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Abstract

The study of the power density spectrum (PDS) of fluctuations in the X-ray flux from

active galactic nuclei (AGN) complements spectral studies in giving us a view into the

processes operating in accreting compact objects. An important line of investigation

is the comparison of the PDS from AGN with those from galactic black hole binaries;

a related area of focus is the scaling relation between time scales for the variability

and the black hole mass. The PDS of AGN is traditionally modeled using segments

of power laws joined together at so-called break frequencies; associations of the break

time scales, i.e., the inverses of the break frequencies, with time scales of physical

processes thought to operate in these sources are then sought. I analyze the Method

of Light Curve Simulations that is commonly used to characterize the PDS in AGN

with a view to making the method as sensitive as possible to the shape of the PDS. I

identify several weaknesses in the current implementation of the method and propose

alternatives that can substitute for some of the key steps in the method. I focus on

the complications introduced by uneven sampling in the light curve, the development

of a fit statistic that is better matched to the distributions of power in the PDS, and

the statistical evaluation of the fit between the observed data and the model for the

PDS. Using archival data on one AGN, NGC 3516, I validate my changes against

previously reported results. I also report new results on the PDS in NGC 4945,

a Seyfert 2 galaxy with a well-determined black hole mass. This source provides

an opportunity to investigate whether the PDS of Seyfert 1 and Seyfert 2 galaxies

differ. It is also an attractive object for placement on the black hole mass-break

time scale relation. Unfortunately, with the available data on NGC 4945, significant

uncertainties on the break frequency in its PDS remain.
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Chapter 1

Introduction

1.1 AGN Variability

From the very early days of X-ray astronomy, it has been recognized that many of

the sources of X-rays in the universe are time-variable in flux and that this variability

holds important clues about the nature of the object. The study of the variations

seen in the X-ray flux from active galactic nuclei (AGN) has by now a rich history

of both observational findings [1, 2, 3, 4, 5] and diverse theoretical effort to model

the processes involved. The large luminosities of AGN implied from distance mea-

surements combined with the presence of even very short-term fluctuations on the

order of minutes to hours is most naturally explained by the paradigm of accretion of

matter onto a supermassive black hole at the center of these galaxies. The extreme

gravitational potential created by these black holes creates the conditions for the re-

lease of a significant fraction of the rest energy of the accreted matter, while the short

time scales of variability are a result of the relatively small physical sizes of the black

holes. A central feature of the paradigm is the existence of an accretion disk around

the black hole, formed out of the difference in ease with which the energy of infalling

gas is dissipated (easy) and the angular momentum transported outward (difficult).

Due to the strong radial dependence of the tidal forces around a black hole, most of

the energy release is then expected to occur toward the inner parts of the accretion

disk.

1



2 CHAPTER 1. INTRODUCTION

An example of a light curve1 from an AGN is shown in Figure 1.1, with the

intensively-sampled segments shown at higher resolution in Figure 1.2; these data

were obtained from NGC 3516 using the Rossi X-ray Timing Explorer (RXTE ) PCA

instrument. (More information on NGC 3516 is included in Section 5.1; the PCA

instrument is introduced in more detail in Section 2.1.) The realization that the

variability cannot be decomposed into a small number of periodic signals leads to

the question of the relative contributions of variations at different time scales. Given

the natural interpretation of the observed X-ray flux as a measure of the (time-

dependent) release of energy in the AGN, one central avenue of investigation has been

the modeling of the variations as individual flares of activity that can be combined

with a distribution of amplitudes and durations to mimick the flickering behavior

seen in these sources [6].

A central question has always been whether the variety of behaviors in galactic

black hole binaries and AGN can be reduced to a common set of physical processes

operating on vastly different time scales simply due to the different physical sizes of

the objects. From the scaling of the tidal gravitational forces with distance from the

central black hole, and assuming a dissipation parameterized by the α viscosity pa-

rameter, the temperature in the accretion disk can be estimated [7]; the temperature

at the innermost stable circular orbit (ISCO), in the vicinity of which most of the

energy release is expected to take place, scales inversely as the 1/4th power of the

black hole mass. For supermassive black holes, such as in AGN, this temperature

leads to thermal emission in the UV range of the electromagnetic spectrum, much

too low to account for the observationally detected X-ray flux levels. (In addition,

the observed X-ray spectrum does not match an optically thick thermal spectrum.)

The model used to explain this situation invokes a corona of hot (∼100 keV) elec-

trons that produce the observed X-rays through inverse Compton scattering from the

lower-energy thermal seed photons emanating from the accretion disk [8, 9]. The

magnetic fields expected to be present in the accretion disk, while strictly speaking

only truly necessary for the first of the following three, are generally thought to be the

1The term “light curve” denotes the measurement of the flux from an light source as a function
of time.
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Figure 1.1: NGC 3516 light curve covering all RXTE observations of this source.
The energy band over which the counts were extracted is 2–10 keV, and the back-
ground counts as predicted by pcabackest have been subtracted. All count rates have
been normalized to one PCU for observations where multiple PCUs were switched on
that could be combined in the data extraction. The typical count rate uncertainty
(±0.23 counts s−1) is about the size of the plot marker. This overall light curve was
subsequently broken into four parts: one long- and one medium-term light curves
(both starting at time equal to zero), and two short-term light curves (noticeable
by the high density of points in two locations). The plot includes missing bins that
have been filled in with linear interpolation; one stretch of such bins is evident in the
long-term light curve between 2–3 × 107 s.
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Figure 1.2: NGC 3516 medium- and short-term light curves, showing the correspond-
ing segments in the full light curve with higher time resolution. The top panel includes
the medium- and the 1997 short-term light curves, the lower panel is the 1998 short-
term light curve.
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crucial element linking the outward transportation of angular momentum (through

coupling radially-separated elements in the differentially rotating disk), the release

of gravitational potential energy (in the form of magnetic reconnection events in the

tangled fields), and the heating of the corona. The power law emission in the X-ray

band from AGN can then be explained as the result of repeated Compton upscatter-

ing events [10]. The upscattered photons then carry information about the physical

conditions in both the accretion disk as well as the corona, although disentangling

the effects of the two is not straightforward and would require precise short-timescale

spectral studies that are unavailable with current instruments. It is clear that the

observed spectrum is dependent on the optical depth of the corona τ (with τ likely

around 1 for most sources) as well as the temperature of the Comptonizing electrons

(∼ 100 keV) [11].

The study of the variability in this Compton upscattered X-ray flux provides an

insight into the time-varying conditions of the inner accretion disk and complements

the X-ray spectral studies that are also being done. Combined, they can be used to

constrain the geometry of the emission region, the energetics of the inner accretion

flow, the strength and orientation of the magnetic field, and the population of elec-

trons in the corona. The variability could in principle be due to changing conditions

in any of the constituent parts (such as the disk, the corona, or the magnetic fields)

or in the geometrical arrangement of the emitting versus upscattering regions (e.g.

[12]). The focus on a variable matter accretion rate shows particular promise, how-

ever [13]. Specifically, the model in which the variations are produced by disturbances

propagating inward in the accretion disk and setting up fluctuations at progressively

shorter time scales [14] is a good fit to the available observational evidence, fore-

most the finding that the amplitude of the variability is proportional to the flux (the

so-called “rms-flux relation” [15, 16]).
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1.2 Analysis of Variability—The Power Density

Spectrum (PDS)

The tool of choice for the analysis of AGN light curves is the power density spectrum

(PDS), even though a number of other tools are available that may in fact be more

suited to investigate the aperiodic incoherent fluctuations that characterize these light

curves (see Section 3.2). The PDS expresses the contribution of different frequencies

to the overall variability; at its core is a Fourier transform to pass from the time

domain to the frequency domain. The PDS then disregards the phase information

inherent in the description of the variability as a sum of sine and cosine functions and

focuses instead on the amplitude. As an example, the PDS (more precisely called

the “periodogram” to distinguish between the tool—the PDS—and a experimental

measurement of it—the periodogram) derived from the NGC 3516 light curve shown

earlier is plotted in Figure 1.3; the plot shows four separate lines because the light

curve was broken into separate pieces with different sampling rates to calculate sep-

arate Fourier transforms covering distinct frequency ranges. (See Section 3.1.3 for a

critical analysis of this practice of splitting the PDS into sections.)

The straight-forward application of the Fourier transform to a set of data is made

complicated by the reality of the observations, such as the limitation that the duration

be less than infinite. Also, observations are rarely, if ever, truly continuous, and the

Fourier transform of a discretely sampled data set has important differences to that of

the continuous signal that one actually wishes to determine. Furthermore, especially

in astronomy, the experimenter often has limited control over the exact times at

which the continuous signal is being sampled: Given that the Earth’s atmosphere

is opaque to X-rays, satellite observations become a necessity, with their associated

complications of scheduling and observational constraints.

Finally, even with a knowledge of the measurement uncertainties in the light curve,

it is not in general possible to assign error bars to the periodogram of a stochastic

process such as the one presumably operating in AGN. This is due to the fact that

the expected range of possible outcomes of the PDS measurement is much larger than

the uncertainties induced by the finite precision with which the light curve could be



1.2. ANALYSIS OF VARIABILITY—THE POWER DENSITY SPECTRUM 7

10−8 10−7 10−6 10−5 10−410
−6

10
−5

10
−4

10
−3

0.
01

0.
1

po
w

er
 f 

P(
f) 

(H
z 

rm
s2 /H

z)

frequency f (Hz)
Figure 1.3: NGC 3516 “raw” periodogram, computed from the light curve in Fig-
ure 1.1. The practice of plotting in a log-log representation with the y-axis being the
periodogram power multiplied by the frequency ensures that the area underneath the
curve may continue to be interpreted as the contribution of different frequencies to
the overall variability. See Section 5.1 for more details on the periodogram of this
object.
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measured, which manifest themselves as an f 0 constant level in the periodogram (com-

monly called the “Poisson level”). After all, for a stochastic process, one would expect

a completely different light curve if one were to repeat the observation, resulting in

a new periodogram that differs significantly from the earlier one. This realization

brings up the question of stationarity of the process, i.e., whether the PDS itself is

time-invariant even when the periodogram shows changes from one observation to

the next. This is explored further in Section 3.1.2.

Under full recognition of the complications outlined above, significant work has

been done to measure the PDS of both galactic X-ray binaries and AGN. The obser-

vations on galactic sources are fundamentally different from those of AGN, however:

The short time scales of variability in the former allow useful data sets to be obtained

in relatively short pointings of a satellite, and the PDS can be very accurately mea-

sured by combining several pointings. This allows the power and its uncertainty to be

determined from the observations directly. In this way, the stationarity of the PDS

and the stochastic fluctuations of the power in the periodogram can be investigated

from the observations alone.

The much longer time scales in AGN necessitate the use of monitoring observa-

tions, where the same AGN will be observed for short “snapshots” over periods of

months to years. Furthermore, in order to keep the total exposure time within pratical

limits, it is common practice to schedule separate observations with different sam-

pling intervals for the low-, medium-, and high-frequency part of the PDS, with the

result that each of the periodograms measured in this way includes only part of the

overall variability; this introduces biases in the periodogram (red noise leak, aliasing;

see Section 3.1.3) that need to be accounted for in the analysis. Only one measure-

ment of the PDS in a given frequency range can reasonably be expected with current

instruments (except for the high-frequency range, for which several independent ob-

servations can sometimes be scheduled), such that it is not possible to investigate the

uncertainties on the periodogram values directly from the observations. In addition,

a certain fraction of snapshots might be missing due to scheduling constraints, and

the exact time at which the snapshots are taken often falls not on a strictly regular

grid; this again changes the shape of the periodogram. The accurate determination of
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the PDS based on such observations necessitate an analysis algorithm quite unlike in

the case of galactic X-ray binaries, namely the reliance on a Monte Carlo simulation

framework that is able to incorporate information about the sampling of the observed

light curve and that includes a prescription for the expected variations in the PDS

introduced by the stochastic nature of the emission process (see Section 1.5 below).

1.3 Interpretation of the PDS

Many observational similarities are found in the PDS of AGN and galactic X-ray

binaries [17, 18, 19]. While early observations resulted in periodograms that were

generally well-characterized as “red noise” power law spectra (i.e., the periodogram

power P proportional to some power α of the frequency f : P (f) ∝ f−α, with α

typically between 1 and 2) without identifiable features, more recent work makes

evident the significant information content in the PDS.

Pretty quickly, subsequent observations allowed the detection of departures from

simple power law behavior, and the identification of so-called “break frequencies”

where the shape of the PDS exhibits a change in the power law index has become an

important pursuit. (The presence of breaks in the PDS was already expected from

the necessity to keep the power integrated over all frequencies finite.) More recent

data, especially from observations on galactic sources, show the PDS to be much more

complex in detail, with well-determined peaks in the power corresponding to quasi-

periodic oscillations (QPOs). Sometimes, the shape of the PDS can successfully be

modeled as the sum of a small number of Lorentzian profiles [20], which have a natural

interpretation as damped harmonic oscillations. For AGN, however, the periodograms

continue to be of low quality compared to those of galactic sources, and a description

of the shape of AGN PDS as two or three segments of power laws joined together

at break frequencies is entirely adequate given current data. The QPOs may well be

there, just like in the case of galactic sources, but they are not expected to be easy

to detect with current instruments [21].

An important consideration is how the time scales of the variations, specifically

the break frequencies (or the centroids of the Lorentzian profiles), depend on the
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mass of the black hole. In the simplest models, the system acquires an overall length

scale given by the size of the Schwarzschild radius, with the expectation that the

time scales for all characteristic variations in the source should scale linearly with it.

With the Schwarzschild radius being proportional to the mass of the black hole, the

variability time scales should then scale accordingly. The identification of the physical

origin of the variations is however made complicated by the fact that the time scale

corresponding to typical break frequencies are higher than the light-crossing time for

the Schwarzschild radius by a factor of several thousand.

Observationally, this simple relationship between the black hole mass and the time

scales for variability is by now well-supported and is frequently invoked in attempts

to measure the masses of black holes in AGN. Over the years significant evidence

has accumulated in support of it [22, 23, 24, 25, 26, 27, 28, 29, 30, 31], in no small

part also because no severe contradictory evidence has been found to date. It is

known, however, that the features in the PDS (breaks and QPO peaks) in galactic

X-ray binaries shift in frequency depending on the (instantaneous) mass accretion

rate. The question then becomes: Are these two parameters sufficient to explain the

observed differences in both galactic sources and AGN, and the evidence so far seems

to indicate that they are, even across the five to six orders of magnitude in mass

difference [13]. Overall, while important physical characteristics might be different

between these two classes of sources, such as the temperature and density of the inner

accretion flow [17], it appears that AGN, in many of their observational properties, are

really just scaled-up versions of galactic accretion systems. Even the quasi-periodic

oscillations (QPOs), long searched for in AGN, have recently been found in one object

[32].

The exact physical origin of the break(s) in the PDS is not yet clear. Clues are

provided by the correlated changes in the variability and spectral properties of galactic

X-ray binaries during state changes (e.g. from low/hard to high/soft or vice versa)

[17]. Furthermore, the location of the breaks in the PDS change even within each

state depending on the luminosity of the source. The most common interpretation

of the high/soft state is that the accretion disk in this case reaches all the way to

the ISCO around the black hole, which sets a minimum radius for the accretion disk
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that depends only on the mass and spin of the black hole (which are of course not

expected to vary at all on the types of time scales explored by the observations).

The reason for the focus on the high/soft state is that most of the AGN observed to

date with a view to measuring their PDS have been by necessity the brightest ones,

which discriminates against them being in the low/hard state. The Keplerian rotation

period at the ISCO is much too short to be identified with the break frequency seen in

the high/soft PDS, and the thermal time scale, while longer, is unable to account for

the variations in the PDS within the high/soft state. A more promising choice is the

viscous time scale at the ISCO, which depends not only on the radius of the ISCO,

but also on the scale height of the accretion disk and which therefore provides the

additional degree of freedom needed to explain the changes in the PDS depending on

the accretion rate [13]. (The viscous time scale measures the time scale for movement

of gas within the accretion disk due to the effective viscosity in the disk [7].) The

variability power below the break frequency may then be interpreted as being due

to the inward-propagating stochastic fluctuations in the accretion rate (as explored

earlier), while the smaller contribution from fluctuations at higher frequencies could

be due to short-term feedback processes between the accretion disk and the corona.

An accurate determination of the break frequencies in AGN PDS is therefore an

important contribution to the theoretical modeling of these systems.

A separate effort to unify disparate observational evidence concerns the varieties of

behavior seen within the broad overall class of active galaxies, which contain Seyfert

1 and 2 galaxies, quasars, BL Lac objects, blazars, optically violent variables, and a

handful of other subclasses. The Unification Model of AGN activity [33, 34] explains

the observational differences between active galaxies as orientation effects, where the

direct view of the central engine in Seyfert 1s is blocked by a circumnuclear torus

with significant optical depth to both optical and X-ray radiation in Seyfert 2s. This

torus is then identified with the outer regions of the accretion disk.

From an observational standpoint, an important outstanding question is whether

the variability properties of these two classes of active galaxies differ; the equivalent

task for the theoretician is the modeling of these sources with a view to predicting how

the orientation of the accretion disk with respect to our line-of-sight might change
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the observed variability. Because of the obscuration in Seyfert 2 AGN, their flux

levels tend to be much lower than in Seyfert 1s, and measurements of the variability

properties of the former are significantly lagging behind, although the gap is starting

to close [35, 36]. On a separate front, the drive to unify the observed variability

between radio-quiet (Seyfert galaxies) and radio-loud objects (blazars) is showing

promise also [13]. The investigation into the connection between changes in the

inner accretion flow and corresponding responses in the base of the jet, from where

the emission seen in blazars predominantly originates, opens up the exciting frontier

on the detailed physical modeling of the central engine itself, with the associated

questions involving the magnetic field close to the black hole and the composition of

the base of the jet, among many others. This then provides the missing piece of the

puzzle linking the up-to-now separate investigations into accretion flows, which this

work forms part of, and jets, where I was fortunate to have an opportunity to make

a small contribution also by investigating the Chandra observations of PKS 0637-752

[37].

1.4 Goal for the Dissertation—The PDS of

NGC 4945

The overall goal of my research efforts leading up to this dissertation was the deter-

mination of the PDS in NGC 4945, a Seyfert 2 galaxy [38] which, due to its relatively

small distance from us, is one of the only ones bright enough for successful monitoring

observations with current instruments, even though much of the X-ray flux from the

source is absorbed by the circumnuclear material. The mass of the central black hole

in NGC 4945 has been determined to good precision using megamaser observations

[39], which makes this AGN an attractive target for measuring a break frequency and

thereby providing a point on the black hole mass-break time scale relationship with

much smaller error bars compared to the other objects for which a break time scale

has been measured [25]. In addition, its mass, at ≈ 1.4 × 106M�, is low compared
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to other AGN, allowing for the determination of its PDS in a relatively short over-

all timespan. Being a Seyfert 2 galaxy, it also opens up the investigation into the

question whether Seyfert 1s and Seyfert 2s differ in the shape of their PDS.

1.5 The Method of Light Curve Simulations

As explored above, the investigation into the PDS of AGN is hampered by the fact

that only one measurement of the periodogram is generally possible and that it has

to rely on a light curve that is not in general sampled on a regular grid of observation

times. In the absence of a-priori knowledge about the range of possible outcomes of a

PDS measurement under these conditions, a Monte Carlo simulation algorithm needs

to be employed to provide this range against which the observed periodogram can be

compared (see discussion of this point in Section 1.2 above). The analysis therefore

becomes a model-dependent description of the observed shape of the PDS.

Various implementations of this simulation framework exist and show a definite

trend over time incorporating more and more of the complexities of the actual obser-

vations [40, 41, 42, 43, 44, 45, 46, 47]. A significant development was reached with

the publication of the psresp method in Uttley et al. (2002) [48], on which most

subsequent investigations into AGN PDS shapes are based [25, 27, 49, 50, 51, 16, 52,

53, 20, 54, 55, 56].

The method is fairly complex in the details and includes many examples of deci-

sions that the investigator needs to make based on the nature of the data that are

to be investigated with it. One central aspect of the method is that the simulation

algorithm needs to generate light curves that correspond in their relevant character-

istics as closely as possible to the observed ones. Of further concern is the significant

usage of statistical tools in the comparison between observed and simulated data. It

is unfortunate that neither the original 2002 paper introducing the method nor any

of the subsequent publications go into sufficient detail on the actual implementation.

In my work, I often had to infer the most likely course that the authors followed

based on an assessment of possible alternatives. One goal of my research leading up

to this dissertation therefore became the careful outlining of the components of the
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psresp method and the validation of the choices made by the original authors. In

this process, I discovered many possible alternatives to individual components, and

I investigated a number of them with the goal of making the method as sensitive as

possible to the shape of the PDS.

While very complex shapes of the PDS are seen in galactic X-ray binaries, the

quality of data on AGN is such that the PDS is often satisfactorily modeled as seg-

ments of power laws that are joined together at so-called break frequencies where

the power law index changes discontinuously. The task then becomes to accurately

measure the parameters of the PDS model, such that comparisons between different

AGN and between AGN and galactic black hole binaries can be made. Of central

importance is the measurement of the break frequencies; as explored above, they are

expected to scale with the black hole mass and become an important characteristic

in the comparison between sources.

In order to express the stochastic variations seen in AGN light curves, the simula-

tion algorithm includes at its core a prescription for the expected range of variations

in the light curves. For the psresp method, this function is provided by the prescrip-

tion for the generation of artificial light curves in Timmer & König (1995) [57]. The

question whether this prescription is applicable to AGN variability studies features

prominently in my critical assessment of the method. For one, the Timmer&König al-

gorithm does not reproduce the rms-flux relation. The relevant sections below include

a number of other findings and recommendations based on my extensive investigation

into the method.

It is important to note that the above description of the range of possible outcomes

of a PDS measurement is phenomenological only and does not include any information

about the physical emission process or the (time-varying) conditions of the emitting

material. In my view, this is the most serious shortcoming of the analysis method

as currently formulated. It is unfortunate that the theoretical effort in modeling the

behavior of black holes and accretion disks is a significant distance away from being

able to substitute for the above a-priori assumption about the stochasticity in the

observed light curves. (This is explored further in the opening paragraphs to Chap-

ter 3.) This reliance on a phenomenological description of the variability necessitated
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by the current mismatch between the capabilities of the theoretical models and the

requirements imposed on them from the observational side adds a certain caveat to

all of the results coming out of the application of the analysis method. I present my

assessment of this situation in Sections 4.2.1 and 6.1.1.



Chapter 2

OBSERVATIONS OF AGN

X-RAY VARIABILITY

2.1 The Rossi X-ray Timing Explorer (RXTE)

The Rossi X-ray Timing Explorer (RXTE ) is a NASA satellite dedicated to studying

the X-ray sky. It was launched in December 1995, with a lifetime goal of 5 years [58].

Remarkably, it continues to operate to this date. Its three instruments, the Propor-

tional Counter Array (PCA), the High Energy X-ray Timing Experiment (HEXTE),

and the All-Sky Monitor (ASM), work in tandem, complementing each other’s capa-

bilities. The PCA detects X-rays in the energy band from 2–60 keV with unprece-

dented µs time resolution, HEXTE extends the energy band upward to 250 keV, and

the ASM continuously monitors the flux from bright X-ray sources.

The spacecraft was optimized for fast slews to desired targets in the sky, allowing

for the sequential observation of a large number of objects. In contrast to the Chandra

and XMM-Newton X-ray observatories, RXTE lacks focusing and high-resolution

spectral capabilities. However, especially due to the PCA’s fine time resolution, it

fulfills an important role in the study of the X-ray sky complementary to these later

missions.

The PCA instrument, which was used for all the observations contributing to

this dissertation, is based on the technology of detecting X-rays (as well as other

16
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particles such as electrons and protons, unfortunately; see below for the discussion

about the background signal in the instrument) traveling through a gas by means of

high-voltage sensing wires. Depending on the design of such a detector, the strength

of the electric signal that an interaction between a passing X-ray photon and the gas

produces is proportional to the energy of the photon; such detectors are therefore

called proportional counters [59]. The PCA consists of five co-aligned, identically-

designed proportional counter units (PCUs), each with a 1◦ field-of-view provided

by a collimator [60]. The main volume in each PCU is taken up by four layers of

anodes immersed in xenon gas; a fifth layer on top is filled with propane gas instead.

The propane layer and the lowest of the four xenon layer form the veto layers for

background rejection. (Given its design, the instrument does not have any focusing

capabilities, which does not allow for the separation of source and background inside

the instrument. This leads to a large background contribution to the signal that needs

to be accounted for; see Section 2.3 below for more details on the PCA background

estimation.) Within the remaining three xenon layers, the anodes are interconnected

in an alternating fashion to read-out electronics on either side of the layers [61].

The on-board electronics converts the analog signal from an interaction of a photon

with the gas (called an “event”) into a digital measurement of the photon’s energy,

expressed in form of a “pulse height analysis” (PHA) channel number. Because of

the stochastic nature of particle-gas interactions, photons of a given energy may be

detected in a broad range of PHA channels, such that the correspondence between a

PHA channel number and the energies of the X-ray events contained therein becomes

only nominal. This process is called “redistribution” and forms the basis for the

model-dependent spectral analysis in X-ray astronomy (see e.g. [62, 63, 64]). For light

curve analysis, this redistribution of X-ray energies is less important, and the user-

chosen energy range for the light curve may be converted into a set of PHA channel

numbers by consulting the nominal energies associated with the channel boundaries.

Each PCU operates independently, and data from multiple PCUs may be com-

bined to increase the effective area. From early on in the mission, due to frequent

breakdown events, PCUs 1, 3, and 4 (in the 0–4 numbering scheme adopted by the



18 CHAPTER 2. OBSERVATIONS OF AGN X-RAY VARIABILITY

PCA instrument team) are no longer switched on for observations that do not re-

quire the full effective area of the PCA [61]. Furthermore, the loss of the propane

layer in PCU 0 on May 12, 2000 resulted in an increased background rate for that

PCU [65]. It continued to yield scientifically useful data for observations whose accu-

racy was not limited by the uncertainties in the background; more recently, PCU 0

has been switched on and off independently of the remaining well-operating PCU 2,

presumably also due to increased breakdown events. As a result, AGN monitoring

observations conducted between about 1999 and 2005 are limited to using PCUs 0

and 2 only, later observations PCU 2 only.

2.2 AGN Monitoring Observations with RXTE

For X-ray variability studies of AGN, the fast slewing capabilities of RXTE, coupled

with the large effective area of the PCA over the 2–30 keV bandpass, allowed this

observatory to have a significant impact. Previous studies by, among others, the

EXOSAT, Ginga, and ASCA satellites were limited to a small number of bright

sources. RXTE has been able to observe many more AGN, especially fainter ones.

Still, the characteristics of the PCA instrument coupled with the large field-of-view

results in an appreciable background. In many cases, the background count rate is

as large as the net count rate from the object under investigation or even dominates

the total count rate. The typical count rates for AGN are in the range of a few

to 20 counts/s, while the background count rate is around 10 counts/s in both the

2–10 keV and 8–30 keV bands. It is fortunate that the model is able to estimate

the expected background to high precision, such that the variations in the net count

rate can be extracted underneath it. Investigations into possible systematic effects

from background modeling, such as unaccounted-for variability in the background

itself, have generally revealed little expected influence on the results [48]. (However,

the RXTE data reduction pipeline calculates an erroneous error bar on background-

subtracted light curves, which can throw off the calculations of the expected Poisson

level; see Sections 2.3 and 4.2.5.)

Due to the large dynamic range in time scales over which the X-ray flux from AGN
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varies, observations of these sources need to span a long period of time (months to

years), yet be frequent enough to capture the shorter-term variations on time scales

of hours to days. Each “snapshot” need not be long; an exposure of around 1000 s

results in a flux measurement with an acceptable level of uncertainty [49]. (PCA

observations of all AGN are background-dominated, however, limiting the sensitivity

of the instrument to very faint AGN. Most AGN observed with RXTE are therefore

relatively close-by Seyfert 1s.) Through RXTE ’s fast slews, these snapshots can be

interspersed between observations of other targets without degrading the duty cycle

of the observatory too much.

In order to keep the total exposure time on any single AGN within reasonable

bounds, the monitoring observations have often been split up to cover different time

scales separately. This was done under the thought that it is not necessary to revisit

a source every few hours for several years in order to measure its variability over that

range of time scales. A “long” light curve may be obtained by spacing the observations

several days apart, while a more densely sampled “medium” light curve could include

an observation every 4 hours, but span only a month, say. In this manner, one

obtains two light curves that each should contain information about the variability on

a subrange of the desired time scales. Even shorter time scales (minutes to hours) may

be included by tasking RXTE with observing one AGN uninterrupted for a few hours.

For some AGN, Chandra and XMM-Newton have been utilized in the same manner.

However, as it turns out, this practice of splitting the observations into separate light

curves at different time resolution has the potential to introduce significant biases

(due to red noise leak and aliasing) in the periodogram (see Section 3.1.3).

The series of observations contributing to one of these light curves (“long” or

“medium”) are usually scheduled to be as evenly spaced in time as possible. How-

ever, a variety of constraints may influence the availability of the observatory at the

desired times: During passages of the satellite through the South Atlantic Anomaly,

the PCA instrument needs to be powered down to avoid damage from the increased

particle flux; the satellite has an operational constraint on the angle between the

target position and the Sun [66]; the source may be occulted by the Earth; or a

higher-priority observation may displace the monitoring snapshot. Even in the case
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of “uninterrupted” short time scale observations, for which the Earth and Sun con-

straints can be mitigated through appropriate scheduling, the SAA passages and pri-

ority observations may still lead to interruptions. Unfortunately, many of the above

complications lead to interruptions on time scales that are of intrinsic interest in the

study of AGN variability; this is in contrast to galactic X-ray binaries, which vary

on much shorter time scales and for which uninterrupted observations are routinely

done. One therefore needs to find ways in the analysis of AGN variability data to

cope with gaps in the light curves as well as observation times that do not necessarily

fall on an evenly spaced grid.

2.3 Data Reduction for the RXTE

PCA Instrument

As with other X-ray observatories, the raw data returned by the RXTE instruments

are not immediately usable for scientific analysis. The telemetry stream from the

satellite includes not only the data on the detected X-rays, but also “house-keeping”

data on the state of the instruments and the position and orientation of the satel-

lite [67]. The “data reduction” step in the analysis is the procedure of distilling

the scientifically useful information for the current investigation out of the raw data.

House-keeping information is used to filter out events during times when the state

of the observatory is known to produce faulty data. The filtered events may then

be grouped together to form an energy spectrum or a light curve, depending on the

goals of the investigation. Furthermore, the expected background in the data must

be modeled.

For the PCA, the instrument team developed a pipeline of software tools that

converts the raw data into a number of standardized formats [68], greatly reducing

the complexity of the analysis for the end user. For many investigations, including

AGN monitoring observations, the “Standard-2” format is most useful. Other formats

may be used if, for example, the Standard-2 intrinsic time resolution of 16 s is too

coarse. In what follows, I describe the data reduction steps that I applied to the AGN
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monitoring data; it is not meant to cover all possible ways in which PCA data may

be handled.

The Standard-2 data products for any observation conducted by RXTE are avail-

able in the HEASARC Archive [69] after the initial proprietary period of 1 year has

expired. (For proprietary data as well as immediate access to recent observations

not yet fully processed by the instrument pipeline, a modified procedure is required

to gain access to the data.) Different pointings of the satellite (i.e. the “snapshots”

that make up the series of observations for a particular AGN) are distinguished by

the use of an Observation ID (abbreviated ObsID). In general, each ObsID needs

to be reduced separately; however, the instrument team developed a script (the rex

script [70]) that automates the process.

The first step in the data reduction is the preparation of a “filter file” with the

use of the xtefilt tool included in the FTOOLS [71] software package. The filter file

stores instrument and satellite house-keeping data needed as input into later soft-

ware tools. Next, the background for the observation needs to be estimated: Most

of the (non-X-ray) particle background will produce a hit in both the propane and

the xenon veto layers and can be discarded in this way. The significant remaining

sources of background are activation in the satellite by passage through the South

Atlantic Anomaly [72, 73] and the cosmic X-ray background [74]. Since the PCA

is a non-focusing instrument, directional information is not available to separate the

source and the background, as is routinely done for example for the Chandra in-

struments [75]. Instead, a model for the background must be used to estimate its

contribution to the total number of events in a given time period. Through extensive

blank-sky observations at various locations of the spacecraft in its orbit, it has been

determined that this unrejected particle background correlates very well with inter-

nal satellite housekeeping data. The model uses these data to calculate the expected

background count rate at any given instant during a observation with the PCA. The

tool pcabackest [76, 77] allows the model to be invoked by the user to derive data

products that will enable the subsequent analysis to account for the background. The

background model for the PCA has undergone significant changes over the lifetime of

RXTE ; the version of pcabackest used for the data reduction (version 3.7) is based
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on the most up-to-date model. For AGN observations, the count rate in the PCA is

always within the range where the “faint” background model is appropriate.

The output of the pcabackest tool is a data file that mimicks the characteristics

of the actual observation, but includes only the estimated background (including

the expected contribution from the cosmic X-ray background). It is subsequently

used to extract the background-only light curve and/or spectrum for the observation

(see below). The contribution of the background counts to the observed counts is

then typically subtracted before proceeding with the analysis, although alternative

approaches that, instead of subtracting the background, account for it through a

modeling process are also possible. In my analysis, I subtracted the expected number

of counts from the total counts and proceeded to analyze the background-subtracted

light curves exclusively; since the background model is by now well-developed, this

can be done confidently. The remaining unmodeled variance in the net count rate is

very small (< 0.05 counts/s/PCU, which is well below the count rates for the AGN

considered in this work) [78], but it does set a lower limit to the faintness of an object

that can be observed with RXTE.

The third step uses the maketime tool to calculate the Good Time Intervals (GTIs)

over which the instrument is expected to have performed within acceptable parame-

ters to produce scientifically valid data. User-chosen criteria for the inclusion of time

segments are given in the form of a boolean expression referencing the data in the filter

file. A recommended set of criteria is provided by the instrument team [79, 80]: event

contamination by electrons less than a certain threshold (ELECTRON2 < 0.1), satel-

lite pointing on target (OFFSET < 0.02) and away from the Earth’s limb (ELV > 10),

and the desired PCUs switched on (PCUn ON == 1). In the reduction of the AGN

data, I did not apply the breakdown filter (TIME SINCE BRK) since the spikes in

count rate expected during breakdown events would be easy to spot in the subsequent

analysis of the light curves; no such spikes were detected.

At this point, the requisite data products are ready for the extraction of the light

curve (at 16 s intrinsic resolution) and energy spectrum. The saextrct tool is used

for both of these tasks. The user needs to supply the PCU anodes from which events

are to be accumulated; the PCUs included in this step must match the ones used
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in the criteria for the GTI calculation. Extracting only the top layer in the PCUs

leads to the highest signal-to-noise ratio for a low-energy bandpass (e.g. the standard

2–10 keV used in AGN variability analysis); at higher energies, the signal-to-noise

ratio is maximized when the remaining two layers are included as well. For the

light curve extraction, the desired range of PHA channels need to be defined as well.

The energy-to-channel conversion table [81] may be used to determine the appropriate

range of channels. Gain changes in the PCA instrument result in shifts in the channel

boundaries, which necessitates a different range depending on the observation date.

The time periods over which the gain was kept constant are referred to as epochs.

For observations that span more than one epoch, the energy boundaries may undergo

a slight shift at the change of epochs; the effect of this discontinuity in the count

rate on the final results is expected to be small, however, and I did not correct for

it. Other researchers (e.g. [49]) use PCA observations of a supernova remnant (whose

X-ray flux is essentially constant over the lifetime of the RXTE mission) to normalize

the count rate between epochs. (This correction is only approximate since the energy

spectra of supernova remnants and AGN differ in the RXTE bandpass.) For epoch 5,

the energy-channel table for PCU 0 is different from the one for the other PCUs;

this stems from the loss of the propane layer in PCU 0. If PCU 0 data are to be

combined with those from the other PCUs, the light curve may either be extracted

separately for PCU 0 with a different range of channels, or the channel range may be

averaged between the PCUs and all PCUs that were switched on extracted together.

I employed the latter, since it simplifies the data reduction significantly and is not

expected to influence the results in any significant way.

Using the same parameters for saextrct, but operating on the background file

generated by pcabackest, the background spectrum and light curve are created. For

spectral analysis, both the source and background spectra are used; for the analysis

of the temporal variability, the background-subtracted “net” light curve is calculated

as the difference between the source and background light curves. (This may result

in negative “net” count rates if the source is faint, since the actually measured back-

ground count rate varies according to Poisson counting statistics. The subsequent

analysis tools need to be able to cope with this eventuality. Note also that the error
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bars on the background-subtracted net count rate values are incorrect if rex is run in

its standard mode: The tool that subtracts the background incorrectly assumes that

the estimated background also exhibits Poissonian fluctuations around its count rate.

In reality, the estimated background is known to a much higher precision than that.

The uncertainties on the net counts, being calculated in quadrature from the uncer-

tainties on the total (source plus background) and background counts, are therefore

over-estimated by a significant amount [82]. This has consequences in certain cases

for the modeling of the expected Poisson level; see Section 4.2.5.)

The rex script by default combines the spectra and light curves from all the

ObsIDs included in the extraction. This results in a combined spectrum spanning

the entire observation as well as a light curve (still at the 16 s intrinsic resolution)

that includes all snapshots. These data products are useful for checking the quality

of the extraction. The subsequent analysis likewise makes use of these combined data

products.

A final step in the preparation of the combined light curve that I applied is the

barycentric time correction, even though it might not strictly be necessary for AGN

monitoring observations, including those spanning time scales of a year or more1. The

faxbary tool may be used to calculate the barycentric time corrections. The corrected

time stamps for the bins in the light curve are no longer spaced an even 16 s apart;

since even spacing is a desired feature for the subsequent analysis, I replaced the

barycentric time stamps with the closest time stamp of a regular 16 s spaced grid.

Any effect of the small shift in time incurred in this step (maximum 8 s) is negligible.

1The barycentric correction accounts for the fact that the Earth, and therefore also the satellite,
is in orbit around the Sun and will receive signals from distant sources shifted in time with respect
to how an observer at rest with respect to the source would measure them. The times reported by
RXTE are in Terrestrial Time [83]. The difference between barycentric time and Terrestrial Time
is a sinusodial function of the Earth’s position along its orbit and is dependent on the declination
of the source, with a maximum of 8 min for sources on the celestial equator; the period of the
sinusodial variation is one year, of course. For long-term light curves, the size of the shift in time
between Terrestrial Time and barycentric time is usually much smaller than the sampling interval,
which is typically of order days. For short- and medium-term light curves, the total duration of the
observations is usually only a fraction of a year; also, any effect on the variability would be on year
time scales that are not probed by the medium- and short-term periodograms. The situation where
barycentric corrections are likely to be necessary is if an observation with a sampling interval on the
order of tens of minutes was conducted for a total duration on the order of a year.
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In order to perform spectral fits, the redistribution matrix file (RMF) and ancil-

lary response file (ARF) appropriate for the observation need to be generated in an

additional step [84]. Since this dissertation deals predominantly with the analysis of

light curves, this procedure is not explained here in more detail, although the time-

averaged spectrum of the observations of NGC 4945 is briefly investigated in Section

5.2 to check for long-term evolution of the spectral parameters.



Chapter 3

ANALYSIS OF VARIABILITY

From an observational standpoint, the goals of the analysis of AGN variability is the

accurate determination of as many characteristics of the observed variability as possi-

ble, in order to relate these characteristics to other measurements of AGN properties

as well as provide constraints on models drawn up to explain the AGN phenomenon.

It is evident from the light curves that these sources, just like galactic accretion sys-

tems, vary over a large range of time scales (i.e., the light curves are not the sum of

a small number of sinusoidally varying signals) and that the variations are “random”

in the sense that observations of the same object conducted at different times will

result in very different light curves.

The finding that the variability is composed of contributions from a range of time

scales opens up the investigation into the relative importance of the different time

scales represented in the variations. Related to this, the identification of characteristic

time scales above and below which the source behaves differently is an important goal,

since these time scales are expected to scale with the size (and thus black hole mass)

of the accretion systems. Many of the tools developed for variability analysis therefore

express characteristics of the variability as a function of time scale (or, equivalently,

temporal frequency).

The stochastic nature of the variability is usually analyzed within the paradigm

of stationary processes, such that any given observation is one possible realization

of an underlying process that does not itself change with time. In other words, the

26
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observations are subject to an inherent (limited) randomness embedded in an overall

steady state. The statistical properties of the variability, such as the average count

rate and the variance, will in general be different from one realization to the next,

but their expectation value is constant in time [85].

The analysis of such stochastic light curves is fundamentally different from e.g.

X-ray spectral analysis of non-variable emitters or the temporal analysis of a periodi-

cally varying source (e.g. pulsar). For deterministic observations such as these, if one

were to repeat the observations, we would expect the second data set to be consistent

with the first to within measurement uncertainties, barring unaccounted-for system-

atic errors. For stochastic processes, this is not true, since each data set is only one

realization of the underlying random process. One therefore needs an understanding

of the range of possible outcomes for any given observation. The degree to which

the observational data agree with the hypothesis of a stationary process must also be

investigated.

Plausibly because of the complications due to stochasticity, variability studies in

astrophysics and the associated tools are much less advanced than spectral or imaging

studies, for which standard tools are available that have been very well characterized

as to their statistical properties and fitness for particular investigations. This relative

lack of historical progress also applies to the theoretical and numerical modeling of the

accretion flow around compact objects; these models need to incorporate not only the

geometrical arrangement of electromagnetic fields and populations of energetic par-

ticles, but also their dynamical behavior over a large range of time scales. Many

models retain a large degree of flexibility that allows them to account for the obser-

vational findings with relative ease. Their overlapping ranges of predicted behavior

of accretion flows hampers the ability of the observations to constrain the models.

Conversely, the degree of flexibility inherent in the current models limits their useful-

ness as predictors for the expected range of outcomes of an observation. In general,

one is therefore forced to rely on an a priori phenomenological assumption about the

nature of the process and the degree of stochasticity (see also Section 4.2.1). The

upside of this situation is that observational findings such as the rms-flux relation,
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if established to a good level of robustness, provide a crucial input into the theoret-

ical effort, since any new model that is being proposed must be able to incorporate

the established observational facts. Most of the work, both observationally and in

the theoretical modeling, has focused on the information about the variability con-

tained in the Power Density Spectrum (see below), but other tools for the analysis

of stochastic variability (as explored at the end of this chapter) provide insights from

additional directions.

3.1 The Power Density Spectrum and its

Estimator, the Periodogram

The Power Density Spectrum (PDS, sometimes also called the Power Spectral Den-

sity, PSD) of a varying signal is defined as a function of frequency measuring their

respective contributions to the overall variability. There are fundamental differences

in the use of the PDS for the study of periodic signals on the one hand and broad-

band noise processes on the other. The present discussion will focus on the latter;

where appropriate, connections to the former will be alluded to, especially concerning

conventions that make most sense when viewed in light of the historical origin of the

periodogram for the study of periodic signals.

For a continuous signal extending over infinite time, the PDS is the squared am-

plitude of the signal’s Fourier transform. The signal as a function of time and the

PDS as a function of frequency therefore are simply two possible representations of

the signal, the first in the time domain, the latter in the frequency domain. They

do not contain the same amount of information, however: The phase information

inherent in the Fourier transform is discarded in the construction of the PDS.

Such a continuous, infinite signal is never feasible in practice: The time span over

which the signal is being observed is always finite, and measurements in science are

almost never continuous in the mathematical sense. (The most one can usually hope

for is closely spaced discrete measurements that approximate a continuous observa-

tion.) Because of this, the PDS of any real signal can only be approximated; the
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tool to achieve this is called the periodogram. By mathematical analogy to the PDS,

the periodogram is the squared amplitude of the data set’s discrete Fourier transform

[86]. Let sj be the signal strength at the discrete times tj (j = 0, 1, . . . , N − 1)1. The

periodogram P (f) as a function of frequency f can then be written as

P (f) = A
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, (3.1)

where A is an as-of-yet unspecified normalization constant. The value of P (f)

at any given frequency is usually called the “power,” even though it should more

correctly be referred to as the power density, since P (f) df is the actual variability

power in an infinitesimal slice of width df around f . An alternative interpretation of

the periodogram employs the idea of least-squares fitting of sinusoidal waves to the

signal in the time domain; P (f), modulo certain normalization factors, is equal to

the squared amplitude of the best-fitting sine wave with that frequency [88].

The step from continuous signal to observed sampled data points can be repre-

sented mathematically as a function W (t) (called the window function) multiplying

the continuous signal S(t). In the simplest case, W (t) is equal to 1 whenever the

signal was measured, and 0 everywhere else; more complex user-chosen window func-

tions are sometimes employed to fine-tune the influence that the sampling has on

the resulting frequency spectrum. Each sample sj used in Equation 3.1 can then be

written as the product of S(t) and Wj(t), where the latter is the individual window

function for the jth sample, with W (t) being the sum over j of the individual Wj(t).

1It matters for the high-frequency behavior of the periodogram whether the sj values represent
point estimates of the signal or average signal strength over a finite interval. In the latter case, the
measured variability power at time scales less than the interval length is obviously much reduced;
however, the power is affected at longer time scales also [87]. In the case of AGN X-ray monitoring
observations, the sj values are usually obtained through a rebinning step that converts the light
curve’s original binning to a coarser time resolution before the calculation of the periodogram.
Therefore, considerations about the effects of light curve binning do need to be taken into account,
such as in the calculation of the expected contribution from aliased power (see Section 4.2.4).
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In other words, the time-domain input into the calculation of the periodogram is not

S(t), but the product of S(t) and W (t). The Fourier transform of such a product

of functions is the frequency-domain convolution of the individual functions’ Fourier

transforms. The Fourier transform of the window function, which can be thought of

as equivalent to a Green’s function, can therefore be used to characterize how power is

being redistributed from one frequency to another and therefore what effect sampling

has on the Fourier transform of the signal. Note however that the determination of

the redistribution of power is not as straightforward as might be inferred from the

above discussion: The PDS of the sampled signal (formed by squaring the amplitude

of the convolution of the two Fourier transforms) is generally not equal to the convo-

lution of the PDS of S(t) and W (t) due to the cross-terms in the squared amplitude.

Nevertheless, the shape of the window function’s PDS often gives a useful indication

of the sensitivity of the sampled observations to variations at different frequencies and

of possible biases in the measured periodogram. (See Section 3.1.3 below for more

details on periodogram biases.)

In the definition of the periodogram, there is no requirement on a regular spacing

of the times tj. However, uneven spacing introduces additional considerations, which

will be dealt with further below (Section 3.1.5). For now, let it be assumed that

the tj values are equally spaced, with consecutive values separated by ∆Tsamp. (The

investigator is usually free to choose the value of ∆Tsamp under which she wishes to

analyze an observed light curve; it simply involves a rebinning of the observed light

curve to the new sampling interval, with the only condition that the new sampling

interval be larger than the old one. It is usually fixed ahead of time, however, by the

intended sampling interval with which the monitoring observations were scheduled.

Also, see Section 3.1.5 below for considerations about the choice of ∆Tsamp in the

case of uneven sampling.) The zero point for the time axis on which the tj values

are based does not matter—the periodogram as defined above is invariant under time

translation.

Likewise, there is no explicit requirement on the frequencies f over which the

periodogram is to be evaluated. If, however, the frequencies are equally spaced, the

computation speed can be increased through the use of recursion relations for the
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cosine and sine functions (see e.g. the implementation in [89]). In some situations,

further increases in computation speed can be achieved by utilizing a Fast Fourier

Transform routine to calculate the periodogram.

In choosing the range of frequencies over which to calculate the periodogram, the

following considerations are traditionally made:

Firstly, one of the central concepts in Fourier analysis is the sampling theorem,

which states that a bandwidth-limited signal (i.e. a signal that is known to include

contributions to its variability only up to some finite frequency) can be completely

described by its Fourier components if the signal is sampled at least at twice that

limiting frequency. Conversely, if the sampling rate is given, the data set sampled at

that rate contains complete information about the frequencies up to half the sampling

rate. This important limiting frequency (one half of the sampling rate) is called the

Nyquist frequency. The Nyquist frequency is traditionally chosen as the upper limit

to the periodogram’s frequency range, since the power values at higher frequencies do

not add any new information in the periodogram (see below for a description of the

distortions due to aliasing). For a time step of ∆Tsamp in the sampled data set, the

corresponding Nyquist frequency is

fNyq =
1

2 ∆Tsamp
. (3.2)

Secondly, the finite length of the observations provide a natural lower limit for the

frequencies in the periodogram: To accurately determine the amplitude of a sine wave,

one needs to measure it at least over one full period. The lowest frequency probed in

the periodogram is therefore the inverse of the observation length T = N ∆Tsamp. The

range of frequencies from 1/T to the Nyquist frequency is often called the bandpass

of the periodogram (although this represents an improper use of the term “bandpass”

[90]).

The two limits above combine to create a natural set of frequencies for the eval-

uation of the periodogram, namely the N/2 integer multiples of the fundamental

frequency 1/T up to the Nyquist frequency ((N − 1)/2 values, if N is odd). If the

signal is bandwidth limited to frequencies below the Nyquist frequency, these N/2
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values of the periodogram are statistically independent of each other (as a conse-

quence of the nulls in the Fourier transform of the window function at multiples of

the fundamental frequency) and constitute the smallest possible set of values from

which the original signal can be reconstructed without error [88]. Under this con-

ditions of sufficient sampling, the periodogram is an unbiased estimator of the PDS

(c.f. Section 3.1.3).

3.1.1 Periodogram Normalization

Various conventions are in use for the overall normalization of the periodogram. For

investigations into periodic phenomena, a commonly used normalization factor (A in

Equation 3.1) is A = 1/(2 σ2), where σ2 is the variance of the light curve samples sj.

Under this normalization convention, the heights of peaks in the periodogram map

onto statistical significances of detected signals through a simple formula [88].

Within the study of the broad-band shape of the PDS, the following normalization

is most often employed [91]:

A =
2 T

µ2 N2
, (3.3)

where T is the time span of the observation, µ is the average signal strength, and

N the number of entries in the light curve.

With this normalization, the integral of the periodogram between two frequencies

f1 and f2 equates to the contribution of the variations on the corresponding range of

time scales 1/f2 and 1/f1 to the overall fractional variance. (The fractional variance

is the variance of the light curve samples sj divided by the square of the samples’

mean.) The periodogram is then also most commonly plotted as f P (f) vs. f , with

both axes in logarithmic scaling; the practice of plotting f P (f) instead of P (f) in

a log-log plot ensures that the area underneath the plotted curve may continue to

be interpreted as the relative contributions of the different frequency ranges to the

overall variability.
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3.1.2 Stationarity of the Periodogram

In the context of stationary processes, the PDS is expected to remain unchanged in

time. Under this assumption, we may treat the periodogram calculated from a set of

measurements as one realization of the underlying stationary process characterized by

its PDS. Tests can be performed on a light curve to determine whether the observed

variations are likely to have arisen from a stationary process [85]. These tests often

rely on an unavoidable a priori assumption about the nature of the stochasticity.

Furthermore, other than the computing-intensive method of light curve simulations

detailed in Chapter 4, there is to my knowledge no test that can determine whether

two periodograms that span different ranges in frequency are likely to have been

produced by the same underlying PDS. Unless one assumes that the PDS is constant

in time, however, comparing observations conducted at different times would make

little sense. The interpretation whether the differences in the measured periodograms

express the normal range of the source’s behavior within a steady state or indicate

fundamental changes is not straightforward; this remains an open question.

3.1.3 Bias of the Periodogram

If the conditions of sufficient sampling are not satisfied, the periodogram becomes a

biased estimator of the PDS. Power below the fundamental frequency 1/T is trans-

ferred into the bandpass in a process called red noise leak; power above the Nyquist

frequency folds back into the bandpass in a process called aliasing. (Red noise leak

is easy to understand intuitively: Variations with frequencies below the fundamental

frequency manifest themselves as long-term trends in the light curve and can therefore

still have a influence on the inferred power above 1/T .) If the amount of power on

either side of the bandpass is comparable to the power inside it, the measured P (f)

values can become modified by appreciable amounts. The bias is in general frequency-

dependent, which means that the shape of the measured periodogram might differ

from the true shape of the PDS in systematic ways.

Methods to characterize the bias due to the above two effects therefore need

to be employed when studying the broad-band shape of the PDS. (In the study of
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periodic signals, considerations about possible bias in the periodogram are usually less

important, since the periodogram is analyzed with regard to localized peaks rather

than overall shape. However, there are other considerations, especially aliasing within

the bandpass, that are in turn prominent.) The bias of the periodogram is in general

very difficult to calculate a priori, since it depends on the (unknown) behavior of

the PDS both in and outside the bandpass. This is one of the main drivers toward

simulations; the way in which the method of light curve simulations incorporates the

above effects is explained in Chapter 4. However, some general statements about the

bias can be made:

Firstly, if there is significant power below the fundamental frequency of the peri-

odogram, the power being leaked into the bandpass has an approximate f−2 power

law shape. (This is due to the fact that for even sampling, the Fourier transform of

the window function is proportional to the sinc function (sinc(f) = sin(f)/f). The

envelope of the PDS of the even sampling window function therefore has a f−2 shape;

uneven sampling certainly has the potential to change this shape, but, as explored

in Section 3.1.5 below, the sampling is usually kept close to even in practice.) If the

true PDS inside the bandpass exhibits a power law shape with an index2 steeper than

2, the measured periodogram will be dominated by the power due to red noise leak.

This forms an important consideration for the scheduling of AGN monitoring obser-

vations: Ideally, the position of the suspected break frequency where the power law

index changes from low (0–1) to high (∼2 ) values should be well within the bandpass

of the periodogram, such that the power below the bandpass is small compared to the

power inside it. In reality, the (unavoidable) practice of conducting observations of

AGN at different time resolutions and combining the periodograms of the individual

light curves to form one overall periodogram of the source (see Section 2.2) means

that the position of the break frequency with respect to the individual periodograms’

fundamental frequency (given by 1/T ) varies, and the high-frequency periodograms

will most likely be in the regime where the power due to red noise leak is significant.

In some cases, those segments will contribute little, if any, information about the true

2Throughout this work, a power law index of α is taken to mean that the power decreases as a
function of frequency with a slope of −α in a log-log plot: P (f) ∝ f−α.



3.1. THE POWER DENSITY SPECTRUM 35

behavior of the PDS.

Related to the phenomenon of red noise leak, it is common practice to subtract

the sample average from the sj values before calculating the periodogram. If this is

not done, and the sample average is comparable or larger than the amplitude of the

variations, the power at zero frequency (due to the non-zero average of the sj values)

will leak into the bandpass of the periodogram and may overwhelm the variations

that the periodogram was intended to measure.

The second general trend of the bias in the periodogram, called aliasing, occurs

if the PDS in the vicinity of the Nyquist frequency falls off only slowly with fre-

quency (e.g. as a f−1 power law). In this case, there will be significant power above

the Nyquist frequency, modifying the power inside the bandpass. The effect of this

modification is a flattening-out of the high-frequency end of the periodogram, in the

extreme case to a f 0 constant behavior [48]. Again, whenever the measured peri-

odogram is dominated by leaked power, the true shape of the PDS will be hidden.

In this case, it is the long-term AGN monitoring observations that are most affected;

the Nyquist frequencies for these types of observations are often substantially below

the highest frequencies at which significant variability power is known (or suspected)

to exist.

Both red noise leak and aliasing have the effect of modifying the measured peri-

odogram power inside the bandpass, with the magnitude and frequency-dependence

of the bias dependent on the behavior of the PDS outside the bandpass. In principle,

therefore, the measured periodogram includes information about the PDS both in-

side and outside the bandpass and should allow, if the data are good enough, to make

statements about the likely behavior of the power to either side of the bandpass. To

my knowledge, this has not yet been systematically explored in connection with AGN

monitoring observations. It may well turn out, however, that due to degeneracies

the respective contributions from leaked power cannot be untangled in the measured

periodogram.

The measurement uncertainties inherent in the sj values on which the periodogram

is based are the source of an additional bias. Since these uncertainties are expected
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to be uncorrelated with each other, their effect is the addition of power to the peri-

odogram that has a frequency-independent expectation value; this constant is com-

monly called the “Poisson level.” For a given source count rate, the size of the typical

count rate uncertainty is a strong function of the background count rate, since the

Poissonian fluctuations on the total (source plus background) count rate are carried

through the background subtraction and therefore lead to a decrease in the signal-

to-noise ratio in the net count rate as the background increases. (However, note that

even in the presence of no background, the signal-to-noise ratio has a finite value

that scales only as the square root of the instrumental source count rate.) Due to

the random behavior of the fluctuations, the actually realized Poisson level exhibits

bin-to-bin variations also and might, with a background that is not strictly constant,

even acquire a time-dependence such that the actual Poisson level in the periodogram

is a time-integrated average over the observation.

Given that the high-frequency part of AGN PDS usually decreases as a power

law with an index of 1.5–2.0, while the Poisson level is constant with frequency, the

Poisson level tends to affect the highest frequencies only, and there is often a cross-

over frequency at which the power due to the intrinsic variability decreases below

the Poisson level. If the ∆t intrinsic spacing of the observations leads to a Nyquist

frequency that is higher than this cross-over frequency, one may choose to calculate the

periodogram only up to the cross-over frequency. This can be achieved for example by

rebinning the light curve to a larger time step before calculating the periodogram; as

an additional advantage, the associated reduction in the number of samples makes the

computational effort smaller. (Most implementations of the periodogram calculation

are algorithms of order N 2, meaning that the computational effort scales as the square

of the number of samples. Calculating the periodogram from the original sampling

instead, but simply eliminating the frequencies between the cross-over frequency and

the Nyquist frequency would only lead to a linear reduction in the computational

effort, while the rebinning leads to a quadratic reduction instead.)
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3.1.4 The Distribution of Power in the Periodogram, and

Periodogram Binning

Due to the stochasticity of the light curves from which the periodogram is calculated,

P (f) is a random variable in the sense that a repeated measurement of it would lead

to a different value. An understanding of the distribution of P (f) is essential in the

analysis of the periodogram. This is true both in the context of periodic signals, for

which the measurement uncertainties add noise to the observed samples that may lead

to spurious spikes in the periodogram, and the stochastic processes under considera-

tion here, where, in addition to the effect of measurement noise, the random nature

of the samples sj implies a corresponding randomness in the P (f) values. Pure white

noise, which in the time domain is characterized by Gaussian random deviations from

the mean with a constant variance, leads to P (f) values that are distributed as χ2
2

(a χ2 variable with 2 degrees of freedom), with a frequency-independent normaliza-

tion. It is then generally assumed that “non-white” noise (such as the “red” noise

and other PDS shapes seen in AGN observations) exhibits the same χ2
2 distribution,

but modified in normalization according to the underlying shape of the PDS [87, 85].

Note, however, that the above assumption is only one among theoretically limitless

possibilities for the distribution of the periodogram values, depending on the nature

of the stochasticity; currently available observational evidence is insufficient to either

confirm or disprove the above assumption with any certainty. (A more detailed in-

vestigation into the distribution of power is offered in the discussion to the selection

of an appropriate fit statistic for the comparison between a model for the PDS and

the observed data; see Section 4.2.7.)

Independent of the exact nature of the stochasticity, the periodogram of a ran-

domly varying signal is an inconsistent estimator of the PDS: The degree of scatter

due to the stochastic nature of the process is independent of the amount of data from

which the periodogram is calculated, since the number of independent frequencies

over which the periodogram is measured increases proportionally to the number of

samples in the time domain. This scatter is large; the χ2
2 distribution has a standard

deviation equal to its mean, i.e. an uncertainty of 100%. A widely used strategy to
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reduce the scatter in the periodogram is to bin up P (f) values adjacent in frequency,

generating a periodogram with coarser frequency resolution, but better-determined

P (f) values. As the number of samples in the light curve increases, the scatter in the

binned periodogram can be reduced without affecting the frequency resolution any

further, establishing the binned periodogram as a consistent estimator.

A variation on this procedure uses the logarithms (usually to the base 10) of the

P (f) values [92]. The resulting “logarithmically binned” periodogram has two de-

sirable features: Firstly, the distribution of the binned P (f) values converges faster

to a log-normal distribution as the bin size is increased than the corresponding “lin-

early binned” periodogram’s P (f) values tend to a Gaussian distribution. This is due

to the fact that the χ2
2 distribution is more symmetric in a logarithmic transforma-

tion. Secondly, the variance of the logarithmic P (f) values is thought to be known

a priori irrespective of the shape of the PDS being estimated and constant across

all frequencies [92]. While the authors acknowledge the introduction of a bias in the

logarithmically transformed power values, their conclusion that the bias is constant

across all frequencies in the periodogram is based on the assumption that the distri-

bution of power at each frequency is the above-mentioned χ2
2 distribution. In reality,

because of the action of the window function, this may not be universally true, and

the bias may well turn out to be frequency-dependent, with a resulting systematic

change in the periodogram away from the true shape of the PDS. Since the Monte

Carlo simulation framework detailed in the subsequent sections is needed in the anal-

ysis of the periodogram, this effect can be incorporated in the simulation, such that

the simulated periodograms against which the observed one is compared exhibit the

same change in their shape. The values of any model parameters (such as power law

indices or break frequencies; see Section 4.2.1) derived as part of the analysis are

therefore expected to be unaffected by this. The existence of the bias does throw up

the question of how to calculate the total rms power from a logarithmically rebinned

periodogram; I have not been able to reconcile my own confusion on this point3.

3As a thought experiment, imagine calculating the total rms power of a periodogram that was
binned in linear space; to a good approximation this is equal to the sum over all frequency bins
of the product of the power in each frequency bin times the bin width. For a logarithmically
binned periodogram, one would need to correct the logarithmic values for the bias (Equation [17]
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Independently of whether linear or logarithmic rebinning is used, an important

consideration concerning the coarseness of the final rebinned periodogram is the sub-

sequent computational effort required to analyze it. In most cases, this effort rises

linearly with the number of bins in the periodogram, which, depending on the sim-

ulation algorithm employed to analyze it, may necessitate minimizing as much as

possible this number. A separate consideration that tends to push the decision to-

ward more bins is the deleterious smoothing of intrinsic features in the periodogram if

the rebinning is too coarse; however, given that the models used to describe the PDS

of AGN commonly do not include any features with widths less than an order of mag-

nitude in frequency (with the notable exception of models that look for QPOs), this

consideration is usually given less weight than the first. Finally, the coarseness of the

binning can have a complex influence on the overall goodness-of-fit that is obtained

in the comparison between the observed data and any model applied to it; often, the

goodness-of-fit of the best fitting model is degraded the finer the binning. This is

usually interpreted as unaccounted-for systematic differences between the model and

the data that tend to cancel out under sufficient averaging.

3.1.5 The Periodogram of Unevenly Sampled Data

If the set of tj values are not equally spaced, the data set sj is said to be unevenly

sampled. This could either be due to missing bins in a data set that is otherwise

evenly sampled, or the tj values could simply be incompatible with a regular grid of

observation times. (In some cases, the observation times exhibit only small deviations

from a truly regular grid, and the measured sj values may be safely interpreted as

a sequence of regularly spaced bins. The shifts in time that the samples undergo in

in Papadakis & Lawrence [1993]), convert the resulting values back to linear values, and finally do
the sum of the product of those values and the bin width. In the limit where there is no binning,
i.e., where each original periodogram value is kept intact without any averaging over adjacent values
taking place, the step of taking the logarithmic values back to linear space for the sum over all
frequency bins would, without the bias correction, be equal to the values in the linear values;
however, because in the former case we are dealing with a logarithmically “binned” periodogram
(“binned” in quotation marks, because in fact no binning took place), we would still be correcting
for the bias, which would make all values too large by 0.253 in the logarithm. One ends up with two
different values for the total power in the periodogram.
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these cases are by construction always less than the bin width, and any effect on the

periodogram would only be felt at frequencies higher than the Nyquist frequency [5].)

If one is searching for periodic signals in a time series, the distribution of P (f)

is useful to preserve under departures from even sampling, since this distribution

forms the basis for the determination of the statistical significance of peaks in the

periodogram. This provides the motivation for the introduction of correcting factors

in the periodogram [88], which in turn necessitate the use of a time-shift operation

to preserve also the desired time-translation invariance. This modified periodogram,

defined in Equation 10 in [88], is often called the Lomb-Scargle periodogram to make

explicit its specialized application to unevenly sampled data. These modifications

exemplify the historic origin of the periodogram in studies of periodic signals. The

determination of the statistical significance of peak values of P (f) in the case of

broad-band noise is not usually considered important, and there is no overriding

reason to prefer the Lomb-Scargle periodogram over the classical periodogram in this

case. Nevertheless, in my implementation of the investigations into uneven sampling

below, I relied on the Lomb-Scargle periodogram even for the investigation of broad-

band noise without periodic components.

The selection of the inverse of the observation length as the lowest frequency in

the Lomb-Scargle periodogram is preserved. However, the time span T is tradition-

ally calculated as the difference between the largest and smallest member of the set

of times tj and therefore differs subtly from the definition of T used in the case of

even sampling: In the latter case, the desirable orthogonality properties of the Fourier

transform base functions are only preserved if the regularly spaced times are inter-

preted as a sequence of time bins (rather than simply samples at the given times); T

is then the width of the bins multiplied by the number of bins. In the case of uneven

sampling, the condition for orthogonality in the Fourier transform base functions is

broken, and the fundamental frequency loses its special meaning. Furthermore, since

uneven times do not lend themselves to the interpretation as a sequence of time bins,

there is no well-defined bin width, and the calculation of T as above is the most

intuitive replacement.

The selection of the upper frequency limit in the Lomb-Scargle periodogram is less
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straightforward than the lower frequency limit. Since the times tj are not a constant

time step apart, there is no well-defined Nyquist frequency. The Nyquist frequency

corresponding to the average time between samples may be calculated as

fNyq =
N

2 T
. (3.4)

However, since at least one pair of consecutive samples is closer together in time

than the average spacing between samples, the periodogram at frequencies higher than

this “average” Nyquist frequency may still include useful information. The choice of

upper frequency limit is left to the experimenter; the limit that is most appropriate

for a specific investigation will often have to be found from a careful inspection of

the sampling pattern. (One viable prescription relies on a determination of the range

over which the periodogram is sensitive to the variability intrinsic to the source and

not dominated by the window function, which may be calculated using the “spectral

window,” an extension of the concept of the window function to uneven sampling

[88].)

As a consequence of uneven sampling, the independence of the periodogram val-

ues at multiples of the fundamental frequency is broken. There is therefore no longer

a “natural” set of frequencies as in the case of even sampling. Algorithms for the

calculation of the Lomb-Scargle periodogram frequently include an additional param-

eter to decrease the frequency spacing to values smaller than 1/T . This does not

in general add any new information, since the power at the additional frequencies is

correlated with the existing values, but it may be used to produce smoother plots of

the periodogram.

Uneven sampling manifests itself as a strong source of bias, entering through

the now much more complex behavior of the window function. The effect on the

resulting periodogram depends crucially on the detailed nature of the sampling; a

number of sampling patterns relevant to AGN monitoring observations are explored

in Figures 3.1–3.3. These plots were obtained within the framework of light curve

simulations, which is explained in detail in Chapter 4. These plots illustrating not

just the behavior of the power as a function of frequency, but also the distribution



42 CHAPTER 3. ANALYSIS OF VARIABILITY

10−6 10−5 10−4 10−3

0.
01

0.
1

1

po
w

er
 f 

P(
f) 

(H
z 

rm
s2 /H

z)

frequency f (Hz)

1%

10%

50%

90%
99%

Figure 3.1: Percentiles of the distribution of power in the periodogram of 1000 sim-
ulated light curves from a broken power law PDS model. The values of the model
parameters are: low-frequency power law index αlow = 1.0, high-frequency power law
index αhigh = 1.5, break frequency fbr = 2 × 10−5 Hz. The light curves were simulated
with a time step of 320 s, evenly sampled for 14,640 samples. Continuous observation
over each 320 s bin was assumed, such that aliasing is negligible (see Section 4.2.4 and
footnote on Page 29). Red noise leak was included in the simulation; the “lengthening
factor” in the light curve simulation algorithm (see Section 4.2.1) was set to 1145. For
each frequency bin, the power corresponding to the 1, 10, 50, 90, and 99 percentile of
the distribution of power was determined; the plotted lines connect the corresponding
percentiles across all frequency bins. The reduction in the spread of the distribution
with increasing frequency is a consequence of the averaging of adjacent frequencies in
the periodogram binning procedure.
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Figure 3.2: Same as Figure 3.1, but with 1% of the 14,640 samples missing, and the
periodogram being calculated only on the remaining samples (which is mathematically
equivalent to pegging the missing values at zero). The missing bins are distributed
randomly across the time span of the observation.
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Figure 3.3: Same as Figure 3.2, but with 10% of the 14,640 samples missing.
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Figure 3.4: Distribution of estimates for the high-frequency power law index of the
light curves simulated for Figure 3.1. For each of the simulated light curves, which
are based on a PDS model with a high-frequency power law index of αhigh = 1.5,
the best-fitting αhigh was found over a two-dimensional {αhigh, fbr} parameter space.
(The low-frequency power law index αlow was kept fixed at 1.0.) The fit statistic used
is the χ2

dist detailed in Section 4.2.7; values of the fit statistic were calculated over a
grid of parameter values obtained by varying αhigh from 1.0 to 2.0 in steps of 0.02 and
fbr from 5.2 × 10−8 Hz to 10−3 Hz in approximately equally spaced logarithmic steps
with 3 values per decade. For each of the possible best-fit values of αhigh, the height
of the histogram records the number of occurrences of that value out of a total of
1000 simulated light curves. Since the size of the bin along the αhigh axis is constant,
this histogram and the distribution of estimates are the same except for the overall
normalization. (Note that, due to the finite size of the comparison set of simulated
light curves that are needed to calculate the χ2

dist fit statistic, bin-to-bin fluctuations
in this and the following histograms calculated using light curve simulations often
exceed Poissonian fluctuations that would be expected if this complication was not
present.)
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Figure 3.5: Same as Figure 3.4, except the distribution of estimates is derived from
the light curves used to generate Figure 3.2.
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Figure 3.6: Same as Figure 3.4, except the distribution of estimates is derived from
the light curves used to generate Figure 3.3.
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of power within each frequency bin, were derived by calculating the given percentiles

(1%, 10%, 50%, 90%, and 99%) of the distribution of power in each bin and then

plotting each percentile level as a stepped curve across all bins. (All subsequent

plots of percentiles of the distributions were derived in the same way.) The chosen

representation as percentiles of the distribution of values in each periodogram bin is

useful in showing the effect of the light curve sampling on the “average” periodogram;

due to the stochasticity inherent in the light curve simulations, the periodogram of

any individual light curve will fluctuate from bin to bin within the spread of the

distribution, but, in the context of uneven sampling, it is the average behavior that

is of interest.

From the above plots, it is evident that even small numbers of missing bins signif-

icantly affect the power at high frequencies. These distortions affect the information

content of the periodogram, as shown in the Figures 3.4–3.6. In these plots, the width

of the distribution of estimates is a measure of how precisely the chosen model pa-

rameter (the high frequency slope in this case) can be determined from the data—the

narrower the distribution, the better the data’s ability to discriminate between differ-

ent values of the parameter. The narrowest distribution is obtained from the evenly

sampled case; the higher the degree of uneven sampling, the broader the distribution.

This loss of information in the periodogram can be understood by considering the

effect of the window function: As the sampling becomes more and more uneven, the

convolution of the intrinsic PDS shape with the Fourier transform of the window

function tends to make the power at any given frequency more and more dependent

on the behavior of the PDS at other frequencies, sometimes to such a degree that the

true power is overwhelmed by power at other frequencies.

Within the above investigation into the effects of uneven sampling, I employed

two techniques in an attempt to reduce the bias: increasing the time step in the light

curve, and interpolation.

Firstly, if the sampling pattern includes a fraction of missing bins that is not

too high, with those bins distributed such that no two of them are adjacent to each

other, the high-frequency distortions can be effectively eliminated by doubling the

time step in the light curve (Figure 3.7). The upper frequency limit, and therefore
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Figure 3.7: Same as Figure 3.1, except the light curves were simulated with a time
step of 640 s, evenly sampled for 7,320 samples. All other parameters for the light
curve simulation procedure were unchanged. As a consequence of the larger time step,
the upper frequency limit for the periodograms is reduced by a factor of 2 compared
to Figure 3.2; the range of the frequency axis was left unchanged to illustrate the
reduction.
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Figure 3.8: Same as Figure 3.4, except the distribution of estimates is derived from
the light curves used to generate Figure 3.7.
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Figure 3.9: Same as Figure 3.3, except the missing 10% of the 14,640 samples are
clustered together in groups of up to 30. Using uniform probability distributions, the
size of these groups and the length of the filled segment between any two adjacent
groups were chosen at random such that the overall fraction of missing bins came
close to 10%.

also the (effective) information content of the periodogram, is reduced by a factor

of 2; however, due to the bias in the periodogram of the original light curve, that

part of the frequency spectrum does not contain much information about the PDS

shape anyway. The distribution of estimates (Figure 3.8) indicates that the reduced

bandpass without distortions is able to recover the true shape of the PDS better

than the original bandpass with distortions for the case where 10% of the samples

are missing, and there is no appreciable difference in the width of the distribution

of estimates between the reduced bandpass and the original bandpass with 1% of

samples missing.
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Figure 3.10: Same as Figure 3.1, except the sampling pattern was derived from the
actual samples in the 2002 observation of NGC 4945. (See text for details.)

If the missing bins are clustered, the procedure of increasing the time step in the

light curve to decrease the distortions becomes less straightforward. One option is

to choose a time step large enough that the longest gap in the light curve is entirely

absorbed within one or two new bins. This might lead to a rather drastic reduction

in the bandpass of the periodogram with associated loss of information, however, and

the alternative approach using interpolation might be more appropriate. The bias

due to clustered missing bins appears to be much smaller than if the same number

of missing bins occurred individually (Figure 3.9), so steps to reduce the bias might

sometimes not be necessary at all.

In other cases, the bias introduced by uneven sampling can be so strong as to

completely obscure the behavior of the PDS across most of the frequency range over
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Figure 3.11: Same as Figure 3.4, except the distribution of estimates is derived from
the light curves used to generate Figure 3.10.
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which the periodogram is calculated: The sampling pattern of the 2001 observation

of NGC 4945 includes both an intermediate time scale part, with a sample every

few hours, and an intensive part, with nearly-continuous observations. (See Section

5.2 for details.) It was determined from the uncertainties in the count rates that a

time step of 320 s in the intensive part would result in a Nyquist frequency close to

the cross-over frequency above which the Poisson level dominates. At one point, I

therefore attempted to calculate the periodogram of NGC 4945 with a time step of

320 s, combining both the intermediate and intensive parts in one light curve. Each

snapshot in the medium-term light curve was broken into three closely-spaced data

points separated by significant gaps (of order hours), while the short-term segment

was fairly evenly sampled at 320 s, but again with significant gaps. Simulations with

this sampling pattern are shown in Figure 3.10. Note that the same underlying PDS

shape was used to generate these periodograms; however, their behavior is unlike any

of the ones with more benign sampling. The associated distribution of estimates (Fig-

ure 3.11), which does not have one well-defined peak like the previous distributions,

confirms that the grossly distorted periodograms in this case do not retain much in-

formation about the true shape of the PDS, and a recovery of the high-frequency

power law index is hopeless. The solution, as exemplified in Section 5.2, involves

splitting the observations into two separate light curves with different time steps and

performing the periodogram calculation independently on both.

The second approach to reduce the bias due to uneven sampling is to use inter-

polation across missing data points. Throughout this exercise, I used only simple

linear interpolation between the bins adjacent to missing ones; it is doubtful that a

more complex interpolation procedure would offer significantly better performance.

The fundamental problem with interpolation is that it introduces data that have not

actually been observed, but then treats those data no differently than the real ones.

By linearly interpolating across gaps in the light curve, one is making the assumption

that there is no significant variations on time scales comparable to the length of the

interpolated segment. If the true PDS does have non-negligible power at the corre-

sponding frequencies, interpolation tends to suppress those variations. It is therefore

always important to study the possible biases introduced by interpolation in detail.
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Figure 3.12: Same as Figure 3.2 (i.e., 1% of samples missing), except the missing
samples in the simulated light curves were filled in using linear interpolation between
adjacent samples.
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Figure 3.13: Same as Figure 3.3 (i.e., 10% of samples missing), except the missing
samples in the simulated light curves were filled in using linear interpolation between
adjacent samples.
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Figure 3.14: Same as Figure 3.4, except the distribution of estimates is derived from
the light curves used to generate Figure 3.12.
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Figure 3.15: Same as Figure 3.4, except the distribution of estimates is derived from
simulated light curves that exhibit the same sampling pattern as in Figure 3.9 (i.e.,
10% of samples missing, clustered into groups). Linear interpolation was then used
to fill in the missing samples. (The percentile plot of the light curves on which this
plot is based is not shown; it would be indistinguishable from the one in Figure 3.12.)
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Figures 3.12 and 3.13 show the reduction in bias obtained using interpolation.

Plots of the distribution of estimates (Figures 3.14 and 3.15) reveal that interpolation

effectively restores full information in the periodogram and does not alter the recovery

of the true PDS shape appreciably, even in the case where the missing bins are

clustered (where several consecutive bins needed to be interpolated). As a caveat,

this investigation was only conducted for one PDS model (with a high-frequency

power law index αh = 1.5), so I am unable to say whether the restoration of the high-

frequency shape of the periodogram would happen to the same degree for a model

with a different value for αh. Models with a “hard” spectrum (αh ≈ 1) might behave

differently, since the interpolation has the potential to suppress the high-frequency

variations that are now more prominent than in the case of αh = 1.5.

The two techniques outlined above (time step increase and interpolation) are very

easily combined: For a given sampling pattern obtained in an observation, increase

the time step until the largest gaps are no more than a few time steps wide, then in-

terpolate across the gaps. The measure whether a particular rebinning/interpolation

scheme has merit should always be the sensitivity of the resulting periodogram to the

true shape of the PDS. From the above investigation, it appears that this criterion

is substantially equivalent to requiring the light curve from which the periodogram

is being calculated to be as close to evenly sampled as possible, even if frequency

coverage has to be sacrificed or artificial data in the form of interpolated bins need

to be introduced.

3.2 Other Tools for Variability Analysis

Other tools are available to characterize the variability seen in AGN X-ray observa-

tions. While the present work focuses on the PDS, it is illustrative to consider how

these other tools relate to the PDS.

Minimum Doubling Time One of the earliest measure of the variability in an

AGN X-ray light curve was the minimum doubling time seen in the observations.

Correlations were shown between the doubling time and X-ray luminosity [1] as well
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as black hole mass inferred from emission line widths [22]. The interpretation of the

doubling time rests on the supposition that a region around the central black hole in

these sources (whose size plausibly scales in tandem with the Schwarzschild radius of

the black hole) exhibits coherent variations, such that an observed coherent rise in

intensity by an appreciable factor (×2, say, as in the cited references) places a limit

on its size.

In light of contemporary understanding of these light curves, however, the min-

imum doubling time is an imprecise measure of the variability: Variations occur at

a range of time scales, and the random superposition of contributions from different

time scales can lead to a rise by a factor of 2 over a time scale that is not strongly

associated with the time scales of the original contributions. From the study of the

PDS of these sources, there is no readily identified shortest time scale present in the

light curves. One may also question whether the minimum doubling time in a (by

necessity) finite segment of observation is representative of the typical behavior of

the source. Furthermore, measurement uncertainties are a potential source of error

in the measurement, and there is no readily available statistical prescription for the

uncertainty associated with a particular value for the doubling time in an observation.

Excess Variance The excess variance [85, 93, 94] is a measure of the overall amount

of variation in the light curve. By correcting the measured variance of the samples

by the contribution expected from measurement uncertainties, it is equivalent to

the integral of the PDS of the light curve between the fundamental and Nyquist

frequencies, with the Poisson level subtracted. The excess variance is well suited for

lower-quality observations that do not lend themselves to the calculation of the PDS.

Its use is being advocated for tests of stationarity in observed data, and the discovery

of the rms-flux relationship in AGN relied heavily on it.

Autocorrelation The autocorrelation function is a measure of the degree to which

the behavior of the light curve at one point in time influences the behavior at other

times [95, 96]. The function expresses, as a function of the time lag τ , the amount

of overlap between the signal and the same signal shifted in time by τ . Just like the



3.2. OTHER TOOLS FOR VARIABILITY ANALYSIS 61

PDS, it is a global measure of the variability in that it averages contributions from

localized variations over the full time span of the measurement. In fact, the PDS and

the autocorrelation function form a Fourier-transform pair [97]. The autocorrelation

function offers no specific computational or statistical advantages over the PDS and,

given the more intuitive interpretation of the PDS, is not widely used for the analysis

of AGN X-ray light curves.

Structure Function The (first order) structure function [98] is defined as the

average square difference between the signal at two points in time separated by a

time lag τ . It rests therefore on some of the same conceptual underpinnings as the

autocorrelation function, and its behavior is related to the PDS [99]. One of the main

features of the structure function is the fixed rise as τ 2 at low time lags resulting

from the piece-wise linear behavior of the signal. The point at which the structure

function deviates from this τ 2 behavior is then identified as the time scale at which

the variations due to the physical processes operating in these sources start to make

themselves felt. Although some authors identify certain desirable features in the

structure function that allows it to be calculated even for poorly sampled data and

without the complications due to windowing and aliasing [99, 100], the statistical

behavior of the structure function is not well understood in the presence of stochastic

variations, and the function values at high τ exhibit large fluctuations that hamper

the interpretation of the overall shape of the function [101].

Wavelet Analysis Whereas the PDS measures the variations in a signal globally

(i.e., over the full length of the observation) by the use of base functions that extend

over all times (the sine and cosine functions of the Fourier transform), wavelet analysis

utilizes base functions that are localized both in frequency and in time [102]. As such,

these base functions are much better suited at describing localized phenomena, which

provides for a more nuanced description of the variability. Within the framework of

AGN variability being produced by spatially and temporally localized flares in the

accretion flow, wavelets are a good match to the expected signals in the light curves.

The use of wavelet transforms instead of the Fourier transform is therefore being
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advocated as a more fruitful avenue for the comparison between observations and

theoretical models [103, 104].

Bayesian Blocks A very different method for the investigation of variable signals

is the Bayesian Blocks technique [105]. Just like other methods in this listing, it

operates on the light curve in the time domain; in contrast, however, it can operate

on data sets other than binned photon counts. The description of the variability

after the application of the Bayesian Blocks algorithm is in the form of the most

probable segmentation of the observation into blocks of time within which the source

exhibits no statistically significant variations. The relative intensity between blocks

then expresses the structure of the variations over time. The method is most naturally

suited to analyze isolated large changes in intensity (such as γ-ray bursts); to my

knowledge, it has not yet been applied in a systematic way to AGN X-ray light

curves.



Chapter 4

THE METHOD OF LIGHT

CURVE SIMULATIONS

The Method of Light Curve Simulations is a data analysis method for investigating

the Power Density Spectra (PDS) of a stochastic processes such as the ones (presum-

ably) contributing to the AGN observations detailed in the previous chapter. The

method uses a model for the variability as the input into a Monte Carlo simulation

algorithm, whose output (i.e., the simulated light curves) in turn describes the possi-

ble outcomes of an observation of the modeled process. How well the model fits the

data is investigated using statistical tools that compare the simulated to the observed

data. The models used in the method are usually parametric, therefore the outcome

of the statistical investigation are the traditional products such as best-fit values of

the parameters, goodness-of-fit measures, and confidence regions on the parameters.

The main objective of a good implementation of this method is therefore the pro-

duction of simulated light curves that on the one hand correctly describe the possible

outcomes of the assumed model for the variability and on the other correspond in

their characteristics (e.g., distortions due to red noise leak and aliasing) as closely

as possible to the actually observed light curves. A secondary goal for the method

is the implementation of a statistical comparison between data and model that is as

sensitive as possible to the shape of the PDS. In this way, one expects to obtain an

algorithm for the analysis of these types of data that is able to discriminate maximally

63
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between competing models for the variability and provide an accurate measurement

of the parameters of the most likely model.

There are two main reasons why such an elaborate analysis method needs to be

employed: Firstly, the effects of the biases that modify the broad-band shape of the

periodogram (aliasing, red noise leak, and Poisson level) are difficult to calculate a

priori, but turn out to be fairly easily incorporated in the simulation. In addition,

both aliasing and red noise leak involve the convolution of the true PDS shape with the

Fourier transform of the window function. Undoing this convolution in the presence

of measurement uncertainties generally leads to a severe degradation in the precision

with which the unfolded spectrum can be measured; this is equivalent to the situation

encountered in X-ray spectral fitting [62, 63, 64].

Secondly, for stochastic processes, the measured periodogram is only one real-

ization of the underlying process. To investigate the process, one needs to have a

measure of the range of possible outcomes. The observed periodogram itself lacks

this information; in other words, the measured power values in each frequency bin do

not by themselves have error bars associated with them. (The measurement uncer-

tainties in the light curve manifest themselves as the Poisson level, which is a separate

process distinct from the variations due to the stochastic nature of the process.) The

simulations based on a model for the process are therefore indispensable as the source

of the error bars that make a comparison between the model and the measured data

possible1.

As explored below, the Method of Light Curve Simulations, at least in its canonical

form, has many shortcomings. The reason why I relied on it in my analysis of the

data on NGC 4945 is for comparison purposes with previous investigations into the

PDS of other AGN. Improvements to the method have been explored where feasible;

those places where my method differs from the canonical implementation are detailed

below.

1The possible range of outcomes can also be investigated using several independent measurements
of the PDS over a given frequency range. This is routinely done for variable galactic X-ray sources
(see e.g. [17, 106]). The long durations needed for the observations make this strategy impractical
for AGN, however.
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4.1 Organization of this Chapter

The analysis method is naturally divided into a number of steps that, linked together,

provide a pipeline for the generation and use of the simulated data. The pipeline put

forth as the psresp method by Uttley et al. (2002) [48] is the most widely used one; it

will be referred to as the canonical method and forms a useful baseline against which

other pipelines can be compared.

Given the large number of steps involved in the method and the almost unending

variations that are possible, I deem it helpful to present an overview of this chapter

in the form of a list, illustrating the data flow in the canonical method and listing

the variations to the method explored in this dissertation. The reason that such a

detailed listing is necessary even for the canonical method, which has been used by

a number of investigators, is that the foundational reports [48, 49] tend to be very

cursory in the specifics of the implementation. In fact, it is only through personal

communication with Alex Markowitz [101] that I have been able to piece together

the exact procedure that is followed in adding the Poisson level (Section 4.2.5) or in

deriving confidence regions (Section 4.2.8).

At the end of each subsection below, the viable implementations of the step under

investigation are summarized and given unique identifiers (e.g. 1D, 4A) which sub-

sequent chapters will use to refer back to the exact set-up of the analysis algorithm

that was used. An overall summary of the analysis method, including my recommen-

dations for changes in future implementations of it, is provided in Section 4.3.

1. PDS Model Selection and Simulation of Light Curves

(Section 4.2.1)

Canonical method—Phenomenological description, using parametrized function

for the shape of the PDS; Timmer&König algorithm for the generation of light

curves

Alternative implementations explored by me—(none)

Other alternatives—PDS models motivated by physical description of the emis-

sion process; adjustments to Timmer&König algorithm to incorporate rms-flux

relation or non-random phases
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2. Light Curve Rebinning

(Section 4.2.2)

Canonical method—Degradation of time resolution in simulated light curve to

match resolution of observed light curve

Alternative implementations explored by me—Inclusion of specific bins from

simulated light curve in new bins of rebinned light curve to match actual ob-

servation times

Other alternatives—(none)

3. Periodogram Calculation and Binning

(Section 4.2.3)

Canonical method—Procedure corresponding exactly to calculation of peri-

odogram of the observed light curve

Alternative implementations explored by me—Binning of periodogram in linear

space before conversion to logarithmic power

Other alternatives—Alternative implementations of discrete Fourier transform

4. Aliasing Correction

(Section 4.2.4)

Canonical method—Modeling of unaccounted-for aliased power as a constant in

the periodogram, added to average of model power in each frequency bin

Alternative implementations explored by me—Simulation of light curves with

higher time resolution to avoid aliasing addition

Other alternatives—(none)

5. Poisson Level

(Section 4.2.5)

Canonical method—Modeling of Poisson level as a constant in the periodogram,

added to average of model power in each frequency bin during search for best-fit

model normalization

Alternative implementations explored by me—Validation of the Poisson level

normalization against observed data; simulation of the Poisson level and inclu-

sion of bin-to-bin fluctuations in Poisson level; subtraction of Poisson level from
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observed periodogram as separate alternative

Other alternatives—proper description of Poissonian counting statistics in sim-

ulated light curves

6. Variance Adjustment of the Simulated Periodograms

(Section 4.2.6)

Canonical method—(incorporated in fit statistic calculation)

Alternative implementations explored by me—Individual renormalization of sim-

ulated periodograms to match variance in observed light curve

Other alternatives—(none)

7. Fit Statistic

(Section 4.2.7)

Canonical method—Fit statistic based on χ2 statistic; numerical search for best-

fit model normalization; rejection probability, equivalent of p-value, as ultimate

fit statistic

Alternative implementations explored by me—Fit statistic based on likelihood

ratio that is able to work with arbitrary unimodal distributions; smoothing

of simulated distributions of the periodogram power using stretched χ2 dis-

tributions, generalized Γ distributions, and cubic spline fits; full weighting of

independently measured short-term periodograms in the fit statistic

Other alternatives—Ignoring low-frequency bins in periodogram that show most

significant departure from log-normality

8. Statistical Evaluation of the Fit

(Section 4.2.8)

Canonical method—Point estimation using rejection probability; confidence re-

gions from ∆r prescription based on rejection probability

Alternative implementations explored by me—Point estimation using χ2
dist or χ2

λ

fit statistic directly; Neyman construction based on simulated distributions of

estimates

Other alternatives—Application of standard ∆χ2 procedure; direct use of rejec-

tion probability for confidence regions
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4.2 Analysis of the Method

4.2.1 PDS Model Selection and Simulation of Light Curves—

Step 1

Canonical Method The goal of the canonical method is the characterization of the

observed variability in terms of a parametric model fit to the PDS, where the best-fit

parameter values and their associated uncertainties may then be used in subsequent

analyses to investigate the variability processes. As mentioned in the Introduction,

one central such parameter is the break frequency, which is expected to scale with

the black hole mass in the AGN.

In this framework of a phenomenological description of the variability, the model

for the PDS is simply a mathematical function describing the shape of the PDS,

i.e. a function S(f, Θ) expressing the power density as a function of frequency f

and a set of model parameters Θ. Any number of functional forms for the depen-

dence of S(f, Θ) can be imagined. Given the historical measurements of the PDS

of AGN, which showed power law behavior over broad ranges in frequency, the func-

tions used are usually composed of segments of power law joined together at certain

break frequencies, where, in the absence of outside information about the values of

any of these parameters, both the power law indices and the break frequencies are

usually kept variable as part of the fitting procedure. The joining of these power law

segments can either be sharp, with the power law index changing non-continuously

across the boundary between segments, or in the form of a smooth transition from

one index to the next (as in the “knee model” [48]). Θ usually also includes an overall

normalization factor N .

The most commonly used model functions are the unbroken and broken power

law models. The unbroken power law model can be expressed as

S(f, Θ) = N

(

f

f0

)−α

, (4.1)

with Θ = (N, α, f0), where N is the normalization, α the power law index, and

f0 the fiducial frequency for the normalization. (N and f0 can of course be combined
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into a single parameter, but it is convenient to express the unbroken power law in

this form for comparison to the broken power law model.)

The form of the broken power law model that will be used in this work is

S(f, Θ) =







N
(

f
fb

)−αl

for f < fb

N
(

f
fb

)−αh

otherwise,
(4.2)

Here, Θ = (N, αl, αh, fb), with fb the break frequency that separates the low-

frequency power law with index αl from the high-frequency power law with index

αh.

Once the PDS model has been selected, a Monte Carlo simulation algorithm that

randomizes both the amplitude and phases of the sinusoidally varying components in

the overall signal [57] is used to generate as many simulated light curves as are needed

for the subsequent analysis. (I will refer to this procedure for generating simulated

light curves as the Timmer&König algorithm.) The core of the algorithm is the

randomized selection of the real and imaginary part of the Fourier transform of the

to-be-generated light curve; the frequencies for which these Fourier components are

calculated correspond to the natural frequencies of the Fourier transform for a time

series with the given duration T and sampling interval ∆Tsim. (I.e., the frequencies

are all the multiples of 1/T up to 1/(2 ∆Tsim).) The output of the algorithm is an

evenly sampled light curve with a user-chosen duration and sampling interval.

In general, one set of light curves will need to be simulated for each of the frequency

ranges that constitute the periodogram of the observed data (see Section 2.2). (If

two or more of the source light curves were obtained from observations in overlapping

time ranges, it may be possible to use one set of generated data to calculate the

corresponding simulated light curves.) The overall normalization of the PDS model

is arbitrary, as the periodograms will be scaled to match the normalization of the

observed periodogram later (Section 4.2.7). However, the relative normalization of the

light curves generated for the different frequency ranges matters, and it is important

to note that the normalization of S(f, Θ) is not rms2/Hz in the original Timmer &

König (1995) paper [57]. In order to preserve the correct normalization if the values

of the input model are expressed in rms2/Hz, the term S(Ω) in Equation 1 in their
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paper must be multiplied by N 2/(2T ), where N is the number of samples in the

to-be-simulated light curve2. (T = N ∆Tsim.)

Note that the duration and sampling interval supplied to the algorithm will in

general differ from those of both the original and rebinned observed light curve in

the corresponding frequency range: The simulated light curves undergo a rebinning

step of their own later (see Section 4.2.2), and there is no overriding reason why

the sampling interval with which the light curves are simulated should match the

original time step in the observed light curve. There are however considerations

about incorporating the effects of aliasing that influence the choice of time step for

the simulated light curves; this is explored in Section 4.2.4.

The duration of the simulated light curves might näıvely be thought to have the

only requirement that it match the duration of the observed light curve; in fact, to

account for red noise leak, it is often chosen to be significantly larger (usually by a

factor of 10 or more). This is due to the fact that in order to include variations in the

light curve at frequencies lower than the fundamental frequency of the observation

(1/T ), one needs to set up the Timmer&König algorithm to return a light curve at

least as long as the inverse of the lowest frequency that one desires to include. The

exact value of the factor by which the duration is lengthened has never been the

target of focused investigation; it has simply been assumed that 10 is large enough

to encompass most of the expected red noise leak. In reality, however, the behavior

of the PDS model below the lowest frequency included in the simulated light curve

has the potential to change the behavior inside the bandpass significantly if the PDS

shape is steep (power law shape with an index close to or above 2.0). In fact, given

that the red noise leak tends to spread power from low to high frequencies in the

approximate shape of a power law with index 2.0, if the power law index in that region

is higher than 2.0, no finite factor would suffice to incorporate all of the expected red

2The correct relative normalization of the simulated light curves in the different frequency ranges
cannot always be easily verified by checking whether the periodograms match up in normalization
across the range boundaries. The intrinsic stochastic fluctuations in the power can be reduced by
taking the average of a large number of simulated periodograms, but the effects of aliasing and red
noise leak will tend to modify the power at either end of each frequency range. Depending on the
strength of these corrections, the power at the high-frequency end of one frequency range may be
significantly different from the power at the corresponding low-frequency end of the next one.
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noise leak, since the magnitude of the contribution to the leaked power at any of the

frequencies inside the bandpass grows without bounds as the frequency from which

the leak originates goes toward zero. For practical purposes, one can argue that a PDS

modeled as a power law with index 2.0 over the full frequency range is unphysical,

since the total power would diverge; the PDS must therefore break to an index 1.0

or lower at some point. However, especially for the high-frequency periodograms, the

break may be at a frequency significantly lower than the lowest one included by a

lengthening factor of 10, in which case the assumption that no red noise leak takes

place from frequencies outside of the ones included in the simulation is violated. In

such cases, it might very well make a difference to the accuracy of the simulated light

curves whether a factor of 10 or, say, 100 is used.

The increased computational effort required to generate a light curve 10 times

longer than needed can be negated to a large degree by chopping the simulated “long”

light curve into 10 individual segments, where each one may then be treated as an

independently simulated light curve. (The computational effort rises approximately

as the logarithm of the lengthening factor, while the computer memory requirements

grow linearly.) It is true that the phases of low-frequency variations will be correlated

across neighboring segments; however, the expected effect on the final periodograms of

the simulated light curves is expected to be negligible [48]. For optimization purposes,

one may want to increase the factor to a suitable value higher than 10 such that the

resulting number of entries in the to-be-simulated light curve is just below a power

of 2; since the Timmer&König algorithm utilizes a Fast Fourier Transform for which

it will need to bump the number of entries up to the next-higher power of 2 anyway,

this procedure minimizes the amount of subsequently discarded samples.

Alternative Implementations The model employed by the canonical implemen-

tation provides a phenomenological description of the variability process only. This

way of describing the process by its observational characteristics only, combined with

the algorithm for generating the simulated light curves from the model, is just one

among many possibilities for analyzing the observations. Physical models that incor-

porate detailed information of the hypothesized processes contributing to the observed
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variability have been developed, but, as explained in the opening to Chapter 3, these

models tend at present to be of limited use as predictors of the possible outcomes of an

observation, something that is crucial in the analysis of a single observed realization

of a stochastic process.

There are models in between these two extremes. For example, shot noise models

(see e.g. [6] for an early development in this area) incorporate some additional ideas

about the physical processes involved, but are otherwise largely phenomenological

also. Shot noise models in their most basic form are ruled out by the rms-flux relation

that has been confirmed to be true not only for galactic X-ray binaries, but also for

AGN [15, 16]. However, those models with a more complex interplay between their

parameters such as correlations between large and small shots and their arrival times

may still offer a viable description. Past usage of shot noise models in the analysis

of AGN X-ray variability data were motivated by a possibly serious deficiency in the

canonical method, namely that the light curves generated by the Timmer&König

algorithm are composed of variations at a finite set of discrete frequencies instead

of contributions from all frequencies over a continuous range [43]. The power in

the periodogram at frequencies other than those included as Fourier components in

the simulated light curve does therefore not reflect the true power described by the

function S(f, Θ), but is only the result of the leaking of power from the included

frequencies due to the action of the window function. The practical limitation of

this deficiency is not clear, however, since the subsequent treatment of the simulated

light curves (rebinning, addition of the contributions due to aliasing and Poisson

noise) tends to increase the short-range leaking of power, in which case the resulting

simulated periodograms may be expected to differ only slightly from those that would

have been obtained from a truly continuous power distribution.

Nevertheless, in my assessment, the canonical method suffers from a second sig-

nificant shortcoming. The Timmer&König algorithm returns light curves that ex-

hibit stochastic fluctuations around zero count rate. The behavior of the observed

light curve, with a given non-zero average and variance, can in principle be repro-

duced by scaling each simulated light curve and adding a constant. (In practice, this

is not done, because the average is subtracted before calculating the periodogram
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anyway [Section 3.1.3], and the periodograms rescaled in a later step to match the

observed normalization [Section 4.2.7].) However, even with the resulting non-zero

average count rate, each simulated light curve still has a finite probability for ex-

hibiting negative count rates. This potential for unphysical behavior resulting from

the simulation algorithm is a clear indication that the fundamental assumption of the

canonical method, namely that the range of possible outcomes is well-described by the

Timmer&König algorithm, is violated. The observed light curves from AGN are not

composed of stochastic fluctuations around an average count rate. (For one, the light

curves generated by the Timmer&König algorithm do not obey the rms-flux relation;

see below.) In reality, a physical emission process operating under ever-changing con-

ditions in the emission region leads to a time-varying release of energy in the form of

X-rays, and any real model for the variability needs to take the fundamental principle

of the observation as a measurement of energy flux into account. The realization that

the canonical method rests on a simplistic phenomenological model for the variability

should be a strong motivation to develop and utilize instead models based on a de-

tailed physical description of the emission process. This is a formidable task indeed

and will not be attempted as part of this dissertation. Furthermore, the quality of the

observational data on AGN is such that the model based on the Timmer&König al-

gorithm provides a perfectly adequate description, and departures from its prediction

will be hard to detect. This may cease to be true in the future with new instruments

that are expected to generate much more comprehensive data sets on the short- and

long-term behavior of AGN3.

The Timmer&König algorithm can be tweaked to incorporate the rms-flux rela-

tion: If a light curve generated from the algorithm is exponentiated sample-by-sample,

the resulting new light curve represents a “multiplicative combination” of the vari-

ations at the different frequencies as opposed to the “additive combination” in the

3It would be interesting to investigate whether the fluctuations of the periodogram power in
galactic X-ray binaries are consistent with the prediction of the Timmer&König algorithm. In the
case of galactic sources, the PDS can often be measured independently several times, and one could
set up a statistical test to check whether the observationally realized distribution of values in each
frequency bin in the periodogram follows the χ2 distribution with 2 degrees of freedom that the
Timmer&König algorithm predicts.
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original. The exponentiated light curve then satisfies the rms-flux relation [16]. How-

ever, for the data sets explored in this dissertation, with their fairly low fractional

rms variability, this practice would make very little practical difference, as the ef-

fects of exponentiation only become apparent once the light curve exhibits significant

variations on the order of 50% fractional rms. It does however remove the objection

about unphysical negative count rates raised above, since the exponentiation step

guarantees that the simulated light curve exhibits only positive values.

An as-of-yet unexplored alternative is the incorporation of correlations in either

the phases or amplitudes of the randomized Fourier components that go into the

Timmer&König algorithm. In the absence of solid information about the expected

behavior of either the phases or the amplitudes, no clear recommendation can be made

on this point, but this option has the potential to significantly change the properties

of the simulated light curves to more closely match the observed fluctuations (see

Section 6.1.1).

Viable Implementations

• 1A—Timmer&König algorithm for the simulation of light curves

• 1B—exponentiated Timmer&König light curves [not subsequently implemented

in my work]

• 1C—shot-noise models [not subsequently implemented]

• 1D—physical models for the variability [not subsequently implemented]

4.2.2 Light Curve Rebinning—Step 2

Canonical Method The next step in the analysis is the rebinning of the simulated

light curves so that, in their rebinned form, they match the binning pattern of the

observed light curves exactly. In the simplest implementation, the rebinning proce-

dure degrades the time resolution of the simulated light curve by simply taking one

original bin and dropping all others within each new bin, with each new bin having

a width of ∆Tsamp.
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Alternative Implementations Since the simulated light curves are usually gen-

erated at a different time resolution than the one of the unrebinned observed light

curve, the above procedure may not preserve the information about the placement of

the actual measurements with in the new bin (i.e., whether they are located toward

the beginning, middle, or end of the new bin). I therefore employed a slightly im-

proved procedure: For each new bin in the rebinned simulated light curve, an original

bin is included if and only if a measurement exists at the corresponding time in the

unrebinned observed light curve. The value of each new bin is then taken as the arith-

metic average of the original bins included within it. In this manner, the information

about where in the new bin the observations are located as well as the overall length

of the snapshot (at ∆Tsim resolution) can be carried forward across the rebinning step.

This preservation of as much information on the observed light curve as possible is

in line with the main objective of the simulation algorithm, namely to produce light

curves that correspond in their important characteristics as closely as feasible to the

observed ones. Deviations from this improved procedure may introduce unintended

effects on red noise leak and aliasing, which may manifest themselves in subtle ways

as unaccounted-for differences between the model and the data.

Viable Implementations

• 2A—degradation of time resolution in simulated light curves

• 2B—inclusion of specific bins from simulated light curves in rebinned ones

4.2.3 Calculation and Binning of the Periodogram—Step 3

Canonical Method Because the simulated light curves now correspond in their

sampling characteristics exactly to the observed light curves, the same procedure for

the calculation and the binning of the periodogram is followed as for the observed

data. In the canonical method, a standard implementation of the discrete Fourier

transform (DFT) algorithm is used, and the binning of the periodogram takes place

in logarithmic space as detailed in Section 3.1.4.
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After this step, the output of the simulation algorithm is in the form of a set of

simulated periodograms, each based on the chosen PDS model. The normalization of

the power is still arbitrary and carries through as a multiplicative constant in all the

steps up to and including this point (more precisely, as an additive constant in the

logarithm of the power).

Alternative Implementations Different algorithms for the DFT vary in their

computational speed. The implementation of the periodogram in Press et al. (1992)

[89] served as a template for me to write my own DFT algorithm relying on the same

trigonometric recursion relations, thereby reducing the computing time considerably

compared to a brute-force approach of repeated calculation of the sine and cosine

terms in the sums (c.f. Equation 3.1). An alternative would be to use the Fast

Fourier Transform-based approach to calculating the periodogram, as implemented

by Press et al. (1992). If the error terms incurred in this approximative calculation of

the DFT can be shown to not unduly influence the results of the model fit, significant

speed improvements in the algorithm might be realizable.

For the χ2
λ fit statistic introduced in Section 4.2.7 below, I implemented the binning

of the linear periodogram as an alternative to the practice of binning the logarithmic

power. This alternative fit statistic is not dependent on the distributions of power

in each frequency bin to be close to log-normal, and the binning of the linear power

has the advantage of strictly preserving the total rms power in the periodogram (see

Section 3.1.4).

Viable Implementations

• 3A—logarithmic rebinning of the periodogram

• 3B—rebinning of periodogram in linear space before calculation of logarithm

of power
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4.2.4 Aliasing Correction—Step 4

As explained in Section 2.2, the X-ray monitoring observations that form the basis

of the AGN PDS being investigated with this method are composed in most cases of

“snapshots” of ∼1,000 s durations. Any intrinsic fluctuations in the signal at time

scales smaller than 1,000 s will be averaged over in the rebinning of the observed light

curve and will therefore contribute little to no power to the measured periodogram.

(The snapshot length will in general be different for each snapshot, and the elimination

of high-frequency noise will therefore be very complex in the details. On the level of

this investigation, I will assume that I can use the average of the snapshot lengths

as the representative time scale informing the method about the influence of the

observing pattern on the high-frequency power in the periodogram.) If the simulated

light curves are generated with a sampling interval larger than the average snapshot

length, the power due to variability between the chosen sampling interval and the

average snapshot length will leak into the observed periodogram as aliased power,

but will not (as of yet) be included in the simulated periodograms. A correction

reflecting this additional power due to aliasing from the mentioned range of time

scales must therefore be added to the simulated periodograms. The average snapshot

length will subsequently be referred to as ∆Tbin.

Canonical Method The experimentally verified procedure [48] used in the canon-

ical method computes the expected power density to be added to the periodogram

by integrating the model PDS between the frequency values corresponding to the

above range of time scales (∆Tbin to ∆Tsim) and redistributing this power equally

across the frequency range of the final periodogram (1/T to 1/[2 ∆Tsamp]). In other

words, the correction due to aliasing is treated as an f 0 constant component in the

periodogram. The normalization of the model PDS being arbitrary does not hamper

the calculation of the aliasing correction, since, as long as the same normalization

factor is used to generate the light curves and to calculate the aliasing correction, the

relative normalization between the two will be consistent.

The computed value for the aliasing correction may, depending on how the simu-

lated periodograms are used later on, be added to each individual periodogram or set
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Figure 4.1: Effect of adding the aliasing correction as a constant to individual sim-
ulated periodograms. The presented situation, which is an extreme case, occurs for
the PDS model with a constant α = 0.0 power and is shown for the long-term pe-
riodogram of NGC 4945. 1000 light curves were simulated from the above model;
the points with uncertainties are the resulting average values of the simulated power,
with the vertical error bars equal to the standard deviation of those values. Note the
significant reduction in the spread of the values of the simulated periodograms in each
bin in comparison to the fits in Figure 5.9, for example. The resulting error bars on
these values are no longer suitable for the comparison to the observed periodogram,
given that the large bin-to-bin fluctuations in the latter are not reproduced in the
simulation.
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aside for now, to be included at a later stage. The addition of the aliasing correction

as a constant value to individually simulated periodograms is problematic, however,

since the procedure fundamentally changes the fluctuation properties of the set of

simulated periodograms: The addition of a constant to a random variable reduces

the scatter in the values relative to their average. If the high-frequency bins in the

periodogram are dominated by aliased power, the fluctuations of the values within the

bin can be dramatically reduced; see Figure 4.1 for an example of such a case. (The

same effect occurs in adding the Poisson level as a constant to individual simulated

periodograms; see below.) These periodograms corrected for the aliasing effects are

then unsuitable for comparison to the observed data. It would be better to add the

aliasing correction complete with a prescription for how it is expected to fluctuate

from one simulated periodogram to the next; such a prescription would add to the

computational complexity of the algorithm, however.

It is possible to add the aliasing correction to the aggregate of the simulated light

curves—under the assumption that the fluctuations of the aliasing correction are

the same as the bin-to-bin fluctuations in the simulated light curves returned by the

Timmer&König algorithm. The canonical method adds the aliasing correction simply

to the average of the power in each frequency bin, while leaving the standard deviation

untouched (see Section 4.2.7). This practice can be defended on the grounds that a

proper treatment of the effects of aliasing (which would need to include a prescription

for the variations in the correction to be added to each bin in the periodogram) would

have as its end result a distribution of power that is probably not too far removed

from the one described by the average (corrected for aliasing) and the unchanged

standard deviation. After all, the standard deviation in the case of logarithmically

binned periodograms is expected to be the same for all the frequency bins within the

bandpass of the periodogram [92]; it is reasonable to assume that it would be the

same at frequencies outside the bandpass also.

Alternative Implementations The need to correct for aliasing in the simulated

light curves can be avoided by generating the light curves with a sampling interval

∆Tsim equal to or smaller than the average snapshot length ∆Tbin. This becomes
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important in certain situations where the comparison between the model and the

data does not rely on first calculating an aggregate of the simulated light curves

(such as the bin-to-bin average and standard deviation of their periodogram power),

in which case the aliasing correction would need to be added to individual simulated

periodograms, with the associated undesirable effects on their fluctuation properties.

I return to this point in Section 4.2.7. The reason why the procedure of using a small

∆Tsim is not followed routinely is that it massively increases the computational effort

required to generate the light curves.

Viable Implementations

• 4A—correction due to aliasing added as a constant to the average power in

each frequency bin

• 4B—light curves simulated at small enough ∆Tbin to obviate the need for a

correction due to aliasing

• 4C—inclusion of the aliasing correction in individual simulated periodograms

with an appropriate description for the bin-to-bin variations in the aliased power

[not subsequently implemented]

4.2.5 Poisson Level—Step 5

Unless it can be experimentally verified that the Poisson level in the observed peri-

odogram is negligible compared to the intrinsic variability power across all frequency

bins, a prescription must be used to estimate or measure the Poisson level and add it

to the simulated periodograms. This is important for many of the AGN observations

done with RXTE, since the background count rate can be an appreciable fraction of

(or even higher than) the source count rate. For future instruments, especially if such

instruments will incorporate imaging capabilities such that the background can be

much reduced, this may no longer be a significant concern.

Canonical Method From first principles, the expected Poisson level in a background-

subtracted light curve is given by
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PPoisson =
2 (µ + B)

µ2
, (4.3)

where µ and B are the mean count rates of the source and background, respec-

tively. (This normalization of the Poisson level is consistent with the adopted nor-

malization of the periodogram in Equation 3.2.) For non-continuously observed light

curves, this must be multiplied by ∆Tsamp/∆Tbin, because the actually realized Pois-

sonian uncertainty is correspondingly higher the smaller the filled segment within

each sampling interval is. However, there is considerable uncertainty in the use of

∆Tbin as earlier defined, because it is not obvious that for the calculation of the ex-

pected level of Poisson noise the arithmetic average of the snapshot lengths should

the appropriate measure. Perhaps the averaging should be weighted more toward

shorter segments, since they have the potential to contribute more strongly to the

Poisson level through their higher measurement uncertainty.

For the canonical method, the expected Poisson level is calculated from the above

formula for each of the frequency segments covered by the periodograms and added

to the simulated periodograms in the determination of the fit statistic (see Section

4.2.7).

Alternative Implementations In some RXTE monitoring observations of AGN,

it is possible to check the prescription for adding the Poisson level in the canonical

method. If significant stretches of uninterrupted observations exist, such that a suf-

ficiently long segment at 16 s resolution can be extracted, the periodogram can be

calculated from this unrebinned light curve. At the highest frequencies, it will most

likely be dominated by the Poisson level, which manifests itself as a flattening toward

constant power.

An alternative to using an a-priori formula for the expected Poisson level is the

simulation of the effects of measurement uncertainty using a setup similar to the above

for generating appropriately randomized light curves. If the uncertainties on the count

rates as returned by the RXTE data reduction pipeline can be taken as representative

of the precision with which the samples in the light curve were measured, then the

Poisson level can be simulated in the following manner:
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In the limit of large number of background counts in the light curve, the background-

subtracted light curve count rates can reasonably be assumed to obey Gaussian statis-

tics, such that a light curve can be generated that represents the measurement uncer-

tainties by drawing for each sample a random number from a Gaussian distribution

with zero mean and a standard deviation equal to the uncertainty in the count rate

of the corresponding sample in the observed light curve. This light curve is then a

possible realization of the deviations from the true count rates of the source. The

effect of these deviations in the frequency domain can be obtained by calculating the

periodogram of the above “noise-only” light curve. By combining the periodograms

of a large number of simulated “noise-only” light curves, the expected behavior of the

contributions to the power in each frequency bin can be mapped out.

The resulting distributions of Poisson noise power show an approximately Gaus-

sian distribution with little to no frequency dependence in the average, as expected

for uncorrelated white noise. If no binning of the periodogram were to take place, the

distribution of power in these “noise-only” light curves should be well-described by a

χ2 distribution with two degrees of freedom; it is evident upon closer inspection that

even in the low-frequency bins where no averaging of adjacent frequencies takes place

that the action of the window function intrinsically leads to an averaging of power that

modifies the distribution. In the higher-frequency bins, the averaging then produces

the aforementioned Gaussian distributions, with the standard deviation diminishing

as the number of frequencies that get averaged in the bin increases.

The Poisson level may now be included in individual simulated periodograms by

drawing a random number from the corresponding distribution of Poisson noise power

for each frequency bin in the periodogram. (The Poisson level should never be added

as a constant, i.e., non-randomized, to individual simulated periodograms, for the

same reasons as in the case of the aliasing correction; see Figure 4.1 and the associated

text in the relevant section.) In my implementation, I modeled all the distributions

as Gaussians and used the average and standard deviation in each frequency bin to

calculate the random numbers. The departure from Gaussian distribution of the low-

frequency bins is mitigated by the realization that the total power in that part of the

periodogram is dominated by the intrinsic variability, such that it hardly matters what
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value is assumed for the Poisson level. The only complication that needs addressing

is the tendency of the description of the Poisson level as a Gaussian distribution to

return randomly drawn values that are negative; in such cases, my algorithm pegged

the value to be added as the Poisson level in that frequency bin at zero to avoid the

possibility that the (corrected) total power becomes negative.

The above alternative relying on simulations of the Poisson level was not ulti-

mately used. Firstly, the count rate uncertainties returned by the RXTE data re-

duction pipeline are unreliable in that they overestimate the uncertainties introduced

by the background subtraction (Section 2.3). The correct count rate uncertainties

from which the “noise-only” light curves are to be generated must therefore first be

estimated from an analysis of the actually realized Poisson level as outlined at the

beginning of this section; this is not always possible.

Secondly, the Poisson level (randomized bin-to-bin as detailed above) cannot be

added to the simulated periodograms directly, since they continue to exhibit the as-

of-yet arbitrary model normalization. Yet also, as explored below in Section 4.2.6, the

periodograms cannot be individually normalized to the correct integrated variability

power. For each frequency bin in the periodogram, a specific value for the Poisson level

to be added to each individual simulated periodogram would therefore need to be kept

around as the periodograms’ normalization is adjusted to provide the best-possible

fit against the data (see Section 4.2.7 below). Not only does this step double the

(already considerable) storage requirements for the data produced by the simulation

algorithm, but it makes the execution time of many of the desired procedures for

fitting the simulated data against the observations become unfeasibly large. I return

to this point in the discussion of alternatives to the fit statistic below.

A variation of the above simulation of the Poisson level adds the effect of the mea-

surement uncertainties not in the frequency domain (i.e., to the periodogram), but

in the time domain (i.e., to the simulated light curve). Again under the assumption

that the error bars on the count rates in the observed light curve are representative of

the measurement uncertainties, the effect of the measurement can be added to each

individual light curve by modifying the count rates coming out of the Timmer&König



84 CHAPTER 4. THE METHOD OF LIGHT CURVE SIMULATIONS

algorithm randomly by appropriate amounts. In the limit of large number of back-

ground counts in the light curve, the background-subtracted light curve count rates

can be reasonably assumed to obey Gaussian statistics, such that the Poisson level

can be simulated by adding to each bin in the light curve a Gaussian random number

with zero mean and a standard deviation equal to the count rate uncertainty for the

bin. Again, this can only be done once the normalization factor that needs to be

applied to the simulated light curve is known. (Otherwise, in the subsequent adjust-

ment of the model normalization, the Poisson level would incorrectly get adjusted in

normalization also.) However, the normalization of the model can only be determined

in the process of calculating a fit statistic and usually involves a computationally in-

tensive numerical minimization routine. While it would be possible to search for the

best-fitting model normalization by returning to the original simulated light curves

from which the periodograms were calculated, apply the trial normalization factor

to them instead of the periodograms, and subsequently add the effect of measure-

ment uncertainties in the time domain before calculating the periodograms anew (see

Section 4.2.7), this would substantially increase the computational effort.

A fundamentally different approach is the subtraction of the expected Poisson

level from the observed periodogram instead of the inclusion of the Poisson level in

the model. This presents its own set of problems, however: By subtracting a con-

stant from each frequency bin, one changes the fluctuation properties of the measured

values. The periodogram of the observations then behaves differently than the sim-

ulated periodograms, at least in the high-frequency bins where the Poisson level is

most noticeable, leading to systematic effects in the fit statistic. Furthermore, due to

stochastic fluctuations, the actual power in a bin can be smaller than the expected

level of Poisson noise, leading to unsavory adjustments that smack of fine-tuning of

the method based on the data (which is generally frowned upon in the data analysis

community due to its clearly recognizable potential source of severe biases). Nev-

ertheless, the approach of correcting the observed periodogram for the Poisson level

needed to be employed in a few cases, specifically in connection with the use of cu-

bic spline fits in the fit statistic (Section 4.2.7) and the determination of confidence
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regions using the Neyman construction (Section 4.2.8). The computational effort re-

quired to keep the Poisson level as a correction in the model for these options in the

analysis method would have made the execution time unfeasibly large.

Motivated by the desire to have the simulation algorithm incorporate as much as

feasible the instrument-specific characteristics of the observations, a better alterna-

tive might be to incorporate a procedure to convert the simulated flux measurements

into the number of instrumental counts expected over a given time interval and then

to randomize those according to Poissoninan statistics. This has not been system-

atically explored yet, likely because of considerations about execution time: While

in the current setup the model normalization can be carried through the light curve

simulation algorithm as a multiplicative constant, such that its best-fit value can be

found without having to simulate light curves at different values of the normalization

(thereby essentially reducing the dimensions of the parameter space by one), the re-

liance on the above modification would require a full set of simulations at a range of

values. In effect, the normalization would need to be treated in the same manner as

the other model parameters, which increases the computational effort significantly,

even in the case of a broken power law model, where the dimension of the parameter

space would increase only from 3 to 4.

Viable Implementations

• 5A—Poisson level added as a constant to the average power in each frequency

bin during the step of finding the best-fitting normalization factor between the

model and the data

• 5B—Poisson level added with prescription for expected bin-to-bin fluctuations

[not subsequently implemented]

• 5C—Poisson level added in the time domain (with an associated increase in

computing time due to having to keep the model normalization as a free pa-

rameter in the model fit) [not subsequently implemented]

• 5D—subtracting the expected Poisson level from the observed data instead of

adding it to the model
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4.2.6 Variance Adjustment of the Simulated Periodograms—

Step 6

Since the model used for the generation of the simulated periodograms includes an

as-of-yet arbitrary normalization, a procedure must be employed to adjust the model

normalization to the observed normalization of the periodogram power.

Canonical Method In the canonical method, this adjustment is integrated into

the overall calculation of the fit statistic; see Section 4.2.7 below.

Alternative Implementations The stochastic element in the Timmer& König al-

gorithm for generating simulated periodograms (i.e., the randomization of the Fourier

components of the to-be-generated light curve) results in a broad distribution of the

integrated power for these periodograms, even from a fixed normalization in the

PDS model [85]. This realization led me initially to search for an algorithm that

would treat the model normalization as a physically uninteresting parameter, to be

removed from ultimate consideration in the analysis. The justification for this was

that, since a given model normalization can in principle produce a light curve of any

finite variance, the observed variance in the data could have been produced by any

true normalization.

In the imagined comparison of a simulated periodogram to the observed one, if

a given model normalization returns a simulated periodogram that is too high in

normalization compared to the observed data, it would have had the correct nor-

malization if the initially assumed model normalization had been lower; similarly for

the situation where the normalization of the simulated periodogram is too low. I

should therefore be justified in scaling each individual simulated periodogram such

that it has the same integrated power as the observed one and thereby remove the

model normalization from further consideration. Having adjusted the simulated peri-

odograms to the correct normalization, I would then be free to concentrate solely on

their suitability in describing the shape of the observed periodogram. Furthermore,

the Poisson level could be included very easily in the above prescription: The light

curves could be adjusted to a variance such that, once the randomized measurement
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uncertainties were added in the time domain (see Section 4.2.5), the total variance in

the light curve (with the Poisson level included) corresponded to the total variance

in the observed light curve.

As it turns out, however, the practice of normalizing individual simulated peri-

odograms to exhibit a given variance results in a severe modification of the collective

shape of the simulated periodograms, as shown in Figure 4.2. Each periodogram,

being adjusted by an overall (frequency-independent) factor, retains its relative nor-

malization across the different frequency bins, of course. However, given that the

integrated power tends to be dominated by a few low-frequency bins in most cases

(since the power in the model PDS decays with increasing frequency in the shape of a

power law), the fluctuation properties of the lowest frequency bins are changed. A sim-

ulated periodogram that, due to random fluctuations, exhibits a large low-frequency

power will be adjusted downward, while one that has insufficient low-frequency power

to fit the observed normalization will be bumped up. The spread of the power in the

lowest frequency bins will therefore be significantly reduced. Even worse, the over-

all collective shape of the simulated periodograms, as recorded in the distribution of

power in each frequency bin, will be changed as well, exhibiting now a significant bias

away from the shape of the model PDS that the simulated periodograms were created

to follow.

The conclusion from the above investigation is that the practice of normalizing

individual simulated light curves to a target value for their variance leads to an

undesirable bias in the predicted periodogram shape and must not be used.

Viable Implementations

• (none)

4.2.7 Fit Statistic—Step 7

Canonical Method The fit statistic employed in the canonical method to measure

the degree of agreement between the chosen PDS model and the data rests funda-

mentally on a χ2 procedure. It assumes that the power values within a frequency bin
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Figure 4.2: Distortions introduced in the shape of the simulated periodograms
through the practice of normalizing each simulated light curve individually. Sev-
eral thousand light curves were generated from an unbroken power law model with
α = 2.0 and a normalization that resulted in an average fractional rms2 variance of
2.2. (The overall normalization is arbitrary.) The sampling used in the light curve
simulation was a test case of even sampling at 1 hour intervals for one full year. Each
light curve was then rescaled to show a variance of 0.12 before its periodogram was
calculated. As in earlier figures, the plot draws the percentiles of the distribution of
power in each frequency bin. The dotted lines denote the original percentiles before
the rescaling, the solid lines are the percentiles that result from the rescaling. Notice
the flattening of the shape toward the lowest frequency bins; this flattening is not
present in the input PDS model and must be considered a bias introduced by the
normalization procedure. (The behavior of the lowest two percentile curves around
2 × 10−6 Hz is due to the binning of the periodogram—to the left, individual peri-
odogram samples form each bin, while to the right, adjacent periodogram samples
are averaged to constitute each bin.)
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are log-normally distributed (or, equivalently, that the logarithmically binned peri-

odogram values have a Gaussian probability distribution) and proceeds to calculate

the average and standard deviation of the logarithmic values of the power in each of

the frequency bins in the binned periodogram. The aliasing correction is subsequently

added to the average in each bin, which must take into account that the periodograms

have been logarithmically rebinned and the average calculated above therefore stores

the logarithm of the power:

Pcorr(f) = log10

(

10Psim(f) + Palias

)

, (4.4)

where Pcorr(f) is the corrected average logarithmic power in the frequency bin

denoted by f , Psim(f) is the uncorrected average logarithmic power, and Palias is the

aliasing correction (linear scale).

Next, a trial value for the normalization factor Atrial is assumed, and the model

average adjusted accordingly. Then, the Poisson level is added to the model average,

resulting in the final model value for the comparison to the observed periodogram as

follows:

Ptrial(f) = log10

(

A 10Pcorr(f) + PPoisson

)

. (4.5)

The analogy to the correction due to aliasing effects should be obvious, the only

difference being the scaling of the model average by the trial normalization factor

before the Poisson level is added. The above values for the model average are then

used as input into a χ2 calculation:

χ2
dist =

∑

f

[

Pobs(f) − Ptrial(f)
]2

[∆Psim(f)]2
, (4.6)

where Pobs(f) is the value of the observed periodogram in the frequency bin de-

noted by f , and ∆Psim(f) is the standard deviation of the simulated power values.

The sum generally runs over all bins in the periodograms covering the different fre-

quency ranges of the observations. In the presence of several independently measured

high-frequency periodograms (calculated from short-term light curves), the practice
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of the canonical method is to average the χ2
dist values obtained from these frequency

bins and only adding the average to the total χ2
dist. Through a numerical minimiza-

tion procedure, the best-fitting normalization factor Abest and associated minimum

χ2
dist can then be determined. (Depending on the algorithm for the minimization, this

can be computationally very intensive.) Note that the same normalization factor is

applied to all periodograms segments (low-, medium-, and high-frequency). This is

in contrast to, e.g., the practice in Edelson & Nandra (1999) [5], which allowed the

normalization in each segment to be adjusted independently. The likely motivation

for this practice was the realization that, due to the stochasticity in the measure-

ments, the variance in any of the segments might be systematically too low or too

high compared to the others. This early report did not rely on light curve simulations

to characterize the expected variations in the relative normalization between different

segments and therefore had no good alternative to describing the observed differences

in normalization than allowing an adjustment in the segments’ normalization relative

to each other. With the simulation algorithm in place, the necessary information

about the possible offsets between segments is provided automatically, resulting in an

overall best-fit normalization coming out of the comparison between the model and

the data4

The fit statistic, involving the average and standard deviation of the model PDS,

is of course a function of the model parameters Θ, such that different values of χ2
dist are

obtained depending on both the functional form that was assumed for the model as

well as the values of the model parameters with which the light curves were generated.

It should be obvious that the fit statistic can only be calculated at a finite set of

parameter values, because it inherently involves the generation of the simulated light

curves on which the Ptrial(f) and ∆Psim(f) values are based.

The departure from a proper χ2 fit statistic is indicated by the use of the subscript

4It would be interesting to investigate whether either of these practices introduces subtle biases in
the fitted model parameters; for example, I suspect that if the low-frequency periodogram happens
to show a systematically higher-than-expected variance, and the fit is performed with one overall
normalization factor, that the estimator for the break frequency will exhibit a slight bias toward
higher values, since the fit will be forced to account for the higher-than-expected low-frequency
power. At the current level of precision with which the PDS can be measured, however, none of
these possible biases rise to any significant level of concern.
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“dist” in the variable name; it has very well been recognized by the proponents of the

canonical method that the detailed behavior of fit statistic as defined above differs

in important respects from those of a true χ2 statistic. In fact, the χ2
dist values are

not used directly for point estimation or for the determination of confidence regions

(such as through a ∆χ2 prescription). Instead, they are converted into the equivalent

of p-values that are a recurring feature in goodness-of-fit testing:

For a given point in parameter space, the periodograms that have been simulated

with these values of the model parameters are input into the calculation of the fit

statistic as if they were the observed periodogram. In other words, for each of the

simulated periodograms, its χ2
dist value is calculated according to the same prescription

as for the measured data, with one deviation: No Poisson level is added to either the

simulated periodogram that is substituted for the Pobs(f) values or the average model

value P trial(f). However, the model normalization is allowed to vary until the specific

simulated light curves’ own best-fit Abest and χ2
dist is found. (This is different from

the conclusion at the end of Section 4.2.6 that individual simulated periodograms

must not be normalized to a given variance. Here, the simulated periodograms are

not adjusted in normalization to have a given variance; instead, just as in the case of

the actual observed periodogram, the (up-to-now arbitrary) model normalization is

adjusted until the best fit is obtained between one simulated periodogram (now used

as if it was the observed one) and the set of simulated periodograms against which

the one is compared.) The calculation of the χ2
dist values takes place at the given

point in parameter space only; no minimization of χ2
dist over Θ is performed.

The measure used to express the level of agreement between the model and the

data (called the “rejection probability” by subsequent authors utilizing the canon-

ical method [49]) is then calculated as the percentile of the observed value of χ2
dist

compared against the distribution of χ2
dist values obtained from the simulation.

Alternative Implementations In my view, the χ2
dist fit statistic and the rejection

probability derived from it suffer from two significant inconsistencies. Firstly, it as-

sumes that the distribution of power in each frequency bin is log-normal. As shown in

Figures 4.3 through 4.5, this is violated, with the degree of departure from log-normal
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Figure 4.3: Discrepancy between the distribution of power in a frequency bin and the
assumed log-normal distribution in the χ2

dist fit statistic, for a low-frequency bin. This
frequency bin was formed by averaging 2 adjacent samples in the original (unbinned)
periodogram. The actual distribution, shown as the histogram, was measured using
1000 simulated light curves from a power law model with a power law index of 1.5.
The sampling used in the light curve simulation was a test case of even sampling at
1 hour intervals for one full year. The normalization of the power values is arbitrary.
The log-normal distribution assumed by the χ2

dist fit statistic is plotted as the dotted
line; its parameters (average and standard deviation of the logarithmic power values)
were calculated from the actual values obtained from the simulation. Notice the
horizontal displacement between the mode of the actual distribution and the peak of
the log-normal distribution.
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Figure 4.4: Discrepancy between the distribution of power in a frequency bin and the
assumed log-normal distribution in the χ2

dist fit statistic, for a bin in the middle of
the frequency range of the periodogram. 22 samples were averaged in this frequency
bin. The figure otherwise follows the conventions of Figure 4.3.
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Figure 4.5: Discrepancy between the distribution of power in a frequency bin and
the assumed log-normal distribution in the χ2

dist fit statistic, for a high-frequency bin.
847 samples were averaged in this frequency bin. The figure otherwise follows the
conventions of Figure 4.3.
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distributions showing a systematic trend with frequency. Because the assumption of

log-normality leads to a model average that is too low compared to the actually real-

ized mode of the distribution, this has the potential to make the detection of breaks

more difficult, and it may even bias the measurement of break frequencies toward val-

ues that are systematically too low. One strategy would be to ignore a certain number

of low-frequency bins in the calculation of χ2
dist [5]. However, the departure from log-

normality changes gradually over the full frequency range of the periodogram and is

also dependent on the underlying shape of the PDS. It is thus not clear a priori how

many bins should be ignored such that the analysis of the remaining ones can proceed

with no further concern. The only safe alternative that does not depend on fine-tuned

user decisions about the inclusion of individual frequency bins is a severe degrada-

tion of the resolution in the periodogram to ensure that the distributions are always

acceptably close to log-normal; this would however hamper the determination of the

parameters describing the PDS, such as break frequencies and power law indices, and

might introduce additional biases in the periodogram. Secondly, the determination

of the distribution of χ2
dist against which the observed value is compared to calculate

the rejection probability is approximative only; more properly, each simulated light

curve would need to be fit against all values of Θ included in the simulation to find

its minimum χ2
dist over the full parameter space [107].

It would be possible to put aside the second of the two objections above by amend-

ing the procedure in this point; the minimization of χ2
dist over Θ for each individ-

ual simulated periodogram would increase the computational effort considerably, but

would not require any adjustments to the conceptual layout of the method. However,

there are additional concerns about the use of the rejection probability as a fit statis-

tic, which we raised in Mueller & Madejski 2009 [108]. (The findings of the paper

are summarized further below in Section 4.2.8.) Combined with the first objection,

my continued unease over the rejection probability provided the motivation to find

an alternative method that could work with non-Gaussian distributions.

I make use of a generalization of the χ2 fit statistic to non-Gaussian distributions,

motivated by the discussion in Baker & Cousins (1984) [109]: Consider any unimodal

distribution, and let Lmax be the probability density at the mode of the distribution
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and Lobs the probability density at the experimentally realized value. (The use of the

symbol L for these variables is motivated by the fact that they are likelihoods in the

statistical sense.) Then,

χ2
λ = −2 ln

(

Lobs

Lmax

)

(4.7)

behaves like a χ2 variable, the subscript λ indicating that it is derived from a

likelihood ratio. By summing up the χ2
λ contributions from all bins involved in the

fit, one arrives at a statistic that can work with almost any unimodal distribution5.

Furthermore, it reduces to the standard χ2 statistic if the distribution is in fact

Gaussian.

Applying the above idea for a more flexible statistic to the present case of fits to

periodograms, the shape of the distributions in the frequency bins can be mapped

out using the simulated periodograms. Experimentally, the distributions are always

found to be unimodal. One complication arises out of the fact that only a finite

(and relatively small) number of simulated periodograms are available to map out

the distributions. Smoothing techniques must therefore be used in the calculation of

Lobs and Lmax.

Significant subsequent effort was devoted to finding a suitable functional form for

the distributions to use as a smoothing function that was able to describe the variety of

shapes seen in the histograms. While the underlying distribution of the periodogram

power in the case of ideal window function is a χ2 distribution with two degrees of

freedom scaled by the variability power [87, 85], in any situation encountered in real

life the action of the window function is the mixing together of a great number of these

distributions, all scaled differently due to the frequency-dependence of the variability

power. The determination of the expected functional form from first principles is

5It misbehaves in the case of distributions of positive-definite quantities with a mode of 0. In these
cases, the fit is driven toward unreasonably high model normalizations, since, for all bins in which
the distribution has a mode of 0, the contribution to χ2

λ can be made arbitrarily small by increasing
the normalization. As a consequence, I continue to use the logarithm of the periodogram power;
however, I bin the periodogram in linear space before converting the resulting binned periodogram
to logarithmic values, while the original prescription bins the logarithmic values of the unbinned
periodogram [92].
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therefore likely to be very complex. To my knowledge, it has never been attempted;

I likewise never did.

By trial-and-error, one functional form that I found early on that seemed to incor-

porate the general features seen in the histograms (unimodality, positive skewness,

moderate kurtosis, support over all positive real numbers) is the χ2 distribution itself,

but with a variable number of degrees of freedom. Just like the idealized χ2 distri-

butions with 2 degrees of freedom above, it requires the additional scale factor in the

x-axis to fit the observed values. The resulting functional forms is

χ2(P ; P0, k) =
1

P0 2k/2 Γ(k/2)

(

P

P0

)k/2−1

e−P/(2 P0), (4.8)

where Γ(x) is the gamma function. In this form, with the scale factor P0, this is

sometimes called a “stretched” χ2 distribution. The values of the parameters to opti-

mally describe the experientially determined histogram were then found numerically

using Powell’s method for the minimization of functions. I relied in my implementa-

tion of the minimization method on the notes in Press et al. (1992) [110]. The function

that is being minimized is the multinomial χ2
λ statistic from Baker & Cousins (1984)

[109], as appropriate for fits to a histogram of a fixed number of measurements. After

initial successes, however, the stretched χ2 distribution was shown to fit the actual

distributions rather poorly once a higher number of light curves were simulated. (In

one instance, a million light curves were generated to map out the distributions of

power in detail.)

As a substitute to the stretched χ2 distribution, I investigated the “generalized”

Γ distribution, which can be thought of as a modification on the χ2 statistic in that

it includes a new parameter that controls the width of the peak. It is commonly

parameterized through a shape factor α and the scale factors β and P0 as follows:

Γ(P ; P0, α, β) =
βα

P0 Γ(α)

(

P

P0

)α−1

e−β P/P0. (4.9)

In the above form, however, the distribution exhibits severe degeneracies in the

parameters, meaning that almost the same shape can be obtained for widely different

sets of values for α, β, and P0. The numerical minimization therefore took extremely
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long at times, as the Powell method searched hither and yon in a shallow valley around

the best fit. A re-parameterization [111] was attempted as well; this attempt was met

with limited success in the improvement of the numerical behavior of the minimization

routine, and the reason why it did not result in a significant improvement never

became clear either. Furthermore, while the agreement between this functional form

and the histograms was much better than in the case of the stretched χ2 distribution,

there remained significant deviations that would manifest themselves if enough light

curves were simulated to form the distributions.

My third attempt at a smoothing function for the experimentally determined

distributions of power, and the one that was the most successful one, relies not on

an a-priori functional form that is assumed for these distributions, but instead uses

a cubic spline fit. Given the large bin-to-bin scatter in the histograms of the power,

it is more advantageous to fit the cumulative distribution instead, since the empirical

cumulative distribution with even just a few hundred simulated periodograms can

be determined very precisely. I used the basis spline functions provided by the GNU

Scientific Library [112] to go from the empirical cumulative distribution to a smoothed

parameterized description of it. The input into the fitting procedure is, besides the

empirical cumulative distribution, a vector describing the break points at which one

cubic spline segment is being joined to another. The Lobs and Lmax values can then

be calculated numerically as the slope of the smoothed cumulative distribution at the

appropriate locations.

Several problems appear in the cubic spline fit, however. The most severe one is

that the basis spline functions in the GNU Scientific Library are of the most general

form and do not permit the addition of boundary conditions. Ideally, since it is a

cumulative distribution of a unimodal continuous probability density that is being fit

(and we therefore know a priori that the function is monotonically increasing, has a

limiting value of 0 as P goes to negative infinity and 1 as P goes to positive infinity,

and has exactly one inflection point), the addition of these conditions would make

for a better spline fit. In actuality, the fits returned by the GNU Scientific Library

functions that I obtained violated all of the above conditions at one time or another.

Only slightly less severe is the propensity of the fitting routine to require fine-tuning
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with respect to the number of break points: If many break points are used, the tails

of the distribution can be fit better, but at the expense of an oscillatory behavior in

the slope of the spline fit on which the Lobs and Lmax values are based. With too

few break points, the fit is acceptable only in the central part of the distribution. In

both cases, the behavior of the fit toward the end points varies widely, with many fits

returning unphysical negative slopes that make the subsequent calculations unstable.

I therefore decided to fit the cubic splines over the entire distribution, using 10 break

points, but disregard the fit toward the end points and instead replace it with closed-

form functions that could be attached to the splines. I took the functional form of

those extensions to be exponentials, decaying toward 0 as P goes toward negative

infinity and approaching 1 in the high P limit:

plow = Nlow e−klow (Plow−P ) (4.10)

for the extension at low P values, where plow is the value of the cumulative dis-

tribution modeled by the exponential extension, P the power (i.e., the x-axis of the

cumulative distribution), Plow the user-chosen lower limit for the spline fit, and Nlow

and klow two constants, chosen such that the extension and its slope match the spline

fit at Plow; and

phigh = 1 − Nhigh e−khigh (P−Phigh) (4.11)

for the extension for large P (with the equivalent definition as above for the other

quantities appearing in the expression).

These exponential extensions are not in general a very good fit to the empirical

cumulative distribution, but they are much better than the underlying spline fit. (See

Figures 4.6 through 4.8 for examples of cubic spline fits with exponential extensions.)

The influence of the discrepancy should be small, however: Once the observed value

of the power in a frequency bin is so far away from the most likely value that it lies

in one of the extension regions, the PDS model used to generate the periodograms

is a bad description of the data, and the accuracy of the returned χ2
λ values does

not matter too much, as long as they are large to indicate a bad fit. In addition,
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Figure 4.6: Distribution of the power in a frequency bin smoothed by cubic splines, for
a low-frequency bin. This frequency bin was formed by averaging 2 adjacent samples
in the original (unbinned) periodogram. The cumulative distribution, shown as the
solid line, was derived from 1000 simulated light curves from a broken power law
model with low-frequency power law index 1.0, high-frequency index 2.0, and break
frequency 1.0× 10−5 Hz. (This frequency bin is thus below the break.) The sampling
used in the light curve simulations was the one appropriate for the NGC 4945 long-
term light curve (see Section 5.2). The normalization of the power values is arbitrary.
The cubic spline fit to the cumulative distribution is shown as the dashed line. 10
break points were employed in the fit. The interface points between the spline fit
in the central part of the distribution and the exponentially decaying extensions to
either side are 16.0 and 17.7. The dotted line is the numerically computed slope of
the cubic spline fit; in other words, it is the smoothed probability distribution of the
measured values.
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Figure 4.7: Distribution of the power in a frequency bin smoothed by cubic splines,
for a bin in the middle of the frequency range of the periodogram. 8 samples were
averaged in this frequency bin, which is located near the position of the break. The
interface points between the spline fit and the exponentially decaying extensions are
14.4 and 15.1. The figure otherwise follows the conventions of Figure 4.6.
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Figure 4.8: Distribution of the power in a frequency bin smoothed by cubic splines,
for a high-frequency bin. 30 samples were averaged in this frequency bin, which is
located near the position of the break. The interface points between the spline fit and
the exponentially decaying extensions are 13.7 and 14.1. The figure otherwise follows
the conventions of Figure 4.6.
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the overall behavior of the fit statistic can be characterized through Monte Carlo

simulations (see Section 4.2.8); indeed, it needs to be, since once more we are dealing

with a fit statistic that behaves like a χ2 statistic, but with potential differences such

that the straightforward application of the ∆χ2 prescription for finding confidence

regions, for example, cannot be defended.

I briefly investigated another fit statistic, motivated by the computational require-

ment of all of the above statistics that require numerical fits for the parameterization

of the distributions. This one, in contrast, simply measured the departure of the ob-

served values of the periodogram power from the median of the distributions. It was

implemented as the sum of the areas under the distribution between the observed

value and the median (thus relying only on a calculation of the percentiles of the

observed values, which is computationally efficient). However, no solid results were

ever obtained from it, and I abandoned the investigation into this fit statistic without

coming to a conclusion as to its applicability and usefulness.

A separate change to the method that I explored concerns the practice of averaging

over the fit statistic obtained from multiple high-frequency periodograms. In the

canonical method, this is defended on the grounds of wanting to avoid biasing the

fit too much in the direction of the high-frequency part of the PDS [49]. However,

with independently measured short-term light curves, weighting the fit toward the

high frequencies is exactly what one should do, since there is in fact more data on the

behavior of the PDS in that part of the spectrum. I therefore advocate for summing

the contributions to χ2
dist or χ2

λ over all frequency bins equally, with uniform weights,

including any multiply-measured high-frequency periodograms. In some cases, such

as for NGC 3783 in Markowitz et al. (2003), for which five independent Chandra

short-term observations exist, the fit will then be constrained mostly from the high-

frequency bins, but, as I emphasize above, this is as it should be, since the PDS

in that part of the frequency spectrum was in fact measured independently several

times.

In an attempt to develop a test of the overall behavior and usefulness of a fit

statistic, I investigated a metric modeled after the idea of estimator bias that is made

possible by the light curve simulation framework. If, according to my expectations,
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the fit statistic behaves the way it ought to, then a set of simulated light curves should,

if fit against themselves, return a distribution of their best-fit normalization factor

values with a mode at 1. At least intuitively, this makes sense, as the light curves

were simulated with some given overall normalization, and each of them, when fit

against its cohorts, should return a best-fit normalization factor that can be higher

or lower than 1 depending on whether it exhibits a higher- or lower-than-average

variance. However, given the expected distribution of variances in the simulated light

curves, most of them should have a variance not too far from the average and should

therefore be well-fit with a normalization factor of 1. (Note that this is not the full

estimator for the normalization as used in the fitting procedure eventually applied

to the observed data, since no minimization over the other parameters of the PDS

model takes place.)

Applying the above metric to a set of light curves fit with the χ2
dist statistic, one

finds that there is a significant offset between the mode of the realized distribution

of best-fit normalization factors and the target value of 1, as shown in Figure 4.9.

The equivalent distribution of best-fit normalization factors found using the χ2
λ fit

statistic, in contrast, has a mode very close to 1 (shown in Figure 4.10. The deviation

from the expected behavior in the case of the χ2
dist statistic may be found in the

above discussion that the assumed validity of the log-normal distributions of power

is in question; however, I have not been able to investigate this further and do not

claim that this test should be used strictly to validate or invalidate any particular fit

statistic.

Viable Implementations

• 7A—χ2
dist fit statistic based on the average and standard deviation of the loga-

rithmic power in each frequency bin

• 7B—χ2
λ fit statistic based on cubic spline fits to the cumulative distribution of

power in each frequency bin

In addition, for the purposes of identifying the exact procedure that was followed

in the subsequent discussion of the results, a distinction needs to be made between
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Figure 4.9: Distribution of the best-fit normalization factor values of simulated light
curves fit against themselves using the χ2

dist statistic. The PDS model was a broken
power law with αl = 1.0, αh = 2.0, and fb = 10−5 Hz. The light curves were generated
using the Timmer&König prescription for a sampling pattern of hourly snapshots for
a full year and therefore include very little distortions due to red noise leak and
aliasing.
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Figure 4.10: Distribution of the best-fit normalization factor values of simulated light
curves fit against themselves using the χ2

λ statistic. The simulation of the light curves
followed the same prescription as for Figure 4.9, except that the periodograms were
rebinned before calculating the logarithms of the power values, as appropriate for the
χ2

λ fit statistic.
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the practice of averaging the fit statistic over multiple short-term segments (7Ax and

7Bx) or adding the contributions from those segments with the same weight as for

the long- and medium-term segments (7Ay and 7By).

4.2.8 Statistical Evaluation of the Fit: Point Estimation,

Goodness-of-Fit, and Confidence Regions—Step 8

Canonical Method The expected departures from strict χ2 behavior of any of

the earlier described χ2-like fit statistics necessitate a statistical evaluation that is

robust under these departures. The conversion of the raw χ2
dist values into rejection

probabilities in the canonical method is chiefly motivated by the realization that

the effective number of degrees of freedom in the periodogram is dependent on the

underlying PDS model, such that a minimum in the χ2
dist values over the parameter

space Θ might not correspond to the minimum in goodness-of-fit measured by the

rejection probability. In other words, a lower χ2
dist value at point A in the parameter

space compared to point B might be more the result of a lower number of degrees

of freedom at A than a truly better fit of the model to the data. Calculating the

distribution of χ2
dist separately at all the points in the parameter space for which

the fit statistic is being calculated and comparing the χ2
dist values obtained in the fit

against these distributions is a more robust way of measuring the agreement between

the model and the data.

In the canonical method, the rejection probability is therefore used for point esti-

mation; i.e., the point in parameter space at which the rejection probability attains its

global minimum is taken to be the location of the best fit. Being the equivalent of a

p-value (rejection probability = 1−p), it can also be used directly as a measure of the

goodness-of-fit, with high values of the rejection probability (> 95%, say) indicating

that the model can be rejected at a given statistical confidence.

The third branch of the statistical evaluation of a fit that is traditionally per-

formed, the determination of confidence regions on the fitted model parameters, is

more complicated and has led to at least two distinct solutions. The better one, in

my view, is the one used in Markowitz et al. (2003) [49], which is why I include it
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here as the canonical method while deferring the inclusion of the original one from

Uttley et al. (2002) [48] to the Alternative Implementations section. The concept of

the confidence region is used to express the precision with which the model param-

eters can be constrained given the data. In the framework of frequentist statistics,

a prescription for finding confidence regions needs to return regions that have the

property of enclosing the (unknown) true value of the parameters with a given prob-

ability, say 68% or 90% [113, 114]. There are often several possible ways to define

regions with the above property. Given their popular interpretation as the precision

with which the data constrain the values of the parameters, they should therefore, in

addition, depend in an appropriate fashion on the measurement uncertainties and the

total amount of data and be independent of random influences such as the actually

realized minimum value of the fit statistic (which varies from data set to data set

simply due to random fluctuations in the measurements).

In the Markowitz et al. (2003) prescription, the minimum χ2
dist value is converted

into an equivalent number of standard deviations as measured against a Gaussian

distribution. More specifically, a Gaussian distribution with mean 0 and standard

deviation 1 is used to calculate the abscissa σ such that the area under the curve

of the distribution between −σ and σ is equal to the minimum rejection probability

rmin. Mathematically, this evaluates to

σ =
√

2 erf(rmin), (4.12)

where erf(x) is the error function. To find the 68% confidence region (equivalent

to “1 σ” in standard χ2 fitting), 1.0 is added to σ, and the above equation inverted

to find the critical value for the rejection probability:

rcrit = erf−1

(

σ + 1.0√
2

)

. (4.13)

The 68% confidence region is then taken to be the area inside the parameter

space (or [hyper-]volume, depending on the dimensionality of the space) bounded by

the contour (or [hyper-]surface) on which the rejection probability equals the critical

value. The confidence limits on individual parameters or combinations of parameters
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may be determined by projecting the region onto the parameter axis/axes. This

procedure is therefore similar to the ∆χ2 prescription in the case of χ2 fitting, with

the difference being that the equivalent ∆r measure is calculated using the above

formulas. (I will call this procedure the ∆r prescription, in light of its reliance on

calculating a critical value for the rejection probability.) A second departure from

the standard ∆χ2 prescription is that the value of the rejection probability is not

minimized over the uninteresting parameters. Instead, the uninteresting parameters

are fixed at their best-fit values, and the rejection probability only investigated on

the resulting slice in parameter space.

Applied in the context of the different fit statistics described earlier, this method

can in principle work with any of them, as long as the fit statistic can be computed

with a reasonable computing effort for both the observed periodogram as well as the

simulated ones. Specifically, the method can work with either the χ2
dist or χ2

λ values.

Alternative Implementations I performed an investigation whether the above

(statistically non-standard) method produces regions that have the required proper-

ties for their interpretation as proper frequentist confidence regions; the investigation

produces mixed results. I used simulated light curves from a given point in parame-

ter space (where I therefore knew the true values of the parameters with which the

light curves were simulated) and put each one independently through the steps of

point estimation and the determination of the 68% confidence region. If the above

prescription for finding the confidence regions has merits, then the true value of any

of the parameters should be included in the confidence region at an occurrence rate

equal to the chosen level of confidence. The actually obtained values are listed in

Table 4.1. The value for the high-frequency power law index is clearly off from its

target; the positive aspect is that it is high, meaning that the confidence regions re-

turned by the method appear to be conservative and probably do not underestimate

the uncertainties on the parameters. A separate investigation into the ∆r method by

the original authors reveals a similar behavior [115]; however, much more extensive

investigations will need to be conducted to rule on the validity of this method once

and for all.
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Table 4.1: Validation of the ∆r prescription for generating confidence regions. For
the broken power law model with low frequency index αl = 1.0, high frequency index
αh = 2.0, and break frequency fb = 2.5× 10−6 Hz, 100 simulated light curves were fit
against the full parameter space to find their best-fit model parameters and associated
minimum rejection probabilities. Separately for each one, the 68% confidence interval
for the high-frequency power law index and the break frequency was then determined
using the ∆r procedure from Markowitz et al. (2003) [49]. The “fraction” column
lists the fraction of simulated light curves for which the confidence region included
the true value of the parameter.

Parameter Fraction
αh 0.80
fb 0.68

Some investigators [45, 50, 51, 52] use the χ2
dist values directly in the standard

∆χ2 prescription for finding confidence regions, without regard to the complications

introduced by the departure from true χ2 behavior. In the absence of investigations

whether the resulting regions have the required property of enclosing the true value

with the correct probability, the reported results retain a significant uncertainty as

to their statistical validity. The conversion of the χ2
dist values into rejection proba-

bilities certainly mitigates some of these concerns. However, the use of the rejection

probability in Uttley et al. (2002) [48] is not without its own problems, as explored

in Mueller & Madejski (2009) [108]. Specifically, the regions found from contours of

constant rejection probability satisfy the conditions for frequentist confidence regions,

but their size is inversely correlated with the minimum rejection probability obtained

in the fit and therefore exhibit variations unrelated to the measurement uncertainties

or the overall amount of data. Furthermore, the procedures from both Uttley et al.

(2002) and Markowitz et al. (2003) fail to take into account the necessary changes in

the size of the confidence region when the joint confidence region on a combination

of parameters is to be determined as opposed to the confidence limits on a single

parameter [107].

All of the concerns above provided motivation for me to implement an alternative
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method for the statistical evaluation of the fit. The existence of the already imple-

mented Monte Carlo simulation algorithm for generating the possible realizations of

a given PDS model guided my exploration, and a solution relying on the very foun-

dational description of frequentist confidence intervals in Neyman (1937) [113] was

attempted. The details of this method are found in Mueller & Madejski (2009) [108];

in summary, they rely on the simulation of the distributions of estimates (best-fit

parameter values) that are expected for a given PDS model. These distributions are

subsequently compared to the actually obtained best-fit values of the parameters, and

different confidence regions are obtained depending on the desired level of confidence.

The method automatically takes into account the difference between the parameters

for which the confidence regions are to be determined and any other parameters that

the model may depend on, but which we are not currently interested in. One signifi-

cant advantage is that the method is naturally able to work with even highly biased

estimators (estimators that, on average, return a best-fit value for a parameter differ-

ent than the true one); in constrast, the procedures based on the rejection probability

inherently assume any bias in the estimators to be negligible, which may or may not

be true. Just like the canonical method, the above procedure works with either the

χ2
dist or χ2

λ fit statistic. The chosen fit statistic is used directly for the point estima-

tion, and the goodness-of-fit can also be investigated by comparing the lowest value

of the fit statistic obtained in the fit with the expected distribution of the statistic,

with the difference to the canonical method being the minimization of the fit statistic

for each of the simulated periodograms over the full parameter space Θ.

However, two serious setbacks were encountered in the application of my method

for generating confidence regions to the observations: Firstly, the simulation of the

distributions of estimates requires a very large computational effort (∼20 wall clock

hours on a 2.6 GHz Opteron core per point in parameter space for which the distri-

bution needs to be calculated; for a 3-dimensional parameter space consisting of two

power law indices and a break frequency, the number of grid points runs typically into

several thousands). Secondly, the resulting distributions of estimates are very coarse,

being expressed as the fraction of realizations that are best fit with the parameter val-

ues at the different grid points in parameter space. Finding the regions that enclose
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the required 68% or 90% of realizations, which is needed in the construction of the

final confidence region, is complicated and must rely either on a manual inspection

of each distribution to find a suitable region or possibly a (yet more computationally

intensive) smoothing fit to the coarse distribution.

In an automated implementation that I arrived at after some experimentation,

the algorithm constructs the smallest region that enclose the required fraction of

realizations by stepping through the parameter space and including at each step the

grid point with the highest remaining fraction of realizations. If the grid point at

which the observed data attained its best fit is reached before the required fraction

of realizations is attained in the sum, then the grid point from which the distribution

was generated is included in the confidence region; otherwise, it is not.

Viable Implementations

• 8A—point estimation using the rejection probability, ∆r prescription for finding

confidence regions

• 8B—point estimation using the fit statistic directly, Neyman construction for

finding confidence regions

4.3 Summary and Recommendations

The end result of the application of the Method of Light Curve Simulations to the

observed periodogram is the description of the PDS shape and normalization in terms

of the best-fit parameters of the assumed PDS model. Any imaginable functional form

for the model can be input, and the preference of the data for one model over another

may be investigated using goodness-of-fit measures. The confidence regions, finally,

express the precision with which the model parameters could be measured and form

the starting point for the interpretation of the results as either allowing a particular

physical model for the emission or being at variance with it.

Recommendations for the Method The step-wise progression of the analysis

through the individual tasks of the method allows the substitution of alternative
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prescriptions for any one of them while keeping the remainder of the pipeline intact.

My recommendations for the method are:

• As much as feasible, conduct the AGN monitoring observations in a manner

that minimizes the potential biases due to red noise leak and aliasing. This

will in general require a significantly increased exposure time on each source,

distributed as evenly as possible over a long baseline of observations (time scales

of years). Ideally, each source would be observed continuously (or at least with

a short enough sampling interval to capture most of the high-frequency power)

for a long enough time to extend the frequency coverage to below the break(s)

in the periodogram. The goal would always be to include the overwhelming

majority of the expected variability power in a single observation, such that the

biases are minimized. (This also argues against the practice of using different

instruments, such as the combination of RXTE for long- and medium-term light

curves and Chandra or XMM-Newton for short-term light curves, since in these

types of observations the light curves inevitably undersample either the low- or

the high-frequency power.)

• Substitute a prescription other than Timmer&König for the generation of simu-

lated light curves, either a more physically-motivated phenomenological model

or a full physical model that incorporate a detailed description of the emission

processes and the geometrical layout of the emission regions. One of the main

criterion should be whether the prescription generates light curves that obey

the rms-flux relation. (1A → 1B, 1C, or 1D)

• Incorporate as much as possible of the instrument-specific process of measuring

the light curve. Ideally, the simulations would be set up to provide the raw data

in exactly the same form as the observed data, i.e, at the same time resolution

as the original light curve (usually 16 s for RXTE monitoring observations),

recording the predicted number of counts per time bin (including Poissonian

uncertainties on the count rate), and perhaps also incorporating a barycentric

corrections to the arrival time of the counts instead of the correction to the

observed times that is currently necessary. This would make the adjustments
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for aliasing and Poisson level unnecessary in the subsequent treatment of the

simulated periodograms. If this is not fully possible (yet), at least attempt to

remove the need for the aliasing correction by simulating the light curves at a

sufficiently small time resolution. (2A → 2B; 4A → 4B)

• Validate the use of the Fast Fourier Transform-based approach to calculating

the DFT.

• Incorporate the Poisson level with a proper description for its fluctuations in a

set of simulated light curves instead of simply adding it to the average of the

power in a frequency bin while leaving the standard deviation untouched. (5A

→ 5B)

• Utilize a fit statistic like the χ2
λ proposed in the text that is able to work

with non-Gaussian distributions, or, alternatively, validate the use of the χ2
dist

fit statistic to confirm that the departures from Gaussian distributions do not

introduce systematic errors in the fitted model parameters. (7A → 7B)

• Further develop the application of the Neyman construction to the determi-

nation of confidence regions on fitted model parameters, or, alternatively, use

simplified implementations of the Neyman construction to validate the use of

alternative prescriptions for generating confidence regions (such as the reliance

on a ∆r prescription based on the rejection probability fit statistic). (8A →
8B)

It is unfortunate, but also somewhat unavoidable, that most of the above recom-

mendations will further increase the computational effort involved in the analysis.

Specifically, generating light curves at higher time resolution will lead to a much

longer execution time for the simulation algorithm. The other step requiring signifi-

cant computational resources is the determination of the distribution of estimates as

input into the Neyman construction. If this step can be avoided by validating the

use of the methods based on the rejection probability instead, those would be less

demanding alternatives.



Chapter 5

Results

5.1 NGC 3516

NGC 3516 was the target of a long RXTE monitoring campaign. Given that it

is one of the brightest AGN in the sky in the 2–10 keV band, it was a natural

choice for the kind of AGN monitoring observations that RXTE is well suited for.

Investigations into the PDS of NGC 3516 have been reported by other researchers

[5, 48, 49], and it lent itself as a convenient source to validate the changes that I

was making to the analysis method. RXTE observed the source from March 1997

to February 2000 with a sampling rate of one observation every ∼4 days. Periods

with shorter sampling intervals were included within this time span to capture the

higher-frequency variations, resulting in a fairly evenly sampled set of one long-term,

one medium-term, and two short-term light curves. For plots of these light curves,

please refer to Figure 1.1 as well as Markowitz et al. (2003). In all cases, missing

bins were linearly interpolated, both in the observed light curve and in the simulated

ones. The energy band over which the counts were combined was always 2–10 keV.

Details of the observational characteristics, together with other parameters pertinent

for the light curve simulation algorithm, are listed in Tables 5.1 and 5.2.

The resulting “raw” periodograms of the observations are shown in Figure 5.1,

which also compares the periodogram that I obtained with the one on which the results

in Markowitz et al. (2003) [49] are based. (Those data were kindly provided by Alex
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Table 5.1: Observational characteristics of the long- and medium-term RXTE ob-
servations of NGC 3516 and parameters for the simulation of light curves. The Raw

Fractional rms Variability refers to the standard deviation of the observed count rate
samples divided by the average count rate; the Lengthening Factor is the factor by
which the length of the light curve returned by the Timmer&König algorithm is in-
creased compared to the actually required number of samples in the simulated light
curve before rebinning (see Section 4.2.1 for details). All count rates are per PCU in
the PCA instrument.

Characteristic (unit) Symbol Long Medium
Duration (s) T 9.2 × 107 1.2 × 107

Sampling Interval (s) ∆Tsamp 3.7 × 105 4.6 × 104

Number of Samples N 251 256
Fraction of Samples
Missing — 7% 6%
Average Duration
of Snapshots (s) ∆Tbin 874 711
Average Count Rate (counts/s) µ 10.4 12.8
Average Background
Count Rate (counts/s) B 10.2 11.9
Raw Fractional rms
Variability σ/µ 0.39 0.29
Sampling Interval for
Simulated Light Curves (s) ∆Tsim 3.7 × 104 4,608
Expected Level of
Poisson Noise (rms2/Hz) PPoisson 159 19.7
Lengthening Factor — 13 12
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Table 5.2: Observational characteristics of the two short-term RXTE observations of
NGC 3516 and parameters for the simulation of light curves. See Table 5.1 for more
details.

Characteristic (unit) Symbol Short Short
(1997) (1998)

Duration (s) T 3.6 × 105 2.9 × 105

Sampling Interval (s) ∆Tsamp 1,200 1,200
Number of Samples N 303 241
Fraction of Samples
Missing — 16% 20%
Average Duration
of Snapshots (s) ∆Tbin 1,019 909
Average Count Rate (counts/s) µ 11.6 15.4
Average Background
Count Rate (counts/s) B 11.7 11.9
Raw Fractional rms
Variability σ/µ 0.08 0.11
Sampling Interval for
Simulated Light Curves (s) ∆Tsim 16 16
Expected Level of
Poisson Noise (rms2/Hz) PPoisson 0.408 0.304
Lengthening Factor — 11 14
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Markowitz.) Significant differences are seen in at least one of the short-term segments;

the interpretation of the deviations seen in the other segments, after accounting for a

slight overall difference in normalization, is less clear. The discrepancy between the

two periodograms was never resolved, even after several days of focused investigation

between me and Alex. It appears that this is simply a result of slight differences in the

RXTE extraction, most likely related to the background subtraction, although the

comparison between our respective light curves did not point to significant differences.

I report on the differences in the resulting best-fit values of the model parameters

below.

5.1.1 Canonical Method

• Analysis pipeline identifiers: 1A, 2B, 3A, 4A, 5A, 7Ax, 8A

The application of the canonical method of light curve simulations (i.e., using the

χ2
dist fit statistic to calculate rejection probabilities, and relying on the ∆r prescription

for finding confidence regions) results in best-fit parameters for the unbroken power

law model of α = 1.8 and N = 1.42 × 10−4 rms2/Hz (for f0 = 6.30 × 10−8 Hz), with

a minimum rejection probability of 0.92 indicating an fit that is not very good, but

that nevertheless cannot be ruled out at 95% confidence. (The corresponding value

of the fit statistic is χ2
dist = 44.7, which includes contributions from 41 frequency bins.

Remember that, due to correlations between frequency bins in the periodogram, the

effective number of degrees of freedom is not equal to the number of bins minus the

number of adjustable model parameters.) The best fit was searched on a grid of α

values from 0.0 to 4.0 in steps of 0.2.

The broken power law model however fits better, which is in line with the earlier

reports on the the PDS of NGC 3516. The parameter grid for this model had the

low-frequency index αl running from 0.0 to 2.0 in steps of 0.2, the high-frequency

index αh from 0.0 to 4.0 in steps of 0.2, and the logarithm (base 10) of the break

frequency fb from -8 to -4 in steps of 0.2. The best-fit values of the model parameters

are αl = 1.2, αh = 4.0, log10 fb = −5.0 (fb in Hz), and N = 7.37 × 10−8 rms2/Hz.

The fit between the model and the data is shown in Figure 5.2. The new χ2
dist = 18.3,
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Figure 5.1: NGC 3516 “raw” periodogram. The solid lines are the four periodogram
segments calculated from the long-, medium-, and two short-term light curves from my
RXTE analysis pipeline, the dotted lines are the ones provided by Alex Markowitz,
and the dashed lines represent the expected expected Poisson level in each segment.
The binning of the periodogram was performed in logarithmic space, following the
prescription in the canonical method.
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Figure 5.2: Best-fit broken power law model for the NGC 3516 periodogram obtained
from the canonical method. The main plot is the fit, the plot below shows the
residuals. In the fit plot, the solid black histograms are the observed NGC 3516
periodograms, while the colored data points with error bars are the model. (This is
opposite to the usual way of plotting a model fit, where the data have the error bars
instead.) The units on the residuals is χ, i.e., the square root of the contribution to
χ2

dist.

corresponding to a minimum rejection probability of 0.087. Given this low value, the

offsets in normalization between the different segments, specifically the two short-term

periodograms, are therefore well-explained by the expected fluctuations in variance

even if the normalization of the PDS is the same for each segment. The behavior of the

rejection probability in the (αh, fb) plane is shown in Figure 5.3. The ∆r prescription

for the confidence intervals results in the final values αl = 1.2+0.4
−0.2, αh = 4.0+∞

−1.9 and

log10 fb = −5.0+0.5
−0.3.

It appears that the discrepancy I identified earlier between my periodogram for

NGC 3516 and the one from Markowitz et al. (2003) drives the best-fit parameters
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Figure 5.3: Rejection probability contours in the (αh, fb) plane for NGC 3516 ob-
tained from the canonical method. The solid line is the 68%, the dashed line the
95%, and the dotted line the 99% contour. Note that this figure follows the conven-
tions for plotting contours of constant rejection probability in Uttley et al. (2002) and
Markowitz et al. (2003); i.e., the plot shows a slice in the three-dimensional parame-
ter space at the location of the best-fit value for the third parameter, αl, instead of a
marginalized plot where the rejection probability has been minimized over the third
parameter. If the latter convention were used, the contours would be significantly
wider. The ∆r prescription for finding confidence regions is however unaffected by
this choice of how to present the contours of constant rejection probability in a plot.
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away from those that have been previously obtained (αl = 1.10, αh = 2.00, log10 fb =

−5.70 [49]). The Edelson & Nandra (1999) results were obtained from a method that

differs significantly from the canonical one; it did not rely on simulations of light curves

at all. As such, it is not surprising that the resulting values of the model parameters

are different than in the other two published reports. Adding my results to the latter

two, however, shows the range of best-fit values that can be obtained from the same

data using the same method. The uncertainties on the best-fit parameter values

in Uttley et al. (2002) cannot be taken at face value, since they are (presumably)

derived from the contours of constant rejection probability. However, while those

confidence ranges overlap fairly well with the ones in Markowitz et al. (2003), the

difference between my results and the ones in these earlier two reports is somewhat

worrying. It makes clear that high-frequency power law indices close to (or above)

2.0 have to always be taken with a grain of salt, since the uncertainties on them

are large. In fact, in my investigation, the Psim(f) values that form the basis for

the comparison of the model to the observed periodogram changed only very little

when moving from a high-frequency index of 2.0 to 4.0 (with the break around 10−5

Hz). This is a result of the fact that the periodograms of the two short-term light

curves are both above the break and therefore, due to red noise leak, become almost

completely insensitive to changes in the high-frequency index once the index is close

to 2.0. The only remaining leverage on the high-frequency index is then provided by

the few bins in the medium-term periodogram that are above the break frequency.

It is no wonder, then, that the break frequency can only be determined to slightly

better than an order of magnitude.

5.1.2 Confidence Regions from Neyman Construction

• Analysis pipeline identifiers: 1A, 2B, 3A, 4A, 5D, 7Ax, 8B

The above data set on NGC 3516 was put through the alternative method of de-

termining confidence regions that relies on the simulated distribution of estimates as

input into a Neyman construction, as detailed in Section 4.2.8. (The fit statistic was

still the χ2
dist from the canonical method.) For reasons of computational speed, this
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method requires that the Poisson level be subtracted from the source periodogram in-

stead of being added to the model. This step led to a complication, since the expected

Poisson level for the 1998 short-term observation is higher than the power in the high-

est three frequency bins by quite a large amount (∼40%). Seeing no alternative, I

proceeded to reduce the value of PPoisson by 50% to guarantee that the periodogram

corrected for Poisson noise continued to have only positive values for the power. A

second caveat in these results is that the procedure relied on the incorrect practice

of adding the aliasing correction as a constant to individual simulated periodograms

(Section 4.2.4); however, since the region in which the best fit is found is significantly

away from the areas where either the low- or high-frequency index are close to 0,

where aliasing becomes important, the results can be expected to be robust under a

change in the procedure in the addition of the aliasing correction.

The results for the (αh, fb) plane are plotted in Figure 5.4. The general shape

of the degeneracy between the two parameters is preserved compared to the earlier

contour plot (Figure 5.3), but there is an overall offset toward larger values of fb in

this case. This method seems to do slightly better with respect to constraining the

high-frequency power law index.

5.1.3 Difficulty with Cubic Spline Fit-based χ2
λ Fit Statistic

• Analysis pipeline identifiers: 1A, 2B, 3B, 4B, 5D, 7By, 8A

The application of the χ2
λ fit statistic to the NGC 3516 data proved very diffi-

cult, and no results were ultimately obtained. The problem arises from the need to

simulate light curves at sufficiently small time resolution to obviate the need to add

any corrections due to aliasing; this becomes computationally very expensive for the

long-term light curve, for which the simulated light curves would need to have over

100,000 entries to cover the full duration at ∼850 s resolution.
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Figure 5.4: Confidence regions in the (αh, fb) plane for NGC 3516 obtained from the
Neyman construction. The shading corresponds to the 68% (darkest), 95% (medium),
and 99% (lightest) confidence regions, with each region with a higher confidence level
including the lower ones within it, of course. Due to the necessity of light curve
simulations for each point in the parameter space for which one wishes to check
whether it is included in one of the above confidence regions, these confidence regions
are now composed of blocks around each point in parameter space that was included
in the grid for the simulation of light curves.
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5.2 NGC 4945

Although NGC 4945 had been observed by RXTE several times before, the 2002

observations were the first ones to provide enough data for an investigation into its

PDS. The observing strategy was adapted from the NGC 3516 monitoring campaign;

specifically, scaling the location of the break by the (somewhat uncertain) ratio of

the black hole masses between these two AGN, one would expect to see departures

from power law behavior in NGC 4945 at timescales around a few days. A pointing

of 1,400 s on average was scheduled approximately every 6 hours for a medium-term

light curve spanning ∼50 days, while for 7 days centered within the overall obser-

vation period the source was monitored quasi-continuously for the short-term light

curve. Early on, it became clear that the observations were going to be spaced very

irregularly and that an analysis method would have to be employed that could take

this into account. Even within the short-term section, which was intended to be

a continuous observation, there are significant gaps, and for the medium-term sec-

tion the times between observations vary randomly between 3 and 12 hours. Both the

medium- and short-term light curves therefore include a high fraction of missing bins.

The rebinning had to ensure that not too many consecutive bins would be missing;

this was especially vexing for the short-term light curve, where the desire to make

the periodogram extend to as high a frequency as possible had to be balanced against

the above requirement. The light curve from this 55 day long observation is shown

in Figure 5.5, and the time-integrated energy spectrum in Figure 5.6.

A separate year-long observation of NGC 4945 was conducted between March 2006

and April 2007 to provide a long-term light curve to constrain the low-frequency

behavior of its PDS better. The snapshots were separated by 2 days on average,

and RXTE produced a fairly well-sampled light curve with only few missing bins.

This 1 year long light curve is shown in Figure 5.7. The spectrum of the source

did not undergo any detectable changes between the 2002 and 2006/07 observations

or between these and the 1997 and 2000 observations on which earlier reports are

based [38, 116]. Just as for NGC 3516, missing bins in all light curves were linearly

interpolated, both in the observed light curve and in the simulated ones. The energy
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Figure 5.5: NGC 4945 light curve for the 2002 RXTE observations. The energy band
over which the counts were extracted is 8–20 keV, and the background counts have
been subtracted. PCU 0 and 2 of the PCA instrument are added in this plot. The
typical count rate uncertainty (±0.4 counts s−1) is shown in the upper right corner.
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Figure 5.6: Time-averaged broadband unfolded RXTE PCA spectrum of the 2002
observations of NGC 4945. The data are fit with a phenomenological model that
includes an exponentially cut off power law component at high energies, modified
by neutral X-ray reflection (pexrav model in Xspec), a Gaussian profile for the iron
fluorescence line around 6.4 keV, and an unabsorbed power law component at low
energies. The latter is most likely arising from the variety of off-nuclear X-ray sources
in the field of view of the PCA instrument that are known to exist from the Chandra

observation [116].
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Figure 5.7: NGC 4945 light curve for the 2006/07 RXTE observations. The energy
band over which the counts were extracted is 8–20 keV, and the background counts
have been subtracted. Only PCU 2 of the PCA instrument was used in the extraction.
The typical count rate uncertainty (±0.1 counts s−1) is shown in the upper right
corner.

band over which the counts were combined was always 8–30 keV, since NGC 4945,

being a Seyfert 2 galaxy, is heavily absorbed in the 2–10 keV band. The objection

that the comparison between NGC 4945 and NGC 3516 takes place in two distinct

energy bands is countered by the observational evidence that the shape of the PDS

does not appear to change much with energy [117], at least not in amounts that would

be detectable given the data on either of these two sources.

Details of the observational characteristics, together with other parameters perti-

nent for the light curve simulation algorithm, are listed in Table 5.3.

The resulting “raw” periodograms are plotted in Figure 5.8. Of concern is the
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Table 5.3: Observational characteristics of the RXTE observations of NGC 4945 and
parameters for the simulation of light curves. See Table 5.1 for more details.

Characteristic (unit) Symbol Long Medium Short
Duration (s) T 3.4 × 107 4.7 × 106 5.9 × 105

Sampling Interval (s) ∆Tsamp 1.7 × 105 2.2 × 104 4,320
Number of Samples N 199 218 137
Fraction of Samples
Missing — 3% 21% 34%
Average Duration
of Snapshots (s) ∆Tbin 1,790 1,190 2,140
Average Count Rate (counts/s) µ 1.36 2.78 2.90
Average Background
Count Rate (counts/s) B 10.1 11.6 11.5
Raw Fractional rms
Variability σ/µ 0.35 0.30 0.24
Sampling Interval for
Simulated Light Curves (s) ∆Tsim 1.7 × 104 2,160 16
Expected Level of
Poisson Noise (rms2/Hz) PPoisson 1,200 122 12.4
Lengthening Factor — 16 15 14
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Figure 5.8: NGC 4945 “raw” periodogram. The solid lines are the three periodogram
segmentss calculated from the long-, medium-, and short-term RXTE light curves,
the dashed lines represent the expected Poisson level in each segment.

lowest frequency bin in the long-term periodogram; I return to this below.

5.2.1 Canonical Method

• Analysis pipeline identifiers: 1A, 2B, 3A, 4A, 5A, 7Ax, 8A

The same two models, unbroken and broken power laws, over the same grid of

parameter values as for NGC 3516 was used for NGC 4945. The application of the

canonical method to the above periodogram results in the best-fit parameters of the

unbroken power law model of α = 1.0 and N = 1.38× 10−5 rms2/Hz (for f0 = 6.30×
10−8 Hz). The best-fitting rejection probability of 0.57 indicates an acceptable fit; the
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corresponding value of the fit statistic is χ2
dist = 25.9, which includes contributions

from 26 frequency bins.

Because the lowest bin in the long-term periodogram shows such large departure

from the expected behavior, it was excluded in the sum of the fit statistic. We justify

this by noting that the long-term light curve for NGC 4945 shows definite trends

on time scales of the same order as the observation length. Since we do not have

a good model for these long-term trends, we dismiss the lowest frequency bin as

being influenced by processes in the source that we do not intend to model using

the (un-)broken power law model. A new model component might be needed to

incorporate the power seen at the lowest probed frequencies; however, given that it

is only one frequency bin that seems to be affected by this component, there is not

much information contained in the present data on NGC 4945 to model it.

The broken power law model returns αl = 0.4, αh = 1.2, log10 fb = −5.4, and

N = 3.69× 10−7 rms2/Hz, with an improved χ2
dist = 21.7 and corresponding rejection

probability of 0.37. However, since the unbroken power law model is already a good

description of the data, we do not claim to have detected the break in NGC 4945

with any notable statistical significance.

The good agreement between the broken power law model and the data is shown

in Figure 5.9. Figure 5.10 in turn shows the contours of constant rejection probability

in the (αh, fb) plane. The ∆r prescription for finding confidence intervals gives the

following final results on the parameter values: αl = 0.4+0.7
−0.7, αh = 1.2±0.4, log10 fb =

−5.4+0.8
−1.1. (Note that the lower error bar on αl is estimated from the behavior of the

rejection probability as αl increases, since negative values for the indices were not

included in the parameter grid.)

5.2.2 Confidence Regions from Neyman Construction

• Analysis pipeline identifiers: 1A, 2B, 3A, 4A, 5D, 7Ax, 8B

The alternative prescription for finding confidence regions was also applied to

the data on NGC 4945, however only to the medium- and short-term periodogram.

(This investigation was done before the decision to ignore the lowest-frequency bin
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Figure 5.9: Best-fit broken power law model for the NGC 4945 periodogram obtained
from the canonical method. The lowest frequency bin in the long-term periodogram
was excluded in the calculation of the χ2

dist fit statistic. The plot follows the same con-
ventions as in Figure 5.2. Note that the apparent discrepancy in model normalization
between the segments is due to the biases in the periodogram, specifically the strong
aliasing of high-frequency power in the long-term periodogram. The behavior of the
model across the different segments does match that of the observed periodograms.
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Figure 5.10: Rejection probability contours in the (αh, fb) plane for NGC 4945 ob-
tained from the canonical method. The solid line is the 68%, the dashed line the
95%, and the dotted line the 99% contour. The plot follows the same conventions as
in Figure 5.3.
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in the long-term periodogram of NGC 4945 was finalized, which meant that the only

safe course of action was to ignore the long-term light curve altogether.) Again, the

Poisson level had to be subtracted from the observed periodograms; in contrast to

NGC 3516, the expected Poisson level for both medium- and short-term periodograms

was safely below the measured power values. The same caveat however applies as far

as the aliasing correction is concerned—this time made more severe by the general

preference of the data set on NGC 4945 for lower power law indices than in the case

of NGC 3516.

The results for the (αh, fb) plane are plotted in Figure 5.11. This time, except

for the general preference for a high-frequency index of 1.0–1.2 toward low values

of the break frequency, there is a marked difference between the confidence regions

obtained by the two methods. This might be as innocuous as being due to the missing

long-term periodogram in the present analysis. The comparison to the equivalent

contours of constant rejection probability for only the medium- and short-term light

curve can however be made. The corresponding rejection probability plot is shown

in Figure 5.12. The Neyman construction seems to do better at constraining the

95% and 99% contours, but the 68% contour obtained from it is much larger than the

region enclosed by the 69% rejection probability contour, highlighting again that these

contours of constant rejection probability are intrinsically very variable. Obviously,

based on the Neyman construction, no useful limits can be placed on either of the

two plotted parameters.

5.2.3 Validation of the χ2
λ Fit Statistic

• Analysis pipeline identifiers: 1A, 2B, 3B, 4B, 5D, 7By, 8A

In contrast to NGC 3516, the method modified to use the cubic spline fits and

calculate the degree of agreement between the model and the data with the χ2
λ fit

statistic was successfully completed for NGC 4945 (with the long-term periodogram

included alongside the medium- and short-term ones). As in the case of the earlier

change involving the switch to the Neyman construction for the confidence regions,

the Poisson level-subtracted source periodograms had to be used. Note however
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Figure 5.11: Confidence regions in the (αh, fb) plane for NGC 4945 obtained from the
Neyman construction. The shading corresponds to the 68% (darkest), 95% (medium),
and 99% (lightest) confidence regions. The plot follows the conventions established
for Figure 5.4.
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Figure 5.12: Rejection probability contours in the (αh, fb) plane for NGC 4945 ob-
tained from the canonical method, fitting the medium- and short-term periodogram
only. The solid line is the 68%, the dashed line the 95%, and the dotted line the 99%
contour. The plot follows the same conventions as in Figure 5.3.
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that in this new case, the periodogram is calculated slightly differently than in the

canonical method: While the canonical method converts the power in the unbinned

periodogram into logarithmic values before binning (thereby forming the geometric

average of the values in each bin), the modified procedure does the binning step

before the conversion to logarithmic values to preserve the integrated power in the

periodogram. (See the footnote on Page 96 for details.)

In further contrast to the canonical method, the light curves were simulated at

higher time resolution to obviate the need to add a correction due to unaccounted-for

aliasing power. ∆Tsim was therefore set to 880 s for the long-, 560 s for the medium-,

and 432 s for the short-term periodogram, respectively. The χ2
λ resulting from the fit

are then input into the statistical evaluation via rejection probabilities in the same

manner as in the canonical method. As in the case of the χ2
dist fit statistic, the lowest

frequency bin in the long-term periodogram was ignored in the sum.

The resulting contours of constant rejection probability, shown in Figure 5.13,

show once more that the data set on NGC 4945 is just not able to constrain the

parameters very well. The best fit for the broken power law model occurs at αl = 1.0,

αh = 3.4, and log10 fb = −4. The minimum rejection probability is 0.19, while

the corresponding value of the fit statistic is χ2
λ = 21.9. The next-higher rejection

probability of 0.21 is however obtained at the point in parameter space where αl = 0.4,

αh = 1.0, and log10 fb = −7.4, demonstrating how badly determined these values

really are.
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Figure 5.13: Rejection probability contours in the (αh, fb) plane for NGC 4945 ob-
tained using the χ2

λ fit statistic based on the cubic spline fits. The solid line is the
68%, the dashed line the 95%, and the dotted line the 99% contour. The plot follows
the same conventions as in Figure 5.3.
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Discussion

6.1 The Method of Light Curve Simulations

6.1.1 Changes to the Canonical Method

In my view, the most important changes to the method that I implemented are the

χ2
λ fit statistic that I developed to work with the non-Gaussian distribution of power

in the periodogram and the application of the Neyman construction for finding the

confidence regions on fitted model parameters. Of secondary consideration are the

issues of logarithmic binning of the periodogram (which connects with the choice of

fit statistic), the exact procedure for the rebinning of the simulated light curves, the

simulation of light curves with smaller time steps to avoid the aliasing correction,

and the different proposals to include the Poisson level with a prescription for its

bin-to-bin fluctuations.

A more fundamental modification would be the move away from the Timmer&König

prescription for the generation of light curves; such a change will have to take place at

some point because the real light curves are not composed of stochastic fluctuations

around an average flux level. One discrepancy between the assumed behavior of the

stochastic element in the observation and the actually realized fluctuations is seen

in the un-rebinned periodogram. Figure 6.1 shows the un-rebinned long-term peri-

odogram for NGC 4945 compared to the predicted fluctuations in each frequency bin
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Figure 6.1: Un-rebinned long-term periodogram for NGC 4945, compared to the
spread in power values predicted by the Timmer&König algorithm. The NGC 4945
long-term periodogram is the black stepped line, and the predicted power from a
broken power law model with αl = 0.8, αh = 1.4, and fb = 10−5 Hz is plotted as
the red data points (with the average of the simulated power values as the centroid
and the standard deviation as the error bar). For clarity, a linear frequency axis is
used in this plot; consequently, the power plotted on the vertical axis has not been
multiplied by the frequency.
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Figure 6.2: Un-rebinned long-, medium-, and short-term periodograms of NGC 4945.
The ones in Figure 5.8 are the re-binned versions of the same data.
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provided by the Timmer&König prescription. It is clear that the assumed stochas-

ticity in the simulated light curves is nowhere near the level required to reproduce

the observed bin-to-bin fluctuations in the power. A similar behavior is found in the

other two powerlaw segments on NGC 4945, as shown in Figure 6.2, as well as the

unrebinned periodograms of NGC 3516. The practice of rebinning the periodogram

to a large degree hides this discrepancy, making the calculation of reasonable values

for the fit statistic possible. However, the underlying discrepancy continues to be

present and is currently unaccounted for in the simulation algorithm.

Furthermore, light curves generated by the Timmer&König algorithm do not obey

the rms-flux relation. The use of exponentiated Timmer&König light curves [16]

certainly holds promise in this regard; however, it is still only a phenomenological

description of the stochasticity in the variability and furthermore has no practical

consequence in the analysis of light curves with modest rms variability (∼30% and

lower) compared to the use of non-exponentiated Timmer&König light curves. It

is unlikely, for example, that exponentiated light curves exhibit significantly larger

bin-to-bin fluctuations in the periodogram that reproduce the observed ones.

The finding that the observed bin-to-bin variations in the periodogram power are

much larger than the ones predicted by the Timmer&König algorithm has far-reaching

consequences: Since all the algorithm does is implementing the assumption that the

fluctuations of the periodogram power are well-described by χ2 distributions with two

degrees of freedom, this assumption underlying almost the entire work on AGN PDS

investigations appears to be violated. Associated with this, the reports relying on this

assumption to determine the statistical significance of suspected periodic variations

superimposed on stochastic fluctuations (e.g. [118]) acquire a significant caveat in

their conclusions. If the actual fluctuations are larger than previously modeled, then

the statistical significance of any peaks investigated using this technique will be an

overestimate. (Note that the validation of the technique in the above reference itself

relies on the Timmer&König prescription for generating artificial light curves, such

that the assumption of the χ2
2 distribution of the fluctuations is present in both

the analysis method and the Monte Carlo data used to validate it. Obviously, no

discrepancy is found as a result, but the question whether the fluctuations are indeed
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well-described by χ2
2 distributions remains unadressed1.)

6.1.2 Effects of Finite Number of Simulated Light Curves

One additional complication intrinsic to the method that has not yet been mentioned

in this work is that, because the calculation of the fit statistic relies on a finite number

of simulated light curves, the fit statistic itself acquires an uncertainty, such that, if a

second set of light curves with the same parameter values as the first were to be used

in its place, the fit statistic would attain a slightly different value. In the context of

the results shown earlier, this is hardly expected to make much of a difference. The

χ2
dist statistic utilizes only the average and standard deviation of the simulated power

values, and those values can be determined with only a small uncertainty even from a

relatively small number of samples. Similarly, the fit to the cumulative distributions in

the case of the χ2
λ statistic should be fairly robust as long as the empirical cumulative

distribution is determined from a few hundred simulated light curves. It remains to

be seen whether this presently unaddressed behavior of the fit statistic will become

noticeable in more extensive data sets.

This random element in the set of simulated light curves does tend to have a

significant impact on the method for constructing confidence regions based on the

Neyman construction. Because the fit statistic can only be calculated on a grid of

parameter values, the distribution of estimates that forms the basis of the Neyman

construction is composed of discrete blocks around each grid point in parameter

space, with each block being the fraction of realizations that were best fit with those

parameter values. Now consider the χ2
dist fit statistic: Due to the randomness inherent

in the simulated light curves from which the average and standard deviation of the

power in each frequency bin (Psim(f) and ∆Psim(f)) are calculated, the ∆Psim(f)

will be an overestimate for some frequency bins. If, at some grid point in parameter

1Whether the discrepancy between the assumed χ2

2
behavior of the flucutations and the actually

obtained results stems mainly from the real fluctuations being intrinsically different from what is
assumed or, alternatively, from biasing effects of red noise leak and aliasing is not resolved in this
discussion. More work is needed to investigate the nature of the measured fluctuations. Part of the
difficulty lies in the fact that, in practice, a periodogram free of the effects of red noise leak and
aliasing can not be obtained.
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space, many such frequency bins return an overestimate, all values of the χ2
dist statistic

at that grid point will be too low. If one of the realizations for which the point

estimation is being done would have had a best fit in the vicinity of the grid point

with underestimated fit statistic, there is a good chance it will instead be best fit

with that grid point. This effect manifests itself in the distributions of estimates as

fluctuations from one grid point to the next that are much larger than those expected

from Poissonian fluctuations due to the finite number of realizations that are used to

determine the distribution. This can be seen to varying degrees in all earlier plots of

distributions of estimates, such as Figures 3.6, 3.8, or 3.11.

The suitable smoothing of the experimentally derived distributions of estimates

might therefore be important to negate the effects of this random element. While

the application of the method for finding confidence regions based on the Neyman

construction seem to produce reasonably-sized regions, what is in fact missing still is

the validation of the procedure, i.e., an extensive check using simulated light curves

to confirm whether the regions being returned by it have the required property to

make them frequentist confidence regions. The reason why this has not been done in

the context of this work is the significant computational effort required to apply the

procedure to a large number of simulated light curves (for which the true values of

the parameters are known, as in the attempted validation of the ∆r procedure).

6.1.3 Uneven Sampling in Light Curves

An important finding from the investigation into the periodogram of unevenly sam-

pled light curves is that missing bins and observation times that are not evenly spaced

can have a significant effect on the periodogram and on the precision with which the

PDS shape can be measured. My recommendation here is clear: Make the light curve

as evenly sampled as possible, even if it requires degrading the time resolution or

introducing artificial data in the form of interpolated bins. The effects of these modi-

fications can subsequently be quantified through the use of the simulation procedure,

which is able to incorporate these complications in the sampling pattern.
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6.1.4 Application of the Method to Other Instruments

A number of instruments in planning, being constructed, or already operating are ca-

pable of producing data sets that lend themselves to the investigation of the PDS with

the Method of Light Curve Simulations. This list includes Fermi, LSST, ASTROSAT,

NuSTAR, and EXIST. The method is capable of working, without modifications, with

data that express either the (photon or energy) flux of a source or the instrument

count rate. The one complication introduced by scanning instruments such as Fermi

is that the effective area changes significantly over the duration of each snapshot. The

light curve generation algorithm might therefore need to be adjusted to include this

effect in the simulated light curves also. One option would be to simulate light curves

at a time resolution small compared to the typical length of the snapshot, such that

the action of the time-varying effective area can be incorporated by multiplying the

intrinsic source flux (as returned by the simulation) by the instantaneous effective

area, then integrating over the snapshot duration to arrive at the total number of

counts (or total energy) in the snapshot.

6.2 The Results on NGC 3516 and NGC 4945

6.2.1 The PDS of NGC 3516—Systematic Uncertainties in

Fitted Model Parameters

It is deeply unsatisfying that the application of the canonical method to the data set

on NGC 3516 yields different results than the ones reported in the literature [48, 49].

After all, I am using the same method on the same data. It is of course possible that

our respective implementations of the canonical method differ in some unknown, but

crucial aspect that would explain the differences; however, this does not explain the

differences in the raw periodograms seen in Figure 5.1. A crucial test of the validity of

my implementation of the canonical method would be to take as input into the model

fit the NGC 3516 periodogram as calculated by Alex Markowitz—a procedure made

complicated by the necessity of not only having the raw periodogram at hand, but also

the exact information about how the observed light curves were rebinned, with what
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time resolution the simulated light curves were generated, how they were rebinned,

what values were used for the estimated Poisson level in the different frequency ranges,

and so on.

We are left with the above results on NGC 3516, which, due to the decrement in

power at the highest frequencies in my periodogram compared to the one from Alex

Markowitz, return a value for the high-frequency power law index very different from

the previously published results (4.0 vs. 2.0). Given the difficulty of measuring a high-

frequency index larger than 2.0, this should perhaps not be too surprising, especially

considering also that the 68% contour of rejection probability in Figure 8 in Markowitz

et al. (2003) does not close as αh goes toward 4. It is then somewhat surprising that

the ∆r prescription for generating confidence intervals should return a very much

smaller uncertainty on αh than suggested by the rejection probability contours, one

that is able to exclude any values of αh higher than 2.55 at 68% confidence [49].

The application of the alternative prescription for confidence region based on the

Neyman construction in comparison to the canonical method produces regions that

match the previously obtained ones fairly well. With my data set on NGC 3516, both

of the above sets of regions are offset toward higher fb values compared to the results

in Markowitz et al. (2003). One unfortunately arrives at the conclusion that the

best-fit values of the parameters exhibit an as-of-yet poorly constrained systematic

uncertainty that is at least as large as the statistical uncertainty with which these

values have been reported.

6.2.2 NGC 4945 PDS and Break Frequency Measurement

For NGC 4945, the application of the canonical method to its data set was made

complicated by the behavior of the lowest frequency bin in the long-term periodogram,

and the practice of excluding it from consideration in the fit, while necessary to obtain

reasonable values of the χ2
dist fit statistic so that confidence limits can be placed on

the model parameters, leaves the question of the origin of the unexpected behavior

unanswered. Additional observations will be necessary to investigate more specifically

the long-term variations on time scales of years seen in the year-long light curves of
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NGC 4945.

The confidence limits on the parameters of the broken power law model for the

NGC 4945 PDS as obtained from the canonical method have to be taken with a

grain of salt, not only because the ∆r prescription cannot be said to have been

fully investigated and validated yet, but more directly in light of the different results

obtained from either the application of the Neyman construction (Figure 5.11) or the

substitution of the χ2
λ fit statistic (Figure 5.13). The latter two give results that are

consistent with each other in that a good fit to the data can be obtained with any

chosen value of one of the plotted parameters, either the high-frequency index or the

break frequency. The only regions in parameter space that can be excluded are low

values of the break frequency coupled with a value for the index away from 1.0.

Therefore, while technically the canonical method returns a value for the break

frequency in NGC 4945 of log10 fb = −5.4+0.8
−1.1, it is simply premature to place this

object on the plot of black hole mass vs. break time scale of McHardy et al. (2004)

[25] (also [27, 28]). Better observations of this important AGN will be needed before

it can be used, because of its well-determined mass, as an anchor to constrain the

relationship or lend new insights into the behavior of different classes of AGN. From

the scaling relationship in the above paper, and given a mass of MBH ≈ 1.4× 106 M�

in NGC 4945, its break frequency is expected to be around 10−5 Hz if NGC 4945

is grouped with the broad-line Seyfert 1 galaxies. More likely, however, given that

NGC 4945 has an appreciable mass accretion rate of around 10% [38], is the associa-

tion with the Seyfert 2 analogues of narrow-line Seyfert 1 galaxies, in which case the

break is expected around 5 × 10−5 Hz.

The only two models for the PDS considered in this work are the unbroken and

broken power law models. Given the significant uncertainties seen in the model

parameters and the overall good fit that the broken power law model provides, it is

not expected that any of the other models that are sometimes used (e.g., the “knee”

model or a doubly broken power law model) would yield a significant improvement

in the fit.
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6.2.3 The High-Frequency Power Law Index in NGC 4945

It is interesting to note that the high-frequency power law index in NGC 4945, at

∼1.4, seems to be significantly smaller than for either the narrow- or broad-line Seyfert

1 galaxies for which the PDS has been measured. This general finding has proved

remarkably robust under significant changes to the method for the light curve analysis,

since it was noticed even in the earliest reports on the PDS in this source [119]. A

power law index closer to 1.0 than to 2.0 means that the NGC 4945 variability at short

time scales is higher compared to the average Seyfert 1 galaxy. It is an intriguing

possibility that we are seeing here the effects of a highly inclined accretion disk. The

inclination angle is known to be very close to 90◦ in NGC 4945 from both the presence

of megamaser emission (which needs a significant column density along the line-of-

sight to operate) [39] and the structure of the torus around the central engine inferred

from a photon propagation model [38]. With such an orientation of the accretion disk,

the Keplerian movement of material in the inner parts of the accretion disk leads to a

large-amplitude variation in the line-of-sight velocity, such that relativistic beaming

effects might become important. Simulations of this situation [120] do hint at the

possibility of significant modifications of the high-frequency part of the PDS that

might then show up as a flattening of the high-frequency power law compared to

those from AGN with more face-on accretion disks.
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Conclusion and Outlook

The easily-stated question of what the PDS of the X-ray fluctuations in an AGN looks

like turns out to be surprisingly difficult to answer. Not only are there considerations

about covering the right frequency ranges in the periodigram with an observation,

considering that shape-distorting biases are introduced if the light curve undersamples

either the low- or the high-frequency part of the PDS. The investigation, due to the

stochastic nature of the variability process, also necessarily rests on a model for the

stochastic nature of the fluctuations. The statistical interpretation of this model-

dependent description of the PDS shape furthermore is made complicated by the

significant computational effort required.

The overall goal of the research leading up to this work was the accurate deter-

mination of the PDS of NGC 4945, with the dual hopes of placing a well-determined

data point on the break frequency–black hole mass relationship as well as gaining

an insight into whether any differences in the PDS between Seyfert 1 and 2 galaxies

were consistent with the Unification Model of AGN activity. It is clear that these

goals have not been fully achieved. The available data on NGC 4945 simply do not

allow for the derivation of a well-determined break frequency, and it cannot yet fulfill

its intended role as a pivotal point on the break frequency–black hole mass scaling

relation. The one conclusion that can be drawn from the investigation into its PDS

is that the source appears to show an excess of variability power at high frequen-

cies, which could point toward an observational effect involving the orientation of the
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accretion disk with respect to our line of sight.

More data are clearly needed, not only for NGC 4945, but for many more Seyfert

2 galaxies. Given the importance of even sampling in the Fourier analysis of these

light curves, there is clearly a case to be made for a sensitive hard X-ray instrument

with all-sky monitoring capabilities.

Much work remains to be done on the method also. I would expect that with more

extensive data sets, many of the simplifying assumptions that currently are present

in the canonical method will turn out to be unsupportable. The real light curves

are not examples of the stochastic light curves that the Timmer&König prescription

generates, nor are the distributions of power in the periodogram log-normal. A careful

investigation into possible biases introduced by using the χ2
dist fit statistic should be

conducted fully within a Monte Carlo simulation only, with an assumed sampling

pattern that allows the shape of the PDS to be determined much better than is

currently possible with actual data. I suspect that estimator biases will become

apparent, especially in the power law indices (which then also modify the break

frequencies, due to the degeneracy between these parameters).

Many more outstanding questions can be listed: What is the optimal binning in

the periodogram, or should the goal be to eventually abandon the binning altogether

and work with individual frequency bins (which, while currently being infeasible due

to the computational effort involved, should always be preferable)? Does the practice

of exponentiating Timmer&König light curves negate the objections above, and are

the resulting light curves a good representation for the observed data sets? How well is

the method suited to investigate whether QPOs are present in the data? How does the

determination of the PDS of an AGN stack up against results coming out of wavelet

analysis, specifically with regard to the suitability of either method for investigating

the type of incoherent, stochastic fluctuations seen in these observations?

The question regarding the validity of the Timmer&König prescription for gen-

erating light curves is an unfortunate reminder of the lack of physically motivated

models that are detailed enough to be able to predict the possible range of outcomes

of an AGN monitoring observation. The observational investigations into the shape

of the PDS, as well as other tools to characterize the variability, will proceed with
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current and future instruments, but there is clearly a need for more theoretical de-

velopments also.

The canonical Method of Light Curve Simulations, coupled with the recommenda-

tions that I am able to make based on my extensive investigation into its components,

provides a Monte Carlo simulation framework that is well-suited to investigate many

of the above questions. One important feature of the method is its modularity: If

a better prescription for generating light curves based on a new model for the vari-

ability is developed, it can simply be substituted at the appropriate step. Depending

on the experimentally realized distributions of power in the periodogram, different fit

statistics can be utilized. It is safe to say that light curve simulations will continue

to be used extensively for the analysis of AGN X-ray monitoring observations.



Appendix A

Changes to the Method after the

2004 Report on the PDS of

NGC 4945

I published an earlier report on the application of the Method of Light Curve Sim-

ulations to RXTE data on NGC 4945 [119]. Those results were the product of a

somewhat simplistic implementation of the canonical method, before the deeper un-

derstanding of the intricacies involving light curve rebinning and variance adjustment.

Compared to the canonical method, the 2004 implementation rebinned the NGC 4945

medium- and short-term light curves into one overall light curve (Step C in Figure 2

in the above paper), which I now know to introduce the severe modifications to the

periodogram seen in Figure 3.10. (See Section 5.2 for more details on the RXTE

observations of NGC 4945.) The simulated light curves are then no longer gener-

ated necessarily at the original 16 s binning of the observed light curve (step B).

As a consequence, the correction due to aliased power had to be adopted as in the

canonical method (Section 4.2.4). The practice of normalizing individual simulated

periodograms, which was used in the 2004 implementation (step D), turns out to be

another source of bias, and I have since abandoned it (Section 4.2.6). As a result of

this change, the Poisson level is now added differently, since the step of adding it in

the time domain (step E) cannot be performed when the simulated light curves are
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not yet normalized (Section 4.2.5). Finally, the use of “stretched” χ2 distributions to

fit the distribution of power in the periodogram (step H) has been superseded by the

use of cubic splines (Section 4.2.7).



Appendix B

Documentation of Analysis Code

and Essential Data Products

The investigations in the previous chapters relied heavily on custom analysis code.

In the interest of reproducibility of the results, the code and associated essential data

files have been preserved in the hope of making them available to other researchers,

if desired. The following section explains the function and input/output structure of

each top-level code file (i.e., all C code files that have a main{} entry point as well

as all Perl and bash scripts) in the preserved package. For each file, the text includes

the analysis pipeline identifiers from Chapter 4 that the code addresses. Compilation

of the C-based code is controlled by the Makefile file. The files starting with an

upper case letter provide functions and subroutines on which the main code files

depend. Documentation for these files is contained within the code, and they are not

separately documented below.
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B.1 Analysis Code

B.1.1 lc rebin.visual (script)

• Analysis pipeline identifiers: (none)

Description Script for the visual inspection of the location of filled bins within a

new bin, used to set the light curve rebinning parameters such as length of new bin

and offset between start of first new bin and start of first filled bin

Input Data

• list of bin numbers corresponding to filled 16 s bins in the RXTE extracted

source light curve

• rebinning factor

• offset between start of first new bin and start of first filled bin within first new

bin (in bin numbers)

Output

• text graphic of location of filled bins within each new bin (written to stdout)
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B.1.2 lc rebin.generate info (script)

• Analysis pipeline identifiers: (none)

Description Tool for the generation of the light curve rebinning information for

the source light curve based on the rebinning parameters determined from

lc rebin.visual

Input Data

• list of bin numbers corresponding to filled 16 s bins in the RXTE extracted

source light curve

• rebinning factor

• offset between start of first new bin and start of first filled bin within first new

bin (in bin numbers)

• start and stop index of bin numbers to include in rebinning information (used

e.g. for extracting the intensively-sampled segment out of a combined medium-

and short-term light curve)

Output

• table of light curve rebinning information, used to generate light curve rebinning

information FITS file (see Section B.2.2), written to stdout
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B.1.3 lc rebin.sim rebin info (script)

• Analysis pipeline identifiers: (none)

Description Tool for the generation of the light curve rebinning information for

the simulated light curves based on the rebinning parameters determined from

lc rebin.visual

Input Data

• list of bin numbers corresponding to filled 16 s bins in the RXTE extracted

source light curve

• rebinning factor

• offset between start of first new bin and start of first filled bin within first new

bin (in bin numbers)

• intended time step for simulation of light curves

Output

• table of light curve rebinning information, used to generate light curve rebinning

information FITS file (see Section B.2.2), written to stdout
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B.1.4 source.rebin lc

• Analysis pipeline identifiers: (none)

Description Code for the calculation of the rebinned source light curve from the

RXTE extracted light curve at 16 s resolution

Input Data

• RXTE extracted light curve, 16 s resolution

• light curve rebinning information

Output

• rebinned source light curve, including time stamps for newbins and bin-by-bin

count rate uncertainties
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B.1.5 psresp source.calc log pds

• Analysis pipeline identifiers: (none)

Description Code for the calculation of the source periodogram from the rebinned

source light curve, using logarithmic periodogram binning

Input Data

• rebinned source light curve

• periodogram binning information

Output

• binned source periodogram (power values only, no frequency bin information)
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B.1.6 source.calc log pds

• Analysis pipeline identifiers: (none)

Description Code for the calculation of the source periodogram from the rebinned

source light curve, using periodogram binning in linear space

(structure of code is otherwise identical to psresp source.calc log pds)
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B.1.7 psresp pdgen

• Analysis pipeline identifiers: 1A, 2B, 3A

Description Implementation of Timmer&König light curve generation algorithm,

including rebinning of light curves and calculation and binning of periodograms, using

logarithmic periodogram binning

Input Data

• PDS model name (e.g., “BrokPow” for broken power law model), including

parameter values

• no. of entries in light curve to be simulated

• desired time step

• length of “long” light curve from which individual light curves to be generated

• no. of “long” light curves to be generated

• light curve rebinning information

• periodogram binning information

• random number generator seed

Output

• FITS file storing simulated periodograms

• FITS keyword storing amount of aliased power to be added in a later step
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B.1.8 pdgen

• Analysis pipeline identifiers: 1A, 2B, 3B

Description Implementation of Timmer&König light curve generation algorithm,

including rebinning of light curves and calculation and binning of periodograms, using

periodogram binning in linear space

(structure of code is otherwise identical to psresp pdgen)
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B.1.9 print log pd percentiles

• Analysis pipeline identifiers: (none)

Description Tool for visualizing the distributions of power in each frequency bin

in a set of simulated light curves, used to generate the percentile plots (such as in

Figure 3.1)

Input Data

• simulated periodograms (output of psresp pdgen program)

• periodogram binning information

• percentile levels (hardcoded into program)

Output

• data for percentile plot (written to stdout), in qdp format (columns: frequency,

error bar on frequency, percentile values)
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B.1.10 psresp avevar

• Analysis pipeline identifiers: 4A

Description Code for the calculation of the average and variance of the power in

each frequency bin in the periodogram, in preparation for the χ2
dist fit statistic; code

also adds the correction due to aliasing to the average, depending on user request

Input Data

• simulated periodograms (output of psresp pdgen program)

• flag for the addition of the aliasing power

Output

• FITS file storing average and variance of siimulated periodogram power
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B.1.11 psresp source.chisq dist

• Analysis pipeline identifiers: 5A, 7A

Description Implementation of the χ2
dist fit statistic, calculating the value of the

fit statistic for the source periodogram over a grid of parameter values

Input Data

• source periodogram(s), one file per frequency range

• reference to the average-variance files for the simulated periodograms (one file

per frequency range per grid point in parameter space, grid controlled by pa-

rameter space information file)

• value of the Poisson level, one value per frequency range

• no. of intensive segments over which to average χ2
dist

• no. of frequency bins at the low-frequency end of the frequency range to ignore

in the calculation of χ2
dist (one value per frequency range)

Output

• parameter values, best-fitting model normalization factor, and value of χ2
dist for

the source periodogram at each of the parameter space grid points (written to

stdout)
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B.1.12 psresp sim.rejprob chisq dist

• Analysis pipeline identifiers: 8A (in the context of 7A)

Description Code for the calculation of the distribution of χ2
dist on which the cal-

culation of the rejection probability is based; needs to be repeated at each grid point

in parameter space

Input Data

• simulated periodograms, one file per frequency range (both original simulated

periodograms as well as average-variance files)

• range of indices of the simulated periodograms to include in the calculation

of the χ2
dist distribution (the input files do not necessarily contain the same

number of simulated periodograms; for each index, the corresponding simulated

periodograms from the different input files are combined to form the overall

simulated periodogram across the different frequency ranges for which its χ2
dist

is then calculated)

• no. of intensive segments over which to average χ2
dist

• no. of frequency bins at the low-frequency end of the frequency range to ignore

in the calculation of χ2
dist (one value per frequency range)

Output

• FITS file storing the values of the χ2
dist fit statistic for the simulated peri-

odograms at a particular parameter space grid point
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B.1.13 sim.spline fit

• Analysis pipeline identifiers: 7B (under the conditions given by 4B and 5D)

Description Code for fitting the cumulative distribution of power in each peri-

odogram bin with cubic splines and storing the resulting parameters of the fit for

subsequent calculation of the χ2
λ fit statistic

Input Data

• simulated periodograms (output of pdgen program)

• input parameters for the cubic spline fits (hardcoded into program)

• factor by which quantity of data in empirical cumulative distribution is reduced

before fitting the cubic splines (for execution speed with little degradation of

accuracy of fit; hardcoded into program)

Output

• FITS file storing the best-fit values of the output parameters of the cubic spline

fit for each frequency bin in the periodogram
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B.1.14 sim.check spline fit

• Analysis pipeline identifiers: (none)

Description Tool to check the quality of the cubic spline fit

Input Data

• simulated periodograms for which the spline fit was performed

• best-fit values of the output spline fit parameters

• index of the frequency bin for which the check is to be performed

• input parameters for the cubic spline fits (hardcoded into program)

Output

• data for plot of cumulative distribution and fitted cubic splines (written to

stdout), in qdp format (columns: power, cumulative distribution value, cubic

spline fit value, slope of the cubic spline, value of the equivalent Gaussian distri-

bution calculated from the average and variance of the simulated periodogram

values)
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B.1.15 source.chisq lambda

• Analysis pipeline identifiers: 7B (under the conditions given by 4B and 5D)

Description Implementation of the χ2
λ fit statistic, calculating the value of the fit

statistic for the source periodogram over a grid of parameter values

Input Data

• source periodogram(s), one file per frequency range

• reference to the spline fit files for the simulated periodograms (one file per

frequency range per grid point in parameter space, grid controlled by parameter

space information file)

• value of the Poisson level, one value per frequency range

• no. of frequency bins at the low-frequency end of the frequency range to ignore

in the calculation of χ2
dist (one value per frequency range)

• input parameters for the cubic spline fits (hardcoded into program)

Output

• parameter values, best-fitting model normalization factor, and value of χ2
λ for

the source periodogram at each of the parameter space grid points (written to

stdout)
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B.1.16 sim.rejprob chisq lambda

• Analysis pipeline identifiers: 8A (in the context of 7B)

Description Code for the calculation of the distribution of χ2
λ on which the calcu-

lation of the rejection probability is based; needs to be repeated at each grid point in

parameter space

Input Data

• simulated periodograms, one file per frequency range

• range of indices of the simulated periodograms to include in the calculation

of the χ2
dist distribution (the input files do not necessarily contain the same

number of simulated periodograms; for each index, the corresponding simulated

periodograms from the different input files are combined to form the overall

simulated periodogram across the different frequency ranges for which its χ2
λ is

then calculated)

• best-fit values of the output spline fit parameters (one file per frequency range)

• no. of frequency bins at the low-frequency end of the frequency range to ignore

in the calculation of χ2
dist (one value per frequency range)

• input parameters for the cubic spline fits (hardcoded into program)

Output

• FITS file storing the values of the χ2
λ fit statistic for the simulated periodograms

at a particular parameter space grid point
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B.1.17 psresp rejprob

• Analysis pipeline identifiers: 8A

Description Implementation of the rejection probability calculation; calculates the

rejection probability at a grid point in parameter space; used by the

run psresp rejprob script to generate the rejection probability values over the full

parameter space

Input Data

• value of the fit statistic for the source periodogram at the chosen parameter

space grid point (either χ2
dist or χ2

λ fit statistic)

• simulated values of the fit statistic at the chosen parameter space grid point

(output of psresp sim.rejprob chisq dist or sim.rejprob chisq lambda)

Output

• value of the rejection probability at the chosen parameter space grid point

(written to stdout)
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B.1.18 run psresp rejprob (script)

• Analysis pipeline identifiers: 8A

Description Helper script for the execution of the psresp rejprob algorithm for

the calculation of the rejection probability over the full parameter space

Input Data

• grid of parameter values

• values of the source periodogram fit statistic for all parameter space grid points

(either χ2
dist or χ2

λ fit statistic)

• reference to files containing simulated fit statistic values (output of

psresp sim.rejprob chisq dist or sim.rejprob chisq lambda; hardcoded

into script)

Output

• parameter values, best-fitting model normalization factor, and rejection prob-

ability value for the source periodogram at each of the parameter space grid

points (written to stdout)
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B.1.19 psresp folded model

• Analysis pipeline identifiers: (none)

Description Tool for visualizing the fit between a PDS model at a particular grid

point in parameter space and the source data, used to generate the folded model plots

(such as in Figure 5.2)

Input Data

• source periodogram(s), one file per frequency range (with the option of selecting

as input a periodogram other than the one at index 0, used if input file(s)

actually store simulated periodograms that are to be compared to a PDS model)

• average-variance file(s) of the simulated periodograms at the chosen parameter

space grid point, one file per frequency range

• PDS model normalization factor to apply to the simulated periodograms (from

appripriate line in the output of psresp source.chisq dist)

• periodogram binning information

• value of the Poisson level, one value per frequency range

• flag whether to add the Poisson level to the source periodogram(s) (used if the

“source” periodogram is actually a simulated periodogram)

• no. of intensive segments over which χ2
dist has been averaged in

psresp source.chisq dist

• no. of frequency bins at the low-frequency end of the frequency range to ignore

in the calculation of χ2
dist (one value per frequency range)
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Output

• data for folded model plot (written to stdout), in qdp format (columns: fre-

quency, error bar on frequency, source periodogram value, PDS model average

and error bar, residual)
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B.1.20 alpha low uncert, alpha high uncert, fbr uncert

(scripts)

• Analysis pipeline identifiers: 8A

Description Scripts for the calculation of the confidence ranges on αl, αh, and fb

Input Data

• grid of parameter values

• values of the rejection probability over the full parameter space (output of

run psresp rejprob)

• significance level (hardcoded into script, fixed at 68%)

Output

• location of best fit in parameter space, found by minimizing the rejection prob-

ability

• rejection probability contours in the αh, fb slice at the location of the best fit

• rejection probability values along chosen parameter axis through best fit, in-

cluding limiting values of the rejection probability for 68% confidence limits
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B.1.21 psresp sim.bestfit

• Analysis pipeline identifiers: 8B (in the context of 7A)

Description Algorithm to fit simulated periodograms over the full parameter space

to find the best-fit values of the PDS model parameters for each, used in the subse-

quent determination of the distribution of estimates

Input Data

• simulated periodograms at chosen grid point in parameter space (output of

psresp pdgen program), one file per frequency range

• range of indices of input periodograms to process

• reference to the average-variance files for the simulated periodograms (one file

per frequency range per grid point in parameter space, grid controlled by pa-

rameter space information file); note that these average-variance files must not

have been corrected for the aliased power, because there is no appropriate way

to correct individual simulated periodograms for aliasing

• no. of intensive segments over which to average χ2
dist

• no. of frequency bins at the low-frequency end of the frequency range to ignore

in the calculation of χ2
dist (one value per frequency range)

Output

• list of best-fit parameter values, best-fit values of the χ2
dist fit statistic, and best-

fit values of the PDS model normalization factor, one entry per processed input

periodogram
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B.1.22 3d estimdistr (script)

• Analysis pipeline identifiers: 8B (in the context of 7A)

Description Script for the generation of the estimator distribution based on the

output of the psresp sim.bestfit program

Input Data

• parameter grid values

• best-fit parameter values, best-fit values of the χ2
dist fit statistic, and best-fit

values of the PDS model normalization factor, one entry per simulated peri-

odogram (output of psresp sim.bestfit)

Output

• number of simulated periodograms best fit at each parameter space grid point

(each grid point only included if number of periodograms at least 1)
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B.1.23 3d confreg (script)

• Analysis pipeline identifiers: 8B (in the context of 7A)

Description Script for the generation of the confidence regions using the Neyman

construction; takes the output from 3d estimdistr and checks whether the target

grid point (i.e., the grid point at which the source periodogram attained its minimum

in the χ2
dist fit statistic) is included at any user-chosen significance level; the resulting

data are the data for the confidence regions plots (such as in Figure 5.4)

Input Data

• desired significance levels for the confidence regions (hardcoded into the script)

• indices of the target parameter space grid point (hardcoded into the script)

• parameter grid values

• estimator distribution at the given parameter space grid point under investiga-

tion (output of 3d estimdistr)

Output

• significance level of the lowest-significance confidence region in which the given

parameter space grid point is included (i.e., if included in 68% confidence region,

output 68%, if included only in the 99% confidence region, but not in the 68%

one, output 99%)
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B.2 Essential Data Files

B.2.1 RXTE Extracted Data Products

The archive includes the data files produced by the RXTE extraction pipeline detailed

in Section 2.3. Specifically, for both NGC 3516 and NGC 4945, each proposal-level

directory (Pxxxxx ) contains the combined light curves and spectra of the individual

ObsID directories. The remaining files are the combined overall light curves and the

files storing the filled bins that were used in the subsequent determination of the light

curve rebinning information.

B.2.2 Light Curve Rebinning Information

The lc rebin directories contain the light curve rebinning information files. For the

“longterm” and “medium” light curves, the “x.source” file contains the information

necessary to rebin the observed light curve, and the “x.sim” files are appropriate for

the rebinning of simulated light curves. (Two different files are needed because the

source and simulated light curves have different time steps.) For the “intensive” seg-

ment(s), only the “x.source” files exist, since the simulated light curves were generated

on the same 16 s resolution as the source light curve.

The structure of each light curve rebinning information file is such that each line

represents an instruction to the rebinning algorithm to add a certain number of old

bins to the new bin currently being assembled. The four columns represent

• the starting index of the current addition to the new bin as appropriate for sim-

ulated light curves, in which the vector of count rate values represents successive

time bins (column 1),

• the starting index of the current addition to the new bin as appropriate for the

source light curve, in which the vector of count rate values only includes the

filled bins, with the gaps excluded (column 2),

• the number of old bins in the current addition to the new bin (column 3),
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• and whether the current addition is the last one in the current new bin (= 1)

or whether the next line adds more old bins (= 0) (column 4).

Each file in addition contains information about ∆Tbin and ∆Tsamp, which are

needed for the calculation of the correction due to aliased power.

B.2.3 Periodogram Binning Information

The pd rebin directories contain the periodogram binning information files, which

control how the unbinned periodogram returned by the DFT routine is binned into

the final bins (which are equally spaced in the logarithm of the frequency). In each

file, the first column of the data table controls how many consecutive original peri-

odogram samples are averaged to form each bin. The second and third column are

the corresponding frequency and uncertainty on the bin. The files in addition store

the frequency range of the unbinned periodogram (with the frequency of the lowest

sample being equal to the spacing between frequencies).

B.2.4 Source Light Curves and Periodograms

The source lc and source pd directories contain the rebinned light curves and

binned periodograms generated from the extracted RXTE light curves under ap-

plication of the light curve rebinning and periodogram binning information.

B.2.5 Parameter Space Information

The parameter space directory contains the files defining the grid in parameter space

on which the fit statistic is evaluated. The x.range.dat files list the values of each

of the three parameters for the broken power law model from which the grid is built.

The comparison set info.gz file is a FITS file storing each grid point in parameter

space as a row in the table listing each of the parameter values; it is used as input in

the tools evaluating the fit statistic (such as the source.chisq lambda program).
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NGC 4945: Characterizing the Power Spectrum through Light Curve Simu-

lations”, 2004, in X-ray Timing 2003: Rossi and Beyond, AIPC, vol. 714, ed.

P. Kaaret, F. K. Lamb, & J. H. Swank (Melville, NY: AIP), p. 190
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