such circumstances, local quark–hadron duality ensures that the photon
and hadronic mass spectra are similar to the corresponding inclusive spectra predicted
by the heavy-quark expansion even without applying a smearing procedure. In the res-
onance region, on the other hand, the invariant mass of the hadronic final state is of
order Λ2

QCD, implying that the photon energy is very close to the kinematic endpoint:
Emax

γ − Eγ = O(Λ2
QCD/mB). The heavy-quark expansion does not allow us to make

model-independent predictions for the structure of the individual resonance contribu-
tions. Global quark–hadron duality can, however, be restored by averaging the spectra
over a sufficiently wide energy interval, whose size is determined by the average level
spacing between the resonance states [49]. We will see below that in the present case the
smearing should be done over an interval ∆M2

H ≈ 2GeV2, corresponding to an energy
interval ∆Eγ ≈ 0.2GeV. Note that in the case of the CLEO data such an averaging is
automatically provided by the Doppler shift of the spectrum due to the motion of the B
mesons produced at the Υ(4s) resonance, and thus the photon spectrum is expected to
be dual to the theoretical spectrum over the entire energy range.

To make these statements more precise, consider the properties of the lowest-lying
kaon states contributing to B → Xsγ decays, which are collected in Table 6. There
are six resonances plus a continuum contribution feeding the photon spectrum in the
energy interval between 2.4 and 2.6GeV. Hence, an average over this interval should be
calculable using global quark–hadron duality, although a much finer resolution cannot be
obtained. In the hadronic mass spectrum, the K∗(892) peak is clearly separated from the
rest; however, the next resonances already have widths exceeding the level spacing and
hence are overlapping. Therefore, we expect that local duality allows us to predict the

26

Figure 1.12: Plots taken from Figure 8 of [27] showing normalised hadronic mass
spectra for B → Xsγ decays. The authors of this paper use the symbol MH in place
of mX which is used in the text of this thesis. The left plot shows variations in mb

with 4.65 GeV/c2 the long-dashed line, 4.8 GeV/c2 the solid line and 4.95 GeV/c2 the
short-dashed line. The right plot shows a combined mass spectrum separating the low
mass resonant region from the high mass region where there is a continuum of states.

The relevance of the dashed and solid lines are described in the text.

figure 1.12 for B → Xsγ decays. The K∗5 peak is modelled as a relativistic Breit-Wigner

(BW) distribution6 and the continuum of states is introduced at a threshold, mT
X , as

illustrated by the dashed line. The solid line shows this spectrum model convoluted with

a Gaussian distribution of width σ = 100 MeV/c2, to emulate potential experimental

resolution effects of hadronic mass reconstruction. The model used for the analysis

presented here emulates the dashed line with mT
X=1.0 GeV/c2 and assumes that to a

good approximation such a mass spectrum does not invalidate the assumption of quark-

hadron duality [27].

1.3 Experimental Measurements of |Vtd/Vts|

The following section briefly summarises the existing experimental measurements of

|Vtd/Vts| from both B mixing and radiative penguin decays.

1.3.1 Measurement from B Mixing

Figure 1.13 shows the dominant Feynman diagram contributing to neutral B meson

mixing. As with radiative penguin transitions the more massive t quark dominates the
5Unless otherwise stated K∗ refers to the K∗(892) resonance.
6The BW distribution has the form |A(s)|2 = m2

0Γ2/[(s −m2
0)2 + (m0Γ2)] where s is the square of

the centre of mass energy, m0 is the resonance pole and Γ the resonance width.
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Figure 1.13: Dominant Feynman diagram contributing to neutral B meson mixing.
The B meson spectator quark q = d, s.

virtual fermion exchange. In B0
d → B

0
d oscillation (where B0

d = |bd〉) the charged weak

current has contributing factors from Vtd and V ∗td. In the transition B0
s → B

0
s (where

B0
s = |bs〉) these factors are substituted for Vts and V ∗ts respectively. It can be shown

that [14], ∣∣∣∣VtdVts
∣∣∣∣2 = ξ2

QCD

∆md

∆ms

MB0
s

MB0
d

, (1.76)

where ξ2
QCD is a theoretical factor calculated using Lattice QCD techniques [14] and

∆mq and MB0
q

are the respective mixing frequency and mass of the B0
q system. The

CDF collaboration measure ∆ms=17.77±0.12 ps −1 and combining this with the world

average ∆md=0.507±0.005 ps −1 they calculate |Vtd/Vts| = 0.209 ± 0.001 ± 0.006 [32]

where the first error is experimental and the second error theoretical.

1.3.2 Measurements from Radiative Penguin Decays

The BABAR and BELLE collaborations have measured the exclusive radiative penguin

transitions B → ργ [33, 34]. As discussed above such measurements can be combined

with world average B → K∗γ measurements [14] to extract |Vtd/Vts|. The BABAR

measurements give |Vtd/Vts|=0.233±0.025±0.022 [33] and BELLE measure |Vtd/Vts|=
0.195±0.020±0.015 [34]. In both cases the first error is experimental and second error

theoretical. The BELLE result has an improved theoretical error as their result takes

advantage of a more recent theoretical calculation. The previous version of this analysis

measures |Vtd/Vts|=0.177±0.043±0.001 [1].

1.3.3 Summary of |Vtd/Vts| Measurements

To date the measurement from neutral B meson mixing is clearly more accurate, with

almost negligible experimental error and relatively small theoretical error from Lattice

QCD calculations. Although less competitive the radiative penguin measurements are
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currently consistent with the B mixing result; exclusive decay modes have similar exper-

imental and theoretical errors whereas the previous version of this analysis is limited by

the experimental error. The aim of the analysis presented in this thesis is to significantly

reduce the experimental error of the previous measurement.
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The BABAR Experiment

The BABAR experiment collected e+e− annihilation data from the interaction region of

the energy-asymmetric PEP-II storage rings at the Stanford Linear Accelerator Center

(now the SLAC National Accelerator Laboratory) in California, USA. Running from

May 1999 until April 2008 it was designed to experimentally probe the theoretical de-

scription of heavy flavour physics in the SM. The primary physics goal from the analysis

of BABAR data, as outlined in the Technical Design Report [35], is the study of CP -

violating asymmetries in the decays of B0 mesons to CP eigenstates. For example the

measurement of CP asymmetries between the decay B0 → J/ψK0
S and its charge con-

jugate constrains the SM parameter sin2β, where β is an angle of the Unitarity Triangle

discussed in the previous chapter. Additional physics goals include measurements of

B meson decays sensitive to different elements of the CKM matrix, with the ultimate

aim of imposing redundant constraints on its parameters. The full dataset of just under

0.5 ab−1 also allows rare B decays with branching fractions of order 10−6 to be studied.

Finally the clean environment and high luminosities of the BABAR experiment permits

precision measurement of many τ and charm decays. Overall BABAR has a very rich

physics program, more details of which can be found in the BABAR physics book [4] and

from browsing any of the physics publications from the BABAR collaboration, which now

number in excess of 350 papers.

This chapter provides a concise description of the PEP-II collider and BABAR detector.

Emphasis is placed on B meson production and on the tracking, particle identification

and calorimetry of both primary and secondary daughter particles from B meson decays

as these aspects are the most relevant to the analysis described in this thesis. Technical

specifications and performance requirements1 of the relevant detector subsystems in each

of these categories are discussed.
1Despite the BABAR experiment no longer being operational, in this thesis all design specifications

and performance requirements are described in the present tense.

25
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2.1 PEP-II Asymmetric e+e− Collider

The PEP-II asymmetric-energy two-storage-ring accelerator [36] collided bunches of elec-

trons and positrons at a centre of mass (CM) energy of 10.58 GeV. This energy corre-

sponds to the mass of the Υ (4S) [14], an S-wave bb bound resonant state which is the

first of the excited Υ (nS) states above the BB threshold. The Υ (4S) accounts for almost

25% of the hadronic e+e− cross section at this energy and decays almost exclusively to

BB pairs2 [4]. The PEP-II design luminosity of 3× 1033 cm−2s−1 corresponds to a 3 Hz

production rate of B meson pairs, making it a suitable laboratory for the study of their

decays. Due to the low Q-value of the decay Υ (4S)→ BB, B mesons in the CM frame

are produced almost at rest. In order to accurately measure the flight length differ-

ence, and hence decay time differnece of a BB pair, their decay vertices must be well

separated in the laboratory frame. For this reason 9.0 GeV electrons are collided with

3.1 GeV positrons head-on resulting in the Υ (4S) obtaining a Lorentz boost of βγ = 0.56

in the laboratory frame.

Figure 2.1: Schematic diagram of the PEP-II storage rings and linear accelerator.

Figure 2.1 shows a schematic representation of the PEP-II storage rings and the linear

accelerator (linac) from which electrons and positrons were injected. Electrons bunches,

produced from an electron gun at the end of the linac, are accelerated to around 1 GeV

and fed into a damping ring where they are condensed to higher densities required for

collision. Positrons are created from colliding further electrons accelerated to around

30 GeV with a tungsten-rhenium target and then collected in bunches. These are also

accelerated to around 1 GeV and fed into a separate damping ring. From the damping

rings both electrons and positrons are accelerated along the linac, using RF cavities

2BB refers to both B0B
0

and B+B− pairs.
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powered by klystrons, to energies of 9.0 GeV and 3.1 GeV respectively. They are then

injected into the PEP-II storage rings: the electron beam, travelling clockwise, into

the so-called high energy ring (HER) and the positron beam, travelling anti-clockwise,

into the corresponding low energy ring (LER). Both beams are brought into collision at

the interaction region (IR) surrounded by the BABAR detector. The beams are focused

with sets of quadrupole magnets before colliding in the IR and then steered away from

each other using dipole magnets. Instantaneous luminosity measurements are made by

detecting radiative Bhabha photons emitted by incoming positrons [37]. PEP-II achieved

a record instantaneous luminosity of 12.1×1033 cm−2s−1, which is more than four times

the design.

Figure 2.2: Plot showing the integrated luminosity per day of the PEP-II collider for
the duration of its running period.

The total integrated luminosity of data collected by BABAR at the IR of the PEP-II

collider is 531.4 fb−1, a detailed breakdown of which is shown in figure 2.2. Of these

data 432.9 fb−1 were recorded at the Υ (4S) CM energy, with an additional 45.3 fb−1
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collected at an energy just below the resonance to allow simulation independent studies

of hadronic backgrounds from e+e− → qq (q = u, d, s, c) processes, which in this thesis

are referred to as ‘continuum’ events. Data collection periods are divided into distinct

intervals each known as a ‘Run’. There are a total of seven data collection Runs which

are indicated on figure 2.2. The time between running periods was used to perform both

detector and accelerator maintenance and upgrades. Data from Runs 1-6 were collected

at or just below the Υ (4S) resonance and so form the full dataset used for the analysis

described in the subsequent chapters. Run 7 collected the remaining 53.2 fb−1 of data

at or just below both the Υ (2S) and Υ (3S) resonances and was ended with an ‘energy

scan’ above the Υ (4S) resonance, it therefore does not form part of the analysis dataset

used in this thesis.

2.2 The BABAR Detector

The BABAR detector is comprehensively described in [38], a summary of which is given

here. It is typical of most modern detectors in high energy physics in that it consists

of a series of sub-detectors arranged in a nested cylindrical onion-like structure around

the IR. Each sub-detector is dedicated to measuring a particular characteristic of the

long-lived daughter particles produced from initial interactions. Here long-lived refers

to either stable particles (i.e. electrons, protons and photons) or those whose average

lifetime is sufficiently long (e.g. muons, positrons3, charged pions and charged kaons)

that there is a high probability they interact with one or more of the BABAR sub-detectors.

Generally each sub-detector design is optimised to measure the properties of a subset of

long-lived particles. Ultimately these measured properties are used to infer the character

of primary particle decays and hence extract the physics of interest from an event.

Figure 2.3 shows longitudinal and transverse cross-sections of the BABAR detector. Each

of the sub-detectors are labelled and in order of increasing distance from the IR these

consist of: a silicon vertex tracker (SVT) and drift chamber (DCH) for charged par-

ticle detection; a detector of internally reflected Cherenkov radiation (DIRC) used in

charged particle identification; an electromagnetic calorimeter (EMC) for the detection

of photons and identification of electrons; and an instrumented flux return (IFR) for

muon detection. A superconducting solenoid, surrounding all sub-detectors with the

exception of the IFR, produces a 1.5 T uniform magnetic field along the principal axis

of the drift chamber for the measurement of charged track momenta. The collision axis

is offset from this axis by about 20 mrad to minimise the effect of the solenoid field on

the colliding beams. In figure 2.3 it can be seen that the BABAR detector itself has an
3Positrons are of course stable particles, however, in the presense of the matter of the BABAR detector

there is a high probability they will annihilate.
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asymmetric layout, offset from the beam-beam interaction point. Due to the Lorentz

boost of the Υ (4S) in the laboratory frame, this asymmetry maximises the geometric

acceptance of the detector in the CM frame. The coordinate system of the BABAR detec-

tor is defined as a right handed Cartesian system; the z axis is coincident with the drift

chamber principal axis, the y axis points upwards and the x axis points away from the

centre of the PEP-II storage rings. In spherical coordinates BABAR uses the American

convention of (r, θ, φ) as the distance, zenith and azimuth, respectively.

2.2.1 Design Goals

Physics studies using data from the BABAR experiment generally require full reconstruc-

tion of B meson decays with multiple charged and neutral secondary particles. Often

there is a need to identify the flavour of unreconstructed B mesons produced in an event.

Consequently the BABAR detector and hence each of the sub-detectors are required to

fulfill a number of strict design goals [35]. The detector needs a uniform acceptance down

to small zenith angles in the CM frame and a high reconstruction efficiency for long-lived

charged particles with momenta as low as 60 MeV/c and for photons with energy as low

as 20 MeV. The resolution of a single B decay vertex is required to be around 100µm

both transverse and parallel to the z axis to ensure that the reconstructed decay vertices

of both B mesons are sufficiently separated from each other in the laboratory frame.

An efficient and accurate particle identification (PID) method for charged particles is

required over a wide range of momenta. This must be sufficient to separate electrons and

muons with a low probability of them being misidentified as hadrons. It must also allow

for accurate identification of different hadron species, again with low misidentification

probabilities.

2.2.2 Detection of Charged Particles

Generally when detecting the properties of long-lived charged particles one aims to

measure the particle four-momentum, production vertex and trajectory followed while

in the detector volume. This measurement should be non-destructive, meaning the

energy transfer between the particle being measured and the detecting medium should

be minimal. The BABAR detector has two sub-detectors for the measurement of such

properties, a silicon strip vertex detector surrounded by a gas-filled wire drift chamber.
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Figure 2.4: Schematic (a) longitudinal and (b) transverse sections of the BABAR silicon
strip vertex detector.

2.2.2.1 The Silicon Vertex Tracker

The SVT is designed to give high spatial resolution of charged particle trajectories near

the IR, thus providing the required resolution of primary particle decay vertices in a

collision event. It consists of five layers of double-sided silicon strips and surrounds the

5.6 cm diameter beryllium beampipe which itself corresponds to 1.06% of a radiation

length (X0). Signals are characterised by charge deposits created from ionisation in

the doped silicon bulk as a charged particle traverses the detector. Longitudinal and

transverse sections of the SVT are shown in figure 2.4. For each layer the inner strip of a

module is orientated orthogonally to the outer strip. The former are oriented transversely

to the principal axis and measure the position in z of any charged particle traversing

them; the latter are parallel to the principal axis and measure the position in φ. From

figure 2.4 it can be seen that the inner three layers, which each contain six modules, are

axial in z and tilted in the transverse plane, forming an overlap which ensures full radial

coverage. These inner layers provide the impact parameter measurement of a charged
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particle trajectory. The outer two layers, which in order of increasing radius contain

16 and 18 modules, are arched in z resulting in less material for solid angle coverage

(i.e. less than if these layers had been entirely axial in z) and increasing the crossing

angle of charged particles near the edge of acceptance. In the transverse plane the outer

layers are divided into sub-layers at slightly different radii, again to ensure complete

coverage in this plane. These layers are important in the reconstruction of trajectories of

charged particles with low transverse momentum and for associating higher momentum

trajectories with corresponding trajectories in the DCH. The SVT has a solid angle

coverage of 90% in the CM frame and the material in the tracking volume is around 4%

of X0.
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Figure 2.5: Measured resolutions in (a) z and (b) φ as a function of incident track
angle for charged particles traversing the SVT. The performance for each of the five

layers is shown.

Figure 2.5 shows the spatial resolution performance in z and φ for the SVT as a function

of incident track angle. It can be seen that small resolutions ranging between around

15µm and 50µm are achieved in z depending on layer and incident track angle, with

the corresponding resolution for φ ranging from around 10µm to 35µm. For the inner

layers an asymmetry in the resolution of φ can be seen; this is due to the tilted modules

in the transverse plane. The smaller incident range seen in the resolution of φ in the

outer layers is also attributable to the geometry of these layers.

2.2.2.2 The Wire Drift Chamber

The DCH is designed for the efficient and high precision measurement of the momentum

and angles of charged particles with momenta from around 120 MeV/c to 4 GeV/c and
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higher. It provides the reconstruction of any decay vertices outside the SVT, such as K0
S

→ π+π− decays, and thus requires a longitudinal resolution of around 1 mm. The average

momentum of a charged particle at BABAR is less than 1 GeV/c which means multiple

scattering results in significant limitations on trajectory resolution. The DCH consists

of 40 cylindrical layers of hexagonal drift cells and is filled with a 4:1 helium:isobutane

gas mixture. The helium minimises multiple scattering and has a short drift time, while

the isobutane absorbs any photons produced by ionised particles to prevent secondary

ionisations from the photoelectric effect. Each cell contains a gold-plated tungsten-

rhenium sense wire, held at a typical operating voltage of 1960 V and surrounded by six

grounded gold-plated aluminium field wires. Charged particles traversing a cell ionise

the gas resulting in a charge avalanche on the sense wire. At operating voltages the

typical gain in a cell from an avalanche is around 5× 104. The hexagonal layout ensures

a close to circular field across the majority of a cell.
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Figure 2.6: Schematic representation of the first four superlayers in the DCH. The
stereo angle in mrad shows the AUVA structure used for longitudinal measurement.

The 40 layers of the DCH are split into 10 ‘superlayers’, each of four layers. The first

four superlayers are shown in figure 2.6. To obtain longitudinal position measurements

six of the 10 superlayers are tilted relative to the z axis though a given stereo angle. The

stereo angles alternate between axial (A) and stereo (U,V) pairs where U has a positive
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stereo angle and V negative. The resultant order of superlayers is AUVAUVAUVA.

Transversely the gas mixture and wires of the DCH correspond to 0.2% of X0; this

increases to 1.08% when the inner and outer support walls are included.
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Figure 2.7: The average resolution of cells in layer 18 of the DCH as a function of
distance from the sense wire.

The electronic readout from the DCH is designed to measure the drift time and in-

tegrated charge for every wire with a signal. Primary ionisation cluster positions are

determined from timing of the leading edge of the amplified signal with a designed po-

sition resolution of 140µm averaged over cells in the transverse plane. Figure 2.7 shows

the average position resolution for multi-hadron events as a function of drift distance in

layer 18 for tracks to the left and right of a sense wire. The resolution deteriorates closer

to the wire due to insufficient charge build up from the avalanche and again further

from the wire due to timing uncertainties resulting from the diffusion of the avalanched

charge. The average resolution for the cell is close to design.

2.2.2.3 Charged Particle Trajectory Reconstruction

Both the SVT and the DCH are immersed in a uniform 1.5 T magnetic field directed

along the z axis from the superconducting solenoid. Due to the resultant Lorentz force a

charged particle will follow a helical path in the transverse plane, the radius of curvature

(RoC) of which gives a measurement of the transverse momentum magnitude, pT . The

direction of the RoC determines whether the particle holds a positive or negative charge.

A high resolution measurement of the momentum of a charged particle therefore requires

an accurate reconstruction of its trajectory. BABAR achieves this through complimentary

measurements from the SVT and DCH. Each detector makes a position measurement in

a single active element of its volume known as a ‘hit’. Reconstructed trajectories, known

as ‘tracks’, are created from pattern recognition software which performs a Kalman fit
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on a collection of individual hits to determine if they are consistent with the passage

of a single charged particle. The fit algorithm corrects for measured inhomogeneities in

the magnetic field, although systematic uncertainties remain as the field was mapped in

the absence of PEP-II magnets. Reconstructed tracks are described by five parameters,

(d0, z0, φ0, tanλ, ω), all measured at the point of closest approach (POCA) to the z axis;

d0 and z0 are the distances from the POCA to the transverse plane and the z axis

respectively, φ0 is the azimuthal angle, λ the dip angle relative to the transverse plane,

and ω is the track curvature given as 1/pT .
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Figure 2.8: The combined resolution of the SVT and DCH in transverse momentum
for cosmic muons.

Figure 2.8 shows the combined pT resolution of the SVT and DCH for cosmic muons.

The resolution is clearly linear in pT and the corresponding fitted line gives a resolution

function,

σpT /pT = (0.13± 0.01)%× pT + (0.45± 0.03)%. (2.1)

Tracks which pass the Kalman fitter selection are available through the BABAR computing

framework for event reconstruction in a physics analysis.

2.2.3 Charged Hadron Identification

The SVT and DCH measure spatial momentum of reconstructed charged particle tracks.

However, to fully reconstruct the four-momentum the mass of that particle must also

be known. The BABAR detector is required to differentiate between the properties of

different charged hadrons, in particular pions, kaons and protons. PID for long-lived

charged leptons is discussed in section 2.2.5.

Ionisation energy deposited in the tracking sub-detectors is particularly important for

low momentum tracks. Characteristic Bethe-Bloch curves [14] show distributions of

ionisation energy deposited by a charged particle, dE/dx, as a function of momentum
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and can thus indicate which particle traversed the tracking medium. Figure 2.9 shows
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Figure 2.9: dE/dx as a function of track momentum comparing Bethe-Bloch predic-
tions to data for various particle types. The unit of the dE/dx curve is arbitrary due

to corrections for the deposited charge in individual DCH cells.

the measurement of dE/dx in the DCH as a function of momentum and compares

data to the Bethe-Bloch hypothesis for different particle types. It can be seen that

for low momentum tracks in the 1/β2 region a good separation exists between kaons,

pions and protons. As particles reach the minimum ionisation energy and approach the

relativistic limit the separation worsens. The resolution of the DCH in dE/dx is around

7% which gives good separation of pions and kaons up to momenta of 700 MeV/c. PID

measurements from the tracking system are complementary to those from the Cherenkov

detector (described below); however, charged particles with pT <180 MeV/c will not

reach the DIRC so the tracking volume provides the only measure of PID. Furthermore

tracks with even lower transverse momentum will only deposit energy in the SVT which

has a dE/dx resolution of around 14%. This allows a 2σ separation of kaons and pions

up to 500 MeV/c in this sub-detector alone.

Generally the PID algorithms for charged tracks at BABAR combine relevant information

from different sub-systems into custom PID selectors which maximise the probability of

correct identification. These selectors are available to analysts during event reconstruc-

tion and are described in section 3.2.5.
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2.2.3.1 The Cherenkov Detector

It can be seen from figure 2.9 that the ability of the DCH to distinguish between charged

particle species with momenta above 700 MeV/c deteriorates rapidly. Many physics pro-

cesses studied with BABAR, including the analysis presented in subsequent chapters, re-

quire good separation between reconstructed pions and kaons up to momenta of 4 GeV/c.

It is for this reason that BABAR employs a sub-detector dedicated to charged particle

PID, the DIRC. Charged particles with velocity β = p/E will emit Cherenkov radiation

in a cone of opening angle cos θc = 1/βn if β > 1/n, where n is the refractive index

of the medium being traversed. It follows that given the particle momentum and an-

gle, which in BABAR is given by the tracking system, a measurement of θc will give the

particle mass. The DIRC is intended to exploit this principle but must avoid degrading

the energy resolution of the EMC which lies beyond it. For this reason the detection

mechanism for Cherenkov photons is outside the active detector volume.

Figure 2.10: Longitudinal section of the DIRC showing the active medium and ex-
ternal detection system.

The DIRC is shown in longitudinal section in figure 2.10. It consists of 144 fused silica

bars, with n=1.473, which act as the radiative material and also transfer the emitted

photons by total internal reflection to the rear end of the detector, preserving θc (forward

going photons are reflected by a mirror). Here they enter a stand-off box (SOB) filled

with purified water whose refractive index is close to that of the quartz bars to reduce

internal reflection and refraction at the interface. The SOB is mounted with 10,752

photomultiplier tubes to detect the Cherenkov light which forms a conic section whose

opening angle is θc, once corrected for the effects of refraction.
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Figure 2.11: Schematic showing the principal of operation for the DIRC.

Figure 2.11 shows a schematic demonstrating the operating principle of the DIRC as

described above. It should be noted that this schematic is an oversimplification showing

the operation in only two dimensions of what is a three dimensional system. Transversely

Figure 2.12: A transverse section of one of the 12 polygonal sides of the DIRC barrel.

the DIRC bars are arranged in a 12-sided polygonal barrel, with each side containing 12

bars as shown in figure 2.12. The material in the detector volume corresponds to 17%

of X0 and due to the polygonal structure the acceptance in the azimuth is around 94%.

In the CM frame the acceptance is around 83% of the polar angle cosine.

Figure 2.13 (a) shows the expected separation of pions and kaons as a function of mo-

mentum for B0 → π+π− events inferred from the measured Cherenkov angle resolution

and number of Cherenkov photons per track in dimuon events. It can be seen that the

separation varies from greater than 10σ at 2 GeV/c to less than 3σ at 4 GeV/c. Figure

2.13 (b) shows the efficiency and misidentification probability using the DIRC for selec-

tion of charged kaons from a D0 → K+π− control sample. The average kaon selection
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Figure 2.13: DIRC expected separation of pions and kaons for (a) B0 → π+π− events
and (b) the measured kaon efficiency and pion misidentification in D0 → K+π− events.

efficiency and pion misidentification are 96.2±0.2% and 2.1±0.1% respectively, where

the errors are statistical.

2.2.4 Photon Detection

Of particular importance to many physics studies with BABAR data is the accurate

measurement of both the angle and energy of photons. Such measurements are required

to be highly efficient with excellent resolution of photon energies ranging from 20 MeV

to 9 GeV. The lower bound is set by the requirement for efficient reconstruction of

both π0 → γγ and η → γγ decays. The upper bound relates to the need to measure

QED processes such as e+e− → γγ and e+e− → e+e−(γ) for calibration and luminosity

determination. In the presented analysis photons with energies of up to 4.5 GeV in

the laboratory frame are required for event reconstruction and many of the B meson

decays to be considered require the reconstruction of at least one π0 → γγ or η → γγ

decay. The measurement of photon energies and angles at BABAR is carried out with an

electromagnetic calorimeter.

2.2.4.1 The Electromagnetic Calorimeter

The EMC is a hermetic total absorption calorimeter finely segmented with 6580 thallium-

doped caesium iodide (CsI(Tl)) scintillating crystals. Geometrically it is split into a

cylindrical barrel and forward endcap giving it full coverage in the azimuth and 90%

solid angle coverage in the CM frame. The barrel contains 5760 crystals arranged into

48 rings of 120 crystals, while the endcap has eight rings in total of which, in order of

decreasing zenith angle, three contain 120 crystals, three contain 100 crystals and two
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Figure 2.14: A longitudinal section showing the top half of the EMC which indicates
the crystal layout in the barrel and endcap sections. All dimensions are in mm.

contain 80 crystals. CsI(Tl) has a high light yield and small Molière radius giving high

energy and angular resolution as well as a X0 of 1.85 cm to ensure shower containment.

Crystal lengths vary from 16X0 in the backward barrel region at high zenith to 17.5X0 in

the forward barrel and endcap to minimise leakage from higher energy particles moving

in the boost direction.
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Figure 2.15: Schematic representation of a CsI(Tl) scintillating crystal used in the
BABAR EMC.

As shown in figure 2.15 crystals are trapezoidal in shape. They guide the scintillating

light, which is proportional to the deposited energy, through total internal reflection

from highly polished surfaces to a pair of silicon diodes used for detection. To reduce

transmission an additional two layers of diffuse white reflector surround the crystal edges.
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The front face area of crystals varies to achieve hermicity but is typically 4.7×4.7 cm2,

close to the Molière radius to maximise the angular resolution while limiting the required

number of crystals. Readout diodes are mounted on the back face of each crystal via an

optical epoxy to maximise light transmission. Signals are amplified and digitised in the

detector volume and then passed out via fibre optical cables.

2.2.4.2 Calorimeter Resolution

The energy resolution of a homogeneous crystal calorimeter is given by summing the

following terms in quadrature,

σE
E

=
a

4
√
E/GeV

⊕ b, (2.2)

where E and σE are the respective energy and corresponding RMS error of a detected

photon. The a term is an energy dependent variable primarily describing fluctuations

in photon statistics, but is also affected by noise from both beam-generated background

and electronics. The b term, which dominates at energies >1 GeV, accounts for non-

uniformity in light collection, leakage and absorption in the detector and calibration

uncertainties.
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Figure 2.16: EMC energy resolution in data for different processes. The central solid
line represents the fit used to extract the resolution measurement while the shaded

region represents ±1σ bands.

The EMC measures low energy resolutions directly with a radioactive source4 giving

σE/E = 5.0 ± 0.8% at 6.13 MeV. High energy resolutions are calculated from Bhabha

scattering events, where energy can be predicted from the e− zenith angle, and gives

σE/E = 1.9± 0.1% at 7.5 GeV. Figure 2.16 shows EMC energy resolutions for a variety
4Through the reaction 16O∗ →16 O + γ.
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of processes. The fitted resolution gives a = 2.32 ± 0.30% and b = 1.85 ± 0.12% which

is in reasonable agreement with Monte Carlo studies of the expected resolution.
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Figure 2.17: EMC angular resolution as measured from π0 → γγ decays. The solid
line shows the fit used to extract the resolution.

The angular resolution depends on the transverse crystal size and distance from the

IR and is empirically parameterised as the sum of an energy dependent term, c, and a

constant term, d:

σθ = σφ =
c√

E/GeV
+ d. (2.3)

Angular resolution is measured from π0 and η decays to photons of approximately equal

energy. Figure 2.17 shows the results for π0 decays with angular resolution as a function

of energy. The fitted line is of the empirical form of (2.3) and gives c = 3.87±0.07 mrad

and d = 0.00 ± 0.04 mrad which is slightly better than expected from Monte Carlo

studies.

2.2.4.3 Calorimeter Energy Clusters

Electromagnetic showers in the EMC are typically spread over many crystals. Pattern

recognition software is used to efficiently identify these clusters and then perform a search

for individual local maxima known as ‘bumps’. This differentiates between clusters from

a single source and those formed from overlapping showers. Clusters are required to have

at least one crystal with an energy deposit greater than 10 MeV and adjacent crystals

are included if they have an energy above 1 MeV or if they have a neighbour with

energy exceeding 3 MeV. The total energy of a cluster must be in excess of 20 MeV.

A weighted iterative algorithm calculates the energy associated with each bump in a

cluster and the respective angular position is calculated with a centre-of-gravity method
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using logarithmic weights. Finally reconstructed tracks are projected onto the inner

face of the EMC to determine if a particular bump centroid is associated with a charged

particle. This process is known as ‘track-matching’; if no associated tracks are found

the bump is assumed to originate from a neutral particle. For all clusters a correction

is made to the measured energy to account for energy leakage due to the gaps between

crystals.

Many useful parameters can be calculated for a bump of n crystals in the EMC [39].

Two of these quantities are directly relevant to the analysis in this thesis.

The lateral moment, Lbump, is defined as,

Lbump =
∑n

i=3Eir
2
i(∑n

i=3Eir
2
i

)
+ (E1 + E2)r2

0

, (2.4)

where Ei is the energy of the ith crystal5 in the bump, ri is the distance between the

corresponding crystal and bump centroid and r0=5 cm is the average distance between

two crystal front-faces. Electromagnetic showers (e.g. from an electron or photon) tend

to deposit a large fraction of their energy within a few crystals whereas hadronic showers

typically have a larger energy spread. It follows that hadronic showers will on average

have a larger lateral moment.

The second moment, Sbump, is defined as,

Sbump =
∑

iEi∆α
2
i∑

iEi
, (2.5)

where ∆αi is the angle between the crystal and the bump centroid. Merged π0 decays

with a single local maximum in the EMC will generally have an elliptical energy distri-

bution whereas a high energy photon will have an energy distribution symmetric about

the centroid. The energy deposit from a high energy photon will therefore have a lower

second moment associated with it.

2.2.5 Electron and Muon Identification

The identification of long-lived charged leptons is important for determining the flavour

of semileptonic B0 and B0 meson decays, for the reconstruction of τ decays and for the

study of QED processes such as e+e− → µ+µ−. The tracking system and DIRC can

provide some information for such PID as discussed above. Electron PID can also make

use of EMC information; generally an electron will deposit all of its energy in an EMC
5Crystal numbering is energy ordered such that the most energetic crystal is labelled 1, the next

energetic crystal labelled 2 and so on.
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shower and due to its relatively low mass the ratio E/p will be close to one, which is

not the case for more massive charged hadrons. Muons tend to pass through the EMC

as a minimum ionising particle (MIP) and traverse the steel solenoid flux return. To

assist in the separation of charged hadrons from muons the flux return is instrumented

to detect any ionisation from traversing muons.

2.2.5.1 The Instrumented Flux Return
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Figure 2.18: Layout of the IFR showing the segmented steel and instrumented layers
for the barrel and two end doors.

The IFR makes use of the BABAR steel flux return as a muon filter and hadron absorber.

Gaps between the finely segmented sections of the steel are instrumented to detect

streamers from ionising particles. Figure 2.18 shows the layout of the IFR which consists

of a hexagonal barrel with 19 layers of instrumentation and two end doors with 18 layers.

The depth of steel layers varies from 2 cm at the inner layers to around 10 cm at the outer

layers. Initially the IFR was instrumented with 806 single gap resistive plate chambers

(RPCs) with 57 in each of the six barrel sectors and 108 in each of the four half end

doors. An additional two cylindrical layers of 32 RPCs were installed between the EMC

and solenoid to detect particles exiting the EMC.

Figure 2.19 shows a schematic cross-section of an IFR RPC. The active volume is filled

with a mixture of argon, freon and isobutane which creates a discharge on the passage

of an ionising particle. The discharge is detected via two capacitive readout strips which

are placed orthogonally to measure both φ and z of the ionisation. In the first years
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Figure 2.19: Section showing the principal RPC design.

of operation a serious degradation in RPC detection efficiency was observed due to a

number of factors including construction flaws. This led to the barrel instrumentation

being replaced with limited streamer tubes (LSTs) [40]. Of the six barrel segments,

RPCs in the top and bottom were replaced between Run 4 and Run 5 while those in

the remaining four segments were replaced between Run 5 and Run 6. The end doors

were instrumented with RPCs for the lifetime of the experiment although some modules

were replaced with a slightly modified design.

(a) Sketch.

(b) Endcap with HV and gas connectors.

Fig. 2. The cross section (a) and the HV endcap (b) of a tube is shown.

performance of the detector. An extensive list of quality control
procedures was established during the prototype phase and fully
implemented throughout the production phase.

The tubes were produced in Italy by Pol.Hi.Tech and then
shipped to the US. At Princeton University and Ohio State
University they were assembled into larger units and finally
shipped to SLAC.

After production and before their final assembly into units
each cell of a tube is scanned with a radioactive source. For
a good tube the current is below 1 µA, with six dips in the
current, where the positions correspond to the wire holders.
A typical failure is the occurrence of a continuous discharge,
where the current increases by at least 1 µA. In some cases the
discharge is self sustained and does not stop when the source
is removed from the cell. Tubes failing this test are opened
in a clean room, cleaned up and assembled again. If they fail
the source scan after a repair, the tube will be rejected. Failure
modes are flakes of graphite paint in the cell or impurities on
the wire.

After transportation the tubes are visually checked for me-
chanical defects and tested for transportation damage by mea-
suring the resistance and capacitance of each HV channel. All
tubes are tested for gas leaks, where a half life time of a few
hours is necessary. Tubes which failed this test are manually
searched for leaks and usually repaired with Epoxy.

Each tube is HV conditioned after each production stage and
after arriving at SLAC. The HV is increased in steps of 200 V
from 4900 V to 5900 V. A step is successfully completed when
the current of the tube is below 200 nA for at least 2 minutes.
At 5900 V the current limit is increased to 500 nA and the
time limit to 10 minutes. For the finial burn-in process the
voltage is raised to 6000 V with the same current and time

limit as at 5900 V. Afterwards the tube is kept at 5900 V for at
least 10 hours. Fig. 3 shows for two different tubes the applied
voltage and measured currents during the HV conditioning
process. Fig. 3(a) shows the behaviour of an excellent tube.
The current increased only minimally with voltage increase and
the current is stable and ∼100 nA for the long-term part of
the process. Fig. 3(b) shows the burn-in process. The current
increases significant for the two highest voltage steps, and then
decreases slowly over time. After 10 hours the current is stable
and below 100 nA as in the case of an excellent tube. As long
as the tube is kept on gas this behaviour will not change. The
HV conditioning is repeated if the tube fails the process at any
HV step. If a tube still fails the procedure after a few tries, it is
rejected. Usually failed tubes develop a self-sustained discharge
with a current well above 1 µA.
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(a) Excellent tube.
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(b) Good tube after HV conditioning.

Fig. 3. For the HV conditioning process the voltage (blue) and the current
(red) is shown as a function of time.

Finally the quality of each HV channel is checked by taking
so called single rates. This is the counting rate of cosmic muons
as a function of the HV. The HV is varied from 4900 V to
5900 V in steps of 100 V with a counting time of 100 seconds.
Fig. 4 shows an example of the single rates for a good tube. The
counting rate starts quite low and then increases exponentially
around 5000 V. At 5100 − 5200 V the counting rate reaches a
plateau, which should be at least a few 100 V. In the case of
an excellent tube the plateau can go up to 5900 V. A long and
flat plateau is characteristic of a good tube.

Figure 2.20: Section showing the principal LST design.

Figure 2.20 shows an IFR LST sketched in transverse cross section. Each cell has a

single gold-plated anode wire at high voltage, typically around 5500 V, and contains

a gas mixture of CO2, argon and isobutane (to prevent secondary ionisations) in a

(89:3:8) ratio. Ionising particles cause a discharge in the gas which is read out from

the wire, giving a φ coordinate of the discharge. A simultaneous charge is induced on a

plane mounted below the tube consisting of 96 copper strips perpendicular to the wire

direction which read out the z coordinate along the 4 m length of the plane. The first

LST installation fitted 24 z-planes and 388 tubes, while the second stage installed 48

z-planes and 776 tubes.

Muon detection efficiency as a function of the pion rejection efficiency in the IFR barrel

for high energy muons is shown in figure 2.21. The deterioration in RPC performance

between 2000 and 2004 can clearly be seen. LST segments installed for Run 5 signifi-

cantly improve the muon detection efficiency compared to the remaining barrel RPCs.
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installed to increase the total absorption length and compensate
for the loss in absorption length between the 18th and 19th
layer. In total 24 z-planes for a total of 2284 z strips and 388
tubes were installed, which results in 1522 φ readout channels.
188 HV cables were used and connected to 6 power supplies.
One additional power supply was installed in the case it is
needed for problematic tubes which need to be isolated. 332
signal cables were used and connected to 84 FEC boards.

IV. SECOND INSTALLATION PHASE

The second installation phase is scheduled for autumn 2006.
The remaining 4 sextants of RPCs will be replaced with LSTs.
This will be 776 tubes and 48 z-planes. Additionally, 14 HV
power supplies and 168 FEC cards will be installed.

V. OPERATIONS

The LSTs have been maintained at the operational voltage
of 5500 V since October 2004. After an extended shutdown,
BABAR resumed data taking in March 2005 and collected until
October 2005 ∼60 fb−1 of e+e− collisions at the Υ(4S) reso-
nance. This dataset will be increased to ∼250 fb−1 by summer
2006, when the next shutdown and the second installation phase
is scheduled. This dataset will be the same size as the one
collected from the begin of BABAR up to summer 2004 but
with two sextants of excellent working muon detectors.

The occupancy of each wire channel is constantly monitored
online during data taking. The plateau of each cell is measured
every month and all channels have a good plateau except
for 5 channels. These channels trip often. The problems are
diagnosed to be located between the power supplies and the
cell wires. They are isolated in the extra HV supply. At the
moment they are operated a few 100 V below the nominal
operation voltage. In summary more than 99.6% of all channels
are working perfectly with no decrease over time visible.

The z strip occupancy is also monitored online. All channels
except 5 give good readings. These dead channels have been
tracked down to broken solder joints and the number is constant
over the time. In summary more than 99.7% of all channels are
working perfectly.

The effect of these dead or not properly working channels on
the physics performance is expected to be negligible because
of the high granularity in wires, strips and layers.

For every run the efficiency per layer is determined from
a radiative di-muon sample. The average efficiency is above
90%, consistent with the geometrical acceptance of the LST.
The efficiency is constant over time.

Fig. 5 shows the pion rejection rate as a function of the
muon efficiency for high energy muons (2 GeV < p < 4 GeV)
using a neural network based muon selection algorithm for the
years 2000, 2004 and 2005. The year 2005 data is split up
into LSTs and RPCs. The decrease in muon efficiency and
pion rejection from 2000 to 2005 is clearly visible. In 2005
the maximal muon efficiency using RPCs is 88% with poor
pion rejection compared to almost 94% muon efficiency with
moderate pion rejection in 2000. With the LSTs the overall
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Fig. 5. The pion rejection rate as a function of the muon efficiency is shown
using a muon selector based on a neural network for high energy muon. The
data for the RPCs in the years 2000, 2004 and 2005 is plotted in red, black
and green, respectively. The data for the LSTs in the year 2005 is shown in
blue.

performance is even better than the initial performance of the
RPCs in the first year of operation (2000). For a fixed muon
efficiency, the LSTs always give a higher pion rejection rate.
The muon efficiency can reach almost 94% with a moderate
pion fake rate. This is a very clear indication of the success of
the muon system upgrade with LSTs.

VI. CONCLUSION

The summer 2004 installation was very successful. Almost
100% of the φ-readout and z-readout channels are working.
The efficiency per layer is consistent with the geometrical
acceptance. This excellent per-layer efficiency translates into
an excellent muon selection efficiency of up to 94% with a
moderate pion fake rate. The overall performance with LSTs
is even better than the initial performance of the RPCs. This
excellent performance is due to the stringent quality control of
all detector components at all production stages.

APPENDIX
THE BABAR-LST GROUP

The following institutes form the BABAR-LST group: Uni-
versità di Ferrara and INFN, Laboratori Nazionali di Frascati
dell’INFN, Università di Genova and INFN, Lawrence Liver-
more National Laboratory, Massachusetts Institute of Technol-
ogy, Ohio State University, Università di Padova and INFN,
Università di Perugia and INFN, Queen Mary, University of
London, Princeton University, University of British Columbia,
University of California at Santa Babara, University of Col-
orado, Colorado State University, Università di Torino and

Figure 2.21: Muon detection efficiency as a function of pion rejection efficiency for
high energy muons in the IFR barrel. The dotted line shows RPC efficiencies in 2000,
the upper and lower solid lines show the RPC efficiencies in 2004 and 2005 respectively.

The dotted-dashed line shows the efficiency for LSTs installed for Run 5 in 2005.

In their first year of operation the LSTs even out-performed the original efficiency of the

RPCs.

2.2.6 The Trigger and Data Acquisition System

The BABAR trigger is designed to manage the readout rate of detector sub-systems,

whose latency buffers store signals from all e+e− interactions. The required rate is

determined by the bandwidth at which data can be transferred and stored before a

more detailed offline reconstruction and analysis can be performed. The trigger employs

a two level hierarchy: a ‘Level 1’ hardware trigger (L1T) with input from the DCH,

EMC and IFR and a ‘Level 3’ software trigger (L3T) which performs real time event

reconstruction and classification. The combination of this hierarchy is designed to be

over 99% efficient in the identification and readout of BB events as well as at least 95%

efficient for continuum events and 90-95% efficient for τ+τ− events. The system is also

designed to be redundant in its event identification to allow the accurate study of trigger

efficiencies.
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2.2.6.1 The Hardware Trigger

The L1T monitors a constant stream of information from the DCH and EMC in the drift

chamber trigger (DCT) and electromagnetic calorimeter trigger (EMT) respectively.

The IFR also provides information to allow for triggering of cosmic ray and µ+µ− events,

mainly for diagnostics. The L1T is entirely digital using reduced data derived from the

respective subsystems.

Input to the DCT consists of one bit for each of the 7104 DCH cells conveying time

information derived from the sense wire of that cell. Groups of hits in adjacent DCH

cells are identified by a track segment finder. This information is passed to a binary

link tracker which groups segments into tracks. Tracks recognised by the DCT are then

used to form trigger primitives depending on whether they satisfy predefined criteria

including reaching a given superlayer, exceeding a pT threshold or satisfying a cut in z.

The EMT divides the EMC into 280 towers in a 7×40 array in (θ, φ) of which the barrel

contributes 6× 40 towers and the endcap 1× 40. Each tower in the barrel consists of 24

crystals in a 8× 3 array, while the endcap towers are formed of wedges in φ containing

between 19 and 22 crystals. The energy from each tower in θ is summed independently

for the 40 φ sectors. Neighbouring φ energy strips are then added together to identify

any showers which may cross two adjacent φ-sectors. The resultant energy for all 40

strips are compared to predefined thresholds to form trigger primitives. The sums are

then ORed between neighbouring φ sectors giving a 20-bit φ map for each primitive.

Primitives from the DCT and EMT are passed in parallel to the global level trigger

(GLT) as bitmaps in φ. The GLT compares these bitmaps to 24 predefined physics

signatures. If the GLT finds a match it passes this information to the Fast Control

and Timing System (FCTS) which performs the trigger decision. Depending on the

GLT output the FCTS can issue a ‘Level 1 Accept’ (L1A) or ‘prescale’ the trigger.

A L1A results in the latency buffers for all sub-systems being read out for further

processing. Prescaled triggers will only issue a L1A for for every nth event which pass

their selection criteria. The priority of the L1T is to issue L1As for multihadron events

which correspond to physics events of interest such as B meson decays. Events such as

Bhabha scattering used for luminosity calculations can be prescaled as this introduces

no bias. The GLT contains both pure DCT and pure EMT L1As allowing unbiased

efficiency measurements to be made for both of these trigger subsystems. The DCT and

EMT are independently up to 99% efficient in identifying BB events, demonstrating

the redundancy in the L1T. Output rates for L1As are around 2.5 kHz under typical
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running conditions with the L1T contributing less than 1% of deadtime6 in the BABAR

data acquisition system.

2.2.6.2 The Software Trigger

Events passing a L1A are processed in real time with an online computing farm and

passed through the L3T. All event information is available to the L3T allowing a more

sophisticated event selection process than the L1T, such as better track reconstruction

and EMC energy clustering. Event filters select and classify events of interest using

predefined scripts which contain selection criteria for different physics processes. The

L3T reduces the output rate by around an order of magnitude compared to the L1T.

Events passing the L3T filters are written to a temporary event store before being passed

to offline computing farms which perform a more complete event reconstruction allowing

for detailed quality monitoring before data are made available for analysis.

6Deadtime refers to periods when new data cannot be read out due to previous data being processed.
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Event Selection

Collision events recorded by the BABAR detector are passed through a number of general

and custom software filters in order to extract physics signatures of interest. This chapter

describes the selection techniques used to maximise B → Xs/dγ [41] event extraction

while efficiently rejecting combinatoric backgrounds. An overview of the analysis method

is given and the variables used to distinguish between signal and background events are

defined. Finally the development, optimisation and implementation of custom event

filters are described.

3.1 Analysis Overview

Making a fully inclusive measurement of B → Xs/dγ decays can provide a significant

challenge due to their rarity. The relative high energy of the photon provides a powerful

Mode B → Xdγ B → Xsγ

1 B0 → π+π−γ B0 → K+π−γ

2 B+ → π+π0γ B+ → K+π0γ

3 B+ → π+π−π+γ B+ → K+π−π+γ

4 B0 → π+π−π0γ B0 → K+π−π0γ

5 B0 → π+π−π+π−γ B0 → K+π−π+π−γ

6 B+ → π+π−π+π0γ B+ → K+π−π+π0γ

7 B+ → π+ηγ B+ → K+ηγ

8 B+ → π+π0π0γ B+ → K+π0π0γ

9 B0 → π+π−π0π0γ B0 → K+π−π0π0γ

Table 3.1: Reconstructed exclusive final states. The B → Xsγ final states are ob-
tained by substituting a charged pion for a charged kaon in the B → Xdγ final states.

All π0 → γγ and all η → γγ.

49
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experimental signature which simplifies the task of identifying signal decays. Indeed

for B → Xsγ it is sufficient to detect the high energy photon without reconstructing

the Xs hadronic state [42, 43]. However, due to the nearly identical photon spectrum,

such techniques are impractical when measuring B → Xdγ decays due to the dominance

of the Xs sample. Instead this analysis reconstructs a subset of nine exclusive modes

whose contributions are to be added, therefore making a semi-inclusive measurement.

Consequently model-dependent corrections for unreconstructed contributions must be

made to extract the fully inclusive branching fraction (BF) and hence |Vtd/Vts|. Table

3.1 lists the exclusive modes reconstructed1 for B → Xdγ and B → Xsγ decays. The

Xs hadronic states are defined by substituting a charged pion for a charged kaon in

the corresponding Xd hadronic state with the kaon charge determined by the flavour

of the parent B meson. Identical cuts are used for both samples leading to many of

the experimental systematic errors cancelling in the ratio of branching fractions. Due

to the excess of expected events in the CKM favoured Xs sample all cuts and filters

are optimised to provide the most statistically significant measure of the Xd sample.

Final state π0 and η mesons are reconstructed exclusively from the decays π0 → γγ and

η → γγ which corresponds to 98.8%(39.4%) of the π0(η) decay fraction [14].

The analysis is divided into two bins of reconstructed hadronic mass: a low mass bin,

0.5 ≤ mX < 1.0 GeV/c2, and a high mass bin, mX ≥ 1.0 GeV/c2. This division is

motivated by the distinct characteristics expected for signal decays in each mass bin,

as discussed in section 1.2.3.2. Consequently simulated signal events used for analysis

must reflect this distinction. The low mass Xd(Xs) region is dominated by the resonant

transition B → ρ/ωγ(B → K∗γ) and is therefore modelled exclusively with these decays.

Resonant particle masses are modelled as Breit-Wigner distributions using the world

average width for that particle [14]. The high mass bin is modelled as a cocktail of

non-resonant decays according to the KN photon spectrum [27] using mT
X=1.0 GeV/c2.

The hadronic state is generated through phase space decays from JETSET [44]. This

model does not account for the vector resonance contributions with masses greater than

1.0 GeV/c2 such as high end tails of the K∗ and ρ distributions or the measured B →
K∗2 (1430)γ transition [14]. It is assumed that the low mass resonance tails are to a good

approximation accounted for in the JETSET phase space distribution; the variation of

hadronic final states due to higher mass resonances is considered as a source of systematic

uncertainty in section 5.2.2. The upper limit of the high mass bin is chosen such that

the non-resonant measurement be as inclusive as possible while considering the increase

in combinatoric backgrounds at higher values of mX . This is primarily constrained by

computational limitations implementing the pre-reconstruction event filters described in
1The choice of reconstructed modes is based on those used in the previous version of this analysis:

modes 1-7 [1]. Modes 8 and 9 were added here with the aim of making a more inclusive measurement;
however, their addition was found to be a disadvantage in the statistical optimisation discussed below.
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section 3.4. Post-reconstruction the choice of upper mass limit forms part of the cut

optimisation procedure using simulated data, discussed in section 3.6.7.

Overall there are four experimental measurements: the semi-inclusive BF obtained from

the sum of exclusive reconstructed states in the low and high mass bins for B → Xdγ

and B → Xsγ transitions. The signal yields of these transitions are extracted from

experimental data using a two dimensional extended maximum likelihood fit which is

described in chapter 4. The measured BFs are then used to estimate total BFs in each

mass region using a model dependent extrapolation. The extrapolated BFs are combined

for each flavour to give fully inclusive BFs, the ratio of which are then used to extract

a value for |Vtd/Vts| according to the theoretical relations discussed in chapter 1.

3.1.1 Simulated and Experimental Data Samples

This analysis uses 429.1(44.8) fb−1 of experimental data recorded with CM energy at

(∼40 MeV below) the Υ (4S) resonance. Data recorded at the Υ (4S) corresponds to

(470.9 ± 2.8) × 106 BB pairs [45]. The analysis is optimised using Monte Carlo (MC)

simulated data and then applied to the experimental data, thus eliminating bias which

can arise from basing the event selection and distribution modelling on real data. The

MC data used in this analysis at least match the size of the experimental dataset. In the

BABAR simulation framework particle decays are generated from a database of allowed

decay modes, each with a given BF, and the daughter particle kinematics are determined

from a phase space model of the decay. Responses of the detector subsystems are

modelled using the GEANT4 package [46] and QED radiative corrections are modelled

with PHOTOS [47].

To optimise custom event filters for B → Xdγ signal extraction, simulations of both

signal events and events which can contribute to combinatoric backgrounds are required.

Table 3.2 lists the different simulated datasets used for analysis optimisation, showing

the total number of generated events. The first nine MC datasets in table 3.2 are signal

decays2 whereby one generated B meson is forced to decay to the final state indicated and

the other can decay to any allowed final state. Signal decays do not directly correspond

to the reconstructed final states listed in table 3.1; they contain all allowed final states

for the modelled transition, i.e. all allowed decays of the resonant particle in the low

mass region or all allowed phase space decays from JETSET in the high mass region.

The reconstructed decays therefore form a subset of the signal MC data. Due to the
2Note that MC data modelling the high mass bin are generated separately for charged and neutral

B meson decays. To distinguish these the hadronic component of the decay is labelled with a double
subscript, the first component indicating the penguin transition quark flavour and the second component
indicating the flavour of the B meson spectator quark.
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Event Class Simulated Transition Simulated Events

KN and JETSET Signal B+ → Xduγ 1,288,000
B0 → Xddγ 1,288,000
B+ → Xsuγ 11,178,000
B0 → Xsdγ 11,178,000

Vector Resonance Signal B+ → ρ+γ 650,000
B0 → ρ0γ 650,000
B0 → ωγ 650,000
B+ → K∗+γ 6,449,000
B0 → K∗0γ 6,449,000

Generic Background B+B− 708,762,000
B0B

0 717,995,000
cc 1,128,544,000
qq (q = u, d, s) 1,662,404,000

Table 3.2: Simulated datasets used for event selection optimisation showing the num-
ber of generated events before any cuts are applied.

Simulated Transition Events ≥ mT
X Fraction

B+ → Xduγ 1,201,936 0.933
B0 → Xddγ 1,201,708 0.933
B+ → Xsuγ 10,425,400 0.933
B0 → Xsdγ 10,429,063 0.933

Table 3.3: High mass bin simulated signal sizes after model based hadronic mass cut.
The fraction of events remaining after the cut, relative to the full generated sample is

also shown.

Simulated Transition Events < mT
X Fraction

B+ → ρ+γ 568,518 0.875
B0 → ρ0γ 569,089 0.876
B0 → ωγ 650,000 1.000
B+ → K∗+γ 5,752,171 0.892
B0 → K∗0γ 5,727,473 0.888

Table 3.4: Low mass bin simulated signal sizes after model based hadronic mass cut.
The fraction of events remaining after the cut, relative to the full generated sample is

also shown.
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independent signal modelling in each mass bin, the boundary between signal samples is

identified by placing the threshold cut of mT
X = 1.0 GeV/c2 on the generated hadronic

mass. The number of simulated events for each sample after this cut are given in tables

3.3 and 3.4 for the high and low mass bins respectively. Normalisation of signal MC data

to the BABAR recorded luminosity assume total inclusive BFs of 1× 10−5(3.6× 10−4) for

B → Xdγ(B → Xsγ) decays. These BFs are taken from the expected order of magnitude

of theoretical estimates in the case of B → Xdγ [22] and the world experimental average

in the case of B → Xsγ [14]. The relative contributions of each vector resonance in the

respective low mass bins are taken from world average BFs [14]. These resonant BFs

are corrected to account for the fraction of events expected below mT
X using the MC

data fractions shown in table 3.4. For B → ρ/ωγ(B → K∗γ) transitions the calculated

contribution corresponds to 10.2%(10.5%) of the above assumed inclusive widths.

Generic B pair events simulate other Υ (4S) → BB processes with both B mesons de-

caying to SM final states which are determined from a database of BB decays. The

database essentially lists the BFs of known B meson decays and uses JETSET to gen-

erate higher multiplicity modes which have generally not been measured. These data

include B → Xsγ events (but not B → Xdγ events) which must be vetoed to avoid

double counting. Any signal or generic event with the decay of a neutral B meson pair

models the effect of neutral meson mixing during event generation. Generic continuum

events of light quark pairs from e+e− → qq (q = u, d, s, c) transitions use JETSET [44]

to simulate the hadronisation of the quark pair. Events from e+e− → l+l− (l = e, µ, τ)

processes are found to contribute at a negligible level to combinatoric backgrounds and

hence are ignored in MC data studies.

The simulated events produced for BABAR analyses are known not to model the data

perfectly. To improve the agreement for neutral particles reconstructed with data from

the EMC, asymmetric energy smearing and edge effect corrections are made [48]. This

reduces systematic errors arising from differences between experimental data and MC

events for such particles and is particularly important for B → Xs/dγ events where the

photon deposits a large fraction of the total event energy in the EMC.

3.2 Event Reconstruction Framework

Data recorded by the BABAR detector which pass quality control checks are made avail-

able for analysis. Both experimental and MC data are regularly reprocessed to take

advantage of improved central software filters. Each reprocessing cycle has a unique ac-

cessible dataset. Reconstruction software is interfaced through a custom designed central

C++ analysis framework consisting of a number of software packages each dedicated to
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to a subset of the reconstruction and which are called by the analyst as required. Col-

lectively the packages are maintained and updated within numbered software releases.

The analysis presented here uses reprocessed datasets labelled R24a with BABAR release

number 24.3.6, the most recent stable release for event reconstruction at the time of

analysis. Detector conditions for a given running period and lookup tables for efficiency

corrections in MC data are accessed from dedicated conditions databases. This analysis

uses the conditions database cond24boot09 which is the recommended database for the

datasets and release number used.

Lists of fundamental reconstructed particles such as charged tracks and neutral clusters

in the EMC are contained in a central event store for both real data and those simulated

with GEANT4. All composite particles are reconstructed from these fundamental lists.

Common composite particles, such as π0 and η mesons, are reconstructed within the

common analysis framework and are available at runtime. The following provides a

summary of the lists used for reconstruction in this analysis. All cuts are made in the

laboratory rest frame unless otherwise stated.

3.2.1 Charged Tracks

Charged tracks are taken from the list GoodTracksLoose which requires a momentum

magnitude ≤ 10 GeV/c and transverse momentum ≥ 0.05 GeV/c. Additionally these

tracks must have a distance of closest approach to the IR of |z| < 2.5 cm along the

principle axis and < 1.5 cm in the transverse plane. All tracks have an assumed pion

mass hypothesis.

3.2.2 Photons

Photons are taken from the list GoodPhotonLoose. These consist of single bump EMC

clusters without an associated charged track which have an energy deposit of ≥ 0.03 GeV

and lateral moment ≤ 0.8. A photon mass hypothesis is applied.

3.2.3 π0 and η Mesons

Composite neutral meson candidates from dual photon decays are obtained from the lists

pi0DefaultMass and etaggDefault for π0 and η mesons respectively. These lists are

constructed by adding the four-momentum of photon pairs from the GoodPhotonLoose

list, with the additional requirement that photon energy deposits satisfy 0.03 ≤ Eγ ≤
10.0(0.05 ≤ Eγ ≤ 10.0) GeV and the invariant mass of photon pairs are in the range
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0.115 ≤ mγγ ≤ 0.150(0.470 ≤ mγγ ≤ 0.620) GeV/c2 for π0(η) meson candidates. Addi-

tionally η meson candidates are required to have a momentum magnitude in the range

0.2 ≤ |pη| ≤ 10.0 GeV/c and π0 candidates must have energy ≥ 0.2 GeV. After satis-

fying these criteria the neutral candidates are refitted constraining the particle origin

to the primary vertex (defined below) and their masses to the world average value [14].

This gives an unbiased improvement on the kinematic resolution of the particle which

is limited due to detector resolution prior to refitting. Higher kinematic resolution is

desirable when using the reconstructed neutrals to form composite candidates higher up

the decay chain.

3.2.4 Vertex Fitting

Where composite candidates are reconstructed from two or more charged tracks fitting

algorithms can determine the spatial coordinates of the origin of those tracks: the decay

vertex of the composite particle. This analysis uses the BABAR fitting routine Cascade

[49] whose goal is iterative χ2 minimisation on the vertex hypothesis of the input par-

ticles. The Cascade fitter implicitly requires that momentum is conserved at a decay

vertex, although particle momenta are allowed to vary within their measured errors in

the fit. An additional geometric constraint requiring that all included tracks originate

from the same spatial point can also be applied. Neutral particles, which are assumed

to originate from the primary vertex, will have their momentum redefined so that they

originate from the common decay vertex if they are included in the fit.

3.2.5 Charged Particle Identification Classifiers

As discussed in chapter 2 a number of variables, such as dE/dx in the tracking subsys-

tems and Cherenkov angle in the DIRC, can be employed for the purpose of charged

track PID. The usefulness of individual variables varies substantially for a given track

flavour and momentum. To simplify the task of charged track PID BABAR employs a

dedicated PID group who combine such variables into multivariate classifiers trained on

well defined control samples. Generally the classifiers are accessed through PID selec-

tors which give a binary output depending on whether the classifier output has passed a

predefined cut. A single classifier can have multiple selectors depending on the tightness

of cut on the classifier output, typically these are labelled VeryLoose, Loose, Tight,

VeryTight and SuperTight. For each selector the PID group carry out momentum

dependent efficiency and misidentification rate studies on real and simulated data. This

analysis is primarily concerned with the discrimination between charged pions and kaons

in order to separate B → Xsγ and B → Xdγ decays. For pion identification a multi-class
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learning classifier, pionKM, is used [50]. This classifier is trained with 36 input variables

from the SVT, DCH, DIRC and EMC using control samples of D∗+ → D0(K−π+)π+,

KS → π+π− and τ → ντ3π decays. For kaon identification a bagged decision tree clas-

sifier, kaonBDT, is used [50]. The classifier is trained on D∗+ → D0(K−π+)π+ control

samples again with 36 input variables. The kaon classifier has an additional selector rep-

resenting a looser cut than VeryLoose; this is labelled NotAPion. Control sample studies

by the PID group show that the typical rate of charged kaons being misidentified as pions

is less than 10% for all momenta.

3.2.6 Primary Vertex

The primary interaction in a e+e− collision event occurs at the PEP-II IR. The spatial

position of this interaction can be determined from measurement of the beamspot. The

size of the beamspot is typically 150 microns in x, 6 microns in y and 1 cm in z. For event

reconstruction purposes a more accurate determination, particularly of the z coordinate,

is required. This is achieved in the BABAR framework by fitting for the primary vertex

on an event by event basis [49]. The fit combines all tracks with impact parameter in

the transverse plane of less than 1 mm from the beamspot centre. For BB events the

primary vertex will be shifted in the positive z direction from the e+e− interaction point

due to the average B meson lifetime [14]. Essentially the primary vertex represents the

mid-point between the two B meson decays. This is illustrated schematically in figure

3.1. In general neutral particle candidates within the BABAR framework have their four-

momentum defined such that they originate from the primary vertex by default. The

primary vertex resolution in a BB event is typically 100 microns in x and 115 microns in

z. The y resolution from the primary vertex fit is around a factor of ten worse than the

existing beamspot measurement, hence the beamspot measurement is used to constrain

this coordinate.

3.3 Discriminating Variables

There are many variables which aid in the discrimination of reconstructed candidates

from signal decay events compared to those originating from combinatoric backgrounds.

These can broadly be separated into kinematic, topological and so-called ‘tagging’ vari-

ables. The variables considered in this analysis are defined here.
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x

z

Figure 3.1: Schematic representation of the primary vertex for a BB event in the
x − z plane. The red ellipse represents the beamspot resolution. The green ellipse
indicates the improved primary vertex resolution, particularly in the z direction. The
grey ellipses show the respective B meson decay vertex resolutions. Note that the
primary vertex is distinct from the Υ (4S) decay vertex. The resolutions shown are not

to scale.

3.3.1 Kinematic Variables

In addition to placing kinematic cuts on the energy and momentum of reconstructed

particles there are two kinematic variables of primary importance when considering B

meson decays at BABAR. These are the beam energy substituted mass, mES , and the

difference between the reconstructed and expected energy of the B meson, ∆E [51].

Explicitly they are defined as,

mES =

√
1
4
s− |p∗B|2, (3.1)

∆E = E∗B −
1
2
√
s, (3.2)

where (E∗B,p
∗
B) is the four-momentum of the reconstructed B meson and s is the Man-

delstam variable for the transition e+e− → Υ (4S), i.e. the CM energy squared. The

asterisk superscript denotes a quantity in the CM frame. Both variables make use of the

fact that the Υ (4S) resonance lies just above the BB threshold which results in each B

meson having a CM energy half that of
√
s. It follows that ∆E will peak at zero for a

correctly reconstructed B meson with an approximate Gaussian distribution resulting

from detector resolution limits. The negative tail will be more pronounced due to energy

leakage in the EMC which for a radiative decay such as the signal considered can be

significant. The beam energy substituted mass is preferential to the reconstructed B

mass as the beam energy is measured to a high degree of accuracy and does not suffer

from detector resolution limitations inherent in the measurement of E∗B. Furthermore

an alternative mass hypothesis for charged tracks will not change the value of mES
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whereas a correct measurement of E∗B depends on the flavour of all tracks being cor-

rectly identified. For a correctly reconstructed B decay, mES will peak at the B mass,

mB = 5.279 GeV/c2, with a Gaussian shape due to detector momentum resolution and

the resolution in beam energy measurement. On average mES is observed to have an

enhanced negative tail due to EMC energy leakage in the detection of neutral particles.

To minimise the effect of energy leakage from the signal photon it is useful to define

m′ES , whereby the magnitude of p∗B is recalculated constraining the photon energy such

that ∆E=0, i.e.

E∗γ + E∗X −
1
2
√
s = 0. (3.3)

Here Eγ is the photon energy and EX is the energy of the hadronic component of the

decay. The potential introduction of a correlation between ∆E and m′ES is discussed in

section 4.1.3. Figures 3.2 and 3.3 show respectively simulated distributions for m′ES (in-

cluding an overlay of the corresponding signal mES distribution3) and ∆E for correctly

reconstructed candidates and continuum background before any post-reconstruction

cuts. The signal resolution is ∼ 50 MeV for ∆E and ∼ 5 MeV/c2 for m′ES . The negative

tail due to energy leakage can be seen in the signal distributions of both variables.
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Figure 3.2: Normalised distributions of m′ES for continuum (dashed line) and cor-
rectly reconstructed candidates (solid line) before post-reconstruction cuts. The dotted
line overlays the distribution of mES for correctly reconstructed candidates to illustrate

the resolution improvement obtained using m′ES .

3Note that the improvement in resolution of m′ES over mES is relatively minor. This is in contrast to
early radiative penguin analyses at BABAR due to an improved energy leakage correction during EMC
cluster reconstruction. However, to be consistent with earlier analyses m′ES is generally preferred over
mES as a discriminating variable.
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Figure 3.3: Normalised distributions of ∆E for continuum (dashed line) and correctly
reconstructed candidates (solid line) before post-reconstruction cuts.

3.3.2 Topological Variables

Measuring the topology of detected particles in a given event can provide powerful dis-

crimination between events arising from Υ (4S) decays and those arising from continuum

backgrounds. The B mesons are produced almost at rest in the Υ (4S) frame and hence

decay isotropically in that frame. Conversely particles produced in continuum events

typically have large kinetic energies in the CM frame and form collimated jets along the

axes of the initial quark and anti-quark pair. Therefore variables which distinguish the

isotropic or jet-like nature of events can aid in the reduction of continuum backgrounds.

Continuum events containing reconstructed B → Xs/dγ candidates will have an associ-

ated high energy photon. Where this photon is a daughter of the decay chain from the

initial quark hadronisation its direction will be highly correlated with other particles in

the corresponding jet. Continuum background also arises from interactions involving

initial state radiation (ISR), e+e− → qqγ. In this case the photon momentum will be

largely independent of the individual jet directions. However, together both jets will be

seen to recoil against the photon due to momentum conservation. It follows that the

measurement of event shape variables with respect to the high energy photon can be

used to further reduce continuum backgrounds.

In order to calculate many of the variables which can separate these event topologies

it is necessary to distinguish between charged tracks and neutral clusters which were

used to reconstruct the signal candidate and those which form the rest of the event
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(ROE). For correctly reconstructed candidates the ROE is assumed to contain all par-

ticles detected from the other B meson decay in the event. All topological variables are

calculated in the CM frame unless otherwise stated. In the following figures MC data

distributions for correctly reconstructed candidates and continuum backgrounds before

post-reconstruction cuts are presented.

3.3.2.1 Thrust
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Figure 3.4: Normalised distributions of TROE for continuum (dashed line) and cor-
rectly reconstructed candidates (solid line) before post-reconstruction cuts.

The thrust of N detected particles each with momentum pi is defined as,

T =
∑N

i |n · pi|∑N
i |pi|

, (3.4)

where n is the unit vector which maximises the value of T and whose direction defines

the thrust axis of those particles [52]. Figure 3.4 shows the calculated thrust for the

ROE, TROE . It can be seen that on average continuum events have a lower thrust for

the ROE than correctly reconstructed signal events as they are less isotropic.

Another useful variable derived from the calculated thrust is the cosine of the angle

between the photon momentum and the thrust axis of the ROE, | cos θT |. This has a

uniform distribution for correctly reconstructed signal events whereas jet-like continuum

events peak at unity. This difference is illustrated in figure 3.5.
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Figure 3.5: Normalised distributions of | cos θT | for continuum (dashed line) and
correctly reconstructed candidates (solid line) before post-reconstruction cuts.

3.3.2.2 Energy and Momentum Flow

A number of useful topological variables measure the angular distribution of energy and

momentum flow in a given event. This analysis makes use of Fox-Wolfram moments [53]

and both longitudinal and perpendicular ‘monomial’ functions [54].

For N particles with total energy Eall, the lth normalised Fox-Wolfram moment is

defined as,

Hl =
N∑
i,j

|pi||pj |
Eall

Pl(cos θij), (3.5)

where Pl are Legendre polynomials of order l and θij is the angle subtended between the

momentum vectors of particles i and j. The ratio of the second to zeroth Fox-Wolfram

moments, R2 = H2/H0, is commonly used to measure the jet-like nature of an event. To

reduce ISR backgrounds R2 is calculated in the frame recoiling against the high energy

photon for all particles excluding the photon. To distinguish this frame from the CM

frame a prime notation is used, R′2. Figure 3.6 shows the simulated distributions of R′2.

It can be seen that the signal distribution peaks closer to zero relative to the continuum

background.

The normalised monomial functions are calculated relative to a given axis, α. For N

particles whose momenta pi subtend an angle θi with respect to α the lth monomial is
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Figure 3.6: Normalised distributions of R′2 for continuum (dashed line) and correctly
reconstructed candidates (solid line) before post-reconstruction cuts.

defined as,

Lαl =
∑N

i |pi| cosl θi∑N
i |pi|

, (3.6)

Pαl =
∑N

i |pi| sinl θi∑N
i |pi|

, (3.7)

for the longitudinal and perpendicular monomials respectively. This analysis considers

the monomials functions of the ROE with respect to the thrust axis of the ROE and with

respect to the high energy photon momentum axis. Figures comparing distributions for

correctly reconstructed candidates and continuum backgrounds for each of the twelve

monomials are contained in appendix A.

3.3.2.3 Sphericity Tensor

The sphericity tensor of an event is defined as,

Sαβ =
∑N

i p
α
i p

β
i∑N

i |pi|2
, (3.8)

where the indices α, β=1,2,3 denote the x, y and z three momentum components of the

ith particle [55]. The resulting 3×3 matrix can be diagonalised giving three eigenvalues,

λ1 ≥ λ2 ≥ λ3 with λ1 +λ2 +λ3 = 1. From these eigenvalues the sphericity, S, planarity,
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P and aplanarity, A, for N particles are defined respectively as,

S =
3
2

(λ1 + λ2), (3.9)

P = λ2 − λ1, (3.10)

A =
3
2
λ1. (3.11)

Each of these variables has a distinct distribution for isotropic and jet-like events due

to differences in the typical sphericity tensor for each topology. Figures showing the

distributions of each sphericity variable for the ROE, comparing continuum and correctly

reconstructed candidates, are contained in appendix A.

3.3.2.4 Angular Momentum

A final topological variable presents itself from angular momentum, the cosine of the

angle between the signal candidate B meson momentum and the principal axis, | cos θB|.
In a signal event the spin-1 Υ (4S) decays to two spin-0 B mesons hence the angular

distributions of B mesons is proportional to sin2 θB, while fake B meson candidates

from continuum decays are generally observed to have uniform distribution in | cos θB|.
This distinction can be seen in figure 3.7 which shows simulated distributions of | cos θB|.
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Figure 3.7: Normalised distributions of | cos θB | for continuum (dashed line) and
correctly reconstructed candidates (solid line) before post-reconstruction cuts.
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3.3.3 Flavour Tagging Variables

Many analyses of B meson decays in BABAR data require the flavour of both B mesons to

be known from their respective decays. Typically one B meson is fully reconstructed and

knowledge of the flavour of the other B meson in an event is required. The properties of

this particle, the so-called ‘tag B’, can be inferred from the ROE and a variety of tools

exist in the BABAR framework to carry out this task. Although the analysis presented

here does not explicitly depend on knowledge of the tag B, its properties can aid in the

rejection of combinatoric backgrounds from continuum events.

Variables used to determine the flavour of the tag B meson aim to establish the b quark

flavour by identifying correlations between the quark charge and the signed character-

istics of the decay products [56]. The dedicated BABAR tagging group combine such

variables into multivariate classifiers, known as sub-taggers, with different sub-taggers

corresponding to different physics processes. The sub-taggers are subsequently combined

to assign a probability to the flavour of the tag B meson. Importantly for this anal-

ysis, the sub-taggers have distinct distributions for events containing B meson decays

compared to continuum events. Their outputs are thus useful discriminating variables.

The complete tagging framework is described in detail in [57], an overview of seven

sub-taggers used for this analysis is given here.

3.3.3.1 Lepton Tagging

Three of the sub-taggers rely on the lepton content of B meson decays. In b → c

transitions a direct semi-leptonic decay will result in a lepton with the same sign charge

as the parent b quark. Alternatively a lepton from a cascade b→ c→ s decay can have

either the same or opposite sign charge; however, it will exhibit a softer momentum

spectrum. It is therefore possible to use the charge and kinematics of leptons from the

ROE to identify the b quark flavour of the tag B meson. On average continuum events

contain significantly fewer leptons, it follows that a classifier used to identify the lepton

content of an event will have different performance on such data compared to signal B

meson decay events.

An electron sub-tagger, LeTAG, has been trained to identify events where PID selectors

identify any track in the ROE to be an electron or positron. The classifier is a neural net

with input variables that give kinematic information of the assumed semi-leptonic decay.

These variables, all calculated in the CM frame, are the momentum of the electron track

candidate, the energy in the hemisphere defined by the direction of the virtual W boson

in the assumed semi-leptonic decay and the cosine of the angle between the assumed
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Figure 3.8: Normalised distributions of LeTAG for continuum (dashed line) and cor-
rectly reconstructed candidates (solid line) before post-reconstruction cuts. Note the

log scale.
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Figure 3.9: Normalised distributions of LµTAG for continuum (dashed line) and cor-
rectly reconstructed candidates (solid line) before post-reconstruction cuts. Note the

log scale.
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Figure 3.10: Normalised distributions of LlTAG for continuum (dashed line) and
correctly reconstructed candidates (solid line) before post-reconstruction cuts.

electron track momentum and the event missing momentum. Figure 3.8 shows the

output of this classifier for simulated data and compares the distributions for correctly

reconstructed candidates and continuum backgrounds. In events where the tag B meson

is correctly identified the output peaks at one for direct decays with a secondary peak at

∼ 0.35 due to cascade decays. The large peak at zero represents events where no electron

or positron were identified. The output is typically multiplied by the charge of the track

to separate electron and positrons when identifying flavour although this is not shown

here. It can be seen that there is an order of magnitude difference in the sub-tagger

giving a positive identification of direct leptonic decays between these data. The presence

of the secondary peak in the continuum distribution is mainly a consequence of semi-

leptonic D meson decays in these data. A similar sub-tagger, LµTAG, has been trained

for events where any track in the ROE is identified as a muon. Figure 3.9 shows the

output of the muon sub-tagger for the same data. The structure of these distributions

distinguishes muons from direct and cascade decays in the same way as the electron

sub-tagger. Again a significant difference in positive classifier output is observed. A

final lepton sub-tagger, LlTAG, is trained using the same kinematic variables for tracks

not identified as leptons in an attempt to recover any flavour information lost due to

PID inefficiencies. The most lepton-like track is selected by this classifier, the output

of which is shown for simulated data in figure 3.10. A value closer to one is observed

for leptons which have been correctly recovered. For this sub-tagger the discrimination

between signal and continuum data is not as significant; however, a residual difference

at higher output values is still observed.
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3.3.3.2 Hadron Tagging
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Figure 3.11: Normalised distributions of Hπ
TAG for continuum (dashed line) and

correctly reconstructed candidates (solid line) before post-reconstruction cuts. Note
the log scale.
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Figure 3.12: Normalised distributions of HK
TAG for continuum (dashed line) and

correctly reconstructed candidates (solid line) before post-reconstruction cuts. Note
the log scale.

Decays of B mesons containing a D∗± will often have an associated low momentum

charged pion from the subsequent D∗± decay. This pion will always have opposite sign

charge to the parent b quark. The slow pion sub-tagger, Hπ
TAG, makes use of this physics
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Figure 3.13: Normalised distributions of HKπ
TAG for continuum (dashed line) and

correctly reconstructed candidates (solid line) before post-reconstruction cuts. Note
the log scale.

signature by identifying tracks of low CM momentum correlated with the thrust axis of

all other tracks and neutrals from the ROE in that frame. Two variables describing these

kinematics, along with a kaon PID classifier output to reject low momentum charged

kaons, are combined in a neural net, the output of which is shown in figure 3.11 for

correctly reconstructed and continuum candidates. The peak at 0.9 is observed for

candidates where a low momentum track was consistent with the physics hypothesis,

while the peak at zero is due to candidates with either no suitable low momentum track

in the ROE or where the low momentum track identified was not consistent with a pion

from a D∗± decay. A similar kaon sub-tagger, HK
TAG, identifies charged kaons from

b → c → s transitions which will have the same charge sign as the parent b quark.

This tagger combines kaon PID information and the transverse momentum properties

of candidate tracks. The kaon sub-tagger distribution is shown in figure 3.12; for signal

decays it peaks near one when kaons from such transitions are identified in the ROE.

Outputs of the kaon and slow pion sub-taggers along with information of the angular

separation of the identified pions and kaons are combined into a neural net to form a ‘kaon

slow pion’ sub-tagger, HKπ
TAG. This sub-tagger aims to take advantage of the correlation

between charge sign expected for both input sub-taggers for a true D∗± decay from the

tag B meson. The output of the kaon slow pion sub-tagger is shown in figure 3.13. The

peak at one for signal indicates a correctly identified tag B meson. For each hadronic

sub-tagger there is on average an excess in positive output from signal decays compared

to continuum events; however, this is not as significant as the difference observed in the
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electron and muon sub-tagger outputs. This is because continuum events can contain

pions and kaons with similar kinematics to the D∗± daughters in a B meson decay chain;

however, their angular distributions relative to the thrust axis are typically different due

to the continuum jet-like nature resulting in the limited discrimination observed.

3.3.3.3 Momentum Tagging

The final sub-tagger, PTAG, is used to identify high momentum particles, such as high

momentum pions from B → D∗π decays. High energy tracks typically originate from

the primary B meson decay and tend to have the same sign charge as the parent b quark.

They will also have a small transverse impact parameter due to their prompt production

and their direction will be correlated with that of the tag B meson as they carry away

a large proportion of its momentum. The high momentum sub-tagger is a neural net

with three inputs reflecting these expected physical properties. The sub-tagger output

is shown in figure 3.14, a higher output indicates the presence of a high momentum

track in the ROE while the absence of such a particle is reflected in the peak at zero.

For continuum events it can be seen that the output is typically less than for signal

events and the discriminatory power between these event types is similar to that of the

hadronic sub-taggers.
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Figure 3.14: Normalised distributions of PTAG for continuum (dashed line) and
correctly reconstructed candidates (solid line) before post-reconstruction cuts.
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3.4 Event Reduction Filters

As a consequence of computer processing and storage limitations, pre-reconstruction

event filters4 must be applied to both experimental and MC data before full event recon-

struction. General event filters are called from the BABAR framework. The BGFMultiHadron

[58] passes events which have at least three charged tracks and R2 < 0.98 for all charged

tracks, essentially eliminating Bhabha scattering backgrounds. Events are then tested for

consistency with criteria required for B counting [45] through the filter BCountMHFilter

[58]. A custom filter developed for previous BABAR analyses studying B → ργ transi-

tions, BtoRhoGammaBToXGF [59], requires that for all particles in an event R2 < 0.9

and that the highest energy neutral cluster in the EMC has CM energy in the range

1.15 < E∗ < 3.5 GeV. All events passing these filters are then passed through a custom

filter developed for this analysis, BToXdGammaFilter.

3.4.1 BToXdGammaFilter

The filter BToXdGammaFilter is optimised to efficiently reject backgrounds and accept

simulated data events without exceeding centrally assigned processing constraints for

both MC and experimental data. In each event B meson candidates are reconstructed for

all B → Xdγ modes listed in table 3.1. The hadronic Xd components are reconstructed

combining tracks from GoodTracksLoose, π0 candidates from pi0DefaultMass and η

candidates from etaggDefault with all candidates from these lists required to have

momentum greater than 0.3 GeV/c in the lab frame. Where a mode has more than

one charged track, Xd candidate decay vertices are fitted with the Cascade algorithm

applying the geometric constraint and requiring the χ2 probability of the fit to be greater

than 0.001. Where there is only one track, Xd candidates are constructed by adding the

four-momentum of the daughter particles. The composite Xd candidates are required to

have an invariant mass less that 2.2 GeV/c2.

Reconstructed Xd candidates are combined with photons to form B meson candidates.

Photons, from GoodPhotonLoose, are required to have CM energy in the range 1.15 <

E∗ < 3.5 GeV and clusters with at least four EMC crystals over energy readout threshold

to eliminate fake neutral clusters which can potentially arise due to a single noisy crystal.

B meson candidates are required to have |∆E| < 0.3 GeV and 5.0 < mES < 5.3 GeV/c2.

The angle between the B meson candidate momentum and thrust axis of the ROE is

required to have an absolute cosine less than 0.8. Any event which has at least one
4Pre-reconstruction (post-reconstruction) refers to event processing carried out before (after) the

custom event reconstruction described in section 3.5. All events discussed in this chapter have been
reconstructed within the central BABAR framework.



Chapter 3. Event Selection 71

MC data Filter Events Relative Eff (%) Total Eff (%)

B+ → Xduγ None 1,288,000 100.0 100.0
BGFMultiHadron 1,244,491 96.6 96.6
BCountMHFilter 1,149,425 92.4 89.2
BtoRhoGammaBToXGF 959,714 83.5 74.5
BToXdGammaFilter 453,992 47.3 35.2

B0 → Xddγ None 1,288,000 100.0 100.0
BGFMultiHadron 1,241,756 96.4 96.4
BCountMHFilter 1,143,968 92.2 88.9
BtoRhoGammaBToXGF 951,564 83.2 73.9
BToXdGammaFilter 441,343 46.4 34.3

B+ → Xsuγ None 11,178,000 100.0 100.0
BGFMultiHadron 10,762,617 96.3 96.3
BCountMHFilter 9,804,116 91.1 87.7
BtoRhoGammaBToXGF 8,136,455 83.0 72.8
BToXdGammaFilter 3,293,162 40.5 29.5

B0 → Xsdγ None 11,178,000 100.0 100.0
BGFMultiHadron 10,724,379 95.9 95.9
BCountMHFilter 9,726,955 90.7 87.0
BtoRhoGammaBToXGF 8,060,449 82.9 72.1
BToXdGammaFilter 3,279,972 40.7 29.3

Table 3.5: Efficiencies of pre-reconstruction event filters when applied to the high
mass bin signal MC data.

B meson candidate passing all of the above filter requirements is kept for full event

reconstruction.

The choice of variables used in BToXdGammaFilter and the value of cuts on those vari-

ables are based primarily on the equivalent filter used in the previous version of this

analysis [1]. However, the filter described here improves on the previous analysis through

a revision of the choice of BABAR event framework track and neutral candidate lists used

for hadronic candidate reconstruction. The lists described above perform tighter selec-

tions on their constituent candidates and are therefore smaller in size. This leads to a

significant reduction in the potential number of combinations allowed to form hadronic

candidates in a given event with an almost negligible cost in signal efficiency. The pro-

cessing overhead saved allows the invariant mass cut to be relaxed from 2.0 GeV/c2 to

2.2 GeV/c2 therefore allowing for a potentially more inclusive measurement. Due to the

required processing constraints this cut cannot be relaxed any further.
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MC data Filter Events Relative Eff (%) Total Eff (%)

B0 → ρ+γ None 650,000 100.0 100.0
BGFMultiHadron 609,153 93.7 93.7
BCountMHFilter 508,536 83.5 78.2
BtoRhoGammaBToXGF 443,283 87.2 68.2
BToXdGammaFilter 323,325 72.9 49.7

B0 → ρ0γ None 650,000 100.0 100.0
BGFMultiHadron 636,882 98.0 98.0
BCountMHFilter 539,034 84.6 82.9
BtoRhoGammaBToXGF 450,721 83.6 69.3
BToXdGammaFilter 364,193 80.8 56.0

B0 → ωγ None 650,000 100.0 100.0
BGFMultiHadron 622,903 95.8 95.8
BCountMHFilter 513,547 82.4 79.0
BtoRhoGammaBToXGF 439,831 85.6 67.7
BToXdGammaFilter 318,105 72.3 48.9

B0 → K∗+γ None 6,449,000 100.0 100.0
BGFMultiHadron 6,082,909 94.3 94.3
BCountMHFilter 5,059,206 83.2 78.4
BtoRhoGammaBToXGF 4,277,607 84.6 66.3
BToXdGammaFilter 2,136,768 50.0 33.1

B0 → K∗0γ None 6,449,000 100.0 100.0
BGFMultiHadron 6,047,163 93.8 93.8
BCountMHFilter 4,938,077 81.7 76.6
BtoRhoGammaBToXGF 4,149,053 84.0 64.3
BToXdGammaFilter 2,764,181 66.6 42.9

Table 3.6: Efficiencies of pre-reconstruction event filters when applied to the low
mass bin signal MC data.

MC data Events Eff (%)

B+ → Xduγ 412,189 34.3
B0 → Xddγ 398,935 33.2
B+ → Xsuγ 3,042,628 29.2
B0 → Xsdγ 2,983,045 28.6

Table 3.7: High mass bin signal MC samples after filter and hadronic mass cuts. The
efficiency is relative to the pre-filter samples given in table 3.3.
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MC data Events Eff (%)

B0 → ρ+γ 282,157 49.6
B0 → ρ0γ 317,817 55.8
B0 → ωγ 318,105 48.9
B0 → K∗+γ 1,889,573 32.8
B0 → K∗0γ 2,441,107 42.6

Table 3.8: Low mass bin signal MC samples after filter and hadronic mass cuts. The
efficiency is relative to the pre-filter samples given in table 3.4.

Type Pre Filter Events Post Filter Events Efficiency (%)

Generic B+B− MC 708,762,000 1,623,556 0.23
Generic B0B

0 MC 717,995,000 1,081,134 0.15
Generic cc MC 1,128,544,000 9,642,971 0.85
Generic qq MC (q = u, d, s) 1,670,948,000 27,897,989 1.68
On Peak Data 6,714,057,036 20,033,960 0.30
Off Peak Data 642,952,515 1,932,935 0.30

Table 3.9: Pre-reconstruction filter efficiencies for generic MC backgrounds and
experimental data.

3.4.2 Filter Efficiencies

The relative and cumulative efficiencies of the above filters when applied to the signal MC

data listed in table 3.2 are shown in tables 3.5 and 3.6 for high mass bin and low mass bin

samples respectively. After the filters are applied the model cut on hadronic mass due to

mT
X=1.0 GeV/c2 must be made to the filtered samples. Tables 3.7 and 3.8 show the effect

of this cut for the high and low mass bin samples respectively; the efficiencies quoted in

these tables are the effective combined filter efficiency of each sample for events which

satisfy the mass threshold requirement. Table 3.9 shows the total combined efficiency

of all filters when applied to the generic MC data samples listed in table 3.2 and to the

experimental data.

The combined signal efficiencies appear low due to low efficiency for events where the

signal decay does not directly correspond to one of the reconstructed modes listed in

table 3.1.

3.5 Full Event Reconstruction

Full event reconstruction is performed for all events passing the pre-reconstruction filters.

Hadronic candidates are created with identical lists and using the same vertex fitting
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strategy as the BToXdGammaFilter event filter. However, the laboratory momentum cut

is relaxed to 0.1 GeV/c, the vertex χ2 probability cut is not applied and candidates can

have a hadronic mass up to 2.4 GeV/c2. The relaxation of these cuts is temporary and

a historical artifact of the code inherited from the previous version of this analysis [1];

they are tightened again to reflect the filter cuts in the subsequent post-reconstruction

event selection. Additionally where there was only one charged final state particle the

candidates are formed by adding the daughter four-momenta constraining all daughters

to originate from the event primary vertex.

Before hadronic candidates are fitted a PID selection is applied to identify them as either

Xd or Xs candidates. For each track in GoodTracksLoose considered for hadronic can-

didate reconstruction the PID selectors pionKMLoose and kaonBDTNotAPion are called.

If a track passes both or neither selectors it is not considered for reconstruction. Tracks

passing only the pion selector are assumed to be pions. Tracks passing only the kaon se-

lector are assumed to be kaons and their four-momentum is redefined by assigning them

the world average kaon mass [14]. During hadronic candidate reconstruction if all tracks

are identified as pions the candidate is classified as a Xd and fitted. If all but one track

is a pion and the remaining track a kaon with correct sign charge where relevant, the

candidate is classified as a Xs and fitted. Any other combination of tracks results in the

candidate being vetoed from the reconstruction. Fitted hadronic candidates satisfying

the reconstruction criteria are combined with photons from GoodPhotonLoose applying

the same CM frame energy cut on the photon as in BToXdGammaFilter to form B me-

son candidates. Again the addition of these four momenta are constrained such that the

Xd candidate and photon candidate originate from the event primary vertex. B meson

candidates are required to have m′ES greater than 5.0 GeV/c2 and |∆E| ≤ 0.3 GeV. A

further cut of | cos θT | ≤ 0.8 is then applied to reduce continuum backgrounds in order to

save disk space and reduce processing time in subsequent event selection. This cut does

not exactly mirror the similar cut made in BToXdGammaFilter as here the angle is de-

fined as the thrust axis relative to the photon direction as opposed to the reconstructed

B meson direction; however, these distributions are similar as the background photon

direction is generally correlated with jet momentum in continuum events whereas signal

photon momentum direction will on average reflect the isotropic nature of signal events.

For each reconstructed B meson candidate satisfying the above requirements kinematic,

topological and tagging variable information is saved for subsequent analysis. Table

3.10 shows the total number of events containing at least one B meson candidate after

reconstruction for both MC and experimental data.
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Data Type ≥ 1 Cand Eff (%) ≥ 1 Xd Cand ≥ 1 Xs Cand

Xduγ signal MC 334,022 81.0 287,813 (90,200) 152,148 (2,476)
Xddγ signal MC 325,232 81.5 287,625 (60,822) 134,698 (3,016)
Xsuγ signal MC 2,374,495 78.0 1,275,415 (47,203) 1,808,478 (584,981)
Xsdγ signal MC 2,341,138 78.5 1,256,499 (29,861) 1,772,401 (486,733)
ρ+γ signal MC 249,863 88.6 237,867 (147,054) 90,279 (3,957)
ρ0γ signal MC 272,947 85.9 258,797 (197,827) 80,571 (10,809)
ωγ signal MC 273,002 85.8 258,090 (46,600) 101,574 (1,552)
K∗+γ signal MC 1,574,018 83.3 798,196 (109,072) 1,135,465 (466,752)
K∗0γ signal MC 2,044,754 83.8 644,443 (30,181) 1,806,368 (1,323,321)
Generic B+B− MC 1,044,389 64.3 553,997 697,965
Generic B0B

0 MC 709,728 65.6 390,398 463,011
Generic cc MC 6,490,155 67.3 4,085,150 3,799,608
Generic qq MC 19,001,795 68.1 15,163,515 6,284,873
On Peak Data 13,702,098 68.4 9,976,160 5,790,300
Off Peak Data 1,323,267 68.5 974,466 541,629

Table 3.10: Events with at least one reconstructed candidate after full event recon-
struction for both MC and experimental data and the reconstruction efficiency relative
to the number of events passing pre-reconstruction event filters given in tables 3.7, 3.8
and 3.9. Also shown are the number of events with at least one fitted Xd candidate
and the number of events with at least one fitted Xs candidate. Shown in parentheses
are the number of events where a correctly reconstructed candidate is identified. Note
that the PID is not required to be correct for a candidate to be considered correctly

reconstructed.

3.5.1 Signal Candidate Identification

When considering signal MC data the identification of correctly reconstructed events

is vital to estimate the combinatoric background contributions from reconstructing and

selecting candidates within these data. Due to contamination from beam backgrounds

and detector noise there is no one-to-one correspondence between particles generated

in underlying physics processes and those in the reconstructed lists available after the

detector simulation has run. For this reason the BABAR simulation framework uses

objects known as ‘gHits’ for each simulated particle to model its interaction with active

detector elements. Detector responses such as DCH hits and EMC crystal readouts

can have one, many or no gHits associated with them, depending on the origin of the

interaction and the simulated efficiencies of that particular subsystem. The number of

gHits present in reconstructed tracks and clusters allow the user to find consistency

between that reconstructed candidate and any generated particle.

This analysis has two dominant combinatoric backgrounds in signal MC data. Firstly

a candidate whose reconstructed mode matches that of the generated event but which
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uses one or more tracks and clusters from the ROE in the fit. Secondly a candidate

whose reconstructed mode does not match the generated mode. Of the latter there are

those candidates where the generated mode was one of the other signal modes from

table 3.1 and those where the generated mode was some other allowed B → Xs/dγ

transition. No significant contribution is observed from candidates where the hadronic

component is correctly reconstructed but an incorrect photon is used to form the B

meson. Combinatoric backgrounds are therefore dominated by the reconstruction of the

hadronic candidate.

During the reconstruction of each signal event a list of the generated particles is used

to identify the true decay mode. If the generated mode is a signal mode and there is a

reconstructed candidate of the same mode then the gHit consistency associator is used

to identify if the hadronic component was correctly reconstructed. The associator is

called for each reconstructed track and for each cluster used to create a π0 or η. If all

reconstructed candidates are associated with a unique generated charged pion, charged

kaon or photon from the true signal B meson then the hadronic component and its

corresponding B meson are considered to be correctly reconstructed.
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Figure 3.15: Distribution of ∆mX for Xd candidates whose reconstructed mode
matches the generated mode in high mass B → Xdγ simulated events. The dashed
line shows candidates identified as correctly reconstructed by gHit association and the
dotted line shows the contribution from all other candidates where the reconstructed

decay mode matches the generated decay mode.

To investigate the gHit associator method for inefficiencies an independent cross check

is carried out. The difference between the reconstructed and generated hadronic mass,

∆mX , for candidates whose reconstructed mode matches the generated mode of an
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event will peak at zero with a narrow spread due to detector resolution for correctly

reconstructed candidates, while no significant narrow peak will exist for background

candidates of that mode. Figure 3.15 shows the distribution of ∆mX for B → Xdγ

signal MC candidates where the reconstructed mode matches the generated mode. It

can be seen that candidates that fail the gHit associator do not show a significant peak

at zero. It is therefore assumed that for the purposes of this analysis the associator

efficiently identifies correctly reconstructed candidates.

3.6 Post Reconstruction Event Reduction

Combinatoric backgrounds dominate over events with correctly reconstructed candidates

after full event reconstruction. In order to maximise the statistical significance of cor-

rectly reconstructed events a number of variables are identified to which cuts can be

applied. The following section describes the variables used and details how the optimal

values for each cut were determined.

3.6.1 B → Xsγ Background from K0
S Decays

In both the high and low mass region, B → Xdγ candidate decays for certain modes will

have hadronic final states identical to B → Xsγ decays where there was an intermediate

K0
S → π+π− or K0

S → π0π0 decay. For example the decay B0 → Xdγ → π+π−π0γ is

identical to the decay B0 → Xsγ → K0
S(π+π−)π0γ. Such backgrounds can contribute

in all reconstructed B → Xdγ modes with three or more final state particles from the

hadronic decay.

The background from K0
S → π+π− decays can be reduced by considering the decay

length and invariant mass of potential K0
S candidates. During event reconstruction all

Xd candidates with two or more charged pions have their vertex reconstructed with the

Cascade algorithm which determines the most probable position for the decay vertex

of that candidate. Figure 3.16 shows the distance between the decay vertex and event

primary vertex in the laboratory frame, xDEC , for both correctly reconstructed B →
Xdγ candidates and correctly reconstructed B → Xsγ decays whose final states are

indistinguishable due an intermediate K0
S → π+π− decay. It can be seen that the K0

S

backgrounds have a significant tail at high values of xDEC , not seen in signal events.

This can be attributed to the relatively large decay length of the K0
S meson [14]. During

event reconstruction pairs of oppositely charged tracks from GoodTracksLoose which

pass the PID selector PionKMLoose (and therefore which can potentially be used in Xd

candidate reconstruction) are also separately vertexed with the Cascade algorithm and
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Figure 3.16: Distance between the decay vertex and event primary vertex for re-
constructed modes with at least two charged tracks and at least three hadronic final
state particles showing correctly reconstructed B → Xdγ candidates (solid line) and
correctly reconstructed B → Xsγ background candidates which have indistinguishable

final states due to an intermediate K0
S → π+π− decay (dashed line).
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Figure 3.17: Invariant mass of reconstructed K0
S → π+π− candidates where both

charged tracks are also used to reconstruct a correctly identified B → Xdγ candidate
(solid line) or a correctly identified B → Xsγ background candidate with an interme-

diate K0
S → π+π− decay (dashed line)
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saved. Figure 3.17 shows the the invariant mass of such track pairs, mKs , when both

tracks are also used in the reconstruction of a signal B → Xdγ or the reconstruction

of a correctly identified B → Xsγ background with intermediate K0
S → π+π− decay.

The background shows a clear peak about the K0
S mass whereas those candidates where

the pion pair came from a signal decay have a uniform distribution. Requiring that no

Xd candidate with greater than three hadronic final state particles (of which at least

two were charged pion candidates) is reconstructed from any pair of charged tracks

which were also used to reconstruct a K0
S candidate with 0.485≤ mKs ≤0.51 GeV/c2

and that the Xd candidate has xDEC ≤0.2 cm is found to reject >95% of K0
S → π+π−

backgrounds while rejecting <5% of signal candidates whose modes are subject to this

background. For ease of technical implementation the cut on xDEC is also applied to

mode 1 of table 3.1 at the cost of <5% of signal candidates from that mode before

further post reconstruction cuts are applied.

Backgrounds from K0
S → π0π0 are less straight forward to reduce. This background only

contains neutral particles so it is not possible to obtain reliable vertex information for the

K0
S decay. Consequently, as π0 candidates in Pi0DefaultMass are defined to originate

from the primary vertex, the mass resolution of any reconstructed K0
S candidate will be

much worse than those reconstructed from charged track pairs. Time constraints on the

analysis meant no study was carried out to reduce this background, the consequences of

which are discussed in section 3.6.7.1.

3.6.2 High Energy Photon Candidate

The dominant background for high energy photon candidates are asymmetric π0 → γγ

and η → γγ processes where one photon carries away most of the energy from the decay.

To reduce these backgrounds every high energy photon candidate used to reconstruct

a B meson has its four-momentum added to all other photons in the event with lab

energy greater than 30 MeV (250 MeV) and the invariant mass closest to the nominal π0

(η) mass [14] is saved. Figures 3.18 and 3.19 show the π0 and η distributions respectively

for combinatoric and correctly reconstructed MC events before post-reconstruction cuts

are applied. During cut optimisation an invariant mass veto window is considered with

each veto consisting of an upper and lower cut.

The lateral moment cut required for a cluster to be included in the GoodPhotonLoose

(see section 3.2.2) list is tightened so that only photons with lateral moment less than

0.6 are considered. Other radiative penguin analyses using BABAR data have shown that

this cut value has almost negligible signal rejection [59] and so it is implemented here

as well.
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Figure 3.18: Normalised distributions of the invariant mass closest to the π0 mass
from combining the high energy photon with other photons of energy >30 MeV for
continuum (dashed line) and correctly reconstructed candidates (solid line) before post-

reconstruction cuts.
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Figure 3.19: Normalised distributions of the invariant mass closest to the η mass
from combining the high energy photon with other photons of energy >250 MeV for
continuum (dashed line) and correctly reconstructed candidates (solid line) before post-

reconstruction cuts.
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Figure 3.20: Normalised distributions of S′bump for continuum (dashed line) and
correctly reconstructed candidates (solid line) before post reconstruction cuts.

Backgrounds from merged π0 → γγ decays where both photons form the same cluster in

the EMC can be rejected by considering the second moment of the cluster, Sbump. From

equation (2.5) it can be seen that Sbump is geometrically dependent on the position of a

cluster in the EMC. It is therefore more useful to multiply Sbump by the distance from

the IR to the cluster centroid, giving a corrected second moment, S′bump, independent

of the geometry. Figure 3.20 shows the distributions of S′bump for combinatoric and

correctly reconstructed candidates before cuts are applied and it is this value for which

a cut is considered. The enhanced high end tail in the combinatoric distribution can be

mainly attributed to merged π0 decays.

A further background which can contribute fake high energy photons arises from inter-

actions between high energy charged particles and detector material whereby scattered

neutrons can deposit energy in the EMC. If that cluster is then mistakenly matched with

the charged track, the actual energy deposit from the charged particle will be assigned

as a neutral particle. To reduce these backgrounds the distance from the candidate

photon cluster to the nearest cluster associated with a charged track, xtrk, is a useful

discriminant. An isolation cut requiring xtrk ≥25 cm is applied based on the equivalent

cut used in previous radiative penguin analyses using BABAR data [1, 59].

To remove possible backgrounds from single noisy crystals in data the EMC cluster is

required to have greater than four constituent crystals. Additionally there must be no

dead or damaged crystals within the cluster to ensure the energy measurement is as

accurate as possible.
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Finally ISR background photons typically have low transverse momentum so are largely

found in the endcap. Therefore requiring that reconstructed photons only have associ-

ated clusters whose centroid is in the barrel of the EMC can reduce these backgrounds.

Rejection of endcap photons is thus a binary variable and is considered in the cut opti-

misation discussed below.

3.6.3 Xs/d Candidate Cuts

To further reduce combinatoric backgrounds cuts can be placed on reconstructed hadronic

Xs/d candidates. For those modes with more than one charged track a cut is placed on

the χ2 probability of the vertex fit. The cut value is based on the experience of previous

radiative penguin analyses where multiple track final states are reconstructed [1, 30] and

is required to be greater than 1% for all such candidates.
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Figure 3.21: Normalised distributions of the momentum magnitude of the lowest
momentum hadronic daughter for continuum (dashed line) and correctly reconstructed

candidates (solid line) before post reconstruction cuts.

The cut on the laboratory momentum of daughters of the Xs/d candidate, |pmin|, is

tightened during cut optimisation with the requirement that it must be at least as tight

as the value of 0.3 GeV/c implemented in the filter BToXdGammaFilter. Figure 3.21

shows distributions of this variable comparing correctly reconstructed candidates and

combinatoric background for the lowest momentum daughter used to fit that candi-

date. Combinatoric backgrounds tend to favour lower momenta relative to correctly

reconstructed candidates.
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Finally for charged pions the tightness of the PID selector imposed on tracks used to

reconstruct Xd candidates is varied to investigate which gives the best performance

accepting signal and rejecting backgrounds.

3.6.4 B Meson Candidate Cuts

It is possible to tighten cuts applied to m′ES and ∆E during event selection to reduce

combinatoric backgrounds. This is providing that there is no significant signal loss

which might bias the subsequent fit to these variables. Therefore the analysis requires

−0.3 ≤ ∆E ≤ 0.2 GeV and mES ≥ 5.22 GeV/c2 the choice of which is based on the

experience of previous BABAR radiative penguin analyses [1, 30, 59].

3.6.4.1 Hadronic Mass Bin Variations

As described above the choice of upper limit in the non-resonant hadronic mass bin

is constrained by computational limitations in processing the pre-reconstruction event

filters. The filter BToXdGammaFilter only reconstructs Xd candidates. Due to the dif-

ference in pion and kaon mass it follows that Xs candidates close to the upper limit

can have significantly different efficiencies when passed through this filter. This is be-

cause the filter assumes pion mass for all charged tracks, whereas fully reconstructed Xs

candidates redefine the mass of the track identified as a kaon and therefore have an in-

creased reconstructed hadronic mass. In post-reconstruction event reduction the upper

limit is therefore not allowed to exceed 2.0 GeV/c2 thus minimising potential systematic

differences between Xd and Xs candidate efficiencies due to this cut.

Due to increased combinatoric backgrounds with larger values of mX the high mass

region was previously observed to be statistically limited relative to the low mass res-

onant region despite it containing a larger fraction of the expected inclusive width [1].

Additionally modes where the hadronic component has a larger number of daughters or

π0 mesons will contribute more to combinatoric backgrounds. For this reason all cuts

are optimised independently for six distinct classes in which both the upper mass limit

and number of modes reconstructed in the high mass region are varied. Table 3.11 lists

these classes and shows the total number events for the signal B → Xdγ MC data with

with at least one reconstructed Xd candidate for each class before post reconstruction

selections.

In the low mass resonant region there are three modes which dominate the signal con-

tribution: 1,2 and 4 for ρ0, ρ+ and ω transitions respectively. To investigate the back-

ground contributions from including further reconstructed modes in this region the cuts
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Class Mass Limit ( GeV/c2) Included Modes MC Xd Evt ≥ 1 (True) Xd Cand

1 1.8 1,2,3,4 202,696 (75,347)
2 2.0 1,2,3,4 231,639 (84,816)
3 1.8 1,2,3,4,5,6,7 371,307 (98,582)
4 2.0 1,2,3,4,5,6,7 432,987 (112,752)
5 1.8 1,2,3,4,5,6,7,8,9 429,513 (110,592)
6 2.0 1,2,3,4,5,6,7,8,9 490,169 (126,743)

Table 3.11: Signal B → Xdγ MC data in the high mass region with at least one
Xd candidate after applying cuts on the upper limit of reconstructed hadronic mass
and number of reconstructed modes relevant to each optimisation class. Shown in
parentheses are the number events with a correctly reconstructed candidate. The mode

numbers correspond to those given in table 3.1.

Class Included Modes MC Evt ≥ 1 (True) Xd Cand: ρ0; ρ+;ω

7 1,2,4 199,690; 163,569; 74,625 (190,712; 144,934; 38,480)
8 1,2,3,4,5,6,7 202,941; 171,091; 108,232 (190,712; 144,934; 38,637)

Table 3.12: Signal B → Xdγ MC data in the low mass region with at least one
Xd candidate after applying cuts on reconstructed hadronic mass and number of re-
constructed modes relevant to each optimisation class. Shown in parentheses are the

number of events with a correctly reconstructed candidate.

are optimised independently for two classes which vary the number of reconstructed

modes. Table 3.12 lists these classes again showing the number of events with at least

one reconstructed Xd candidate for signal MC data.

3.6.5 Multivariate Classifier for Continuum Event Reduction

The dominant contribution to combinatoric backgrounds is from continuum events. Ide-

ally cuts on the topological and tagging variables discussed above can be used to reduce

these backgrounds; however, the discrimination between signal and background for the

majority of these variables is individually limited due to largely overlapping distribu-

tions. Therefore the use of a multivariate classifier is considered. Such classifiers use

a number of user-defined input variables to create a discriminator which can recognise

higher order patterns in data and use them to classify signal and background events.

The classifier is trained on a subset of signal and background data where the data type is

known beforehand. After training it can then be applied to further events to test them

for consistency with the signal hypothesis. Such techniques are becoming increasingly

common in high energy physics data analysis and in particular the BABAR collabora-

tion have found them a particularly useful tool. In all tests neural networks (NN) are

found to give the best performance for this analysis with MC data. Other multivariate

classifiers investigated with these data include boosted and bagged decision trees; only
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the NN is discussed here. The following gives a general overview of NN discriminators,

before describing the optimisation process implemented to find the best performing NN.

3.6.5.1 Overview of Neural Networks

x
i

z
j

yi j j

Figure 3.22: Schematic Representation of a Neural Network with four inputs, one
hidden layer of eight nodes and one output.

Figure 3.22 shows a schematic representation of a typical NN with four input variables,

one hidden layer with eight nodes and one output variable. The input variables, xi, are

normalised to the range [0, 1] and are related to each node, j, in the hidden layer by a

weight αij as represented by the lines in figure 3.22. The hidden layer then has a value

zj given by the output of an activation function, A, whose input is the weighted sum of

the input variables:

zj = Aj

(
4∑
i=1

αijxi

)
. (3.12)

Similarly the output, y, is given by,

y = Ay

 8∑
j=1

βjzj

 , (3.13)

where βj are weights between the hidden nodes and the output. Each training event has

an associated quadratic classification error,

ε = (Y − y)2, (3.14)
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Variable Cut Value

π0 veto upper limit ≥0.15 GeV/c2

π0 veto lower limit ≤0.1 GeV/c2

η veto upper limit ≥0.59 GeV/c2

η veto lower limit ≤0.5 GeV/c2

S′bump ≤0.2
xtrk ≥25 cm
Lateral Moment ≤0.6
Xd |pmin| ≥0.3 GeV/c
Xd vertex χ2 prob ≥0.01
Pion PID Selector pionKMTight

Use Endcap Photons No

Table 3.13: Unoptimised cut values used to assign training events.

where Y is the true event class, typically one for signal and zero for background. For

each training event the network weights are systematically updated by propagating

the previous quadratic error back from the output layer to the input layer. After all

training events are exhausted one training cycle has been completed. An optimal NN

will have n training cycles where n minimises the average quadratic error of a sepa-

rate validation sample. This analysis uses the implementation of NN from the package

StatPatternRecognition (SPR) [60], in which A is a sigmoid function.

3.6.5.2 Classification of Training and Testing Events

Training of the NN is carried out on continuum events which are as signal-like as possible.

It is therefore desirable to apply all other post-reconstruction cuts beforehand. As the

NN must be trained before cut optimisation a value for each cut to be optimised is

chosen based on the experience of the previous BABAR analysis [1]. Table 3.13 lists the

cut values chosen. After these cuts are applied the total efficiencies for simulated data

are used to identify what proportion of these samples should be assigned to training

to reflect the relative proportion of such events expected in data. Table 3.14 lists the

required make up of training samples to reflect the expected proportion in data and

indicates the proportion of events in each sample which must be assigned to training to

obtain at least 104 training events for each of the optimisation classes.

Training events are assigned such that they are evenly sampled across the MC data

to ensure they accurately reflect varying background conditions from different running

periods which are emulated in the simulation. A second mutually exclusive dataset

sampled in the same way is used for evaluating the performance of NNs as they are
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Data Samples Train Sample Fraction of MC data

High Mass Xd Signal Xdd;Xdu 1:1 0.25; 0.25
High Mass Xd Continuum uds; cc 5:1 0.043; 0.041
Low Mass Xd Signal ρ0; ρ+;ω 4:3:1 0.053; 0.059; 0.111
Low Mass Xd Continuum uds; cc 4:1 0.111; 0.111

Table 3.14: Required make up of training samples to reflect expected proportions in
data and the required fraction of MC data needed to give greater than 104 training

events in each sample for each optimisation class.

Class Training Events (Sig; Cont) Testing Events (Sig; Cont)

1 11,479; 11,977 11,412; 11,904
2 12,984; 14,970 12,970; 14,898
3 13,664; 21,813 13,615; 21,722
4 15,624; 28,314 15,557; 28,205
5 15,233; 29,462 15,162; 29,363
6 17,485; 37,929 17,425; 37,832

7 15,476; 14,333 15,421; 14,244
8 15,478; 20,036 15,428; 19,928

Table 3.15: Size of NN training and testing samples for each optimisation class.
There are two samples in each case, a sample of correctly reconstructed candidates and

a sample of continuum backgrounds.

trained. For continuum events where there is more than one candidate in an event the

candidate passing the requirements of best candidate selection described in section 3.6.6

is chosen.

For data analysis carried out after a NN cut has been applied, the use of events which

trained the NN can lead to bias in efficiency calculations and fit studies. This is a con-

sequence of potential over-training of the NN whereby the training dataset will give a

better response than events not used for training. To eliminate this bias, training events

are vetoed from the cut optimisation and subsequent studies; a correction factor is ap-

plied to account for this when calculating the efficiencies of signal event reconstruction.

In signal MC data it is necessary to assign a consistent proportion of events which do not

contain a correctly reconstructed candidate as training events even though they are not

used in the actual training of the NN. This ensures that the correction applied to these

data is the same for both correctly reconstructed candidates and combinatoric back-

grounds; table 3.15 lists the size of test and training samples used for each optimisation

class.
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Variable Type Considered Inputs

Topological TROE , | cos θT |, R′2, LT2 , LT3 , P T1 , P T2 , P T3 , Lγ1 , Lγ2 , Lγ3 , P γ1 , P γ2 , P γ3 ,
SROE , AROE , PROE , | cos θB|

Tagging LeTAG, LµTAG, LlTAG, Hπ
TAG, HK

TAG, HKπ
TAG, PTAG

Table 3.16: Variables considered for NN input.

3.6.5.3 Training Strategy and Input Variable Selection

There are 25 topological and tagging variables considered for the NN classifier which

are listed in table 3.16. Note that from the definitions given in sections 3.3.2.1 and

3.3.2.2, TROE ≡ LT1 , thus only TROE is considered for NN input. Initially the structure

of the NN is required to have one hidden layer with twice as many nodes as the input

layer. For simplicity in implementing the analysis framework only one NN structure is

optimised using the data corresponding to optimisation class 3. The choice of these data

is arbitrary, input variable distributions are not observed to change significantly between

classes and so the choice of data used to train and test is not expected to significantly

affect NN optimisation. Once the optimal NN is found it is then trained using each

of the datasets listed in table 3.15, only the number of training cycles varies between

optimisation classes.

When training a NN the training data are randomly split into two sub samples of

equal size. One sample is used to train the NN and the other to calculate the average

quadratic error every ten training cycles. Once the number of training cycles with

minimum quadratic error is determined the NN is retrained with that many cycles

using all training data and its performance evaluated. The performance evaluation of

a given NN uses SPR tools with the testing data sample to calculate the percentage of

background events accepted for a cut on the NN output which accepts 40, 30, 20 and 10%

of signal events. The calculated background acceptance for a given signal acceptance

point has an associated statistical error. If the NN, when compared to an alternative NN,

is found to have reduced background acceptance for one or more of the signal acceptance

points the NN is considered to perform better. This is providing the improvement in

background rejection percentage is greater than the calculated statistical error and that

there is no significant degradation in background rejection at any of the other signal

acceptance points.

SPR performs an internal calculation when training a NN, ranking the importance of

the input variables. This calculation is not expected to be reliable but instead is used as

a starting point when considering which variables to include. The NN is trained using

all 26 input variables and the three highest ranked variables are then chosen to train

the NN to be optimised. Variables are then added and removed in an arbitrary way to
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evaluate which combination gives the best performance. If the addition or removal of a

variable results in a better performing NN, determined by the criteria given above, then

the resulting combination of input variables becomes the new baseline for adding and

removing further variables. If no improvement in performance is observed then the pre-

existing combination of variables forms the baseline. If performance does not deteriorate

on removing a variable then preference is given to the NN with fewer input variables.

The optimum is found to have ten input variables: TROE , R′2, LT3 , Lγ2 , AROE , | cos θB|,
LeTAG, LµTAG, Hπ

TAG and HK
TAG. The number of hidden layers and corresponding nodes

are again varied in an arbitrary way using these input variables. No NN is found to give

better performance under these variations so the optimal NN is therefore determined to

have one hidden layer with 20 nodes. The output of the optimal NN for both signal and

continuum data not used for training is shown in figure 3.23 for event class three.

NN Output
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Figure 3.23: Normalised distributions of the NN output for continuum (dashed line)
and correctly reconstructed candidates (solid line). These are MC data from event class

three.

3.6.6 Best Candidate Selection

Once cuts have been applied there can still be events with more than one candidate.

The likelihood fit described in chapter 4 assumes only one candidate per event so in

the case of ambiguity a strategy for choosing which candidate to include in the fit is

required. This selection must not bias the fit so the variables to be fitted, ∆E and m′ES ,

or any variable correlated with them cannot be used for candidate selection.
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There are two steps to choosing the best candidate. Firstly the best candidate within

a given reconstructed mode is chosen. Secondly if an event has more than one recon-

structed mode then a preferred mode must be selected. For the former the following

criteria are applied. If a mode has a single neutral particle (π0 or η) then the candidate

whose neutral daughter photon pair has invariant mass closest to the world average is

chosen. For modes with two π0 mesons this principle is extended into two dimensions

by calculating the quantity,

∆mπ0 =
√

(m1
π0 −mWA

π0 )2 + (m2
π0 −mWA

π0 )2, (3.15)

where mi
π0 is the invariant mass of the photon pair corresponding to the ith π0 and

mWA
π0 is the world average π0 mass. The candidate with ∆mπ0 closest to zero is chosen.

If any ambiguity still exists or if a mode has no neutral daughters then the candidate

with the highest vertex χ2 probability is chosen. For modes where ambiguity exists and

there is only one charged daughter then the candidate whose track has the largest χ2

probability associated with its Kalman fit is chosen.

Investigations of signal MC data for patterns which may indicate an order of preference

for choosing between candidates of different modes finds no preferred order so in the

case of events where such ambiguity exists a random candidate is chosen.

3.6.7 Cut Optimisation

There are seven cuts for which simulated data are used to find an optimal value: the

upper and lower limits of π0 and η invariant mass vetoes; the upper limit on S′bump;

the lower limit on |pmin|; and the lower limit on the NN output. The choice of charged

pion PID selector and use of endcap photons are also considered. Optimisation uses

a simple cut and count technique in a signal region defined as m′ES >5.27 GeV/c2 and

−0.15 ≤ ∆E ≤ 0.1 GeV. The figure of merit (FOM) is s/
√
b where s and b are the

estimated luminosity normalised contributions in the signal region of correctly recon-

structed events and combinatoric backgrounds respectively. The normalisation of MC

data to the experimental luminosity is discussed in section 3.7.1. This FOM is preferred

to s/
√
s+ b to ensure it does not directly depend on correctly normalising the signal

B → Xdγ MC data; the contribution of incorrectly reconstructed B → Xdγ events to b

is small.

The optimisation is iterative. From a baseline of cuts, an individual iteration makes

systematic variations in each cut; all other cuts are held constant and the cut under

consideration is varied. Continuous variables are each varied over a range of 20 values,

the start value and step size of which are shown in table 3.17. Ranges are chosen to
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Cut Start Value Step

upper π0 veto 0.110 +0.005
lower π0 veto 0.150 −0.005
upper η veto 0.530 +0.005
lower η veto 0.550 −0.005
S′bump 0.3 −0.01
|pmin| 0.300 +0.025
NN out 0.60 +0.02

Table 3.17: Cut optimisation start point and step size for each continuous variable.

allow a significant proportion of phase space for each cut to be examined. For discrete

variables the pion selector is varied to increasing levels of tightness and endcap photons

are first considered and then vetoed. In each event, for each optimisation point, the best

candidate selector is called if necessary then an event is tested for consistency with the

signal region. The event is counted if it passes the cuts required for that optimisation

point and is in the signal region. Correctly reconstructed candidate events contribute

to s while all potential background candidates contribute to b. Thus after normalising

each MC data type to reflect the expected contribution in experimental data, a given

optimisation point has an associated FOM. The value giving the best FOM for the cut

under consideration is used as the baseline for the next iteration. In the first iteration

the baseline corresponds to the cut values in table 3.13 and requires a candidate to have

associated NN output greater than 0.8.

The iterative process is continued until all cuts converge. If no convergence is observed

after five iterations the set of cuts giving the best overall FOM is chosen. Table 3.18 lists

the final FOM for each of the eight optimisation classes. The optimisation is performed

independently for each event class.

This is a uni-directional optimisation process and is therefore only guaranteed to find a

local maximum in the FOM; there may be an improved figure of merit found by changing

the order in which variables are investigated. However, this analysis uses the cuts of

the previous analysis [1] as a baseline which corresponds to a FOM of ∼ 1.5 in the high

mass region. These cuts were chosen using a similar FOM, optimised with an alternative

method using independent MC data. Consequently as the optimisation here gives an

improved result compared this baseline it is considered robust.

3.6.7.1 Discussion of Analysis Strategy

The cut optimisation results presented in table 3.18 show that in the high mass region

class 2, with four reconstructed modes and an upper hadronic mass limit of 2.0 GeV/c2,
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Class s b s/
√
b

1 31.0 175.6 2.34
2 25.1 109.4 2.40
3 19.3 84.7 2.10
4 31.2 232.4 2.05
5 26.3 198.9 1.86
6 21.0 129.3 1.85

7 22.9 14.1 6.10
8 38.3 61.4 4.89

Table 3.18: Cut optimisation results for each optimisation class.

gives the most statistically significant measurement. In the low mass region the larger

FOM is associated with class 7 which only reconstructs three modes. It follows that

a measurement designed to maximise statistical significance should reconstruct fewer

modes. However, following such a strategy leads to greater systematic uncertainty from

model dependence when extrapolating to inclusive BFs. Clearly a balance must be

struck between these competing factors and the decision of which optimisation class to

use in each mass region must reflect this.

For the high mass region this analysis is required to be at least as inclusive as the previous

BABAR measurement [1] which used optimisation class 3; this reconstructs seven modes

with an upper hadronic mass limit of 1.8 GeV/c2. The degradation in s/
√
b between

classes 3 and 4 is <∼ 3% which is deemed to be an acceptable drop given the more

inclusive nature of class 4 which reconstructs the same seven modes but over a larger

hadronic mass range. However, moving to class 5 or 6 in lieu of class 3, i.e. including

modes 8 and 9 which reconstruct two π0 candidates, gives a decrease of >∼ 10% in the

statistical FOM. It is also noted that despite their more inclusive nature these classes

have smaller s due to cut optimisation points changing significantly5 as a result of

increased combinatorics from modes 8 and 9. In contrast class 4 has the largest value of

s. Additionally modes 8 and 9 are susceptible to the K0
S → π0π0 background discussed

in section 3.6.1. No specific reduction of this background is made and therefore, as such

background is almost indistinguishable from signal, its presence can potentially bias the

subsequent fit to data. The inclusion of modes 8 and 9 is therefore also undesirable

for this reason. This analysis chooses optimisation class 4 in the high mass region.

The upper hadronic mass limit is increased to 2.0 GeV/c2 compared to 1.8 GeV/c2 in the

previous analysis; however, modes with two π0 candidates in the hadronic reconstruction

are not included in the measurement.
5Favouring tighter values.
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Variable Cut Value

Hadronic mass upper limit ≤2.0 GeV/c2

Included modes 1,2,3,4,5,6,7
mES ≥5.22 GeV/c2

∆E ≤0.2 GeV and ≥−0.3 GeV
π0 veto ≥0.155 GeV/c2 and ≤0.095 GeV/c2

η veto ≥0.565 GeV/c2 and ≤0.53 GeV/c2

S′bump ≤0.2
xtrk ≥25 cm
Lateral Moment ≤0.6
Xd |pmin| ≥0.425 GeV/c
Xd vertex χ2 prob ≥0.01
Pion PID Selector pionKMTight

Use Endcap Photons No
NN output ≥0.86

Table 3.19: Optimised cut values in the high mass region for optimisation class 4.

The low mass region is dominated by resonant decays and the model used to simulate it

assumes no other contributions. This accounts for the ∼ 20% degradation in the FOM

in moving from class 7 to class 8 which reconstructs four extra modes, none of which

contribute to s in a purely resonant model. If the low mass region is reconstructed as

entirely resonant contributions without allowing for the other modes reconstructed in

the high mass region then the assumptions of quark hadron duality may break down.

In particular the feed-through of high mass contributions across the threshold boundary

due to detector resolution is not accounted for as required in the resonance modified

KN model [27]. This results in the theoretical uncertainty when extracting |Vtd/Vts|
potentially being underestimated in chapter 1. Therefore, although the low mass region

is dominated by resonant transitions, its measurement should be as inclusive as possible

so as not to invalidate the subsequent extraction of CKM matrix parameters. For this

reason the analysis chooses class 8 in this region; the same seven modes reconstructed

in the high mass region are also all reconstructed in the low mass region thus allowing

any potential non-resonant contributions to be measured. Tables 3.19 and 3.20 show

the final cut values determined for optimisation classes 4 and 8 respectively.

3.7 Event Selection Summary

Following the choice of analysis strategy and determination of optimum cut values the

subsequent event selection efficiencies and projected yields in experimental data are
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Variable Cut Value

Included modes 1,2,3,4,5,6,7
mES ≥5.22 GeV/c2

∆E ≤0.2 GeV and ≥−0.3 GeV
π0 veto ≥0.16 GeV/c2 and ≤0.11 GeV/c2

η veto ≥0.56 GeV/c2 and ≤0.52 GeV/c2

S′bump ≤0.19
xtrk ≥25 cm
Lateral Moment ≤0.6
Xd |pmin| ≥0.6 GeV/c
Xd vertex χ2 prob ≥0.01
Pion PID Selector pionKMTight

Use Endcap Photons No
NN output ≥0.92

Table 3.20: Optimised cut values in the low mass region for optimisation class 8.

presented. The final number of events with a reconstructed B → Xs/dγ candidate in

MC data after vetoing both NN training events and any B → Xsγ events in generic

B MC data are shown in table 3.21. The total number of B → Xdγ candidate events

from B → Xsγ MC data with an intermediate K0
S → π+π− decay which are correctly

reconstructed are 1 and 6 in the high and low mass regions respectively. This shows

that the selections applied in section 3.6.1 make such backgrounds negligible.

3.7.1 Estimated Data Yields and Selection Efficiencies

Table 3.21 can be used to estimate the expected yields for each sample in the exper-

imental data. Estimated yields are calculated from the total number of BB pairs in

experimental data (given in section 3.1.1) using the assumed BFs for signal modes and

the calculated cross sections for e+e− → qq (q = u, d, s, c) transitions at the Υ (4S) mass

[4]. Correction factors to convert between MC data yields and estimated experimen-

tal data yields are calculated by taking the ratio of the expected data yield with the

total MC dataset sizes listed in tables 3.3 and 3.4 for signal and table 3.2 for generic

backgrounds. Signal MC data requires a further factor of two correction to account for

the forced decay of one B meson in an event to a signal mode. In all calculations it is

assumed that the transitions Υ (4S) → B+B− and Υ (4S) → B0B
0 are equally likely.

This assumption is consistent with current experimental measurements of Υ (4S)→ BB

transitions [14]; however, it means the uncertainty associated with such measurements

is not considered a source of systematic uncertainty.
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Mode Xd Events Efficiency Xs Events Efficiency

1 2,570 3.45% 34,580 3.56%
2 2,204 2.65% 15,486 2.60%
3 1,185 1.65% 19,802 1.80%
4 1,198 0.81% 10,695 0.80%
5 156 0.47% 1,784 0.45%
6 398 0.29% 2,968 0.30%
7 261 2.72% 2,663 3.13%

Table 3.24: Generated events and total efficiency by mode for correctly reconstructed
high mass Xd and Xs candidates.

Mass Xd Events Efficiency Xs Events Efficiency
( GeV/c2) Generated Post-Cuts Generated Post-Cuts

1.0-1.2 134,444 1,901 1.89% 802,481 19,511 2.43%
1.2-1.4 149,463 2,012 1.79% 1,051,158 23,404 2.23%
1.4-1.6 136,874 1,694 1.65% 1,052,711 19,690 1.87%
1.6-1.8 110,729 1,363 1.64% 885,260 14,956 1.69%
1.8-2.0 80,139 958 1.59% 652,094 10,072 1.54%
>2.0 131,611 44 0.04% 1,039,348 345 0.03%

Table 3.25: Generated signal modes and total efficiency as a function of generated
hadronic mass for correctly reconstructed high mass Xd and Xs candidates.

Table 3.22 shows the estimated experimental data yields for all data samples before event

selection. The correction factors are presented and post-selection yields for B → Xdγ

candidate events are calculated applying the correction factors to the MC data sample

sizes listed in 3.21. Where necessary further corrections have been made to account

for vetoed NN training events. Also shown are the overall efficiency calculations of the

event selection on each MC sample6. The corresponding post selection estimated yields

and efficiencies for B → Xsγ candidate events are presented in table 3.23. A detailed

breakdown of the number of generated events in signal MC data corresponding to a

reconstructed mode are presented in appendix B. These generated numbers are used to

calculate mode by mode efficiencies which are presented in table 3.24 for both flavours

of data in the high mass bin.

Finally table 3.25 shows the selection efficiency for correctly reconstructed B → Xdγ

and B → Xsγ candidate events as a function of generated hadronic mass in the high

mass region. The denominator in this efficiency ratio corresponds to all generated signal
6The signal efficiencies here do not necessarily directly correspond to those given in section 4.6.4 as

the respective denominators in efficiencies used to calculate measured BF values only consider events
with generated hadronic mass within the reconstructed mass range
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modes in the corresponding bin of generated hadronic mass before event selections are

applied.



Chapter 4

Signal Yield Extraction

Yields for the number of correctly reconstructed candidates in experimental data, after

event selection, are extracted using a two dimensional (2D) unbinned extended maximum

likelihood fit1 to the kinematic variables ∆E and m′ES . The fit strategy is optimised us-

ing simulated data samples. This chapter introduces the maximum likelihood fit (MLF)

technique, before discussing the probability density functions (PDFs) used to model

different event hypotheses and their parameterisation using MC data. The combined

fitting strategy to be used on experimental data is outlined and studies for bias in this

strategy using emulated and embedded MC data samples are presented. Finally the

results of each of the four fits to the experimental data are given.

4.1 Maximum Likelihood

The MLF is a powerful statistical tool described in detail elsewhere [63, 64], an overview

of which is given here. It can be advantageous compared with other fitting techniques,

such as least squares, for it treats data on an event by event basis thus avoiding bias

which can arise from binning samples beforehand.

4.1.1 Overview

Consider a sample of N events described by variable x whose parent distribution is

a normalised PDF, P(x;α1, .., αn), described by n parameters, αk (k = 1, .., n). The

sample can provide estimators for each parameter, α̂k, through the principle of maximum

likelihood (PML). For a given set of estimators the likelihood, L, for the sample is given
1All computational fits use the RooFit [61] toolkit which implements the Minuit core package [62].

100



Chapter 4. Signal Yield Extraction 101

by,

L(α̂1, .., α̂n) =
N∏
i=1

P(xi; α̂1, .., α̂n). (4.1)

This represents the joint probability density of obtaining the xi values observed2. The

PML states that the set of α̂k which maximise L will best describe the data as these

give a higher cumulative probability. Therefore iterative variation of estimators to find

the maximum value of L provides a robust method of estimating the parameterisation

of P(x;α1, .., αn), thus fitting the PDF to the data sample.

It is possible to generalise (4.1) such that a sample described by two independent vari-

ables, (x, y), and constructed from M event hypotheses, e.g. signal and different back-

grounds, will have a likelihood function given by,

L(α̂x1 , .., α̂
x
n, α̂

y
1, .., α̂

y
m) =

N∏
i=1

 M∑
j=1

wjPxj (xi; α̂x1 , .., α̂
x
n)Pyj (yi; α̂

y
1, .., α̂

y
m)

 , (4.2)

where wj is the assigned weight of each hypothesis.

For computational calculations it is more convenient to find the best set of estimators by

minimising the negative log-likelihood, l, as the product over N events in (4.1) becomes

a sum,

l = − lnL = −
N∑
i=1

lnP(xi; α̂1, .., α̂n). (4.3)

The best values for each estimator are obtained from the set of simultaneous equations,

∂l

∂α̂k
= 0. (4.4)

Corresponding uncertainties on estimator values are calculated by taking second deriva-

tives of l, assuming the minimum is locally parabolic. The associated error matrix, E,

is given by, (
E−1

)
ij

=
(

∂2l

∂α̂i∂α̂j

)
. (4.5)

4.1.2 Extended Maximum Likelihood

The above discussion concerns estimators calculated to determine the shape of data

distributions where the PDFs are normalised such that,∫
P(x;α1, .., αn) dx = 1. (4.6)

2Omitted from the right hand side of (4.1) and subsequent equations are factors of 1/N ! as ultimately
it is variations in L which are of interest.
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However, if the normalisation is also an unknown to be determined from the fit, the ex-

tended maximum likelihood fit (EMLF) is required. This method relaxes the constraint

of (4.6) replacing P(x;α1, .., αn) with a function Q(x;α1, .., αn) such that,∫
Q(x;α1, .., αn) dx = ν, (4.7)

where ν is the mean sample size. In finite data where events are sampled at random the

actual sample size N will not necessarily coincide with ν. This is reflected in the EMLF

by multiplying the likelihood by the Poisson probability of obtaining N events given a

mean ν such that,

l = − ln
(
e−ννN

)
−

N∑
i=1

lnP(x;α1, .., αn),

= ν −
N∑
i=1

lnQ(x;α1, .., αn). (4.8)

As the normalisation of Q increases, the sum on the right hand side of (4.8) will become

more negative; however, the opposite is true of the ν term. Thus, by balancing these ef-

fects, minimising l will find the most probable value of ν given the PDF parameterisation

of x for a sample of N events.

4.1.3 Fit Variables

The choice of m′ES and ∆E as fit variables aims to maximise statistical significance when

fitting to experimental data. The use of two variables improves the ability of the fit to

discriminate between different event hypotheses. Where possible event hypotheses are

modelled as the product of uncorrelated PDFs following the formalism of (4.2). Con-

sequently the variables used in the fit should be essentially independent. The variables

mES and ∆E are to a good approximation independent for signal; however, as a con-

sequence of (3.3) this is not necessarily true for m′ES and ∆E. Despite this, previous

BABAR analyses in the radiative penguin decay working group have shown that m′ES and

∆E are suitable variables for a two dimensional MLF [1, 30, 59]. The improved reso-

lution obtained from m′ES and the need to be consistent with previous BABAR radiative

penguin analyses therefore makes it the preferential variable to fit for over mES .

4.2 Corrections to B → Xγ MC data

Previous measurements with BABAR experimental data of B → Xsγ transitions show

that JETSET phase space decays do not accurately model the relative contributions
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Fit Yield Pre-weighting Post-weighting

B → XL
s γ Signal 805 801

Mass Cross-feed 126 162

B → XH
s γ Signal 1284 1112

Self Cross-feed 823 879

B → XL
d γ PID Cross-feed 15 13

Xs Mass Cross-feed 46 36

B → XH
d γ PID Cross-feed 14 11

Xs Self Cross-feed 326 324

Table 4.1: Corrected event yield estimates for B → Xsγ event hypotheses after MC
data weighting.

from different final states [1, 30]. These analyses calculated weights (assumed to be

independent of hadronic mass) which can be applied to different classes of MC events

to make the model more representative of the experimental data. Corrections are not

applied to resonant signal MC as K∗, ρ and ω decays are well measured [14].

The analysis in [30] reconstructed 38 exclusive B → Xsγ final states in the hadronic

mass range 1.1 ≤ mX ≤ 2.8 GeV/c2 using experimental data up to and including Run

2. For the purposes of weighting MC data these final states are classified into ten

distinct sets. The analysis in [1] is the previous version of the analysis presented here

and reconstructed modes 1-7 of table 3.1 in the hadronic mass range 1.0 ≤ mX ≤
1.8 GeV/c2 using experimental data up to and including Run 5. Summaries of final

state contributions in generated B → Xγ MC data are given in appendix B and the

application of weights to B → Xsγ MC events is summarised in table B.6. Weights are

applied such that the overall normalisation of MC data before cuts is constant resulting

in a further correction weight to any mode not reconstructed in either of the above

analyses to preserve unity. After weights have been applied the change in the relative

contribution of individual events means the post event selection B → Xsγ MC data

yields and thus expected experimental data yields must be corrected. Table 4.1 shows

the corrected estimated experimental data yields. These are compared to the unweighted

estimates given in tables 3.22 and 3.23. All subsequent plots and calculations pertaining

to B → Xsγ MC events in the high mass region use the weighted data.

No correction is made to B → Xdγ data generated through the JETSET phase space

model as information from experimental data does not exist; a naive application of the

B → Xsγ weights to B → Xdγ MC events is performed in section 5.1.4.2 as part of the

study of systematic uncertainties in this analysis.
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4.3 Event Hypotheses

In fits to experimental data all potential event hypotheses must be identified and their

relative contribution modelled. Here contributing events are determined from MC data.

The respective high and low mass regions3 for a given flavour of B → Xγ candidates

are modelled with identical event hypotheses. The following section presents all of the

event hypotheses identified for this analysis.

4.3.1 B → Xsγ Candidate Events

Five contributing event hypotheses are identified for B → Xsγ candidates passing all

event selection cuts. Signal MC data can contribute either correctly or incorrectly re-

constructed events. Incorrectly reconstructed signal events are divided into those where

the generated decay corresponds to the reconstructed mass region4 (self cross-feed) and

those where the generated decay was from the other mass region (mass cross-feed). The

remaining two event hypotheses are any other BB event (generic BB) and any con-

tinuum event. Figure 4.1 shows 2D plots of m′ES and ∆E from MC data in the low

mass region. The corresponding plots for the high mass region are shown in figure 4.2.

Signal, generic BB and continuum event distributions can be sufficiently fitted as the

product of independent PDFs for each variable. The same is not true for cross-feed

events where the combination of different background contributions leads to correla-

tions between the fit variables. For example signal decays with a π0 in the final state

have enhanced backgrounds in the signal region due to background candidates where a

relatively low energy photon from the π0 decay is exchanged for a similar background

photon. The resulting candidate will be kinematically very similar to the generated sig-

nal candidate; this is particularly evident in low mass B+ → K∗+γ self cross-feed events

where the hadronic state is reconstructed from K∗+ → K+π0 decays. Such background

does not exist in decays without a neutral hadronic final state daughter. Other con-

tributions arise from backgrounds where the reconstructed candidate was not the same

as the generated signal candidate or where the generated event was not a signal decay.

In theory such correlations in these data can be more accurately modelled by identi-

fying each background category and assigning it a separate event hypothesis; however,

this is impractical as there are many such categories and the resulting combined fit to

experimental data would become unmanageable. Consequently cross-feed distributions

must be modelled as 2D histogram PDFs whose shapes are determined from MC data.
3To simplify notation, XL will be used to indicate a hadronic candidate with reconstructed mass in

the range 0.5≤ mX <1.0 GeV/c2 and XH a hadronic candidate with reconstructed mass in the range
1.0≤ mX ≤2.0 GeV/c2

4Any cross-feed component from the high mass bin includes events where the generated hadronic
mass was greater than 2.0 GeV/c2
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The choice of binning for these histograms is arbitrary and depends on the quantity of

MC data available; more data allow finer binning. In this analysis the statistics in all

cross-feed MC data are sufficient to allow ten bins in each of the signal regions defined

in the previous chapter for cut optimisation. This results in 20 bins for ∆E and 35 bins

for m′ES across the full fit range.

4.3.2 B → Xdγ Candidate Events

Eight event hypotheses are identified for B → Xdγ candidates passing all event selection

cuts. Five of these directly correspond to the event hypotheses in B → Xsγ data:

Correctly reconstructed events, self cross-feed events, mass cross-feed events, generic

BB events and continuum events. The additional three event hypotheses correspond

to cross-feed contributions where B → Xdγ candidates were reconstructed in B → Xsγ

data. The three categories are correctly reconstructed B → Xsγ events where the

generated charged kaon was reconstructed as a charged pion due to PID inefficiency (PID

cross-feed) and incorrectly reconstructed events (separated into Xs self cross-feed and

Xs mass cross-feed analogous to the signal cross-feed contributions). Figure 4.3 shows

2D plots of m′ES and ∆E from MC data in the low mass region. The corresponding plots

for the high mass region are shown in figure 4.4. Signal, PID cross-feed, generic BB and

continuum event distributions can be sufficiently fitted as the product of independent

PDFs in each variable. The remaining cross-feed events are again correlated due to

combinations of different background contributions and must therefore be modelled as

2D histogram PDFs.

4.4 PDF Parameterisation

The choice of PDF parameterisation for different event hypotheses is determined from

MLFs to MC data passing the event selection criteria. A set of PDFs is required for

each of the four fits to be carried out. Presented here are the sets of PDFs which were

found to best fit the MC data and their fitted parameters from those data.

4.4.1 PDF Functional Forms

The functional form for all PDF distributions used in the subsequent MLFs are given

here for a general variable x and normalisation factor N . Each parameter to be fitted

is introduced.
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(a) B → K∗γ signal events with a correctly recon-
structed candidate (signal).
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(b) B → K∗γ events where the candidate was in-
correctly reconstructed (self cross-feed).
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(c) B → Xsγ KN model events where the candidate
was incorrectly reconstructed (mass cross-feed).
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(d) Generic BB events.
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(e) Continuum events.

Figure 4.1: 2D plots of m′ES and ∆E showing B → XL
s γ candidates in each event

hypothesis for MC data passing event selection cuts. The number of events in each plot
reflects the MC data statistics given in table 3.21. Individual components in the generic
BB and continuum data are weighted such that the combined data plots reflect any
difference in relative contributions expected from those components in experimental

data.
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(a) B → Xsγ KN model events where the candidate
was correctly reconstructed (signal).
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(b) B → Xsγ KN model events where the candidate
was incorrectly reconstructed (self cross-feed).
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(c) B → K∗γ events where the candidate was in-
correctly reconstructed (mass cross-feed).
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(d) Generic BB events.
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(e) Continuum events.

Figure 4.2: 2D plots of m′ES and ∆E showing B → XH
s γ candidates in each event

hypothesis for MC data passing event selection cuts. The number of events in each plot
reflects the MC data statistics given in table 3.21. Individual components in the generic
BB and continuum data are weighted such that the combined data plots reflect any
difference in relative contributions expected from those components in experimental

data.
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(a) B → ρ/ωγ events where the candidate was cor-
rectly reconstructed (signal).
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(b) B → ρ/ωγ events where the candidate was in-
correctly reconstructed (self cross-feed).
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(c) B → Xdγ events where the candidate was incor-
rectly reconstructed (mass cross-feed).
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(d) Generic BB events.
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(e) Continuum events.
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(f) B → K∗γ Xs events where the candidate was
incorrectly reconstructed (Xs self cross-feed).

)2 (GeV/cESm
5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 E
 (G

eV
)

!

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

(g) B → Xsγ Xs KN model events where the candi-
date was incorrectly reconstructed (Xs mass cross-
feed).
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(h) B → Xsγ events where the candidate was cor-
rectly reconstructed but the charged kaon was incor-
rectly identified as a charged pion (Xs PID cross-
feed).

Figure 4.3: 2D plots of m′ES and ∆E showing B → XL
d γ candidates in each event

hypothesis for MC data passing event selection cuts. The number of events in each
plots reflects the MC data statistics given in table 3.21. Individual components in the
generic BB and continuum data are weighted such that the combined data plots reflect
any difference in relative contributions expected from those components in experimental

data.
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(a) B → Xdγ KN model events where the candidate
was correctly reconstructed.
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(b) B → Xdγ KN model events where the candidate
was incorrectly reconstructed (self cross-feed).
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(c) B → ρ/ωγ events where the candidate was in-
correctly reconstructed (mass cross-feed).
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(d) Generic BB events.
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(e) Continuum events.
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(f) B → Xsγ KN model events where the candidate
was incorrectly reconstructed (Xs self cross-feed).
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(g) B → K∗γ events where the candidate was in-
correctly reconstructed (Xs mass cross-feed).
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(h) B → Xsγ events where the candidate was cor-
rectly reconstructed but the charged kaon was incor-
rectly identified as a charged pion (Xs PID cross-
feed).

Figure 4.4: 2D plots of m′ES and ∆E showing B → XH
d γ candidates in each event

hypothesis for MC data passing event selection cuts. The number of events in each
plots reflects the MC data statistics given in table 3.21. Individual components in the
generic BB and continuum data are weighted such that the combined data plots reflect
any difference in relative contributions expected from those components in experimental

data.
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The Argus function [65] is commonly used in high energy physics to model combinatoric

backgrounds where the variable phase space has a kinematic threshold. It has the

functional form,

P(x;X0, p, ξ) =
1
N
x [F (x)]p exp [ξF (x)] , F (x) = 1−

(
x

X0

)2

, (4.9)

where p is a power variable, ξ determines the distribution slope and X0 represents

an upper kinematic limit. In this analysis the Argus function models combinatoric

backgrounds in m′ES . The threshold is thus defined by the kinematic constraint from

the beam energy which fixes X0=5.29 GeV/c2.

The Gaussian function models symmetric peaking distributions and has functional form,

P(x;µ, σ) =
1
N

exp

(
−0.5

(
x− µ
σ

)2
)
, (4.10)

where µ is the mean and σ the width of the distribution.

The Crystal-Ball (CB) [66] function modifies the Gaussian distribution by enhancing

the low end tail and therefore improves the modelling of distributions where such a tail

exists due to energy loss. It has the following form,

P(x;µ, σ, α, n) =
1
N

 exp
(
−0.5

(x−µ
σ

)2)
, for x−µ

σ > −α(
n
|α| − |α| −

x−µ
σ

)−n
A(α, n), for x−µ

σ ≤ −α
(4.11)

where A(α, n) = (n/|α|)n exp(−|α|2/2). The parameter α determines where the tail

intersects the Gaussian distribution and the parameter n describes the shape of the tail.

The ‘Cruijff’ function [67] modifies the Gaussian distribution by allowing independent

widths, σL and σR, either side of the mean and allows non-Gaussian tails either side of

the mean through the parameters αL and αR. It has functional form,

P(x;µ, σR, αR, σL, αL) =
1
N

 exp
(
− (x−µ)2

2σ2
R+αR(x−µ)2

)
, for x ≥ µ

exp
(
− (x−µ)2

2σ2
L+αL(x−µ)2

)
, for x < µ

(4.12)

Finally the polynomial function has the form,

P(x; a1, .., aN ) =
1
N

(
1 +

N∑
n=1

anx
n

)
. (4.13)

The polynomial order, N , is chosen before the MLF.



Chapter 4. Signal Yield Extraction 111

Hypothesis Parameter Low Mass Fit High Mass Fit

Signal µ ( GeV/c2) 5.27949±0.00001 5.27942±0.00001
σ ( GeV/c2) 0.002741±0.000006 0.002755±0.000015
α 1.613±0.013 1.647±0.026
n 3.926±0.083 3.74±0.15

Generic BB f 0.42±0.17 0.19±0.11
µ ( GeV/c2) 5.2793±0.0017 5.2793±0.0010
σ ( GeV/c2) 0.0043±0.0017 0.0047±0.0013
ξ −117±82 −69±43
p 0.67±0.80 0.67±0.71

Continuum ξ −54±29 −9.3±9.3
p 1.04±0.33 0.553±0.098

Table 4.2: Fitted m′ES PDF parameters in MC data for each event hypothesis showing
results for both low and high mass region B → Xsγ candidates.

4.4.2 B → Xsγ Candidate PDFs

Signal B → Xsγ events are modelled as a CB function in m′ES and a Cruijff function in

∆E as these PDFs allow for the asymmetries which arise in the signal distributions due to

energy leakage. Self cross-feed and mass cross-feed events are modelled as 2D histogram

PDFs whose shapes are determined from MC data. Generic BB events are modelled as

the sum of a Gaussian and Argus function in m′ES , with the Gaussian having relative

normalisation, f , and a order-2 polynomial in ∆E. The Gaussian function component

in m′ES allows for an observed peak in the signal region which can include B → Xsπ
0

decays where the π0 decayed asymmetrically and the soft photon was not reconstructed

resulting in a failure of the π0 veto used in event selection. Finally continuum events

are modelled as an Argus function in m′ES and a order-1 polynomial in ∆E.

Figures 4.5 and 4.6 show the fits to MC data of m′ES and ∆E respectively for B → Xsγ

candidates in the low mass region and tables 4.2 and 4.3 list the respective estimator

values and associated errors from each PDF fit. The corresponding fits for B → Xsγ

candidates in the high mass region are shown in figures 4.7 and 4.8 for m′ES and ∆E

respectively with the fitted estimator values and their errors also listed in tables 4.2 and

4.3. Models constructed from 2D histogram PDFs are not fitted to the MC data, instead

the MC data histogram fully determines the PDF. It follows that in plots showing these

models the PDF and MC data points are entirely coincident.
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(a) B → K∗γ events with a correctly reconstructed
candidate (signal) modelled as a CB function.
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(b) B → K∗γ events where the candidate was in-
correctly reconstructed (self cross-feed). The PDF
is the 1D projection of the 2D histogram.
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(c) B → Xsγ KN model events where the candidate
was incorrectly reconstructed (mass cross-feed). The
PDF is the 1D projection of the 2D histogram.
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(d) Generic BB events modelled as the sum of a
Gaussian (dashed) and Argus (dotted) function.
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(e) Continuum events modelled as an Argus func-
tion.

Figure 4.5: m′ES distribution PDF fits to MC data for B → XL
s γ candidates. PDF

distributions (solid blue line) are overlaid on the MC data whose error bars reflect the
statistical uncertainty from the chosen binning of those data. In all cases the number of
events indicated by the ordinate is arbitrarily determined from the MC data statistics.
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(a) B → K∗γ events with a correctly reconstructed
candidate (signal) modelled as a Cruijff function.
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(b) B → K∗γ events where the candidate was in-
correctly reconstructed (self cross-feed). The PDF
is the 1D projection of the 2D histogram.
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(c) B → Xsγ KN model events where the candidate
was incorrectly reconstructed (mass cross-feed). The
PDF is the 1D projection of the 2D histogram.
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(d) Generic BB events modelled as an order-2 poly-
nomial.
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(e) Continuum events modelled as an order-1 poly-
nomial.

Figure 4.6: ∆E distribution PDF fits to MC data for B → XL
s γ candidates. PDF

distributions (solid blue line) are overlaid on the MC data whose error bars reflect the
statistical uncertainty from the chosen binning of those data. In all cases the number of
events indicated by the ordinate is arbitrarily determined from the MC data statistics.
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(a) B → Xsγ KN model events with a correctly
reconstructed candidate (signal) modelled as a CB
function.
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(b) B → Xsγ KN model events where the candidate
was incorrectly reconstructed (self cross-feed). The
PDF is the 1D projection of the 2D histogram.
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(c) B → K∗γ events where the candidate was in-
correctly reconstructed (mass cross-feed). The PDF
is the 1D projection of the 2D histogram.
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(d) Generic BB events modelled as the sum of a
Gaussian (dashed) and Argus (dotted) function.
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(e) Continuum events modelled as an Argus func-
tion.

Figure 4.7: m′ES distribution PDF fits to MC data for B → XH
s γ candidates. PDF

distributions (solid blue line) are overlaid on the MC data whose error bars reflect the
statistical uncertainty from the chosen binning of those data. In all cases the number of
events indicated by the ordinate is arbitrarily determined from the MC data statistics.
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(a) B → Xsγ KN model events with a correctly re-
constructed candidate (signal) modelled as a Cruijff
function.
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(b) B → Xsγ KN model events where the candidate
was incorrectly reconstructed (self cross-feed). The
PDF is the 1D projection of the 2D histogram.
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(c) B → K∗γ events where the candidate was in-
correctly reconstructed (mass cross-feed). The PDF
is the 1D projection of the 2D histogram.
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(d) Generic BB events modelled as an order-2 poly-
nomial.
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(e) Continuum events modelled as an order-1 poly-
nomial.

Figure 4.8: ∆E distribution PDF fits to MC data for B → XH
s γ candidates. PDF

distributions (solid blue line) are overlaid on the MC data whose error bars reflect the
statistical uncertainty from the chosen binning of those data. In all cases the number of
events indicated by the ordinate is arbitrarily determined from the MC data statistics.
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Hypothesis Parameter Low Mass Fit High Mass Fit

Signal µ ( GeV) −0.00307±0.00037 −0.00445±0.00068
σL ( GeV) 0.06875±0.00044 0.06483±0.00075
σR ( GeV) 0.03461±0.00028 0.03412±0.00052
αL 0.2125±0.0023 0.2021±0.0037
αL 0.1189±0.0020 0.1148±0.0036

Generic BB a1 ( GeV −1) −6.9±1.7 −5.99±0.29
a2 ( GeV −1) 8±13 10.3±2.1

Continuum a1 ( GeV −1) 0.57±0.42 0.47±0.16

Table 4.3: Fitted ∆E PDF parameters in MC data for each event hypothesis showing
results for both low and high mass region B → Xsγ candidates.

4.4.3 B → Xdγ Candidate PDFs

Signal B → Xdγ events are modelled as a CB function in m′ES and a Cruijff function

in ∆E. Self cross-feed and mass cross-feed events are modelled as 2D histogram PDFs

whose shapes are determined from MC data. PID cross-feed events will have very similar

distributions to the signal but will be displaced in ∆E due to the difference in kaon and

pion mass. They are therefore also modelled as a CB function in m′ES and a Cruijff

function in ∆E. Xs self cross-feed and mass cross-feed events are also modelled as

2D histogram PDFs with shapes determined from MC data. Generic BB events are

modelled as the sum of a Gaussian and Argus function in m′ES , with the Gaussian

having relative normalisation, f , and a order-2 polynomial in ∆E. Finally continuum

events are modelled as an Argus function in m′ES and a order-1 polynomial in ∆E.

Figures 4.9 and 4.10 show the fits to MC data of m′ES and ∆E respectively for B → Xdγ

candidates in the low mass region and tables 4.4 and 4.5 list the respective estimator

values and associated errors calculated from each PDF fit. The corresponding fits for

B → Xdγ candidates in the high mass region are shown in figures 4.11 and 4.12 for

m′ES and ∆E respectively with the fitted estimator values and their errors also listed in

tables 4.4 and 4.5.

4.5 Combined Fit Strategy

To extract the yield for each of the signal types from experimental data four correspond-

ing EMLFs combining the relevant event hypotheses are required. This section describes

the implementation of these fits and presents the results of test studies carried out to

determine their stability and to check for any potential bias they may introduce.
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Hypothesis Parameter Low Mass Fit High Mass Fit

Signal µ ( GeV/c2) 5.27949±0.00002 5.27939±0.00004
σ ( GeV/c2) 0.002849±0.000014 0.002908±0.000034
α 1.417±0.023 1.569±0.067
n 3.85±0.15 3.21±0.31

Xs PID cross-feed µ ( GeV/c2) 5.27918±0.00016 5.27931±0.00027
σ ( GeV/c2) 0.00377±0.00014 0.00378±0.00021
α 1.32±0.14 0.82±0.11
n 2.67±0.55 14.1±9.3

Generic BB f 0.237±0.090 0.106±0.018
µ ( GeV/c2) 5.2786±0.0011 5.28074±0.00049
σ ( GeV/c2) 0.0034±0.0012 0.00290±0.00047
ξ −69±33 −49.7±5.7
p 0.45±0.32 0.668±0.053

Continuum ξ −23±18 −19.9±2.9
p 0.67±0.19 0.6673±0.0016

Table 4.4: Fitted m′ES PDF parameters in MC data for each event hypothesis showing
results for both low and high mass region B → Xdγ candidates.

Hypothesis Parameter Low Mass Fit High Mass Fit

Signal µ ( GeV) −0.00608±0.00090 −0.0070±0.0021
σL ( GeV) 0.0726±0.0011 0.0684±0.0026
σR ( GeV) 0.03673±0.00069 0.0352±0.0016
αL 0.2338±0.0060 0.237±0.014
αL 0.1061±0.0048 0.118±0.011

Xs PID cross-feed µ ( GeV) −0.0836±0.0086 −0.086±0.010
σL ( GeV) 0.081±0.013 0.155±0.026
σR ( GeV) 0.0459±0.0061 0.0412±0.0068
αL 0.24±0.11 -0.64±0.34
αL 0.145±0.028 0.143±0.031

Generic BB a1 ( GeV −1) −9.5±1.6 −6.58±0.38
a2 ( GeV −1) 31±12 16.7±2.9

Continuum a1 ( GeV −1) 0.16±0.28 −0.29±0.14

Table 4.5: Fitted ∆E PDF parameters in MC data for each event hypothesis showing
results for both low and high mass region B → Xdγ candidates.
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(a) B → ρ/ωγ events with a correctly reconstructed
candidate (signal) modelled as a CB function.
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(b) B → ρ/ωγ events where the candidate was in-
correctly reconstructed (self cross-feed). The PDF
is the 1D projection of the 2D histogram.
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(c) B → Xdγ KN model events where the candidate
was incorrectly reconstructed (mass cross-feed). The
PDF is the 1D projection of the 2D histogram.
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(d) Generic BB events modelled as the sum of a
Gaussian (dashed) and Argus (dotted) function.
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(e) Continuum events modelled as an Argus func-
tion.
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(f) B → K∗γ events where the candidate was incor-
rectly reconstructed (Xs self cross-feed). The PDF
is the 1D projection of the 2D histogram.
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(g) B → Xsγ KN model events where the candidate
was incorrectly reconstructed (Xs mass cross-feed).
The PDF is the 1D projection of the 2D histogram.
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Figure 4.9: m′ES distribution PDF fits to MC data for B → XL
d γ candidates. PDF

distributions (solid blue line) are overlaid on the MC data whose error bars reflect the
statistical uncertainty from the chosen binning of those data. In all cases the number of
events indicated by the ordinate is arbitrarily determined from the MC data statistics.
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(a) B → ρ/ωγ events with a correctly reconstructed
candidate (signal) modelled as a Cruijff function.
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(b) B → ρ/ωγ events where the candidate was in-
correctly reconstructed (self cross-feed). The PDF
is the 1D projection of the 2D histogram.
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(c) B → Xdγ KN model events where the candidate
was incorrectly reconstructed (mass cross-feed). The
PDF is the 1D projection of the 2D histogram.
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(d) Generic BB events modelled as an order-2 poly-
nomial.
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(e) Continuum events modelled as an order-1 poly-
nomial.
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(f) B → K∗γ events where the candidate was incor-
rectly reconstructed (Xs self cross-feed). The PDF
is the 1D projection of the 2D histogram.
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(g) B → Xsγ events where the candidate was in-
correctly reconstructed (Xs mass cross-feed). The
PDF is the 1D projection of the 2D histogram.
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(h) B → Xsγ events with a correctly reconstructed
candidate where the charged kaon is incorrectly
identified as a charged pion (Xs PID cross-feed).
Modelled as a Cruijff function.

Figure 4.10: ∆E distribution PDF fits to MC data for B → XL
d γ candidates. PDF

distributions (solid blue line) are overlaid on the MC data whose error bars reflect the
statistical uncertainty from the chosen binning of those data. In all cases the number of
events indicated by the ordinate is arbitrarily determined from the MC data statistics.



Chapter 4. Signal Yield Extraction 120

)
2

’ (GeV/cESm
5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )
2

E
ve

n
ts

 / 
( 

0.
00

2 
G

eV
/c

0

200

400

600

800

1000

1200

1400

1600

1800

2000

)
2

’ (GeV/cESm
5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )
2

E
ve

n
ts

 / 
( 

0.
00

2 
G

eV
/c

0

200

400

600

800

1000

1200

1400

1600

1800

2000

’ CBShape CBShape Signal Pdf
ES

m

(a) B → Xdγ KN model events with a correctly
reconstructed candidate (signal) modelled as a CB
function.
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(b) B → Xdγ KN model events where the candidate
was incorrectly reconstructed (self cross-feed). The
PDF is the 1D projection of the 2D histogram.
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(c) B → ρ/ωγ events where the candidate was in-
correctly reconstructed (mass cross-feed). The PDF
is the 1D projection of the 2D histogram.
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(d) Generic BB events modelled as the sum of a
Gaussian (dashed) and Argus (dotted) function.
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(e) Continuum events modelled as an Argus func-
tion.
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(f) B → Xsγ KN model events where the candidate
was incorrectly reconstructed (Xs self cross-feed).
The PDF is the 1D projection of the 2D histogram.
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(g) B → K∗γ events where the candidate was in-
correctly reconstructed (Xs mass cross-feed). The
PDF is the 1D projection of the 2D histogram.
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(h) B → Xsγ events with a correctly reconstructed
candidate where the charged kaon is incorrectly
identified as a charged pion (Xs PID cross-feed).
Modelled as a CB function.

Figure 4.11: m′ES distribution PDF fits to MC data for B → XH
d γ candidates. PDF

distributions (solid blue line) are overlaid on the MC data whose error bars reflect the
statistical uncertainty from the chosen binning of those data. In all cases the number of
events indicated by the ordinate is arbitrarily determined from the MC data statistics.
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(a) B → Xdγ KN model events with a correctly re-
constructed candidate (signal) modelled as a Cruijff
function.
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(b) B → Xdγ KN model events where the candidate
was incorrectly reconstructed (self cross-feed). The
PDF is the 1D projection of the 2D histogram.
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(c) B → ρ/ωγ events where the candidate was in-
correctly reconstructed (mass cross-feed). The PDF
is the 1D projection of the 2D histogram.
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(d) Generic BB events modelled as an order-2 poly-
nomial.
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(e) Continuum events modelled as an order-1 poly-
nomial.
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(f) B → Xsγ KN model events where the candidate
was incorrectly reconstructed (Xs self cross-feed).
The PDF is the 1D projection of the 2D histogram.
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(g) B → K∗γ events where the candidate was in-
correctly reconstructed (Xs mass cross-feed). The
PDF is the 1D projection of the 2D histogram.
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(h) B → Xsγ events with a correctly reconstructed
candidate where the charged kaon is incorrectly
identified as a charged pion (Xs PID cross-feed).
Modelled as a Cruijff function.

Figure 4.12: ∆E distribution PDF fits to MC data for B → XH
d γ candidates. PDF

distributions (solid blue line) are overlaid on the MC data whose error bars reflect the
statistical uncertainty from the chosen binning of those data. In all cases the number of
events indicated by the ordinate is arbitrarily determined from the MC data statistics.
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4.5.1 Combined Fit Overview

The combined fit to experimental data follows the formalism of (4.2) with the EMLF

mechanism resulting in the wj weights becoming the mean number of events of each

event hypothesis, nj . The nj and PDF parameters can either be fixed to pre-determined

values or allowed to float in the fit to data. The signal yield, nsig, must be floated as

ultimately this is the measurement to be extracted from the experimental data. The

choice of which other parameters to float is influenced by factors such as the data sample

size, computational power, any correlation between those parameters and knowledge of

inadequate modelling in MC data. Particularly important is the stability of the fit;

floating too many variables may result in failure to find a stable minimum in l and

therefore the fit will not converge. However, for each parameter which is fixed there is

a potential of introducing a systematic bias in the signal yield.

Accumulated experience from many years of BABAR data analysis means there is gener-

ally reasonable agreement between simulated data distributions and their experimental

data equivalents. However, for correctly reconstructed signal distributions, despite cor-

rections during detector simulation to improve the modelling of energy leakage in the

EMC, significant differences between widths in MC and experimental data for ∆E can

still exist. The ∆E signal width parameters, σL and σR, are therefore floated when

fitting for Xs candidates in both mass regions as the signal contributions in experi-

mental data will be significant enough to sufficiently measure them. The corresponding

values for these parameters in Xd candidate signal PDFs are then adjusted using the

relative difference in Xs candidate MC and experimental data. All remaining signal MC

parameters in ∆E and m′ES are fixed to the values measured in MC data.

Cross-feed normalisations are fixed in fits to data. Previous analyses in the BABAR radia-

tive penguin working group show that the ratio of signal to cross-feed is well modelled

by the simulated data and should be preserved when fitting to experimental data [1, 30].

Each decay flavour is therefore fitted iteratively between mass regions with the relevant

cross-feed yields corrected at each step to preserve their ratio relative to the new fitted

signal yield. Iterations continue until the signal yields in both mass regions for that

flavour converge. The B → Xsγ candidate data are fitted first and then the relevant

fixed cross-feed yields of B → Xsγ events in B → Xdγ are modified to proportionally

reflect the signal yields measured in the B → Xsγ data after convergence. Subsequently

the B → Xdγ candidate data are fitted for, again iterating between the mass regions

and updating the relevant B → Xdγ cross-feed yields at each step until convergence. In

B → Xdγ fits the PID cross-feed PDF parameters are fixed to the values measured in

MC data.
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Generic BB events are generated using decay rate measurements from previous BABAR

analyses and tend to show reasonable agreement between MC and experimental data.

Therefore the normalisations and PDF parameters are fixed using MC data estimates in

all fits. Continuum data distributions and normalisations are not so well modelled. In

this analysis it is found that floating continuum PDF parameters in the low mass region

fits result in them becoming unstable, therefore only the continuum yields are floated

and the PDF parameters are fixed to their MC data values. In the high mass region the

continuum Argus function shape parameter, ξ, and polynomial parameter, a1 are also

floated as this does not affect the fit stability.

Table 4.6 summarises which PDF parameters and yields are floated and which are fixed

in fits to experimental data. The systematic uncertainties which arise from fixing fit

components are estimated in chapter 5. Input values for variables floated in the combined

fit to experimental data are determined from the MC data. PDF parameterisation

variables are initially set to the values measured in MC data. The signal, cross-feed and

continuum yields are initially set to the estimated data yields given in tables 3.22, 3.23

and where applicable table 4.1.

4.5.2 Studies to Test for Fit Stability and Bias

The fits to experimental data are tested for potential bias and stability with ‘toy’ MC

studies. These repeat the fit numerous times with MC data where contributions from

each event hypothesis are aggregated into an ensemble dataset intended to reflect the

expected event distribution in real data. Such aggregate data can be either ‘pure’ or

‘embedded’. Pure aggregate data is generated randomly, seeding events from the de-

fault PDF distributions and normalisations for each event hypothesis in the fit; the

generated data therefore reflect those distributions. Embedded aggregate data comprise

sub-samples of the fully simulated MC events for a given event hypothesis and normal-

isation. Fits to pure aggregate data determine the suitability of combining the PDFs

used in a given fit, checking for any internal bias. Fits to embedded aggregate data will

check the suitability of the PDFs used for those data as correlations in the fully simu-

lated data may not be accounted for in the PDF distributions, hence leading to a bias

in the embedded fits. When embedding events the sample size is Poisson distributed

about the predetermined normalisation to reflect that an EMLF is to be used.

Toy fits to aggregate data determine the stability of the fit setup; if a significant num-

ber of these fits fail to converge then the fit setup will not be suitable for using on

experimental data and the strategy must be reconsidered. Furthermore any bias which

arises from floating a given parameter can be determined; the floated parameter will
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Hypothesis Category Fixed Floated

Signal Yield nsig

mES PDF µ, σ, α, n
∆E PDF (B → Xsγ) µ, αL, αR σL, σR
∆E PDF (B → Xdγ) µ, αL, αR, σL, σR

Self cross-feed Yield nscf (corrected iteratively)

Mass cross-feed Yield nmcf (corrected iteratively)

Xs PID cross-feed Yield nXsPID
(B → Xdγ only) mES PDF µ, σ, α, n

∆E PDF µ, αL, αR, σL, σR
Xs self cross-feed Yield nXsscf
(B → Xdγ only)

Xs mass cross-feed Yield nXsmcf
(B → Xdγ only)

Generic BB Yield nGenB

mES PDF ξ, p, f , µ, σ
∆E PDF a1, a2

Continuum Yield ncont

mES PDF (B → XLγ) ξ, p
∆E PDF (B → XLγ) a1

mES PDF (B → XHγ) p ξ

∆E PDF (B → XHγ) a1

Table 4.6: Summary of fixed and floated event class yields and PDF parameters in
fits to experimental data.

have a known value when the aggregate data is generated, αgen. The value returned

from the toy fit, αfit, will then have an associated ‘pull’ which measures the difference

in the generated and fitted values scaled by the error on that parameter calculated from

the fit, σα; explicitly the pull is defined as (αgen − αfit)/σα. For an unbiased fit the

pull distribution accumulated from numerous identical fits to different aggregate data

samples will approach a Gaussian distribution centred on zero with unit width. Any

departure from this distribution indicates internal bias in the fit which systematically

biases the parameter under consideration. Such biases can result from an ill-defined

fit strategy (for example fixing one parameter which is highly correlated with a floated

parameter) or simply due to too few statistics for a given event hypothesis. This bias

must be removed by revising the fit strategy or corrected for after the fit to data. In

this analysis only potential bias on the signal yield is corrected for.

For each of the four fits to be carried out on experimental data, 500 toy fits to pure

aggregate data are performed to check the suitability of combining the different event
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hypothesis PDFs in the fit. Additionally 500 toy fits embedding signal and cross-feed

simulated data are performed to investigate potential bias in the floated yields due to

these data. The resulting pull distribution histograms are fitted with a Gaussian function

using a χ2 minimisation technique [63].

The toy study framework does not allow the iteration between mass regions to correct

cross-feed components to be studied, so the cross-feed yields are additionally varied as

part of the systematic studies described in chapter 5. Furthermore the framework does

not persist the weighted corrections made to B → Xsγ phase space decays described in

section 4.2 so all embedded studies are carried out with PDF distributions and normali-

sations determined from unweighted MC data. It is not believed that weighting the MC

data will have a significant effect on the signal yield bias, so the unweighted embedded

studies are still considered a robust investigation of fit bias. The pure toy studies do use

the weighted MC data distributions and normalisations.

4.5.2.1 Xs Candidate Fits

Figure 4.13 shows the signal yield pull histograms and fitted Gaussian distributions from

aggregate MC data toy studies for fits to low and high mass B → Xsγ candidates. The

embedded toy studies require the signal, self cross-feed and mass cross-feed components

to be sampled from fully simulated MC data and the remaining event hypotheses gener-

ated as pure aggregate MC data. Tables 4.7 and 4.8 list the fitted Gaussian parameters,

µ and σ, to pull histograms for all components floated in the respective low and high

mass fits. Also shown are the average correlation coefficients, ρsig, between each floated

variable and the signal yield calculated from the embedded toy studies. In all cases

the signal yield distributions are deemed acceptable and the average pull on the em-

bedded signal yield distributions will be used to correct the signal yield obtained from

fits to experimental data. Pulls calculated from each floated variable in the embedded

study are used to estimate systematic uncertainties due to fit bias in section 5.1.3.4.

Low correlation coefficients mean that the relatively large pulls observed for some signal

PDF parameters are expected to have a relatively small effect on nsig and so are not a

significant concern. All fits performed in these studies converged successfully.

4.5.2.2 Xd Candidates

Figure 4.14 shows the signal yield pull histograms and fitted Gaussian distributions from

aggregate MC data toy studies for the fits to low and high mass B → Xdγ candidates.

Two distinct embedded toy studies are carried out. Initially the signal, Xd self cross-

feed and Xd mass cross-feed components are sampled from fully simulated MC data
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Parameter Pure Study Embedded Study ρsig

nsig µ 0.038±0.047 −0.127±0.048 1.000
σ 0.981±0.037 0.999±0.037

ncont µ −0.106±0.047 −0.092±0.047 -0.069
σ 0.978±0.044 0.998±0.037

σL µ −0.003±0.048 −0.461±0.054 0.098
σ 0.983±0.035 1.100±0.043

σR µ 0.070±0.051 −0.282±0.045 0.042
σ 1.012±0.040 0.964±0.034

Table 4.7: Fitted Gaussian parameters to pull distributions from toy MC studies
for all floated parameters in the low mass B → Xsγ fit. Also shown are the average
correlation coefficients between each floated variable and nsig for the embedded toy

studies.

Parameter Pure Study Embedded Study ρsig

nsig µ −0.050±0.044 0.017±0.045 1.000
σ 0.924±0.039 0.927±0.036

ncont µ −0.030±0.044 0.108±0.045 -0.202
σ 0.947±0.034 0.930±0.035

σL µ −0.077±0.049 −0.834±0.046 0.233
σ 1.014±0.039 0.954±0.034

σR µ −0.097±0.043 −0.326±0.047 0.167
σ 0.926±0.035 0.970±0.038

ξ µ −0.047±0.047 0.002±0.043 0.251
σ 0.968±0.036 0.895±0.036

a1 µ −0.003±0.046 −0.135±0.050 0.048
σ 0.943±0.037 1.042±0.041

Table 4.8: Fitted Gaussian parameters to pull distributions from toy MC studies for
all floated parameters in the high mass B → Xsγ fit. Also shown are the average
correlation coefficients between each floated variable and nsig for the embedded toy

studies.

and the remaining event hypotheses are generated as pure aggregate MC data. Finally

the signal, Xd self cross-feed, Xd mass cross-feed, Xs PID cross-feed, Xs self cross-feed

and Xs mass cross-feed components are sampled from fully simulated MC data and the

remaining event hypotheses are generated as pure aggregate MC data. Tables 4.9 and

4.10 list the fitted Gaussian parameters, µ and σ, to pull histograms for all components

floated in the respective low and high mass regions for these toy studies. Also shown

are the average correlation coefficients between each floated variable and nsig for the

embedded toy study where both Xd and Xs MC data are embedded. In all cases the

distributions are deemed acceptable and the average pull on the signal yield distribution

with both Xd and Xs cross-feed events embedded will be used to correct the signal yield
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(a) Low mass pure toy signal yield pull.
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(b) Low mass embedded signal and Xs cross-feed
toy signal yield pull.
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(c) High mass pure toy signal yield pull.
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(d) High mass embedded signal and Xs cross-feed
toy signal yield pull.

Figure 4.13: Toy study signal yield pull histograms and fitted Gaussian distributions
for B → Xsγ candidate fits to experimental data. Each study consists of 500 toy fits.

Parameter Pure Study Embedded Study Embedded Xs Study ρsig

nsig µ −0.182±0.049 −0.021±0.048 0.109±0.045 1.000
σ 1.033±0.038 1.010±0.035 0.940±0.041

ncont µ 0.051±0.049 0.009±0.048 −0.025±0.045 -0.151
σ 1.051±0.042 1.001±0.039 0.947±0.036

Table 4.9: Fitted Gaussian parameters to pull distributions from toy MC studies
for all floated parameters in the low mass B → Xdγ fit. Also shown are the average
correlation coefficients between each floated variable and nsig for the embedded toy

study where both Xd and Xs MC data are embedded.

obtained from fits to experimental data. Pulls from each floated variable in this full

embedded study are used to evaluate a fit bias systematic uncertainty in section 5.1.3.4.

All fits performed in these studies converged successfully.
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(a) Low mass pure toy signal yield pull.
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(b) Low mass embedded signal and Xd cross-feed
toy signal yield pull.

h
Entries  500

Mean   0.03546

RMS     1.032
Underflow       0

Overflow        0

Integral     500

Signal Yield Pull
-4 -3 -2 -1 0 1 2 3 4

E
v
e
n

ts
/(

0
.1

6
)

0

5

10

15

20

25

30

35

h
Entries  500

Mean   0.03546

RMS     1.032
Underflow       0

Overflow        0

Integral     500nSigpull_embd

(c) Low mass embedded signal, Xd cross-feed and
Xs cross-feed toy signal yield pull.
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(d) High mass pure toy signal yield pull.
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(e) High mass embedded signal and Xd cross-feed
toy signal yield pull.
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(f) High mass embedded signal, Xd cross-feed and
Xs cross-feed toy signal yield pull.

Figure 4.14: Toy study signal yield pull histograms and fitted Gaussian distributions
for B → Xdγ candidate fits to experimental data. Each study consists of 500 toy fits.
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Parameter Pure Study Embedded Study Embedded Xs Study ρsig

nsig µ −0.153±0.048 0.082±0.052 0.041±0.048 1.000
σ 0.983±0.041 1.051±0.043 0.995±0.043

ncont µ 0.036±0.047 −0.068±0.045 0.050±0.043 -0.222
σ 0.997±0.038 0.937±0.037 0.893±0.036

ξ µ −0.104±0.050 −0.027±0.046 −0.097±0.046 0.326
σ 1.031±0.043 0.986±0.037 0.979±0.035

a1 µ 0.057±0.044 0.028±0.046 −0.021±0.050 0.026
σ 0.907±0.035 0.951±0.036 1.031±0.043

Table 4.10: Fitted Gaussian parameters to pull distributions from toy MC studies
for all floated parameters in the high mass B → Xdγ fit. Also shown are the average
correlation coefficients between each floated variable and nsig for the embedded toy

study where both Xd and Xs MC data are embedded.

4.6 Fits To Experimental Data

The fits described above are applied to experimental data passing event selection cuts

in each of the four event reconstruction categories. The results of these fits and their

physical interpretation are presented here.

4.6.1 Xs Candidate Fit Results

The B → Xsγ fits to experimental data converge after four complete iterations between

the mass regions to correct cross-feed yields. Tables 4.11 and 4.12 list the initial, final

and bias corrected values with associated errors for all variables floated in the fits to

data in the low and high mass regions respectively. Bias corrections are applied by

multiplying the average pull from the relevant toy study by the error returned from the

experimental fit and then subtracting the resulting product from the fitted value for

that variable. The tables also show the revised cross-feed yields after iteration. Figure

4.15 shows projection plots of the combined fit model and key contributing backgrounds

for m′ES and ∆E in the low mass region. The corresponding projection plots for the

high mass region are shown in figure 4.16. The m′ES projection plots are produced after

applying a cut of −0.15≤ ∆E ≤0.1 GeV and the ∆E projection plots are produced after

applying a cut of m′ES ≥5.27 GeV/c2. All projection plots show the fit model is in good

agreement with the experimental data in both the high and low mass regions.

The low mass signal yield from experimental data is in reasonable agreement with the

expected signal yield. The high mass signal yield is lower than the corresponding es-

timated value from MC studies. However, this does not account for systematic effects

which are estimated in chapter 5 and so is not thought to be significant.
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(b) ∆E projection plot

Figure 4.15: Projection plots of m′ES and ∆E for B → XL
s γ candidate fit to ex-

perimental data. The legend is applicable to both plots and indicates the relative
contribution from each event hypothesis to the overall combined yield in experimental

data.
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(b) ∆E projection plot

Figure 4.16: Projection plots of m′ES and ∆E for B → XH
s γ candidate fit to

experimental data. The legend is applicable to both plots and indicates the relative
contribution from each event hypothesis to the overall combined yield in experimental

data.



Chapter 4. Signal Yield Extraction 132

Parameter Initial Value Final Value Fit Bias Corrected Value

nsig 801 770±29 774±29
ncont 144 118±14 119±14
σL 0.0688±0.0004 0.0523±0.0029 0.0536±0.0029
σR 0.0346±0.0003 0.0365±0.0018 0.0370±0.0018
nscf 32 31 -
nmcf 155 149 -

Table 4.11: Result of fit to experimental data for B → XL
s γ candidates showing

initial, final and bias-corrected values for variables floated in the fit as well as the
corrected cross-feed yields after iteration.

Parameter Initial Value Final Value Fit Bias Corrected Value

nsig 1112 1016±39 1015±39
ncont 1113 996±51 990±51
σL 0.0648±0.0008 0.0532±0.0032 0.0559±0.0032
σR 0.0341±0.0005 0.0355±0.0019 0.0361±0.0019
ξ −9.3±9.3 4.6±8.4 4.6±8.4
a1 0.47±0.16 0.31±0.32 0.35±0.32
nscf 879 803 -
nmcf 155 149 -

Table 4.12: Result of fit to experimental data for B → XH
s γ candidates showing

initial, final and bias-corrected values for variables floated in the fit as well as the
corrected cross-feed yields after iteration.

4.6.2 Xd Candidate Fit Results

Before fitting for B → Xdγ candidates in experimental data the expected Xs cross-feed

yields and ∆E signal distribution widths are corrected using the results from fits to

B → Xsγ candidates in experimental data. Table 4.13 lists the modified Xs cross-feed

component yields. They are corrected by applying the ratio of corresponding measured

and estimated signal yield obtained from the B → Xsγ candidate fits. Table 4.14 lists

the modified ∆E signal width parameters, σ′Xd, given by,

σ′Xd = σMC
Xd

σdataXs

σMC
Xs

, (4.14)

where σMC
Xd is the corresponding fitted width in B → Xdγ candidate signal MC, σdataXs is

the bias corrected width measured in B → Xsγ candidate experimental data and σMC
Xs

is the width from fitting B → Xsγ candidate signal MC data. The associated error for

σ′Xd is obtained from,

ε = σ′Xd
εdataXs

σdataXs

, (4.15)
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(a) Low mass B → Xdγ candidate
yields.

Yield Initial Corrected

nXsPID 13 13
nXsscf 22 21
nXsmcf 36 33

(b) High mass B → Xdγ candidate
yields.

Yield Initial Corrected

nXsPID 11 10
nXsscf 324 295
nXsmcf 18 17

Table 4.13: Corrections of B → Xsγ cross-feed component yields in (a) the low mass
and (b) the high mass fit to B → Xdγ candidates after fitting for B → Xsγ candidates

in experimental data.

(a) Low mass B → Xdγ fit.

Width Initial Corrected

σL 0.0726±0.0011 0.0566±0.0031
σR 0.0367±0.0007 0.0392±0.0019

(b) High mass B → Xdγ fit.

Width Initial Corrected

σL 0.0684±0.0026 0.0590±0.0034
σR 0.0352±0.0016 0.0373±0.0020

Table 4.14: Corrections to ∆E signal widths in (a) the low mass and (b) the high
mass fit to B → Xdγ candidates after fitting for B → Xsγ candidates in experimental

data.

where εdataXs is the associated error from the fit to B → Xsγ candidate experimental data.

The B → Xdγ fits to experimental data converge after three complete iterations between

the mass regions to correct cross-feed yields. Tables 4.15 and 4.16 list the initial, final and

bias corrected values with associated errors for all variables floated in the fits to data in

the low and high mass regions respectively. Also shown are the revised cross-feed yields

after iteration. Figure 4.17 shows projection plots of the combined fit model and key

contributing backgrounds for m′ES and ∆E in the low mass region. The corresponding

projection plots for the high mass region are shown in figure 4.16. The m′ES projection

plots are produced after applying a cut of −0.15≤ ∆E ≤0.1 GeV and the ∆E projection

plots are produced after applying a cut of m′ES ≥5.27 GeV/c2. All projection plots show

the fit model is in good agreement with the experimental data in both the high and low

mass regions.

The low mass signal yield in experimental data is in good agreement with the expected

yield. For the high mass signal yield an enhancement compared to MC data estimates

is observed. However, these estimates use an order of magnitude calculation for the

expected inclusive B → Xdγ BF. It follows that the initial and expected values should
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Parameter Initial Value Final Value Fit Bias Corrected Value

nsig 35 34±9 33±9
ncont 404 366±22 367±22
nscf 3 3 -
nmcf 7 12 -

Table 4.15: Result of fit to experimental data for B → XL
d γ candidates showing

initial, final and bias-corrected values for variables floated in the fit as well as the
corrected cross-feed yields after iteration.

Parameter Initial Value Final Value Fit Bias Corrected Value

nsig 37 60±15 59±15
ncont 1722 1450±49 1448±49
ξ −19.8±2.9 −5.0±5.3 −4.5±5.3
a1 −0.29±0.14 −0.12±0.22 −0.12±0.22
nscf 37 60 -
nmcf 8 8 -

Table 4.16: Result of fit to experimental data for B → XH
d γ candidates showing

initial, final and bias-corrected values for variables floated in the fit as well as the
corrected cross-feed yields after iteration.

therefore only be expected to agree in order of magnitude and this is indeed the case. The

statistical significance of this measurement does improve significantly on the previous

BABAR measurement [1] and represents the first evidence for B → Xdγ transitions in the

hadronic mass region above the ρ and ω resonances.

4.6.3 Quality of Fits to Experimental Data

Agreement between each combined yield PDF distribution and corresponding experi-

mental data is evaluated numerically using a chi square goodness of fit test [63, 64].

Each 2D combined yield PDF is integrated numerically in a grid of 20 bins in ∆E and

20 bins5 in m′ES for this calculation. The integrated grid is then projected in each vari-

able with a cut placed on the signal region of the orthogonal variable, thus emulating

the projected PDF distributions shown above as binned histograms. The corresponding

experimental data is projected identically for each variable. The chi square statistic

comparing the PDF and experimental data histograms is given by,

χ2 =
∑
k

(nkPDF − nkData)2

σ2
Data

, (4.16)

5The binning in m′ES is reduced from 35 bin to 20 bins for this calculation to ensure sufficient
statistics per bin in the projection of this variable. In particular in the B → XL

d γ fit has relatively few
experimental data events.
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(b) ∆E projection plot

Figure 4.17: Projection plots of m′ES and ∆E for B → XL
d γ candidate fit to ex-

perimental data. The legend is applicable to both plots and indicates the relative
contribution from each event hypothesis to the overall combined yield in experimental

data.
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(b) ∆E projection plot

Figure 4.18: Projection plots of m′ES and ∆E for B → XH
d γ candidate fit to

experimental data. The legend is applicable to both plots and indicates the relative
contribution from each event hypothesis to the overall combined yield in experimental

data.
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Fit Variable χ2
calc P(χ2 > χ2

calc)

B → XL
s γ mES 15.153 0.713

∆E 14.669 0.743

B → XH
s γ mES 9.664 0.961

∆E 17.7486 0.539

B → XL
d γ mES 13.308 0.822

∆E 16.760 0.606

B → XH
d γ mES 16.188 0.645

∆E 6.276 0.997

Table 4.17: χ2 goodness of fit tests for fits to experimental data. Each test has 19
DOF and the probability of obtaining a χ2 value greater than calculated given that

many DOF is shown.

where nkPDF and nkData are the respective projections for bin k and σData is the positive

(negative) Poisson error on the number of data events in that bin if (nkPDF − nkData)
is positive (negative). Given a calculated chi square value, χ2

calc, and the number of

degrees of freedom (DOF) in the calculation, which here is 19 for all cases, it is possible

to calculate the probability that the χ2 value would exceed χ2
calc in an independent

repetition of the test [63, 64]. This is to a good approximation the probability that the

agreement between model and data will be worse if the analysis were repeated on an

independent dataset. Table 4.17 lists the χ2 value calculated for each of the eight data

projections and associated probability. It can be seen the probabilities are all in excess

of 0.5 suggesting that the models are in all cases good representations of the data.

4.6.4 Interpretation of Results

The above signal yields are converted into measured BFs through the relation,

7∑
i=1

B(B → Xi,m
q γ) =

nsig
2nBBε

, (4.17)

where i is the mode index, q = s, d identifies the decay flavour, m = L,H identifies the

mass region, nsig is the signal yield from the fit, nBB is the total number of BB pairs

in data (470.9 million BB pairs) and ε is the signal event selection efficiency calculated

from MC data. Signal efficiencies are calculated by taking the ratio of signal events

surviving cuts in a given mass range to the total number of signal events generated with

true hadronic mass in that mass range. Table 4.18 lists the signal yields, calculated

efficiencies and estimated measured BFs with associated statistical errors.
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Fit Yield MC Efficiency Measured BF

B → XL
s γ 774±29 0.0447 (1.84±0.07)×10−5

B → XH
s γ 1015±39 0.0171 (6.30±0.24)×10−5

B → XL
d γ 33±9 0.0361 (0.97±0.27)×10−6

B → XH
d γ 59±15 0.0174 (3.60±0.92)×10−6

Table 4.18: Measured BF estimation and associated statistical error for each fit to
experimental data.



Chapter 5

Post Fit Studies

The results from fits to experimental data are interpreted as BF measurements. This

chapter describes the estimation of systematic uncertainties for each measured BF and

then details the model-dependent extrapolation studies using MC data to estimate the

inclusive BFs of both B → Xs,dγ. Finally the ratio of these inclusive fractions is used

to estimate a value of |Vtd/Vts|.

5.1 Experimental Systematic Uncertainties

Systematic uncertainties from the experimental techniques described in chapters 3 and

4 can be divided into five categories: Firstly differences in the reconstruction efficiency

of primary particles within the BABAR framework between MC and experimental data;

secondly differences in efficiencies between MC and experimental data of the cuts made

during event reduction; thirdly uncertainties arising from fixing PDF parameters and

event hypothesis yields in the MLF to experimental data; fourthly uncertainties in the

models used to generate signal MC data, in particular the KN photon energy spectrum

and JETSET phase space decay distribution of hadronic final states; finally the uncer-

tainty in the estimate of the total number of BB pair events in experimental data. The

error for this last category is given in section 3.1.1 and corresponds to a 0.6% uncertainty

on each measured BF.

5.1.1 Reconstruction Efficiencies

Lists of reconstructed charged tracks and neutral clusters accessed from the central event

store have different reconstruction efficiencies in MC and experimental data. This is be-

cause the GEANT4 simulation of the BABAR detector does not always accurately model

139
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Fit Class µtrk µtrkσtrk

B → XL
s γ 1.43 0.30%

B → XH
s γ 2.31 0.49%

B → XL
d γ 1.57 0.33%

B → XH
d γ 1.93 0.41%

Table 5.1: Estimates of the charged track reconstruction systematic uncertainty for
each experimental data fit.

the response of sub-detectors used in the reconstruction of those particle interactions.

Dedicated groups within the BABAR collaboration study these differences with MC and

experimental data control samples and advise analysts what uncertainty should be ap-

plied. The following summarises how the results of these dedicated BABAR studies have

been applied to the reconstructed signal states in this analysis.

5.1.1.1 Charged Tracks

Differences between the reconstruction efficiencies of charged tracks in MC and experi-

mental data are determined from a dedicated study carried out by the BABAR tracking

group. The analysis is described in [68] and uses τ pair decays, where one τ decays lep-

tonically and the subsequent charged lepton identifies the event. The recoiling τ must

have an odd number of charged daughter particles. The study uses events where the

recoiling τ has three charged daughters, two of which are charged pions either from a

ρ0 → π+π− decay or where both pions have total invariant mass greater than 300 MeV/c2

and opposite charge to the lepton from the other τ decay. These two pions and the

charged lepton are identified in event reconstruction through strict PID, geometrical

and kinematic criteria. The remaining charged daughter is either detected or not and

the difference in its detection efficiency between MC and experimental data is assigned

as the systematic uncertainty for charged track reconstruction. To account for the aver-

age multiplicity of these events being lower than that of a BB event a further correction

factor is applied to the systematic uncertainty. For the datasets and reconstruction

framework software used in this analysis the BABAR tracking group advise assigning an

uncertainty of σtrk=0.21% per track from the GoodTracksLoose list after the multi-

plicity correction is applied. For each of the fits described in chapter 4 the product of

this uncertainty with the mean track multiplicity of correctly reconstructed MC signal

decays after all event reduction cuts, µtrk, is therefore applied as the total systematic

uncertainty due to track reconstruction. These are summarised in table 5.1.
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B → XL
s γ B → XH

s γ B → XL
d γ B → XH

d γ

µπ0 0.29 0.30 0.45 0.48
µπ0σπ0 0.9% 0.9% 1.3% 1.4%

µη - 0.04 - 0.03
µηση - 0.1% - 0.1%

σγ 0.7% 0.7% 0.7% 0.7%

σneu 1.6% 1.7% 2.0% 2.2%

Table 5.2: Estimates of the neutral particle reconstruction systematic uncertainty for
each experimental data fit.

5.1.1.2 Neutral Particles

Studies performed by the BABAR neutral particles group are used to determine recon-

struction efficiency differences in MC and experimental data for lists of photons as well

as reconstructed π0 and η mesons. The analysis described in [69] uses control samples

of τ → πν and τ → ρν decays to compare the reconstruction efficiencies of π0 mesons

and single photons. Consequently the BABAR neutral group recommend assigning a sys-

tematic uncertainty of σπ0=3.0% per π0 from the Pi0DefaultMass list and 1.8% per

single photon from the GoodPhotonLoose list, therefore giving an uncertainty per η

meson of ση=3.6%, where η → γγ. The study described in [70] compares samples of

e+e− → µ+µ−γ events in MC and experimental data to determine differences in recon-

struction efficiency of high energy photons. Using the results of this study the BABAR

neutral group advise assigning an uncertainty of σγ=0.7% for photons with a laboratory

frame energy greater than 1 GeV.

Table 5.2 summarises the total systematic uncertainty, σneu, calculated for neutral par-

ticle reconstruction in each of the fits described in chapter 4. The π0 and η uncertainties

are calculated respectively as µπ0σπ0 and µηση, where µM is the mean multiplicity of

meson M in correctly reconstructed signal MC decays after event reduction cuts. As

all neutral particle reconstruction uncertainties arise from photon detection in the EMC

they are 100% correlated and therefore the total systematic uncertainty is a linear com-

bination of those due to individual particles.

5.1.2 Event Reduction Cut Efficiencies

Imperfections in the detector simulation can lead to differences in distributions of vari-

ables between MC and experimental data. In particular any difference in a variable

distribution on which a cut is applied during event reconstruction and subsequent re-

duction can lead to a systematic difference in the signal efficiency estimated from MC
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data and the true cut efficiency in experimental data. The calculated BFs assume the

MC efficiency accurately describes the data so an uncertainty must be applied for each

variable which may negate this assumption. All variables identified as a potential source

of uncertainty are listed below and their corresponding systematic uncertainty estimated.

5.1.2.1 Photon Cuts

The reduction cuts placed on the high energy photon of reconstructed candidates are the

π0/η candidate veto, variables relating to EMC cluster quality, specifically the second

moment and lateral moment and the cut on distance to the nearest track-matched clus-

ter. Previous radiative penguin analyses using BABAR data have made extensive studies

of such cuts and estimated the relative uncertainties which should be applied for each.

This analysis does not significantly modify the implementation of these cuts so none of

these studies are repeated. Instead the systematic uncertainties calculated in previous

analyses are applied.

The analysis described in [71] investigates differences in performing the π0/η candidate

veto in MC and experimental data. A simulated signal photon with energy 2.5 GeV in

the CM frame is embedded into different types of background MC and experimental

data samples and the efficiency of the veto compared. The corresponding efficiencies are

found to agree within 1% for each veto and hence this value is assigned as a systematic

error. The errors are added linearly giving a total systematic uncertainty of 2% for these

cuts. The same analysis also studies the effect of the track distance cut by embedding

photon clusters extracted from e+e− → e+e−γ events into generic BB MC data and

experimental data. An efficiency difference of 2% in applying the distance cut on these

two samples is observed and applied as a systematic uncertainty.

The analysis described in [59] investigates photon cluster quality variables by comparing

control samples of e+e− → µ+µ−γ decays in MC and experimental data. Only the

second moment cut is found to show an efficiency difference, the magnitude of which

is assigned as a systematic error of 2.1%. The cluster quality cut uncertainty is added

in quadrature with the distance cut uncertainty to give an combined photon quality

systematic error of 2.9%.

5.1.2.2 Charged Track PID

The BABAR PID group perform studies to identify differences in PID selector efficiencies

between MC and experimental data as a function of track momentum. These studies

use MC data events, from the control samples described in section 3.2.5, not used to
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train the classifiers and their experimental data equivalents. Figure 5.1 shows the re-

sults of these efficiency studies for the PID selectors used to identify signal candidates

during event reduction, pionKMTight and kaonBDTNotAPion. For this analysis signal

candidates are generally reconstructed from charged tracks with momentum less than

2.5 GeV/c in the laboratory frame. The associated average systematic uncertainty for

each selector are therefore taken from these plots to be 1.5% and 0.5% for pionKMTight

and kaonBDTNotAPion respectively. Corrections for potential differences in event topol-

ogy and track qualities between signal events and those used in the above control samples

are not provided by the PID group; however, they advise that these are unlikely to be

less than 1%. Consequently an additional uncertainty of 1% is added in quadrature

for each selector giving an overall uncertainty per track of σπ=1.8% and σK=1.1% for

pionKMTight and kaonBDTNotAPion respectively.
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(a) Efficiency comparisons for true pions passing the pionKMTight selector. From the plot of εdata/εMC an average
systematic uncertainty of 1.5% per pion with momentum up to 2.5 GeV/c is assigned.
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(b) Efficiency comparisons for true kaons passing the kaonBDTNotAPion selector. From the plot of εdata/εMC an
average systematic uncertainty of 0.5% per kaon with momentum up to 2.5 GeV/c is assigned.

Figure 5.1: Plots from the BABAR PID group showing efficiency comparisons of
PID selector performance between MC and experimental data control samples for (a)

pionKMTight and (b) kaonBDTNotAPion.

Signal candidates reconstructed in this analysis have PID selector requirements imposed

on all charged tracks used in their reconstruction. Kaon candidates must pass the

kaonBDTNotAPion selector and fail the pionKMLoose selector. Pion candidates must

pass the pionKMTight selector and fail the kaonBDTNotAPion selector. Charged tracks
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B → XL
s γ B → XH

s γ B → XL
d γ B → XH

d γ

µπ 0.71 1.31 1.57 1.93
µπσπ 1.3% 2.4% 2.8% 3.5%

µK 1.00 1.00 - -
µKσK 1.1% 1.1% - -

σPID 2.4% 3.5% 2.8% 3.5%

Table 5.3: Estimates of the PID selector systematic uncertainty for each experimental
data fit.

passing the pionKMTight selector are a subset of those passing the pionKMLoose selector.

One track in 106 from the GoodTracksLoose list is found to pass both the pionKMTight

and kaonBDTNotAPion in both signal MC and experimental data. For the purpose

of applying a PID systematic uncertainty it is therefore assumed that the selectors are

essentially mutually exclusive and that any track which fails one of these selectors due to

PID inefficiency will not simultaneously be accepted by the other selector. Consequently

the pion selector uncertainty need only be applied to tracks identified as pions and the

kaon selector uncertainty only to tracks identified as kaons. There is significant overlap

in many of the input variables used in each selector so a 100% correlation between the

pion and kaon selector inefficiencies are assumed. The total PID systematic uncertainty

for a class of signal events, σPID, is therefore taken to be,

σPID = σπµπ + σKµK , (5.1)

where µπ and µK are the mean number of respective charged pions and kaons in sig-

nal MC passing all event reduction cuts. Table 5.3 summarises the PID systematic

uncertainties assigned to each of the signal event classes.

5.1.2.3 Hadronic Candidate and Event Topology Cuts

Event reduction cuts placed on variables relating to the hadronic candidate or event

topology are considered individually for potential systematic differences in the signal

selection efficiency between MC and experimental data. Four variables are identified as

potential sources of uncertainty due to non-uniform distributions in MC data of correctly

reconstructed candidates. These are the minimum daughter momentum cut, the vertex

χ2 probability cut, the decay length cut which forms part of the K0
S veto in B → Xdγ

candidate reconstruction and the NN cut.

Systematic uncertainties from placing cuts on these variables are determined by taking

advantage of the dominant signal event contributions in fits to both the high and low
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mass region B → Xsγ candidate experimental data. In all cases the B → Xsγ can-

didate distributions for these variables are assumed to be a good representation of the

corresponding B → Xdγ candidate distributions. Therefore the systematic uncertainty

estimated from B → Xsγ data is also directly applicable to B → Xdγ data where the

signal contribution in experimental data is not significant enough to allow an indepen-

dent investigation. For each variable the cut is varied locally in MC and experimental

data. The PDF parameterisations and fits to experimental data are then repeated for

the new cut value and the corresponding value of nsig/εMC calculated. This is then nor-

malised to the value of nsig/εMC from the default cut value and the average deviation

relative to the default value is then assigned as the systematic error for that variable.

Figure 5.2 shows the variation in nsig/εMC with respect to the default cut value for

high and low mass B → Xsγ candidate data for the minimum daughter momentum cut,

|pmin|. The cuts are varied by ±0.1 GeV/c in steps of 0.025 GeV/c, which corresponds to

the step size used in cut optimisation. Across this range an average local deviation of

1.0% and 1.7% are observed for B → XL
s γ and B → XH

s γ candidate data respectively.

Figure 5.3 shows the variation in nsig/εMC with respect to the default cut value for high

and low mass B → Xsγ candidate data for the vertex χ2 probability cut. The cuts are

varied from 0.1% to 2.5% and across this range an average local deviation of 0.5% and

1.0% are observed for B → XL
s γ and B → XH

s γ candidate data respectively.

Figure 5.4 shows the variation in nsig/εMC with respect to the default cut value for high

and low mass B → Xsγ candidate data for the vertex decay length cut, xDEC . The cuts

are varied by ±0.1 cm and across this range an average local deviation of 0.2% and 0.4%

are observed for B → XL
s γ and B → XH

s γ candidate data respectively. This systematic

uncertainty only applies to B → Xdγ candidate data as the decay length cut forms part

of the K0
S veto which is only applied to these data.

Figure 5.5 shows the variation in nsig/εMC with respect to the default cut value for high

and low mass B → Xsγ candidate data for the NN cut. The cuts are nominally varied

by ±0.1; however, the default cut value of 0.92 for the low mass NN cut restricts the

upper limit of variation to 0.98. The cuts are varied in steps of 0.02 which corresponds

to the step size used for this variable during the cut optimisation. Across this range an

average local deviations of 2.5% and 3.1% are observed for B → XL
s γ and B → XH

s γ

candidate data respectively.
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(a) B → XL
s γ data, the default cut is 0.6 GeV/c2. From these variations an average sys-

tematic uncertainty of 1.0% is assigned.
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(b) B → XH
s γ data, the default cut is 0.425 GeV/c2. From these variations an average

systematic uncertainty of 1.7% is assigned.

Figure 5.2: Systematic variation of nsig/εMC as a function of |pmin| cut, with respect
to the default analysis cut for fits to (a) B → XL

s γ data (b) B → XH
s γ data. The

vertical error bars represent the statistical uncertainty in fits to experimental data of
the parameter nsig.
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(a) B → XL
s γ data, the default cut is 0.01. From these variations an average systematic

uncertainty of 0.5% is assigned.
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(b) B → XH
s γ data, the default cut is 0.01. From these variations an average systematic

uncertainty of 1.0% is assigned.

Figure 5.3: Systematic variation of nsig/εMC as a function of χ2 probability cut, with
respect to the default analysis cut for fits to (a) B → XL

s γ data (b) B → XH
s γ data.

The vertical error bars represent the statistical uncertainty in fits to experimental data
of the parameter nsig.
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(a) B → XL
s γ data, the default cut in B → XL

d γ data is 0.2 cm. From these variations an
average systematic uncertainty of 0.2% is assigned.
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(b) B → XH
s γ data, the default cut in B → XH

d γ data is 0.2 cm. From these variations an
average systematic uncertainty of 0.4% is assigned.

Figure 5.4: Systematic variation of nsig/εMC as a function of xDEC cut, with respect
to the default analysis cut for fits to (a) B → XL

s γ data (b) B → XH
s γ data. The

vertical error bars represent the statistical uncertainty in fits to experimental data of
the parameter nsig.
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(a) B → XL
s γ data, the default cut is 0.92. From these variations an average systematic

uncertainty of 2.5% is assigned.
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(b) B → XH
s γ data, the default cut is 0.86. From these variations an average systematic

uncertainty of 3.1% is assigned.

Figure 5.5: Systematic variation of nsig/εMC as a function of NN cut, with respect
to the default analysis cut for fits to (a) B → XL

s γ data (b) B → XH
s γ data. The

vertical error bars represent the statistical uncertainty in fits to experimental data of
the parameter nsig.
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5.1.3 Fit Uncertainties

Event hypothesis yields and PDF parameters which are not floated in the EMLF to

experimental data can lead to systematic differences in MC and experimental data.

These difference can arise if the simulation does not accurately reflect the fit variable

distribution shapes and normalisations or if the size of the MC data sample used to de-

termine fixed parameters leads to significant statistical uncertainties on those estimated

parameter values. Furthermore biases observed in toy MC studies indicate potential

systematic uncertainties on the signal yield due to variables floated in the combined fit

to data. Uncertainties must therefore be estimated for all potential sources of bias and

for variables held constant in the fit, the details of which are described below.

5.1.3.1 Fixed PDF Parameters

Fixing PDF parameters assumes that the PDF distributions in MC data are a good

model of the corresponding experimental data. However, the limited sample sizes of

each MC event class results in an associated statistical error for each fitted parameter.

These are the errors shown in tables 4.2, 4.3, 4.4 and 4.5. Consequently all fits to data

are repeated for each fixed parameter, varying its value to the extremes of correspond-

ing statistical error. The average variation in nsig is then assigned as the systematic

uncertainty due to that parameter. The systematic errors for all fixed variables in a

given PDF are then combined, taking any correlations between parameters in the PDF

fit into account. The correlation matrix between fixed PDF parameters, C, is calculated

from the fits to MC data discussed in section 4.4. The average systematic variations on

nsig are expressed as an error vector ε whose size is equal to the number of fixed PDF

parameters. This results in an overall systematic uncertainty for that PDF, ε′, given by,

ε′ =
√
εTCε. (5.2)

Systematic uncertainties for all PDFs in a given fit to data are combined in quadrature

to give an overall uncertainty due to all fixed parameters in that fit.

Tables 5.4 and 5.5 show the calculated uncertainties for each fixed parameter from m′ES

and ∆E PDF distributions respectively, as well as the associated combined uncertainty

for those variables. This gives a total systematic uncertainty of 0.3% for B → XL
s γ

data, 2.9% for B → XH
s γ data, 5.9% for B → XL

d γ data and 3.6% for B → XH
d γ data

due to fixed PDF parameters.

The 2D histogram PDFs which parameterise cross feed distributions do not have pa-

rameters to vary. However, each bin of the PDF does have an associated statistical error



Chapter 5. Post Fit Studies 151

Hypothesis Parameter B → XL
s γ B → XH

s γ B → XL
d γ B → XH

d γ

Signal µ 0.01% 0.01% 0.03% 0.23%
σ 0.02% 0.11% 0.10% 0.48%
α 0.04% 0.20% 0.14% 0.70%
n 0.03% 0.12% 0.08% 0.32%
combined 0.02% 0.10% 0.09% 0.47%

Xs PID cross-feed µ - - 0.12% 0.03%
σ - - 0.40% 0.20%
α - - 0.62% 0.28%
n - - 0.41% 0.16%
combined - - 0.36% 0.13%

Generic BB ξ 0.25% 1.17% 2.57% 0.34%
p 0.22% 2.55% 2.74% 0.14%
µ 0.04% 0.11% 0.71% 0.88%
σ 0.12% 1.03% 1.65% 1.81%
f 0.25% 2.91% 3.69% 3.60%
combined 0.14% 0.74% 2.24% 3.04%

Continuum ξ 0.68% - 12.49% -
p 0.75% 2.77% 14.26% 0.16%
combined 0.26% 2.77% 5.02% 0.16%

Total Uncertainty 0.30% 2.87% 5.51% 3.08%

Table 5.4: Systematic uncertainties from fixing m′ES PDF parameters in fits to ex-
perimental data.

so in principle each bin could be varied by the range of this error and the fit repeated.

The combination in quadrature of the average variation in nsig from all bins would then

give an overall uncertainty for the PDF. The fit framework used in this analysis does

not allow such variations to be made without significant modification, therefore this un-

certainty is not evaluated. The cross feed projection plots for fitted MC data in chapter

4 show that in the signal region these variations are generally small, therefore this is not

expected to be a dominant systematic uncertainty. Neglecting this error is consistent

with the previous version of this analysis [1].

5.1.3.2 Agreement Between MC and Experimental Data

The above systematic variations only account for uncertainties in fixed PDF parameters

due to statistical limits of the MC data used for their determination. In the limit

of infinite MC data points such uncertainties would be zero. An additional source of

systematic uncertainty can arise if a parameter value is fundamentally different in the
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Hypothesis Parameter B → XL
s γ B → XH

s γ B → XL
d γ B → XH

d γ

Signal µ 0.01% 0.04% 0.41% 0.03%
σL - - 1.14% 0.83%
σR - - 0.28% 0.90%
αL 0.03% 0.11% 0.19% 0.54%
αR 0.01% 0.06% 0.07% 0.44%
combined 0.03% 0.11% 0.88% 0.59%

Xs PID cross-feed µ - - 1.55% 0.75%
σL - - 1.28% 0.56%
σR - - 0.74% 0.42%
αL - - 0.61% 0.28%
αR - - 0.02% 0.05%
combined - - 0.52% 0.24%

Generic BB a1 0.01% 0.03% 0.08% 0.20%
a2 0.08% 0.17% 1.69% 1.82%
combined 0.07% 0.15% 1.74% 1.69%

Continuum a1 0.01% - 0.04% -
combined 0.01% - 0.04% -

Total Uncertainty 0.08% 0.19% 2.02% 1.81%

Table 5.5: Systematic uncertainties from fixing ∆E PDF parameters in fits to exper-
imental data.

MC data and experimental data due to modelling errors. However, such an uncertainty

will only be significant if the difference is much greater than the statistical variations

already considered.

Signal PDF distributions use the B → Xsγ fits to data as a control sample to compare

MC and experimental data distributions. In these data the contribution of signal events

dominates. Parameters which are known to not be modelled well in the MC data, specif-

ically the widths of ∆E distributions, are measured and used to correct the signal shapes

in B → Xdγ fits to data. The remaining fixed PDF parameters for these distributions

show no significant difference between MC and experimental data beyond the statistical

uncertainty of those parameters in the control sample.

Cross-feed distributions modelled as 2D histograms do not depend on fixed PDF pa-

rameters; however, the shape of these histograms could be expected to show systematic

differences between MC and experimental data particularly for decays generated from

JETSET. The application of weights to the B → Xsγ MC data discussed in section

4.2 can indicate the potential for such differences. In all cases the difference in shape

between weighted and unweighted bins for high mass B → Xsγ MC data histograms
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were found to be negligible. The only significant differences observed were in the overall

normalisations which are discussed below.

Variations of fixed PDF parameters for generic B background PDFs contribute signifi-

cantly to the overall fit uncertainty. Tables 5.4 and 5.5 show that this can be attributed

to the peaking component in m′ES as generally the Argus function parameter varia-

tions in m′ES for this PDF are anti-correlated and cancel. The peaking backgrounds

typically from events with low multiplicity B decays which have a similar final state

to the signal mode reconstructed. The previous version of this analysis [1] carried out

dedicated studies using charmless B → Xπ0 and B → Xη MC samples to model such

backgrounds with independent PDF distributions. No significant difference was ob-

served between parameters of the peaking components from these distributions with

those peaking backgrounds in other generic B decays. Therefore in this analysis they

were modelled with a combined PDF distribution determined from the generic sample

without such events vetoed. Despite a larger generated generic sample in this analy-

sis, the optimised cuts are generally tighter than before leading to similar numbers of

events used to fit the PDFs for this background. The resulting statistical variations on

fixed parameters are hence comparable. The previous analysis determined that these

variations were in excess of any underlying systematic differences between the MC and

experimental distribution parameters and this assumption is therefore made here too.

Indeed from the statistical variations only two parameters from the m′ES distributions

are of specific concern due to the sensitivity of nsig to their respective values: the Gaus-

sian width and relative fraction of Argus normalisation to Gaussian normalisation. The

fraction parameter uncertainty is to an extent addressed in the normalisation variation

discussed below. This is because the change in Gaussian normalisation will generally

be absorbed by the similarly peaking signal distribution, hence biasing nsig, whereas

the change in Argus normalisation will generally be absorbed by the floated continuum

Argus. Indeed variations in the Generic B normalisations are anti-correlated with nsig.

Knowledge of potential uncertainties from the Gaussian width can be determined from

signal distributions. The signal width in m′ES is well modelled by the MC data as shown

from the fits to B → Xsγ experimental data. This width represents the detector reso-

lution limit of this variable for correctly reconstructed candidates. The possibility of a

peaking background having width narrower than this limit is physically unreasonable.

With the exception of high mass B → Xsγ candidates the negative statistical varia-

tion of the fixed peaking background width takes it below the signal width as can be

seen from tables 4.2 and 4.4. Hence the variations made are already likely to be too

conservative; in fact the variations in nsig from varying the the Gaussian widths are

generally asymmetric with the negative, non-physical extreme giving the larger uncer-

tainty. This is because a wider peaking component leads to this background having a
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Yield B → XL
s γ B → XH

s γ B → XL
d γ B → XH

d γ

nscf 0.96% 3.39% 1.12% 1.92%
nmcf 1.99% 0.86% 0.79% 0.52%
nXsPID - - 3.11% 1.04%
nXsscf - - 1.61% 3.21%
nXsmcf - - 2.97% 0.24%
nGenB 0.61% 2.78% 7.33% 8.23%

Total Uncertainty 2.29% 4.47% 8.76% 9.12%

Table 5.6: Systematic uncertainties from fixing event hypothesis yields in fits to
experimental data.

more continuum-like shape, thus biasing the signal yield less.

The continuum PDF fixed parameter variations are only a significant concern in the

low mass B → Xdγ fit to experimental data where it was not possible to float the

Argus slope parameter due to toy study fits failing when this freedom was allowed in

the combined yield fit. However, the statistical variations made are relatively large due

to low MC data sample sizes after event selection cuts. The statistical variations are

therefore assumed to be sufficient to parameterise potential systematic uncertainties.

5.1.3.3 Fixed Event Class Normalisations

In fits to experimental data the relative normalisations of cross feed and generic B PDF

contributions are fixed, thereby assuming the MC data accurately represent the rela-

tive reconstruction efficiencies of candidates within these event classes. However, not

all of the contributions are necessarily well modelled, hence uncertainties exist in these

normalisations. To estimate the associated systematic uncertainty the fits to data are

repeated assuming a predetermined ‘conservative’ variation in each normalisation and

taking the average variation in nsig as the uncertainty for that event class. Individ-

ual uncertainties from each event class are combined in quadrature to give an overall

systematic uncertainty for a particular data fit.

Table 5.6 summarises the uncertainties estimated from variations made to each event

class normalisation in fits to experimental data. With the exception of PID cross feed,

cross feed contributions are varied by ±30%. This is because the application of weights

to B → Xsγ MC data discussed in section 4.2 do not vary the relative normalisations by

more than this amount. This is therefore used as an estimate of how much normalisations

could vary for all cross feed distributions. The iterative updating of these yields in fits

to data means that this is likely to be conservative variation as in those iterations all

cross-feed normalisations converged. The PID cross feed only contributes to B → Xdγ
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Parameter B → XL
s γ B → XH

s γ B → XL
d γ B → XH

d γ

nsig 0.5% 0.1% 2.9% 1.0%
ncont 0.0% 0.1% 0.1% 0.2%
σL 0.2% 0.8% - -
σR 0.0% 0.2% - -
ξ - 0.0% - 0.7%
a1 - 0.0% - 0.0%

Combined Uncertainty 0.6% 0.9% 2.9% 1.3%

Table 5.7: Systematic uncertainties from bias on parameters floated in fits to experi-
mental data.

data samples and is formed of correctly reconstructed modes which have been measured

in the corresponding B → Xsγ data to a statistical accuracy of lower than 5% in both

the high and low mass regions. Control sample studies by the PID group show that the

rate of charged kaons being misidentified as pions is less than 10% for all momenta with

reasonable agreement between MC and experimental data. For these reasons the PID

cross feed normalisation is varied by ±10% or ±1 event, whichever is greater.

Studies of generic B MC data find the generated events of such candidates are gener-

ally not dominated by a particular B decay. As discussed above, this background was

parameterised differently in the previous version of this analysis. The normalisation

is varied by ±50%. This is to conservatively allow for the possibility of a significantly

larger or smaller peaking m′ES background component which, as seen from the statistical

variations above, is potentially a very significant systematic uncertainty. It should be

noted that it is potentially possible to make a more accurate estimate of the agreement of

generic B background normalisation between MC and experimental data. The hadronic

mass distribution of B → XH
s γ candidates in generic B events contains a peak at the D0

where the D0 decay is identical to the an Xs final state, has been correctly reconstructed

but combined with a photon from elsewhere in the event. The corresponding peak is

also observed in the hadronic mass distribution of the experimental data. A detailed

long term study may therefore be possible using this peak to better understand any

difference between MC and experimental data normalisation.

5.1.3.4 Fit Bias

Bias on the signal yield from parameters floated in fits to data are a potential source of

systematic uncertainty. The embedded toy studies pulls calculated in section 4.5.2 are

used to correct floated parameters for biases in their own value in fits to experimental

data. To evaluate the effect of such biases on signal yields each fit is repeated fixing a
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given parameter to its bias corrected value and allowing all other parameters to float as

normal. The resulting variation in the signal yield is taken as the uncertainty due to the

bias from that parameter. The uncertainty on signal yield itself is simply the relative

size of its own bias correction. Table 5.7 lists the uncertainties calculated from this

method for each fit to data. The combined uncertainty takes correlations between the

floated variables into account by using correlation matrices calculated from the default

fits to experimental data and applying (5.2).

5.1.4 Signal Model Uncertainties

Assumptions made in modelling signal decay distributions in MC data can have asso-

ciated systematic uncertainties if the model is not an accurate representation of true

signal events or has any associated uncertainty itself. This section considers potential

sources of error on the signal efficiency calculated from signal MC samples and quantifies

the corresponding systematic uncertainties.

5.1.4.1 Photon Spectrum Model

Systematic variations to the KN photon spectrum parameterisation, given numerically

in chapter 1, are used to estimate the associated uncertainty of the signal efficiency due

to this model. Signal MC data with a total 2,122,000 events are generated for both

B → Xsγ and B → Xdγ decays under each set of alternative KN parameters. From

these data the relative contribution of signal states in the range 1.0≤ mX ≤2.0 GeV/c2

before cuts are determined. To estimate the number of events passing all cuts under an

alternative model the analysis is not repeated on these new data. Instead all generated

MC events in the signal mass range, Nsig, are separated into 50 equal width bins of

generated hadronic mass, each containing ni (i=1..50) events. These are then normalised

to the total number of events in the signal mass range, giving a proportion of events

in each bin, ζi = ni/Nsig. The proportion of events in that bin are then compared to

the corresponding proportion under the default KN parameterisation, ζ ′i, through the

relation ζi/ζ ′i. This ratio of proportions is interpreted as a weight which, when applied to

the default KN model, maps the default parameterisation onto the new parameterisation.

Thus a weighted sum based on the generated hadronic mass of correctly reconstructed

events passing all cuts in the default model gives the expected number of events which

will pass all cuts under that alternative parameterisation.

Figure 5.6 shows plots of ζi/ζ ′i across the mass range for each alternative KN model

for both B → Xsγ and B → Xdγ transitions. To simplify the calculation of weighted

event sums, the weights are parameterised as a linear function in hadronic mass by
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(a) B → Xsγ alternative KN mass weights and fitted linear polynomials. The left plot shows the weight dis-
tribution needed when using the default parameterisation, (mb, µ

2
π)=(4.65 GeV/c2,0.52 GeV2), to emulate the

parameterisation (4.70 GeV/c2,0.45 GeV2) and the right plot the corresponding distribution to emulate the param-
eterisation (4.60 GeV/c2,0.60 GeV2).
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(b) B → Xdγ alternative KN mass weights and fitted linear polynomials. The left plot shows the weight dis-
tribution needed when using the default parameterisation, (mb, µ

2
π)=(4.65 GeV/c2,0.52 GeV2), to emulate the

parameterisation (4.70 GeV/c2,0.45 GeV2) and the right plot the corresponding distribution to emulate the param-
eterisation (4.60 GeV/c2,0.60 GeV2).

Figure 5.6: Calculated hadronic mass event weight distributions for emulation of
alternative KN model parameterisations from the default in (a) B → Xsγ MC data
and (b) B → Xdγ MC data. Each distribution is fitted with a linear polynomial

function.
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KN parameterisation Weight Function εMC

(4.65 GeV/c2,0.52 GeV2) 1.000 1.71%
(4.60 GeV/c2,0.60 GeV2) 0.733+0.148mX 1.82%
(4.70 GeV/c2,0.45 GeV2) 1.272−0.176mX 1.62%

Table 5.8: Fitted weight functions and calculated MC data efficiency for alternative
KN parameterisations in B → Xsγ MC data.

KN parameterisation Weight Function εMC

(4.65 GeV/c2,0.52 GeV2) 1.000 1.74%
(4.60 GeV/c2,0.60 GeV2) 0.733+0.147mX 1.85%
(4.70 GeV/c2,0.45 GeV2) 1.285−0.185mX 1.64%

Table 5.9: Fitted weight functions and calculated MC data efficiency for alternative
KN parameterisations in B → Xdγ MC data.

fitting 1D polynomials to the corresponding histograms. Tables 5.8 and 5.9 list the

respective event weight functions and calculated MC data efficiencies for different KN

models in B → Xsγ and B → Xdγ MC data. From these efficiency variations an average

uncertainty of 5.8% and 6.0% are assigned to the measured B → XH
s γ and B → XH

d γ

BFs respectively.

5.1.4.2 JETSET Phase Space Model

Uncertainties in the signal efficiency due to differences between the relative distribution

of final states for the JETSET decay model in KN signal MC data and their true

distribution in experimental data are evaluated for B → XH
s γ and B → XH

d γ decays.

As discussed in section 4.2, correction weights have been applied to B → XH
s γ MC data

before calculating the signal efficiency. Therefore the only remaining uncertainty in the

distribution of these decays in experimental data arises from the statistical uncertainty

of these measured weights. The weights and their associated uncertainties are given

in table B.6 of appendix B. For each signal mode the applied weight is varied to the

extremes of its quoted error while keeping the other signal weights constant. The total

signal efficiency, εMC , is then recalculated and the average relative variation in the

efficiency assigned as the associated uncertainty for that mode. The uncertainties for

each mode are then added in quadrature to give an overall systematic uncertainty due to

the relative distribution of signal states in B → XH
s γ data. Table 5.10 list the relative

uncertainty of each signal mode due to its weight. The combined uncertainty for all

signal modes is 3.5%.
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Signal Mode Uncertainty

B0 → K+π−γ 1.0%
B0 → K+π0γ 0.5%
B0 → K+π−π+γ 0.6%
B0 → K+π−π0γ 1.2%
B0 → K+π−π+π−γ 0.9%
B0 → K+π−π+π0γ 2.7%
B0 → K+ηγ 0.7%

All Signal 3.5%

Table 5.10: Systematic uncertainties due to uncertainties in the weights applied to
B → XH

s γ signal MC data modes.

Calculating the corresponding uncertainty for B → XH
d γ data is less straightforward

as no information from experimental data exist and the default distribution of final

states from JETSET decays is assumed to be correct when calculating εMC . Instead an

alternative model of B → XH
d γ final state distributions is proposed using the known

weights from B → XH
s γ data , applying them to the B → XH

d γ data and then taking the

resulting change in MC efficiency as an estimate of the size of systematic variation which

could occur due to the difference in final state distributions in MC and experimental

data.

The alternative model of signal mode contributions for B → XH
d γ data is designed to

reflect the relative contribution of different final states previously measured in B →
XH
s γ data. For these data the s quark produced in the radiative penguin transition is

subsequently found in either a charged or neutral K meson. In substituting the s quark

for a d quark the confined quark state substitutions listed in table 5.11 are assumed.

From isospin symmetry, the |dd〉 state contributes to the π0, η and η′ states in the

pseudoscalar meson nonet. Under this scheme the meson states are given as [5],

π0 =
(|uu〉 − |dd〉)√

2
, η =

(|uu〉+ |dd〉 − 2 |ss〉)√
6

, η′ =
(|uu〉+ |dd〉+ |ss〉)√

3
. (5.3)

It follows that, ignoring factors such as mass difference which break SU(3) isospin sym-

metry, the |dd〉 state will be found in the ratio (π0:η:η′)=(3:1:2) and thus the neutral

kaon states can be substituted by these mesons in this ratio.

For each signal mode in B → XH
d γ MC data a weight can now be calculated from

the known B → XH
s γ weights. In generated B → XH

s γ signal MC data after weights

are applied, a given mode i will contribute a fraction fsi to the total number of events

with hadronic mass greater than 1.0 GeV/c2. Adding the fsi of all B → XH
s γ modes

which, on substitution of the kaon, correspond to the signal B → XH
d γ mode j under
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s State d State Meson Substitution

|su〉 |du〉 K− → π−

|sd〉 |dd〉 K
0 → π0, η, η′

Table 5.11: Comparison of final state particles when substituting the s quark for a d
quark.

consideration gives the expected fraction of mode j events with hadronic mass greater

than 1.0 GeV/c2, fdj . The weight, wj , to apply to B → XH
d γ events of mode j is then

the ratio of this fraction with the original fraction of such events, fd
′
j , generated in the

MC data:

wj =
fdj

fd
′
j

=
∑

i f
s
i

fd
′
j

. (5.4)

Table 5.12 lists all of the B → XH
s γ modes corresponding to a B → XH

d γ signal mode

from kaon substitution as well as showing the calculated weights. The mode B+ →
π+π−π+π0γ can contain contributions from intermediate η → π+π−π0 transitions hence

under substitution the decay B+ → K0π+γ also contributes partially. This is accounted

for in the calculation of the weight for this mode using the world average rate of η →
π+π−π0 decays as a proportion of all potential η meson decays [14].

After weights are applied to the B → XH
d γ MC data the signal efficiency, εMC , is

calculated to be 1.54% which is a variation of 12.0% relative to the default efficiency

used to calculate the measured BF. This is therefore assigned as the estimate of system-

atic uncertainty due to potential differences in MC and experimental data final state

distributions for B → XH
d γ data.

5.1.4.3 Resonant Final States

Uncertainties in the calculated signal efficiency for measurements in the low mass region

exist due to the assumed relative contributions of different resonant states. In calculat-

ing εMC the relative resonant contributions are assumed to reflect the best measured

values taken from [14]. Each measurement has a quoted error which results in a corre-

sponding uncertainty due to that resonance in the efficiency calculation. To numerically

evaluate this uncertainty the efficiency is recalculated varying the relative contribution

of each resonance within the extremes of its error while leaving the other resonant con-

tributions unchanged. The average relative variation in the efficiency is then interpreted

as the uncertainty due to that resonance. Each resonance final state is assumed to have

been measured independently thus the individual uncertainties are combined in quadra-

ture to give an overall uncertainty due to all contributing resonances. Tables 5.13 lists

the measured rates and associated uncertainties in the calculated signal efficiency of
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B → XH
d γ Mode Contributing B → XH

s γ Modes Calculated Weight

B0 → π+π−γ B0 → K+π−γ 0.73

B+ → π+π0γ B0 → K+π0γ

B+ → K0π+γ 0.47

B+ → π+π−π+γ B+ → K+π−π+γ 1.78

B0 → π+π−π0γ B0 → K+π−π0γ

B0 → K0π+π−γ 1.38

B0 → π+π−π+π−γ B0 → K+π−π+π−γ 0.77

B+ → π+π−π+π0γ B0 → K+π−π+π0γ

B+ → K0π+π−π+γ

B+ → K0π+γ 0.96

B+ → π+ηγ B+ → K+ηγ

B+ → K0π+γ 1.09

Table 5.12: Weights assigned to B → XH
d γ signal modes to obtain an alternative

model of final state contributions. The B → XH
s γ modes used to calculate each weight,

as described in the text, are also shown.

Resonant Decay BF from [14] Uncertainty

B → K∗+γ (4.0±0.3)×10−5 0.4%
B → K∗0γ (4.0±0.2)×10−5 0.2%
B → ρ+γ (8.8+2.9

−2.5)× 10−7 1.5%
B → ρ0γ (9.3±2.1)×10−7 3.1%
B → ωγ (4.6+2.0

−1.7)× 10−7 7.4%

Table 5.13: Uncertainty in signal efficiency due to assumed relative contribution of
individual resonant final states.

resonances contributing to B → XL
s γ and B → XL

d γ data. The relative contribution

of resonant decays to non-reconstructed final states and the proportion of events with

hadronic mass less than 1.0 GeV/c2 are assumed to be accurately modelled by MC data.

The combined uncertainty in the signal efficiency is 0.4% for B → XL
s γ data and 8.2%

for the B → XL
d γ data.

5.1.5 Summary of Experimental Systematic Uncertainties

Table 5.14 summarises all systematic uncertainty estimates detailed above. These are

combined in quadrature to give an overall systematic uncertainty for each of the five

sources of systematic error outlined and hence a total systematic uncertainty for each

measured BF. Table 5.15 summarises the four measured BFs showing the statistical

uncertainty and applying the corresponding systematic uncertainties given in table 5.14.
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The B → XL
s γ systematic uncertainty is dominated by the event reductions cuts, in

particular the photon selection, PID requirements and NN cut. There is no dominant

systematic uncertainty for B → XH
s γ decays; the event selection, fit and signal model

uncertainties all have similar contributions. For both high and low mass B → Xdγ the

fit uncertainties, and signal model uncertainties, become more dominant. However, both

of these measurements are still statistically limited.

5.2 Measured BF Extrapolation and Extraction of |Vtd/Vts|

Extraction of |Vtd/Vts| requires extrapolation of the measured BFs to the full B →
X(s,d)γ branching ratios required to calculate R in (1.67). This extrapolation is based

on the MC data and hence further systematic uncertainties due to potential differences

compared to the experimental data must be evaluated. This section describes each

BF extrapolation, estimates the associated systematic uncertainties and calculates R to

extract |Vtd/Vts|.

5.2.1 Low Mass Region BF Extrapolation

Measured BFs with hadronic mass less than 1.0 GeV/c2 are modelled entirely as exclusive

resonant transitions. Corrections for unreconstructed final states of the subsequent

vector meson decays are therefore required.

For B → XL
s γ data the contribution in MC data from unreconstructed final states are

assumed to be accurately represented by the MC data which considers strong decay

contributions of K∗ mesons as well as K∗ → Kγ final states. Tables B.2 and B.1

of appendix B show the relative contribution of unreconstructed final states to these

transitions with hadronic mass less than 1.0 GeV/c2 in MC data. In total 50.1% of

the final states are not reconstructed. Correcting for this gives an extrapolated BF of

[3.68± 0.14(stat.)± 0.20(sys.)]× 10−5. As the decays of K∗ mesons are well known [14]

no systematic uncertainty is applied due to this extrapolation.

The MC model of B → XL
d γ data only considers strong decays of ρ mesons which

correspond to reconstructed modes. The decay model of ω mesons does contain con-

tributions from unreconstructed final states, a summary of which is given table B.3

of appendix B for MC data with hadronic mass less than 1.0 GeV/c2. In total, after

weighting the relative contributions of (ρ+:ρ0:ω) to world average measurements, 2.0%

of final states are not reconstructed. Correcting for these gives an extrapolated BF of

[0.99±0.27(stat.)±0.14(sys.)]×10−6. The dominant ω → π+π−π0 transition has an as-

sociated uncertainty of 0.8% [14]; however, propagating this as a systematic error in the
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Fit Measured BF

B → XL
s γ (1.84±0.07±0.11)×10−5

B → XH
s γ (6.30±0.24±0.68)×10−5

B → XL
d γ (0.97±0.27±0.14)×10−6

B → XH
d γ (3.60±0.92±0.64)×10−6

Table 5.15: Measured BF estimation showing associated statistical error for each fit
to experimental data and the corresponding estimate of systematic uncertainty before

BF extrapolation.

extrapolation shows it has a negligible contribution to the overall systematic uncertainty

and so it is not considered further.

5.2.2 High Mass Region BF Extrapolation

Measured BFs with hadronic mass in the range 1.0 ≤ mX ≤ 2.0 GeV/c2 are used to

estimate the total BF of B → X(s,d)γ transitions with mass greater than 1.0 GeV/c2.

This extrapolation is made in two steps, firstly a total BF in the measured mass range

is estimated and then the KN model is used to infer the correction required for unre-

constructed states with mass greater than 2.0 GeV/c2.

5.2.2.1 Correction for Final States with 1.0 ≤ mX ≤ 2.0 GeV/c2

The total number of events in the mass range 1.0 ≤ mX ≤ 2.0 GeV/c2 is determined by

the KN model parameterisation. With the default MC models (weighted for B → XH
s γ

data and as generated for B → XH
d γ data) the correction is simply determined by the

ratio of the total number of signal events to all events in the mass region. For B → XH
s γ

MC data 35.4% of events in this mass range are signal modes giving an extrapolated

BF of [17.8 ± 0.7(stat.) ± 1.9(sys.)] × 10−5. The corresponding signal proportion in

B → XH
d γ MC data is 42.3% of events in the mass range which gives extrapolated BF

[8.5±2.2(stat.)±1.5(sys.)]×10−6. However, the proportion of signal events in the mass

range is not necessarily well modelled due to uncertainties in the JETSET phase space

decay model so further systematic uncertainties must be applied to the extrapolated

BFs to account for this.

In section 5.1.4.2 varying the relative contributions of signal modes was used to deter-

mine a systematic uncertainty in the signal efficiency. In these alternative models the

total number of signal events were not constant. It follows that, assuming the model

changes do not significantly alter the results of fits to data, these variations result in a

different extrapolated BF as well as a different measured BF. The errors must therefore
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Signal Mode Uncertainty

B0 → K+π−γ 1.8%
B0 → K+π0γ 1.2%
B0 → K+π−π+γ 2.9%
B0 → K+π−π0γ 1.5%
B0 → K+π−π+π−γ 0.6%
B0 → K+π−π+π0γ 0.9%
B0 → K+ηγ 1.4%

All Signal 4.3%

Table 5.16: Systematic uncertainties due to uncertainties in the weights applied to
B → XH

s γ signal MC data modes after BF extrapolation in the signal mass range.
These values modify those given in table 5.10 as potentially correlated variations in the

overall proportion of signal events within the mass range are accounted for.

be propagated for the extrapolated BF accounting for this effect. Table 5.16 lists the

average variation in the extrapolated BFs obtained from the existing calculated uncer-

tainty for each B → XH
s γ signal mode. These are then combined in quadrature to

give an overall corrected systematic uncertainty of 4.3% for the extrapolated BF. When

propagating the alternative B → XH
d γ signal model systematic uncertainty, the relative

proportion of signal events in the new model is 45.0% and the measured BF due to

the efficiency change is 4.09×10−6. This therefore results in an extrapolated BF which

varies by 6.9% from the default value. This is assigned as the corrected systematic for

the extrapolated BF of these data.

Further uncertainties in the proportion of signal events within the signal mass region

arise from the modelled distribution of unreconstructed modes the relative contributions

of which are not well known. These are classified into two categories, those with 2-4

bodies in the final state and those with 5 or more bodies in the final state. The previous

version of this analysis investigated the contribution from such states by engineering

alternative fragmentation models of the hadronic system and seeing how the propor-

tion of those unreconstructed classes change relative to the default model [1]. Models

considered are applied to both Xs and Xd MC data and include the default JETSET

fragmentation, the application of weights measured in previous B → Xsγ experimental

datasets (see section 4.2) and a hybrid model of exclusive resonant MC data with the

JETSET events. The hybrid model uses the resonant decays listed in table 5.17; the

resonant decays are assigned half of the the total inclusive width in this region with the

other half remain JETSET decays. Each resonance is assumed to contribute equally.

The variations in unknown modes under these alternative models corresponds to no more

than 50% for either category, hence this can be considered a conservative limit. The pre-

vious analysis study motivates assigning a systematic uncertainty on the extrapolated
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B → XH
s γ B → XH

d γ

B → K1(1270)γ B → h1(1170)γ
B → K1(1400)γ B → b1(1235)γ
B → K∗(1410)γ B → a1(1260)γ
B → K∗2 (1430)γ B → f0

2 (1270)γ
B → K∗(1680)γ B → f0

1 (1285)γ
B → a0

2(1320)γ

Table 5.17: Resonant decays used to construct the hybrid fragmentation model in-
vestigated in the previous version of this analysis [1].

BF whereby unreconstructed contributions in the default models are varied individually

by ±50%. The uncertainty for a given unknown category is calculated by varying one

unknown mode while keeping the relative contribution of signal and the remaining un-

known mode constant, but renormalising them relative to the varied mode to maintain

overall unity in the mass range. The resulting variation in the signal contribution then

forms the systematic uncertainty; if the variation is asymmetric the larger value is taken.

By keeping the other unknown mode constant relative to the signal in a given variation

the uncertainties from each unknown class are to a good approximation independent

and hence their sum in quadrature gives the overall uncertainty due to unreconstructed

final states from JETSET decays.

The distribution of unreconstructed states in B → XH
s γ MC data do not include decays

corresponding to a signal mode where the K+ final state meson is substituted for a K0

meson. This is because such decays exhibit an isospin symmetry with the signal modes

and are therefore constrained by that symmetry. In the signal mass range the proportion

of signal modes is 35.4%, corresponding K0 modes 36.4%, other 2-4 body modes 16.0%

and 5 or more body modes 12.2%. Varying the 2-4 body mode proportion by ±50% gives

an average relative change in the extrapolated BF of 9.6%. The corresponding variation

of 5 or more body modes gives a change of 7.0%. An overall systematic uncertainty

due to unreconstructed modes is therefore taken to be 11.9%. Accounting for this and

the above corrected signal JETSET uncertainty the extrapolated BF in the signal mass

range for B → XH
s γ data is therefore [17.8± 0.7(stat.)± 2.9(sys.)]× 10−5.

Unreconstructed states in B → XH
d γ MC data are all varied as none are expected to be

constrained by the signal modes. In the signal mass range for these data the proportion

of signal modes is 42.3%, other 2-4 body modes 27.0% and 5 or more body modes

30.7%. The uncertainty obtained from varying the 2-4 body mode proportion by ±50%

is 19.2% and the corresponding uncertainty due to 5 or more body modes is 23.3%.

This gives an overall systematic uncertainty due to unreconstructed modes of 30.2%.

Correcting the systematic error to account for the above extrapolation uncertainties gives
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the extrapolated BF in the signal mass range for B → XH
d γ data as [8.5± 2.2(stat.)±

2.9(sys.)]× 10−6.

5.2.2.2 Correction for Final States with mX >2.0 GeV/c2

Given the extrapolated BF values calculated in the hadronic mass range 1.0 ≤ mX ≤
2.0 GeV/c2, estimates of the total BF for all masses greater than 1.0 GeV/c2 are made

for both B → XH
s γ and B → XH

d γ data. The generated signal MC data using the

default KN model parameterisation shows that for all masses greater than 1.0 GeV/c2

in B → XH
s γ data, 60.2% of events are generated with 1.0 ≤ mX ≤ 2.0 GeV/c2. Given

this proportion the total BF with mass greater than 1.0 GeV/c2 is calculated to be

[29.5± 1.1(stat.)± 4.8(sys.)]× 10−5. For B → XH
d γ data the corresponding proportion

of events with 1.0 ≤ mX ≤ 2.0 GeV/c2 is also 60.2% which gives the total BF with

mass greater than 1.0 GeV/c2 as [14.2± 3.6(stat.)± 4.8(sys.)]× 10−6. However, the KN

model contribution to the systematic uncertainties in the above BFs must be corrected

to account for uncertainties in the extrapolation due to the parameterisation of this

model. For each transition flavour the complete high mass extrapolation is repeated

assuming alternative KN parameterisations. The efficiencies given in table 5.8 are used

to revise the measured BF calculation assuming no change in the result of the fit to

experimental data. The BFs for all hadronic masses greater than 1.0 GeV/c2 are then

recalculated using the relevant proportions of signal candidates under the alternative

KN scheme. The average variation in the full BF for B → XH
s γ data is 1.6% and

the corresponding variation in B → XH
d γ data is 1.9%. These are therefore assigned

as the corrected systematic uncertainties due to different parameterisations of the KN

model. With this correction applied the the total BFs for transitions with hadronic mass

greater than 1.0 GeV/c2 is [29.5± 1.1(stat.)± 4.5(sys.)]× 10−5 for B → XH
s γ data and

[14.2± 3.6(stat.)± 4.7(sys.)]× 10−6 for B → XH
d γ data.

5.2.2.3 Summary of Extrapolated BFs

Table 5.18 summarises the extrapolated BFs calculated for each mass region. For the

high mass region both the extrapolated BF in the hadronic mass range 1.0≤ mX ≤2.0 GeV/c2

and the extrapolated BF for all hadronic masses with 1.0 GeV/c2 ≤ mX are shown. The

full extrapolated BFs in the high and low mass regions are not directly combined into

an overall inclusive BF due to correlations in the systematic uncertainties which are

discussed below.
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Fit Hadronic Mass Range Extrapolated BF

B → XL
s γ <1.0 GeV/c2 (3.68±0.14±0.20)×10−5

B → XH
s γ 1.0-2.0 GeV/c2 (17.8±0.7±2.9)×10−5

≥1.0 GeV/c2 (29.5±1.1±4.5)×10−5

B → XL
d γ <1.0 GeV/c2 (0.99±0.27±0.14)×10−6

B → XH
d γ 1.0-2.0 GeV/c2 (8.5±2.2±2.9)×10−6

≥1.0 GeV/c2 (14.2±3.6±4.7)×10−6

Table 5.18: Extrapolated BF estimation showing the associated statistical error for
each fit to experimental data and the corresponding estimate of systematic uncertainty
which has been recalculated to account for uncertainties in the extrapolation method.

5.2.3 Calculation of |Vtd/Vts| and Associated Uncertainty

The evaluation of R is given by the relation,

R =
B(B → Xdγ)mx<1.0 GeV/c2 + B(B → Xdγ)mx>1.0 GeV/c2

B(B → Xsγ)mx<1.0 GeV/c2 + B(B → Xsγ)mx>1.0 GeV/c2
. (5.5)

Using the extrapolated BFs calculated above therefore gives R = (15.14×10−6)/(33.22×
10−5) = 0.0456. The corresponding uncertainties in R must take account any expected

correlations in the contributions to the uncertainties on each extrapolated BF. There are

four possible correlations for each uncertainty. Firstly no correlation in the uncertainty;

in this case the average variation in R must be calculated separately for the variation due

to each individual BF and these contributions then added in quadrature. Secondly the

BFs corresponding to the same flavour transition have a correlated uncertainty; in this

case the the average variation in R due to each flavour transition is calculated and these

are added in quadrature. Thirdly the BFs corresponding to the same mass range have

a correlated uncertainty; similarly the average variation in R due to each mass range

is calculated and these are added in quadrature. Finally the uncertainty is correlated

for all BFs; in this case the average variation in R due to all BFs is calculated. The

propagation of the overall PID systematic is calculated as the linear combination of the

individual charged pion and charged kaon PID contributions to the uncertainty in R.

This is due to potential correlations in the input variables for each PID selector. The

charged pion PID uncertainty in R is correlated for all BFs and calculated to be 1.2%.

The charged kaon PID contribution is also correlated for all BFs (although B → Xdγ BFs

have no contribution from this uncertainty) and calculated to give a 1.1% uncertainty in

R. Table 5.19 list all sources of uncertainty calculated for the individual BFs, indicates

their expected correlation and evaluates the corresponding uncertainty on R. Combining
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Uncertainty Type Correlation Type R Uncertainty

Fit; Statistical None 24.2%

Track Reconstruction All 0.1%
Neutral Reconstruction All 0.5%
Photon Cuts All 0.0%
Combined PID All 2.3%
KS Veto Flavour 0.4%
Vertex χ2 Mass Range 0.1%
Daughter |p3| Mass Range 0.1%
Neural Net Mass Range 0.1%
Fit; PDF Fixed Parameters None 4.3%
Fit; Fixed B → XL

s γ XF Yield All 0.5%
Fit; Fixed B → XH

s γ XF Yield All 0.0%
Fit; Fixed B → XL

d γ XF Yield Flavour 0.6%
Fit; Fixed B → XH

d γ XF Yield Flavour 1.9%
Fit; Fixed PID XF Yield Flavour 1.2%
Fit; Fixed Generic B Yields All 5.6%
Fit; Floated Parameter Bias None 1.5%
JETSET Model Signal Modes None 7.5%
JETSET Model Unreconstructed 2-4 Body Modes Mass Range 9.5%
JETSET Model Unreconstructed 5+ Body Modes Mass Range 15.6%
KN Spectrum Mass Range 0.4%
PDG Uncertainty None 0.5%
B Counting All 0.0%

Combined Systematic - 21.3%

Table 5.19: Estimated uncertainties in the calculation of R. There are four cor-
relation types. ‘All’ represents the case where all four extrapolated BFs are varied
simultaneously. ‘Flavour’ represents the case where BFs of the same flavour are varied
simultaneously and the resulting uncertainties in R combined in quadrature. ‘Mass
Range’ represents the case where BFs in the same mass region are varied simultane-
ously and the resulting uncertainties in R combined in quadrature. ‘None’ represents
the case where each BF is varied independently and the resulting uncertainties in R

combined in quadrature.

these individual uncertainty contributions in quadrature gives,

R = 0.0456± 0.0110(stat.)± 0.0097(sys.). (5.6)

Solving (1.67) for the calculated value of R gives,∣∣∣∣VtdVts
∣∣∣∣ = 0.211± 0.023(stat.)± 0.022(sys.)± 0.001(th.), (5.7)
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where the final uncertainty is the associated theoretical error estimated numerically

from the variations shown in figure 1.9. This value is in good agreement with the world

average value from B mixing experiments which is 0.209±0.006 [14]. The systematic

uncertainty of this measurement is dominated by the uncertainties due to the JETSET

phase space model, particularly in extrapolating the measured BFs to inclusive values.

The systematic and statistical uncertainties are of a similar order.



Chapter 6

Summary and Future Prospects

The analysis presented uses experimental data recorded with the BABAR detector to

measure the sum of seven exclusive B → Xsγ and B → Xdγ decay BFs in the hadronic

mass ranges 0.5 ≤ mX < 1.0 GeV/c2 and 1.0 ≤ mX ≤ 2.0 GeV/c2. For each mass range

the event selection has been optimised with simulated data to maximise the signal yield of

CKM-suppressed B → Xdγ transitions over their associated combinatoric backgrounds.

Identical event selection has been applied to B → Xsγ transitions as to their B → Xdγ

counterparts. Signal yields in experimental data have been extracted with unbinned

extended maximum likelihood fits and interpreted as BF measurements. Comprehensive

evaluation of the systematic uncertainties relating to these measurements have been

made. Table 6.1 lists the measured BF for each transition flavour in each mass range

and their associated uncertainties. The measured B → Xdγ BF in the mass range

1.0 ≤ mX ≤ 2.0 GeV/c2 represents the first statistically significant signal yield of such

transitions with hadronic mass above the ρ/ω resonant peaks.

The measured BFs have been extrapolated in a model dependent way to estimate BFs

for all B → Xsγ and B → Xdγ transitions in the hadronic mass ranges mX < 1.0 GeV/c2

and mX ≥1.0 GeV/c2. Evaluations of the associated systematic uncertainties due to the

extrapolation technique have been made. Table 6.2 lists the extrapolated BF for each

transition flavour in each mass range and their associated uncertainties. The existing

world average values of these measurements from [14] are shown in table 6.3. Allowing

0.5 ≤ mX < 1.0 GeV/c2 1.0 ≤ mX ≤ 2.0 GeV/c2

B → Xsγ (1.84±0.07±0.11)×10−5 (6.30±0.24±0.68)×10−5

B → Xdγ (0.97±0.27±0.14)×10−6 (3.60±0.92±0.64)×10−6

Table 6.1: Summary of measured BFs. In each case the first error is statistical and
the second systematic.
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mX < 1.0 GeV/c2 1.0 ≤ mX GeV/c2

B → Xsγ (3.68±0.14±0.20)×10−5 (29.5±1.1±4.5)×10−5

B → Xdγ (0.99±0.27±0.14)×10−6 (14.2±3.6±4.7)×10−6

Table 6.2: Summary of extrapolated BFs. In each case the first error is statistical
and the second systematic.

Mode BF from [14]

B → K∗γ (4.2± 0.6)× 10−5

b→ sγ (35.6± 2.5)× 10−5

B → ρ/ωγ (1.3± 0.2)× 10−6

Table 6.3: Existing world average BF measurements.

Measurement |Vtd/Vts|
Inclusive Penguin 0.211±0.032
Exclusive Penguin [14] 0.210±0.040
B Mixing [14] 0.209±0.006

Table 6.4: |Vtd/Vts| measurement comparisons.

for the fact that 10% of K∗ and ρ resonance peaks have hadronic mass greater than

1.0 GeV/c2 is can be seen that the extrapolated BFs are in good agreement with the

world average values.

The extrapolated BFs are combined to give a ratio of the B → Xdγ transition to the

B → Xsγ transition of R(dγ/sγ) = 0.0456± 0.0110(stat.)± 0.0097(sys.). This parame-

ter is interpreted using its theoretical relation to the CKM parameters (ρ, η) presented

in [22]. After transforming the basis of this relation to the orthogonal coordinates

(|Vtd/Vts|, β), discussed in section 1.2.2.2, the calculated value of R(dγ/sγ) is found to

correspond to |Vtd/Vts| = 0.211± 0.023(stat.)± 0.022(sys.)± 0.001(th.) where the final

error corresponds to the uncertainty in the theoretical relation. The extracted value of

|Vtd/Vts| is compared to previous measurements in table 6.4; this table essentially sum-

marises the measurements discussed in section 1.3. It is found to be entirely consistent

and has uncertainties comparable to those from exclusive radiative penguin measure-

ments; furthermore it makes a significant improvement compared the previous version

of this analysis [1]. The agreement of both this and the exclusive radiative penguin mea-

surement with the value extracted from B mixing suggests no significant new physics

amplitude due to the operator C7(µ)Q7 which exclusively contributes to calculations of

the radiative penguin processes.
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6.1 Future Prospects

This measurement is performed on the complete BABAR experimental dataset collected

at the Υ (4S) resonance and so is unlikely to be improved by the BABAR collaboration.

However, there is an ongoing BABAR analysis to update the B → Xsγ measurement

from [30] using the full experimental dataset. The systematic uncertainty due to model

dependancies in B → XH
s γ MC data could be significantly reduced using the results

of such an analysis, although these do not dominate the total systematic uncertainty

calculated here.

Other future prospects for improving the measurement of |Vtd/Vts| from radiative pen-

guin decays are threefold. Firstly the BELLE experiment at KEK in Japan [72] also

has a significant volume of e+e− collision data recorded at the Υ (4S) resonance, the

collection of which is ongoing at the time of writing. These data could well be used

to perform an analysis similar to the one presented here, reducing the statistical uncer-

tainties due to B → Xdγ transitions. However, the measurement is unlikely to improve

the modelling uncertainties due to JETSET. Secondly the LHCb experiment at CERN

[73] has started to record proton-proton collision data with the aim of measuring pro-

cesses from both B and Bs meson decays. The noisier environment of hadronic collisions

makes the prospect of measuring |Vtd/Vts| from inclusive decays unlikely, although stud-

ies suggest a competitive measurement from exclusive decays is possible and this forms

an important part of their physics program [74]. However, such a measurement from

exclusive decays will suffer from the larger theoretical uncertainties discussed in section

1.2.2.3. Finally proposals exist for a next generation of high luminosity e+e− collision

experiments dedicated to data collection at the Υ (4S) resonance [75, 76]. The proposal

in [75] uses a detector design heavily based on the BABAR experiment and in fact pro-

poses to reuse components of the now dismantled BABAR detector. These designs project

potential datasets in excess of 30 ab−1 which could potentially make the B → Xdγ tran-

sition measurements as competitive as existing B → Xsγ measurements. It follows that

a measurement of |Vtd/Vts| similar to the measurement presented here could be made

with much reduced statistical error. If this were to be the case such a measurement

would also have to undertake significant studies to reduce the dominant systematic un-

certainties. Datasets of this size could well be used to measure a significantly larger

proportion of B → Xdγ decay modes at a relatively small cost in statistical power (as

demonstrated when modes eight and nine of table 3.1 were investigated here). This

would reduce the modelling uncertainty; however the increased contribution of combi-

natoric backgrounds from generic B decays would also need extensive study as that was

shown to be a significant contribution to the systematic uncertainty here. In any case

these high luminosity experiments, if approved, are unlikely to begin data collection
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before 2015. Significant improvement of the measurement presented here is therefore

unlikely in the near future.

6.2 Addendum

The analysis presented in this thesis has been modified by the BABAR collaboration,

with assistance from the author, and was submitted to Physical Review Letters on 21st

May 2010 [77]. The modifications to the methods presented in this thesis are briefly

summarised.

Event selection is unmodified and the MC and experimental datasets used in MLFs are

identical. The fits to data are significantly modified. The generic B normalisation is

allowed to float at a cost in fit bias on the signal yield. However, the additional bias is

significantly less than the systematic uncertainties associated with fixed normalisations

for this background class which were calculated here. In addition the weights for mea-

sured B → Xsγ modes are evaluated from fits to the high mass B → Xsγ experimental

data. They are generally found to be consistent with weights from the previous version

of this analysis, but do modify the the signal efficiency of the B → XH
s γ measurement

and thus give a different BF; this also modifies the signal model systematic uncertainty

calculated when the weights are applied to B → XH
d γ MC data. Furthermore the

submitted analysis assumes isospin holds for ρ and ω resonant decays, whereas the anal-

ysis here uses the central value of previous exclusive radiative penguin measurements.

This sightly modifies the measured and extrapolated B → XL
d γ BF. The evaluation of

the NN systematic uncertainty is modified but still evaluated with the high statistics

B → Xsγ experimental data. The NN systematic is used to correct the efficiency in

MC data which is not done here. This results in different signal efficiencies and hence

measured BFs for all experimental data. The BF extrapolation is not significantly mod-

ified; however, an additional alternative JETSET fragmentation model is engineered

whereby only low mass scalar mesons are allowed. This does not increase the ±50%

variation observed previously in unreconstructed modes. The published analysis finds

|Vtd/Vts|=0.199±0.022±0.024±0.002 [77] where the first error is statistical, the second

error systematic and third error theoretical. The theoretical error is slightly larger as it

corresponds to a different value of the ratio R. This result varies from the measurement

in this thesis by ∼5%; the variation is entirely consistent with the systematic difference

in the fit method and the modified NN systematic in the published analysis.
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Monomial Functions and

Sphericity Tensor Variable

Distributions

This appendix contains plots of the monomial functions and sphericity tensor variables

discussed in sections 3.3.2.2 and 3.3.2.3 respectively. In all cases the solid line shows

the distribution for correctly reconstructed signal candidates before event selection cuts

are applied and the dashed line shows the corresponding distribution for continuum

backgrounds.

A.1 Monomial Function Distributions

Figures A.1-A.3 show the longitudinal monomials for the ROE with respect to the thrust

axis of the ROE calculated in the CM frame. Note that LT1 is identical to the thrust of

the ROE. Figures A.4-A.6 show the perpendicular monomials for the ROE with respect

to the thrust axis of the ROE calculated in the CM frame. Figures A.7-A.9 show the

longitudinal monomials for the ROE with the momentum axis of the high energy photon

used in candidate reconstruction calculated in the CM frame. Figures A.10-A.12 show

the perpendicular monomials for the ROE with the momentum axis of the high energy

photon used in candidate reconstruction calculated in the CM frame.
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Figure A.1: Distributions of the monomial LT1
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Figure A.2: Distributions of the monomial LT2
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Figure A.3: Distributions of the monomial LT3
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Figure A.4: Distributions of the monomial PT1
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Figure A.5: Distributions of the monomial PT2
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Figure A.6: Distributions of the monomial PT3



Appendix A. Monomial Functions and Sphericity Tensor Variable Distributions 179

!
2L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Ar
bi

tra
ry

 U
ni

ts

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Figure A.7: Distributions of the monomial Lγ1
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Figure A.8: Distributions of the monomial Lγ2
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Figure A.9: Distributions of the monomial Lγ3
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Figure A.10: Distributions of the monomial P γ1
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Figure A.11: Distributions of the monomial P γ2
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Figure A.12: Distributions of the monomial P γ2
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A.2 Sphericity Tensor Variable Distributions

Figure A.13 shows the sphericity of the ROE, figure A.14 shows the planarity of the

ROE and A.15 shows the aplanarity of the ROE.
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Figure A.13: Distributions of SROE
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Figure A.15: Distributions of AROE



Appendix B

Signal Monte Carlo Data Event

Classification

This appendix contains tables summarising the distributions of hadronic final states in

the generated signal MC data. Where a particular final state corresponds to one of the

reconstructed modes listed in table 3.1 this is indicated numerically in parentheses after

that mode.

B.1 Resonant MC data

B.1.1 B → Xsγ

Tables B.1 and B.2 list the distribution of final states for B+ → K∗+γ and B0 → K∗0γ

respectively. These distributions are determined by the measured decays of the K∗

resonance [14].

Mode Hadronic Mass <1.0 GeV/c2

B+ → K∗+(K0π+)γ 3,827,841
B+ → K∗+(K+π0)γ (2) 1,918,199
Other 2 body K∗+ 6,131

Total 5,752,171

Table B.1: Distribution of final states in B+ → K∗+γ signal MC data
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Mode Hadronic Mass <1.0 GeV/c2

B0 → K∗0(K+π−)γ (1) 3,814,990
B0 → K∗0(K0π0)γ 1,900,490
Other 2 body K∗0 11,993

Total 5,727,473

Table B.2: Distribution of final states in B0 → K∗0γ signal MC data

Mode Hadronic Mass <1.0 GeV/c2

B0 → ω(π+π−)γ (1) 15,738
B0 → ω(π+π−π0)γ (4) 576,785
B0 → ω(π+π−π+π−)γ (5) 596
Other 2 body ω 55,967
Other 3 body ω 914

Total 650,000

Table B.3: Distribution of final states in B0 → ωγ signal MC data

B.1.2 B → Xdγ

Table B.3 lists the distribution of final states in B0 → ωγ MC data. This distribution is

determined by the measured decays of the ω resonance [14]. The distributions of final

states for B → ργ modes are not shown as the MC data assumes all ρ+ → π+π0 and all

ρ0 → π+π−.

B.2 Non-Resonant MC data with Generated Hadronic Mass

Following the KN Model

B.2.1 B → Xsγ

Tables B.4 and B.5 show the distribution of final states for high mass signal MC data

for B+ → X+
s γ and B0 → X0

sγ decays respectively. The hadronic mass is determined

from the KN model and the final state distributions are determined by phase space

decays from JETSET [44]. The total number of decays are shown as well as the number

with generated hadronic mass within the mass range of reconstructed candidates. The

application of weights to these data, as described in section 4.2, is shown in table B.6.
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Mode Hadronic Mass ≥1.0 GeV/c2 Hadronic Mass 1.0-2.0 GeV/c2

B+ → K0π+γ 970,100 856,693
B+ → K+π0γ (2) 595,196 526,122
B+ → K+π+π−γ (3) 1,098,686 915,113
B+ → K0π+π0γ 1,332,026 1,110,800
B+ → K+π0π0γ (8) 271,142 226,589
B+ → K0π+π−π+γ 391,333 255,914
B+ → K+π+π−π0γ (6) 1,004,779 701,015
B+ → K0π+π0π0γ 346,501 227,603
B+ → K+π+π−π+π−γ 139,007 61,728
B+ → K0π+π−π+π0γ 613,763 315,611
B+ → K+π+π−π0π0γ 397,167 196,662
B+ → K+ηγ (7) 85,037 74,348
B+ → K0π+ηγ 63,897 46,157
B+ → K+π0ηγ 34,520 24,968
B+ → K+π+π−ηγ 35,901 19,172
B+ → K0π+π0ηγ 37,407 19,274
B+ → K+K−K+γ 60,945 40,808
B+ → K0K+K−π+γ 55,037 18,265
B+ → K+K−K+π0γ 29,800 10,259
Other 2 body 30 0
Other 3 body 93,615 51,192
Other 4 body 233,179 137,447
Other 5+ body 2,536,332 445,731

Total 10,425,400 6,281,471

Table B.4: Distribution of final states in high mass B+ → X+
s γ signal MC data. The

hadronic mass is determined by the KN model.

B.2.2 B → Xdγ

Tables B.7 and B.8 show the distribution of final states for high mass signal MC data for

B+ → X+
d γ and B0 → X0

dγ decays respectively. The hadronic mass is determined from

the KN model and the final state distributions are determined by phase space decays

from JETSET [44]. The total number of decays are shown as well as the number with

generated hadronic mass within the mass range of reconstructed candidates.
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Mode Hadronic Mass ≥1.0 GeV/c2 Hadronic Mass 1.0-2.0 GeV/c2

B0 → K+π−γ (1) 971,350 858,131
B0 → K0π0γ 594,227 524,904
B0 → K0π+π−γ 1,104,038 919,640
B0 → K+π−π0γ (4) 1,334,309 1,112,561
B0 → K0π0π0γ 268,178 224,300
B0 → K+π−π+π−γ (5) 393,695 256,414
B0 → K0π+π−π0γ 1,036,398 725,643
B0 → K+π−π0π0γ (9) 347,271 228,359
B0 → K0π+π−π+π−γ 141,785 63,083
B0 → K+π−π+π−π0γ 569,578 289,191
B0 → K0π+π−π0π0γ 407,614 203,538
B0 → K0ηγ 85,063 74,155
B0 → K+π−ηγ 63,890 46,109
B0 → K0π0ηγ 34,088 24,576
B0 → K0π+π−ηγ 39,168 21,004
B0 → K+π−π0ηγ 37,538 19,185
B0 → K0K+K−γ 61,209 41,026
B0 → K+K−K+π−γ 34,781 12,085
B0 → K0K+K−π0γ 29,613 10,024
Other 2 body 29 0
Other 3 body 88,673 47,769
Other 4 body 206,255 110,333
Other 5+ body 2,580,313 465,627

Total 10,429,063 6,277,657

Table B.5: Distribution of final states in high mass B0 → X0
sγ signal MC data. The

hadronic mass is determined by the KN model.
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Mode Weight Hadronic Mass ≥1.0 GeV/c2

B0 → K+π−γ (1) 0.65±0.04 631,378
B0 → K+π0γ (2) 0.36±0.06 214,271
B0 → K+π−π+γ (3) 1.34±0.11 1,472,239
B0 → K+π−π0γ (4) 1.35±0.11 1,801,317
B0 → K+π−π+π−γ (5) 0.75±0.27 295,271
B0 → K+π−π+π0γ (6) 1.00±0.23 1,004,779
B0 → K+ηγ (7) 1.05±0.41 89,289
2 body no π0 0.50±0.07 485,050
2 body 1 π0 0.19±0.12 112,903
3 body no π0 1.02±0.14 1,126,119
3 body 1 π0 1.34±0.24 1,784,915
4 body no π0 2.67±0.96 1,044,859
4 body 1 π0 1.29±0.61 1,336,953
3/4 body 2 π0 1.89±1.33 2,330,544
5 body 1.32±+1.55

−1.32 2,994,966
η modes 0.83±+1.00

−0.83 358,122
KKK modes 0.27±+0.54

−0.27 73,274
Unclassified 0.64 3,698,624

Total 1.00 20,854,463

Table B.6: Application of weights to high mass B → Xsγ signal MC data.

Mode mtrue
X ≥1.0 GeV/c2 1.0≤ mtrue

X ≤2.0 GeV/c2

B+ → π+π0γ (2) 110,859 95,550
B+ → π+π−π+γ (3) 95,291 79,024
B+ → π+π0π0γ (8) 88,869 73,913
B+ → π+π−π+π0γ (6) 183,197 142,670
B+ → π+ηγ (7) 12,790 11,000
Other 2 body 9,907 6,985
Other 3 body 47,284 34,937
Other 4 body 87,150 58,688
5+ body 566,589 220,478

Total 1,201,936 723,245

Table B.7: Distribution of final states in high mass B+ → X+
d γ signal MC data. The

hadronic mass is determined by the KN model.
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Mode mtrue
X ≥1.0 GeV/c2 1.0≤ mtrue

X ≤2.0 GeV/c2

B0 → π+π−γ (1) 99,331 85,512
B0 → π+π−π0γ (4) 197,465 165,434
B0 → π+π−π+π−γ (6) 44,327 32,459
B0 → π+π−π0π0γ (9) 131,267 101,180
Other 2 body 44,336 36,704
Other 3 body 53,659 39,488
Other 4 body 62,555 39,280
5+ body 568,768 222,774

Total 1,201,708 722,831

Table B.8: Distribution of final states in high mass B0 → X0
dγ signal MC data. The

hadronic mass is determined by the KN model.
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