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Abstract

The Standard Model (SM) explains CP violation in terms of the CKM matrix. The

BABAR experiment was designed mainly to test the CKM model in B decays. B

decays that proceed through b → s loop diagrams, of which B → KKK decays are

an example, are sensitive to new physics effects that could lead to deviations from

the CKM predictions for CP violation.

We present studies of CP violation in the decays B+ → K+K−K+, B+ →
K0

SK
0
SK

+, and B0 → K+K−K0
S , using a Dalitz plot amplitude analysis. These

studies are based on approximately 470 million BB decays collected by BABAR at

the PEP-II collider at SLAC. We perform measurements of time-dependent CP vio-

lation in B0 → K+K−K0
S
, including B0 → φK0

S
. We measure a CP -violating phase

βeff(φK0
S) = 0.36 ± 0.11 ± 0.04 rad., in agreement with the SM. This is the world’s

most precise measurement of this quantity. We also measure direct CP asymme-

tries in all three decay modes, including the direct CP asymmetry ACP (φK+) =

(12.8 ± 4.4 ± 1.3)%, which is 2.8 sigma away from zero. This measurement is in

tension with the SM, which predicts an asymmetry of a few percent.

We also study the resonant and nonresonant features in the B → KKK Dalitz

plots. We find that the hypothetical scalar fX(1500) resonance, introduced by prior

analyses to explain an unknown peak in the mKK spectrum, cannot adequately de-

scribe the data. We conclude instead that the fX(1500) can be explained as the

sum of the f0(1500), f ′
2(1525), and f0(1710) resonances, removing the need for the

hypothetical fX(1500). We also find that an exponential nonresonant model, used

by previous analyses to describe the broad nonresonant feature seen in B → KKK

decays, cannot fully model the data. We introduce a new nonresonant model that
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contains more free parameters, allows for phase motion, and contains both S-wave

and P-wave components.
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Chapter 1

Introduction

Physics of heavy quark flavors is a subject
for botanists and, if I only could, I would
never mention it on this blog. Indeed, a mere
thought of the humongous number of b- and
c-hadrons and of their possible decay chains
gives me migraines.

“Jester” [1]

The BABAR experiment, situated at the PEP-II collider at SLAC, collected data

from 1999-2008. PEP-II collides electrons and positrons with asymmetric energies,

with center-of-mass energy at the Υ (4S) resonance, which decays almost entirely to

BB pairs. Due to the unprecedented quantities of B mesons produced at BABAR and

its friendly rival experiment Belle, these experiments have appropriately been called

“B-factories.” The main goal of the B-factories is to study CP violation in B mesons.

In the Standard Model (SM), CP violation is governed by the Cabibbo-Kobayashi-

Maskawa (CKM) matrix. Before BABAR and Belle, the CKM picture was merely a

hypothesis, but thanks to precise measurements at the B-factories, the CKM matrix

has been shown to give a good description of CP -violation, for which Kobayashi and

Maskawa received the 2008 Nobel Prize in Physics.

Despite the success of the SM, there are reasons to think there are other sources

of CP violation in nature, which, if we are lucky, may be visible at the B-factories,

1
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or at future “Super” B-factories. The SM makes quite precise predictions for the CP

violation in many different B meson decay modes, and by comparing experimental

measurements of these decay modes to theory and to each other, one can test the

consistency of the CKM picture.

One particularly powerful way of testing the SM is to measure the CP -violating

angle β in B0 → φ(1020)K0
S decays, and then to compare this with the value of

β measured in B0 → J/ψK0
S

decays. Any large discrepancy between the two β

measurements could signal a breakdown in the SM. B0 → φK0
S decays are dominated

by loop diagrams, and so are sensitive to new virtual particles (such as squarks) that

can appear in the loops. This makes them a good place to look for deviations from

the SM. Similarly, B+ → φK+ decays 1 are expected to have a small amount of CP

violation in the SM, so a large amount could signal new physics.

The φ decays to KK, so other B → KKK decays, such as B → f0(980)K, can

quantum mechanically interfere with B → φK. This interference can be properly

handled by accounting for all the resonances and nonresonant decays that contribute

to the three-body phasespace of B → KKK decays. By studying the entire B →
KKK phasespace, one also has more opportunities to look for CP violation than just

B → φK decays. Since a plot of three-body phasespace is known as a “Dalitz plot,”

this type of analysis is called a Dalitz plot analysis. If B physics is capable of causing

migraines, Dalitz plot analyses are liable to give someone a stroke.

The B → KKK decays have interesting Dalitz plots, dominated by prominent

features that have not been well understood. One such feature is a large peak that

has been called the fX(1500), and has been modeled by previous analyses as a scalar.

However, its properties are not consistent with any known particle. A large fraction

of B → KKK decays are “nonresonant,” and the theoretical understanding of them

is poor. We will spend considerable time in this analysis studying these features in

detail.

These two areas of study – CP violation and Dalitz plot features – are not com-

pletely orthogonal, since measurements of CP violation can be affected if the Dalitz

plot is incorrectly modeled. In this analysis, we will perform Dalitz plot analyses

1Charge conjugation is implied throughout this thesis, unless otherwise indicated.
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of B+ → K+K−K+, B+ → K0
S
K0

S
K+, and B0 → K+K−K0

S
, extracting many CP

violating measurements, including the angle β in B0 → φK0
S and the direct CP asym-

metry in B+ → φK+. The analysis in this thesis is based on the full Υ (4S) dataset

collected over BABAR’s lifetime, and therefore represents BABAR’s final word on these

decay modes.

In Chapter 2, we will give a theoretical introduction to CP violation and Dalitz

plot analyses. In Chapter 3, we will give an overview of the PEP-II collider and the

BABAR detector. Chapter 4 will then summarize the criteria we use to select events.

The maximum likelihood fit and our method of modeling signal and background events

is described in Chapter 5. In Chapter 6, we present our studies of the B → KKK

Dalitz plots, in which we test various resonances and nonresonant models in order to

decide how best to describe the Dalitz plot features. Having determined a Dalitz plot

model for the B → KKK decays, we will then measure the CP -violating parameters

and present the final results in Chapter 7. Finally, Chapter 8 will summarize the

results and give some conclusions.



Chapter 2

Theory

2.1 CP Violation

Prior to the mid-1950’s, physicists widely thought that the laws of physics were

invariant under the parity transformation, i.e., the transformation x→ −x. However,

this assumption was refuted in 1957, when Wu et al. [2] showed experimental evidence

for parity violation in Cobalt-60 beta decay. In response, it was theorized that the

charge conjugation transformation (i.e., the transformation of particles to their anti-

particles) may be violated in exactly the right way so that the laws of physics would

be invariant under the combination of charge conjugation and parity, abbreviated CP .

However, in 1964, Cronin and Fitch [3] discovered that CP was violated in neutral

kaons, albeit by a small amount. Since then, understanding CP violation (CPV) has

been one of the key issues in particle physics.

CP violation is of more than just academic interest. Models of cosmology suggest

that we wouldn’t be here without it. Observations show that the visible universe

consists essentially entirely of matter, rather than anti-matter. Logically, this so-

called baryon asymmetry of the universe (BAU) must either be due to an initial

condition, or have arisen dynamically in the past. The initial condition approach is

generally rejected, 1 leaving us to explain how the BAU arose dynamically (so-called

1The initial condition hypothesis will not work in inflationary models, because inflation would
wash-out to zero any pre-inflation asymmetry.

4
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baryogenesis).

In 1967, Andrei Sakharov [4] gave three conditions necessary for baryogenesis:

• Baryon number violation.

• C and CP violation.

• A deviation from thermal equilibrium.

In principle, the Standard Model (SM) of particle physics can accommodate all three

of these conditions. We will show how CPV is accounted for in the SM in Section 2.3,

and even baryon number is violated non-perturbatively in the SM through so-called

sphaleron transitions. However, quantitatively, the experimentally observed BAU

(often specified as the baryon-to-photon ratio in the universe, (NB − NB̄)/Nγ ≈
6 × 10−10) is much too large to be explained by the SM. The amount of CPV in

the SM is roughly 10 orders of magnitude too small to explain the observed BAU! 2

This is a clear indication that there are non-SM sources of CPV in nature. Although

there is no guarantee that any non-SM sources will be observable at colliders, there

are plausible scenarios in which they may be, an example of which will be shown in

Section 2.4. This gives a strong motivation to studying CPV experimentally.

2.2 CP Violation in B Mesons

Although CPV was first discovered in kaons, B mesons have proven to be a better

place to study CPV, for reasons that will become clearer in Section 2.3. At BABAR,

we study two types of B mesons: neutral (
( )

B0) and charged (B±).

The neutral B flavor eigenstates B0 (consisting of a b̄ and d) and B0 (consisting

of a b and d̄) can oscillate into one another. This oscillation is mediated by the box

diagrams shown in Fig. 2.1. The mass eigenstates are then linear combinations of B0

and B0:

2The insufficient amount of CPV is not the only problem the SM has in explaining baryogenesis.
In the SM, the third Sakharov condition is provided by an electroweak phase-transition, but this
phase-transition would need to be strongly first-order in order to produce a large BAU. However,
experimental constraints on the Higgs mass rule this out.
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BL = pB0 + qB0

BH = pB0 − qB0 , (2.1)

where BL is the lighter, and BH the heavier mass eigenstate. This mixture of the

flavor eigenstates in the mass eigenstates is known as B mixing. The coefficients p

and q are complex numbers, normalized to |p|2 + |q|2 = 1, and which can in principle

be computed in the SM. The B0 − B0 oscillations occur at a frequency Δmd =

mBH
−mBL

. We will ignore the difference in the decay widths of the BL and BH .

t

t

W W

b

d

d

b

0B 0B

+W

-W

t t

b

d

d

b

0B 0B

Figure 2.1: Box diagrams responsible for B0 − B0 oscillations.

At BABAR,
( )

B0 are produced in the decay Υ (4S) → B0B0. This produces the B0B0

in a coherent, entangled state, which means that as they oscillate, if at any point in

time the first meson is known to be a B0 (B0), then the second meson is guaranteed

to be a B0 (B0).

Assume we are interested in studying the decay of a B to a specific final state

f . Then denote the amplitude for B0 → f as Af , and the amplitude for B0 → f

as Af . Assume we identify (“tag”) the flavor of one B (which we will call B0
tag) at

proper time ttag. Assume also that the other B (B0
sig) decays to f at proper time tsig,

where tsig could be greater than or less than ttag. Define Δt ≡ tsig − ttag. Then, the
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time-dependent decay rate for B0
sig → f is

dΓ

dΔt
∝ e−|Δt|/τB0 |A|2

[
1 + |λf |2

−qtag(1 − |λf |2) cos ΔmdΔt+ qtag 2 Im(λf) sin ΔmdΔt
]
, (2.2)

where τB0 is the B0 lifetime, qtag = +1(−1) when B0
tag is tagged as a B0 (B0), and

λf ≡ q

p

Af

Af
. (2.3)

This expression is general, but often we are interested in the case where f is a

CP -eigenstate with eigenvalue ηCP . In this case, Af = ηCPAf , and so

λf = ηCP
q

p

Af

Af
. (2.4)

The time-dependent CP -asymmetry is then

aCP (Δt) ≡ Γ(qtag = +1) − Γ(qtag = −1)

Γ(qtag = +1) + Γ(qtag = −1)
(2.5)

=
−(1 − |λf |2)

1 + |λf |2 cos ΔmdΔt+
2 Im(λf)

1 + |λf |2 sin ΔmdΔt , (2.6)

which is sometimes written as

aCP (Δt) = −C cos ΔmdΔt+ S sin ΔmdΔt . (2.7)

One of the major focuses of BABAR is to measure the C and S coefficients for many

different CP -eigenstates f , and to compare these measurements to SM predictions.

In the absence of CPV, C = S = 0.

In addition to the time-dependent CP -asymmetry of Eq. 2.5, we can also define a

time-integrated CP -asymmetry, ACP , by integrating Eq. 2.2 over Δt. Performing the

integration, we find ACP = −C. We will often use ACP and −C interchangeably in
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this thesis. We can similarly define a time-integrated CP -asymmetry for B+ decays:

ACP ≡ Γ− − Γ+

Γ− + Γ+
=

|Af |2 − |Af |2
|Af |2 + |Af |2

, (2.8)

where Γ+ ≡ Γ(B+ → f) and Γ− ≡ Γ(B− → f).

CPV in B mesons is typically classified into three different categories: CPV in

mixing, CPV in decay, and CPV in the interference between decay and mixing. This

thesis involves searches for the second and third categories of CPV.

2.2.1 CPV in Mixing

This occurs if |q/p| �= 1, and is also known as “indirect” CPV. In the SM, this form

of CPV is expected to be very small for B0 mesons, O(0.001). However, CPV in

K0 −K0 mixing was the first form of CPV to be discovered, in the Cronin and Fitch

experiment [3].

2.2.2 CPV in Decay

This occurs if Af/Af �= 1, and is also known as “direct” CPV. It is possible in both
( )

B0 and B± decays. Direct CPV results in a value of the time-integrated asymmetry

ACP that is non-zero. In order for direct CPV to occur, there must be at least two

amplitudes contributing to the process B → f , and these amplitudes must differ in

both their weak phases and their strong phases. Here, a weak phase refers to a phase

that flips sign under CP . In the SM, weak phases only arise from the CKM matrix

describing the weak interaction (Sec. 2.3). Strong phases are phases that stay the

same under CP . They arise mainly from QCD.

To illustrate direct CPV, assume we have two amplitudes, a1 and a2, contributing

to B → f . Then,

Af = |a1|ei(φ1+δ1) + |a2|ei(φ2+δ2)

Af = |a1|ei(φ1−δ1) + |a2|ei(φ2−δ2) , (2.9)
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where φj are strong phases and δj are weak phases. Then, using Eq. 2.8, we find

ACP =
2|a1||a2| sin(δ1 − δ2) sin(φ1 − φ2)

|a1|2 + |a2|2 + 2|a1||a2| cos(δ1 − δ2) cos(φ1 − φ2)
, (2.10)

which shows that the weak phases and strong phases must both differ in order to get

ACP �= 0.

Direct CPV is very small in kaon decays, O(10−6), but can be much larger in

certain B decays such as B0 → K+π− [5, 6], where it is O(0.1).

2.2.3 CPV in the Interference between Decay and Mixing

This occurs if Im(λf ) �= 0. Physically, it results from interference between the pro-

cesses B0 → f and B0 → B0 → f . It leads to a non-zero S coefficient in Eq. 2.7, and

so measuring it experimentally requires a time-dependent analysis. Measurement of

this type of CPV is central to BABAR. We will go through a SM calculation of it in

Section 2.3.

2.3 The CKM Matrix

The SM provides a very economical explanation of CPV, encoding it in the Cabibbo-

Kobayashi-Maskawa (CKM) matrix [7, 8], V :

V =

⎛
⎜⎜⎝

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎟⎟⎠ (2.11)

This 3 × 3 complex unitary matrix describes how the different quark flavors couple

to the W± bosons. An up-type quark i and down-type quark j couple to the W with

strength proportional to Vij (or V ∗
ij , depending on whether the W− is going out of or

into the vertex). The CKM matrix provides CP violation if V ∗ �= V after eliminating

all removable phases.
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A useful way of parameterizing the CKM matrix is the so-called Wolfenstein ap-

proximation:

V =

⎛
⎜⎜⎝

1 − λ2/2 λ Aλ3(ρ− iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1

⎞
⎟⎟⎠+ O(λ4) , (2.12)

which is written as an expansion in the small parameter λ ≈ 0.23. The other parame-

ters are: A ≈ 0.81, ρ̄ ≈ 0.13, η̄ ≈ 0.34 [9], where ρ̄ ≈ ρ(1−λ2/2) and η̄ ≈ η(1−λ2/2).

In this parameterization, CPV is accounted for by the single parameter η. The fact

that a single parameter is responsible for all CPV in the SM makes this a highly

predictive model, providing many consistency checks.

Because the CKM matrix is unitary, it satisfies:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 . (2.13)

This equation can be represented in the complex plane as a triangle. Usually, one

rotates the triangle and rescales it so one point is at (0, 0), another at (1, 0), and

then the third point is at (ρ̄, η̄), as shown in Fig. 2.2. This is known as the unitarity

triangle (UT). The three angles can be defined as

α ≡ arg

(
− VtdV

∗
tb

VudV
∗
ub

)

β ≡ arg

(
−VcdV

∗
cb

VtdV ∗
tb

)
γ ≡ π − α− β . (2.14)

To a good approximation, Vtd = |Vtd|e−iβ, Vub = |Vub|e−iγ, and the other elements of

the CKM matrix are purely real.

There are many ways to measure experimentally the sides and angles of the UT.

By checking the consistency of the various side and angle measurements, one can test

whether the CKM matrix gives a complete description of all CPV phenomena. To

illustrate such a measurement, let’s take a look at the decay mode B0 → J/ψK0
S ,
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)η,ρ(

(1,0)γ

α

β

Figure 2.2: The unitarity triangle.

often called the “golden mode” for measuring CPV at BABAR.

B0 → J/ψK0
S is dominated by a single decay amplitude, the tree diagram shown

in Fig. 2.3. Because a single decay amplitude dominates, we know that direct CPV

will be small in this mode. However, there can still be time-dependent CPV, in the

form of a non-zero S coefficient. From Eq. 2.5, S = (2 Im(λf))/(1 + |λf |2) ≈ Im(λf ).

We can calculate λf to be

λf = ηf

(
V ∗
tbVtd
VtbV ∗

td

)(
VcbV

∗
cs

V ∗
cbVcs

)(
VcsV

∗
cd

V ∗
csVcd

)
(2.15)

where the first term in parentheses is (q/p), the second comes from the decay diagram

shown in Fig. 2.3, and the third comes from K0−K0 mixing. Making use of Eq. 2.14,

it is straightforward to show that

Im(λf) = −ηf sin(2β) = sin(2β) , (2.16)

where we make use of the fact that J/ψK0
S

has a CP eigenvalue η = −1. So, S =

sin(2β) in this mode. This is a theoretically very clean measurement, accurate to

O(0.001).
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d d

b c

W
c

s
0B

ψJ/

SK

Figure 2.3: The dominant Feynman diagram for B0 → J/ψK0
S .

2.4 b → s Penguins

One interesting class of B decay channels are the so-called b → s penguin decays.

These decays are dominated by the loop diagrams (affectionately known as “penguin”

diagrams [10]) shown in Fig. 2.4, where q = (u, d, s, or c). The most important aspect

of these decays is their potential sensitivity to new physics (NP). This sensitivity

comes from the possibility of new particles appearing in the loops of the penguin

diagrams. For example, Fig. 2.4 shows a potential contribution to these decays from

a SUSY diagram. Of particular interest is the possibility that the NP carries a new

CP -violating phase, which could then impact the observed CP violation.

In this thesis, we will be specifically interested in penguins with q = u or s, which

we will call uūs and ss̄s penguins. If we consider the amplitudes that can contribute

to these decays, we have three penguin amplitudes (corresponding to possible u, c, or

t quarks in the loop). In the case of uūs, there is also a possible tree amplitude that

can contribute, shown in Fig. 2.5. Calling the penguin amplitudes Pu,Pc, and Pt, and

calling the tree amplitude T , and explicitly factoring out the CKM factors, we can

write the total decay amplitudes as

A(uūs) = VtbV
∗
tsPt + VcbV

∗
csPc + VubV

∗
us(T + Pu)

A(ss̄s) = VtbV
∗
tsPt + VcbV

∗
csPc + VubV

∗
usPu (2.17)



CHAPTER 2. THEORY 13

W
b s

q

q

u,c,t t,c,u

, Zγg, 

g~
b s

q

q

b
~ s~

Figure 2.4: Top: b→ s penguin diagram in SM. Bottom: example SUSY contribution
to the same process. The “X” represents a mass-insertion.
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b u

W u

s

Figure 2.5: Tree diagram that can contribute to the same final state as b → uūs
penguin.

Then, by invoking the unitarity of the CKM matrix, this can be rewritten as

A(uūs) = VcbV
∗
cs(Pc − Pt) + VubV

∗
us(T + Pu − Pt)

A(ss̄s) = VcbV
∗
cs(Pc − Pt) + VubV

∗
us(Pu − Pt) (2.18)

The (Pu − Pt) term will be called the “u-penguin” and the (Pc − Pt) term will

be called the “c-penguin.” Note that the u-penguin/tree term is CKM suppressed

relative to the c-penguin term by a factor of ≈ 0.02. Since the u-penguin and c-

penguin terms should be similar except for the CKM factors, we can usually ignore

the u-penguins. However, the tree amplitude is generally enhanced relative to the

penguins, so depending on the enhancement, it could be very important. It is impor-

tant to note that the tree amplitude does not contribute to ss̄s.

Many b → s penguins involve decays to CP eigenstates, and thus provide an

opportunity to measure time-dependent CPV. If we can ignore the tree and u-penguin

terms that are proportional to VubV
∗
us, then we can observe that the CKM factor for the

c-penguin is the same as the CKM factor in the tree diagram for B0 → J/ψK0
S
. This

means that if we measure time-dependent CPV in a b→ s penguin decay channel, we

should measure S = −ηf sin(2β). However, if we include the CKM-suppressed terms,

this prediction no longer holds. The CKM-suppressed amplitudes carry an extra weak
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phase factor of e−iγ , so their presence will cause S to deviate from ηf sin(2β). This

is known as SM “pollution.” The most useful b → s penguin modes to study are

those with small SM pollution. In those cases, a measurement of S that deviates

from ηf sin(2β) can be attributed to new physics. Some of the best modes for this

purpose are B0 → η′K0
S
, B0 → K0

S
K0

S
K0

S
, and B0 → φ(1020)K0

S
.

2.5 B → KKK Decays

2.5.1 Overview

The focus of this thesis is on the b → s penguin-dominated decays B0 → K+K−K0
S ,

B+ → K+K−K+, and B+ → K0
S
K0

S
K+. The first two of these decay modes are par-

ticularly interesting, because they contain the sub-modesB0 → φ(1020)K0
S, φ(1020) →

K+K− and B+ → φ(1020)K+, φ(1020) → K+K−, respectively. As already men-

tioned, B0 → φK0
S is one of the best b → s penguin modes for looking for NP in

time-dependent CPV. It is easy to see why this is so: the φ is an ss̄ resonance, so this

is a b → ss̄s transition, which we already showed does not have a tree contribution,

so the SM pollution should be small. For the same reason, B+ → φK+ does not have

a tree contribution, 3 so we should expect the direct CPV in this mode to be small,

since direct CPV requires two interfering amplitudes with different weak phases.

So, two important measurements for NP searches are S(φK0
S) and ACP (φK+).

(ACP (φK0
S
) should be similarly theoretically clean, but since we expect ACP (φK0

S
) ≈

ACP (φK+), and ACP (φK+) is much easier to measure experimentally, we do not

expect ACP (φK0
S
) to be as useful.) There are numerous SM theoretical predictions

for ΔS ≡ (−ηfS− sin(2β)) for φK0
S , using both QCD factorization (QCDF) [11] and

perturbative QCD (PQCD) [12]. Another paper [13] also accounts for long-distance

effects from final-state interactions. For example, final-state interactions can allow

B0 → K∗+π− to rescatter into φK0
S
. This allows φK0

S
to receive tree contributions,

albeit indirectly. The theoretical predictions give ΔS in the range (−0.01 − 0.04).

3At least as far as short-distance diagrams are concerned. Long-distance effects will be discussed
in the next paragraph.
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There are similar predictions for ACP (φK+) using QCDF [14] and PQCD [12], which

give ACP in the range (0.0−4.7)%. Neither of these predictions include long-distance

effects.

Only a small fraction (∼ 10%) of all B0 → K+K−K0
S decays come from φK0

S , and

similar fraction of B+ → K+K−K+ decays come from φK+. These non-φ decays can

also be useful in looking for CPV and possible NP, although they suffer from larger

SM uncertainties. Another reason to study the non-φ decays is that they can overlap

with the φ resonance, so any measurement of CPV in φK that doesn’t account for

the non-φ decays may be biased. Our approach is to model all of the resonant and

nonresonant features in B → KKK, and account properly for their interference with

the φK decays. Since a plot of three-body phase-space is known as a Dalitz plot

(DP), we will refer to the resonant and nonresonant structures as DP structures.

Measuring CPV using the entire B0 → K+K−K0
S

DP is complicated due to the

fact that K+K−K0
S is not a pure CP eigenstate. CP (K+K−K0

S) = (−1)L when

the K+K− system has orbital angular momentum L. Clearly, then, measuring CPV

properly in B0 → K+K−K0
S depends on knowing the spins of the DP structures.

Since the DP structures in B0 → K+K−K0
S
, B+ → K+K−K+, and B+ → K0

S
K0

S
K+

should be similar, we benefit from studying all three modes together. Understanding

the DP structures is not only important for CPV, it is also of interest in its own

right. There are two strange features seen in B → KKK Dalitz plots. First, a large

contribution from a resonance that has been dubbed the fX(1500) has been seen in

both B+ → K+K−K+ and B0 → K+K−K0
S . The nature of this resonance has been

poorly understood. Second, an uncommonly large contribution from “nonresonant”

decays is seen in B+ → K+K−K+ and B0 → K+K−K0
S . A simple phase-space model

is inadequate to describe these decays. There has never been a published DP analysis

of B+ → K0
SK

0
SK

+, so doing such an analysis may help elucidate these DP features.

One special feature of B+ → K0
S
K0

S
K+ is that the K0

S
K0

S
system is forbidden to be in

an odd-L state (due to Bose-Einstein statistics), so this makes studying spin easier.

For example, if fX(1500) → K0
S
K0

S
were to be seen in B+ → K0

S
K0

S
K+, this would

show that the fX(1500) must have even spin.
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2.5.2 Dalitz Plot Analysis

In the case of three-body decays, the decay rate can be a function of location on the

DP. We define the DP as follows. For a decay B → K1K2K3, with p1, p2 and p3 the

four-momenta of the respective kaons, we define sij ≡ m2
ij ≡ (pi + pj)

2. The sij are

the DP coordinates. In this thesis, we will use the following convention for labeling

the kaons:

• For B± → K±K∓K±, K1 = K±, K2 = K∓, and K3 = K±. To distinguish

between the two same-charge kaons, we choose the indices so that s12 ≤ s23.

• For B± → K0
SK

0
SK

±, K1 = K0
S , K2 = K0

S , and K3 = K±. To distinguish

between the two K0
S
, we choose the indices so that s13 ≤ s23.

• For
( )

B0 → K+K−K0
S , K1 = K+, K2 = K−, and K3 = K0

S .

Note that the three sij are not mutually independent, because four-momentum

conservation leads to

s12 + s13 + s23 = m2
B +m2

K1
+m2

K2
+m2

K3
. (2.19)

So, the DP location can be fully specified in terms of two sij.

For the B+ decay modes, the DP-dependent decay rate is

dΓ

ds12ds23

∝ | ( )A |2 , (2.20)

where A and A apply to B+ and B− decays, respectively, and are now functions of

DP location:
( )A =

( )A (s12, s23).

The time-dependent and DP-dependent decay rate for B0 → K+K−K0
S

is a mod-

ified form of Eq. 2.2:

dΓ

ds12ds23dΔt
∝ e−|Δt|/τB0

[
(1 − qtagΔw)

(|A|2 + |A|2)
− qtag (1 − 2w)

(|A|2 − |A|2) cos ΔmdΔt

+qtag (1 − 2w) 2 Im
[
e−2i·βAA∗] sin ΔmdΔt

]
, (2.21)
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where A and A apply to B0 and B0 decays, respectively, and are functions of DP

location. We have made use of q/p ≈ e−2i·β, and have introduced the experimental

quantity w, the mistag rate, which is the fraction of events in which the B0
tag is tagged

with the incorrect flavor [15]. Δw is the difference in w for B0 and B0 tags, and is

typically very small, so we will suppress it throughout the rest of this thesis, even

though we still do account for it in our fit model. We assume that the efficiency for

B0 and B0 tags is the same.

2.5.3 Isobar Model

We study decays using an amplitude analysis, which accounts for multiple amplitudes

contributing to a three-body final state. We use the so-called isobar model [16, 17, 18],

which describes the overall decay amplitude as a linear coherent sum of individual

amplitudes (or “isobars”):

A(s12, s23) =
∑
j

Aj(s12, s23) (2.22)

A(s12, s23) =
∑
j

Aj(s12, s23) . (2.23)

where

Aj ≡ ajFj(s12, s23) (2.24)

and

Āj ≡ ājF̄j(s12, s23) . (2.25)

The isobar coefficients aj and āj are complex numbers that describe the relative

magnitudes and phases of the particular decay channels. All of the weak phases of

the decay are contained in aj and āj.

The quantities Fj(s12, s23) and F̄j(s12, s23) describe the decay dynamics of the

individual decay channels, and do not include any weak phases. Since the overall

decay amplitudes forB+ → K+K−K+ must be symmetric under exchange of identical

bosons, Fj(s12, s23) must be replaced with Fj(s12, s23) + Fj(s23, s12). Likewise, for

B+ → K0
S
K0

S
K+, Fj(s12, s23) must be replaced with Fj(s12, s23) + Fj(s12, s13). Since
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the Fj do not contain any weak phases, in the B+ modes Fj = F̄j . However, in

B0 → K+K−K0
S ,

Fj = (−1)LF̄j , (2.26)

where L is the orbital angular momentum ofK3 in theK1K2 frame. The reason is that

we use the definitions K1 = K+ and K2 = K− for both B0 and B0 decays. However,

if CP is conserved, then we should have A(B0 → K+K−K0
S
) = A(B0 → K−K+K0

S
),

so A(s12, s23) = A(s12, s13). When we exchange K1 and K2, this introduces a fac-

tor of (−1)L. We will describe the exact Dalitz plot dependence of the amplitudes

Fj(s12, s23) in Sections 2.5.4 and 2.5.5.

We use the following parameterization for the isobar coefficients:

aj = cj(1 + bj)e
i(φj+δj) (2.27)

āj = cj(1 − bj)e
i(φj−δj)

where cj , φj , bj , and δj are real numbers. The parameters bj and δj describe CP

asymmetry for the component j. Specifically, the direct CP asymmetry ACP (j) for a

particular isobar is given by

ACP (j) =
−2bj
1 + b2j

. (2.28)

For the B+ modes, one can define the CP -violating phase difference

Δφ(j) ≡ arg(ajā
∗
j ) = 2δj , (2.29)

which is a form of direct CPV. In B0 → K+K−K0
S
, we can express the CPV due to

interference between decay and mixing in terms of the “effective” β for the component

j:

βeff(j) ≡ 1

2
arg(e2i·βaj āj∗) = β + δj . (2.30)

As an example to illustrate the power of a DP amplitude analysis, assume we have

only two isobars contributing to B0 → K+K−K0
S
, an even-spin resonance A1 and an
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odd-spin resonance A2. Assume they have b1 = b2 = 0, and δ1 = δ2 = δ. Then,

A = c1e
i(φ1+δ)F1 + c2e

i(φ2+δ)F2 (2.31)

A = c1e
i(φ1−δ)F1 − c2e

i(φ2−δ)F2 , (2.32)

where we used F̄2 = −F2 because it is odd-spin. Plugging these expressions into

Eq. 2.21, and calculating only the sin(ΔmdΔt) coefficient, we get:

2 Im
[
e−2i·βAA∗] = −(2c21|F1|2 − 2c22|F2|2) sin(2βeff)

+ 4c1c2 Im(F1F
∗
2 e

i(φ1−φ2)) cos(2βeff) , (2.33)

where βeff = β + δ. As we can see, the interference term between the two resonances

is proportional to cos(2βeff). 4 This is quite significant, because the standard way

of measuring β, in B0 → J/ψK0 decays, is only sensitive to sin 2β, so it has a

“trigonometric ambiguity” between β and π/2 − β. By measuring cos(2βeff), we can

remove this ambiguity, assuming βeff ≈ β. This is not just an academic example:

in reality, the odd-spin φ(1020) does interfere with the even-spin f0(980) (as well as

even-spin nonresonant decays), so we are sensitive to cos(2βeff). This gives another

motivation for performing a DP analysis of B0 → K+K−K0
S
!

It is difficult to directly compare the values for aj to results from other experi-

ments, since the values of aj depend on normalization and phase convention. However,

there are other more meaningful quantities that we can define, which will allow for

direct comparisons to other experiments. The fit fraction FFj for a component is

defined as:

FFj =

∫
(|Aj|2 + |Āj|2) ds12ds23∫
(|A|2 + |A|2) ds12ds23

. (2.34)

Note that the fit fractions do not necessarily add up to one. The reason for this is

interference effects between the different resonances. We can quantify this interference

4If both resonances had been even-spin, or both odd-spin, then this interference term would have
been proportional to sin(2βeff).
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by defining interference fit fractions for i �= j:

FFij = 2 Re

∫
(AiA∗

j + ĀiĀj
∗
) ds12ds23∫

(|A|2 + |A|2) ds12ds23

. (2.35)

The fit fractions satisfy the relation

∑
j

FFj +
∑
i<j

FFij = 1 . (2.36)

The partial branching fraction for an individual isobar component is defined as

the fit fraction for the component times the total B → KKK branching fraction:

Bj ≡ FFj × B . (2.37)

2.5.4 Resonant Amplitudes

Table 2.1 gives the resonances studied in this analysis. Note that not all these res-

onances end up the in the final nominal models. In Chapter 6, we will present the

studies that help us determine which resonances to include in the nominal fit models.

Not included in this table are contributions from D meson and J/ψ decays. Those

particles are long enough lived that they do not interfere significantly, so they are

effectively treated as backgrounds. They are discussed in Section 5.4.

The decay dynamics of a process B → rKc, r → KaKb, where r is an intermediate

resonance, can be described by the complex amplitude Fr, which can be written as

Fr(m12, m23) = ZL(p, q)BB
L (|p∗|R′)Br

L(|q|R)Tr(mab), (2.38)

where:

• p and q are the momenta of c and a, respectively, both calculated in the rest

frame of r.

• p∗ is the momentum of c in the rest frame of the B.

• L is the spin of the resonance r.
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Table 2.1: List of resonances used in this analysis. Not all of these resonances end
up in the nominal fit models. “Source” indicates the source for the parameters.
Resonances without errors on their parameters are only used as systematics, not as
part of the nominal fit model. “RBW” means Relativistic Breit-Wigner.

Resonance Lineshape Mass ( MeV/c2) Width ( MeV) Source

φ(1020) RBW 1019.455 ± 0.020 4.26 ± 0.04 [9]
f0(980) Flatté see text see text [19]
fX(1500) RBW floated floated n.a.
f0(1500) RBW 1505 ± 6 109 ± 7 [9]
f0(1710) RBW 1720 ± 6 135 ± 8 [9]
f ′

2(1525) RBW 1525 ± 5 73+6
−5 [9]

χc0 RBW 3414.75 ± 0.31 10.3 ± 0.6 [9]
f0(1370) RBW 1400 300 [20]
a0

0(1450) RBW 1474 265 [9]
a−0 (1450) RBW 1474 265 [9]
a−0 (980) Flatté see text see text [21]
φ(1680) RBW 1680 150 [9]
f2(1270) RBW 1275 185 [9]
f2(2010) RBW 2011 202 [9]
f2(2300) RBW 2297 149 [9]
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• ZL(p, q) is the Zemach tensor, describing the angular distribution of the decay.

It will be described in detail below.

• BB
L (|p∗|R′) and Br

L(|q|R) are the Blatt-Weisskopf barrier factors, with a radius

parameter R′ and R. These factors will be described in detail below.

• Tr(mab) is the lineshape (e.g. Relativistic Breit-Wigner) specific to a particular

resonance. This factor will be described in detail below.

Zemach Tensors

The angular distributions of the decay products are described by Zemach tensors

ZL [22], which depend on the spin L of the intermediate resonance. The Zemach

tensors are given by the expressions

Z0(p, q) = 1 (2.39)

Z1(p, q) = 4p · q (2.40)

Z2(p, q) =
16

3

[
3(p · q)2 − (|p||q|)2

]
. (2.41)

Helicity Angles

The Zemach tensors depend on both p and q. There is no ambiguity about what p is,

but we must decide on a convention to specify which particle q refers to for a r → KK̄

decay. Depending on which particle we choose, q will flip sign. As can be seen from

Sec. 2.5.4, this will only affect odd-spin isobars. In this analysis, we decide to use the

convention that for a B → rK3, r → K1K2 decay, q will refer to the momentum of

the K1. For a B → rK1, r → K2K3 decay, q will refer to the momentum of the K3.

There are no odd-spin (K1K3) isobars in any of the decay modes, so we do not set a

convention for this case.

Note that this convention is the same as what was used in BABAR’s previous

B0 → K+K−K0
S

analysis [23], but opposite the convention used in BABAR’s previous



CHAPTER 2. THEORY 24

B+ → K+K−K+ analysis [24]. The result of this change in convention is that the

phases of any P-wave isobars will be shifted by π radians, i.e., the signs of these

isobars will be flipped.

This convention for q translates into a convention for helicity angles. We define the

cosine of the helicity angle for an isobar as �p·�q
|�p||�q| . We will use the following notation:

• For a B → rK3, r → K1K2 decay, θ3 is the helicity angle. In other words, θ3 is

the angle between K1 and K3, measured in the K1K2 frame.

• For a B → rK1, r → K2K3 decay, θ1 is the helicity angle. In other words, θ1 is

the angle between K1 and K3, measured in the K2K3 frame.

In terms of helicity angles, the Zemach tensors have the dependence Z1 ∝ cos(θ)

and Z2 ∝ 3 cos2(θ) − 1, i.e., they are proportional to the first and second Legendre

polynomials.

Blatt-Weisskopf Factors

Blatt-Weisskopf barrier factors [25] are used to take into account the finite sizes of the

decaying resonances. They only affect non-scalar resonances. The Blatt-Weisskopf

factors can be written as a function of z = |q|R or z = |p∗|R′, where R is the radius

of the KK̄ resonance, and R′ is the radius of the B meson.

The Blatt-Weisskopf factors BL(z) for L = 0, L = 1, and L = 2 resonances are

BL=0(z) = 1 (2.42)

BL=1(z) =

√
1 + z2

0

1 + z2
(2.43)

BL=2(z) =

√
9 + 3z2

0 + z4
0

9 + 3z2 + z4
, (2.44)

where z0 is the value that z has when the invariant mass of the pair of daughter

particles is equal to the mass of the parent resonance. The BL(z) are normalized so

that BL(z0) = 1.
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The Blatt-Weisskopf radii are not measured in the PDG, and different analyses

have used different guesses for their values. For example, [23] used R = 1.5 ( GeV/c)−1

for the φ(1020), while [24] used R = 4.0 ( GeV/c)−1. In this analysis, we take R to be

4.0 ( GeV/c)−1 ≈ 0.8 fm for all KK̄ resonances. We will vary R by ±2.5 ( GeV/c)−1

as a systematic.

In this analysis, we will normally ignore the Blatt-Weisskopf factorBB
L (|p∗|R′) that

comes from the B decay (i.e., we set BB
L (|p∗|R′) = 1, equivalent to R′ = 0). However,

as a systematic, we will include a BB
L (|p∗|R′) term with R′ = 1.5 ( GeV/c)−1.

Lineshapes

Most of the resonances in this analysis use a Relativistic Breit-Wigner (RBW) func-

tion for Tr(mab). The RBW has the functional form

Tr(mab) =
1

m2
r −m2

ab − imrΓr(mab)
, (2.45)

where Γr(mab) is the resonance width with the following dependence on mab:

Γr(mab) = Γr

(
q

q0

)2L+1(
mr

mab

)
Br
L(|q|R)2. (2.46)

In the preceding equations, mr and Γr are the pole mass and width of the resonance

r. q0 is the value that q has when mab = mr.

We describe the f0(980) resonance using the coupled-channel (Flatté) function [26],

which has the form

Tr(mab) =
1

m2
r −m2

ab − i(ΓKK(mab) + Γππ(mab))
, (2.47)

where

ΓKK(mab) = gK

√
1 − 4m2

K/m
2
ab (2.48)

and

Γππ(mab) = gπ

√
1 − 4m2

π±/m2
ab , (2.49)
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where mK is the average of mK+ and mK0
S
. The parameters gK and gπ are coupling

constants that we take from the BES experiment [19]:

gπ = 0.165 ± 0.010 ± 0.015 GeV2/c4

gK
gπ

= 4.21 ± 0.25 ± 0.21

The a+
0 (980) resonance is similarly described with a Flatté function, with

Tr(mab) =
1

m2
r −m2

ab − i(ΓKK(mab) + Γπη(mab))
, (2.50)

where

Γπη(mab) = gπη

√(
1 − (mπ± +mη)2

m2
ab

)(
1 − (mπ± −mη)2

m2
ab

)
. (2.51)

We take the parameters from Crystal Ball [21], 5 which found:

√
gπη = 0.324 ± 0.015 GeV/c2

gK
gπη

= 1.03 ± 0.14 .

2.5.5 Nonresonant Amplitudes

Not all B → KKK decays can be ascribed to a particular two-body resonance, and

instead are referred to as nonresonant (NR) decays. Previous analyses of B+ →
K+K−K+ [27, 24] and B0 → K+K−K0

S
[23, 28] have found large fractions of nonres-

onant decays. To account for this nonresonant component, we include a nonresonant

amplitude FNR(s12, s23) in the isobar model. Since nonresonant decays are poorly

understood, we test a number of different empirical parameterizations.

The BABAR and Belle DP analyses of B+ → K+K−K+ both used an exponential

5Technically, we used
√

gK/gπη = 1.03 instead, but this difference is completely negligible,
considering that this resonance is not used in our nominal fit model, but rather is only used as a
systematic.
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model for nonresonant decays:

FNR(s12, s23) = eαs12 + eαs23 (2.52)

That model only contains K+K− S-wave terms. In this analysis, we also test for a

K+K+ S-wave nonresonant term in B+ → K+K−K+:

FNR(s12, s23) = eα13s13 (2.53)

Thus, the overall, symmetrized, nonresonant amplitude becomes:

ANR(s12, s23) = a12 (eαs12 + eαs23) + a13e
α13s13 (2.54)

The previous BABAR and Belle analyses of B0 → K+K−K0
S have used a similar

exponential NR model, but with K+K0
S

and K−K0
S

S-wave terms:

ANR(s12, s23) = eαs12 + a13e
αs13 + a23e

αs23 (2.55)

Note that the (K+K0
S
) and (K−K0

S
) terms are S-wave in the (K+K0

S
) and (K−K0

S
)

systems, respectively. However, they are not purely S-wave in the (K+K−) system,

and that is what is crucial for determining whether they are CP -even or CP -odd.

Thus, these terms contain both CP -even and CP -odd contributions.

We also test a nonresonant parameterization that is the sum of an S-wave (spin-0)

and P-wave (spin-1) term, with both terms having a polynomial mass dependence,

like this:

ANR =
(
aS0 + aS1x+ aS2x

2
)

+
(
aP0 + aP1x+ aP2x

2
)
P1(cos θ3) , (2.56)

where x ≡ m12 −m0, and m0 is an offset that we define as

m0 ≡ 1

2

(
mB +

1

3
(mK1 +mK2 +mK3)

)
. (2.57)

cos θ3 is the cosine of θ3, defined in Sec. 2.5.4. P1(cos θ3) indicates the 1st-order
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Legendre polynomial. 6 In the case of B+ → K0
S
K0

S
K+, the P-wave term is forbidden

by Bose-symmetry. In the case of B+ → K+K−K+, both the S-wave and P-wave

terms must be symmetrized under {1 ↔ 3}, so we add a copy of Eq. 2.56 with x

changed to y ≡ m23 −m0 and cos θ3 changed to cos θ1, defined in Sec. 2.5.4.

As a cross-check, we can also add a D-wave (spin-2) term to the previous NR

model, so the following model results:

ANR =
(
aS0 + aS1x+ aS2x

2
)

+
(
aP0 + aP1x+ aP2x

2
)
P1(cos θ3)

+
(
aD0 + aD1x+ aD2x

2
)
P2(cos θ3) , (2.58)

plus a symmetric term in the case of B+ → K+K−K+.

In B+ → K+K−K+, we also test the following 2D-polynomial nonresonant pa-

rameterization:

ANR = a00 + a10(x+ y) + a20(x
2 + y2) + a11(xy) +

a30(x
3 + y3) + a21(x

2y + xy2) . (2.59)

This model doesn’t have a simple physical interpretation in terms of S-wave and

P-wave, etc., components. However, the a11 and a21 terms may be viewed as combi-

nations of S-wave and higher-wave components, while the other terms in the param-

eterization may be thought of as S-wave terms.

6We use the following non-standard normalization convention for the Legendre polynomials:∫ 1

−1
Pl(cos θ3)Pk(cos θ3)d cos θ3 = δlk. This will be convenient for certain calculations in Sec. 6.1.
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BABAR and PEP-II

The design of the BABAR experiment is heavily influenced by the physics goal of

measuring time-dependent CP violation in B decays. Colliding e+e− at the Υ (4S)

resonance is a natural choice for such an experiment, as it provides a good signal

to background ratio. Furthermore, the BB pairs from the Υ (4S) decay are created

in a well-defined initial state, and one can use this kinematic information to achieve

excellent background suppression. However, the B mesons are created with very low

momenta in the Υ (4S) frame, which would normally make a time-dependent mea-

surement of their decays unfeasible. BABAR solves this problem by using asymmetric

energies for the e+ and e− beams, thus producing an Υ (4S) that is highly boosted

(βγ ≈ 0.56) in the lab frame. This allows the longitudinal distance between the B

decays to be converted into a Δt measurement.

In this chapter, we will give a brief overview of the BABAR detector and the PEP-II

asymmetric e+e− collider.

3.1 PEP-II

PEP-II, situated at SLAC, consists of two intersecting storage rings, one each for

the e+ and e− beams. The e− bunches are generated by thermionic emission at the

start of SLAC’s 3.2km linac. After having their emittance reduced in a damping

ring, the e− bunches are accelerated to 9.0 GeV and injected into the “high-energy

29
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ring” (HER) of PEP-II. The e+ bunches are generated by firing high-energy e− at a

tungsten target, which produces e+ through pair-production. The e+ are then sent

to a damping ring, and then accelerated to 3.1 GeV and injected into the “low-energy

ring” (LER).

The HER and LER intersect at the interaction region (IR), and here the e+ and

e− beams collide. Strong quadrupole magnets are used to focus the beams at the

collision point, in order to maximize luminosity. Performance parameters achieved

by PEP-II, taken from [29], are given in Table 3.1. PEP-II was able to reach a peak

luminosity of 1.2×1034 cm−2s−1, which surpassed its design luminosity [30] by a factor

of four. A critical factor in achieving such a high luminosity is the large number of

bunches that circulate at once. This is made possible due to the two-ring design.

Table 3.1: Machine parameters for PEP-II. Parameters are from during 2006.

Parameter LER HER
Energy ( GeV) 3.1 9.0
εx/εy (nm · rad) 36/1 73/1
β∗
x/β

∗
y (cm) 21/1.0 74/1.1

N(bunches) 1730 1730
I (A) 3.0 1.9

L (cm−2s−1) 1.2 × 1034

Between 1999 and 2008, about 430 fb−1 of data were recorded by BABAR at the

Υ (4S) resonance (“onpeak” data). In addition, about one-tenth this much data were

collected at an energy 40 MeV below the Υ (4S) (“offpeak”). The offpeak data is

useful for understanding backgrounds to Υ (4S) decays. PEP-II also produced smaller

datasets at the Υ (3S) and Υ (2S), but those datasets are irrelevant for this analysis.

3.2 The BABAR Detector

A sketch of the BABAR detector is shown in Fig. 3.1. This sketch also shows the BABAR

coordinate system, with the e− traveling in the +z direction, and the x and y axes

in the horizontal and vertical directions, respectively. BABAR consists of the following
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subdetectors, moving outwards from the collision point:

• Silicon Vertex Tracker (SVT). It is crucial for measuring the positions of

the B decay vertices, and is also important for low-momentum tracking. Ad-

ditionally, dE/dx measurements here help with particle identification (PID) of

low-momentum charged hadrons.

• Drift Chamber (DCH). The main tracking subdetector, it gives the momenta

of charged particles. Also, dE/dx measurements here help with PID.

• Detector of Internally Reflected Cherenkov Light (DIRC). This sub-

detector contributes to charged hadron PID.

• Electromagnetic Calorimeter (EMC). This is used for measurements of

photons and π0’s. It is also used for e± identification.

• Instrumented Flux Return (IFR). This subdetector is used for muon iden-

tification, and for measuring K0
L
’s.

The first four of these subdetectors are inside a 1.5T magnetic field generated

by a superconducting solenoid. This analysis makes use of all five subdetectors, but

it depends more on the first three subdetectors than the last two. We will now

give a brief overview of the subdetectors, with an emphasis on their relevance to the

B → KKK analysis. Much of the information in this section is taken from [31]; more

details about the BABAR detector can be found there. 1

3.2.1 Silicon Vertex Tracker

The SVT is a five-layer silicon tracker, designed especially for precise vertexing of B

decays. Radial and side views of the SVT are shown in Figs. 3.2 and 3.3, respectively.

The first three layers are just outside the beampipe, and are most important for

measuring impact parameters. The fourth and fifth layers are farther out, and help

SVT tracks to be linked up with DCH tracks, and also allow for tracking of charged

1Figs. 3.1, 3.2, 3.3, 3.4, 3.6, and 3.7 are taken from [31]. Reprinted from Nucl. Instrum. Meth.
A479, B. Aubert et al., The BABAR detector, 1, Copyright 2002, with permission from Elsevier.
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Figure 3.1: Sketch of the BABAR detector. Dimensions are given in mm.
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particles with transverse momenta (pT ) below 120 MeV, which are too low momentum

to be tracked by the DCH.

Each layer of the SVT consists of between six and eighteen modules, with each

module consisting of many detectors. The detectors are double-sided silicon strip

detectors. On one side, the strips run in the azimuthal direction, and are used to

measure the z-coordinate (“z”-strips), and on the other side, the strips run in the

longitudinal direction, and are used to measure the φ-coordinate (“φ”-strips). The

radii of the layers and readout pitches of the strips are given in Table 3.2. The outer

two layers have an arched shape, as can be seen in 3.3, so their radii are not constant.

The readout pitches are often larger than the actual physical pitches, because some

of the strips are not read out (“floating strips”), in order to reduce the number of

readout channels. In total, the SVT has about 150, 000 readout channels.

Table 3.2: Radii and readout pitches for each of the SVT layers.

Layer radius (mm) readout pitch (μm)
z φ

1 32 100 50-100
2 40 100 55-110
3 54 100 110
4 91-127 210 100
5 114-144 210 100

The silicon strip sensors are 300 μm thick, with an n-type bulk, with orthogonal

n+ and p+ strips on either side of the bulk. The sensors are reverse biased so that

they are fully depleted. Charged particles traversing the sensors generate electron-

hole pairs in the bulk, and the electrons and holes propagate under influence of the

applied voltage to opposite strips. The induced signals are then sent via fanout

circuits to custom-built frontend electronics. The strength of the signal pulses can be

used to measure dE/dx, which allows for 2σ K − π separation below 500 MeV.

The mean B0 flight distance is βγcτ ≈ 250μm, and the time-dependent CPV

oscillations peak at around Δz = 500μm, so this sets the scale for the desired Δz

resolution. The actual Δz resolution has a core width of about 100μm, with long
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tails resulting in an overall width of about 190μm. The Δz resolution is mainly due

to the B0
tag vertex resolution.

Beam Pipe 27.8mm radius

Layer 5a

Layer 5b

Layer 4b

Layer 4a

Layer 3

Layer 2

Layer 1

Figure 3.2: Radial view of the SVT.

3.2.2 Drift Chamber

The DCH is the main tracking device in BABAR, used for identifying charged tracks

and measuring their momenta. It also measures dE/dx, which allows for PID at low

momenta. The DCH is shown in Fig. 3.4.

The DCH is a cylindrical detector filled with a gas mixture of 80% helium and 20%

isobutane. The detector is strung longitudinally with 40 layers of wires. The wires

are arranged into 7104 hexagonal “cells,” with six “field wires” surrounding a “sense

wire.” The field wires are held at ground potential, while 1900-1960 V are applied to

the sense wires. When a charged particle passes through the detector, it ionizes the

gas, which causes an avalanche of ionization to drift to the nearest sense wires. The
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drift time can be used to measure the particle’s position. The 40 layers are organized

into 10 superlayers, the wires within each superlayer being oriented at the same angle.

Some superlayers are oriented in the z-direction, while others are oriented at small

(45-76 mrad) stereo angles, which allows for z-position measurements.

The DCH provides a hit resolution between 100μm and 400μm, depending on the

drift distance. The pT for charged particles, which is measured mainly by the DCH,

has a measured resolution of

σpT
pT

= (0.13 ± 0.01)% · pT + (0.45 ± 0.03)% . (3.1)

In B → KKK decays, the K± typically have pT in the range 200 MeV/c to 2.5 GeV/c,

with an average of about 1 GeV/c. An important parameter for B → KKK decays is

the resolution on the KK invariant mass. This is particularly important for narrow

resonances like the φ(1020) and χc0. Fig. 3.5 shows themK+K− resolution in simulation

for B0 → K+K−K0
S

decays, as a function of mK+K−.

The DCH can also measure dE/dx for charged particles, which allows for PID.

Fig. 3.6 shows dE/dx measurements in the DCH for various charged particles, as a

function of momentum. Good K/π separation is possible below 700 MeV. This is

highly complementary to the PID information from the DIRC, which is strong for

momenta � 700 MeV.

The DCH also helps in reconstructing K0
S

that decay outside of the SVT. In

B0 → K+K−K0
S , these long-lived K0

S account for about one-fifth of all reconstructed

K0
S

decays.

3.2.3 Detector of Internally Reflected Cherenkov Light

The DIRC system is dedicated to PID by detecting Cherenkov light emitted by

charged particles. It is important for momenta above 700 MeV/c, where the dE/dx

measurements become less useful. The momenta of the K± in B → KKK decays

have a broad distribution, with almost all between 0.5 GeV/c and 3.5 GeV/c. This

means the DIRC is mainly responsible for PID in this analysis.

The DIRC contains 144 fused silica bars, each 4.9m long, arranged in a barrel
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Figure 3.5: The simulated mK+K− resolution for B0 → K+K−K0
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S
→ π+π−)

decays, as a function of mK+K−. Resolution is calculated from a Gaussian fit to the
core of the resolution, ignoring the tails of the distribution. The reason the resolution
improves at high mK+K− is that the kinematic fit constrains the K+K−K0

S
invariant

mass to the true B0 mass, and so a good K0
S measurement is able to reduce the error

on mK+K−.
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Figure 3.6: dE/dx from data, as measured in the DCH.

shape. Groups of 12 bars are each enclosed in a bar box. The operation of the

DIRC is illustrated in Fig. 3.7. When a charged particle passes through one of the

bars (index of fraction n = 1.473), it emits Cherenkov light at an angle θC , where

cos θC = 1/nβ. Some of this light is internally reflected along the bar. A mirror is

placed on one end of the bar to reflect the light, while the light is allowed to escape

out the other end of the bar into a standoff box. The standoff box is filled with water

(n ≈ 1.346) and its surface is covered by an array of 10,752 photomultiplier tubes

(PMT’s) for detecting the light. By measuring the photon angle with the PMT array,

and combining this with the charged particle’s track (calculated from the SVT and

DCH), one can infer θC , up to some geometric ambiguities. Timing information is

used to reduce the number of these ambiguities.

The θC resolution has been measured in μ+μ− events to be about 2.5 mrad per

track. Fig. 3.8 shows θC for different particle types, as a function of momentum. By

combining the θC measurement with the momentum measurement from the DCH and

SVT, one can infer the particle type.

The main importance of PID in B → KKK is to distinguish K± from π±. We
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combine information from the DIRC with PID information from the other subdetec-

tors to distinguish between particle types. We use a variety of PID selection criteria

in the different B → KKK analyses (see Chapter 4). Generally, tighter PID require-

ments result in a kaon efficiency of � 80% and a pion-as-kaon misidentification rate

� 3% for most of the momentum range. Meanwhile, looser PID criteria typically give

a kaon efficiency ≈ 90% and a pion-as-kaon misidentification rate � 5% for most of

the momentum range. However, for p > 3 GeV the performance can be somewhat

worse than this.

3.2.4 Electromagnetic Calorimeter

The EMC is a homogeneous calorimeter that measures electromagnetic showers gen-

erated by photons and e±. It is designed to measure photons over a wide range of

energies, from 20 MeV to 9 GeV. It can also be used to distinguish e±, which shower

heavily, from π± and μ±.

The EMC has two sections, a barrel and a forward endcap, and contains 6580

individual crystals arranged in rings. It covers polar angles from 15.8◦ to 141.8◦.

This results in a 90% solid angle coverage in the Υ (4S) frame.

The crystals are made of thallium-doped cesium iodide (CsI(Tl)). It has good

scintillation properties, with a high light yield, short radiation length (1.85 cm), and

small Moliére radius (3.8 cm). The thickness of the EMC varies between 16 and 17.5

radiation-lengths. The scintillation light is measured by silicon PIN diodes connected

to the backs of the crystals. The energy resolution of the EMC can be parameterized

as
σE
E

=
(2.32 ± 0.30)%

4
√
E( GeV)

⊕ (1.85 ± 0.12)% , (3.2)

while the angular resolution is

σθ = σφ =

(
3.87 ± 0.07√
E( GeV)

+ 0.00 ± 0.04

)
mrad . (3.3)

The EMC is not particularly important for this analysis. It is mainly used in

the B0 → K+K−K0
S mode, when we reconstruct K0

S → π0π0 (although almost all
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of our physics reach in B0 → K+K−K0
S

comes from the K0
S
→ π+π− mode). With

our nominal selection criteria for the B0 → K+K−K0
S analysis, the K0

S → π0π0

reconstruction efficiency is around 20%. The resolution on the K0
S
→ π0π0 mass is

about 12 MeV/c2, as determined from simulation. The EMC’s ability to identify e±

is also important for the
( )

B0 flavor tagging, as one method of flavor tagging relies on

identifying e± from semileptonic decays.

3.2.5 Instrumented Flux Return

The steel flux return of the 1.5T solenoid is instrumented, and used as a subdetector to

identify muons and neutral hadrons, in particular K0
L. The IFR’s main importance to

this analysis is in B0 → K+K−K0
S
, where it is used in

( )

B0 flavor tagging by identifying

μ± from semileptonic decays.

The IFR consists of a hexagonal barrel section and two endcaps. The steel of the

flux return is divided into 18 plates, with gaps between them. Originally, there were

19 layers of resistive plate chambers (RPC’s) between the gaps in the barrel, and 18

layers of RPC’s in the endcaps. Very early on, the performance of the RPC’s began

to degrade, result in a severe loss in muon efficiency. Between 2004 and 2006, twelve

of the RPC’s in the barrel were replaced by limited streamer tubes (LST’s)[33], which

have had fewer problems. Another six of the RPC’s in the barrel were replaced by

brass, in order to provide more absorption material.

The main muon identification purpose for the IFR is to distinguish muons from

π±. This is achieved by looking at the number of layers traversed by a particle, and

the shape of the cluster of hits left by the particle. For momenta above 1.2 GeV/c,

muon efficiencies of ∼ 80% with pion mis-ID rates ∼ 2% are possible.
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Event Selection

4.1 Datasets

These analyses are based on BABAR’s full Υ (4S) data sample (onpeak data). The

B+ → K+K−K+ analysis uses data from BABAR’s R22 processing cycle, while B+ →
K0

SK
0
SK

+ and B0 → K+K−K0
S are based on the later R24 processing cycle. The

integrated luminosity and number of BB pairs used in these analyses are shown in

Table 4.1. In addition, we study backgrounds with about 44 fb−1 of offpeak data.

Table 4.1: Datasets used for these analyses. R22 is used for B+ → K+K−K+; R24
is used for B+ → K0

S
K0

S
K+ and B0 → K+K−K0

S
.

R22 R24
Run Period Luminosity ( fb−1) NBB (×106) Luminosity ( fb−1) NBB (×106)

Run 1 20.4 22.4 20.6 22.6
Run 2 61.1 67.4 62.1 68.4
Run 3 32.3 35.6 32.7 35.8
Run 4 100.3 110.5 100.8 111.4
Run 5 133.3 147.2 133.9 147.6
Run 6 78.4 84.4 79.0 85.2
Total 425.7 467.4 429.1 471.0

In addition to the real data collected by BABAR, we study simulated Monte Carlo

(MC) signal and background events. These events are passed through a realistic

GEANT4 simulation of the detector.

43
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We use two classes of signal MC to describe B → KKK events. “Phasespace”

MC is generated uniformly over the DP, while “Dalitz model” MC is generated with

a more realistic DP distribution using an isobar model. We will sometimes refer to

a particular MC sample by the “SP” (Simulated Production) number assigned to it

in BABAR’s MC database. We use the following signal MC samples in this analysis:

B+ → K+K−K+

• SP-1932 (Phasespace model): about 7.8 Million events,

• SP-6845 (Dalitz model based on BABAR’s previous B+ → K+K−K+ analysis):

968,000 events.

• SP-9688 (Dalitz Model based on BABAR’s previous B+ → K+K−K+ analysis,

but with corrections): 4.296 Million events.

B+ → K0
S
K0

S
K+

• SP-3915 (Phasespace model, K0
S → π+π− only): about 4.272 Million events,

• SP-9000 (Phasespace model, both K0
S
→ π+π− and K0

S
→ π0π0): about 427,000

events,

• SP-10338 (Dalitz model based on BABAR’s previous B0 → K+K−K0
S

analysis,

K0
S → π+π− only): 1.706 Million events

B0 → K+K−K0
S

• SP-1593 (Phasespace model, both K0
S
→ π+π− and K0

S
→ π0π0): 6.397 Million

events

• SP-7930 (Dalitz model based on BABAR’s previous B0 → K+K−K0
S

analysis,

K0
S
→ π+π− only): 8.595 Million events

• SP-7931 (Dalitz model based on BABAR’s previous B0 → K+K−K0
S

analysis,

K0
S
→ π0π0 only): 8.587 Million events
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We also study backgrounds using MC. Backgrounds in this analysis can be split

into two basic categories: continuum background, originating from e+e− → qq̄ events,

with q = u, d, s, c; and BB background, originating from e+e− → Υ (4S) → BB

events. Continuum background is mainly studied with offpeak data or onpeak side-

band data, while BB background is studied with MC. Some background studies are

done using “generic” MC that attempts to simulate a general background process

with proper branching fractions and kinematic distributions. We use the following

generic MC samples in this analysis:

• B+B− generic (Simulates Υ (4S) → B+B− events): about 703 million events in

R22, 709 million in R24.

• B0B0 generic (Simulates Υ (4S) → B0B0 events): about 685 million events in

R22, 718 million in R24.

• uds (Simulates e+e− → qq̄ events, with q = u, d, s): about 900 million events in

R22. Not used in R24.

We also study backgrounds from specific B± and
( )

B0 decay modes using exclusive

MC in which one of the B’s from the Υ (4S) decays generically, while the other B

decays through a specific decay channel of interest. These exclusive BB samples will

be discussed in Sec. 5.4.

4.2 Event Preselection

In order to make the amount of data more manageable to analysts, BABAR data is

skimmed into different categories. We then only need to look at data belonging to a

particular skim category. In B+ → K+K−K+, we use events that pass the BToCCC

skim, while in B+ → K0
S
K0

S
K+ and B0 → K+K−K0

S
, we use events passing the

BToCPP skim. The skim criteria are very loose compared to our ultimate selection

criteria, so we do not lose in signal efficiency.

B → KKK events are reconstructed by combining particle candidates belonging

to various lists. In B+ → K+K−K+, B candidates are formed by combining three
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charged tracks from the GoodTracksLoose list that pass a very loose kaon-PID criteria

(KLHNotPion). The GoodTracksLoose list requires tracks to have pT > 50 MeV/c,

p < 10 GeV, and to have a distance-of-closest approach (DOCA) no greater than

1.5 cm in the xy plane, and no greater than 2.5 cm in z.

In B+ → K0
S
K0

S
K+, a track from GoodTracksLoose passing a very loose kaon-

PID criteria (KCombinedSuperLoose) is combined with two K0
S candidates from the

KsDefault list. The KsDefault list contains K0
S
→ π+π− candidates formed from

charged tracks having an invariant mass within 25 MeV/c2 of the K0
S mass.

In B0 → K+K−K0
S
, we reconstruct B candidates in two decay channels: K0

S
→

π+π− and K0
S → π0π0. We will abbreviate these two decay channels as K0

S → π+π−

and K0
S
→ π0π0, respectively. In K0

S
→ π+π−, the B is formed from two tracks

from GoodTracksLoose (passing KCombinedSuperLoose) combined with a K0
S from

KsDefault. InK0
S
→ π0π0, meanwhile, theK0

S
is taken from the list KsToPi0Pi0Default.

The KsToPi0Pi0Default candidates are formed from two π0 candidates. The π0 can-

didates are formed either from two photon candidates, or from a single EMC cluster

whose shape is consistent with coming from a π0 (“merged” π0’s).

The B candidates are formed using a fitting algorithm called TreeFitter which

uses a Kalman Filter method. The fit is both geometric and kinematic, and constrains

the B’s production vertex to the beamspot. The fit is first performed without a

constraint on the B mass. Afterwards, the fit is redone with the B candidate’s mass

constrained to the true B mass, and the result of this fit is used to get the DP

coordinates for the candidate. The B mass constraint forces the DP coordinates to

lie within the kinematically allowed region.

At this initial stage, events are required to pass the loose cuts 5.2 < mES <

5.3 GeV/c2 and |ΔE| < 0.3 GeV. mES is defined asmES ≡√(s/2 + pi · pB)2/E2
i − p2

B,

where
√
s is the total e+e− CM energy, and (Ei,pi) is the four-momentum of the e+e−

system and pB is the B candidate momentum, both measured in the laboratory frame.

ΔE is defined as ΔE ≡ EB −√
s/2, where EB is the B candidate energy in the CM

frame. For signal events, mES peaks at mB ≈ 5.28 GeV/c2 and ΔE peaks at zero.

After this initial selection stage, we transform mES as 5.29 GeV/c2 +mES − 0.5 · √s.
From now on, this transformed mES will be simply referred to as mES.
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4.3 Initial Cuts

BABAR has performed previous analyses of B+ → K+K−K+ [24, 34], B+ → K0
S
K0

S
K+

[35, 36], and B0 → K+K−K0
S

[23, 37]. (In the case of B+ → K0
S
K0

S
K+, however, it

was not a DP analysis.) In many cases, we chose to use the same cuts as were chosen

in those analyses, rather than doing our own optimization.

We make a few loose initial cuts in B+ → K+K−K+ and B+ → K0
S
K0

S
K+.

They are not very important; we list them here mainly for thoroughness. In B+ →
K+K−K+ we apply the following cuts:

• The total energy of the event Etot is less than 20 GeV.

• The difference between mES and the invariant mass of the B candidate is less

than 0.1 GeV/c2.

• The invariant masses of the K pairs, mij, satisfy 0 ≤ m2
ij ≤ (mB − mK)2 +

1.0 GeV2. Note that (mB −mK)2 is the theoretical kinematic limit for m2
ij .

• The χ2 of the B vertex fit is less than 200.

• There are at least four tracks in the GoodTracksLoose list for the event.

In B+ → K0
SK

0
SK

+, we only apply the first of those cuts (Etot < 20 GeV).

More importantly, we make a cut on cos θT in all three B → KKK modes,

where θT is the angle between the thrust axis calculated with the B candidate’s

daughters and the thrust axis formed from the other charged and neutral particles

in the event. This cut’s purpose is to suppress continuum backgrounds, which peak

at | cos θT | = 1. In B+ → K0
S
K0

S
K+ and B0 → K+K−K0

S
, we require | cos θT | < 0.9,

while in B+ → K+K−K+, we require | cos θT | < 0.95.

4.4 K0
S

Selection

We apply the same K0
S selection cuts that BABAR’s previous B+ → K0

SK
0
SK

+ and

B0 → K+K−K0
S

analyses used. We require that each K0
S

pass the following selection

criteria:
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• The K0
S

must have a flight significance ≥ 3, where the flight significance is the

flight length divided by the error on the flight length.

• The K0
S

flight direction must satisfy cosαKS
> 0.999, where αKS

is defined as

the angle between the K0
S momentum vector and the vector that connects the

B and K0
S

decay vertices.

We also make a requirement on the reconstructed K0
S mass, mππ, that depends on

the decay mode:

• For B+ → K0
SK

0
SK

+, mππ must be within 12 MeV/c2 of the nominal K0
S mass

(mK0
S
).

• For B0 → K+K−K0
S (K0

S → π+π−), mππ must be within 20 MeV/c2 of mK0
S
.

• ForB0 → K+K−K0
S

(K0
S
→ π0π0),mππ must be in the range (mK0

S
−20 MeV/c2) <

mππ < (mK0
S

+ 30 MeV/c2). This range was determined from an optimization

study in a previous analysis.

4.5 Kaon PID Selection

BABAR has developed a number of different PID selectors that combine informa-

tion from the DIRC, DCH, SVT, etc. to determine whether a charged track is

consistent with a particular particle hypothesis. In B+ → K+K−K+, we choose

from a set of likelihood-ratio-based kaon selectors (LH). In terms of increasing tight-

ness, the selectors are KLHNotPion, KLHLoose, KLHTight, and KLHVeryTight. In

B+ → K0
SK

0
SK

+ and B0 → K+K−K0
S , we choose from a set of kaon selectors based

on an Error Correcting Output Code technique (KM), which have similar performance

to the LH selectors, but somewhat better.1 In terms of increasing tightness, the se-

lectors are KKMSuperLoose, KKMVeryLoose, KKMLoose, KKMTight, KKMVeryTight and

KKMSuperTight.

1The KM selectors were not available in the R22 release, so that is why we do not use them in
B+ → K+K−K+.
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In B+ → K+K−K+ and B+ → K0
S
K0

S
K+, we do an optimization procedure

to decide what kaon PID selectors to use. For different PID selectors, we esti-

mate how many signal events and background events would pass our selection in

the region mES > 5.27 GeV/c2, |ΔE| < 0.1 GeV (for B+ → K+K−K+) or mES >

5.275 GeV/c2, |ΔE| < 0.06 GeV (for B+ → K0
S
K0

S
K+). The number of signal events

is estimated using Dalitz model signal MC and previous measurements for the signal

branching fractions. The number of background events is extrapolated from onpeak

data outside of the signal region. Using these predictions for the number of sig-

nal events (S) and background events (B), we pick the kaon PID requirements that

maximize the expected S/
√
S +B.

The optimization study for B+ → K+K−K+ shows the same performance for two

combinations:

• KLHLoose-KLHLoose-KLHTight

• KLHLoose-KLHLoose-KLHVeryTight.

We choose the latter option. It means that two of the three kaons should pass

KLHLoose and the last kaon should pass KLHVeryTight. The efficiency of this PID

cut is about 67% for signal MC, 17% for offpeak data, 16% for B0B0 generic MC,

and 15% for B+B− generic MC. (B+B− generic MC contains actual B+ → K+K−K+

events, which we have removed.) These efficiencies are the relative efficiencies for the

PID cut, after all of the already mentioned cuts have been applied.

Based on the optimization study for B+ → K0
S
K0

S
K+, we decide to choose the

KKMVeryLoose selector. The efficiency of this PID selector is about 94% for signal

MC, 61% for offpeak data, 52% for B0B0 generic MC, and 69% for B+B− generic

MC.

For B0 → K+K−K0
S
, we do not do a separate PID optimization, but instead

base our choices on BABAR’s previous analysis of this mode. If the K+K− invariant

mass mK+K− is less than 1.1 GeV/c2, than we require one K to pass KKMLoose and

the other K to pass KKMSuperLoose. If mK+K− > 1.1 GeV/c2, then we apply tighter

PID requirements: both K are required to pass KKMTight. This is the same as

what the previous analysis did, except they used the LH selectors instead of KM.
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The KM selectors are very similar in performance to the LH selectors, but somewhat

better. The argument made for different PID requirements in the different mK+K−

regions was that the looser PID requirement increased the signal efficiency by 13% in

the φ region, with no significant increase in BB background. Meanwhile, using the

looser PID requirement for the entire DP would have significantly increased the BB

backgrounds.

4.6 Event Shape

4.6.1 Training a Discriminator

We train multivariate methods to reject continuum background better, using the

TMVA package [38]. For B+ → K+K−K+, we train multivariate discriminators to

discriminate between Dalitz model signal MC (SP-6845) and offpeak data. The input

variables are | cos θB|, | cos θT |, L2/L0, |TFlv|, and |Δt/σΔt|, where

• cos θB is the cosine of the angle between the B meson direction and the z-

direction.

• L2/L0 is the ratio of the 2nd and 0th order Legendre polynomial moments,

defined as

LJ =
∑
i

|pi|PJ(cos θi) (4.1)

where the sum is over the rest of the event, the angles are measured with respect

to the thrust axis of the B-candidate, and all quantities are measured in the

Υ (4S) frame.

• TFlv is the output of the neural network used for B flavor tagging.

• Δt is the measured time difference between the two B decays, and σΔt is the

error on Δt.

The input variable distributions are shown in Fig. 4.1. Four multivariate methods

were tested: a Boosted Decision Tree (BDT), a Likelihood cut, a Fisher Discriminant,

and a Multi-Layer Perceptron Neural Network (MLP).
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Figure 4.1: The TMVA input variable distributions for B+ → K+K−K+.
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Table 4.2: TMVA overtraining check. The table gives the relative signal efficiency of
TMVA cuts that produce the specified relative background rejection. Numbers are
given both for the test and training samples.

Background rejection 99% 90% 70%
Methods Signal efficiency for test (training) sample

MLP 0.436 (0.411) 0.788 (0.785) 0.931 (0.928)
BDT 0.380 (0.627) 0.765 (0.918) 0.924 (0.945)

Likelihood 0.382 (0.425) 0.752 (0.759) 0.923 (0.922)
Fisher 0.342 (0.328) 0.731 (0.733) 0.913 (0.909)

As shown in Fig. 4.2, the MLP neural network does the best job of discriminating

between signal and background events. We also checked that the MLP does not

suffer from overtraining. To do this, we split both the signal and background events

into two independent samples, a “training” sample and a “test” sample. We train

the MLP on the signal/background training sample. Then we look at what the

relative signal efficiency is for an MLP cut that achieves 70%, 90%, and 99% relative

background rejection. We look at this for both the “training” and “test” samples.

If the MLP were overtrained, we would expect to see a better signal efficiency (for

a given background rejection rate) for the training sample than for the test sample.

The results of this overtraining test (done not only for the MLP method, but also for

the BDT, Likelihood cut, and Fisher methods) can be seen in Table 4.2. The MLP

method exhibits similar signal efficiencies for both the training and test samples, so

there is no sign of overtraining, while the BDT method shows clear overtraining. So we

choose to use the MLP neural network in our analysis. The MLP output distributions

for offpeak and signal (SP-6845) events are shown in Fig. 4.3. To further reduce the

number of continuum background events entering into the maximum-likelihood (ML)

fit, we apply the cut 0.25 < MLP < 1.13. The efficiency of this cut is 34.8% for

offpeak data, and 93.3% for signal (SP-6845).

For B+ → K0
S
K0

S
K+, instead of specifically training a new neural network, we

simply use the exact same neural network as in B+ → K+K−K+. To further reduce

the number of continuum background events entering into the ML fit, we apply the

cut 0.25 < MLP < 1.12. The efficiency of this cut is 50.9% for offpeak data, and
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Figure 4.2: The TMVA performance plot for B+ → K+K−K+.
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95.8% for signal (SP-10338).

For B0 → K+K−K0
S , we do not want to use a neural network containing TFlv

or |Δt/σΔt|, since those variables will be correlated with the variables in our ML

fit. So, we use TMVA to train new multivariate discriminators based only on | cos θB|,
| cos θT |, and L2/L0. We train using K0

S
→ π+π− Dalitz model signal MC (SP-7930)

and K0
S → π+π− offpeak data. We find that the four multivariate methods do a

similarly good job of discriminating between signal and background. We decide to

use the MLP, since that is the multivariate method used in B+ → K+K−K+ and

B+ → K0
S
K0

S
K+. The MLP output distributions for offpeak and signal MC events

are shown in Fig. 4.4, for both K0
S → π+π− and K0

S → π0π0. To further reduce the

number of continuum background events entering into the maximum-likelihood fit, we

apply the cut MLP > 0.11. The efficiency of this cut is 74% (76%) for K0
S → π+π−

(K0
S
→ π0π0) offpeak data, and 98% (98%) for K0

S
→ π+π− (K0

S
→ π0π0) DP-model

signal MC. The performance of the MLP in this mode is substantially worse than in

B+ → K+K−K+, but this is not surprising, because it uses two fewer discriminating

variables, and because a tighter | cos θT | cut (0.9 instead of 0.95) is applied in this

mode prior to training the MLP.

4.6.2 Correlation with Dalitz Plot

It is well established in three-body analyses that the event shape of continuum back-

ground events is correlated with DP position [39]. The basic reason is that continuum

events with a “jettier” event shape tend to have two particles from one jet, so that

pair of particles has a small invariant mass. So, continuum events that are more

“continuum-like” are more likely to be close to the edge of the DP. To test how much

the MLP output is correlated with the DP position, we divide the DP into 2 regions,

based on the Dalitz distance ΔDP . ΔDP is defined as the minimum of the three in-

variant masses m12, m23, and m31. The MLP distribution for offpeak data depends

on the ΔDP value, as shown in Fig. 4.5 for B+ → K+K−K+. We will deal with

this correlation in the ML fit, as explained in Sec. 5.3.3. A similar plot is also shown

in Fig. 4.5, this time for B+ → K+K−K+ signal MC (SP-6845). We can see that
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NN value MLP range
B+ → K+K−K+,B+ → K0

SK
0
SK

+ B0 → K+K−K0
S

10 [0.25, 0.4737] [0.11, 0.308]
9 [0.4737, 0.6365] [0.308, 0.456]
8 [0.6365, 0.757] [0.456, 0.577]
7 [0.757, 0.8427] [0.577, 0.676]
6 [0.8427, 0.9035] [0.676, 0.755]
5 [0.9035, 0.9468] [0.755, 0.816]
4 [0.9468, 0.9787] [0.816, 0.865]
3 [0.9787, 1.0035] [0.865, 0.905]
2 [1.0035, 1.0222] [0.905, 0.940]
1 [1.0222, 1.13] [0.940, ∞]

Table 4.3: Bin ranges for MLP, and the NN value assigned for each bin. B+ →
K+K−K+ and B+ → K0

S
K0

S
K+ use the same MLP binning, except that the maxi-

mum value of the MLP in B+ → K0
SK

0
SK

+ is 1.12, instead of 1.13.

signal MC shows only a small dependency of the MLP output on ΔDP . Similarly,

in B+ → K0
S
K0

S
K+ and B0 → K+K−K0

S
, the offpeak events show some correlation

between MLP and ΔDP , while the signal MC events show minimal correlation.

4.6.3 Binned Neural Network

The distribution of the MLP output has an unusual shape, which makes modeling

it with a PDF difficult. Instead of trying to find a smooth function that models the

distribution well, we bin the MLP output into 10 bins, and use the resulting binned

neural network variable (hereafter simply NN) in the ML fit. The variable NN takes

on the discrete values shown in Table 4.3. The bin ranges were chosen so that signal

events have a roughly flat distribution in NN, and continuum events peak at large

values of NN. The MLP bin ranges and the NN distributions are illustrated for the

various B → KKK modes in Figs. 4.6-4.9. We then use a binned PDF known as

a Parametric Step Function to model the NN distribution. The Parametric Step

Function is essentially a 1D histogram with bin heights that may be either floated or

fixed in the fit.
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Figure 4.5: The MLP neural network distribution for B+ → K+K−K+, for offpeak
data and signal MC, plotted for different ΔDP ranges. For the ΔDP < 1.4 GeV line,
the thickness of the line indicates the error.
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Figure 4.6: B+ → K+K−K+ distributions of MLP (top) and NN (bottom), for
offpeak and signal MC (SP-6845), illustrating the bin widths defined in Table 4.3.
The height of each bin is proportional to the number of events in the bin divided by
the bin width. The offpeak and signal distributions are normalized to equal areas.
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Figure 4.7: B+ → K0
SK

0
SK

+ distributions of MLP (top) and NN (bottom), for offpeak
and signal MC (SP-10338), illustrating the bin widths defined in Table 4.3.
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Figure 4.8: B0 → K+K−K0
S (K0

S → π+π−) distributions of MLP (top) and NN
(bottom), for offpeak and signal MC (SP-7930), illustrating the bin widths defined in
Table 4.3.
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Figure 4.9: B0 → K+K−K0
S (K0

S → π0π0) distributions of MLP (top) and NN
(bottom), for offpeak and signal MC (SP-7931), illustrating the bin widths defined in
Table 4.3.
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4.7 Multiple B Candidates

Sometimes, more than one B candidate per event pass all of our selection cuts. The

average number of B candidates per event in signal MC is:

• B+ → K+K−K+: 1.08 (92% of events have only one B candidate).

• B+ → K0
S
K0

S
K+: 1.02 (98% of events have only one B candidate).

• B0 → K+K−K0
S , K0

S → π+π−: 1.05 (96% of events have only one B candidate).

• B0 → K+K−K0
S , K0

S → π+π−: 1.13 (90% of events have only one B candidate).

To avoid having multiple B candidates per event entering into our fit, we select

a single, “best” B candidate from each event. For B+ → K+K−K+ events with

multiple B candidates, we choose the B candidate with the smallest χ2 in the B

meson vertex fit.

For B+ → K0
S
K0

S
K+ events with multiple B candidates, we choose the best B

candidate using the following procedure:

1. We choose the B candidate with the smallest value of Δ mK0
S
, defined as:

Δ mK0
S

=

√
(
mK0

S,1
−mK0

S ,PDG

σ(mK0
S,1

)
)2 + (

mK0
S,2

−mK0
S ,PDG

σ(mK0
S,2

)
)2 (4.2)

This results in a single best B candidate in 96.2% of all signal events that

contain multiple B candidates.

2. If multiple B candidates remain, we choose whichever one’sK± candidate passes

the tightest Kaon PID. This results in a single best B candidate in 1.3% of

all signal events that contain multiple B candidates (i.e., this is the absolute

percentage, not the relative percentage, of events that are selected here).

3. If multiple B candidates still remain, we choose the one with the smallest χ2

from the B vertex fit. This results in a single best B candidate in the remaining

signal events (2.5% of all signal events that contain multiple B candidates).
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For B0 → K+K−K0
S

events with multiple B candidates, we choose the best B

candidate using the following procedure:

1. We choose the B candidate with the smallest value of |mK0
S
−mK0

S ,PDG
|. This

results in a single best B candidate in 2.5% (63.5%) of all K0
S → π+π− (K0

S →
π0π0) signal events that contain multiple B candidates.

2. If multiple B candidates remain, we choose whichever one has a K± candidate

passing the tightest Kaon PID. This results in a single best B candidate in 0.6%

(0.2%) of all K0
S → π+π− (K0

S → π0π0) signal events.

3. If multiple B candidates still remain, we choose the one with the smallest chi-

squared from the B vertex fit. This results in a single best B candidate in all

of the remaining signal events (96.9% (36.2%) of all K0
S
→ π+π− (K0

S
→ π0π0)

signal events that contain multiple B candidates).

4.8 Final Cuts

Events are required to lie in a signal region (SR) in the mES-ΔE plane. Events outside

the signal region (“sideband” events) will sometimes be used to study continuum

backgrounds. The signal regions are:

• B+ → K+K−K+: mES > 5.27 GeV/c2 and |ΔE| < 0.1 GeV.

• B+ → K0
S
K0

S
K+: mES > 5.26 GeV/c2 and |ΔE| < 0.1 GeV.

• B0 → K+K−K0
S
, K0

S
→ π+π−: mES > 5.26 GeV/c2 and |ΔE| < 0.06 GeV.

• B0 → K+K−K0
S
, K0

S
→ π0π0: mES > 5.26 GeV/c2 and −0.12 GeV < ΔE <

0.06 GeV.

The asymmetric ΔE cut for K0
S → π0π0 is motivated by the asymmetric ΔE distri-

bution for signal events in this mode. See Sec. 5.2.1 for the mES and ΔE distributions

of signal events. The signal regions are not optimized to maximize S/
√
S +B, since
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we will be performing a ML in the signal region that accounts for the signal and

background shapes.

To avoid problems related to rounding, we exclude events that are extremely close

to the boundary of the DP from the fit. Specifically, we exclude events that are within

10−6 of the edge of the square Dalitz plot (for explanation of the square Dalitz plot,

see Sec. 5.2.3). For example, in B+ → K+K−K+, in terms of the square Dalitz plot

variables m13 and ysq (see Sec. 5.2.3), we make the following requirements on DP

position:

1. mmin + 10−6 GeV < m13 < mmax − 10−6 GeV

2. 10−6 < ysq < 1 − 10−6

Here, mmin = 2mK+ and mmax = mB+ − mK+ are the lower and upper kinematic

limits of m13, respectively. Analogous cuts are made in B+ → K0
S
K0

S
K+ and B0 →

K+K−K0
S . Greater than 99.9% of signal MC events pass these cuts.

For B0 → K+K−K0
S
, we are doing a time-dependent analysis, so we will be using

Δt in the fit. We require |Δt| < 20 ps and σΔt < 2.5 ps, where σΔt is the per-event

uncertainty on Δt. These are the same requirements used in BABAR’s J/ψK0 sin2β

analysis [15].

4.9 Signal Efficiency

The signal efficiency is calculated from Dalitz model signal MC. The efficiencies for

B+ → K+K−K+, B+ → K0
S
K0

S
K+, B0 → K+K−K0

S
(K0

S
→ π+π−), and B0 →

K+K−K0
S

(K0
S
→ π0π0) are summarized in Tables 4.4, 4.5, 4.6, and 4.7, respectively.

The average efficiencies ε for the different modes are:

• B+ → K+K−K+: ε = 33.7%.

• B+ → K0
S
K0

S
K+: ε = 27.1%.

• B0 → K+K−K0
S (K0

S → π+π−): ε = 33.3%.

• B0 → K+K−K0
S (K0

S → π0π0): ε = 7.9%.
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Table 4.4: Signal efficiency for B+ → K+K−K+, calculated from Dalitz model signal
MC (SP-9688). The cuts are listed in the order that they are applied.

Cut Events Passing Cut Total Efficiency (%) Relative Efficiency (%)
Signal B reconstructed 2752744 64.077 ± 0.048 64.077 ± 0.048
Loose ΔE & mES Cut 2752738 64.077 ± 0.023 100.000 ± 0.000

Invariant mass Sanity Check 2752702 64.076 ± 0.023 99.999 ± 0.000
ETot < 20 GeV 2723678 63.400 ± 0.023 98.946 ± 0.006
| cos θT | < 0.95 2566614 59.744 ± 0.024 94.233 ± 0.014

|mES −mB| < 0.1 GeV/c2 2566515 59.742 ± 0.024 99.996 ± 0.000
Vertex χ2 < 200 2517914 58.611 ± 0.024 98.106 ± 0.009

NGTL ≥ 4 2497071 58.125 ± 0.024 99.172 ± 0.006
Kaon PID 1678857 39.080 ± 0.024 67.233 ± 0.030

TMVA 1576706 36.702 ± 0.023 93.915 ± 0.018
Best B cand 1576706 36.702 ± 0.023 100.000 ± 0.000

Inside Signal Box 1446720 33.676 ± 0.023 91.756 ± 0.022
Dalitz Plot Check 1446547 33.672 ± 0.023 99.988 ± 0.001

Note that the efficiency for B+ → K0
S
K0

S
K+ is only calculated for decays where both

K0
S decay to π+π−, so the efficiency for all B+ → K0

SK
0
SK

+ decays would be worse by

a factor of (0.692)2. Similar statements hold for the B0 → K+K−K0
S

(K0
S
→ π+π−)

and B0 → K+K−K0
S (K0

S → π0π0) efficiencies.
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Table 4.5: Signal efficiency for B+ → K0
S
K0

S
K+, calculated from Dalitz model signal

MC (SP-10338). The cuts are listed in the order that they are applied.

Cut Events Passing Cut Total Efficiency (%) Relative Efficiency (%)
Signal B reconstructed 859579 50.386 ± 0.077 50.386 ± 0.077
Loose ΔE & mES Cut 859572 50.385 ± 0.038 99.999 ± 0.000

ETot < 20 GeV 858966 50.350 ± 0.038 99.929 ± 0.003
| cos θT | < 0.90 758444 44.457 ± 0.038 88.297 ± 0.035

K0
S

Cuts 534205 31.313 ± 0.036 70.434 ± 0.052
Kaon PID 503985 29.542 ± 0.035 94.343 ± 0.032

TMVA 482887 28.305 ± 0.034 95.814 ± 0.028
Best B cand 482887 28.305 ± 0.034 100.000 ± 0.000

Inside Signal Box 462514 27.111 ± 0.034 95.781 ± 0.029
Dalitz Plot Check 462497 27.110 ± 0.034 99.996 ± 0.001

Table 4.6: Signal efficiency for B0 → K+K−K0
S (K0

S → π+π−), calculated from Dalitz
model signal MC (SP-7930). The cuts are listed in the order that they are applied.

Cut Events Passing Cut Total Efficiency (%) Relative Efficiency (%)
Signal B reconstructed 5181029 60.280 ± 0.034 60.280 ± 0.034

| cos θT | < 0.9 4534466 52.757 ± 0.017 87.521 ± 0.015
K0

S cuts 4322679 50.293 ± 0.017 95.329 ± 0.010
Kaon PID 3264709 37.984 ± 0.017 75.525 ± 0.021

TMVA 3196872 37.195 ± 0.016 97.922 ± 0.008
Best B cand 3196872 37.195 ± 0.016 100.000 ± 0.000

Inside Signal Box 2956663 34.400 ± 0.016 92.486 ± 0.015
Dalitz Plot Check 2955538 34.387 ± 0.016 99.962 ± 0.001

|Δt| < 20 ps 2919302 33.965 ± 0.016 98.774 ± 0.006
σΔt 2863565 33.317 ± 0.016 98.091 ± 0.008
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Table 4.7: Signal efficiency for B0 → K+K−K0
S (K0

S → π0π0), calculated from Dalitz
model signal MC (SP-7931). The cuts are listed in the order that they are applied.

Cut Events Passing Cut Total Efficiency (%) Relative Efficiency (%)
Signal B reconstructed 2804824 32.664 ± 0.034 32.664 ± 0.034

| cos θT | < 0.9 2493486 29.038 ± 0.015 88.900 ± 0.019
Photon Cuts 2074901 24.163 ± 0.015 83.213 ± 0.024
K0

S
Cuts 1231448 14.341 ± 0.012 59.350 ± 0.034

Kaon PID 943348 10.986 ± 0.011 76.605 ± 0.038
TMVA 923853 10.759 ± 0.011 97.933 ± 0.015

Best B cand 923853 10.759 ± 0.011 100.000 ± 0.000
Inside Signal Box 695367 8.098 ± 0.009 75.268 ± 0.045
Dalitz Plot Check 695117 8.095 ± 0.009 99.964 ± 0.002

|Δt| < 20 ps 688448 8.017 ± 0.009 99.041 ± 0.012
σΔt 674210 7.852 ± 0.009 97.932 ± 0.017



Chapter 5

Maximum Likelihood Fit

5.1 Likelihood Function

We extract signal parameters by performing a maximum-likelihood (ML) fit to data.

The ML fits are performed using Minuit [40]. The B+ → K+K−K+, B+ →
K0

SK
0
SK

+, and B0 → K+K−K0
S fits are performed separately. In B+ → K+K−K+

and B+ → K0
S
K0

S
K+, the likelihood function that is maximized in the fit has the

form:

L ∝ exp

(
−
∑
k

Nk

)
n∏
i=1

Pi (5.1)

where i indicates the number of the event in the dataset, and n is the total number

of events in the dataset. The index k is the signal or background category (there are

multiple background categories, including one continuum and several different BB

categories), and Nk is the expected number of events in category k. Pi is the PDF

evaluated for the i-th event, and has the general form:

Pi =
∑
k

NkPk,i , (5.2)

where Pk,i is the PDF for category k, evaluated for event i, and has the general form:

Pk,i ≡ Pk(mES,ΔE,NN, xsq, ysq, q)

69
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= Pk(mES)Pk(ΔE)Pk(NN, xsq, ysq)Pk(xsq, ysq, qtag) , (5.3)

where the square DP variables xsq and ysq are defined in Sec. 5.2.3, and q = ±1 is

the charge of the signal B.

In B0 → K+K−K0
S
, the likelihood function is somewhat different. It is split

up by tagging category c. BABAR tags the flavor (B0 or B0) of the B0
tag using an

algorithm that categorizes events into six different categories: Lepton, KaonI, KaonII,

KaonPion, Pion, and Other. See [15] for details. Some PDF’s depend on tagging

category. Especially important is that the mistag rate w (see Eq. 2.21) differs by

tagging category. We also retain events with no tagging information (w = 0.5) in a

seventh tagging category, since these events still help us measure DP parameters.

The likelihood function in B0 → K+K−K0
S is

L ∝
7∏
c=1

exp

(
−
∑
k

N c
k

)
nc∏
i=1

Pc
i , (5.4)

where nc is the number of events in tagging category c, and N c
k is the expected number

of events in c and in signal or background category k. Pc
i is the PDF for c, evaluated

for event i:

Pc
i =

∑
k

N c
kPc

k,i , (5.5)

where Pc
k,i is the PDF for tagging category c and signal/background category k,

evaluated for event i, and has the general form:

Pc
k,i ≡ Pc

k(mES,ΔE,NN, xsq, ysq,Δt, σΔt, qtag)

= Pc
k(mES)Pc

k(ΔE)Pc
k(NN, xsq, ysq)Pc

k(xsq, ysq,Δt, σΔt, qtag) . (5.6)

The B0 → K+K−K0
S

(K0
S
→ π+π−) and B0 → K+K−K0

S
(K0

S
→ π0π0) fits are

performed simultaneously, with different PDF’s for each K0
S decay mode.

In the remainder of this chapter, we will discuss the individual PDF’s in detail,

and show validation studies of the ML fits.
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5.2 Signal Model

5.2.1 mES and ΔE and Self-Crossfeed

We study the signal mES and ΔE distributions with MC. An important consideration

is the fraction of signal events that are incorrectly reconstructed. We refer to these

events as self-crossfeed (SCF). Note that these are true B → KKK events that are

reconstructed as B → KKK, but in an incorrect fashion. An example would be

a true B+ → K+K−K+ event in which the B+ is reconstructed by combining two

K+’s from the actual B+ → K+K−K+ decay with a K− coming from the B− decay

(the “other B”). Events that are correctly reconstructed (not SCF) are called “truth-

matched.” We will also use the term “truth-matching” in a slightly different sense, to

refer to the actual (generated MC) particle that a particle candidate is reconstructed

from. For example, if a K+ candidate is reconstructed from a π+ in MC, then we will

say that the K+ is “truth-matched” to the π+.

Based on the studies discussed next, we decide that it is not necessary to separate

SCF events into a separate category from truth-matched signal events.

B+ → K+K−K+

We perform a study of SCF using signal MC. For the purpose of this study, we assign

reconstructed signal events to one of four categories:

• TM These are B+ → K+K−K+ events that are truth-matched. This means

that the K± are all truth-matched to MC K± particles, and that the MC par-

ticles to which they are truth-matched all come from a single B+ → K+K−K+

decay.

• Rad These are B+ → K+K−K+ (+ one or more photons) events that are

truth-matched. BABAR’s MC generator has a routine called PHOTOS that

adds radiative photons to some of the B+ → K+K−K+ events. We exclude

such events from the TM category, even if such events are truth-matched.
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Table 5.1: The fractions of truth-matched (TM), radiative (Rad), combinatoric
(Comb) and mis-identified (misPID) events for B+ → K+K−K+ signal MC.

Monte Carlo Sample TM (%) Rad (%) misPID (%) Comb (%)
Signal MC (SP-9688) 85.63 13.69 0.04 0.64

• misPID These are events in which one or more of the reconstructed K± are

truth-matched to a non-K± particle.

• Comb These are all other events that don’t fit into the other categories. They

are virtually all combinatoric events, in which the signal B is reconstructed

from kaons that don’t actually all originate from the same B.

The fraction of events in each of the signal categories is given for Dalitz model

signal MC (SP-9688) in Table 5.1. As can be seen, almost all of the events are either

(non-radiative) truth-matched or radiative truth-matched events, while less than 1%

of events are in the SCF categories of misPID and Comb. Of the SCF events, almost

all are of the combinatoric variety.

The signal MC distributions in mES and ΔE for each category are shown in

Figs. 5.1 and 5.2. Since the shapes of TM and Rad are similar and the fractions of

Comb and misPID are small, we do not separate the different signal categories in this

analysis.

B+ → K0
S
K0

S
K+

We place reconstructed signal events into one of four categories:

• TM These are B+ → K0
S
K0

S
K+ events that are truth-matched.

• Rad These are B+ → K0
SK

0
SK

+ (+ one or more photons) events that are

truth-matched.

• SCF 1 These are events in which one or both of the K0
S are not truth-matched

to any MC particle at all. This is quite common.
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Figure 5.1: The signal mES distribution for each signal category, for B+ → K+K−K+

Dalitz model signal MC (SP-9688). Distributions are normalized to one.
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Figure 5.2: The signal ΔE distribution for each signal category, for B+ → K+K−K+

Dalitz model signal MC (SP-9688). Distributions are normalized to one.
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Table 5.2: The fractions of truth-matched (TM), radiative (Rad), SCF 1, SCF 2
events for B+ → K0

SK
0
SK

+ signal MC (SP-10338).

Monte Carlo Sample TM (%) Rad (%) SCF 1 (%) SCF 2 (%)
Signal MC (Dalitz Model, SP-10338) 77.99 6.12 15.54 0.34
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Figure 5.3: The signal mES distribution for each signal category, for B+ → K0
S
K0

S
K+

Dalitz-model signal MC (SP-10338). Distributions are normalized to one.

• SCF 2 These are all other mis-reconstructed events that don’t fit into the

other categories. Most of them are combinatoric events, in which the signal B

is reconstructed from kaons that don’t actually all originate from the same B.

Their fractions are given for signal MC in Table 5.2. The signal MC distributions

in mES and ΔE for each category are shown in Figs. 5.3 and 5.4. The Rad and

SCF 1 categories look fairly similar to TM events. The SCF 2 category looks like

background events, but it represents only a small fraction of signal events, so we will

not separate SCF and non-SCF events explicitly in this analysis.

B0 → K+K−K0
S

We place reconstructed signal events into one of five categories:

• TM These are B0 → K+K−K0
S events that are truth-matched.

• Rad These are B0 → K+K−K0
S

(+ one or more photons) events that are

truth-matched.
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Figure 5.4: The signal ΔE distribution for each signal category, for B+ → K0
S
K0

S
K+

Dalitz-model signal MC (SP-10338). Distributions are normalized to one.

Table 5.3: The fractions of truth-matched (TM), radiative (Rad), SCF 1, SCF 2, and
SCF 3 events for B0 → K+K−K0

S
signal MC.

Monte Carlo Sample TM (%) Rad (%) SCF 1 (%) SCF 2 (%) SCF 3 (%)
K0

S
→ π+π− Sig MC 86.1 5.2 8.1 0.4 0.3

(DP Model, SP-7930)
K0

S
→ π0π0 Sig MC 84.7 5.0 8.0 1.8 0.5

(DP Model, SP-7931)

• SCF 1 These are events in which the K0
S is not truth-matched to any MC

particle at all. This is quite common.

• SCF 2 These are events in which the K0
S is reported as truth-matched to a

MC K0
S

particle, but there is some problem with the K0
S

reconstruction. In

K0
S → π+π−, this is mainly due to one or both of of the K0

S daughter pions

being truth-matched to a non-pion track (usually a muon). In K0
S
→ π0π0, this

is mainly due to one of daughter photons being truth-matched to an electron

or positron.

• SCF 3 These are all other mis-reconstructed events that don’t fit into the

other categories. Most of them are combinatoric events, in which the signal B

is reconstructed from kaons that don’t actually all originate from the same B.

Their fractions are given for signal MC in Table 5.3. The K0
S
→ π+π− signal MC

distributions in mES and ΔE for each category are shown in Fig. 5.5 and 5.6. The
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Figure 5.5: The signal mES distribution for each signal category, for B0 → K+K−K0
S

(K0
S → π+π−) Dalitz-model signal MC (SP-7930). Distributions are normalized to

one.

Rad and SCF 1 categories look very similar to TM events for mES, and are slightly

shifted for ΔE. The SCF 2 and SCF 3 categories look more different, but together

they represent less than 1% of signal events. The K0
S → π0π0 signal MC distributions

in mES and ΔE for each category are shown in Fig. 5.7 and 5.8. The reconstruction

effects are clearly worse in this mode than in K0
S → π+π−. In particular, the SCF 1

category, which represents about 8% of signal events, has significantly different mES

and ΔE distributions than TM signal. However, the signal yield in K0
S → π0π0 is

expected to be much smaller than in K0
S
→ π+π−, so the K0

S
→ π0π0 mode should not

impact our combined measurement much. So, we will not separate SCF and non-SCF

events explicitly.

In conclusion, we decide that the SCF events are a small enough issue that we

can afford to group them together with signal events. In Sec. 5.2.5, we will show how

we handle the effects of reconstruction on DP position. The impact of not separating

out SCF events will ultimately be tested in our “embedded toy” studies (Sec. 5.5).

PDF Type

The mES and ΔE distributions for signal events are not perfectly Gaussian, espe-

cially because we have decided to group SCF events together with truth-matched
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Figure 5.6: The signal ΔE distribution for each signal category, for B0 → K+K−K0
S

(K0
S → π+π−) Dalitz-model signal MC (SP-7930). Distributions are normalized to

one.
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Figure 5.7: The signal mES distribution for each signal category, for B0 → K+K−K0
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(K0
S
→ π0π0) Dalitz-model signal MC (SP-7931). Distributions are normalized to

one.
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Figure 5.8: The signal ΔE distribution for each signal category, for B0 → K+K−K0
S

(K0
S → π0π0) Dalitz-model signal MC (SP-7931). Distributions are normalized to

one.

events. We model these distributions using a so-called “Cruijff” function, 1 which is

an asymmetric Gaussian with non-Gaussian tails, defined as:

P(x) = exp
(
− (x− x0)

2

2σ2± + α±(x− x0)2

)
, (5.7)

where σ+ and α+ (σ− and α−) are used when x > x0 (x < x0). In most cases, we take

these PDF parameters from fits to MC, but allow the means (x0) to vary (“float”) in

the nominal fit to data. Exact lists of which parameters are floated in the nominal

fits will be given in Chapter 7.

5.2.2 NN PDF

The NN PDF for signal events is a parametric step function, as already shown in

Sec. 4.6.3. The parameters of the PDF are the bin heights. Since we use 10 bins, there

are 9 free parameters (with one bin height being constrained by the normalization

condition). The PDF parameters are generally taken from MC, but in the case of

B+ → K+K−K+, there are a sufficient number of events to obtain these parameters

by floating them in fits to data, and a significant data-MC difference is observed.

However, to limit the number of free parameters in the final nominal fit, we do not

1Named after the Dutch soccer player. Don’t blame me.
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float these parameters in the nominal B+ → K+K−K+ fit. Instead, we float them

in a separate CP -blind fit, and then fix them to those values in the nominal fit, and

vary them as a systematic.

5.2.3 Dalitz Plot and Δt

The DP PDF for the B+ modes is described by Eq. 2.20, while the Δt and DP PDF

for B0 → K+K−K0
S

is described by Eq. 2.21, where A and A are described by an

isobar model. In Chapter 6, we will study what terms to include in the isobar model.

For now, we will discuss a few extra features that go into these PDF’s.

Square Dalitz Plot

The traditional Dalitz plot uses the square of the invariant masses of two different

particle pairs. For example, a traditional Dalitz plot might plot s12 vs. s23. However,

this results in events occupying an irregularly-shaped region. Computationally, it is

easier to work with rectangular regions. We therefore transform to a set of variables

that form a so-called square Dalitz plot. The square DP variables that we use are xsq

and ysq, where

• B+ → K+K−K+: xsq = m13 and ysq = | cos θH |, where θH is the angle between

K2 and K1, calculated in the K1K3 reference frame.

• B+ → K0
S
K0

S
K+: xsq = m12 and ysq = | cos θ3| (see Sec. 2.5.4).

• B0 → K+K−K0
S : xsq = m12 and ysq = cos θ3.

In Figs. 5.9, 5.10, and 5.11, we show comparisons of the traditional Dalitz plot and

the square DP for the three B → KKK modes.

We transform to the square DP variables before performing our ML fit. However,

recall from Sec. 2.5.2 that the DP-dependent decay rates were defined with respect

to the differential area ds12ds23. When doing the transformation of variables, this

differential area changes to |J |dxsqdysq, where J is the Jacobian of the transformation

(xsq, ysq) → (s12, s23).
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Figure 5.9: B+ → K+K−K+ signal MC distributions for the standard DP (left) and
square DP (right).
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0
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+ signal MC distributions for the standard DP (top) and
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Figure 5.11: B0 → K+K−K0
S

signal MC distributions for the standard DP (left) and
square DP (right).

5.2.4 Efficiency Map

The efficiency map, i.e. the efficiency as a function of position on the square DP,

is made from phase-space model signal MC. The efficiency map is split into a finite

number of bins, with the number of bins chosen to be large enough to capture the

efficiency variation adequately, while small enough so that there are enough MC events

in each bin to limit the statistical uncertainties. The binning chosen (number of xsq

bins × number of ysq bins) is 21×20 in B+ → K+K−K+, 40×40 in B+ → K0
S
K0

S
K+,

40 × 40 in B0 → K+K−K0
S (K0

S → π+π−), and 40 × 20 in B0 → K+K−K0
S (K0

S →
π0π0). Data-MC PID corrections are applied to the efficiency map. The average PID

correction is about 96.5%, 98.8%, and 95% in B+ → K+K−K+, B+ → K0
SK

0
SK

+,

and B0 → K+K−K0
S
, respectively (data efficiency is less than MC). The efficiency

maps for the various modes are shown in Figs. 5.12-5.14. Significant variations in

efficiency are seen as a function of DP position. Areas of lower efficiency tend to be

where one of the K± or one of the K0
S has low momentum. For the B+ modes, we

show separate efficiency maps for B+ and B− decays. We decide to use the same

efficiency map for B+ and B− decays, and will account for this approximation as a
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systematic (Sec. 7.4.9).

5.2.5 Dalitz Plot Resolution

We study the resolution of the Dalitz plot variables, xsq and ysq. The reconstructed

values of these variables can differ from their “true” values due to tracking resolution,

misreconstruction effects (SCF), or due to the K± radiating off photons, which alters

the 4-vectors of the K±. In MC, the radiation of photons is implemented through

PHOTOS. To determine the true (pre-radiation) 4-vectors of the kaons, we add each

MC photon to one of the K±. In the case of B+ → K+K−K+ and B0 → K+K−K0
S
,

the MC does not indicate explicitly which K± each photon comes from, so we calcu-

late the angle formed between the photon and each kaon, and assign the photon to

whichever kaon forms the smallest angle.

Define xr and xt as the reconstructed and true xsq values, respectively. Define yr

and yt as the reconstructed and true ysq values, respectively. If we plot the recon-

structed minus true DP positions, Δxsq ≡ xr − xt and Δysq ≡ yr − yt, we find that

the distributions are highly non-Gaussian, with long tails. These plots are shown

for B+ → K+K−K+ phase-space signal MC in Fig. 5.15, in log scale. The other

B → KKK modes are qualitatively similar.

The DP resolution depends on location on the DP, so to account for the resolution

in our fit, we convolve the signal DP PDF with a 2-dimensional resolution map. The

signal DP PDF, P (xr, yr), which is evaluated at the reconstructed DP position, then

becomes:

P (xr, yr) =

∫ ∫
P (xt, yt)R(xt, yt, xr, yr)dxtdyt (5.8)

where R(xt, yt, xr, yr) is the 2D resolution map that indicates the probability that

a true DP position (xt, yt) will be reconstructed at the DP position (xr, yr). We

compute the resolution map by using phase-space signal MC.
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Figure 5.12: The B+ → K+K−K+ efficiency map. Top left: for both B+ and B−

decays. Top right: for B+ decays only. Bottom left: for B− decays only. Bottom
right: difference in efficiency for B+ and B− decays.
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Figure 5.13: The B+ → K0
S
K0

S
K+ efficiency map. Top left: for both B+ and B−

decays. Top right: for B+ decays only. Bottom left: for B− decays only. Bottom
right: difference in efficiency for B+ and B− decays.
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5.2.6 Δt Resolution

The time-dependence of the B0 → K+K−K0
S

decay rate given in Eq. 2.21 assumes

that Δt is perfectly known. To account for finite Δt resolution, the signal PDF is

convolved with a Δt resolution function, R(Δt, σΔt). The resolution function is given

by a triple Gaussian:

R(Δt, σΔt) = (1 − ftail − fout)Rcore(Δt, σΔt) + ftailRtail(Δt, σΔt) + foutRout(Δt, σΔt)

(5.9)

with the core Gaussian given by

Rcore(Δt, σΔt) =
1√

2πΣcoreσΔt

exp [ − 1

2
(
Δt− μcoreσΔt

ΣcoreσΔt
)2], (5.10)

the tail Gaussian given by

Rtail(Δt, σΔt) =
1√

2πΣtailσΔt

exp [ − 1

2
(
Δt− μtailσΔt

ΣtailσΔt
)2], (5.11)

with Σtail fixed to 3.0, and the outlier given by

Rout(Δt, σΔt) =
1√

2πΣout

exp [ − 1

2
(

Δt

Σout

)2] (5.12)

where Σout is fixed to 8 ps.

The parameters ftail, fout, μcore, μtail, and Σcore are taken from BABAR’s B Tagging

group [41], which obtained them from a fit to a data sample of B0 decays to the flavor

eigenstates D(∗)−h+, with h+ = (π+, ρ+, a+
1 ). The parameters μcore and Σcore are split

by tagging category, having one set of values for the Lepton category, and another

set of values for all the other categories. The K0
S
→ π+π− and K0

S
→ π0π0 modes

both use the same Δt resolution function.
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5.3 Continuum Background Model

Most of the background events in this analysis are expected to come from continuum

e+e− → qq̄, q = u, d, s, c decays. We will float the number of continuum background

events in the nominal ML fit. We use both offpeak and onpeak sideband events to

model the contribution from continuum events, as described below.

5.3.1 mES Distribution

We use an ARGUS function [42] of the form

P(x) = x

√
1 −

(
x

x0

)2

e
c

„
1−

“
x

x0

”2
«

(5.13)

for the mES PDF for continuum events. We fix x0 to the kinematic endpoint of

5.29 GeV/c2, while c is a free parameter. In the B+ modes, we float the parameter c

in our nominal fit to data.

In B0 → K+K−K0
S
, on the other hand, we allow c to be different for each tagging

category, and obtain the c values by fitting to onpeak data in the sideband region

5.22 < mES < 5.29, ΔE > 0.1. Separate parameters are used for K0
S
→ π+π−

and K0
S
→ π0π0 events. The results of these fits are shown in Fig. 5.16, projected

over all tagging categories. The PDF parameters are fixed in the nominal fit to

data, and we will vary them as a systematic. The continuum mES distributions for

B+ → K+K−K+ and B+ → K0
S
K0

S
K+ look similar, so we do not show plots for

them.

5.3.2 ΔE Distribution

We use linear PDF’s (first-order polynomials) to describe the ΔE distribution of

continuum events. The slopes the PDF’s are floated in the nominal fit to data. As

an illustration of the ΔE distribution for continuum events, we show a fit to B+ →
K+K−K+ offpeak data in Fig. 5.17. The B+ → K0

S
K0

S
K+ and B0 → K+K−K0

S

distributions look similar.
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Figure 5.16: mES PDF’s for B0 → K+K−K0
S continuum background events, for

K0
S
→ π+π− (top) and K0

S
→ π0π0 (bottom). The PDF’s are shown fit to onpeak

sideband events.
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Figure 5.17: ΔE PDF for B+ → K+K−K+ continuum events. The PDF (blue) is
shown fit to offpeak events (black points).

5.3.3 NN Distribution

As explained in Sec. 4.6.2, the event shape variable that we use depends on DP

position for continuum events. The DP-dependence of the unbinned event shape

variable (MLP) was illustrated in Fig. 4.5. The PDF we use is a modified Parametric

Step Function, with each bin height having a linear dependence on the Dalitz distance,

ΔDP . Explicitly, the PDF is:

P (i) = ai + biΔDP (5.14)

where i is the number of the bin (an integer). A fit to B+ → K+K−K+ offpeak events,

with the parameters ai and bi floating, is shown in Fig. 5.18. Note that although we

use 10 NN bins, only a0 through a8 and b0 through b8 are floating parameters, because

the values of a9 and b9 are constrained by the requirement that the PDF be normalized

to 1.
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Figure 5.18: NN PDF for B+ → K+K−K+ continuum background events. In this
figure, the PDF (blue line) is shown fit to offpeak events (black points). Note that the
PDF depends both on NN and ΔDP , but this figure only shows the NN projection.
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In B+ → K0
S
K0

S
K+ and B0 → K+K−K0

S
, we will float these PDF parameters in

our nominal data fits. In B+ → K+K−K+, to keep the number of parameters low

and improve fit stability, we we float them in a separate CP -blind fit to data, and

then fix them to those values in the nominal fit, and vary them as a systematic.

5.3.4 Dalitz Plot Distribution

The continuum events have a highly non-uniform distribution on the DP. In B+ →
K+K−K+ and B0 → K+K−K0

S
, there are particularly strong peaks in the region of

the φ(1020). We model the DP distribution with a special kind of histogram PDF

that has variable bin size. The bin size is calculated in an adaptive manner that

automatically uses small binning in areas of the DP containing many events, and

large binning in areas of the DP containing few events. This is done so that the

bin-size is small enough to capture narrow structures such as in the region of the

φ(1020), but large in areas more sparsely populated with events, so that statistical

fluctuations are not too large in these bins. More details about this procedure are

given in Appendix B.

The PDF’s are taken from onpeak events from the following mES sidebands:

• B+ → K+K−K+: 5.2 < mES < 5.27, −0.1 < ΔE < 0.1.

• B+ → K0
SK

0
SK

+: 5.2 < mES < 5.26, −0.1 < ΔE < 0.1.

• B0 → K+K−K0
S : mES < 5.26, −0.06(−0.12) < ΔE < 0.06 for K0

S → π+π−

(K0
S
→ π0π0) events.

Since the onpeak sidebands contain BB events, we subtract off the BB events, by

estimating their DP distribution from generic BB MC.

Projections of the 2-dimensional DP PDF for B+ → K+K−K+ are shown in

Fig. 5.19, overlaid with offpeak events. We plot offpeak events from the full mES and

ΔE range, instead of just the signal region, in order to have a reasonable number of

events. As can be seen, the PDF (taken from onpeak, with BB subtraction) agrees

quite well with the offpeak distribution, which is a good cross-check. There is a

small peak in the D0-region in the PDF that is not seen in offpeak events, but the
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discrepancy is small. Further study of the events in the D0 region shows that they are

continuum events rather than BB events, so we believe this peak belongs in the PDF.

In Fig. 5.20, we show the B+ → K+K−K+ continuum PDF without BB subtraction,

overlaid with the onpeak sideband events.

Similarly, in Figs. 5.21, 5.22, and 5.23, we show projections of the continuum DP

PDF’s for B+ → K0
SK

0
SK

+, B0 → K+K−K0
S (K0

S → π+π−), and B0 → K+K−K0
S

(K0
S
→ π0π0), respectively. The PDF projections are overlaid with offpeak events for

comparison.

In B+ → K+K−K+ and B+ → K0
S
K0

S
K+, to account for possible charge asym-

metries in continuum events, we give the PDF an ACP parameter. We will float this

asymmetry in the nominal ML fit. In B0 → K+K−K0
S
, we assume that the continuum

events have no B0
tag-flavor-dependent asymmetry.

5.3.5 Δt Distribution

For B0 → K+K−K0
S
, the Δt distribution of continuum events is modeled by the sum

of a “prompt” (zero-lifetime) component and a long-lived exponential decay, which is

then convolved with a resolution function:

P(Δt) = (fprompt δ(Δt) + (1 − fprompt)e
−|Δt|/τ ) ⊗R(Δt, σΔt) (5.15)

where the fraction fprompt is split by tagging category. The resolution function R is

given by a double Gaussian,

R(Δt, σΔt) = (1 − fout)Rcore(Δt, σΔt) + foutRout(Δt, σΔt) (5.16)

with the core Gaussian given by

Rcore(Δt, σΔt) =
1√

2πΣcoreσΔt

exp [ − 1

2
(
Δt− μcoreσΔt

ΣcoreσΔt
)2] (5.17)
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Figure 5.19: Projections of the 2-dimensional B+ → K+K−K+ continuum DP PDF
(blue lines), overlaid with offpeak events (black points).
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Figure 5.20: Projections of the 2-dimensional B+ → K+K−K+ continuum DP PDF
without BB subtraction (blue lines), overlaid with onpeak sideband events (black
points).
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Figure 5.23: Projections of the 2-dimensional B0 → K+K−K0
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uum DP PDF (blue lines), overlaid with offpeak events (black points).
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and the outlier given by

Rout(Δt, σΔt) =
1√

2πΣout

exp [ − 1

2
(

Δt

Σout

)2] (5.18)

where Σout is fixed to 8 ps.

The parameters τ , fprompt, fout, μcore, and Σcore are obtained by fitting to onpeak

data in the sideband region 5.2 < mES < 5.26, −0.06(−0.12) < ΔE < 0.06 for

K0
S
→ π+π− (K0

S
→ π0π0) events. The results of these fits are shown in Fig. 5.24.

The PDF parameters are fixed in the nominal fit to data.

5.4 BB Background Model

In order to estimate how many events from BB backgrounds we expect to pass our

cuts, we look at “generic” MC samples of B+B− and B0B0 events (SP-1235 and SP-

1237, respectively). The generic MC attempts to model all known B decays, using

either measured branching fractions or estimated branching fractions if no measure-

ments are available. Based on the generic MC studies, we can determine what the

largest and/or most dangerous BB backgrounds are, which we can then study using

specific MC for those individual decay channels (“exclusive” MC).

The most dangerous BB backgrounds are those from b→ c decays that have the

same final state as signal. We call such backgrounds “peaking” backgrounds. For

example, B+ → D̄0K+, D̄0 → K+K− is a peaking background for B+ → K+K−K+.

Whether to consider such decays as signal or background is to some extent a matter

of semantics. Since we are trying to study charmless b → s transitions rather than

b → c transitions, we will regard the latter as BB backgrounds. An exception to

this is B → χc0K, which we will normally regard as signal, because the χc0 has a

wide enough decay width that it interferes (in the quantum mechanical sense) with

the charmless signal. Therefore, we include the χc0 in the signal isobar model. The

peaking backgrounds come from J/ψ and various D resonances, which are too long-

lived to interfere with the charmless signal in any significant way, so we can treat
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Figure 5.24: Δt PDF’s for continuum events, for K0
S
→ π+π− (top) and K0

S
→ π0π0

(bottom) events, plotted on a log scale. In this figure, the PDF’s are shown fit to
onpeak sideband events.
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them as backgrounds.2

5.4.1 B+ → K+K−K+

Based on generic MC, after scaling to the integrated luminosity of Runs 1-6, we expect

roughly 660 B+B− background events and 120 B0B0 background events to pass our

cuts. Those numbers do not include the sizable contributions that are expected from

the peaking backgrounds B+ → D̄0K+, D̄0 → K+K− and B+ → J/ψK+, J/ψ →
K+K− decays.

Since the amount of generic MC events is limited, in order to more reliably model

the BB backgrounds, we use exclusive MC samples for 20 of the most common decay

modes, all of which are from B+ decays. We then split these 20 exclusive decay modes

into six different categories:

• “BB charmless.” This category contains the primary charmless BB background

modes. The largest contribution is from B+ → K+K−π+ decays, which can be

misidentified as signal if the π is misidentified as a kaon.

• “BB charm 1.” This category consists of various decay modes, which all contain

a D̄0 → K+K− decay somewhere in their decay chain. By far the largest contri-

bution is from B+ → D̄0π+, D̄0 → K+K− decays, where the π is misidentified

as a kaon. Events in this category are peaked sharply around the D0-mass in

the Dalitz plot. Most of these events are shifted to the right in ΔE, because of

pions being misidentified as kaons.

• “BB charm 2.” This category consists solely of the decay modeB+ → D̄0K+, D̄0 →
K+π−. These events have a peaking structure in the Dalitz plot, but the peak

is shifted to the right of the D0-mass, because of the pion being misidentified

as a kaon. This misidentification also causes these events to be shifted to the

right in ΔE.

2A partial-exception to this is in B0 → K+K−K0
S
, where, from a technical standpoint, we decided

to implement the peaking backgrounds as non-interfering isobars in the signal model. However, from
the standpoint of the final results we quote, we will still regard them as backgrounds.
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• “BB charm 3.” This category consists of other decay modes that contain a

D̄0 → K+π− decay somewhere in their decay chain. These decays are mainly

four-body decay modes. Events in this category have mES and ΔE distributions

that are more continuum-like than the previous three BB categories, although

they still have some peaking structure in mES. This category has a peak in the

Dalitz plot around the D0-mass, but the peak is significantly broader than for

BB charm 1 or BB charm2.

• ”BB charm 5.” This category consists entirely of the single decay mode B+ →
D̄0K+, D̄0 → K+K−. Although this decay mode has the same final state as

signal events, we treat it as a BB background in the ML fit. However, it has

virtually the same mES, ΔE, and NN distributions as signal events, so we use

the signal mES, ΔE, and NN PDF’s for this category. This category has a very

narrow peak in the Dalitz plot around the D0-mass.

• ”BB charm 6.” This category consists entirely of the single decay mode B+ →
J/ψK+, J/ψ → K+K−. This decay mode has the same final state as signal

events, so we use the signal mES, ΔE, and NN PDF’s for this category. This

category has a very narrow peak in the Dalitz plot around the J/ψ -mass. We

decided to include this component late in the analysis, so we do not have an

exclusive MC sample for it. Instead, we created “toy” J/ψ events, by generating

a narrow peak at the J/ψ mass, and then smearing this peak by the known

resolutions. The DP PDF is then created from these toy events.

In Table 5.4, we list the exclusive decay modes that are in each of these categories.

For each of these BB categories (except “BB charm 6”), we generate a MC “cocktail.”

The cocktail is generated by mixing together MC events from each of the decay modes

in that particular category. The number of events to put into the cocktail from each

decay mode is calculated using the branching fractions (taken from the PDG), and

the selection efficiency (calculated by running our selection code over the exclusive

MC events). This information is summarized in Table 5.4.

The exclusive modes in the five BB categories already mentioned only account

for approximately two-thirds of the total number of BB background events expected.



CHAPTER 5. MAXIMUM LIKELIHOOD FIT 103

To account for the remaining BB events, we form an additional BB category:

• “BB charm 4.” This category consists of all remaining BB decays not included

in any of the previous BB categories. These events are modeled with the BB

generic MC (SP-1235 and SP-1237), where the 20 exclusive decay modes are

explicitly removed. Almost all of the decay modes in this category involve D

decays, with many-body final states. These events have mES and ΔE distribu-

tions similar to continuum events. They are very broadly peaked around the

D0-mass in the Dalitz plot.

We use different PDF’s for each of the seven BB background categories. The

PDF types used for each of the background categories are listed in Table 5.5. The

PDF shapes for each of the BB categories are shown in Appendix A. The mES, ΔE,

and NN PDF parameters are obtained by fitting to the MC cocktail samples, except

for in the case of the ”BB charm 5” and ”BB charm 6” categories, in which case

these PDF’s are set equal to the signal PDF’s. The DP PDF’s are special histogram

PDF’s, using variable bin size, like what was used for the continuum DP distribution

(see Sec. 5.3.4).

To account for possible charge asymmetries in the background, we give each back-

ground PDF a separate ACP parameter. The ACP is fixed to the value found in the

MC cocktails (essentially zero). An exception to this is “BB charm 5,” which we

fix to the world average value of ACP = 0.24 ± 0.08. We will vary the ACP ’s as a

systematic.

5.4.2 B+ → K0
S
K0

S
K+

Based on generic MC, we expect roughly 60 B+B− events and 80 B0B0 events to pass

our cuts. This does not include a small number (∼ 8) of peaking B+ → K+D̄0, D̄0 →
K0

SK
0
S events that we also expect.

We use exclusive MC samples for 10 of the most common (or most signal-like)

decay modes, which include both B+ and B0 modes. We then split these 10 exclusive

decay modes into three different categories:
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Table 5.4: Summary of BB backgrounds in B+ → K+K−K+. “Mode #” is the SP
number that BABAR has assigned to the MC sample. “MC ε” is the efficiency for
background to pass all selection criteria, as determined from MC. “B” is the top-level
branching fraction for the background mode, and

∏Bi is the product of all the sub-
branching fractions involved in the decay chain, so that the overall branching fraction
is the product of B and

∏Bi. “Exp. Yield” is the number of events expected in the
full dataset of ≈ 470MBB pairs. “# in PDF Bkg. File” gives the number of MC
events that are mixed into the cocktail used for forming the PDF’s for a particular
background category.

Bkg. channel Mode # MC ε B QBi Exp. # in PDF
(%) (10−6) Yield Bkg. file

BB charmless

B+ → K+K−π+ (Dalitz model) 9755 1.417 5.0+0.7
−0.7 1.0 33.1 1352

B+ → K+π−π+ (Dalitz model) 9178 0.020 55+7
−7 1.0 5.0 205

B+ → K+K−K∗+
K+π0 (N.R.) 2477 0.047 31.0+4.9

−4.9 0.333 2.3 92

B+ → η′ργK
+ 6748 0.016 70.2+2.5

−2.5 0.294 1.5 62

B+ → φK+K−K∗+
K+π0 4615 0.043 10.5+1.5

−1.5 0.164 0.3 14

42.3 1725
BB charm 1

B+ → D̄0π+(D̄0 → K+K−) 3021 1.799 4840+150
−150 0.00393 160.1 5109

B+ → D̄∗(2007)0
D̄0γ

π+(D̄0 → K+K−) 3174 0.368 5190+260
−260 0.00150 13.4 428

B+ → D̄0
K+K−ρ+

π+π0 3028 0.034 13400+1800
−1800 0.00393 8.5 270

B+ → D̄∗(2007)0
D̄0π0π

+(D̄0 → K+K−) 3025 0.116 5190+260
−260 0.00243 6.8 218

B+ → D̄∗(2007)0
D̄0γ

K+(D̄0 → K+K−) 3172 2.205 416+33
−33 0.00150 6.4 205

195.3 6230
BB charm 2

B+ → D̄0K+(D̄0 → K+π−) 2435 1.257 402+21
−21 0.0389 92.0 4928

92.0 4928
BB charm 3

B+ → D̄∗(2007)0
D̄0π0K

+(D̄0 → K+π−) 2420 0.477 416+33
−33 0.0241 22.4 180

B+ → D̄∗(2007)0
D̄0π0π

+(D̄0 → K+π−) 2421 0.037 5190+260
−260 0.0241 21.4 172

B+ → D̄0π+(D̄0 → K+π−) 2442 0.024 4840+150
−150 0.0389 21.0 169

B+ → D̄0
K+π−ρ

+
π+π0 2436 0.007 13400+1800

−1800 0.0389 18.2 146

B+ → D̄∗(2007)0
D̄0γ

K+(D̄0 → K+π−) 2626 0.581 416+33
−33 0.0148 16.7 134

B+ → D̄∗(2007)0
D̄0γ

π+(D̄0 → K+π−) 2629 0.035 5190+260
−260 0.0148 12.7 102

B+ → D̄0
K+π−K∗+

K+π0 4837 0.131 530+40
−40 0.0130 4.2 34

116.6 937
BB charm 4
B+B− generic 265.0 776
B0B0 generic 121.2 355

386.2 1131
BB charm 5

B+ → D̄0K+(D̄0 → K+K−) 3018 31.588 402+21
−21 0.00393 233.5 123825

233.5 123825
BB charm 6

B+ → J/ψ K+(J/ψ → K+K−) - - 1007+35
−35 0.00024 ∼ 35 -

∼ 35 -
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Table 5.5: PDF types used for each of the different BB categories in B+ →
K+K−K+, for mES, ΔE, and NN. The “Histogram” PDF uses a histogram, but
with interpolation so that the PDF is smooth. “PSF” stands for Parametric Step
Function. BB charm5 and BB charm 6 share their mES, ΔE, and NN PDF’s with
the signal.

BB category mES PDF ΔE PDF NN PDF
BB charmless Cruijff Cruijff PSF
BB charm 1 Cruijff Histogram PSF
BB charm 2 Cruijff Cruijff PSF
BB charm 3 Cruijff First-order Polynomial PSF
BB charm 4 ARGUS First-order Polynomial PSF
BB charm 5 Cruijff (signal) Cruijff (signal) PSF (signal)
BB charm 6 Cruijff (signal) Cruijff (signal) PSF (signal)

• “BB 1.” This category contains a couple of BB decays with a K0
S
K0

S
π± final

state. These events peak in mES, and have a ΔE peak shifted to the right.

• “BB 2.” This category contains an assortment of exclusive BB decays. The

mES and ΔE shapes are similar to continuum events.

• “BB 4.” This category contains the single decay B+ → K+D̄0, D̄0 → K0
S
K0

S
. It

has virtually the same mES, ΔE, and NN distributions as signal events, so we

use the signal mES, ΔE, and NN PDF’s for this category. This category has a

very narrow peak in the Dalitz plot around the D0-mass.

In Table 5.6, we list the exclusive decay modes that are in each of these categories.

For each of these BB categories, we generate a MC “cocktail,” just like we did for

B+ → K+K−K+.

The exclusive modes in the 3 BB categories already mentioned only account for

around one-fourth of the total number ofBB background events expected. To account

for the remaining BB events, we form an additional BB category:

• “BB 3.” This category consists of all remaining BB decays not included in any

of the previous BB categories. Most of the decay modes in this category involve
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D decays. These events are modeled with the BB generic MC (SP-1235 and

SP-1237), where the 10 exclusive decay modes are explicitly removed. These

events have mES and ΔE distributions similar to continuum events.

We use different PDF’s for each of the four BB background categories. The PDF

types used for each of the background categories are listed in Table 5.7. The PDF

shapes for each of the BB categories are shown in Appendix A. The mES, ΔE, and

NN PDF parameters are obtained by fitting to the MC cocktail samples, except for

in the case of the ”BB 4” category, in which case these PDF’s are set equal to the

signal PDF’s. The DP PDF’s are histogram PDF’s with variable bin size.

5.4.3 B0 → K+K−K0
S

Based on generic BB MC, we expect roughly 70 B+B− events and 70 B0B0 events to

pass our cuts for K0
S
→ π+π−. For K0

S
→ π0π0, we expect roughly 80 B+B− and 40

B0B0 events. As in BABAR’s previous B0 → K+K−K0
S analysis, we combine all B+B−

events and B0B0 events into a single BB background category. This doesn’t include

peaking BB backgrounds with a K+K−K0
S final state, which are handled separately,

and are discussed later in this section.

We form the PDF’s for the single BB background category using a combination

of B+B− and B0B0 generic MC. Separate PDF’s are used for K0
S
→ π+π− and K0

S
→

π0π0. For K0
S → π+π−, the mES distribution is first smoothed with KEYS, and

then a histogram PDF is formed from the KEYS function. The histogram PDF uses

interpolation between bins. The K0
S → π+π− ΔE distribution is modeled with a

linear polynomial. The K0
S
→ π+π− PDF’s are shown in Fig. 5.25.

For K0
S → π0π0, there is a slight correlation between mES and ΔE, so we use a 2D

PDF for mES and ΔE. We first use a 2D KEYS function to smooth the MC, then we

create a 2D histogram PDF from the KEYS function. The 2D histogram PDF uses

interpolation between bins. This PDF and its projections are shown in Fig. 5.26.

The NN distributions are modeled with a Parametric Step Function, and the

PDF’s are shown in Figs. 5.25 and 5.26. For the DP PDF’s, we use histograms with

variable-size binning. The 1-D projections of these PDF’s are shown in Figs. 5.27 and
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Table 5.6: Summary of BB backgrounds in B+ → K0
S
K0

S
K+. “Mode #” is the SP

number that BABAR has assigned to the MC sample. “MC ε” is the efficiency for
background to pass all selection criteria, as determined from MC. “B” is the top-level
branching fraction for the background mode, and

∏Bi is the product of all the sub-
branching fractions involved in the decay chain, so that the overall branching fraction
is the product of B and

∏Bi. “Exp. Yield” is the number of events expected in the
full dataset of ≈ 470MBB pairs. “# in PDF Bkg. File” gives the number of MC
events that are mixed into the cocktail used for forming the PDF’s for a particular
background category.

Bkg. channel Mode # MC ε B QBi Exp. # in PDF
(%) (10−6) Yield Bkg. file

BB 1

B+ → D̄0
K0

S
K0

S
π+(K0

S → π+π−) 8438 1.361 4840+150
−150 0.00018 5.6 2940

B+ → K0
S K∗+

K0
S

π+ 1944 0.435 0.38+0.39
−0.39 0.666 0.5 273

6.1 3213
BB 2

B0 → K0
SK

0
SK

0
S 8996 0.291 6.2+1.2

−1.1 1.0 8.5 469

B0 → K+K−K0
S 7930 0.168 24.7+2.3

−2.3 0.346 6.8 373

B0 → K∗+
K0

S
π+K

−K0
S(K0

S → π+π−) 8192 0.322 10+10
−10 0.318 4.8 266

B+ → D̄0
K0

Sπ+π−K+(K0
S → π+π−) 5378 0.044 402+21

−21 0.0207 1.7 96

B+ → D̄0
K0

S
π0π+(K0

S → π+π−) 3549 0.004 4840+150
−150 0.00844 0.8 45

B+ → K∗+
K+π0K

0
SK

0
S(K0

S → π+π−) 8190 0.064 10+10
−10 0.159 0.5 27

B+ → K∗0
K0

Sπ0K
+K0

S(K0
S → π+π−) 8191 0.046 10+10

−10 0.159 0.3 19

23.5 1295
BB 3
B+B− generic 51.5 155
B0B0 generic 66.6 200

118.1 355
BB 4

B+ → K+D̄0
K0

S
K0

S
(K0

S → π+π−) 10337 23.913 402+21
−21 0.00018 8.1 51652

8.1 51652
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Table 5.7: PDF types used for each of the different BB categories in B+ → K0
SK

0
SK

+,
for mES, ΔE, and NN. The “Histogram” PDF uses a histogram, but with interpola-
tion so that the PDF is smooth. “PSF” stands for Parametric Step Function. BB 4
shares its mES, ΔE, and NN PDF’s with the signal.

BB category mES PDF ΔE PDF NN PDF
BB 1 Cruijff Cruijff PSF
BB 2 Histogram First-order Polynomial PSF
BB 3 ARGUS First-order Polynomial PSF
BB 4 Cruijff (signal) Cruijff (signal) PSF (signal)
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Figure 5.25: BB PDF’s for B0 → K+K−K0
S

(K0
S
→ π+π−). Top left: mES, top right:

ΔE, bottom left: NN, bottom right: Δt. The PDF’s are shown fit to BB generic
MC. The Δt PDF is plotted on a log scale.
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Figure 5.26: BB PDF’s for B0 → K+K−K0
S

(K0
S
→ π0π0). Top left: mES projection

of the mES-ΔE PDF, top right: ΔE projection of the mES-ΔE PDF, middle left:
The 2D KEYS function for mES and ΔE, middle right: NN, bottom: Δt. The PDF’s
are shown fit to BB generic MC. The Δt PDF is plotted on a log scale.
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Figure 5.27: Projections of the 2-dimensional BB DP PDF (in blue), overlaid with
BB generic MC events (black points). K0

S
→ π+π− mode. Peaks can be seen from

B0 → D−(K−K0
S
)π+ events.

5.28.

The Δt distribution is modeled by the sum of a prompt component and a long-

lived exponential decay, which is then convolved with a resolution function:

P(Δt, σΔt, qtag) = [(1 − fprompt)e
−|Δt|/τ (1 + qtagS sin ΔmdΔt− qtagC cos ΔmdΔt)

+fprompt δ(Δt)] ⊗R(Δt, σΔt) (5.19)

where the fraction fprompt is split by tagging category. The CP -violating parameters S

and C are fixed to zero in the nominal fit, and varied as a systematic. τ is taken to be

the B0 lifetime, 1.53 ps. Mistag rate w and mistag asymmetry Δw are also accounted

for (but we have suppressed them in Eq. 5.19 for brevity), and these parameters are

split by tagging category and set to be the same as for signal events.
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Figure 5.28: Projections of the 2-dimensional BB DP PDF (in blue), overlaid with
BB generic MC events (black points). K0

S
→ π0π0 mode. The peak in the xsq plot is

from B+ → D0ρ+ events, with D0 → K+K− or D0 → K+π−.
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The resolution function R has the same double Gaussian form as for continuum

events (Eqs. 5.16-5.18). Σout is fixed to 8 ps. The parameters fout and Σcore are fixed

to the values used in the continuum PDF’s. The parameters fprompt and μcore are

obtained by fitting to BB generic MC in the signal region. The results of these fits

are shown in Figs. 5.25 and 5.26.

In addition to the BB backgrounds already discussed, we also expect peaking BB

backgrounds from b → c decays that have a K+K−K0
S

final state. The largest such

backgrounds are B0 → D−(K−K0
S)K+, B0 → D−

s (K−K0
S)K+, B0 → D0(K+K−)K0

S ,

and B0 → J/ψ (K+K−)K0
S
. Unlike in the B+ modes, where we treated peaking

backgrounds as separate BB background categories, in B0 → K+K−K0
S , we find

it easier to treat the peaking backgrounds as non-interfering isobars (i.e., signal)

in the ML fit. Although formally we treat them as “signal” events, from a physics

standpoint we still view them as backgrounds, and we will not consider them as signal

when computing values like the inclusive B0 → K+K−K0
S branching fraction.

5.5 Fit Validation

Our ML fit procedure is very complex, so it is important that we verify that it works

prior to fitting to data. We do this by running a series of pseudoexperiments de-

signed to imitate the actual fit to data. We perform two types of pseudoexperiments:

“pure toy” studies and “embedded toy” studies. In pure toys, we generate a num-

ber of datasets containing signal, continuum, and BB events by randomly sampling

the PDF’s. We then fit to these “toy” datasets. Pure toys help us study fit stabil-

ity, whether the fit is biased, and whether the errors on fit parameters are properly

estimated. In embedded toys, the continuum events are generated as in the pure

toys, but signal events are taken (“embedded”) from realistic MC passed through a

full detector simulation. BB backgrounds are either generated from PDF or embed-

ded from exclusive MC samples. Embedded toys are used to look for biases caused

by imperfections in the fit model (e.g., neglecting correlations between variables or

imperfectly modeling the DP resolution).
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5.5.1 B+ → K+K−K+

Pure Toy Studies

We generate 500 independent datasets, each toy dataset containing roughly the num-

ber of signal and background events that we expect in the Run1-6 dataset. The

number of events in each signal and background category is fluctuated according to

Poisson statistics.

The signal DP model used is the same as in SP-9688, which is based on the nominal

fit result from BABAR’s previous Run1-4 analysis. The isobar model contains: φ(1020),

f0(980), fX(1500), f0(1710), χc0, and NR. The NR component uses an exponential

model, as given in Eq. 2.52. The signal is generated with no CP -violation. In the fit,

we float the NR α parameter as well as the mass (m) and width (Γ) of the fX(1500).

We float the CP -conserving and CP -violating isobar parameters c, φ, b, and δ for each

isobar (see Eq. 2.28). We also float the yields for signal, continuum, and most of the

BB categories. Finally, we float 21 continuum PDF parameters (mostly for the NN)

and the means of the signal mES and ΔE shapes.

We perform a fit to each toy dataset. We only accept fits that converge with a

full covariance matrix (covariance quality = 3 as reported by Minuit). The results of

these toy fits are summarized in Table 5.8. We only show the isobar parameters, the

mass and width of the fX(1500), and the signal yield, since these are the parameters

of most interest. For each parameter in the table, we list the value it was generated

with, its mean error, and the mean and width of its pull distribution. For a given

parameter x, the pull of this parameter is defined as:

Pull(x) ≡ xfitted − xgenerated
σx

(5.20)

The mean and width of the pull distribution are determined by performing a Gaussian

fit to it. For an ideal unbiased fit, the pull distribution of each parameter x should

be a Gaussian distribution with mean 0 and width 1.

As can be seen from Table 5.8, none of the DP or CP parameters have large biases,

with the worst pull having a mean of 0.17. The width of the pull distribution for the
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fX(1500)’s RBW width is rather large (1.23). This indicates that the error on this

parameter is being underestimated by the fit. We consider this acceptable.

Table 5.8: Pure toy fit results for B+ → K+K−K+. 425/500 fits converge with good
covariance matrix quality.

Parameter Value Mean error Pull mean Pull width
b[ χc0 ] 0 0.0549 0.09 0.92
c[ χc0 ] 0.437 0.0389 -0.03 0.95
δ[ χc0 ] 0 0.1300 0.11 0.92
φ[ χc0 ] -1.02 0.1430 0.05 0.95
b[ fX(1500) ] 0 0.0209 0.07 1.00
c[ fX(1500) ] 8.22 0.5954 -0.14 1.11
δ[ fX(1500) ] 0 0.0443 0.06 0.95
φ[ fX(1500) ] 1.29 0.0563 0.02 1.11
Γ[ fX(1500) ] 0.257 0.0180 -0.10 1.23
m[ fX(1500) ] 1.539 0.0101 -0.01 1.03
b[ f0(1710) ] 0 0.1364 0.10 0.95
c[ f0(1710) ] 1.24 0.1807 0.17 0.98
δ[ f0(1710) ] 0 0.1157 0.05 0.99
φ[ f0(1710) ] -0.59 0.1548 0.12 1.07
b[ f0(980) ] 0 0.1044 -0.03 0.94
c[ f0(980) ] 5.28 0.4679 -0.01 1.10
δ[ f0(980) ] 0 0.0496 -0.03 0.94
φ[ f0(980) ] 0.48 0.0910 0.11 1.06
b[ NR ] 0 0.0286 0.02 0.99
α[ NR ] -0.152 0.008 -0.05 0.91
b[ φ(1020) ] 0 0.0235 -0.12 1.02
c[ φ(1020) ] 0.117 0.009 -0.12 0.96
δ[ φ(1020) ] 0 0.0929 -0.05 0.98
φ[ φ(1020) ] -0.15 0.1153 -0.10 1.07
N(signal) 5300 85.2646 0.02 1.00

Embedded Toy Studies

In addition to pure toy studies, we also perform so-called ”embedded toys.” In these

studies, we generate continuum and ”BB charm 4” background events from the PDF,
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just like for the pure toy studies, but the signal events and other BB categories are

taken from SP Monte Carlo samples. The signal events are taken from SP-9688, and

the embedded BB events are taken from the exclusive BB cocktails described in

Sec. 5.4. We have enough signal MC events to create 272 embedded toy datasets. We

do not have enough MC events for all of the different BB SP modes, so some of the

BB SP events are re-used among the toy datasets. No Poisson fluctuation is used

when creating these datasets.

We also do similar fits to these datasets, but floating the NR α parameter and the

RBW mass and width of the fX(1500). These fits are summarized in Table 5.9, only

listing the DP and CP parameters, for the sake of brevity. As can be seen, the pulls

for the DP and CP parameters are worse in the embedded toys than in the pure toys,

but we consider these pulls acceptable. The biases in embedded toys will eventually

be treated as systematic errors when we report our final result.

5.5.2 B+ → K0
S
K0

S
K+

Pure Toy Studies

We generate 500 independent datasets, with Poisson fluctuations for the yields. Since

we are doing the first ever DP analysis of B+ → K0
S
K0

S
K+, we cannot rely on pre-

vious isobar models of this mode. Instead, we adapt our isobar model from BABAR’s

preliminary Run1-6 B0 → K+K−K0
S

result [43]. It contains the f0(980), fX(1500),

χc0, and an exponential NR model like that in Eq. 2.55, but symmetrized under

exchange of the two K0
S
. The NR(K+K0

S
) term (i.e., the (eαs13 + eαs23) term) was

guessed by averaging the isobar coefficients of the NR(K+K0
S) and NR(K−K0

S) terms

in B0 → K+K−K0
S
. This is the same model as used in SP-10338 signal MC.

We perform a fit to each toy dataset. The number of signal events in this mode

is small (∼ 600), so, in order to reduce the number of parameters in the fit, we

constrain the CP -violating parameters (b and δ) of all the charmless isobars to be the

same. However, we allow for the χc0 to have separate CP -violating parameters, since

it comes from a b→ c transition. We did studies that showed that if we attempted to

measure separate CP -violating parameters for the different isobars, the errors on these
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Table 5.9: Embedded toy fit results for B+ → K+K−K+. 233/272 fits converge with
good covariance matrix quality.

Parameter Value Mean error Pull mean Pull width
b[ χc0 ] 0 0.0556 0.15 1.01
c[ χc0 ] 0.437 0.0379 -0.21 0.95
δ[ χc0 ] 0 0.1270 0.03 1.03
φ[ χc0 ] -1.02 0.1389 -0.05 0.98
b[ fX(1500) ] 0 0.0212 0.14 0.97
c[ fX(1500) ] 8.22 0.5744 -0.09 1.13
δ[ fX(1500) ] 0 0.0442 0.04 0.98
φ[ fX(1500) ] 1.29 0.0560 -0.18 1.23
Γ[ fX(1500) ] 0.257 0.0179 -0.07 1.35
m[ fX(1500) ] 1.539 0.0102 0.13 1.01
b[ f0(1710) ] 0 0.1348 -0.01 0.93
c[ f0(1710) ] 1.24 0.1804 0.28 0.96
δ[ f0(1710) ] 0 0.1175 0.04 0.99
φ[ f0(1710) ] -0.59 0.1562 -0.30 1.13
b[ f0(980) ] 0 0.0986 0.04 0.90
c[ f0(980) ] 5.28 0.4591 0.30 1.01
δ[ f0(980) ] 0 0.0478 -0.05 0.91
φ[ f0(980) ] 0.48 0.0884 0.06 1.16
b[ NR ] 0 0.0276 0.16 0.92
α[ NR ] -0.152 0.007 0.34 0.99
b[ φ(1020) ] 0 0.0230 0.02 0.98
c[ φ(1020) ] 0.117 0.009 0.05 1.03
δ[ φ(1020) ] 0 0.0909 -0.00 1.00
φ[ φ(1020) ] -0.15 0.1134 -0.02 1.06
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parameters would be very large. In addition to floating the isobar parameters, we

float the yields for signal and continuum. We also float 21 continuum PDF parameters

(mostly for the NN) and the means of the signal mES and ΔE shapes.

The fits are summarized in Table 5.10. There are no large biases on the CP -

violating parameters. The isobar magnitude of the NR(K+K0
S
) term has a mean pull

of ∼ 0.5. However, this term was generated with a magnitude very close to zero,

making it difficult to fit. We confirmed that generating toy with a larger magnitude

for the NR(K+K0
S) term eliminated the bias problem.

Table 5.10: Pure toy fit results for B+ → K0
S
K0

S
K+. One set of CP -violating param-

eters for χc0, one set for all other isobars. 443/500 fits converge with good covariance
matrix quality.

Parameter Value Mean error Pull mean Pull width
b[ χc0 ] 0 0.1552 -0.08 0.86
c[ χc0 ] 0.0298 0.006 -0.29 0.87
δ[ χc0 ] 0 0.6615 -0.05 0.98
φ[ χc0 ] 0.73 0.7957 -0.06 0.75
c[ fX(1500) ] 0.141 0.0216 -0.00 0.92
φ[ fX(1500) ] -0.37 0.1870 0.09 0.92
c[ f0(980) ] 0.542 0.0532 -0.06 0.93
φ[ f0(980) ] -0.2 0.1940 0.23 0.95
c[ NR(K+K0

S) ] 0.0227 0.0436 0.49 1.11
φ[ NR(K+K0

S
) ] -2.36 2.0130 0.00 1.15

b[ NR(K0
SK

0
S) ] 0 0.0237 -0.02 0.98

Embedded Toy Studies

In these embedded toy studies, we generate continuum and ”BB 3” background events

from the PDF’s, but the signal events and other BB categories are taken from MC

samples. The signal events are taken from SP-10338, and the embedded BB events are

taken from the exclusive BB cocktails described in Sec. 5.4. We create 500 embedded

toy datasets. We have sufficient signal MC events so that we do not need to re-use

any of them among the different toy datasets. However, we do not have enough MC
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events for all of the different BB SP modes, so some of the BB SP events are re-used

among the toy datasets. The datasets are generated without Poisson fluctuation.

The embedded toy fits are summarized in Table 5.11. There is a pull of ∼ 0.2 on

the b that is shared by all the charmless isobars. However, the error on this parameter

is quite small, so the actual magnitude of the bias is not very large. We can tolerate

this as a systematic. We also see some biases in the magnitude of the χc0 and the

phase of the f0(980). These biases were already present, to a lesser extent, in pure

toy, and we consider them acceptable.

Table 5.11: Embedded toy fit results for B+ → K0
S
K0

S
K+. One set of CP parameters

for χc0, one set for all other isobars. 434/500 fits converge with good covariance
matrix quality.

Parameter Value Mean error Pull mean Pull width
b[ χc0 ] 0 0.1543 -0.00 0.86
c[ χc0 ] 0.0298 0.005 -0.41 0.90
δ[ χc0 ] 0 0.6597 -0.03 0.97
φ[ χc0 ] 0.73 0.7728 -0.17 0.75
c[ fX(1500) ] 0.141 0.0210 -0.03 0.98
φ[ fX(1500) ] -0.37 0.1839 0.11 0.96
c[ f0(980) ] 0.542 0.0510 -0.05 0.95
φ[ f0(980) ] -0.2 0.1790 0.38 0.90
c[ NR(K+K0

S) ] 0.0227 0.0405 0.46 1.18
φ[ NR(K+K0

S
) ] -2.36 1.8150 -0.03 1.20

b[ NR(K0
S
K0

S
) ] 0 0.0237 0.23 0.99

5.5.3 B0 → K+K−K0
S

Pure Toy Studies

We generate 500 independent datasets with Poisson fluctuations. The signal DP

model used is taken from BABAR’s preliminary Run1-6 B0 → K+K−K0
S

result [43]. It

contains the φ(1020), f0(980), fX(1500), χc0, and an exponential NR model like that

in Eq. 2.55. The signal events are generated with CP -violating parameters equal to
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the SM (b = 0, δ = 0). We do not include peaking BB backgrounds from D0 or J/ψ ,

since they were not included in [43].

We perform a fit to each toy dataset. We float three sets of CP -violating isobar

parameters: for the φ(1020), the f0(980), and for everything else except the χc0. The

CP -violation of the χc0 is fixed to the SM (b = δ = 0). We also float, separately

for K0
S → π+π− and K0

S → π0π0, yields for signal, continuum (split by tagging

category), and BB. We float 18 continuum NN parameters for both K0
S
→ π+π− and

K0
S → π0π0, and we float the means of the signal mES and ΔE shapes for K0

S → π+π−

only.

The results of these toy fits are summarized in Table 5.12. As can be seen from

the table, none of the parameters have large biases.

Embedded Toy Studies

In these studies, we generate continuum and generic BB background events from

the PDF, but the signal events are taken from MC samples (SP-7930 for K0
S
→

π+π− and SP-7931 for K0
S
→ π0π0). We also take the peaking BB backgrounds

B0 → D−(K−K0
S
)K+ and B0 → D−

s (K−K0
S
)K+ from exclusive MC samples (SP-

6858 and SP-3089, respectively). We create 500 embedded toy datasets. No Poisson

fluctuation is used when creating these datasets.

We perform a fit to each toy dataset. Just like in the pure toy case, we float

three separate sets of CP -violating isobar parameters. These fits are summarized in

Table 5.13. The CP -violating parameters all have negligibly small biases. Some of the

CP -conserving isobar parameters have significant biases, but we will tolerate these,

and treat them as systematic errors. We are regarding the D− and D−
s contributions

as BB backgrounds rather than signal, so we will not worry about the large biases

on their isobar parameters.
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Table 5.12: Pure toy fit results for B0 → K+K−K0
S
. 490/500 fits converge with good

covariance matrix quality.

Parameter Value Mean error Pull mean Pull width
b[ f0(980) ] 0 0.1081 0.00 1.02
δ[ f0(980) ] 0 0.1072 -0.01 1.00
b[ Other ] 0 0.0623 0.01 0.99
δ[ Other ] 0 0.0858 -0.04 1.02
b[ φ(1020) ] 0 0.0828 0.01 0.94
δ[ φ(1020) ] 0 0.1065 -0.07 1.02
c[ χc0 ] 0.0306 0.005 -0.26 0.97
φ[ χc0 ] 0.81 0.5753 -0.16 1.04
c[ fX(1500) ] 0.114 0.0169 0.10 0.97
φ[ fX(1500) ] -0.47 0.1785 0.08 0.97
c[ f0(980) ] 0.622 0.0421 -0.04 0.94
φ[ f0(980) ] -0.14 0.1298 0.05 0.88
c[ NR(K−K0

S
) ] 0.31 0.0670 -0.03 0.93

φ[ NR(K−K0
S) ] -1.34 0.2951 -0.12 1.01

c[ NR(K+K0
S
) ] 0.33 0.0561 -0.08 0.99

φ[ NR(K+K0
S
) ] 1.95 0.2396 0.01 0.94

c[ φ(1020) ] 0.0085 0.0009 -0.07 0.88
φ[ φ(1020) ] -0.02 0.2095 -0.08 0.99
c[ D− ] 1.96 0.2415 0.07 0.91
c[ D−

s ] 1.57 0.2092 0.07 0.94
N(signal), K0

S → π+π− 1415 43.9360 0.08 0.94
N(signal), K0

S
→ π0π0 147 17.2289 0.08 1.02
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Table 5.13: Embedded toy fit results for B0 → K+K−K0
S
. 493/500 fits converge with

good covariance matrix quality.

Parameter Value Mean error Pull mean Pull width
b[ f0(980) ] 0 0.1105 -0.04 0.97
δ[ f0(980) ] 0 0.1097 -0.08 1.02
b[ Other ] 0 0.0619 -0.00 1.00
δ[ Other ] 0 0.0854 -0.07 1.04
b[ φ(1020) ] 0 0.0845 -0.01 0.96
δ[ φ(1020) ] 0 0.1097 -0.02 0.93
c[ χc0 ] 0.0306 0.005 -0.15 0.99
φ[ χc0 ] 0.81 0.5693 -0.11 1.24
c[ fX(1500) ] 0.114 0.0170 0.05 1.03
φ[ fX(1500) ] -0.47 0.1792 0.06 0.97
c[ f0(980) ] 0.622 0.0423 -0.37 0.95
φ[ f0(980) ] -0.14 0.1306 0.01 0.91
c[ NR(K−K0

S
) ] 0.31 0.0670 0.25 1.00

φ[ NR(K−K0
S) ] -1.34 0.2820 -0.52 1.09

c[ NR(K+K0
S
) ] 0.33 0.0591 -0.36 1.01

φ[ NR(K+K0
S
) ] 1.95 0.2573 -0.30 1.00

c[ φ(1020) ] 0.0085 0.0009 -0.21 0.97
φ[ φ(1020) ] -0.02 0.2160 -0.23 0.98
c[ D− ] 1.96 0.2221 -1.58 0.90
c[ D−

s ] 1.57 0.2028 -0.49 0.75
N(signal), K0

S → π+π− 1415 43.8441 -0.32 0.54
N(signal), K0

S
→ π0π0 147 16.9600 -0.43 0.74



Chapter 6

Determination of Dalitz Model

Before fitting the CP -violating parameters in data, we would like to settle on a nom-

inal isobar model. So far, we have been using the isobar model from the previous

BABAR analyses (or in the case of B+ → K0
SK

0
SK

+, a reasonable guess at an isobar

model). Now we want to test various isobar models on the data, and see if we can

find an improvement over our current models. We do this in a “CP -blind” fashion,

which means that for now we will fix the CP -violating parameters to zero (or in the

case of B0 → K+K−K0
S , we fix δ = 0, which means βeff = βSM). Only after we’ve

settled on a nominal isobar model will we fit for the CP -violating observables.

Our main interest in these studies will be to understand the fX(1500) and the

nonresonant decays better. In particular, we would like to know their spin, as this

affects the time-dependent CP -asymmetry in B0 → K+K−K0
S . Our two main tools

in this chapter will be the likelihood L and the angular moments. Since we are

performing maximum-likelihood fits, it is clear that one way to judge how good a

particular model is, will be to look at its L. The angular moments, meanwhile, are

a way of visualizing the goodness of fit of a DP model. Invariant-mass projections

are an obvious way of seeing how well a particular DP model describes the data,

but they turn out not to be that powerful, especially in determining the spin of

resonances. Angular moments are a method of projecting out different features of

the 2-dimensional DP distribution, thus providing a powerful tool for studying the

partial-waves present.

122
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In Sec. 6.1, we will go over the angular moments formalism. Then in the rest of

this chapter we will present CP -blind fits to data using various isobar models, and

on the basis of those studies we will decide what isobar model to use for our nominal

fits.

6.1 Angular Moments

Consider the decay B → K1K2K3, where for the time being we will assume that the

3 K are distinguishable particles. Later, we will consider the effects that identical K

have on the analysis.

Write the decay amplitude A(B → K1K2K3) as a function of m12 and cos θ3,

where cos θ3 is the angle between K3 and K1, measured in the rest frame of K1K2

(as we defined in Sec. 2.5.4). Then, the cos θ3 dependence of A(B → K1K2K3) =

A(m12, cos θ3) can be expanded in terms of Legendre polynomials, Pl(cos θ3):

A(m12, cos θ3) =
∑
l

Al(m12)Pl(cos θ3) (6.1)

The amplitude Al(m12) then represents the relative weight of the l-th partial-wave.

For example, a spin-J (K1K2) resonance would contribute a non-zero AJ(m12), and

would not contribute at all to the other Fl’s. We can then calculate information about

the AJ by calculating the angular moments, 〈Pl(cos θ3)〉, defined as:

〈Pl(cos θ3)〉 =

∫ 1

−1

|A(m12, cos θ3)|2Pl(cos θ3)d cos θ3 (6.2)

Note that the angular moments are functions of m12, but we will suppress this de-

pendence in our notation.

In order to simplify the analysis, we will assume from now on that only A0, A1,

and A2 are important, so that higher-order partial waves can be neglected. Under

this assumption, we can write the expansion in Eq. 6.1 as:

A(m12, cos θ3) = AS(m12)P0(cos θ3) + AP (m12)e
iφP (m12)P1(cos θ3) +
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AD(m12)e
iφD(m12)P2(cos θ3) , (6.3)

where the partial-wave complex amplitudes have been now explicitly decomposed into

magnitudes and phases. AS, AP , and AD are real-valued functions, and φP and φD

are phases (the phase φS can freely be factored out without having any effect on |A|2).
Substituting Eq. 6.3 into Eq. 6.2, and making use of the orthonormality relation

∫ 1

−1

Pl(cos θ3)Pk(cos θ3)d cos θ3 = δlk , (6.4)

we can calculate the angular moments:

〈P0〉 =
A2
S + A2

P + A2
D√

2

〈P1〉 =
√

2ASAP cosφP +
2
√

10

5
APAD cos (φP − φD)

〈P2〉 =

√
2

5
A2
P +

√
10

7
A2
D +

√
2ASAD cosφD

〈P3〉 =
3

5

√
30

7
APAD cos (φP − φD)

〈P4〉 =

√
18

7
A2
D . (6.5)

The moments that are higher-order than 〈P4〉 are zero if there are no higher-

order partial waves than D-wave. However, this is no longer valid if the effects of

symmetrization in B+ → K+K−K+ are taken into account, as explained in the next

section.

Effect of Symmetrization on B+ → K+K−K+ Angular Moments

Because the overall B+ → K+K−K+ amplitude must be symmetrized under {1 ↔ 3}
exchange, this complicates the angular moments. For example, if the unsymmetrized

amplitude has the form in Eq. 6.3, then a symmetric piece would have to be added

with m12 replaced by m23, and cos θ3 replaced by cos θ1. In principle, that symmetric

piece could be re-written in terms of the DP variables m12 and cos θ3, so that the



CHAPTER 6. DETERMINATION OF DALITZ MODEL 125

symmetric piece could be brought into the form in Eq. 6.1, but these “reflected”

amplitudes could contain higher-order terms than D-wave. Also, note that because

of the definition m12 < m23, this ends up causing further distortions, since this ends

up translating into a restriction on the possible values of cos θ3 for a given value of

m12, so that the integral of cos θ3 does not necessarily extend from -1 to 1. All of

this leads to the result that Eq. 6.5 does not directly apply. Still, angular moments

can be calculated for data, and compared with predictions for a given DP model, and

discrepancies can be noted.

As an illustration of what angular moments look like, we generate toy signal events

for a single resonance with m = 1.5 GeV/c2 and Γ = 0.2 GeV. Figs. 6.1, 6.2, and 6.3,

show the angular moments for the case that this resonance has spin 0, 1, and 2, re-

spectively. These figures can be understood by looking back at Eq. 6.5. There is a

large peak in the 2nd-order moment for the spin-1 and spin-2 cases, and there is a

large peak in the 4th-order moment only for the spin-2 case. The odd-moments are

much smaller than the even moments, because the odd moments only arise due to

interference between different partial waves. If there were no symmetrization effects,

then the odd-moments would be identically zero, because there is only a single reso-

nance. However, the odd-moments get non-zero values due to the two pieces of the

symmetrized amplitude interfering with one another. Similarly the fifth-order and

sixth-order moments are non-zero due to symmetrization.

Effect of Symmetrization on B+ → K0
S
K0

S
K+ Angular Moments

Because of the identical K0
S
, the B+ → K0

S
K0

S
K+ amplitude must be symmetric under

{1 ↔ 2} exchange. This in turn means the B+ → K0
S
K0

S
K+ amplitude must be an

even function of cos θ3. This means no P-wave terms can be present, and that the

odd angular moments (〈P1〉, 〈P3〉, etc.) are automatically zero.

B0 → K+K−K0
S

Angular Moments

The B0 → K+K−K0
S angular moments are complicated by the sign-flip for odd-L

amplitudes, mentioned in Eq. 2.26. This causes the odd angular moments to flip sign
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Figure 6.1: Angular moments plots for B+ → K+K−K+ toy events generated for a
single spin-0 resonance with m = 1.5 GeV/c2 and Γ = 0.2 GeV.
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Figure 6.2: Angular moments plots for B+ → K+K−K+ toy events generated for a
single spin-1 resonance with m = 1.5 GeV/c2 and Γ = 0.2 GeV.
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Figure 6.3: Angular moments plots for B+ → K+K−K+ toy events generated for a
single spin-2 resonance with m = 1.5 GeV/c2 and Γ = 0.2 GeV.
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depending on the tag flavor qtag. By integrating Eq. 2.21 over Δt, it can be shown

that the odd angular moments are proportional to −qtag(1−2w)/((Δmdτ)
2 +1). The

(1 − 2w) factor is a dilution due to mistagging, and the 1/((Δmdτ)
2 + 1) factor is a

dilution due to B0 −B0 mixing.

Because of the proportionality to qtag, the odd angular moments would integrate

to zero if we were to simply integrate over qtag (at least, in the absence of direct CP

violation). So, what we decide to do is multiply (qtag = +1) events by −1 when

calculating odd angular moments:

〈Pl(cos θ3)〉 ≡ (−1)l 〈Pl(cos θ3)〉 (qtag = +1) + 〈Pl(cos θ3)〉 (qtag = −1) . (6.6)

With this convention in place, Eq. 6.5 applies to B0 → K+K−K0
S , except that the

odd moments get multiplied by (1 − 2w)/((Δmdτ)
2 + 1).

6.2 B+ → K+K−K+ Fits

6.2.1 Fit with Initial DP Model

We perform ML fits using the same isobar model used in BABAR’s previous analy-

sis [24]. The NR α parameter and the mass and width of the fX(1500) are floated

in the fit. Maximizing the likelihood is equivalent to minimizing − logL (NLL). In

DP analyses, it is typical for the NLL function to have multiple local minima, due to

the many interfering isobars. We will discuss these multiple solutions in detail when

we report the final fit results (Chap. 7), but in this chapter, we will only refer to the

best solution (global minimum). To make sure the true best solution is found, we

perform 500 fits with the same model, randomizing the starting values for the isobar

parameters in each fit. We will refer to this procedure as “performing randomized

fits.” The best solution found is shown in Table 6.1. This solution is consistent with

BABAR’s previous result. We will call this “Model A.”
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Table 6.1: Isobar magnitudes and phases from a CP-blind fit to B+ → K+K−K+

data, using “Model A,” floating the NR α and the mass and width of the fX(1500).
The errors are statistical only.

Decay Magnitude cr Phase φr (rad.) Fraction Fr (%)
φ(1020) 0.0100 ± 0.0006 −0.20 ± 0.12 12.9 ± 1.0
f0(980) 0.4034 ± 0.0369 0.33 ± 0.09 15.8 ± 3.3
fX(1500) 0.4930 ± 0.0386 1.41 ± 0.05 81 ± 7
f0(1710) 0.0468 ± 0.0120 0.16 ± 0.27 1.1 ± 0.5
χc0 0.0321 ± 0.0029 −0.74 ± 0.21 2.48 ± 0.37
NR 1.0 (fixed) 0.0 (fixed) 123 ± 13

fX(1500) Mass 1543.1 ± 11.1
fX(1500) Width 204.2 ± 15.5
NR α −0.149 ± 0.006

N(BBcharm1) 169.2 ± 20.7
N(BBcharm2) 22.1 ± 9.3
N(BBcharm3) 131.8 ± 33.2
N(BBcharm4) 238.9 ± 54.1
N(BBcharm5) 230.5 ± 21.7
N(BBcharm6) 44.4 ± 9.8
N(cont) 6001.5 ± 91.0
N(signal) 5316.9 ± 84.4

NLL -135990.2

sPlots

We form sPlots [44] for the signal and background categories. These plots use the fit

result to weight each event by the probability that it belongs to a particular signal or

background category. This allows us to see how well our PDF’s match the observed

distributions in data. The sPlots for mES, ΔE, and NN are shown in Figs. 6.4, 6.5,

and 6.6, respectively. 1

1The basic idea behind an sPlot is that the PDF variables that are not being plotted are used
to discriminate between the various signal and background categories. However, this relies on the
plotted variable being uncorrelated with the discriminating variables. So, when making the NN
sPlots, we do not use the DP variables as discriminating variables, because the continuum NN
PDF is correlated with the DP. Without the DP, the signal and peaking backgrounds cannot be
distinguished, so they are combined in these plots. Also, without the DP, it is more difficult to
separate continuum and non-peaking BB categories, so we combined them together when making
the NN sPlots.
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Figure 6.4: mES sPlots for B+ → K+K−K+, for signal, continuum, and BB back-
grounds. Using the initial Dalitz model (Model A). The BB plot is a sum of all BB
background categories.

In Fig. 6.7, we show the DP sPlots for this fit. The agreement between the fit

model and the data is fairly good, but not perfect. To examine the agreement between

the signal model and the data more closely, we will look at angular moments, as shown

in the next section.

Angular Moments

We look at plots of the angular moments, as described in Sec. 6.1. For data, we

calculate the angular moments from the sWeights. For comparison with the DP

model, we generate a high-statistics toy sample based on the fit result, and calculate

angular moments for the toy events. The angular moments are shown in Fig. 6.8.

There are large discrepancies between the fit model and the data in the fX(1500)

region, particularly for the 2nd-order moment, where in data a large peak can be

seen that is not modeled by the DP model. There are also significant discrepancies
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Figure 6.5: ΔE sPlots for B+ → K+K−K+, for signal, continuum, and BB back-
grounds. Using the initial Dalitz model (Model A). The BB plot is a sum of all BB
background categories.

NN
1 2 3 4 5 6 7 8 9 10

E
ve

nt
s 

/ (
 1

 )

0

100

200

300

400

500

600

700

signal

NN
1 2 3 4 5 6 7 8 9 10

E
ve

nt
s 

/ (
 1

 )

0

100

200

300

400

500

600

700

signal

NN
1 2 3 4 5 6 7 8 9 10

E
ve

nt
s 

/ (
 1

 )

0

500

1000

1500

2000

2500

3000

3500

combined bkg

NN
1 2 3 4 5 6 7 8 9 10

E
ve

nt
s 

/ (
 1

 )

0

500

1000

1500

2000

2500

3000

3500

combined bkg

Figure 6.6: NN sPlots for B+ → K+K−K+, for signal and background. Using the
initial Dalitz model (Model A). The signal plot contains both signal and the peaking
BB backgrounds. The background plot contains all the other background categories
combined (continuum and non-peaking BB backgrounds).
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Figure 6.7: DP sPlots for B+ → K+K−K+, for signal and combined background.
Using the initial Dalitz model (Model A). The signal plot contains both signal and the
peaking BB backgrounds. The background plot contains all the other background
categories combined (continuum and non-peaking BB backgrounds).
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in the high-mass region, with m12 > 2 GeV/c2.

6.2.2 Testing Alternative DP Models

Since the angular moments show that the DP model does not do a great job of

describing the data, we test various different DP models.

The angular moments suggest some extra narrow structure around 1500 MeV/c2

that is not included in our DP model. The presence of a peak in the 2nd-order

angular moment suggests either a spin-1 or spin-2 structure (see Eq. 6.5). The PDG

lists a spin-2 KK resonance called the f ′
2(1525). We add the f ′

2(1525) to the existing

DP model, floating the NR α and the mass and width of the fX(1500). The best

fit result is shown in Table 6.2. (The signal and background yields do not depend

significantly on the DP model, so we do not list them again.) The inclusion of the

f ′
2(1525) improves the NLL by 13.1 units. The fit fractions for some of the isobars

change dramatically. Notably, the fX(1500) fraction is much smaller, the f0(1710)

fraction is much larger, and the NR fraction is significantly smaller. Also, the mass

and width of the fX(1500) have changed significantly. Interestingly, the mass and

width are now similar to the mass and width listed in the PDG for the f0(1500),

although the fitted mass is about 35 MeV/c2 smaller than the PDG value. Because

the mass and width are so similar, we decide to replace the fX(1500) with the PDG

f0(1500).

The angular moments plots indicated problems with the DP model in the m12 >

2 GeV/c2 region, which suggests problems with the NR parametrization. So, we test

various NR models. We add an isobar proportional to eα13 m2
13 , like the NR model

given in Eq. 2.54. First, we fit with the parameter α13 constrained to be the same as

the parameter α. The best fit gives α = −0.091 ± 0.013. The NLL improves by 38.5

units over the model without this extra NR term (and we were floating the fX(1500)

mass and width in that model, instead of fixing the mass and width to the f0(1500)

as we do now, so the NLL improvement is even more impressive).

We fit with a similar model, except this time allowing α13 and α to be different.

The best fit is summarized in Table 6.3. The NLL improves by an additional 17.4
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Figure 6.8: B+ → K+K−K+ angular moments for data (points) and fit model (line).
Fit model used is the initial Dalitz model (Model A). The φ(1020)-region (m12 <
1.04 GeV) is excluded, in order to make the interesting high-mass features more visible.
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Table 6.2: Isobar magnitudes and phases from a CP-blind fit to B+ → K+K−K+

data, with the f ′
2(1525) added to the original DP model, floating the NR α and the

mass and width of the fX(1500). The errors are statistical only.

Decay Magnitude cr Phase φr (rad.) Fraction FFr (%)
φ(1020) 0.0184 ± 0.0016 −2.28 ± 0.26 13.5 ± 0.8
f0(980) 0.6221 ± 0.1229 2.86 ± 0.32 11.7 ± 4.5
fX(1500) 0.0889 ± 0.0243 −1.39 ± 0.25 1.8 ± 0.5
f ′

2(1525) 0.0007 ± 0.0001 0.62 ± 0.16 1.6 ± 0.4
f0(1710) 0.4458 ± 0.0394 1.37 ± 0.12 30 ± 10
χc0 0.0684 ± 0.0086 −0.04 ± 0.27 3.5 ± 0.6
NR 1.0 (fixed) 0.0 (fixed) 44.4 ± 2.8

fX(1500) Mass 1470.0 ± 10.3
fX(1500) Width 96.0 ± 21.0
NR α −0.136 ± 0.010

NLL -136003.3

units. Interestingly, the parameter α now becomes positive, and α13 is negative. The

coefficient of the eα13 m2
13 term is very large.

Instead of using an exponential NR model, we try the 2D-polynomial NR model

described in Eq. 2.59. The best fit is summarized in Table 6.4. The NLL improves

by an additional 62.7 units. This model has 6 more floating DP parameters than the

previous model mentioned, so we would expect some improvement in NLL just by

virtue of having additional free parameters. To study this, we did some toy studies

where we generated events with one NR model, and then fit the toy datasets both

with the original NR model and with a more complex NR model having 6 more free

parameters, and it was found that in 95% of toy trials, the NLL improvement due to

the more complex NR model was less than 7.5 units. So, although some improvement

in NLL is possible just due to having 6 more free parameters, the improvement of

62.7 units is clearly significant.

Finally, we try the S+P wave NR model given in Eq. 2.56. The best fit is sum-

marized in Table 6.5. We will refer to this model as B+ → K+K−K+ Model B.

The angular moments for this model are shown in Fig. 6.9. The agreement between

the model and data is quite good, but there are a few disagreements. There is some
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Table 6.3: Isobar magnitudes and phases from a CP-blind fit to B+ → K+K−K+

data, with a NR model like that described in Eq. 2.54. The NR parameters α13 and
α are permitted to be different from one another. The errors are statistical only.

Decay Magnitude cr Phase φr (rad.) Fraction FFr (%)
φ(1020) 0.0154 ± 0.0020 −2.30 ± 0.21 13.4 ± 2.1
f0(980) 0.65 ± 0.11 2.80 ± 0.19 18 ± 7
f0(1500) 0.090 ± 0.016 −0.49 ± 0.16 2.3 ± 1.0
f ′

2(1525) 0.0005 ± 0.0001 0.81 ± 0.14 1.5 ± 0.5
f0(1710) 0.37 ± 0.05 1.55 ± 0.09 28 ± 5
χc0 0.055 ± 0.008 0.47 ± 0.18 3.2 ± 0.6
NR(K+K−) 1.0 (fixed) 0.0 (fixed) 53 ± 9
NR(K+K+) 4.35 ± 0.18 3.03 ± 0.01

NR α 0.0492 ± 0.0022
NR α13 −0.0499 ± 0.0040

NLL -136059.2

disagreement in the second-order moment in the 2-2.5 GeV/c2 range, which could be

due to an imperfect NR model, or missing broad tensor resonances. There is one bin

in the first-order moment around 1.8 GeV/c2 with a large discrepancy, but it doesn’t

appear to be a real resonance, since otherwise we would expect to see a peak in the

zeroth-order moment as well. Model B gives an NLL 6.6 units worse than the 2D-

polynomial NR model, with the same number of DP parameters. But the S+P wave

NR model has an easier physical interpretation than the 2D-polynomial NR model.

Also, we would like to use a similar NR model for the modes B+ → K+K−K+,

B0 → K+K−K0
S , and B+ → K0

SK
0
SK

+, and it is less clear how to generalize the

2D-polynomial NR model to the modes B0 → K+K−K0
S

and B+ → K0
S
K0

S
K+. So,

we think the S+P wave NR model is the best choice, and we will test this choice in

B+ → K0
S
K0

S
K+ and B0 → K+K−K0

S
later in this chapter.

Testing for Additional Components

We test for the presence of a number of additional resonances. These tests are sum-

marized in Sec. 6.5. We do not see any conclusive evidence for any other resonances

beyond what was included in Model B.
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Figure 6.9: B+ → K+K−K+ angular moments for data (points) and fit model (blue).
Fit model used is Model B (see Table 6.5). The φ(1020)-region (m12 < 1.04 GeV) is
excluded.
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Table 6.4: Isobar magnitudes and phases from a CP-blind fit to B+ → K+K−K+

data, with a 2D-polynomial NR model like that described in Eq. 2.59. The errors are
statistical only.

Decay Magnitude cr Phase φr (rad.) Fraction Fr (%)
φ(1020) 0.0159 ± 0.0007 −0.27 ± 0.20 12.52 ± 1.92
f0(980) 0.8064 ± 0.0977 0.44 ± 0.21 24.32 ± 6.21
f0(1500) 0.0989 ± 0.0106 −0.26 ± 0.16 2.43 ± 0.47
f ′

2(1525) 0.0007 ± 0.0001 0.77 ± 0.20 1.98 ± 0.47
f0(1710) 0.1247 ± 0.0139 1.06 ± 0.14 2.89 ± 0.76
χc0 0.0679 ± 0.0059 0.65 ± 0.19 4.28 ± 0.64
NR(a00) 1.0 (fixed) 0.0 (fixed)
NR(a10) 0.5937 ± 0.0877 2.17 ± 0.12
NR(a20) 0.1202 ± 0.0633 −1.09 ± 0.48 165.58 ± 13.35
NR(a11) 0.5210 ± 0.0651 −1.96 ± 0.09
NR(a30) 0.1300 ± 0.0373 −2.17 ± 0.26
NR(a21) 0.2591 ± 0.0808 −0.96 ± 0.23

NLL -136121.9

We also try adding a polynomial D-wave term to the NR model, resulting in the

NR model shown in Eq. 2.58. Including the D-wave NR term, the NLL improves by

17.6 units. Note that the D-wave NR term adds 6 additional degrees of freedom to

the model. The best fit is summarized in Table 6.6. The fit fractions of the resonances

have not changed significantly after adding the D-wave term. The fit fraction of the

D-wave term is relatively small, and consistent with 0. We decide not to include a

D-wave NR term in our isobar model.

6.2.3 Plotting the Nominal NR model

To look at the shape of the nonresonant contribution more closely, we take the best

fit result for Model B, and set all of the resonant isobars to zero. Then, we generate

toy with this model, so that there is only the NR contribution. The NR toy is shown

in Fig. 6.10. To look at the magnitude and phase motion of the NR model, we

“unsymmetrize” it, that is, we just look at

ANR =
(
aS0 + aS1 mK+K− + aS2 m

2
K+K−

)
+
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Table 6.5: Isobar magnitudes and phases from a CP-blind fit to B+ → K+K−K+

data, using Model B, which uses an S+P wave NR model like that described in
Eq. 2.56. The errors are statistical only.

Decay Magnitude cr Phase φr (rad.) Fraction FFr (%)
φ(1020) 0.031 ± 0.006 3.06 ± 0.23 12.9 ± 1.8
f0(980) 1.65 ± 0.24 2.04 ± 0.21 27 ± 6
f0(1500) 0.18 ± 0.03 −0.82 ± 0.22 2.2 ± 0.6
f ′

2(1525) 0.0014 ± 0.0003 0.55 ± 0.21 2.1 ± 0.5
f0(1710) 0.25 ± 0.05 0.74 ± 0.19 3.2 ± 0.8
χc0 0.11 ± 0.02 0.10 ± 0.22 3.2 ± 0.5
NR(aS0) 1.0 (fixed) 0.0 (fixed)
NR(aS1) 2.0 ± 0.6 2.82 ± 0.23 141 ± 91
NR(aS2) 0.32 ± 0.11 2.78 ± 0.23
NR(aP0) 1.57 ± 0.49 0.21 ± 0.53
NR(aP1) 0.82 ± 0.08 −2.76 ± 0.16 66 ± 57
NR(aP2) 0.51 ± 0.21 −1.92 ± 0.28

NLL -136115.3

(
aP0 + aP1 mK+K− + aP2 m

2
K+K−

)
P1(cos θ3) (6.7)

without distinguishing between m12 and m23. Then, we plot the S-wave and P-wave

magnitude and phase of Eq. 6.7 as a function of mK+K−. This is shown in Fig. 6.11,

without error bars. Caution should be used in interpreting the plots in this figure,

because the S-wave and P-wave parameters are highly correlated with one another,

and they could also be influenced by higher-wave terms not included in the model,

or by the truncation of the polynomials to second-order in mK+K−.

6.3 B+ → K0
S
K0

S
K+ Fits

6.3.1 Fit with Initial DP Model

This is the first ever DP analysis of B+ → K0
S
K0

S
K+, so we don’t have a prior

result to base our model on. For an initial DP model, we use the resonances from

B+ → K+K−K+ Model A (except for the forbidden φ(1020)), namely: f0(980),
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Figure 6.10: Dalitz plot distribution of toy NR events. The NR model is the polyno-
mial S- and P-wave model used in Model B, using the fit result shown in Table 6.5.
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Figure 6.11: Magnitude and phase of the S-wave and P-wave portions of the NR
model used in Model B, as shown in Eq. 6.7. The NR model uses the fit result shown
in Table 6.5.
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Table 6.6: Isobar magnitudes and phases from a CP-blind fit to B+ → K+K−K+

data, with a NR model containing S-wave, P-wave, and D-wave terms, like described
in Eq. 2.58.

Decay Magnitude cr Phase φr (rad.) Fraction FFr (%)
φ(1020) 0.0251 ± 0.0020 −3.08 ± 0.16 12.8 ± 0.7
f0(980) 1.43 ± 0.13 2.29 ± 0.14 31 ± 5
f0(1500) 0.147 ± 0.019 −0.52 ± 0.16 2.2 ± 0.5
f ′

2(1525) 0.00103± 0.00014 0.58 ± 0.13 1.9 ± 0.5
f0(1710) 0.209 ± 0.025 0.99 ± 0.12 3.3 ± 0.7
χc0 0.095 ± 0.010 0.20 ± 0.19 3.4 ± 0.5
aS0 1.0 (fixed) 0.0 (fixed)
aS1 2.23 ± 0.09 3.01 ± 0.06 233 ± 36
aS2 0.51 ± 0.07 2.74 ± 0.12
aP0 2.06 ± 0.11 0.15 ± 0.07
aP1 0.82 ± 0.05 −2.80 ± 0.13 145 ± 27
aP2 0.55 ± 0.07 −2.35 ± 0.20
aD0 0.26 ± 0.19 −0.67 ± 0.67
aD1 0.20 ± 0.06 0.52 ± 0.42 1.9 ± 2.0
aD2 0.135 ± 0.039 −3.06 ± 0.71

NLL -136132.2

fX(1500), f0(1710), and χc0. For the NR, we use a polynomial model like that used

in B+ → K+K−K+ Model B, except we omit the forbidden P-wave terms. Using

this model, we performed 500 randomized fits to data. The best solution found is

shown in Table 6.7. We will call this B+ → K0
S
K0

S
K+ Model A.

sPlots

We form sPlots for the signal and background categories. The sPlots for mES, ΔE,

and NN are shown in Figs. 6.12, 6.13, and 6.14, respectively. In Fig. 6.15, we show

the DP sPlots for this fit. The agreement between the fit model and the data is quite

good. We will look at the angular moments next.
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Figure 6.12: mES sPlots for B+ → K0
SK

0
SK

+, for signal, continuum, and BB back-
grounds. Using the initial Dalitz model. The BB plot is a sum of all BB background
categories.
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Figure 6.13: ΔE sPlots for B+ → K0
S
K0

S
K+, for signal, continuum, and BB back-

grounds. Using the initial Dalitz model. The BB plot is a sum of all BB background
categories.
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Figure 6.14: NN sPlots for B+ → K0
S
K0

S
K+, for signal and the combined background.

Using the initial Dalitz model. The combined background category is a sum of all the
background categories except for the peaking BB background. The signal category
includes the peaking BB background.
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Figure 6.15: DP sPlots for B+ → K0
S
K0

S
K+, for signal and combined background.

Using the initial Dalitz model. The combined background category is a sum of all the
background categories except for the peaking BB background. The signal category
includes the peaking BB background.
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Table 6.7: Isobar magnitudes and phases from a CP-blind fit to B+ → K0
SK

0
SK

+

data, with the initial DP model (Model A). The errors are statistical only.

Decay Magnitude cr Phase φr (rad.) Fraction Fr (%)
f0(980) 5.217 ± 1.212 0.909 ± 0.119 92.082 ± 44.957
fX(1500) 2.824 ± 0.579 1.550 ± 0.195 112.610 ± 27.346
f0(1710) 0.612 ± 0.244 −0.256 ± 0.232 7.812 ± 6.200
χc0 0.211 ± 0.055 −1.810 ± 1.178 4.795 ± 2.470
aS0 1.000 ± 0.000 0.000 ± 0.000 231.412± 101.773
aS1 2.369 ± 0.523 −2.923 ± 0.154 231.412± 101.773
aS2 1.368 ± 0.399 0.410 ± 0.223 231.412± 101.773

Nsig 637 ± 28
Ncont 2232 ± 50

NLL -26858.0

Angular Moments

We now calculate the angular moments, comparing data sPlots versus toy, just like

in Sec. 6.2.1. The angular moments are shown in Fig. 6.16. Most notably, the data

exhibits a peak in the 2nd-order moment around 1500 MeV/c2, which is not accounted

for by the signal model. This is suggestive of a spin-2 K0
S
K0

S
resonance around 1500

MeV/c2.

6.3.2 Testing Alternative DP Models

Since the angular moments show that the initial DP model does not do a great

job of describing the data, we test various different DP models. Motivated by the

B+ → K+K−K+ studies, we replace the fX(1500) with the f0(1500) and f ′
2(1525).

This is also motivated by the peak in the 2nd-order angular moment, which suggests a

tensor resonance around 1500 MeV/c2, the most obvious candidate being the f ′
2(1525).

The best fit result is shown in Table 6.8. We will call this the B+ → K0
S
K0

S
K+ Model

B. The NLL of Model B has an improvement of 18.6 units with respect Model A. We

plot the angular moments for this fit result in Fig. 6.17. The peak in the 2nd-order

moment is now well modeled. We will switch to using these resonances, both because

of the fit improvement, and because it is the same model favored by B+ → K+K−K+.
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Figure 6.16: B+ → K0
SK

0
SK

+ angular moments for data (points) and fit model (blue).
Fit model used is the initial Dalitz model.

Table 6.8: Isobar magnitudes and phases from a CP-blind fit to B+ → K0
S
K0

S
K+

data, using Model B (containing the standard resonances and an S-wave polynomial
NR model). The errors are statistical only.

Decay Magnitude cr Phase φr (rad.) Fraction Fr (%)
f0(980) 3.381 ± 0.218 0.535 ± 0.150 139.156 ± 25.414
f0(1500) 0.199 ± 0.049 −1.446 ± 0.323 3.960 ± 1.791
f ′

2(1525) 0.002 ± 0.000 −1.021 ± 0.209 5.730 ± 1.708
f0(1710) 0.246 ± 0.068 −0.390 ± 0.184 4.546 ± 2.603
χc0 0.108 ± 0.024 0.404 ± 1.657 4.576 ± 1.966
aS0 1.000 ± 0.000 0.000 ± 0.000
aS1 1.004 ± 0.080 2.249 ± 0.102 185.028 ± 34.703
aS2 0.511 ± 0.086 −1.472 ± 0.143

NLL -26876.6
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Figure 6.17: B+ → K0
SK

0
SK

+ angular moments for data (points) and fit model (blue
line). Fit model used is Model B (containing the standard resonances and an S-wave
polynomial NR model; see Table 6.8).
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As an alternative to the polynomial NR model, we try an exponential model like

that previously used in B0 → K+K−K0
S (Eq. 2.55), except that the eαs13 and eαs23

coefficients are constrained to be equal to due Bose-symmetrization. The NLL of this

model is 0.7 units worse than Model B. The fit result is shown in Table 6.9.

Table 6.9: Isobar magnitudes and phases from a CP-blind fit to B+ → K0
SK

0
SK

+

data, with a model like Model B, except with an exponential NR model. The errors
are statistical only.

Decay Magnitude cr Phase φr (rad.) Fraction Fr (%)
f0(980) 1.014 ± 0.073 1.702 ± 0.164 77.848 ± 14.367
f0(1500) 0.084 ± 0.018 −0.966 ± 0.326 4.454 ± 2.017
f ′

2(1525) 0.001 ± 0.000 −0.281 ± 0.191 5.951 ± 1.925
f0(1710) 0.079 ± 0.026 0.223 ± 0.255 2.895 ± 1.844
χc0 0.047 ± 0.007 0.321 ± 0.646 5.403 ± 1.099
NR(K0

S
K0

S
) 1.000 ± 0.000 0.000 ± 0.000 69.914 ± 16.180

NR(K+K0
S
) 0.108 ± 0.029 2.564 ± 0.475 69.914 ± 16.180

NLL -26875.9

Looking at Fig. 6.17, there still seems to be some discrepancy in the 2nd-order

angular moment in the 1.6 GeV/c2 < m12 < 2.5 GeV/c2 mass range. To see if we can

model this, we add a NR D-wave component like the one in Eq. 2.58. The best fit

result is summarized in Table 6.10. The inclusion of the D-wave component improves

the NLL by 11.1 units (with 6 additional parameters). The angular moments for this

fit result are shown in Fig. 6.18. It matches the 2nd-order angular moment quite well.

Instead of including a NR D-wave component, we try adding the f2(2300) reso-

nance. The best fit result is summarized in Table 6.11. The NLL is improved by

9.0 units (with 2 additional parameters). The angular moments for this fit result are

shown in Fig. 6.19. It also matches the 2nd-order angular moment fairly well.

As another alternative, we try adding the f2(2010) resonance. The best fit result is

summarized in Table 6.12. The NLL is improved by only 5.2 units (with 2 additional

parameters).

Since we did not find it appropriate to include a D-wave NR component in B+ →
K+K−K+, we decide not to include it here, either. In Sec. 6.5, we show the results

of searches for the f2(2300) and f2(2010) in B+ → K+K−K+ and B0 → K+K−K0
S ,
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and conclude that we should not include them in our nominal model. So, Model B is

still our favored model for B+ → K0
SK

0
SK

+.

Table 6.10: Isobar magnitudes and phases from a CP-blind fit to B+ → K0
SK

0
SK

+

data, with a model like Model B, but with the addition of a D-wave polynomial NR
contribution. The errors are statistical only.

Decay Magnitude cr Phase φr (rad.) Fraction Fr (%)
f0(980) 4.684 ± 1.092 0.911 ± 0.119 75.198 ± 26.402
f0(1500) 1.382 ± 0.277 1.775 ± 0.200 53.945 ± 13.543
f ′

2(1525) 0.003 ± 0.001 0.525 ± 0.298 4.124 ± 2.311
f0(1710) 0.658 ± 0.190 0.704 ± 0.205 9.148 ± 4.011
χc0 0.220 ± 0.047 −1.370 ± 0.694 5.323 ± 1.566
aS0 1.000 ± 0.000 0.000 ± 0.000
aS1 2.254 ± 0.482 −2.770 ± 0.138 210.262 ± 32.671
aS2 1.281 ± 0.369 0.585 ± 0.197
aD0 0.724 ± 0.281 2.214 ± 0.448
aD1 0.605 ± 0.334 −0.286 ± 0.424 4.598 ± 2.132
aD2 0.417 ± 0.270 −2.360 ± 0.642

NLL -26887.7

6.4 B0 → K+K−K0
S

Fits

6.4.1 Fit with Initial DP Model

For our initial DP model, we used the same isobar model used in BABAR’s previous

analysis [23] (also the same model used in BABAR’s preliminary Run1-6 result pre-

sented at ICHEP 2008). We performed 500 randomized fits. The best solution found

is shown in Table 6.13. This solution is consistent with BABAR’s preliminary Run1-6

result. We will refer to it as B0 → K+K−K0
S

Model A.

sPlots

We form sPlots for the signal and background. The sPlots for mES, ΔE, and NN

are shown in Figs. 6.20, 6.21, and 6.22, respectively. The sPlots are shown for the
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Table 6.11: Isobar magnitudes and phases from a CP-blind fit to B+ → K0
S
K0

S
K+

data, with a model like Model B, but with the addition of the f2(2300). The errors
are statistical only.

Decay Magnitude cr Phase φr (rad.) Fraction Fr (%)
f0(980) 3.378 ± 0.249 0.453 ± 0.131 137.406 ± 27.278
f0(1500) 0.199 ± 0.050 −1.584 ± 0.347 3.918 ± 1.758
f ′

2(1525) 0.002 ± 0.000 −1.241 ± 0.238 5.380 ± 1.731
f0(1710) 0.242 ± 0.068 −0.481 ± 0.193 4.348 ± 2.322
f2(2300) 0.002 ± 0.000 0.960 ± 0.316 2.121 ± 1.005
χc0 0.115 ± 0.023 0.769 ± 1.419 5.073 ± 1.933
aS0 1.000 ± 0.000 0.000 ± 0.000
aS1 0.993 ± 0.084 2.169 ± 0.094 178.676 ± 32.303
aS2 0.546 ± 0.081 −1.581 ± 0.133

NLL -26885.6

Table 6.12: Isobar magnitudes and phases from a CP-blind fit to B+ → K0
SK

0
SK

+

data, with a model like Model B, but with the addition of the f2(2010). The errors
are statistical only.

Decay Magnitude cr Phase φr (rad.) Fraction Fr (%)
f0(980) 3.350 ± 0.237 0.528 ± 0.155 133.960 ± 25.430
f0(1500) 0.203 ± 0.050 −1.436 ± 0.322 4.067 ± 1.912
f ′

2(1525) 0.002 ± 0.000 −1.013 ± 0.228 5.412 ± 1.718
f0(1710) 0.244 ± 0.066 −0.508 ± 0.196 4.368 ± 2.408
f2(2010) 0.001 ± 0.000 0.078 ± 0.382 1.463 ± 0.872
χc0 0.111 ± 0.031 0.429 ± 2.197 4.675 ± 2.466
aS0 1.000 ± 0.000 0.000 ± 0.000
aS1 0.978 ± 0.085 2.233 ± 0.104 174.560 ± 33.552
aS2 0.505 ± 0.089 −1.517 ± 0.144

NLL -26881.8
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Figure 6.18: B+ → K0
S
K0

S
K+ angular moments for data (points) and fit model (blue

line). Fit model used is the one given in Table 6.10, which is like Model B, but with
the addition of a D-wave polynomial NR contribution.
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Figure 6.19: B+ → K0
SK

0
SK

+ angular moments for data (points) and fit model (blue).
Fit model used is the one given in Table 6.11, including the standard resonances, the
f2(2300), and an S-wave polynomial NR model.
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Table 6.13: Isobar magnitudes and phases from a CP-blind fit to B0 → K+K−K0
S

data, with the initial Dalitz model (Model A). The errors are statistical only.

Decay Magnitude cr Phase φr (rad.) Fraction Fr (%)
φ(1020) 0.00885 ± 0.00076 −0.384 ± 0.204 13.360 ± 1.099
f0(980) 0.490 ± 0.040 −0.127 ± 0.128 24.336 ± 5.392
fX(1500) 0.144 ± 0.015 −0.231 ± 0.128 6.484 ± 1.512
NR(K+K−) 1.0 (fixed) 0.0 (fixed) 106.630± 13.047
NR(K+K0

S
) 0.271 ± 0.053 1.556 ± 0.245 7.781 ± 2.844

NR(K−K0
S) 0.339 ± 0.054 −1.680 ± 0.234 12.176 ± 3.801

χc0 0.033 ± 0.004 0.412 ± 0.502 3.277 ± 1.072
D− 1.774 ± 0.205 - 3.516 ± 1.031
D−
s 0.928 ± 0.187 - 1.130 ± 0.400

N(signal), K0
S
→ π+π− 1416 ± 44

N(signal), K0
S → π0π0 156 ± 17

N(BB), K0
S → π+π− 48 ± 29

N(BB), K0
S → π0π0 54 ± 18

NLL -28304.5

K0
S → π+π− mode only. (The sPlots for the K0

S → π0π0 mode look reasonable, but

have large errors.)

In Fig. 6.23, we show the DP sPlots for this fit. The background model does

a good job overall of describing the DP distribution, with only small discrepancies.

The signal PDF also agrees quite well with the data. To examine the agreement of

the signal model more closely, we will look at angular moments, as shown in the next

section.

Angular Moments

We now calculate the angular moments, comparing data sPlots versus toy. The

angular moments are shown in Fig. 6.24. The agreement between the fit model and

data is good. There is a small hint of a discrepancy in the 2nd-order moment for

mK+K− in the (1.5 - 2.3) GeV/c2 region.
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Figure 6.20: mES sPlots for B0 → K+K−K0
S
, for signal and backgrounds. Using the

initial Dalitz model (Model A). K0
S → π+π− mode only.

6.4.2 Testing Alternative DP Models

We test other DP models in this section, motivated by the B+ → K+K−K+ and

B+ → K0
SK

0
SK

+ studies.

First, we replace the fX(1500) with the f0(1500), f ′
2(1525), and f0(1710), so that

we are using the same resonances as in B+ → K+K−K+ and B+ → K0
SK

0
SK

+. The

NLL improves by 8.1 units, with 4 additional floating parameters.

Next, we replace the exponential NR model with a polynomial S+P-wave model,

as shown in Eq. 2.56. The best fit result is shown in Table 6.14. The NLL improves

by 7.3 units, with 6 additional floating parameters. We will refer to this as the

B0 → K+K−K0
S

Model B. It is similar to Model B in B+ → K+K−K+ and B+ →
K0

SK
0
SK

+. The angular moments for this model are shown in Figs. 6.25 and 6.26.
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Figure 6.21: ΔE sPlots for B0 → K+K−K0
S
, for signal and backgrounds. Using the

initial Dalitz model (Model A). K0
S → π+π− mode only.

6.5 Testing Additional Resonances

At this point, we would like to use the models that we have referred to as “Model B”

for each of the three B → KKK modes. To see if there are any additional resonances

that we should include in our models, we test for the following resonances:

• f0(1370), a0
0(1450), f2(1270), f2(2010), and f2(2300) in all three modes.

• a+
0 (980) and a+

0 (1450) in B+ → K0
SK

0
SK

+, and a−0 (980) and a−0 (1450) in B0 →
K+K−K0

S
.

• φ(1680) in B+ → K+K−K+ and B0 → K+K−K0
S .

We test for these resonances by adding them one-at-a-time to model B, performing

CP -blind fits to data, and observing how much the NLL improves by including each

resonance. The results of these fits are summarized in Table 6.15. This table also

lists the fit fraction for each resonance. We can make a number of observations based

on this table.
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Figure 6.22: NN sPlots for B0 → K+K−K0
S , for signal, continuum, and the combined

background (continuum plus BB). Using the initial Dalitz model (Model A). K0
S
→

π+π− mode only.
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Figure 6.23: DP sPlots for B0 → K+K−K0
S , for signal and combined background

(continuum plus non-peaking BB). Using the initial Dalitz model (Model A). K0
S
→

π+π− mode only.
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Figure 6.24: B0 → K+K−K0
S angular moments for data (points) and fit model (blue

line). Using the initial Dalitz model (Model A).K0
S
→ π+π− mode only. The φ(1020)-

region (mK+K− < 1.04 GeV) is excluded.
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Figure 6.25: B0 → K+K−K0
S angular moments for data (points) and fit model (blue

line). Fit model used is Model B (i.e., the fX(1500) replaced by the f0(1500), f ′
2(1525),

and f0(1710), and using a polynomial S+P-wave NR model). K0
S
→ π+π− mode only.

The φ(1020)-region (mK+K− < 1.04 GeV) is excluded.
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Figure 6.26: B0 → K+K−K0
S angular moments for data (points) and fit model (blue

line), for the low-mK+K− region only. Fit model used is Model B (i.e., the fX(1500)
replaced by the f0(1500), f ′

2(1525), and f0(1710), and using a polynomial S+P-wave
NR model). K0

S → π+π− mode only.
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Table 6.14: Isobar magnitudes and phases from a CP-blind fit to B0 → K+K−K0
S

data, using Model B (i.e., the fX(1500) replaced by the f0(1500), f ′
2(1525), and

f0(1710), and using a polynomial S+P-wave NR model). The errors are statistical
only.

Decay Magnitude cr Phase φr (rad.) Fraction Fr (%)
φ(1020) 0.040 ± 0.004 0.379 ± 0.287 12.958 ± 1.299
f0(980) 2.236 ± 0.424 0.761 ± 0.237 24.179 ± 7.516
f0(1500) 0.224 ± 0.049 0.261 ± 0.271 1.892 ± 0.793
f ′

2(1525) 0.00079 ± 0.00029 0.938 ± 0.423 0.419 ± 0.278
f0(1710) 0.774 ± 0.099 2.026 ± 0.192 16.810 ± 5.974
aS0 1.0 (fixed) 0.0 (fixed) 121.128 ± 17.612
aS1 1.320 ± 0.219 −2.557 ± 0.144 121.128 ± 17.612
aS2 0.654 ± 0.191 1.023 ± 0.235 121.128 ± 17.612
aP0 1.297 ± 0.199 1.135 ± 0.218 121.128 ± 17.612
aP1 0.295 ± 0.165 −1.328 ± 0.512 121.128 ± 17.612
aP2 0.426 ± 0.143 −2.249 ± 0.441 121.128 ± 17.612
χc0 0.149 ± 0.022 −0.358 ± 0.494 3.204 ± 0.707
D− 8.029 ± 1.056 - 3.429 ± 0.652
D−
s 4.157 ± 0.883 - 1.081 ± 0.381

NLL -28319.9

We already mentioned the poor modeling of the second-order angular moment in

B+ → K0
SK

0
SK

+, and a possible explanation in terms of the f2(2300). However, the

B+ → K+K−K+ fit shows a negligibly small contribution for this resonance, putting

a serious constraint on the B+ → f2(2300)K+ branching fraction.

BABAR’s recent B0 → K0
S
K0

S
K0

S
analysis found evidence for the f2(2010), but

found a large fit fraction: (9 ± 3)% for their first solution and (10 ± 2)% for their

second solution. We find much smaller fit fractions for this resonance, in strong

disagreement with the B0 → K0
SK

0
SK

0
S result. There is some NLL improvement in

both B+ → K+K−K+ and B+ → K0
S
K0

S
K+ when adding the f2(2010), but not

enough to be conclusive.

Modest improvements in NLL are seen in B+ → K+K−K+ for f0(1370), a0
0(1450),

and f2(1270). However, there is no evidence for these resonances in B+ → K0
SK

0
SK

+

or B0 → K+K−K0
S
. Furthermore, these are all broad resonances, which makes

them more difficult to interpret. The f0(1370) and a0
0(1450), in particular, are broad
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scalars, which are very difficult to separate from the large fraction of nonresonant and

f0 decays. A mismodeling of the nonresonant decays could result in a fake signal for

broad scalars.

In summary, we conclude that there is no strong evidence for any of these reso-

nances.

Table 6.15: Summary of tests in which we added various resonances one-at-a-time to
the isobar model. We show the improvement in − logL (ΔNLL) due to the addition
of each resonance, and the fit fraction FFj for that resonance. The default isobar
models in this table are the models called “Model B” in Sections 6.2-6.4.

Resonance B+ → K+K−K+ B+ → K0
S
K0

S
K+ B0 → K+K−K0

S

ΔNLL FFj (%) ΔNLL FFj (%) ΔNLL FFj (%)
a±0 (980) - - 2.3 1.1 ± 0.8
f0(1370) 7.2 5.3 ± 2.0 1.3 7 ± 9 2.8 4.8 ± 3.7
a0

0(1450) 7.2 8.5 ± 3.8 0.8 7 ± 18
a±0 (1450) - - 3.8 2.5 ± 1.4
φ(1680) 1.5 0.10 ± 0.13 - -
f2(1270) 7.0 0.41 ± 0.18 0.6 0.3 ± 0.4 3.5 0.44 ± 0.30
f2(2010) 5.4 0.35 ± 0.18 5.2 1.5 ± 0.9
f2(2300) 3.7 0.15 ± 0.10 9.0 2.1 ± 1.0

6.6 Summary and Conclusions

Using previous analyses’ DP models of B+ → K+K−K+ and B0 → K+K−K0
S

as a

starting point, we have tested a number of different DP models. For each of the three

B → KKK modes, we have found a model (which we have called Model B) which

has a better NLL than the initial model.

The two primary reasons for testing different DP models in B → KKK are:

• Reducing systematic errors due to the use of an incorrect DP model. Knowing

the NR model is particularly important for reducing the systematic on the βeff

measurement in B0 → K+K−K0
S , as that measurement depends on knowing

whether the K+K− is in an odd-L or even-L state.
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• Understanding the nature of the fX(1500), seen previously in B+ → K+K−K+

and B0 → K+K−K0
S , but which doesn’t fit easily into the known picture of

K+K− resonances.

Our tests in B+ → K+K−K+, as well as in B+ → K0
S
K0

S
K+, indicate that the

fX(1500) cannot be adequately described by a single scalar resonance, but that a

combination of the f0(1500) and f2(1525), interfering with the f0(1710), does provide

an adequate description. The angular moments show particularly strong evidence

for a tensor resonance in this mass region. The evidence in B0 → K+K−K0
S

is less

strong, but even in that mode this f0(1500) / f ′
2(1525) / f0(1710) model produces a

small improvement in NLL. Not only does this model match the B → KKK data

better, it also allows us to eliminate the ad-hoc fX(1500) state.

The NR was and still is poorly understood. For all we know, it may be the sum of a

large number of broad resonances. However, knowing its exact nature is less important

right now than understanding its CP content in B0 → K+K−K0
S
. We found that in

B+ → K+K−K+, a polynomial NR model containing both S- and P-wave terms

produced a greatly improved NLL with respect to the initial exponential NR model.

The polynomial model also has a very simple CP structure in B0 → K+K−K0
S ,

making it convenient. The large number of free parameters, including phase variation

over the DP, makes the polynomial model very flexible and less “model-dependent.”

This reduces the risk that our measurements will depend on questionable assumptions

about the NR model.

The models we have referred to as “Model B” include the f0(1500) / f ′
2(1525) /

f0(1710) resonances, as well as the polynomial NR model. We have tested adding

extra resonances to this model, and found no clear evidence for any of them. We also

tested for a D-wave NR contribution in B+ → K+K−K+ and B+ → K0
SK

0
SK

+, and

we decided that the modest fit improvement that it produces is not enough to merit

including it, given that it greatly increases the (already large) number of parameters

in the fit.

In conclusion, we believe that “Model B” is a good DP model, clearly superior to

previous B → KKK models, and we will use it as our nominal model for all three

B → KKK modes.
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Fit Results

7.1 B+ → K+K−K+

We float 43 parameters in the nominal fit, including

• 11 isobar magnitudes (c) and 11 isobar phases (φ). Since we only measure

relative magnitudes and phases, we fix the NR coefficient aS0 as a reference,

with magnitude 1 and phase 0.

• 8 CP -violating isobar parameters: 4 b’s and 4 δ’s. We have one (b, δ) pair for

the φ(1020), one pair for the f0(980), and one pair for the χc0. To keep the

number of parameters small (which helps fit stability), we have another pair

that is shared by all of the NR isobars. Finally, we have a pair that is shared

by the f0(1500), f ′
2(1525), and f0(1710). Since only relative values of δ can be

measured in B+ decays, we fix the NR δ to zero as a reference. We also fix

the χc0 b to zero, since direct ACP is known to be very small in B+ → (cc̄)K+

decays.

• 8 yields: signal, continuum, and 6BB categories (all of them except for “BBchmls”).

• The means of the signal mES and ΔE PDF’s (i.e., the x0 in Eq. 5.7).

• The slope of the continuum ΔE PDF, and the shape parameter c of the con-

tinuum mES PDF (Eq. 5.13).

166
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• The overall asymmetry ACP of the continuum backgrounds.

We perform hundreds of randomized fits to data, using the nominal isobar model.

The two best solutions that we find are separated by 2.8 units of NLL. The best

solution is shown in Tables 7.1-7.3. The second solution is shown in Tables 7.4-7.6.

The total branching fraction is calculated as

B(B → KKK) =
Nsig

ε̄NBB

, (7.1)

where ε̄ is the efficiency averaged over the DP, which we compute by weighting the

efficiency map (Sec. 5.2.4) by the measured DP distribution.

The second solution differs from the best solution in several respects. The second

solution has a smaller f0(980) fraction, a different NR structure, and rather different

CP -violating parameters. Most strikingly, the f0(980) ACP is very large for the second

solution, nearly 60%. One might be surprised that it is possible for a solution to have

such a large ACP , given how many signal events there are. However a couple of points

should be noted. First, the f0(980) is very broad, making it difficult to distinguish

from the NR. Second, in addition to the CP -asymmetries in isobars (quantified by

ACP ), there can be CP -asymmetries in the interference between isobars (which depend

on the ACP and Δφ of each of the interfering isobars). The result is that the ACP of

the f0(980) can be large by trading off with the NR ACP and the CP -asymmetry in

f0(980)-NR interference.

Interestingly, a fairly significant ACP is seen for the φ(1020) in the best solution.

As we mentioned in Sec. 2.5, this ACP is expected to be quite small in the SM,

(0.0 − 4.7)%. To calculate the significance of this result, we perform a likelihood

scan in ACP (φ(1020)), shown in Fig. 7.1. At each scan point, we perform randomized

fits, taking the result with the best likelihood at each point. In this fashion, the

likelihood scan explores the multiple solutions. We include systematic errors in the

likelihood scan by convolving the statistical likelihood scan with a Gaussian function

representing the systematic uncertainty. The systematic uncertainty is calculated

only for the best solution, and then assumed to be constant over the entire likelihood

scan range. From the likelihood scan, we find that ACP (φ(1020)) differs from zero at
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2.8σ significance (or 2.9σ if only statistical errors are included). The significance is

calculated as
√

2Δ logL.
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Figure 7.1: Statistical (dashed line) and total (solid line) scans of −2Δ logL as a
function of ACP (φK+) (left) and ACP (f0(980)K+) (right) for B+ → K+K−K+.

Similarly, we perform a likelihood scan in ACP (f0(980)), shown in Fig. 7.1. The

second solution is clearly visible. This is a different situation from the ACP (φ(1020))

scan, where the second solution is only barely visible because it has only a slightly

different value of ACP (φ(1020)) than the best solution.

Figures 7.2 and 7.3 show the signal m12 distribution (using sPlots) for B+ and

B− events separately. In addition to the hint of CP -violation for the φ(1020), there

is a clear indication of CP -violation in the D0 peak. This CP -violation has already

been measured by BABAR in a separate analysis [45], so we do not measure it in

this analysis, but rather fix it to the world-average value of ACP = 0.24± 0.08. As a

cross-check, we float it, and find ACP = 0.35±0.09, consistent with the world-average.

Systematics are done for the best solution only, and are described in detail in

Sec. 7.4.

7.2 B+ → K0
S
K0

S
K+

We float 41 parameters in the nominal fit, including
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Table 7.1: Isobar parameters from the unblinded fit to B+ → K+K−K+ data, using
the nominal signal model. Errors are statistical only.

Component cr φr (rad.) br δr (rad.)
φ(1020)K+ 0.0311 ± 0.0043 3.10 ± 0.23 −0.064 ± 0.022 0.20 ± 0.12
f0(980)K+ 1.64 ± 0.23 2.07 ± 0.20 0.040 ± 0.041 0.08 ± 0.06
f0(1500)K+ 0.179 ± 0.031 −0.78 ± 0.19
f ′

2(1525)K+ 0.00130 ± 0.00022 0.59 ± 0.18 −0.07 ± 0.05 −0.01 ± 0.05
f0(1710)K+ 0.254 ± 0.044 0.77 ± 0.16
χc0K

+ 0.114 ± 0.017 0.16 ± 0.20 0 (fixed) −0.04 ± 0.11
aS0 1.0 (fixed) 0.0 (fixed) −0.030 ± 0.022 0 (fixed)
aS1 2.09 ± 0.38 2.79 ± 0.24
aS2 0.33 ± 0.08 2.74 ± 0.22
aP0 1.6 ± 0.5 0.12 ± 0.34
aP1 0.80 ± 0.07 −2.78 ± 0.11
aP2 0.49 ± 0.15 −1.93 ± 0.30

N(BBcharm1) 169.8 ± 20.6
N(BBcharm2) 22.9 ± 9.4
N(BBcharm3) 132.9 ± 33.8
N(BBcharm4) 260.8 ± 55.6
N(BBcharm5) 238.2 ± 21.6
N(BBcharm6) 45.5 ± 9.7
N(cont) 6015.9 ± 91.2
N(signal) 5269.0 ± 84.2
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Table 7.2: Fit fractions and branching fractions from the unblinded fit to B+ →
K+K−K+ data, using the nominal signal model. We quote numbers both for the
total NR contribution, and for the S-wave and P-wave NR pieces individually. Both
statistical and systematic errors are given.

Component Fraction Fr (%) B(B+ → K+K−K+) × Fr(×10−6)
φ(1020)K+ 12.9+0.5+1.0

−0.7−0.7 4.48 ± 0.22+0.33
−0.24

f0(980)K+ 27 ± 5 ± 8 9.4 ± 1.6 ± 2.8
f0(1500)K+ 2.1 ± 0.5 ± 1.6 0.74 ± 0.18 ± 0.52
f ′

2(1525)K+ 2.0 ± 0.4 ± 0.4 0.69 ± 0.16 ± 0.13
f0(1710)K+ 3.2+0.8

−0.6 ± 1.4 1.12 ± 0.25 ± 0.50
χc0K

+ 3.2 ± 0.4 ± 0.1 1.12 ± 0.15 ± 0.06
NR 66 ± 8 ± 22 22.8 ± 2.7 ± 7.6
NR (S-wave) 151+66

−44 ± 77 52+23
−14 ± 27

NR (P-wave) 69+62
−33 ± 77 24+22

−12 ± 27

B (Total) (×10−6) 34.6 ± 0.6 ± 0.9
B (Charmless) (×10−6) 33.4 ± 0.5 ± 0.9

Table 7.3: CP -violating parameters from the unblinded fit to B+ → K+K−K+

data, using the nominal signal model. Note that the CP -violating parameters for
the f ′

2(1525) are also shared by the f0(1500) and f0(1710). ACP (Charmless) gives
the total integrated ACP , excluding the χc0. Both statistical and systematic errors
are given.

Component ACP (%) Δφ (rad.)
φ(1020) 12.8 ± 4.4 ± 1.3 0.39 ± 0.24+0.06

−0.08

f0(980) −8 ± 8 ± 4 0.16 ± 0.12 ± 0.11
f ′

2(1525) 14 ± 10 ± 4 −0.03 ± 0.10 ± 0.06
χc0 0.0 (fixed) −0.08 ± 0.22 ± 0.03
NR 6.0 ± 4.4 ± 1.9 0.0 (fixed)

ACP (Charmless) (%) −1.7+1.9
−1.4 ± 1.4
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Table 7.4: Isobar parameters for the second solution from the unblinded fit to B+ →
K+K−K+ data, using the nominal signal model. Errors are statistical only.

Component cr φr (rad.) br δr (rad.)
φ(1020)K+ 0.043 ± 0.009 −0.93 ± 0.22 −0.037 ± 0.022 −0.17 ± 0.11
f0(980)K+ 1.5 ± 0.5 −0.60 ± 0.20 −0.32 ± 0.11 −0.21 ± 0.12
f0(1500)K+ 0.28 ± 0.07 −0.72 ± 0.26
f ′

2(1525)K+ 0.00160 ± 0.00038 0.75 ± 0.27 −0.09 ± 0.05 0.01 ± 0.05
f0(1710)K+ 0.32 ± 0.08 0.79 ± 0.29
χc0K

+ 0.170 ± 0.038 0.53 ± 0.27 0 (fixed) −0.04 ± 0.10
aS0 1.0 (fixed) 0.0 (fixed) −0.062 ± 0.024 0 (fixed)
aS1 0.4 ± 1.2 0.0 ± 2.8
aS2 0.45 ± 0.35 −1.14 ± 0.33
aP0 2.3 ± 1.9 2.27 ± 0.44
aP1 0.85 ± 0.30 −1.99 ± 0.21
aP2 0.77 ± 0.38 −1.04 ± 0.32

N(BBcharm1) 170.0 ± 20.6
N(BBcharm2) 23.1 ± 9.4
N(BBcharm3) 133.4 ± 33.8
N(BBcharm4) 255.6 ± 55.4
N(BBcharm5) 239.2 ± 21.7
N(BBcharm6) 45.5 ± 9.7
N(cont) 6012.7 ± 91.2
N(signal) 5275.4 ± 84.2

Table 7.5: Fit fractions for the second solution from the unblinded fit to B+ →
K+K−K+ data, using the nominal signal model. The errors are statistical only.

Component Fraction Fr (%)
φ(1020)K+ 12.3 ± 0.6
f0(980)K+ 12.5 ± 4.5
f0(1500)K+ 2.6 ± 0.5
f ′

2(1525)K+ 1.50 ± 0.36
f0(1710)K+ 2.5 ± 0.6
χc0K

+ 3.6 ± 0.5
NR 122 ± 16
NR (S-wave) 91 ± 23
NR (P-wave) 48 ± 64
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Table 7.6: CP -violating parameters for the second solution from the unblinded fit to
B+ → K+K−K+ data, using the nominal signal model. The errors are statistical
only.

Component ACP (%) Δφ (rad.)
φ(1020) 7.4 ± 4.5 −0.34 ± 0.22
f0(980) 58 ± 16 −0.42 ± 0.24
f ′

2(1525) 17 ± 9 0.02 ± 0.09
χc0 0.0 (fixed) −0.07 ± 0.20
NR 12 ± 5 0.0 (fixed)
ACP (Total) (%) −1.6 ± 1.6
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Figure 7.2: B+ → K+K−K+ signal sPlots, showing the m12 distribution separately
for B+ (blue filled circles) and B− (red open squares) events. The signal category
includes peaking backgrounds “BB charm5” and “BB charm 6.”
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Figure 7.3: B+ → K+K−K+ signal sPlots, showing the m12 distribution separately
for B+ (blue filled circles) and B− (red open squares) events, in the low-mass region.
The signal category includes peaking backgrounds “BB charm5” and “BB charm 6.”
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• 7 isobar magnitudes (c) and 7 isobar phases (φ). We fix the NR coefficient aS0

as a reference, with magnitude 1 and phase 0.

• 2 CP -violating isobar parameters: one b and one δ. Because of the small number

of signal events in B+ → K0
SK

0
SK

+, we decide to have one (b, δ) pair that is

shared by all of the charmless isobars. We use a separate (b, δ) pair for the χc0,

since the χc0 comes from a b→ c tree amplitude, rather than a b→ s penguin.

We fix the charmless δ to zero as a reference, and fix the χc0 b to zero as we did

in B+ → K+K−K+.

• 2 yields: signal and continuum.

• The means of the signal mES and ΔE PDF’s (i.e., the x0 in Eq. 5.7).

• The slope of the continuum ΔE PDF, and the shape parameter c of the con-

tinuum mES PDF (Eq. 5.13).

• 18 parameters for the continuum NN PDF: 9 ai’s and 9 bi’s (see Eq. 5.14).

• The overall asymmetry ACP of the continuum backgrounds.

We fit to data with the nominal isobar model. Fourteen secondary solutions are

found within 4.5 NLL (i.e., 3σ) of the best solution. Of these fourteen additional

solutions, two are within 1σ of the best solution. The large number of solutions

indicates that there is an insufficient number of events in this mode to fully constrain

all the parameters in our model. Clearly, with so many solutions, care needs to be

taken in understanding our results.

The best solution is shown in Tables 7.7 and 7.8. The fourteen additional solutions

are given in Appendix C. Rather than look at the additional solutions in detail, we

will merely summarize their features. All solutions have similar values for the ACP ,

varying from 2% to 4%. They also all have almost exactly the same signal yield.

Where the solutions differ greatly is is in many of their fit fractions. All the solutions

have consistent values for the f ′
2(1525) and χc0 fit fractions. On the other hand, the

f0(980) fit fraction varies between 69% and 152%, the f0(1500) varies between 3%

and 73%, the f0(1710) varies between 4% and 38%, and the NR varies between 97
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and 290. So, the branching fractions of those components cannot be measured well

in B+ → K0
SK

0
SK

+ given the present statistics.

Table 7.7: Isobar parameters from the unblinded fit to B+ → K0
SK

0
SK

+ data, with
the nominal fit model. The parameters are only given for the global best solution.
See the text for discussion of the multiple solutions. The errors are statistical only.

Decay cr φr (rad.)
f0(980)K+ 3.35 ± 0.22 0.53 ± 0.15
f0(1500)K+ 0.20 ± 0.05 −1.44 ± 0.32
f ′

2(1525)K+ 0.00179± 0.00032 −1.02 ± 0.21
f0(1710)K+ 0.24 ± 0.07 −0.39 ± 0.18
χc0K

+ 0.113 ± 0.017 0.8 ± 1.0
aS0 1.0 (fixed) 0.0 (fixed)
aS1 1.00 ± 0.08 2.25 ± 0.10
aS2 0.51 ± 0.08 −1.48 ± 0.15

b −0.018 ± 0.023
δ (rad.) −0.2 ± 0.6

N(signal) 636 ± 28

Because of the multiple solutions, the errors on the best solution don’t give a

complete picture of the errors. A better way of estimating the errors in the presence

of multiple solutions is to perform a likelihood scan. We only perform a likelihood

scan for ACP , since this is the most important parameter for B+ → K0
S
K0

S
K+. The

scan is shown in Fig. 7.4. The systematics are calculated for the best solution only.

Calculating the statistical errors by seeing where the likelihood curve crosses the line

Δ logL = 0.5, we get ACP = (4+4
−5 ± 2)%. 1 We regard this as our final result for

ACP .

Figure 7.5 shows the signal mK0
SK

0
S

distribution (using sPlots) for B+ and B−

events separately. No obvious asymmetries are seen.

1One might be surprised that the errors from the likelihood scan appear to be smaller than
the errors from the best solution, ACP = (4 ± 5)%. After all, the likelihood scan incorporates the
multiple solutions, which should make the errors bigger, not smaller. However, the errors on the best
solution were determined using a method that assumes symmetric errors, and we are also rounding
the errors.
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Table 7.8: Fit fractions and branching fractions from the unblinded fit to B+ →
K0

S
K0

S
K+ data, using the nominal signal model. The parameters are only given for

the global best solution. See the text for discussion of the multiple solutions.

Decay Fraction Fr (%) B(B+ → K0
SK

0
SK

+) ×Fr

f0(980)K+ 139 ± 25 ± 17 14.7 ± 2.8 ± 1.8
f0(1500)K+ 4.0 ± 2.0 ± 5.5 0.42 ± 0.22 ± 0.58
f ′

2(1525)K+ 5.7 ± 1.9+1.1
−0.8 0.61 ± 0.21+0.12

−0.09

f0(1710)K+ 4.5+3.7
−2.2 ± 1.0 0.48+0.40

−0.24 ± 0.11
χc0K

+ 5.0 ± 0.9 ± 0.3 0.53 ± 0.10 ± 0.04
NR (S-wave) 187 ± 35 ± 21 19.8 ± 3.7 ± 2.5

Δφ (rad.) −0.4 ± 1.1 ± 0.2
ACP (%) 4 ± 5 ± 2
B(Total) (×10−6) 10.6 ± 0.5 ± 0.3
B(Charmless)(×10−6) 10.1 ± 0.5 ± 0.3
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Figure 7.4: Statistical (dashed line) and total (solid line) scans of −2Δ logL as a
function of ACP for B+ → K0

S
K0

S
K+.
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Figure 7.5: B+ → K0
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0
SK

+ signal sPlots, showing themK0
SK

0
S

distribution separately
for B+ (blue) and B− (red) events. Points are signal-weighted data, and the lines are
the fit model. The signal category includes the “BB 4” category.
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7.3 B0 → K+K−K0
S

We float 90 parameters in the nominal fit, including

• 11 isobar magnitudes (c) and 11 isobar phases (φ). We fix the NR coefficient

aS0 as a reference, with magnitude 1 and phase 0.

• An additional 4 isobar magnitudes, representing the contributions from peaking

backgrounds. Since these are treated as non-interfering backgrounds, the isobars

only have magnitudes, not phases.

• 6 CP -violating isobar parameters: three b’s and three δ’s. We have one (b, δ) pair

for φ(1020) and one for f0(980). To keep the number of parameters reasonably

small, we have one (b, δ) pair that is shared by all the remaining charmless

isobars (which we will refer to as the “Other” category). We fix the b and δ of

the χc0 to zero. This is equivalent to ACP = 0 and βeff = βSM .

• 18 yields: 9 yields each for the K0
S → π+π− and K0

S → π0π0 channels. The 9

yields include one for signal, one for the non-peaking BB backgrounds, and 7

for continuum (separate yields for each of the 7 tagging categories).

• The means of the signal mES and ΔE PDF’s, for the K0
S
→ π+π− channel only.

(For K0
S → π0π0, these means are fixed to their MC values.) For K0

S → π+π−,

we see some disagreement in mES between our fit model and the data, so we

float the widths (σ+ and σ− in Eq. 5.7) of the signal mES PDF in a CP -blind

fit to data, and fix them to those values in the nominal fit.

• The slope of the continuum ΔE PDF, separately for K0
S → π+π− and K0

S →
π0π0.

• 36 parameters for the continuum NN PDF: 18 each for K0
S → π+π− and K0

S →
π0π0. The 18 parameters are the 9 ai’s and 9 bi’s (see Eq. 5.14).

We perform randomized fits to data, with the CP -parameters of the φ(1020),

f0(980), and remaining charmless isobars floating. We find four secondary solutions
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within 4.5 NLL of the best solution. The best solution is shown in Tables 7.9-7.11.

The isobar magnitudes and phases are consistent with the CP -blind best solution.

The CP -violating parameters are all consistent with the SM expectation of ACP = 0,

βeff = 0.368 rad. The branching fractions are only computed based on the yield in the

K0
S
→ π+π− channel, since theK0

S
→ π0π0 channel has not only much worse statistical

errors, but also worse systematic errors, due to uncertainty in the π0 efficiency.

The CP -violating parameters for the four additional solutions are summarized in

Tables 7.12-7.15. More detailed tables of these solutions are given in Appendix C. The

second-best solution is about 2σ away (in terms of Δ logL) from the best solution,

so at least at the one-sigma level, the multiple solutions do not affect our confidence

intervals. At the three-sigma level, however, some of the partial branching fractions

are poorly constrained due to the multiple solutions. In particular, the f0(1500)

fit fraction varies between 2% and 51% for the different solutions, the f0(1710) fit

fraction varies between 2% and 27%, and the NR S-wave fit fraction varies between

34% and 120%. However, the φ(1020), f ′
2(1525), χc0, and NR P-wave fit fractions are

very consistent among the different solutions. The f0(980) fit fraction is also fairly

consistent among the different solutions, only varying between 19% and 41%.

We show the Δt distributions in the φ(1020) and φ(1020)-excluded regions, for

both B0- and B0-tagged events, in Fig. 7.6. The distribution is only shown for

K0
S → π+π− signal events, calculated using the sPlots method. This figure also

shows the signal asymmetry as a function of Δt. The time-dependent asymmetry has

the opposite sign in the φ(1020) and φ(1020)-excluded regions, because the φ(1020)

is CP -odd, while the rest of the DP is mostly CP-even.

Since the most important measurements in the B0 → K+K−K0
S analysis are

the CP -violating parameters, we perform likelihood scans in each of the three ACP ’s

and βeff ’s. As usual, we perform many randomized fits for each scan point. The

scans are shown in Figs. 7.7-7.9. We can see that the errors are basically Gaussian

to about three-sigma. It is important to note the secondary minima visible in the

βeff(φ(1020)) and βeff(Other) plots around 60− 80 degrees. These minima are caused

by the “trigonometric ambiguity” between β and π/2− β which was mentioned back

in Sec. 2.5.3. As we explained then, we can discriminate between β and π/2− β due
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Table 7.9: Isobar parameters for the best solution from the unblinded fit to B0 →
K+K−K0

S
data, using the nominal fit model. Signal and BB yields are also given.

Decay Magnitude cr Phase φr (rad.)
φ(1020)K0

S
0.039 ± 0.005 0.35 ± 0.32

f0(980)K0
S

2.2 ± 0.5 0.70 ± 0.29
f0(1500)K0

S 0.22 ± 0.05 0.30 ± 0.27
f ′

2(1525)K0
S

0.00080 ± 0.00028 0.93 ± 0.40
f0(1710)K0

S
0.72 ± 0.11 1.92 ± 0.20

χc0K
0
S 0.144 ± 0.023 −0.3 ± 0.5

aS0 1.0 (fixed) 0.0 (fixed)
aS1 1.25 ± 0.25 −2.60 ± 0.16
aS2 0.58 ± 0.22 0.98 ± 0.27
aP0 1.22 ± 0.22 1.14 ± 0.23
aP1 0.28 ± 0.18 −1.2 ± 0.5
aP2 0.42 ± 0.16 −2.29 ± 0.44
D− 7.8 ± 1.2 -
D−
s 4.0 ± 0.9 -

D0 4.7 ± 0.9 -
J/ψ 3.0 ± 1.1 -

δ(φ(1020)) −0.01 ± 0.11
b(φ(1020)) 0.03 ± 0.09
δ(f0(980)) −0.06 ± 0.11
b(f0(980)) 0.14 ± 0.13 ± 0.05
δ(Other) −0.01 ± 0.08
b(Other) 0.01 ± 0.05

N(signal), K0
S → π+π− 1419 ± 43

N(signal), K0
S
→ π0π0 160 ± 17

N(BB), K0
S
→ π+π− 29 ± 28

N(BB), K0
S
→ π0π0 48 ± 18

NLL -28346.1
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Table 7.10: Fit fractions and partial branching fractions for the best solution from
the unblinded fit to B0 → K+K−K0

S
data, using the nominal fit model.

Decay Fraction Fr (%) B(B+ → K+K−K+) × Fr(×10−6)
φ(1020)K0 13.1 ± 1.0+0.8

−0.4 3.48 ± 0.28+0.21
−0.14

f0(980)K0 26+9
−7 ± 9 7.0+2.6

−1.8 ± 2.4
f0(1500)K0 2.1 ± 0.8 ± 0.5 0.57+0.25

−0.19 ± 0.12
f ′

2(1525)K0 0.5+0.5
−0.3 ± 0.6 0.13+0.12

−0.08 ± 0.16
f0(1710)K0 16.7 ± 2.5 ± 2.0 4.4 ± 0.7 ± 0.5
χc0K

0 3.4 ± 0.7 ± 0.2 0.90 ± 0.18 ± 0.06
NR (S-wave) 115 ± 17 ± 31 30 ± 5 ± 8
NR (P-wave) 11.7 ± 2.5 ± 1.4 3.1 ± 0.7 ± 0.4

Table 7.11: CP -violating parameters for the best solution from the unblinded fit to
B0 → K+K−K0

S
data, using the nominal fit model.

Component βeff (rad.) ACP (%)
φ(1020) 0.36 ± 0.11 ± 0.04 −5 ± 18 ± 5
f0(980) 0.31 ± 0.11 ± 0.07 −28 ± 24 ± 9
Other 0.35 ± 0.08 ± 0.02 −2 ± 9 ± 3

Table 7.12: Parameters for Solution 2 from the unblinded fit to B0 → K+K−K0
S

data, using the nominal fit model. The errors are statistical only.

Component βeff (rad.) ACP (%)
φ(1020) 0.33 ± 0.10 0.3 ± 17.1
f0(980) 0.30 ± 0.09 −24.1 ± 19.9
Other 0.37 ± 0.07 −3.0 ± 8.1

N(signal), K0
S
→ π0π0 159 ± 17

N(signal), K0
S → π+π− 1420 ± 43

Δ(NLL) 2.0
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Table 7.13: Parameters for Solution 3 from the unblinded fit to B0 → K+K−K0
S

data, using the nominal fit model. The errors are statistical only.

Component βeff (rad.) ACP (%)
φ(1020) 0.32 ± 0.11 −9.3 ± 17.2
f0(980) 0.32 ± 0.12 −12.6 ± 26.3
Other 0.39 ± 0.08 −1.3 ± 10.4

N(signal), K0
S → π0π0 160 ± 17

N(signal), K0
S
→ π+π− 1418 ± 43

Δ(NLL) 2.0

Table 7.14: Parameters for Solution 4 from the unblinded fit to B0 → K+K−K0
S

data, using the nominal fit model. The errors are statistical only.

Component βeff (rad.) ACP (%)
φ(1020) 0.28 ± 0.15 −10.0 ± 17.1
f0(980) 0.26 ± 0.20 10.7 ± 55.9
Other 0.43 ± 0.12 12.6 ± 24.9

N(signal), K0
S
→ π0π0 162 ± 17

N(signal), K0
S → π+π− 1419 ± 43

Δ(NLL) 3.7

Table 7.15: Parameters for Solution 5 from the unblinded fit to B0 → K+K−K0
S

data, using the nominal fit model. The errors are statistical only.

Component βeff (rad.) ACP (%)
φ(1020) 0.25 ± 0.11 −3.5 ± 16.3
f0(980) 0.39 ± 0.09 −21.0 ± 14.0
Other 0.51 ± 0.08 −2.7 ± 12.7

N(signal), K0
S
→ π0π0 161 ± 17

N(signal), K0
S
→ π+π− 1418 ± 43

Δ(NLL) 4.2
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Figure 7.6: Top: The Δt distributions for B0 → K+K−K0
S (K0

S → π+π−) signal
events, in the φ(1020) region 1.01 GeV/c2 < mK+K− < 1.03 GeV/c2 (left) and φ(1020)-
excluded region (right). B0 (B0) tagged events are shown as closed circles (open
squares). The fit model for B0 (B0) tagged events is shown by a solid (dashed)
line. The data points are signal-weighted using the sPlots method. Bottom: The
asymmetry (NB0 −NB0)/(NB0 +NB0) as a function of Δt, in the φ(1020) region (left)
and φ(1020)-excluded region (right). The points represent signal-weighted data, and
the line is the fit model.
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to S-wave/P-wave interference (see Eq. 2.33). This is in contrast to the B0 → J/ψK0
S

analysis, which can only measure sin2β, and therefore cannot discriminate between

β and π/2−β. From the likelihood scans, we exclude this secondary solution at 4.8σ

for βeff(Other), and at 4.1σ for βeff(φ(1020)).
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Figure 7.7: Statistical (dashed line) and total (solid line) scans of −2Δ logL as a
function of βeff (left) and ACP (right) for B0 → φ(1020)K0

S
.

7.4 Systematics

In this section, we describe the studies of systematic uncertainties on the final result.

Detailed tables of all the systematics can be found in Appendix D.

7.4.1 Fit Bias

To assess the bias in our fit, we run hundreds of embedded toy experiments (see

Sec. 5.5 for a description of the method). The signal events are generated using

MC based on the nominal fit result. For B+ → K+K−K+, all BB backgrounds

are embedded from exclusive MC, except for the “BB charm 4” category, which is

generated with toy. For B+ → K0
S
K0

S
K+, all BB backgrounds are generated with toy.

For B0 → K+K−K0
S , peaking BB backgrounds from D+, D+

s , and D0 are embedded



CHAPTER 7. FIT RESULTS 185

)°(980)) (
0

(f
eff

β
-100 -50 0 50 100

 lo
g(

L
)

Δ2

0

2

4

6

8

10

12

14

(980)) (%)
0

(fCPA
-100 -50 0 50 100

 lo
g(

L
)

Δ2

0

5

10

15

20

25

Figure 7.8: Statistical (dashed line) and total (solid line) scans of −2Δ logL as
a function of βeff (left) and ACP (right) for B0 → f0(980)K0

S
. The reason that

the βeff scan reaches a flat plateau is that in that region the fit happens to prefer
ACP (f0(980)) = −100%, but when ACP = ±100%, the βeff parameter has no effect.
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Figure 7.9: Statistical (dashed line) and total (solid line) scans of −2Δ logL as a
function of βeff (left) and ACP (right) for B0 → K+K−K0

S , excluding the φ(1020),
f0(980), and χc0.
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from exclusive MC, while J/ψ backgrounds and non-peaking BB backgrounds are

generated with toy.

The mean of the pull distribution, μ, for each parameter is computed using a

Gaussian fit. The error on the mean, σμ, is also computed from the Gaussian fit. We

then add μ and σμ in quadrature to get a conservative estimate of the possible pull,

and multiply this result by the statistical error on the parameter from the nominal

data fit. We take this as the systematic error due to fit bias. We do not correct for

the fit biases.

7.4.2 Efficiency and BB counting

The computed branching fractions depend on the signal efficiency and the number of

BB pairs. The systematic on the efficiency comes from a number of different sources:

tracking, K0
S

efficiency, PID, and limited statistics in the efficiency map.

Tracking Efficiency

BABAR has an official prescription for estimating the systematic on tracking efficiency,

which is based on studies of τ+τ− events. We compute systematics both for the K±

tracks and the π± tracks coming from K0
S

decays. Based on the prescription, we find

a total tracking systematic of 1.1% in B+ → K+K−K+, 0.752% in B+ → K0
S
K0

S
K+,

and 0.736% in B0 → K+K−K0
S
.

K0
S

Efficiency

In addition to the tracking systematic, there is an additional systematic on the K0
S

efficiency due to uncertainty in how the efficiency varies as a function of flight dis-

tance. BABAR has official tables of data-MC corrections to the K0
S efficiency, which

are calculated as a function of the transverse vertex displacement, polar angle, and

transverse momentum of the K0
S . Using these tables, we find a total efficiency correc-

tion of 0.99 ± 0.014 in B+ → K0
S
K0

S
K+, and 0.992 ± 0.009 in B0 → K+K−K0

S
. We

apply the correction to the nominal fit result, and take the error on the correction as

a systematic.
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PID Efficiency

To account for data-MC difference in PID efficiency, we correct the efficiency map

using PID weights (see Sec. 5.2.4). To estimate the systematic on the PID efficiency,

we refit to data with the PID corrections turned off. We take half the difference

as the systematic. The overall PID systematic is about 1.8%, 0.5%, and 2.5% in

B+ → K+K−K+, B+ → K0
S
K0

S
K+, and B0 → K+K−K0

S
, respectively.

Efficiency Map Statistics

There is also a systematic due to the finite MC statistics used to produce the efficiency

map. To account for this, we fluctuate each bin of the efficiency map by its statistical

error, and in this manner create 100 different efficiency maps. We then perform a fit

to data using each of these different efficiency maps. For a given parameter, we look

at its distribution for the ensemble of 100 fits. We take the RMS of this distribution

as the systematic error on that parameter.

BB Counting

We use BABAR’s official values for the number of BB pairs and the uncertainty on this

number. As previously mentioned, the B+ → K+K−K+ analysis is based on a differ-

ent processing cycle than B+ → K0
S
K0

S
K+ and B0 → K+K−K0

S
, so it has a different

number of BB pairs and different associated systematic. For B+ → K+K−K+, the

systematic is 1.1%, while for the other modes, the systematic is 0.6%.

7.4.3 Resonance Lineshapes

To account for uncertainties in the lineshapes of the various resonances in the isobar

model, we vary the mass, width, and Blatt-Weisskopf radius of each resonance one-

by-one by +σ and −σ, and refit the data. We look at the shifts in each parameter,

Δ+ and Δ−. If one of the Δ± is positive, and one negative, then we keep track of the

positive and negative shift separately. However, if both Δ± are positive (negative),

then the positive (negative) systematic error is taken to be the average of |Δ+| and

|Δ−|, and the negative (positive) systematic error is taken to be zero.
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The errors on the masses and widths of the resonances are taken from the PDG [9],

except for the f0(980) and the peaking BB backgrounds in B0 → K+K−K0
S (D+,

D+
s , D0, J/ψ ). The f0(980) errors are taken from the BESII measurement [19]. The

f0(980) gπ and gK constants are varied separately. For the peaking BB backgrounds

in B0 → K+K−K0
S
, the errors on the resonance masses are taken from the PDG, while

their effective widths (which are due to detector resolution) are varied by ±10%.

As mentioned in Sec. 2.5.4, we vary the Blatt-Weisskopf radii by ±2.5 ( GeV/c)−1

as a systematic. Also, we set the Blatt-Weisskopf radius of the B meson to zero in

the nominal fit, but change it to 1.5 ( GeV/c)−1 as a systematic.

7.4.4 BB Background Yields and ACP

The yields for some of the BB background categories are fixed in the nominal fit: all

of the BB categories in B+ → K0
S
K0

S
K+ and “BB chmls” in B+ → K+K−K+. There

is some uncertainty on these yields due to the uncertainties on the BF’s of the various

decay modes that contribute to them. Most of these BB categories consist of multiple

decay modes, and so the uncertainties on the BF’s also create an uncertainty in the

PDF shapes (mES,ΔE,NN) for these BB backgrounds. Since the systematics due to

the BB backgrounds turn out to be small, we do not bother to explicitly account

for this uncertainty in the PDF shapes. Instead, we vary each of the BB yields by

a large amount (50%), and assume that this covers the systematic uncertainty. The

other BB category yields are floated in the nominal fit. In principle, there should be

a systematic on their PDF shapes due to the BF uncertainties, but we believe this

systematic to be safely negligible.

In B+ → K+K−K+ and B+ → K0
SK

0
SK

+, we estimate systematics due to the

ACP of the BB backgrounds. The “BB charm 5” category in B+ → K+K−K+ and

the “BB 4” category in B+ → K0
SK

0
SK

+ both refer to B+ → D̄0K+ decays. We

fix their ACP to the PDG measurement and vary the ACP by the PDG errors as

a systematic, ACP = 0.24 ± 0.08. The ACP ’s of the other BB categories are fixed

to their values in MC (≈ 0). As a systematic, we vary the ACP of the other BB

categories, either based on the world-average ACP measurements of the sub-decays
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contributing to the particular categories, or based on a conservative guess. In most

cases, the variation is between ±0.05 and ±0.1.

In B0 → K+K−K0
S
, we fix the ACP of the peaking backgrounds to zero in the

nominal fit, and vary them by ±20% as a systematic (except for the J/ψK0
S back-

ground, which we do not vary at all). The generic BB category has a long-lived

component, with CP -violating parameters C and S fixed to zero in the nominal fit

(Eq. 5.19). As a systematic, we vary C by ±0.2, and S by ±0.75.

7.4.5 Fixed PDF Parameters

There are many PDF parameters that are fixed in the nominal fit. Systematics for

fixed PDF parameters are calculated in one of two ways, depending on the PDF

parameter in question. The first group of parameters are varied by their individual

errors, and a systematic is calculated using the same method that was used for the

resonance lineshapes (varying the parameter up and down by some amount). This

first group is only used for B0 → K+K−K0
S
. The parameters in this group include

the following parameters:

• Signal tagging efficiencies, mistag rates, and mistag rate asymmetries. The

errors are taken from BABAR’s B Tagging group [41].

• Signal Δt resolution parameters. The errors are taken from [41].

• The B0 lifetime and mixing frequency, and the CKM angle β. Errors are from

the PDG.

• Parameters describing the BB background Δt and DP distributions. Errors are

either taken from fits to BB MC, or are guesses.

For the second group of PDF parameters, the systematics are calculated in a dif-

ferent fashion. We split these parameters into different subgroups. For each subgroup,

we vary all the fixed PDF parameters by their errors. Since the PDF parameters are

correlated with one another, we do not vary the parameters one-by-one. Instead,

we take the full covariance matrix for the parameters of a given PDF, and generate
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10 sets of randomized parameters distributed in a Gaussian fashion according to the

covariance matrix, including the correlations.

We do this for each of the PDF’s in the subgroup. Then for each subgroup,

we perform 10 fits to data, each fit using a different set of the randomized PDF

parameters. The systematic for that subgroup is then calculated as the RMS of these

10 fits.

The parameters in this second group include:

• B+ → K+K−K+: mES, ΔE, and NN PDF parameters for signal and for the

various BB background categories. NN PDF parameters for continuum.

• B+ → K0
SK

0
SK

+: mES and ΔE PDF parameters for signal. mES, ΔE, and NN

PDF parameters for the various BB background categories.

• B0 → K+K−K0
S
: mES parameters for signal, BB, and continuum; ΔE pa-

rameters for signal and BB; Δt parameters for BB and continuum; and NN

parameters for BB.

For the BB PDF’s, the covariance matrices used to generate the randomized pa-

rameters come from the fits to MC. For the continuum PDF’s, the covariance matrices

come from sideband data fits. Since the signal PDF’s agree well with the data (see

the sPlots), then we assume that the signal PDF’s are valid to within the statistics

of our data sample. So, we fit the signal PDF’s to a data-sized sample of toy signal

events, and we use the covariance matrix from this fit to generate the randomized

parameters. There are a few exceptions to this: the signal and continuum NN pa-

rameters in B+ → K+K−K+, as well as the width of the signal mES distribution in

B0 → K+K−K0
S

(K0
S
→ π+π−), are obtained from CP -blind fits to data, and then

varied by the errors obtained from those fits.

7.4.6 Signal NN Shape

In B+ → K+K−K+, we saw a discrepancy in the signal NN shape between data and

MC, and decided to take the NN parameters from a CP -blind fit to data. Since this

same data-MC discrepancy may exist in B+ → K0
SK

0
SK

+ and B0 → K+K−K0
S (but
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we don’t have sufficient statistics to see it), we account for it as a systematic. To

quantify this discrepancy, we fit a straight line to the NN shape for data and MC

in B+ → K+K−K+, and take the ratio of these two lines. We then adjust the NN

PDF’s in B+ → K0
SK

0
SK

+ and B0 → K+K−K0
S by this ratio, and refit the data,

and take the difference as a systematic. (The NN used in B0 → K+K−K0
S

is slightly

different from the NN used in B+ → K+K−K+ and B+ → K0
SK

0
SK

+, but we assume

the data/MC discrepancy has a similar magnitude in all three analyses.)

7.4.7 DP PDF Statistics

Our background DP PDF’s are based on finite statistics (limited MC statistics in the

case of the BB PDF’s, or limited sideband data statistics in the case of the continuum

PDF). To estimate the effect this has on our fit parameters, we generate N random

toy datasets from each of the DP PDF’s, with each toy dataset containing the number

of events that were used to originally create that PDF. Here, N is some number; 10

is sufficient, although we chose 50 in B+ → K0
S
K0

S
K+. For example, if a particular

BB DP PDF were created from 10000 MC events, then we generate 10000 events

from that PDF in each of N datasets. Then, for each of those toy datasets, we create

a new DP PDF, using the adaptive binning procedure. This results in us having N

statistically independent sets of DP PDF’s.

We generate N full pure toy datasets, using the nominal background PDF’s. We

then perform fits to each of these pure toy datasets, using the nominal backgrounds

PDF’s. We will call these “reference fits.” We then perform fits to each of the pure

toy datasets, but with the background PDF’s replaced by the DP PDF’s that were

described in the previous paragraph. Since there are N sets of those PDF’s, this

means we perform N2 fits. We then compare these fits to the reference fits, and

do a Gaussian fit to the difference. The Gaussian has a mean μ and width σ. The

systematic is calculated as
√
μ2 + σ2.
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7.4.8 Dalitz Model

One of the largest systematic uncertainties comes from our lack of knowledge of the

true DP model. We estimate this uncertainty by adding the following resonances to

our DP model: f0(1370), a0
0(1450), a±0 (980), a±0 (1450), φ(1680), f2(1270), f2(2010),

and f2(2300). These are the same resonances that we tested in Sec. 6.5.

In B+ → K0
S
K0

S
K+, we add all of the resonances to the DP model at once. In

B0 → K+K−K0
S , fitting with all of the additional resonances at once is computa-

tionally intensive, so we add each resonance separately to the DP model (except we

add the f0(1370) and a0
0(1450) together, and the f2(2010) and f2(2300) together,

since they are similar and we would therefore like to account for correlations between

them). In B+ → K+K−K+, we add each resonance separately, except we add the

f2(2010) and f2(2300) together.

When we add the f0(1370) to B+ → K+K−K+, we find that the likelihood

function changes considerably: the region of parameter space that had corresponded

to the best solution is no longer a minimum (not even a local minimum), while the

region of parameter that had corresponded to the second solution is now the global

minimum. Therefore, we cannot sensibly treat the effect of the f0(1370) as a Gaussian

systematic, so we do not include the f0(1370) as a systematic for B+ → K+K−K+.

After adding the resonance(s) to the model, we refit data. We then generate many

toy datasets using this new fit result. We then fit to each of the toy datasets twice:

once with the additional resonance(s), and once without. We compute the difference

between the two fits (without - with) for each dataset, and fit a Gaussian to this

distribution. The Gaussian has a mean μ and error on the mean σμ. We add μ and

σμ in quadrature as a systematic.

7.4.9 Detection Charge Asymmetry

A bias on the ACP measurements in B+ → K+K−K+ and B+ → K0
SK

0
SK

+ can

be caused by different detection efficiencies for K+ and K−. A small asymmetry is

expected due to the fact that K+ and K− have different cross-sections for interact-

ing with the material in the detector. In B+ → K+K−K+ signal MC (SP-9688),
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generated with zero ACP , we find an overall ACP of (−0.8 ± 0.08)%. Since this

detector-related ACP is present in the MC, the systematic effect due to our ignoring

it will be accounted for in the embedded toy (fit bias) systematic, so we do not need

to account for it separately.

However, the MC may not perfectly model this asymmetry, resulting in another

systematic uncertainty. There was an extensive study of K± material interactions in

BABAR’s analysis of B0 → K+π− [46, 5], which compared MC, data, and independent

calculations. That analysis shifted the ACP by −0.5%, and assigned a systematic of

(+0.25 − 0.60)%. As an independent cross-check, we look at onpeak sideband data,

and find ACP = (−1.45± 0.32)% in the region |ΔE| < 0.3 GeV and ACP = (−2.16±
0.56)% in the region |ΔE| < 0.1 GeV. In uds MC, we find ACP = (−1.96± 0.39)% in

the wide ΔE region, and ACP = (−2.6 ± 0.7)% in the narrow ΔE region. Although

this study does not include cc̄ or BB MC, it does give us some added confidence that

the MC simulation does a reasonable job of modeling the detector asymmetry. We

decide to add a 1% ACP systematic, which we believe is sufficiently conservative.

7.4.10 Other

In B0 → K+K−K0
S , there are a few additional systematic uncertainties on the CP -

violating parameters. Interference between Cabibbo-favored and Doubly Cabibbo-

suppressed (DCS) decays in the tag-side B decays can affect the extracted CP -

violating parameters in tagged analyses [47]. There are also systematics due to

uncertainty on the beam spot position and SVT alignment. We take all of these

systematic errors from BABAR’s cc̄K0 analysis [15].

7.5 Interpretation

The CP -violation measurements for φK are quite interesting. We measure ACP (φK+)

to be rather different than the SM expectation, while βeff(φK0
S
) is measured to be

very consistent with the SM. We can ask ourselves what kind of constraints these

measurements make on contributions from NP amplitudes, or on CKM-suppressed
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SM amplitudes.

To proceed, we will assume isospin conservation, so A(B+ → φK+) = A(B0 →
φK0). We will also assume that this amplitude can be written as A = A1 + A2,

where A1 is the dominant “c-penguin” amplitude (see Sec. 2.4 and Eq. 2.18). A2 is

allowed to have a different weak and strong phase than A1. If there is no NP contri-

bution, then A2 would represent the tree and u-penguin amplitudes (SM pollution)

in Eq. 2.18 (recall that tree amplitudes can contribute to A(φK) through rescatter-

ing). In contrast, if we ignore tree and u-penguin amplitudes, A2 would represent NP.

Obviously, since our ACP (φK+) measurement differs from the SM expectation, then

if the SM calculations were perfect, there would have to be a NP component to A2.

However, there is enough uncertainty in the SM prediction that we do not attempt

to subtract off the SM pollution.

We can then write the amplitudes as:

A = A1(1 + rei(η+ζ))

A = A1(1 + rei(η−ζ)) . (7.2)

In this equation, r is the amplitude ratio A2/A1, η is the strong phase of A2 relative

to A1, and ζ is the relative weak phase between A2 and A1. We can then calculate

the asymmetries:

ACP (φK+) =
2r sin ζ sin η

1 + 2r cos ζ cos η + r2
, (7.3)

βeff(φK0
S) = β +

1

2
arctan

( 2r sin ζ cos η + r2 sin(2ζ)

1 + 2r cos ζ cos η + r2 cos(2ζ)

)
. (7.4)

Using our measured values of ACP (φK+) and βeff(φK0
S
), we can place constraints

on r, η, and ζ . We should note that under our isospin-conservation assumption,

ACP (φK0
S
) = ACP (φK+). However, our measurement of ACP (φK0

S
) has much larger

errors than ACP (φK+), so we decided not to include that measurement when making

the constraints. 2 For each set of values of r, η, and ζ , we calculate the predicted

asymmetries, and compute a χ2 for that set of asymmetries by using the likelihood

2Since the ACP (φK0
S) measurement has a negative central value, its inclusion may slightly de-

crease the significance of ACP (φK), but this is not why we left it out. Rather, because ACP (φK0
S
)
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scans for ACP (φK+) and βeff(φK0
S
), interpreting 2Δ logL as a χ2.

We show our resulting constraints in the r−ζ , r−η, and η−ζ planes in Fig. 7.10.

Most of the constraints come from the ACP (φK+) measurement, so we can understand

the constraints by looking at Eq. 7.3. The fact that we measure a non-zero value for

ACP (φK+) means that r must be non-zero, and ζ and η cannot be 0 or ±180◦. This

is reflected in Fig. 7.10. For most values of ζ and η, r is favored to be roughly 0.1.

However, if ζ or η are close to 0 or ±180◦, then the favored value of r becomes larger.

The fact that we measure ACP (φK+) to be positive explains why the first and third

quadrants of the η − ζ plane are favored, since ACP is proportional to sin ζ sin η.

Finally, note that although the SM expectation for η is difficult to calculate, the SM

expectation for ζ is quite simple. By looking at Eq. 2.18, we can observe that in the

SM, ζ must be approximately equal to −γ.

is correlated with βeff(φK0
S), it would require extra work to properly include the ACP (φK0

S) mea-
surement.
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Figure 7.10: Constraints on the contribution of an extra amplitude A2 to B → φK
decays. See Sec. 7.5 for the meaning of the parameters. The shaded regions (from light
to dark) show the 1σ, 2σ, 3σ, and 4σ allowed regions. The contours are computed
from a χ2 using one degree of freedom.
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Conclusions

By means of a Dalitz plot amplitude analysis, we make measurements of CP -violation

and study the resonant and nonresonant decay structure in B+ → K+K−K+, B+ →
K0

SK
0
SK

+, and B0 → K+K−K0
S .

In B+ → K+K−K+, we measure a direct CP asymmetry in the φ(1020)K+

channel of ACP = (12.8 ± 4.4 ± 1.3)%, which is non-zero at the 2.8 sigma level.

We also measure ACP for the f0(980), the nonresonant, and the combined f0(1500)-

f ′
2(1525)-f0(1710) channels, and find no evidence of CP violation. We find an inclusive

charmless ACP of (−1.7+1.9
−1.4 ± 1.4)%.

The ACP (φK+) measurement is in tension with the SM predictions, which say this

value should be in the range (0.0 − 4.7)%. This is intriguing, as B → KKK decays

are sensitive to new physics. We hope that this measurement encourages further

theoretical work on this channel. Previous measurements of ACP (φK+) are given

in Table 8.1. Those measurements are consistent with ours, but with much larger

errors. However, the previous measurements are quite old; Belle now has about 10

times as much data, and CDF has about 50 times as much data. So, our ACP (φK+)

measurement could be tested quite soon by other experiments.

In B+ → K0
SK

0
SK

+, the number of signal events is too small to measure the ACP

of individual resonances, so we measure only an inclusive ACP (excluding the χc0).

We measure ACP = (4+4
−5 ± 2)%, consistent with no CP violation. This improves

greatly over BABAR’s previous measurement of ACP = (−4 ± 11 ± 2)% [35].
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Table 8.1: Previous measurements of ACP (φK+). The BABAR measurement listed is
superseded by the present analysis.

Measurement Experiment Integrated Luminosity

(0 ± 8 ± 2)% BABAR [24] 205 fb−1

(−7 ± 17+3
−2)% CDF [48] 180 pb−1

(1 ± 12 ± 5)% Belle [49] 78 fb−1

In B0 → K+K−K0
S , we measure time-dependent CP violation as a function of

location on the Dalitz plot. We determine CP -violating parameters βeff and ACP (=

−C) for B0 → φK0
S , B0 → f0(980)K0

S , and for the remaining charmless K+K−K0
S

decays (mostly nonresonant). The measurement of βeff(φK0
S
) is especially important,

as this is a theoretically clean probe of new physics. We find βeff(φK0
S) = 0.36±0.11±

0.04 rad, in excellent agreement with the SM expectation of βeff ≈ β ≈ 0.37. This

is the world’s most precise measurement of this quantity, and can be compared with

Belle’s most recent result [28] of βeff(φK0
S
) = 0.56± 0.16± 0.05± 0.02, obtained with

about 40% more data. For φK0
S , we exclude the trigonometric solution βeff ≈ π/2−β

at 4.1σ.

The total signal yield in B0 → K+K−K0
S is quite large, but most of the events

are not in the low-mK+K− region. Our measurement of βeff for the non-φK0
S
, non-

f0(980)K0
S decays, βeff (Other), takes advantage of the large number of nonresonant

events in B0 → K+K−K0
S
. We measure βeff(Other) = 0.35±0.08±0.02, and exclude

βeff ≈ π/2 − β at 4.8σ. This is one of the most precise measurements of βeff in any

b→ s penguin mode, although the SM prediction for this is not as clean as for φK0
S
.

By combining the ACP (φK+) and βeff(φK0
S) measurements, we put constraints on

the amplitudes contributing to these decays. We find that in order to produce the

observed 13% ACP in φK+, there would need to be, in addition to the dominant c-

penguin amplitude, another amplitude with differing weak phase, and this amplitude

would have to be about one-tenth the size of the c-penguin amplitude or larger.

We also performed extensive studies of the resonances and nonresonant structure

in B → KKK decays, which were shown in Chapter 6. One of our aims was to

clarify the nature of the mysterious fX(1500), previously modeled as a single scalar

resonance. We were able to convincingly show that the peak previously ascribed to
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the fX(1500) is in fact not a single resonance. On the other hand, we found that

the fX(1500) region could be effectively modeled with a combination of the well-

established resonances f0(1500), f ′
2(1525), and f0(1710). This model not only fits

the data better, it also is able to explain this peak without resort to a new ad-hoc

resonance.

Our studies of the nonresonant B → KKK decays were less conclusive than

our fX(1500) studies. We were able to refute the simple exponential nonresonant

model, at least in B+ → K+K−K+. Our final nonresonant model is decidedly more

complicated, including both S-wave and P-wave terms, as well as phase motion across

the Dalitz plot.

There are two ways of looking at the nonresonant decays. From one perspective,

they are an object of interest, whose nature we would like to understand. From this

perspective, we measure a lot of parameters (complex coefficients) describing these

decays, but do not have any real physical interpretation of these parameters. We are

still a long way from understanding the nature of the nonresonant decays, but we

hope that our detailed measurements will spur more theoretical work on them.

From another perspective, nonresonant decays are just a nuisance interfering with

other measurements we would like to make: CP -violating observables and resonant

branching fractions. From this perspective, we have made great progress. Previous

analyses have used relatively rigid models for nonresonant decays, with few adjustable

parameters. This can make one question how dependent their results are on the choice

of nonresonant model. However, the new nonresonant model we have chosen has an

incredible amount of freedom, thus making our measurements less dependent on a

particular model. It is particularly heartening that we are able to measure βeff(Other)

precisely, despite the large number of free parameters in the nonresonant model.

Understanding the decay structure of B → KKK will be an interesting challenge

for future experiments like Belle II and SuperB, which are expected to have about 100

times more data than BABAR. Although we relied extensively on B+ → K+K−K+ for

determining the Dalitz model (due to the large number of events), with the enormous

datasets possible in the future, it is likely that B+ → K+K−K+ will have less of

an advantage over other B → KKK modes. In particular, B+ → K0
S
K0

S
K+ should
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be an ideal mode to study the D-wave nonresonant content, since there is no P-

wave contamination in this mode. And to study the P-wave content, the ideal mode

would be B+ → K0
S
K0

L
K+, since this has no S- or D-wave contribution, although

experimentally this mode will be challenging.



Appendix A

BB Background PDF’s and

Distributions

The plots in this section show the PDF’s for the various BB backgrounds for B+ →
K+K−K+ and B+ → K0

SK
0
SK

+, described in Sections 5.4.1 and 5.4.2.
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Figure A.1: B+ → K+K−K+ PDF’s used for the BB background category referred
to as “BB chmls” in Table 5.4. Top left: mES, top right: ΔE, bottom left: binned
NN, bottom right: square DP.
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Figure A.2: B+ → K+K−K+ PDF’s used for the BB background category referred
to as “BB charm 1” in Table 5.4. Top left: mES, top right: ΔE, bottom left: binned
NN, bottom right: square DP.
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Figure A.3: B+ → K+K−K+ PDF’s used for the BB background category referred
to as “BB charm 2” in Table 5.4. Top left: mES, top right: ΔE, bottom left: binned
NN, bottom right: square DP.
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Figure A.4: B+ → K+K−K+ PDF’s used for the BB background category referred
to as “BB charm 3” in Table 5.4. Top left: mES, top right: ΔE, bottom left: binned
NN, bottom right: square DP.
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Figure A.5: B+ → K+K−K+ PDF’s used for the BB background category referred
to as “BB charm 4” in Table 5.4. Top left: mES, top right: ΔE, bottom left: binned
NN, bottom right: square DP.



APPENDIX A. BB BACKGROUND PDF’S AND DISTRIBUTIONS 207

mES (GeV/c^2)
5.27 5.272 5.274 5.276 5.278 5.28 5.282 5.284 5.286 5.288 5.29

E
ve

n
ts

 / 
( 

0.
00

04
 G

eV
/c

^2
 )

0

1000

2000

3000

4000

5000

6000

7000

8000

mES (GeV/c^2)
5.27 5.272 5.274 5.276 5.278 5.28 5.282 5.284 5.286 5.288 5.29

E
ve

n
ts

 / 
( 

0.
00

04
 G

eV
/c

^2
 )

0

1000

2000

3000

4000

5000

6000

7000

8000

A RooPlot of "mES"

DeltaE (GeV)
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

E
ve

n
ts

 / 
( 

0.
00

4 
G

eV
 )

0

2000

4000

6000

8000

10000

DeltaE (GeV)
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

E
ve

n
ts

 / 
( 

0.
00

4 
G

eV
 )

0

2000

4000

6000

8000

10000

A RooPlot of "DeltaE"

Discriminant (none)
1 2 3 4 5 6 7 8 9 10

E
ve

n
ts

 / 
( 

1 
n

o
n

e 
)

0

2000

4000

6000

8000

10000

12000

Discriminant (none)
1 2 3 4 5 6 7 8 9 10

E
ve

n
ts

 / 
( 

1 
n

o
n

e 
)

0

2000

4000

6000

8000

10000

12000

A RooPlot of "Discriminant"

1 1.5 2 2.5 3 3.5 4 4.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

thetaVar:mVar

Figure A.6: B+ → K+K−K+ PDF’s used for the BB background category referred
to as “BB charm 5” in Table 5.4. Top left: mES, top right: ΔE, bottom left: binned
NN, bottom right: square DP. Note that this BB background category uses the same
non-DP PDF’s as signal.
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Figure A.7: B+ → K0
S
K0

S
K+ PDF’s used for the BB background category referred

to as “BB 1” in Table 5.6. Top left: mES, top right: ΔE, bottom left: binned NN,
bottom right: square DP.
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Figure A.8: B+ → K0
S
K0

S
K+ PDF’s used for the BB background category referred

to as “BB 2” in Table 5.6. Top left: mES, top right: ΔE, bottom left: binned NN,
bottom right: square DP.
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Figure A.9: B+ → K0
S
K0

S
K+ PDF’s used for the BB background category referred

to as “BB 3” in Table 5.6. Top left: mES, top right: ΔE, bottom left: binned NN,
bottom right: square DP.
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Figure A.10: B+ → K0
S
K0

S
K+ PDF’s used for the BB background category referred

to as “BB 4” in Table 5.6. Top left: mES, top right: ΔE, bottom left: binned NN,
bottom right: square DP. Note that this BB background category uses the same
non-DP PDF’s as signal.



Appendix B

Background DP PDF’s with

Adaptive Binning

Here we briefly describe the manner in which the DP PDF’s for the various back-

ground categories are created. For illustration purposes, we will use the continuum

PDF as an example, but the other backgrounds categories are done similarly.

Fig. B.1 shows the DP distribution of B+ → K+K−K+ onpeak sideband events,

both using the square DP coordinates, and using m23 versus m12. The basic idea is

to create a histogram PDF that describes the onpeak sideband events well, without

having lots of bins with very few events in them, which would result in the PDF

capturing lots of statistical fluctuations. We calculate appropriate bin sizes for the

histogram using an adaptive binning algorithm.

The adaptive binning algorithm scans through every bin, and decides to split a

bin in half as long as the two resulting bins each have a sufficient number of events

in them (the exact number is a parameter that may be adjusted by hand). The

algorithm splits the bin either horizontally or vertically, depending on whether the

event density is changing more rapidly in the vertical or horizontal direction. If the

event density is changing extremely rapidly, the algorithm may decide to split a bin,

even if splitting the bin results in one half of the bin containing fewer than the usual

minimum number of events. This is necessary for handling sharp peaks. Additionally,

the initial binning used to get the algorithm started may be adjusted by hand.
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Figure B.1: The B+ → K+K−K+ onpeak sideband DP distributions. m23 versus
m12 (left). Square DP (right).

For B+ → K+K−K+ (but not for the other modes), there is an additional compli-

cation. Narrow resonances tend to appear as vertical or horizontal bands in the m23

versus m12 plot, but have more unusual shapes in the square DP. As a consequence,

it takes fewer rectangular bins to describe these resonances in the m23 versus m12

plot than in the square DP. So, to begin, we apply our adaptive binning algorithm to

the m23 versus m12 plot. The resulting binning, along with the PDF value per bin, is

shown in Fig. B.2.

We now have a PDF, without BB subtraction, in the m23 versus m12 coordinates.

Next, we apply BB subtraction to this PDF (using generic BB MC), and generate

a large number of toy events (600,000 in this case) with the resulting PDF. Then,

we apply the adaptive binning algorithm to these toy events, using the square DP

coordinates. The large number of toy events is necessary, because a greater number of

bins are necessary when using the square DP coordinates. The result of the adaptive

binning is shown in Fig. B.3.

For the case of the B+ → K+K−K+ continuum PDF, in order to better match

the D0-peak seen in the onpeak sideband, we add an extra small peaking component
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Figure B.2: Adaptive binning applied to the B+ → K+K−K+ onpeak sideband,
using the m23 and m12 coordinates. Color indicates the density of events in a given
bin, done in log scale.
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Figure B.3: Adaptive binning applied to B+ → K+K−K+ continuum toy events
described in the text, using the square DP coordinates. Color indicates the density
of events in a given bin, done in log scale.
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to the PDF by hand. This gives our final PDF.

In the case of B+ → K0
SK

0
SK

+ and B0 → K+K−K0
S , there are fewer steps in

creating the DP PDF’s, because there is no need to go through the steps with the

m23 versus m12 plot. For these decay modes, we simply apply the adaptive binning

algorithm to the square DP, right from the start.



Appendix C

Multiple Solutions

In this appendix, we give tables of all the solutions (i.e., local minima in the likelihood

function) for B+ → K0
S
K0

S
K+ and B0 → K+K−K0

S
, except the global best solution.

The Δ(NLL) row indicates the difference in logL between that solution and the global

best solution.

C.1 B+ → K0
S
K0

S
K+

Table C.1: B+ → K0
S
K0

S
K+ Solution 2.

Decay Magnitude cr Phase φr (rad.) Fraction FFr (%)
f0(980) 12 ± 6 2.00 ± 0.37 128 ± 54
f0(1500) 0.69 ± 0.30 −0.29 ± 0.39 3.6 ± 1.8
f ′

2(1525) 0.0062 ± 0.0031 0.13 ± 0.31 5.2 ± 2.3
f0(1710) 0.8 ± 0.5 0.70 ± 0.40 3.9 ± 2.3
χc0 0.40 ± 0.21 −1.2 ± 0.8 4.8 ± 2.0
aS0 1.0 (fixed) 0.0 (fixed)
aS1 3.1 ± 1.7 −2.66 ± 0.29 97 ± 55
aS2 1.8 ± 1.2 0.77 ± 0.35

ACP (%) 3 ± 5
Δφ (rad.) −0.9 ± 1.1
N(signal) 637 ± 28
Δ(NLL) 0.05
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Table C.2: B+ → K0
S
K0

S
K+ Solution 3.

Decay Magnitude cr Phase φr (rad.) Fraction FFr (%)
f0(980) 2.80 ± 0.29 −0.38 ± 0.12 75 ± 19
f0(1500) 0.23 ± 0.05 −0.45 ± 0.26 4.2 ± 1.9
f ′

2(1525) 0.00181 ± 0.00033 0.01 ± 0.23 4.5 ± 1.4
f0(1710) 0.28 ± 0.07 0.32 ± 0.20 4.7 ± 2.6
χc0 0.128 ± 0.019 1.4 ± 0.8 5.0 ± 1.4
aS0 1.0 (fixed) 0.0 (fixed)
aS1 1.44 ± 0.12 2.41 ± 0.09 262 ± 39
aS2 0.79 ± 0.11 −1.12 ± 0.12

ACP (%) 4 ± 5
Δφ (rad.) −0.4 ± 1.0
N(signal) 639 ± 28
Δ(NLL) 0.4

Table C.3: B+ → K0
S
K0

S
K+ Solution 4.

Decay Magnitude cr Phase φr (rad.) Fraction FFr (%)
f0(980) 3.6 ± 0.7 0.99 ± 0.12 69 ± 32
f0(1500) 0.29 ± 0.07 0.66 ± 0.25 3.8 ± 1.8
f ′

2(1525) 0.0023 ± 0.0005 1.08 ± 0.22 4.0 ± 1.7
f0(1710) 0.36 ± 0.11 1.35 ± 0.24 4.3 ± 2.8
χc0 0.168 ± 0.028 −1.2 ± 0.6 4.8 ± 1.8
aS0 1.0 (fixed) 0.0 (fixed)
aS1 1.88 ± 0.29 −2.58 ± 0.11 237 ± 33
aS2 1.06 ± 0.23 0.85 ± 0.16

ACP (%) 2 ± 5
Δφ (rad.) −0.8 ± 1.0
N(signal) 639 ± 28
Δ(NLL) 1.3



APPENDIX C. MULTIPLE SOLUTIONS 218

Table C.4: B+ → K0
S
K0

S
K+ Solution 5.

Decay Magnitude cr Phase φr (rad.) Fraction FFr (%)
f0(980) 29.7 ± 1.9 2.1 ± 0.5 140 ± 21
f0(1500) 1.43 ± 0.37 −0.1 ± 0.5 2.7 ± 1.6
f ′

2(1525) 0.0148 ± 0.0028 0.2 ± 0.5 5.0 ± 1.6
f0(1710) 2.1 ± 0.6 1.0 ± 0.5 4.3 ± 2.5
χc0 0.99 ± 0.15 −1.3 ± 0.8 5.0 ± 1.2
aS0 1.0 (fixed) 0.0 (fixed)
aS1 8.0 ± 2.9 −2.5 ± 0.5 108 ± 22
aS2 5.53 ± 0.45 0.8 ± 0.5

ACP (%) 3 ± 5
Δφ (rad.) −0.8 ± 1.0
N(signal) 639 ± 28
Δ(NLL) 1.4

Table C.5: B+ → K0
S
K0

S
K+ Solution 6.

Decay Magnitude cr Phase φr (rad.) Fraction FFr (%)
f0(980) 3.20 ± 0.20 0.67 ± 0.14 152 ± 24
f0(1500) 0.75 ± 0.06 −0.14 ± 0.10 68 ± 7
f ′

2(1525) 0.00162 ± 0.00028 −1.20 ± 0.20 5.6 ± 1.6
f0(1710) 0.29 ± 0.07 −0.89 ± 0.15 7.4 ± 3.6
χc0 0.103 ± 0.015 0.8 ± 0.9 5.0 ± 1.4
aS0 1.0 (fixed) 0.0 (fixed)
aS1 0.95 ± 0.07 2.24 ± 0.08 209 ± 32
aS2 0.48 ± 0.07 −1.52 ± 0.13

ACP (%) 4 ± 5
Δφ (rad.) −0.4 ± 1.1
N(signal) 637 ± 28
Δ(NLL) 1.5
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Table C.6: B+ → K0
S
K0

S
K+ Solution 7.

Decay Magnitude cr Phase φr (rad.) Fraction FFr (%)
f0(980) 2.61 ± 0.25 −0.28 ± 0.10 85 ± 20
f0(1500) 0.73 ± 0.06 0.73 ± 0.13 54 ± 6
f ′

2(1525) 0.00186 ± 0.00032 −0.42 ± 0.20 6.1 ± 1.8
f0(1710) 0.32 ± 0.07 −0.27 ± 0.15 7.7 ± 3.7
χc0 0.113 ± 0.015 1.3 ± 0.8 5.0 ± 1.3
aS0 1.0 (fixed) 0.0 (fixed)
aS1 1.31 ± 0.10 2.36 ± 0.08 290 ± 36
aS2 0.71 ± 0.09 −1.20 ± 0.11

ACP (%) 3 ± 5
Δφ (rad.) −0.4 ± 1.0
N(signal) 638 ± 28
Δ(NLL) 1.6

Table C.7: B+ → K0
S
K0

S
K+ Solution 8.

Decay Magnitude cr Phase φr (rad.) Fraction FFr (%)
f0(980) 3.6 ± 0.6 1.00 ± 0.11 70 ± 27
f0(1500) 0.29 ± 0.06 0.66 ± 0.24 3.8 ± 1.7
f ′

2(1525) 0.00226 ± 0.00045 1.08 ± 0.22 4.0 ± 1.6
f0(1710) 0.36 ± 0.11 1.35 ± 0.24 4.3 ± 2.5
χc0 0.168 ± 0.027 −1.2 ± 0.6 4.8 ± 1.6
aS0 1.0 (fixed) 0.0 (fixed)
aS1 1.88 ± 0.26 −2.58 ± 0.11 237 ± 29
aS2 1.06 ± 0.20 0.85 ± 0.16

ACP (%) 2 ± 5
Δφ (rad.) −0.8 ± 1.0
N(signal) 640 ± 28
Δ(NLL) 1.6
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Table C.8: B+ → K0
S
K0

S
K+ Solution 9.

Decay Magnitude cr Phase φr (rad.) Fraction FFr (%)
f0(980) 15 ± 5 1.81 ± 0.34 143 ± 47
f0(1500) 3.5 ± 1.2 0.75 ± 0.27 63 ± 20
f ′

2(1525) 0.0080 ± 0.0029 −0.37 ± 0.31 5.7 ± 3.5
f0(1710) 1.3 ± 0.5 −0.12 ± 0.27 6.4 ± 3.1
χc0 0.49 ± 0.18 −1.7 ± 0.8 4.8 ± 1.7
aS0 1.0 (fixed) 0.0 (fixed)
aS1 3.8 ± 1.4 −2.96 ± 0.28 100 ± 52
aS2 2.3 ± 1.0 0.40 ± 0.35

ACP (%) 3 ± 5
Δφ (rad.) −0.9 ± 1.1
N(signal) 637 ± 28
Δ(NLL) 1.7

Table C.9: B+ → K0
S
K0

S
K+ Solution 10.

Decay Magnitude cr Phase φr (rad.) Fraction FFr (%)
f0(980) 4.5 ± 1.1 0.99 ± 0.11 80 ± 20
f0(1500) 1.23 ± 0.25 1.76 ± 0.17 50 ± 7
f ′

2(1525) 0.0034 ± 0.0007 0.55 ± 0.22 6.4 ± 2.0
f0(1710) 0.52 ± 0.17 0.65 ± 0.19 6.8 ± 3.5
χc0 0.196 ± 0.042 −1.4 ± 0.6 4.9 ± 1.1
aS0 1.0 (fixed) 0.0 (fixed)
aS1 2.2 ± 0.5 −2.73 ± 0.12 232 ± 30
aS2 1.26 ± 0.37 0.65 ± 0.18

ACP (%) 3 ± 5
Δφ (rad.) −0.8 ± 1.0
N(signal) 638 ± 28
Δ(NLL) 2.2



APPENDIX C. MULTIPLE SOLUTIONS 221

Table C.10: B+ → K0
S
K0

S
K+ Solution 11.

Decay Magnitude cr Phase φr (rad.) Fraction FFr (%)
f0(980) 15 ± 7 1.82 ± 0.41 142 ± 35
f0(1500) 3.5 ± 1.6 0.75 ± 0.33 63 ± 10
f ′

2(1525) 0.0079 ± 0.0038 −0.37 ± 0.36 5.7 ± 2.2
f0(1710) 1.3 ± 0.6 −0.11 ± 0.32 6.4 ± 4.2
χc0 0.49 ± 0.23 −1.7 ± 0.8 4.8 ± 1.6
aS0 1.0 (fixed) 0.0 (fixed)
aS1 3.8 ± 1.8 −2.96 ± 0.32 100 ± 28
aS2 2.3 ± 1.3 0.41 ± 0.41

ACP (%) 3 ± 5
Δφ (rad.) −0.9 ± 1.1
N(signal) 637 ± 28
Δ(NLL) 2.3

Table C.11: B+ → K0
S
K0

S
K+ Solution 12.

Decay Magnitude cr Phase φr (rad.) Fraction FFr (%)
f0(980) 13 ± 5 1.84 ± 0.32 134 ± 51
f0(1500) 0.79 ± 0.29 −0.18 ± 0.34 3.8 ± 1.9
f ′

2(1525) 0.0068 ± 0.0026 0.20 ± 0.30 4.9 ± 2.2
f0(1710) 2.5 ± 0.9 0.83 ± 0.28 28 ± 10
χc0 0.45 ± 0.16 −1.6 ± 0.7 4.8 ± 1.8
aS0 1.0 (fixed) 0.0 (fixed)
aS1 3.5 ± 1.3 −2.87 ± 0.25 98 ± 52
aS2 2.1 ± 0.9 0.51 ± 0.33

ACP (%) 2 ± 5
Δφ (rad.) −0.9 ± 1.1
N(signal) 637 ± 28
Δ(NLL) 3.2
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Table C.12: B+ → K0
S
K0

S
K+ Solution 13.

Decay Magnitude cr Phase φr (rad.) Fraction FFr (%)
f0(980) 30.8 ± 2.2 1.9 ± 0.5 137 ± 30
f0(1500) 1.57 ± 0.43 −0.1 ± 0.5 2.9 ± 1.5
f ′

2(1525) 0.0151 ± 0.0032 0.2 ± 0.5 4.8 ± 1.7
f0(1710) 5.7 ± 0.7 0.9 ± 0.5 28 ± 6
χc0 1.02 ± 0.16 −1.7 ± 0.8 4.8 ± 1.4
aS0 1.0 (fixed) 0.0 (fixed)
aS1 8 ± 11 −2.8 ± 0.5 100 ± 35
aS2 5.48 ± 0.45 0.5 ± 0.5

ACP (%) 2 ± 5
Δφ (rad.) −0.9 ± 1.0
N(signal) 640 ± 28
Δ(NLL) 4.0

Table C.13: B+ → K0
S
K0

S
K+ Solution 14.

Decay Magnitude cr Phase φr (rad.) Fraction FFr (%)
f0(980) 15 ± 6 1.62 ± 0.38 146 ± 28
f0(1500) 3.8 ± 1.4 0.75 ± 0.31 73 ± 8
f ′

2(1525) 0.0074 ± 0.0028 −0.32 ± 0.35 4.9 ± 1.9
f0(1710) 3.1 ± 1.2 −0.01 ± 0.30 38 ± 6
χc0 0.49 ± 0.19 −2.0 ± 0.8 4.8 ± 1.3
aS0 1.0 (fixed) 0.0 (fixed)
aS1 3.8 ± 1.5 3.07 ± 0.31 99 ± 25
aS2 2.3 ± 1.1 0.12 ± 0.38

ACP (%) 3 ± 5
Δφ (rad.) −0.9 ± 1.1
N(signal) 637 ± 28
Δ(NLL) 4.0
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Table C.14: B+ → K0
S
K0

S
K+ Solution 15.

Decay Magnitude cr Phase φr (rad.) Fraction FFr (%)
f0(980) 4.1 ± 0.9 0.97 ± 0.11 74 ± 19
f0(1500) 0.34 ± 0.08 0.84 ± 0.24 4.1 ± 1.8
f ′

2(1525) 0.0024 ± 0.0006 1.25 ± 0.24 3.7 ± 1.4
f0(1710) 0.94 ± 0.18 1.59 ± 0.20 24.2 ± 4.1
χc0 0.185 ± 0.035 −1.3 ± 0.6 4.8 ± 1.0
aS0 1.0 (fixed) 0.0 (fixed)
aS1 2.06 ± 0.39 −2.67 ± 0.11 232 ± 30
aS2 1.18 ± 0.30 0.72 ± 0.17

ACP (%) 2 ± 5
Δφ (rad.) −0.9 ± 1.0
N(signal) 640 ± 28
Δ(NLL) 4.1
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C.2 B0 → K+K−K0
S

Table C.15: B0 → K+K−K0
S

Solution 2.

Decay Magnitude cr Phase φr (rad.) Fraction FFr (%)
φ(1020) 0.046 ± 0.007 0.47 ± 0.30 13.3 ± 1.1
f0(980) 2.6 ± 0.6 0.79 ± 0.26 27 ± 8
f0(1500) 1.30 ± 0.20 2.42 ± 0.21 50.8 ± 3.1
f ′

2(1525) 0.00085± 0.00037 2.1 ± 0.5 0.39 ± 0.31
f0(1710) 1.09 ± 0.18 1.18 ± 0.19 26.6 ± 3.2
χc0 0.170 ± 0.031 −0.5 ± 0.5 3.4 ± 0.7
aS0 1.0 (fixed) 0.0 (fixed)
aS1 1.44 ± 0.31 −2.68 ± 0.17 101 ± 16
aS2 0.69 ± 0.27 0.84 ± 0.28
aP0 1.48 ± 0.28 0.87 ± 0.22
aP1 0.21 ± 0.19 −1.3 ± 0.7 10.7 ± 2.2
aP2 0.62 ± 0.19 −2.45 ± 0.35

N(signal), K0
S
→ π+π− 1420 ± 43

N(signal), K0
S → π0π0 159 ± 17

Δ(NLL) 2.0
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Table C.16: B0 → K+K−K0
S Solution 3.

Decay Magnitude cr Phase φr (rad.) Fraction FFr (%)
φ(1020) 0.0358 ± 0.0041 0.33 ± 0.40 13.2 ± 1.2
f0(980) 2.0 ± 0.5 0.66 ± 0.42 25 ± 9
f0(1500) 0.196 ± 0.039 0.03 ± 0.32 1.9 ± 0.9
f ′

2(1525) 0.00079± 0.00025 0.65 ± 0.37 0.56 ± 0.39
f0(1710) 0.23 ± 0.08 1.54 ± 0.29 2.0 ± 1.1
χc0 0.133 ± 0.021 −0.2 ± 0.6 3.4 ± 0.7
aS0 1.0 (fixed) 0.0 (fixed)
aS1 1.17 ± 0.29 −2.55 ± 0.20 120 ± 21
aS2 0.55 ± 0.27 1.07 ± 0.28
aP0 1.12 ± 0.19 1.33 ± 0.26
aP1 0.28 ± 0.18 −1.1 ± 0.5 11.9 ± 2.7
aP2 0.35 ± 0.15 −2.1 ± 0.5

N(signal), K0
S
→ π+π− 1418 ± 43

N(signal), K0
S → π0π0 160 ± 17

Δ(NLL) 2.0

Table C.17: B0 → K+K−K0
S

Solution 4.

Decay Magnitude cr Phase φr (rad.) Fraction FFr (%)
φ(1020) 0.036 ± 0.006 −0.8 ± 0.8 13.2 ± 2.3
f0(980) 1.8 ± 0.5 −0.6 ± 0.8 19 ± 10
f0(1500) 0.208 ± 0.045 −0.8 ± 0.9 2.1 ± 1.1
f ′

2(1525) 0.00082± 0.00027 −0.0 ± 0.9 0.60 ± 0.37
f0(1710) 0.22 ± 0.09 0.9 ± 0.7 1.8 ± 1.3
χc0 0.136 ± 0.027 1.0 ± 1.0 3.5 ± 1.0
aS0 1.0 (fixed) 0.0 (fixed)
aS1 0.96 ± 0.35 2.8 ± 0.9 94 ± 21
aS2 0.36 ± 0.44 −0.8 ± 1.5
aP0 1.12 ± 0.22 1.72 ± 0.27
aP1 0.31 ± 0.32 −2.3 ± 0.8 11.9 ± 4.0
aP2 0.34 ± 0.22 −1.2 ± 0.7

N(signal), K0
S → π+π− 1419 ± 43

N(signal), K0
S
→ π0π0 162 ± 17

Δ(NLL) 3.7
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Table C.18: B0 → K+K−K0
S Solution 5.

Decay Magnitude cr Phase φr (rad.) Fraction FFr (%)
φ(1020) 0.051 ± 0.021 2.9 ± 0.9 13.7 ± 2.2
f0(980) 3.6 ± 1.5 2.0 ± 1.0 41 ± 14
f0(1500) 0.32 ± 0.18 −1.5 ± 0.9 2.6 ± 1.3
f ′

2(1525) 0.0012 ± 0.0006 −0.5 ± 0.8 0.61 ± 0.43
f0(1710) 1.00 ± 0.36 0.8 ± 0.6 18.9 ± 4.0
χc0 0.19 ± 0.08 0.1 ± 0.5 3.4 ± 0.9
aS0 1.0 (fixed) 0.0 (fixed)
aS1 0.80 ± 0.21 3.0 ± 0.8 34 ± 31
aS2 0.09 ± 0.20 −1 ± 5
aP0 1.6 ± 0.6 1.07 ± 0.25
aP1 0.37 ± 0.20 −2.8 ± 0.9 11.7 ± 3.2
aP2 0.47 ± 0.18 −1.82 ± 0.45

N(signal), K0
S
→ π+π− 1418 ± 43

N(signal), K0
S
→ π0π0 161 ± 17

Δ(NLL) 4.2



Appendix D

Systematics Tables

Here we include tables of the systematic uncertainties. The biggest systematics for

each parameter are highlighted in bold in the tables. Fit fractions are given in

percent, branching fractions are given in units of 10−6, and all phases are given in

radians.
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Table D.1: B+ → K+K−K+ systematics.

φ(1020)
FF (+σ) FF (−σ) B (+σ) B (−σ)

φ(1020) Mass/Width +0.022 -0.032 +0.008 -0.011
f0(1500) Mass/Width +0.023 -0.031 +0.008 -0.011
f ′

2(1525) Mass/Width +0.018 -0.019 +0.006 -0.007
f0(1710) Mass/Width +0.008 -0.009 +0.002 -0.002
χc0 Mass/Width +0.004 -0.002 +0.001 -0.000
φ(1020) BW radius +0.769 -0.360 +0.267 -0.124
f ′

2(1525) BW radius +0.029 -0.054 +0.010 -0.019
f0(980) Mass +0.048 -0.053 +0.017 -0.018
f0(980) gπ +0.024 -0.030 +0.008 -0.011
f0(980) gK +0.039 -0.036 +0.013 -0.012
B-meson BW radius +0.024 -0.024 +0.008 -0.008
Eff. map statistics +0.068 -0.068 +0.027 -0.027
Tracking +0.000 -0.000 +0.049 -0.049
NBB +0.000 -0.000 +0.049 -0.049
PID +0.011 -0.011 +0.083 -0.083

Fixed BB ACP and yield +0.023 -0.023 +0.001 -0.001
Fixed PDF Params +0.022 -0.022 +0.020 -0.020
Add f2(1270) +0.124 -0.124 +0.046 -0.046
Add a0

0(1450) +0.387 -0.387 +0.131 -0.131
Add φ(1680) +0.037 -0.037 +0.015 -0.015
Add f2(2010), f2(2300) +0.005 -0.005 +0.006 -0.006
DP PDF Stat. +0.094 -0.094 +0.035 -0.035
Fit Bias +0.362 -0.362 +0.081 -0.081
Detector Asym. +0.000 -0.000 +0.000 -0.000
Total +0.954 -0.673 +0.335 -0.238
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Table D.2: B+ → K+K−K+ systematics.

f0(980)
FF (+σ) FF (−σ) B (+σ) B (−σ)

φ(1020) Mass/Width +0.085 -0.028 +0.041 -0.010
f0(1500) Mass/Width +0.537 -0.555 +0.186 -0.192
f ′

2(1525) Mass/Width +0.206 -0.141 +0.070 -0.049
f0(1710) Mass/Width +0.441 -0.442 +0.151 -0.151
χc0 Mass/Width +0.075 -0.041 +0.026 -0.014
φ(1020) BW radius +0.000 -0.163 +0.000 -0.056
f ′

2(1525) BW radius +0.109 -0.000 +0.038 -0.000
f0(980) Mass +0.478 -0.074 +0.166 -0.025
f0(980) gπ +3.248 -3.242 +1.123 -1.122
f0(980) gK +0.248 -0.228 +0.086 -0.079
B-meson BW radius +0.064 -0.064 +0.022 -0.022
Eff. map statistics +0.233 -0.233 +0.082 -0.082
Tracking +0.000 -0.000 +0.102 -0.102
NBB +0.000 -0.000 +0.102 -0.102
PID +0.132 -0.132 +0.212 -0.212

Fixed BB ACP and yield +0.018 -0.011 +0.014 -0.012
Fixed PDF Params +0.094 -0.094 +0.048 -0.048
Add f2(1270) +0.335 -0.335 +0.119 -0.119
Add a0

0(1450) +7.191 -7.191 +2.498 -2.498
Add φ(1680) +0.476 -0.476 +0.167 -0.167
Add f2(2010), f2(2300) +0.109 -0.109 +0.031 -0.031
DP PDF Stat. +0.334 -0.334 +0.114 -0.114
Fit Bias +0.769 -0.769 +0.357 -0.357
Detector Asym. +0.000 -0.000 +0.000 -0.000
Total +8.014 -7.998 +2.804 -2.798
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Table D.3: B+ → K+K−K+ systematics.

f0(1500)
FF (+σ) FF (−σ) B (+σ) B (−σ)

φ(1020) Mass/Width +0.010 -0.000 +0.003 -0.000
f0(1500) Mass/Width +0.142 -0.138 +0.049 -0.048
f ′

2(1525) Mass/Width +0.025 -0.024 +0.009 -0.008
f0(1710) Mass/Width +0.091 -0.082 +0.031 -0.028
χc0 Mass/Width +0.003 -0.000 +0.001 -0.000
φ(1020) BW radius +0.009 -0.000 +0.003 -0.000
f ′

2(1525) BW radius +0.017 -0.000 +0.006 -0.000
f0(980) Mass +0.019 -0.014 +0.007 -0.005
f0(980) gπ +0.008 -0.004 +0.003 -0.001
f0(980) gK +0.004 -0.001 +0.001 -0.000
B-meson BW radius +0.008 -0.008 +0.003 -0.003
Eff. map statistics +0.020 -0.020 +0.007 -0.007
Tracking +0.000 -0.000 +0.008 -0.008
NBB +0.000 -0.000 +0.008 -0.008
PID +0.012 -0.012 +0.009 -0.009

Fixed BB ACP and yield +0.008 -0.006 +0.003 -0.003
Fixed PDF Params +0.014 -0.014 +0.004 -0.004
Add f2(1270) +0.112 -0.112 +0.038 -0.038
Add a0

0(1450) +1.557 -1.557 +0.516 -0.516
Add φ(1680) +0.014 -0.014 +0.005 -0.005
Add f2(2010), f2(2300) +0.084 -0.084 +0.030 -0.030
DP PDF Stat. +0.057 -0.057 +0.020 -0.020
Fit Bias +0.055 -0.055 +0.024 -0.024
Detector Asym. +0.000 -0.000 +0.000 -0.000
Total +1.575 -1.574 +0.523 -0.523
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Table D.4: B+ → K+K−K+ systematics.

f ′
2(1525)

FF (+σ) FF (−σ) B (+σ) B (−σ)
φ(1020) Mass/Width +0.002 -0.000 +0.001 -0.000
f0(1500) Mass/Width +0.036 -0.035 +0.013 -0.012
f ′

2(1525) Mass/Width +0.103 -0.107 +0.036 -0.037
f0(1710) Mass/Width +0.012 -0.009 +0.004 -0.003
χc0 Mass/Width +0.004 -0.003 +0.001 -0.001
φ(1020) BW radius +0.009 -0.027 +0.003 -0.009
f ′

2(1525) BW radius +0.129 -0.017 +0.045 -0.006
f0(980) Mass +0.008 -0.001 +0.003 -0.000
f0(980) gπ +0.029 -0.027 +0.010 -0.009
f0(980) gK +0.006 -0.005 +0.002 -0.002
B-meson BW radius +0.028 -0.028 +0.010 -0.010
Eff. map statistics +0.020 -0.020 +0.007 -0.007
Tracking +0.000 -0.000 +0.008 -0.008
NBB +0.000 -0.000 +0.008 -0.008
PID +0.008 -0.008 +0.010 -0.010

Fixed BB ACP and yield +0.010 -0.008 +0.004 -0.003
Fixed PDF Params +0.019 -0.019 +0.005 -0.005
Add f2(1270) +0.017 -0.017 +0.006 -0.006
Add a0

0(1450) +0.060 -0.060 +0.022 -0.022
Add φ(1680) +0.021 -0.021 +0.007 -0.007
Add f2(2010), f2(2300) +0.179 -0.179 +0.061 -0.061
DP PDF Stat. +0.032 -0.032 +0.011 -0.011
Fit Bias +0.274 -0.274 +0.103 -0.103
Detector Asym. +0.000 -0.000 +0.000 -0.000
Total +0.379 -0.358 +0.138 -0.131
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Table D.5: B+ → K+K−K+ systematics.

f0(1710)
FF (+σ) FF (−σ) B (+σ) B (−σ)

φ(1020) Mass/Width +0.001 -0.004 +0.000 -0.001
f0(1500) Mass/Width +0.141 -0.126 +0.049 -0.044
f ′

2(1525) Mass/Width +0.054 -0.058 +0.019 -0.020
f0(1710) Mass/Width +0.148 -0.151 +0.051 -0.052
χc0 Mass/Width +0.007 -0.004 +0.003 -0.001
φ(1020) BW radius +0.000 -0.030 +0.000 -0.010
f ′

2(1525) BW radius +0.058 -0.022 +0.020 -0.007
f0(980) Mass +0.013 -0.005 +0.005 -0.002
f0(980) gπ +0.070 -0.071 +0.024 -0.024
f0(980) gK +0.002 -0.000 +0.001 -0.000
B-meson BW radius +0.003 -0.003 +0.001 -0.001
Eff. map statistics +0.021 -0.021 +0.007 -0.007
Tracking +0.000 -0.000 +0.012 -0.012
NBB +0.000 -0.000 +0.012 -0.012
PID +0.007 -0.007 +0.018 -0.018

Fixed BB ACP and yield +0.012 -0.011 +0.003 -0.002
Fixed PDF Params +0.022 -0.022 +0.007 -0.007
Add f2(1270) +0.088 -0.088 +0.031 -0.031
Add a0

0(1450) +1.348 -1.348 +0.470 -0.470
Add φ(1680) +0.014 -0.014 +0.005 -0.005
Add f2(2010), f2(2300) +0.392 -0.392 +0.136 -0.136
DP PDF Stat. +0.102 -0.102 +0.036 -0.036
Fit Bias +0.165 -0.165 +0.047 -0.047
Detector Asym. +0.000 -0.000 +0.000 -0.000
Total +1.439 -1.438 +0.501 -0.501
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Table D.6: B+ → K+K−K+ systematics.

χc0
FF (+σ) FF (−σ) B (+σ) B (−σ)

φ(1020) Mass/Width +0.000 -0.002 +0.000 -0.001
f0(1500) Mass/Width +0.001 -0.000 +0.000 -0.000
f ′

2(1525) Mass/Width +0.013 -0.011 +0.005 -0.004
f0(1710) Mass/Width +0.001 -0.000 +0.000 -0.000
χc0 Mass/Width +0.012 -0.015 +0.004 -0.005
φ(1020) BW radius +0.000 -0.007 +0.000 -0.002
f ′

2(1525) BW radius +0.026 -0.013 +0.009 -0.005
f0(980) Mass +0.007 -0.004 +0.002 -0.002
f0(980) gπ +0.001 -0.002 +0.000 -0.000
f0(980) gK +0.006 -0.006 +0.002 -0.002
B-meson BW radius +0.005 -0.005 +0.002 -0.002
Eff. map statistics +0.012 -0.012 +0.004 -0.004
Tracking +0.000 -0.000 +0.012 -0.012
NBB +0.000 -0.000 +0.012 -0.012
PID +0.013 -0.013 +0.024 -0.024

Fixed BB ACP and yield +0.007 -0.007 +0.001 -0.001
Fixed PDF Params +0.021 -0.021 +0.005 -0.005
Add f2(1270) +0.004 -0.004 +0.002 -0.002
Add a0

0(1450) +0.049 -0.049 +0.018 -0.018
Add φ(1680) +0.024 -0.024 +0.008 -0.008
Add f2(2010), f2(2300) +0.034 -0.034 +0.013 -0.013
DP PDF Stat. +0.040 -0.040 +0.013 -0.013
Fit Bias +0.097 -0.097 +0.042 -0.042
Detector Asym. +0.000 -0.000 +0.000 -0.000
Total +0.131 -0.129 +0.060 -0.059
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Table D.7: B+ → K+K−K+ systematics.

NR (S-wave)
FF (+σ) FF (−σ) B (+σ) B (−σ)

φ(1020) Mass/Width +3.282 -0.051 +1.137 -0.019
f0(1500) Mass/Width +5.934 -3.481 +2.050 -1.201
f ′

2(1525) Mass/Width +9.190 -5.923 +3.178 -2.050
f0(1710) Mass/Width +6.569 -5.008 +2.266 -1.726
χc0 Mass/Width +0.562 -0.063 +0.196 -0.022
φ(1020) BW radius +34.557 -28.699 +11.973 -9.937
f ′

2(1525) BW radius +10.042 -0.000 +3.477 -0.000
f0(980) Mass +1.989 -0.000 +0.689 -0.000
f0(980) gπ +11.284 -11.079 +3.900 -3.835
f0(980) gK +4.430 -3.846 +1.532 -1.331
B-meson BW radius +3.381 -3.381 +1.170 -1.170
Eff. map statistics +2.030 -2.030 +0.708 -0.708
Tracking +0.000 -0.000 +0.571 -0.571
NBB +0.000 -0.000 +0.571 -0.571
PID +4.389 -4.389 +0.532 -0.532

Fixed BB ACP and yield +0.489 -0.116 +0.170 -0.023
Fixed PDF Params +0.882 -0.882 +0.249 -0.249
Add f2(1270) +13.196 -13.196 +4.617 -4.617
Add a0

0(1450) +8.476 -8.476 +3.039 -3.039
Add φ(1680) +18.413 -18.413 +6.383 -6.383
Add f2(2010), f2(2300) +62.261 -62.261 +21.685 -21.685
DP PDF Stat. +5.785 -5.785 +2.050 -2.050
Fit Bias +4.348 -4.348 +1.552 -1.552
Detector Asym. +0.000 -0.000 +0.000 -0.000
Total +78.546 -74.718 +27.300 -25.978



APPENDIX D. SYSTEMATICS TABLES 235

Table D.8: B+ → K+K−K+ systematics.

NR (P-wave)
FF (+σ) FF (−σ) B (+σ) B (−σ)

φ(1020) Mass/Width +2.072 -0.101 +0.718 -0.036
f0(1500) Mass/Width +4.257 -2.371 +1.472 -0.819
f ′

2(1525) Mass/Width +9.171 -6.514 +3.174 -2.256
f0(1710) Mass/Width +3.207 -2.256 +1.107 -0.778
χc0 Mass/Width +0.244 -0.002 +0.081 -0.000
φ(1020) BW radius +27.558 -22.716 +9.547 -7.866
f ′

2(1525) BW radius +7.704 -0.000 +2.668 -0.000
f0(980) Mass +1.145 -0.000 +0.397 -0.000
f0(980) gπ +6.815 -6.582 +2.357 -2.279
f0(980) gK +1.291 -1.098 +0.446 -0.380
B-meson BW radius +2.071 -2.071 +0.717 -0.717
Eff. map statistics +1.223 -1.223 +0.426 -0.426
Tracking +0.000 -0.000 +0.261 -0.261
NBB +0.000 -0.000 +0.261 -0.261
PID +3.066 -3.066 +0.596 -0.596

Fixed BB ACP and yield +0.228 -0.040 +0.083 -0.019
Fixed PDF Params +0.385 -0.385 +0.116 -0.116
Add f2(1270) +10.809 -10.809 +3.791 -3.791
Add a0

0(1450) +46.610 -46.610 +16.253 -16.253
Add φ(1680) +11.526 -11.526 +3.994 -3.994
Add f2(2010), f2(2300) +50.782 -50.782 +17.661 -17.661
DP PDF Stat. +5.963 -5.963 +2.099 -2.099
Fit Bias +9.492 -9.492 +3.076 -3.076
Detector Asym. +0.000 -0.000 +0.000 -0.000
Total +78.276 -75.866 +27.196 -26.364
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Table D.9: B+ → K+K−K+ systematics.

NR (Total)
FF (+σ) FF (−σ) B (+σ) B (−σ)

φ(1020) Mass/Width +0.130 -0.035 +0.045 -0.012
f0(1500) Mass/Width +1.460 -1.572 +0.506 -0.545
f ′

2(1525) Mass/Width +0.692 -0.742 +0.239 -0.258
f0(1710) Mass/Width +1.037 -1.045 +0.355 -0.357
χc0 Mass/Width +0.142 -0.064 +0.050 -0.022
φ(1020) BW radius +0.416 -0.560 +0.145 -0.192
f ′

2(1525) BW radius +0.663 -0.978 +0.231 -0.340
f0(980) Mass +1.056 -0.889 +0.366 -0.308
f0(980) gπ +0.210 -0.190 +0.073 -0.069
f0(980) gK +1.906 -1.709 +0.659 -0.592
B-meson BW radius +0.082 -0.082 +0.029 -0.029
Eff. map statistics +0.343 -0.343 +0.117 -0.117
Tracking +0.000 -0.000 +0.248 -0.248
NBB +0.000 -0.000 +0.248 -0.248
PID +0.096 -0.096 +0.374 -0.374

Fixed BB ACP and yield +0.180 -0.062 +0.071 -0.015
Fixed PDF Params +0.258 -0.258 +0.096 -0.096
Add f2(1270) +0.572 -0.572 +0.210 -0.210
Add a0

0(1450) +21.347 -21.347 +7.414 -7.414
Add φ(1680) +0.179 -0.179 +0.059 -0.059
Add f2(2010), f2(2300) +2.102 -2.102 +0.696 -0.696
DP PDF Stat. +0.498 -0.498 +0.171 -0.171
Fit Bias +0.613 -0.613 +0.346 -0.346
Detector Asym. +0.000 -0.000 +0.000 -0.000
Total +21.690 -21.690 +7.552 -7.552
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Table D.10: B+ → K+K−K+ systematics.

Total Charmless
B (+σ) B (−σ) B (+σ) B (−σ)

φ(1020) Mass/Width +0.001 -0.001 +0.000 -0.001
f0(1500) Mass/Width +0.003 -0.003 +0.003 -0.004
f ′

2(1525) Mass/Width +0.002 -0.003 +0.006 -0.008
f0(1710) Mass/Width +0.007 -0.007 +0.008 -0.008
χc0 Mass/Width +0.001 -0.000 +0.025 -0.024
φ(1020) BW radius +0.003 -0.000 +0.001 -0.000
f ′

2(1525) BW radius +0.002 -0.002 +0.001 -0.006
f0(980) Mass +0.001 -0.000 +0.001 -0.002
f0(980) gπ +0.001 -0.005 +0.005 -0.008
f0(980) gK +0.001 -0.001 +0.001 -0.002
B-meson BW radius +0.001 -0.001 +0.001 -0.001
Eff. map statistics +0.040 -0.040 +0.040 -0.040
Tracking +0.377 -0.377 +0.363 -0.363
NBB +0.377 -0.377 +0.363 -0.363
PID +0.617 -0.617 +0.589 -0.589

Fixed BB ACP and yield +0.055 -0.052 +0.054 -0.052
Fixed PDF Params +0.183 -0.183 +0.182 -0.182
Add f2(1270) +0.018 -0.018 +0.013 -0.013
Add a0

0(1450) +0.033 -0.033 +0.054 -0.054
Add φ(1680) +0.005 -0.005 +0.002 -0.002
Add f2(2010), f2(2300) +0.045 -0.045 +0.047 -0.047
DP PDF Stat. +0.035 -0.035 +0.035 -0.035
Fit Bias +0.358 -0.358 +0.332 -0.332
Detector Asym. +0.000 -0.000 +0.000 -0.000
Total +0.914 -0.914 +0.876 -0.875
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Table D.11: B+ → K+K−K+ systematics.

φ(1020) f0(980)
ACP (+σ) ACP (−σ) ACP (+σ) ACP (−σ)

φ(1020) Mass/Width +0.000 -0.000 +0.001 -0.000
f0(1500) Mass/Width +0.000 -0.000 +0.006 -0.006
f ′

2(1525) Mass/Width +0.001 -0.001 +0.004 -0.004
f0(1710) Mass/Width +0.001 -0.001 +0.004 -0.004
χc0 Mass/Width +0.000 -0.000 +0.001 -0.000
φ(1020) BW radius +0.000 -0.001 +0.023 -0.024
f ′

2(1525) BW radius +0.001 -0.001 +0.006 -0.009
f0(980) Mass +0.001 -0.000 +0.006 -0.003
f0(980) gπ +0.000 -0.000 +0.005 -0.005
f0(980) gK +0.001 -0.001 +0.005 -0.004
B-meson BW radius +0.000 -0.000 +0.002 -0.002
Eff. map statistics +0.000 -0.000 +0.001 -0.001
Tracking +0.000 -0.000 +0.000 -0.000
NBB +0.000 -0.000 +0.000 -0.000
PID +0.000 -0.000 +0.000 -0.000

Fixed BB ACP and yield +0.001 -0.001 +0.004 -0.003
Fixed PDF Params +0.001 -0.001 +0.002 -0.002
Add f2(1270) +0.000 -0.000 +0.002 -0.002
Add a0

0(1450) +0.003 -0.003 +0.022 -0.022
Add φ(1680) +0.001 -0.001 +0.002 -0.002
Add f2(2010), f2(2300) +0.001 -0.001 +0.002 -0.002
DP PDF Stat. +0.002 -0.002 +0.006 -0.006
Fit Bias +0.007 -0.007 +0.010 -0.010
Detector Asym. +0.010 -0.010 +0.010 -0.010
Total +0.013 -0.013 +0.038 -0.039
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Table D.12: B+ → K+K−K+ systematics.

f ′
2(1525) NR

ACP (+σ) ACP (−σ) ACP (+σ) ACP (−σ)
φ(1020) Mass/Width +0.000 -0.000 +0.000 -0.000
f0(1500) Mass/Width +0.006 -0.006 +0.002 -0.001
f ′

2(1525) Mass/Width +0.004 -0.005 +0.001 -0.001
f0(1710) Mass/Width +0.002 -0.002 +0.002 -0.001
χc0 Mass/Width +0.000 -0.000 +0.000 -0.000
φ(1020) BW radius +0.008 -0.009 +0.010 -0.008
f ′

2(1525) BW radius +0.004 -0.010 +0.002 -0.002
f0(980) Mass +0.000 -0.000 +0.003 -0.002
f0(980) gπ +0.000 -0.001 +0.003 -0.003
f0(980) gK +0.001 -0.001 +0.003 -0.002
B-meson BW radius +0.000 -0.000 +0.001 -0.001
Eff. map statistics +0.001 -0.001 +0.000 -0.000
Tracking +0.000 -0.000 +0.000 -0.000
NBB +0.000 -0.000 +0.000 -0.000
PID +0.001 -0.001 +0.000 -0.000

Fixed BB ACP and yield +0.005 -0.004 +0.004 -0.003
Fixed PDF Params +0.003 -0.003 +0.001 -0.001
Add f2(1270) +0.003 -0.003 +0.001 -0.001
Add a0

0(1450) +0.030 -0.030 +0.008 -0.008
Add φ(1680) +0.001 -0.001 +0.000 -0.000
Add f2(2010), f2(2300) +0.007 -0.007 +0.002 -0.002
DP PDF Stat. +0.005 -0.005 +0.002 -0.002
Fit Bias +0.013 -0.013 +0.007 -0.007
Detector Asym. +0.010 -0.010 +0.010 -0.010
Total +0.038 -0.039 +0.019 -0.018
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Table D.13: B+ → K+K−K+ systematics.

φ(1020) f0(980)
δ (+σ) δ (−σ) δ (+σ) δ (−σ)

φ(1020) Mass/Width +0.001 -0.000 +0.000 -0.000
f0(1500) Mass/Width +0.003 -0.002 +0.002 -0.001
f ′

2(1525) Mass/Width +0.005 -0.005 +0.003 -0.003
f0(1710) Mass/Width +0.005 -0.004 +0.003 -0.002
χc0 Mass/Width +0.001 -0.000 +0.000 -0.000
φ(1020) BW radius +0.012 -0.031 +0.012 -0.015
f ′

2(1525) BW radius +0.009 -0.010 +0.004 -0.006
f0(980) Mass +0.006 -0.003 +0.005 -0.004
f0(980) gπ +0.001 -0.000 +0.005 -0.003
f0(980) gK +0.001 -0.000 +0.001 -0.001
B-meson BW radius +0.002 -0.002 +0.001 -0.001
Eff. map statistics +0.002 -0.002 +0.001 -0.001
Tracking +0.000 -0.000 +0.000 -0.000
NBB +0.000 -0.000 +0.000 -0.000
PID +0.000 -0.000 +0.000 -0.000

Fixed BB ACP and yield +0.003 -0.001 +0.002 -0.002
Fixed PDF Params +0.004 -0.004 +0.001 -0.001
Add f2(1270) +0.002 -0.002 +0.002 -0.002
Add a0

0(1450) +0.019 -0.019 +0.052 -0.052
Add φ(1680) +0.002 -0.002 +0.001 -0.001
Add f2(2010), f2(2300) +0.003 -0.003 +0.002 -0.002
DP PDF Stat. +0.006 -0.006 +0.004 -0.004
Fit Bias +0.015 -0.015 +0.010 -0.010
Detector Asym. +0.000 -0.000 +0.000 -0.000
Total +0.031 -0.042 +0.055 -0.056
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Table D.14: B+ → K+K−K+ systematics.

f ′
2(1525) χc0

δ (+σ) δ (−σ) δ (+σ) δ (−σ)
φ(1020) Mass/Width +0.000 -0.000 +0.000 -0.001
f0(1500) Mass/Width +0.002 -0.001 +0.001 -0.001
f ′

2(1525) Mass/Width +0.001 -0.002 +0.000 -0.001
f0(1710) Mass/Width +0.001 -0.001 +0.001 -0.001
χc0 Mass/Width +0.000 -0.000 +0.002 -0.002
φ(1020) BW radius +0.009 -0.009 +0.000 -0.002
f ′

2(1525) BW radius +0.000 -0.002 +0.000 -0.003
f0(980) Mass +0.001 -0.001 +0.001 -0.001
f0(980) gπ +0.001 -0.001 +0.003 -0.002
f0(980) gK +0.001 -0.001 +0.001 -0.001
B-meson BW radius +0.000 -0.000 +0.000 -0.000
Eff. map statistics +0.000 -0.000 +0.000 -0.000
Tracking +0.000 -0.000 +0.000 -0.000
NBB +0.000 -0.000 +0.000 -0.000
PID +0.001 -0.001 +0.000 -0.000

Fixed BB ACP and yield +0.002 -0.002 +0.001 -0.001
Fixed PDF Params +0.001 -0.001 +0.003 -0.003
Add f2(1270) +0.001 -0.001 +0.003 -0.003
Add a0

0(1450) +0.026 -0.026 +0.005 -0.005
Add φ(1680) +0.001 -0.001 +0.001 -0.001
Add f2(2010), f2(2300) +0.003 -0.003 +0.005 -0.005
DP PDF Stat. +0.003 -0.003 +0.005 -0.005
Fit Bias +0.009 -0.009 +0.010 -0.010
Detector Asym. +0.000 -0.000 +0.000 -0.000
Total +0.029 -0.029 +0.015 -0.015
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Table D.15: B+ → K0
SK

0
SK

+ systematics.

f0(980)
FF (+σ) FF (−σ) B (+σ) B (−σ)

f0(1500) Mass/Width +1.382 -1.677 +0.149 -0.179
f ′

2(1525) Mass/Width +0.360 -0.331 +0.042 -0.038
f0(1710) Mass/Width +0.781 -0.980 +0.085 -0.105
χc0 Mass/Width +0.223 -0.140 +0.024 -0.014
f ′

2(1525) BW radius +0.000 -0.366 +0.000 -0.053
f0(980) Mass +1.188 -0.341 +0.126 -0.036
f0(980) gπ +13.277 -12.847 +1.408 -1.364
f0(980) gK +1.626 -2.057 +0.175 -0.219
B-meson BW radius +0.122 -0.122 +0.020 -0.020
Eff. map statistics +1.402 -1.402 +0.160 -0.160
Tracking +0.000 -0.000 +0.110 -0.110
NBB +0.000 -0.000 +0.088 -0.088
K0

S
eff +0.000 -0.000 +0.204 -0.204

PID +0.011 -0.011 +0.076 -0.076
Fixed BB yields +0.415 -0.446 +0.107 -0.108
Fixed BB ACP +0.052 -0.019 +0.006 -0.000
Fixed PDF Params +0.899 -0.899 +0.192 -0.192
Signal NN Shape +0.256 -0.256 +0.097 -0.097
Add Resonances +9.475 -9.475 +0.995 -0.995
DP PDF Stat. +2.242 -2.242 +0.228 -0.228
Detector Asym. +0.000 -0.000 +0.000 -0.000
Fit Bias +3.559 -3.559 +0.383 -0.383
Total +17.133 -16.851 +1.844 -1.815
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Table D.16: B+ → K0
S
K0

S
K+ systematics.

f0(1500)
FF (+σ) FF (−σ) B (+σ) B (−σ)

f0(1500) Mass/Width +0.178 -0.189 +0.019 -0.020
f ′

2(1525) Mass/Width +0.045 -0.052 +0.005 -0.005
f0(1710) Mass/Width +0.184 -0.197 +0.019 -0.021
χc0 Mass/Width +0.000 -0.011 +0.000 -0.001
f ′

2(1525) BW radius +0.419 -0.077 +0.043 -0.008
f0(980) Mass +0.045 -0.042 +0.005 -0.004
f0(980) gπ +0.177 -0.176 +0.019 -0.019
f0(980) gK +0.007 -0.038 +0.001 -0.004
B-meson BW radius +0.083 -0.083 +0.009 -0.009
Eff. map statistics +0.094 -0.094 +0.010 -0.010
Tracking +0.000 -0.000 +0.003 -0.003
NBB +0.000 -0.000 +0.003 -0.003
K0

S
eff +0.000 -0.000 +0.006 -0.006

PID +0.000 -0.000 +0.002 -0.002
Fixed BB yields +0.086 -0.103 +0.007 -0.009
Fixed BB ACP +0.002 -0.009 +0.000 -0.001
Fixed PDF Params +0.105 -0.105 +0.007 -0.007
Signal NN Shape +0.048 -0.048 +0.002 -0.002
Add Resonances +5.430 -5.430 +0.573 -0.573
DP PDF Stat. +0.226 -0.226 +0.023 -0.023
Detector Asym. +0.000 -0.000 +0.000 -0.000
Fit Bias +0.346 -0.346 +0.037 -0.037
Total +5.474 -5.460 +0.578 -0.576
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Table D.17: B+ → K0
S
K0

S
K+ systematics.

f ′
2(1525)

FF (+σ) FF (−σ) B (+σ) B (−σ)
f0(1500) Mass/Width +0.007 -0.017 +0.001 -0.002
f ′

2(1525) Mass/Width +0.362 -0.304 +0.038 -0.032
f0(1710) Mass/Width +0.024 -0.017 +0.003 -0.002
χc0 Mass/Width +0.000 -0.004 +0.000 -0.000
f ′

2(1525) BW radius +0.712 -0.064 +0.074 -0.007
f0(980) Mass +0.008 -0.010 +0.001 -0.001
f0(980) gπ +0.032 -0.030 +0.003 -0.003
f0(980) gK +0.004 -0.000 +0.000 -0.000
B-meson BW radius +0.180 -0.180 +0.019 -0.019
Eff. map statistics +0.103 -0.103 +0.011 -0.011
Tracking +0.000 -0.000 +0.005 -0.005
NBB +0.000 -0.000 +0.004 -0.004
K0

S
eff +0.000 -0.000 +0.008 -0.008

PID +0.000 -0.000 +0.003 -0.003
Fixed BB yields +0.140 -0.144 +0.012 -0.013
Fixed BB ACP +0.016 -0.019 +0.002 -0.002
Fixed PDF Params +0.067 -0.067 +0.010 -0.010
Signal NN Shape +0.044 -0.044 +0.000 -0.000
Add Resonances +0.678 -0.678 +0.071 -0.071
DP PDF Stat. +0.197 -0.197 +0.019 -0.019
Detector Asym. +0.000 -0.000 +0.000 -0.000
Fit Bias +0.209 -0.209 +0.028 -0.028
Total +1.118 -0.843 +0.118 -0.090
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Table D.18: B+ → K0
S
K0

S
K+ systematics.

f0(1710)
FF (+σ) FF (−σ) B (+σ) B (−σ)

f0(1500) Mass/Width +0.325 -0.316 +0.035 -0.034
f ′

2(1525) Mass/Width +0.114 -0.107 +0.012 -0.011
f0(1710) Mass/Width +0.399 -0.387 +0.042 -0.041
χc0 Mass/Width +0.003 -0.013 +0.000 -0.001
f ′

2(1525) BW radius +0.372 -0.060 +0.038 -0.006
f0(980) Mass +0.003 -0.000 +0.000 -0.000
f0(980) gπ +0.168 -0.171 +0.018 -0.018
f0(980) gK +0.009 -0.019 +0.001 -0.002
B-meson BW radius +0.041 -0.041 +0.004 -0.004
Eff. map statistics +0.062 -0.062 +0.007 -0.007
Tracking +0.000 -0.000 +0.004 -0.004
NBB +0.000 -0.000 +0.003 -0.003
K0

S
eff +0.000 -0.000 +0.007 -0.007

PID +0.001 -0.001 +0.003 -0.003
Fixed BB yields +0.079 -0.120 +0.007 -0.011
Fixed BB ACP +0.001 -0.004 +0.000 -0.000
Fixed PDF Params +0.097 -0.097 +0.005 -0.005
Signal NN Shape +0.048 -0.048 +0.009 -0.009
Add Resonances +0.229 -0.229 +0.025 -0.025
DP PDF Stat. +0.341 -0.341 +0.035 -0.035
Detector Asym. +0.000 -0.000 +0.000 -0.000
Fit Bias +0.683 -0.683 +0.078 -0.078
Total +1.050 -0.980 +0.115 -0.108
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Table D.19: B+ → K0
S
K0

S
K+ systematics.

χc0
FF (+σ) FF (−σ) B (+σ) B (−σ)

f0(1500) Mass/Width +0.010 -0.018 +0.001 -0.002
f ′

2(1525) Mass/Width +0.003 -0.005 +0.000 -0.000
f0(1710) Mass/Width +0.002 -0.008 +0.000 -0.001
χc0 Mass/Width +0.074 -0.071 +0.008 -0.007
f ′

2(1525) BW radius +0.000 -0.025 +0.000 -0.003
f0(980) Mass +0.001 -0.013 +0.000 -0.001
f0(980) gπ +0.008 -0.012 +0.001 -0.001
f0(980) gK +0.006 -0.000 +0.001 -0.000
B-meson BW radius +0.011 -0.011 +0.001 -0.001
Eff. map statistics +0.019 -0.019 +0.002 -0.002
Tracking +0.000 -0.000 +0.004 -0.004
NBB +0.000 -0.000 +0.003 -0.003
K0

S
eff +0.000 -0.000 +0.007 -0.007

PID +0.001 -0.001 +0.003 -0.003
Fixed BB yields +0.018 -0.032 +0.000 -0.001
Fixed BB ACP +0.004 -0.005 +0.000 -0.000
Fixed PDF Params +0.036 -0.036 +0.008 -0.008
Signal NN Shape +0.006 -0.006 +0.005 -0.005
Add Resonances +0.050 -0.050 +0.003 -0.003
DP PDF Stat. +0.043 -0.043 +0.005 -0.005
Detector Asym. +0.000 -0.000 +0.000 -0.000
Fit Bias +0.298 -0.298 +0.032 -0.032
Total +0.318 -0.320 +0.037 -0.037
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Table D.20: B+ → K0
S
K0

S
K+ systematics.

NR (S-wave)
FF (+σ) FF (−σ) B (+σ) B (−σ)

f0(1500) Mass/Width +3.133 -3.701 +0.336 -0.394
f ′

2(1525) Mass/Width +0.811 -0.741 +0.092 -0.083
f0(1710) Mass/Width +2.049 -2.435 +0.220 -0.259
χc0 Mass/Width +0.141 -0.096 +0.015 -0.009
f ′

2(1525) BW radius +0.091 -2.009 +0.017 -0.258
f0(980) Mass +4.631 -3.849 +0.492 -0.408
f0(980) gπ +10.225 -9.909 +1.084 -1.052
f0(980) gK +1.106 -1.364 +0.117 -0.142
B-meson BW radius +0.619 -0.619 +0.075 -0.075
Eff. map statistics +1.225 -1.225 +0.130 -0.130
Tracking +0.000 -0.000 +0.148 -0.148
NBB +0.000 -0.000 +0.118 -0.118
K0

S
eff +0.000 -0.000 +0.273 -0.273

PID +0.010 -0.010 +0.101 -0.101
Fixed BB yields +1.395 -1.485 +0.234 -0.240
Fixed BB ACP +0.089 -0.018 +0.009 -0.000
Fixed PDF Params +1.315 -1.315 +0.284 -0.284
Signal NN Shape +0.055 -0.055 +0.161 -0.161
Add Resonances +16.008 -16.008 +1.988 -1.988
DP PDF Stat. +3.712 -3.712 +0.378 -0.378
Detector Asym. +0.000 -0.000 +0.000 -0.000
Fit Bias +2.041 -2.041 +0.224 -0.224
Total +20.535 -20.472 +2.460 -2.458
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Table D.21: B+ → K0
S
K0

S
K+ systematics.

Total Charmless
B (+σ) B (−σ) B (+σ) B (−σ)

f0(1500) Mass/Width +0.002 -0.001 +0.005 -0.006
f ′

2(1525) Mass/Width +0.004 -0.003 +0.004 -0.003
f0(1710) Mass/Width +0.002 -0.001 +0.003 -0.003
χc0 Mass/Width +0.001 -0.001 +0.006 -0.004
f ′

2(1525) BW radius +0.004 -0.024 +0.005 -0.040
f0(980) Mass +0.000 -0.000 +0.001 -0.002
f0(980) gπ +0.000 -0.001 +0.002 -0.003
f0(980) gK +0.002 -0.000 +0.004 -0.002
B-meson BW radius +0.005 -0.005 +0.008 -0.008
Eff. map statistics +0.025 -0.025 +0.025 -0.025
Tracking +0.079 -0.079 +0.076 -0.076
NBB +0.063 -0.063 +0.060 -0.060
K0

S
eff +0.146 -0.146 +0.140 -0.140

PID +0.054 -0.054 +0.051 -0.051
Fixed BB yields +0.047 -0.046 +0.045 -0.045
Fixed BB ACP +0.001 -0.000 +0.001 -0.000
Fixed PDF Params +0.142 -0.142 +0.143 -0.143
Signal NN Shape +0.089 -0.089 +0.092 -0.092
Add Resonances +0.027 -0.027 +0.043 -0.043
DP PDF Stat. +0.039 -0.039 +0.040 -0.040
Detector Asym. +0.000 -0.000 +0.000 -0.000
Fit Bias +0.033 -0.033 +0.026 -0.026
Total +0.263 -0.263 +0.260 -0.263
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Table D.22: B+ → K0
SK

0
SK

+ systematics.

ACP (+σ) ACP (−σ) δ (+σ) δ (−σ)
f0(1500) Mass/Width +0.000 -0.000 +0.002 -0.003
f ′

2(1525) Mass/Width +0.000 -0.000 +0.002 -0.001
f0(1710) Mass/Width +0.000 -0.000 +0.001 -0.001
χc0 Mass/Width +0.000 -0.001 +0.015 -0.014
f ′

2(1525) BW radius +0.000 -0.000 +0.000 -0.005
f0(980) Mass +0.000 -0.000 +0.002 -0.002
f0(980) gπ +0.000 -0.000 +0.001 -0.000
f0(980) gK +0.000 -0.000 +0.001 -0.000
B-meson BW radius +0.000 -0.000 +0.004 -0.004
Eff. map statistics +0.000 -0.000 +0.003 -0.003
Tracking +0.000 -0.000 +0.000 -0.000
NBB +0.000 -0.000 +0.000 -0.000
K0

S
eff +0.000 -0.000 +0.000 -0.000

PID +0.000 -0.000 +0.000 -0.000
Fixed BB yields +0.000 -0.001 +0.007 -0.006

Fixed BB ACP +0.002 -0.002 +0.006 -0.006
Fixed PDF Params +0.002 -0.002 +0.022 -0.022
Signal NN Shape +0.001 -0.001 +0.005 -0.005
Add Resonances +0.001 -0.001 +0.033 -0.033
DP PDF Stat. +0.002 -0.002 +0.021 -0.021
Detector Asym. +0.010 -0.010 +0.000 -0.000
Fit Bias +0.011 -0.011 +0.086 -0.086
Total +0.015 -0.015 +0.099 -0.099
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Table D.23: B0 → K+K−K0
S

systematics.

φ(1020)
FF (+σ) FF (−σ) B (+σ) B (−σ)

φ(1020) Mass/Width +0.026 -0.021 +0.007 -0.005
f0(1500) Mass/Width +0.009 -0.004 +0.002 -0.001
f ′

2(1525) Mass/Width +0.005 -0.000 +0.001 -0.000
f0(1710) Mass/Width +0.015 -0.012 +0.004 -0.003
χc0 Mass/Width +0.003 -0.002 +0.001 -0.001
φ(1020) BW radius +0.681 -0.316 +0.180 -0.084
f ′

2(1525) BW radius +0.000 -0.002 +0.000 -0.001
D, J/ψ Mass/Width +0.011 -0.002 +0.002 -0.005
f0(980) Mass +0.020 -0.024 +0.005 -0.006
f0(980) gπ, gK +0.059 -0.047 +0.015 -0.012
B-meson BW radius +0.064 -0.064 +0.015 -0.015
Eff. map statistics +0.159 -0.159 +0.051 -0.051
Tracking +0.000 -0.000 +0.025 -0.025
NBB +0.000 -0.000 +0.021 -0.021
K0

S eff +0.000 -0.000 +0.031 -0.031
PID +0.117 -0.117 +0.045 -0.045
Fixed PDF Params (1) +0.032 -0.019 +0.010 -0.004
Fixed PDF Params (2) +0.060 -0.060 +0.020 -0.020
Signal NN Shape +0.051 -0.051 +0.022 -0.022
Add f2(1270) +0.099 -0.099 +0.028 -0.028
Add f0(1370), a0

0(1450) +0.059 -0.059 +0.017 -0.017
Add a−0 (1450) +0.087 -0.087 +0.021 -0.021
Add φ(1680) +0.066 -0.066 +0.018 -0.018
Add f2(2010), f2(2300) +0.011 -0.011 +0.003 -0.003
Add a−0 (980) +0.067 -0.067 +0.016 -0.016
DP PDF Stat. +0.126 -0.126 +0.038 -0.038
SVT/beamspot/DCS +0.000 -0.000 +0.000 -0.000
Fit Bias +0.057 -0.057 +0.030 -0.030
Total +0.754 -0.449 +0.212 -0.140
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Table D.24: B0 → K+K−K0
S

systematics.

f0(980)
FF (+σ) FF (−σ) B (+σ) B (−σ)

φ(1020) Mass/Width +0.031 -0.029 +0.008 -0.008
f0(1500) Mass/Width +0.452 -0.521 +0.120 -0.138
f ′

2(1525) Mass/Width +0.016 -0.042 +0.004 -0.011
f0(1710) Mass/Width +0.353 -0.410 +0.094 -0.109
χc0 Mass/Width +0.007 -0.013 +0.002 -0.003
φ(1020) BW radius +0.121 -0.029 +0.032 -0.008
f ′

2(1525) BW radius +0.032 -0.130 +0.009 -0.036
D, J/ψ Mass/Width +0.035 -0.035 +0.008 -0.013
f0(980) Mass +2.660 -2.142 +0.705 -0.568
f0(980) gπ, gK +3.877 -3.856 +1.027 -1.021
B-meson BW radius +1.843 -1.843 +0.493 -0.493
Eff. map statistics +0.396 -0.396 +0.112 -0.112
Tracking +0.000 -0.000 +0.051 -0.051
NBB +0.000 -0.000 +0.041 -0.041
K0

S eff +0.000 -0.000 +0.062 -0.062
PID +0.489 -0.489 +0.025 -0.025
Fixed PDF Params (1) +0.055 -0.147 +0.023 -0.050
Fixed PDF Params (2) +0.200 -0.200 +0.080 -0.080
Signal NN Shape +0.152 -0.152 +0.031 -0.031
Add f2(1270) +1.028 -1.028 +0.279 -0.279
Add f0(1370), a0

0(1450) +7.224 -7.224 +1.928 -1.928
Add a−0 (1450) +0.288 -0.288 +0.062 -0.062
Add φ(1680) +0.161 -0.161 +0.037 -0.037
Add f2(2010), f2(2300) +0.646 -0.646 +0.175 -0.175
Add a−0 (980) +0.069 -0.069 +0.017 -0.017
DP PDF Stat. +1.066 -1.066 +0.275 -0.275
SVT/beamspot/DCS +0.000 -0.000 +0.000 -0.000
Fit Bias +0.383 -0.383 +0.111 -0.111
Total +9.020 -8.880 +2.402 -2.365
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Table D.25: B0 → K+K−K0
S

systematics.

f0(1500)
FF (+σ) FF (−σ) B (+σ) B (−σ)

φ(1020) Mass/Width +0.008 -0.003 +0.002 -0.001
f0(1500) Mass/Width +0.130 -0.124 +0.035 -0.033
f ′

2(1525) Mass/Width +0.019 -0.011 +0.005 -0.003
f0(1710) Mass/Width +0.077 -0.061 +0.020 -0.016
χc0 Mass/Width +0.006 -0.000 +0.002 -0.000
φ(1020) BW radius +0.013 -0.017 +0.003 -0.005
f ′

2(1525) BW radius +0.009 -0.000 +0.002 -0.000
D, J/ψ Mass/Width +0.008 -0.000 +0.002 -0.000
f0(980) Mass +0.007 -0.000 +0.002 -0.000
f0(980) gπ, gK +0.080 -0.073 +0.021 -0.019
B-meson BW radius +0.011 -0.011 +0.003 -0.003
Eff. map statistics +0.036 -0.036 +0.010 -0.010
Tracking +0.000 -0.000 +0.004 -0.004
NBB +0.000 -0.000 +0.003 -0.003
K0

S eff +0.000 -0.000 +0.005 -0.005
PID +0.013 -0.013 +0.009 -0.009
Fixed PDF Params (1) +0.024 -0.013 +0.007 -0.004
Fixed PDF Params (2) +0.026 -0.026 +0.010 -0.010
Signal NN Shape +0.021 -0.021 +0.000 -0.000
Add f2(1270) +0.145 -0.145 +0.038 -0.038
Add f0(1370), a0

0(1450) +0.378 -0.378 +0.089 -0.089
Add a−0 (1450) +0.007 -0.007 +0.002 -0.002
Add φ(1680) +0.119 -0.119 +0.028 -0.028
Add f2(2010), f2(2300) +0.056 -0.056 +0.015 -0.015
Add a−0 (980) +0.008 -0.008 +0.002 -0.002
DP PDF Stat. +0.082 -0.082 +0.022 -0.022
SVT/beamspot/DCS +0.000 -0.000 +0.000 -0.000
Fit Bias +0.120 -0.120 +0.030 -0.030
Total +0.486 -0.480 +0.119 -0.118
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Table D.26: B0 → K+K−K0
S

systematics.

f ′
2(1525)

FF (+σ) FF (−σ) B (+σ) B (−σ)
φ(1020) Mass/Width +0.001 -0.000 +0.000 -0.000
f0(1500) Mass/Width +0.009 -0.009 +0.002 -0.002
f ′

2(1525) Mass/Width +0.047 -0.053 +0.012 -0.014
f0(1710) Mass/Width +0.010 -0.010 +0.003 -0.003
χc0 Mass/Width +0.000 -0.000 +0.000 -0.000
φ(1020) BW radius +0.000 -0.003 +0.000 -0.001
f ′

2(1525) BW radius +0.079 -0.033 +0.021 -0.009
D, J/ψ Mass/Width +0.001 -0.000 +0.000 -0.000
f0(980) Mass +0.002 -0.001 +0.000 -0.000
f0(980) gπ, gK +0.005 -0.004 +0.001 -0.001
B-meson BW radius +0.007 -0.007 +0.002 -0.002
Eff. map statistics +0.017 -0.017 +0.005 -0.005
Tracking +0.000 -0.000 +0.001 -0.001
NBB +0.000 -0.000 +0.001 -0.001
K0

S eff +0.000 -0.000 +0.001 -0.001
PID +0.009 -0.009 +0.001 -0.001
Fixed PDF Params (1) +0.007 -0.006 +0.002 -0.001
Fixed PDF Params (2) +0.010 -0.010 +0.002 -0.002
Signal NN Shape +0.005 -0.005 +0.000 -0.000
Add f2(1270) +0.594 -0.594 +0.152 -0.152
Add f0(1370), a0

0(1450) +0.008 -0.008 +0.003 -0.003
Add a−0 (1450) +0.002 -0.002 +0.001 -0.001
Add φ(1680) +0.010 -0.010 +0.003 -0.003
Add f2(2010), f2(2300) +0.077 -0.077 +0.021 -0.021
Add a−0 (980) +0.003 -0.003 +0.001 -0.001
DP PDF Stat. +0.034 -0.034 +0.009 -0.009
SVT/beamspot/DCS +0.000 -0.000 +0.000 -0.000
Fit Bias +0.076 -0.076 +0.019 -0.019
Total +0.613 -0.609 +0.157 -0.156
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Table D.27: B0 → K+K−K0
S

systematics.

f0(1710)
FF (+σ) FF (−σ) B (+σ) B (−σ)

φ(1020) Mass/Width +0.001 -0.023 +0.000 -0.006
f0(1500) Mass/Width +0.144 -0.158 +0.038 -0.042
f ′

2(1525) Mass/Width +0.006 -0.034 +0.002 -0.009
f0(1710) Mass/Width +1.127 -1.146 +0.298 -0.304
χc0 Mass/Width +0.000 -0.019 +0.000 -0.005
φ(1020) BW radius +0.067 -0.032 +0.017 -0.009
f ′

2(1525) BW radius +0.011 -0.110 +0.003 -0.030
D, J/ψ Mass/Width +0.000 -0.028 +0.000 -0.011
f0(980) Mass +0.052 -0.083 +0.013 -0.022
f0(980) gπ, gK +0.082 -0.106 +0.022 -0.029
B-meson BW radius +0.024 -0.024 +0.010 -0.010
Eff. map statistics +0.074 -0.074 +0.016 -0.016
Tracking +0.000 -0.000 +0.032 -0.032
NBB +0.000 -0.000 +0.026 -0.026
K0

S eff +0.000 -0.000 +0.039 -0.039
PID +0.089 -0.089 +0.117 -0.117
Fixed PDF Params (1) +0.025 -0.078 +0.001 -0.020
Fixed PDF Params (2) +0.061 -0.061 +0.035 -0.035
Signal NN Shape +0.007 -0.007 +0.044 -0.044
Add f2(1270) +0.290 -0.290 +0.079 -0.079
Add f0(1370), a0

0(1450) +0.739 -0.739 +0.201 -0.201
Add a−0 (1450) +0.215 -0.215 +0.052 -0.052
Add φ(1680) +1.191 -1.191 +0.291 -0.291
Add f2(2010), f2(2300) +0.419 -0.419 +0.113 -0.113
Add a−0 (980) +0.088 -0.088 +0.020 -0.020
DP PDF Stat. +0.376 -0.376 +0.102 -0.102
SVT/beamspot/DCS +0.000 -0.000 +0.000 -0.000
Fit Bias +0.537 -0.537 +0.125 -0.125
Total +2.008 -2.026 +0.535 -0.540
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Table D.28: B0 → K+K−K0
S

systematics.

χc0
FF (+σ) FF (−σ) B (+σ) B (−σ)

φ(1020) Mass/Width +0.003 -0.000 +0.001 -0.000
f0(1500) Mass/Width +0.003 -0.000 +0.001 -0.000
f ′

2(1525) Mass/Width +0.003 -0.000 +0.001 -0.000
f0(1710) Mass/Width +0.003 -0.000 +0.001 -0.000
χc0 Mass/Width +0.065 -0.060 +0.017 -0.016
φ(1020) BW radius +0.008 -0.006 +0.002 -0.002
f ′

2(1525) BW radius +0.003 -0.000 +0.001 -0.000
D, J/ψ Mass/Width +0.008 -0.001 +0.002 -0.001
f0(980) Mass +0.001 -0.000 +0.000 -0.000
f0(980) gπ, gK +0.004 -0.000 +0.001 -0.000
B-meson BW radius +0.013 -0.013 +0.003 -0.003
Eff. map statistics +0.016 -0.016 +0.004 -0.004
Tracking +0.000 -0.000 +0.007 -0.007
NBB +0.000 -0.000 +0.005 -0.005
K0

S eff +0.000 -0.000 +0.008 -0.008
PID +0.006 -0.006 +0.021 -0.021
Fixed PDF Params (1) +0.027 -0.009 +0.007 -0.003
Fixed PDF Params (2) +0.015 -0.015 +0.008 -0.008
Signal NN Shape +0.010 -0.010 +0.007 -0.007
Add f2(1270) +0.004 -0.004 +0.001 -0.001
Add f0(1370), a0

0(1450) +0.005 -0.005 +0.001 -0.001
Add a−0 (1450) +0.047 -0.047 +0.012 -0.012
Add φ(1680) +0.007 -0.007 +0.001 -0.001
Add f2(2010), f2(2300) +0.002 -0.002 +0.001 -0.001
Add a−0 (980) +0.028 -0.028 +0.007 -0.007
DP PDF Stat. +0.047 -0.047 +0.012 -0.012
SVT/beamspot/DCS +0.000 -0.000 +0.000 -0.000
Fit Bias +0.184 -0.184 +0.044 -0.044
Total +0.213 -0.209 +0.058 -0.057
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Table D.29: B0 → K+K−K0
S

systematics.

NR (S-wave)
FF (+σ) FF (−σ) B (+σ) B (−σ)

φ(1020) Mass/Width +0.000 -0.017 +0.000 -0.005
f0(1500) Mass/Width +1.638 -1.844 +0.431 -0.487
f ′

2(1525) Mass/Width +0.026 -0.063 +0.006 -0.017
f0(1710) Mass/Width +0.214 -0.337 +0.056 -0.091
χc0 Mass/Width +0.075 -0.105 +0.018 -0.028
φ(1020) BW radius +0.007 -0.136 +0.000 -0.019
f ′

2(1525) BW radius +0.113 -0.656 +0.031 -0.181
D, J/ψ Mass/Width +0.112 -0.101 +0.024 -0.046
f0(980) Mass +3.796 -3.028 +1.007 -0.805
f0(980) gπ, gK +7.398 -7.768 +1.960 -2.057
B-meson BW radius +3.143 -3.143 +0.854 -0.854
Eff. map statistics +0.524 -0.524 +0.146 -0.146
Tracking +0.000 -0.000 +0.222 -0.222
NBB +0.000 -0.000 +0.181 -0.181
K0

S eff +0.000 -0.000 +0.271 -0.271
PID +0.322 -0.322 +0.568 -0.568
Fixed PDF Params (1) +0.097 -0.309 +0.053 -0.107
Fixed PDF Params (2) +0.476 -0.476 +0.206 -0.206
Signal NN Shape +0.525 -0.525 +0.174 -0.174
Add f2(1270) +0.844 -0.844 +0.213 -0.213
Add f0(1370), a0

0(1450) +28.915 -28.915 +7.970 -7.970
Add a−0 (1450) +0.496 -0.496 +0.070 -0.070
Add φ(1680) +1.397 -1.397 +0.389 -0.389
Add f2(2010), f2(2300) +2.877 -2.877 +0.780 -0.780
Add a−0 (980) +0.386 -0.386 +0.087 -0.087
DP PDF Stat. +2.847 -2.847 +0.694 -0.694
SVT/beamspot/DCS +0.000 -0.000 +0.000 -0.000
Fit Bias +1.732 -1.732 +0.624 -0.624
Total +30.679 -30.706 +8.459 -8.467
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Table D.30: B0 → K+K−K0
S

systematics.

NR (P-wave)
FF (+σ) FF (−σ) B (+σ) B (−σ)

φ(1020) Mass/Width +0.013 -0.002 +0.003 -0.001
f0(1500) Mass/Width +0.035 -0.010 +0.013 -0.003
f ′

2(1525) Mass/Width +0.020 -0.007 +0.005 -0.002
f0(1710) Mass/Width +0.078 -0.039 +0.020 -0.010
χc0 Mass/Width +0.027 -0.016 +0.007 -0.004
φ(1020) BW radius +0.074 -0.000 +0.019 -0.000
f ′

2(1525) BW radius +0.259 -0.035 +0.068 -0.009
D, J/ψ Mass/Width +0.035 -0.009 +0.010 -0.008
f0(980) Mass +0.067 -0.045 +0.018 -0.012
f0(980) gπ, gK +0.020 -0.000 +0.005 -0.000
B-meson BW radius +0.505 -0.505 +0.136 -0.136
Eff. map statistics +0.057 -0.057 +0.016 -0.016
Tracking +0.000 -0.000 +0.023 -0.023
NBB +0.000 -0.000 +0.018 -0.018
K0

S eff +0.000 -0.000 +0.028 -0.028
PID +0.071 -0.071 +0.048 -0.048
Fixed PDF Params (1) +0.156 -0.072 +0.045 -0.024
Fixed PDF Params (2) +0.113 -0.113 +0.047 -0.047
Signal NN Shape +0.146 -0.146 +0.071 -0.071
Add f2(1270) +0.230 -0.230 +0.060 -0.060
Add f0(1370), a0

0(1450) +0.179 -0.179 +0.047 -0.047
Add a−0 (1450) +0.984 -0.984 +0.266 -0.266
Add φ(1680) +0.069 -0.069 +0.027 -0.027
Add f2(2010), f2(2300) +0.535 -0.535 +0.142 -0.142
Add a−0 (980) +0.372 -0.372 +0.107 -0.107
DP PDF Stat. +0.417 -0.417 +0.121 -0.121
SVT/beamspot/DCS +0.000 -0.000 +0.000 -0.000
Fit Bias +0.149 -0.149 +0.053 -0.053
Total +1.445 -1.410 +0.405 -0.397
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Table D.31: B0 → K+K−K0
S

systematics.

NR (Total)
FF (+σ) FF (−σ) B (+σ) B (−σ)

φ(1020) Mass/Width +0.000 -0.011 +0.000 -0.003
f0(1500) Mass/Width +1.639 -1.808 +0.431 -0.477
f ′

2(1525) Mass/Width +0.019 -0.044 +0.004 -0.012
f0(1710) Mass/Width +0.186 -0.260 +0.048 -0.071
χc0 Mass/Width +0.101 -0.116 +0.025 -0.031
φ(1020) BW radius +0.154 -0.135 +0.038 -0.037
f ′

2(1525) BW radius +0.078 -0.397 +0.022 -0.113
D, J/ψ Mass/Width +0.070 -0.078 +0.029 -0.048
f0(980) Mass +3.862 -3.073 +1.025 -0.817
f0(980) gπ, gK +7.401 -7.751 +1.961 -2.052
B-meson BW radius +3.647 -3.647 +0.990 -0.990
Eff. map statistics +0.516 -0.516 +0.145 -0.145
Tracking +0.000 -0.000 +0.244 -0.244
NBB +0.000 -0.000 +0.199 -0.199
K0

S eff +0.000 -0.000 +0.298 -0.298
PID +0.393 -0.393 +0.616 -0.616
Fixed PDF Params (1) +0.074 -0.211 +0.069 -0.106
Fixed PDF Params (2) +0.351 -0.351 +0.257 -0.257
Signal NN Shape +0.379 -0.379 +0.246 -0.246
Add f2(1270) +1.113 -1.113 +0.282 -0.282
Add f0(1370), a0

0(1450) +30.155 -30.155 +8.038 -8.038
Add a−0 (1450) +0.746 -0.746 +0.226 -0.226
Add φ(1680) +1.444 -1.444 +0.369 -0.369
Add f2(2010), f2(2300) +2.408 -2.408 +0.652 -0.652
Add a−0 (980) +0.261 -0.261 +0.090 -0.090
DP PDF Stat. +2.695 -2.695 +0.659 -0.659
SVT/beamspot/DCS +0.000 -0.000 +0.000 -0.000
Fit Bias +1.943 -1.943 +0.646 -0.646
Total +31.883 -31.893 +8.541 -8.544
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Table D.32: B0 → K+K−K0
S

systematics.

Total Charmless
B (+σ) B (−σ) B (+σ) B (−σ)

φ(1020) Mass/Width +0.000 -0.000 +0.000 -0.001
f0(1500) Mass/Width +0.002 -0.003 +0.000 -0.002
f ′

2(1525) Mass/Width +0.001 -0.002 +0.001 -0.003
f0(1710) Mass/Width +0.001 -0.002 +0.001 -0.003
χc0 Mass/Width +0.002 -0.003 +0.020 -0.022
φ(1020) BW radius +0.000 -0.002 +0.000 -0.004
f ′

2(1525) BW radius +0.001 -0.006 +0.000 -0.006
D, J/ψ Mass/Width +0.016 -0.046 +0.014 -0.045
f0(980) Mass +0.001 -0.002 +0.004 -0.005
f0(980) gπ, gK +0.003 -0.005 +0.007 -0.009
B-meson BW radius +0.018 -0.018 +0.033 -0.033
Eff. map statistics +0.084 -0.084 +0.084 -0.084
Tracking +0.194 -0.194 +0.186 -0.186
NBB +0.158 -0.158 +0.152 -0.152
K0

S eff +0.236 -0.236 +0.227 -0.227
PID +0.567 -0.567 +0.542 -0.542
Fixed PDF Params (1) +0.055 -0.055 +0.052 -0.054
Fixed PDF Params (2) +0.233 -0.233 +0.227 -0.227
Signal NN Shape +0.275 -0.275 +0.268 -0.268
Add f2(1270) +0.011 -0.011 +0.009 -0.009
Add f0(1370), a0

0(1450) +0.009 -0.009 +0.005 -0.005
Add a−0 (1450) +0.019 -0.019 +0.032 -0.032
Add φ(1680) +0.009 -0.009 +0.005 -0.005
Add f2(2010), f2(2300) +0.007 -0.007 +0.005 -0.005
Add a−0 (980) +0.015 -0.015 +0.021 -0.021
DP PDF Stat. +0.121 -0.121 +0.118 -0.118
SVT/beamspot/DCS +0.000 -0.000 +0.000 -0.000
Fit Bias +0.149 -0.149 +0.199 -0.199
Total +0.786 -0.787 +0.770 -0.771
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Table D.33: B0 → K+K−K0
S

systematics.

φ(1020) f0(980)
ACP (+σ) ACP (−σ) ACP (+σ) ACP (−σ)

φ(1020) Mass/Width +0.000 -0.001 +0.002 -0.000
f0(1500) Mass/Width +0.000 -0.002 +0.005 -0.000
f ′

2(1525) Mass/Width +0.000 -0.002 +0.003 -0.000
f0(1710) Mass/Width +0.000 -0.002 +0.006 -0.000
χc0 Mass/Width +0.000 -0.002 +0.003 -0.000
φ(1020) BW radius +0.006 -0.000 +0.020 -0.059
f ′

2(1525) BW radius +0.000 -0.005 +0.017 -0.001
D, J/ψ Mass/Width +0.000 -0.002 +0.004 -0.000
f0(980) Mass +0.003 -0.006 +0.020 -0.013
f0(980) gπ, gK +0.002 -0.005 +0.016 -0.011
B-meson BW radius +0.017 -0.017 +0.030 -0.030
Eff. map statistics +0.008 -0.008 +0.012 -0.012
Tracking +0.000 -0.000 +0.000 -0.000
NBB +0.000 -0.000 +0.000 -0.000
K0

S eff +0.000 -0.000 +0.000 -0.000
PID +0.001 -0.001 +0.005 -0.005
Fixed PDF Params (1) +0.011 -0.021 +0.017 -0.005
Fixed PDF Params (2) +0.006 -0.006 +0.009 -0.009
Signal NN Shape +0.004 -0.004 +0.011 -0.011
Add f2(1270) +0.002 -0.002 +0.011 -0.011
Add f0(1370), a0

0(1450) +0.002 -0.002 +0.026 -0.026
Add a−0 (1450) +0.001 -0.001 +0.002 -0.002
Add φ(1680) +0.022 -0.022 +0.040 -0.040
Add f2(2010), f2(2300) +0.000 -0.000 +0.004 -0.004
Add a−0 (980) +0.000 -0.000 +0.003 -0.003
DP PDF Stat. +0.009 -0.009 +0.022 -0.022
SVT/beamspot/DCS +0.014 -0.014 +0.014 -0.014
Fit Bias +0.028 -0.028 +0.024 -0.024
Total +0.046 -0.050 +0.082 -0.094
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Table D.34: B0 → K+K−K0
S

systematics.

Other φ(1020)
ACP (+σ) ACP (−σ) βeff (+σ) βeff (−σ)

φ(1020) Mass/Width +0.001 -0.000 +0.000 -0.001
f0(1500) Mass/Width +0.002 -0.000 +0.000 -0.002
f ′

2(1525) Mass/Width +0.002 -0.000 +0.000 -0.001
f0(1710) Mass/Width +0.003 -0.001 +0.000 -0.002
χc0 Mass/Width +0.001 -0.000 +0.000 -0.001
φ(1020) BW radius +0.003 -0.015 +0.033 -0.012
f ′

2(1525) BW radius +0.006 -0.000 +0.000 -0.002
D, J/ψ Mass/Width +0.001 -0.000 +0.000 -0.001
f0(980) Mass +0.002 -0.000 +0.000 -0.003
f0(980) gπ, gK +0.003 -0.001 +0.000 -0.003
B-meson BW radius +0.007 -0.007 +0.012 -0.012
Eff. map statistics +0.003 -0.003 +0.003 -0.003
Tracking +0.000 -0.000 +0.000 -0.000
NBB +0.000 -0.000 +0.000 -0.000
K0

S eff +0.000 -0.000 +0.000 -0.000
PID +0.001 -0.001 +0.002 -0.002
Fixed PDF Params (1) +0.008 -0.005 +0.004 -0.008
Fixed PDF Params (2) +0.005 -0.005 +0.003 -0.003
Signal NN Shape +0.005 -0.005 +0.000 -0.000
Add f2(1270) +0.001 -0.001 +0.001 -0.001
Add f0(1370), a0

0(1450) +0.006 -0.006 +0.008 -0.008
Add a−0 (1450) +0.001 -0.001 +0.001 -0.001
Add φ(1680) +0.018 -0.018 +0.030 -0.030
Add f2(2010), f2(2300) +0.001 -0.001 +0.001 -0.001
Add a−0 (980) +0.001 -0.001 +0.000 -0.000
DP PDF Stat. +0.007 -0.007 +0.006 -0.006
SVT/beamspot/DCS +0.014 -0.014 +0.002 -0.002
Fit Bias +0.014 -0.014 +0.006 -0.006
Total +0.033 -0.034 +0.048 -0.038



APPENDIX D. SYSTEMATICS TABLES 262

Table D.35: B0 → K+K−K0
S

systematics.

f0(980) Other
βeff (+σ) βeff (−σ) βeff (+σ) βeff (−σ)

φ(1020) Mass/Width +0.000 -0.000 +0.000 -0.000
f0(1500) Mass/Width +0.003 -0.003 +0.001 -0.000
f ′

2(1525) Mass/Width +0.000 -0.001 +0.000 -0.000
f0(1710) Mass/Width +0.005 -0.005 +0.002 -0.000
χc0 Mass/Width +0.001 -0.001 +0.001 -0.000
φ(1020) BW radius +0.002 -0.003 +0.005 -0.013
f ′

2(1525) BW radius +0.001 -0.001 +0.004 -0.000
D, J/ψ Mass/Width +0.000 -0.000 +0.000 -0.000
f0(980) Mass +0.004 -0.005 +0.002 -0.001
f0(980) gπ, gK +0.004 -0.003 +0.002 -0.001
B-meson BW radius +0.001 -0.001 +0.006 -0.006
Eff. map statistics +0.002 -0.002 +0.001 -0.001
Tracking +0.000 -0.000 +0.000 -0.000
NBB +0.000 -0.000 +0.000 -0.000
K0

S eff +0.000 -0.000 +0.000 -0.000
PID +0.000 -0.000 +0.001 -0.001
Fixed PDF Params (1) +0.006 -0.004 +0.005 -0.003
Fixed PDF Params (2) +0.003 -0.003 +0.002 -0.002
Signal NN Shape +0.001 -0.001 +0.001 -0.001
Add f2(1270) +0.006 -0.006 +0.005 -0.005
Add f0(1370), a0

0(1450) +0.067 -0.067 +0.013 -0.013
Add a−0 (1450) +0.003 -0.003 +0.002 -0.002
Add φ(1680) +0.022 -0.022 +0.003 -0.003
Add f2(2010), f2(2300) +0.002 -0.002 +0.002 -0.002
Add a−0 (980) +0.001 -0.001 +0.000 -0.000
DP PDF Stat. +0.012 -0.012 +0.006 -0.006
SVT/beamspot/DCS +0.002 -0.002 +0.002 -0.002
Fit Bias +0.006 -0.006 +0.006 -0.006
Total +0.073 -0.073 +0.020 -0.023
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