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Abstract: 

Model-based electron accelerator control is the maintenance of optimal parameters of an electron 

beam such as its orbit, size, and shape, as well as machine parameters such as tunes.  It works well 

when the model reflects reality.  SLAC pioneered this technique in SPEAR about thirty decades ago.  

Similar techniques are now employed in particle accelerator and synchrotron laboratories around the 

world.  There is still an inherently complex problem related to the employment of such techniques to 

manage the operation and analysis of accelerators and storage rings.  The problem arises from the 

use by those techniques of complex numerical algorithms commonly known as nonlinear solvers that 

are difficult to control and operate.  Lessons learned at SLAC have led to the development of a new, 

simple-to-use, and iterative nonlinear solver that holds much promise not only in advancing the 

derivation of errors in accelerators and storage rings at SLAC, but also in its ability to tackle a range 

of complex engineering problems.  A CRADA project was recently completed to build on this 

experience at SLAC, and to collaborate with an outside company GO AI Services to further develop 

and validate this nonlinear solver for robust SLAC accelerator.  In this report, we present the project 

report submitted to DOE and SLAC. 
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Introduction 
 
Accelerator models are widely used to control and optimize beam parameters such as orbit, 
beam size, beam shape, and global machine parameters such as tunes.  Since model-based 
control works well when the model accurately reflects reality, one of the goals in 
commissioning an accelerator is to develop a well calibrated lattice model.  A technique 
involves the analysis of a specific set of measured orbit data to identify errors in the 
magnetic elements in the accelerator lattice.  The identified errors are then incorporated into 
the calibration of the lattice model to produce a “true” representation of the physical 
machine.  This technique was pioneered at SLAC on the SPEAR storage ring about three 
decades ago.  Similar techniques are now employed in particle accelerator and synchrotron 
laboratories around the world.  One limitation of these error finding techniques is that it can 
only be done off-line by experts.  This is a result of the fact that these techniques use 
complex numerical algorithms commonly known as nonlinear solvers that are often slow 
and difficult to learn and operate even by experts in accelerator control.  In the Phase I work, 
we further developed a new, simple-to-use, nonlinear program to advance the capability for 
derivation of errors in accelerators and storage rings.  The success in using this nonlinear 
program in solving SLAC problems as identified in the Phase I project has demonstrated its 
ability in addressing on-line control and optimization needs of accelerator operators who 
may be unfamiliar with nonlinear programming. Hence, we are ready to use this versatile 
nonlinear program to accomplish real time, on-line error analysis of accelerator; therefore, 
real time, on-line beam control and optimization. 
 
This nonlinear program was developed from a nonlinear solver (called OASIS).   During 
Phase I work, it was applied on a number of nonlinear-solver benchmarking problems and a 
few SLAC accelerator problems.  By searching over only two optimization-control 
parameters, this Phase I work has enabled the development of a systematic procedure to 
facilitate the finding of a “best-guessed” global minimum solution for various types of 
problems with different size and complexity.   This set of rules has been codified and has led 
to a versatile nonlinear program IMIGO.   
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Research Objectives Summary 
 
The significant Phase I accomplishments are detailed in the following “Work Performed” 
section; here, let us outline the major objectives completed during the Phase I work.  
 
During the time to complete the Phase I project, the above mentioned versatile nonlinear 
program IMIGO was developed to provide a simplified and easier-to-comprehend visual 
rendering of how an objective function of n variables is being minimized.  The motivation of 
that work is that, if an objective function has more than two variables, it becomes impossible 
to graphically and visually render the manner in which the minimization process of the 
objective function can be shown to gradually “move” into a largest basin of attraction as a 
result of changes in the variables.  Since IMIGO has reduced the optimization of an 
objective function of n variables (regardless of how large n is) to one in which seeking the 
“best-guessed” global minimum of the objective function corresponds to seeking the 
deepest well of convergence of the function based on seeking the best values of just two 
convergence control parameters (i.e., r and p as will be explained later), an equivalent 
rendering of the minimization of the objective function can now be graphically and visually 
presented. This has been verified and tested in Phase I proposal work. 
 
Qualitative description of IMIGO’s characteristics: 
 

1.  In the convergent parameter space, there are two notable features: 1) the area of the 
well of convergence, and 2) the depth of the well. 

2. Within the area of the well of convergence, each (r, p) pair corresponds to a path in 
the n-variable space that connects the start-point to the end-point. 

 
The size of the area of the well of convergence: 
 
The size becomes smaller as the number of variables increases and the complexity of the 
problem increases.  The lowest depth of the well corresponds to the best-guessed global 
minimum that is connected to the same start-point by a number of (r, p) pairs.  In the n-
variable space, there are multiple paths connecting the start-point to the same end-point, 
each path being generated by a given (r, p) pair.  Hence, all (r, p) pairs making such a 
connection forms a bundle between the start-point and the end-point in n-variable space.  
Such (r, p) pairs connecting the start-point to the same end-point explain why the bottom of 
the well of convergence is flat. 
 
The depth of the well: 
 
The depth is a measure of how close the objective function is to the “best-guessed” global 
minimum in n-variable space. 
 
The Phase I project has also developed a search method for selecting the convergence 
parameters r and p in a systematic way as will be explained later.  Such a graphic user 
interface (GUI) turns out to be very useful to show the effectiveness of the searching 
algorithm in finding the global minimum. 
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The Phase I project accomplished the following major objectives:  
 
A. Explored means to search for a set of “warm” start solutions and associated non-
linear paths leading to the global-minimum solution. 
 

There is a significant problem in the use of those popular iterative nonlinear 
programs—it is known as the basin-of-attraction limit (BOA).  A BOA is defined to 
be the biggest region around a given minimum solution within which the program 
will converge.  The problem with existing iterative nonlinear programs is that they 
will only find a local solution unless the start solution is inside the BOA 
corresponding to the global-minimum.  In the Phase I project, we have developed a 
nonlinear program that does not have the inherent BOA limitation of conventional 
nonlinear programs.  

 
 
B. Use the resulting methods to find lattice element errors in SPEAR3.   
 

To reach these goals, the following tasks were accomplished:  
 

1. LOCO and OASIS Pathfinder have been merged into one integrated system. 
 

2. A prototype code for testing this system’s ability to find the global-minimum 
solution with simulated data from a SPEAR3 model has been produced. 

 
3. A hands-free automated search procedure to find the global optimal solution 

has been developed for OASIS Pathfinder. 
 

4. Requirements in the use of this lattice error solver as a training tool for 
operators so that expert analysis can be brought into the control room at all 
times for finding faults without expert interventions have been investigated.  

 
5. Further research and development on OASIS Pathfinder for other on-line 

applications have been identified. 
 
C.  Applied the resulting method developed in Phase I to optimize the Accelerator and 

Free Electron Laser performance at LCLS. 
 
 It is known that bunch compression scheme and Free Electron Laser is a highly 

nonlinear process. So the optimization is not an easy task. Work has been started to 
merge the OASIS Pathfinder with the existing LINAC model aiming at an on-line 
model server which can provide on-line real time optimization. Related work on 
setting up an on-line server has been reported in Kyoto, Japan of the 1st International 
Particle Accelerator conferencei.  
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Work Performed and Results Obtained 
 
The inherent difficulty of using an iterative method to find the global-minimum solution is 
well known.  In general, an iterative method requires an initial guess solution.  If this start 
solution is too far from the global-minimum solution, the program will find only a local-
minimum solution. As an illustration, a surface plot of the objective function for a 
minimization problem with two variables is shown in Fig. 1.  This figure shows the locations 
of several local-minimum points and one global-minimum point.  
 
 

 
Figure 1, Objective function surface plot. 
 
In general, a nonlinear program is a solver typically employed to find the global minimum of 
a given objective function subject to certain conditions known as constraints. An objective 
function of n variables ),...,,( 21 naaa is generally written as ),...,,( 21obj naaaf .  In the 
accelerator lattice modeling, the variables are the strengths of a chosen set of magnet 
components. The complexity of finding the global minimum for the objective function 
depends on the degree of nonlinearity of the objective function and the number of variables.  
In the Phase I work, we have developed a nonlinear program, IMIGO that does not have 
the inherent BOA limitation of conventional nonlinear programs.  This new nonlinear 
program is able to find a solution path that ends at the global minimum solution even 
when the start solution is not inside the BOA corresponding to the global-minimum 
solution.   
 



6 
 

   
IMIGO is composed of two main components.  They are named: Original and Simple 
Iterative Solution (OASIS) and Lee-Wu Way (LWW).  OASIS is a non-derivative based 
algorithm that finds the values of the variables iteratively for an initially-guessed start 
solution. The iterative process in OASIS is shown in Fig. 2. When the values of the variables 
converge, the set of values of the variables at the end point is a solution that corresponds to 
a minimum, maximum, or saddle point of the objective function.  This unique feature 
enables LWW—a simple, two-parameters search method working in conjunction with 
OASIS—to find a path leading to a solution within the BOA corresponding to the global 
minimum solution developed in the Phase I project.   

 
A main feature of this new search procedure is that it can find the global-minimum 
solution for any start solution within a given solution space—IMIGO does not have 
BOA limitation.  Another salient feature is that it works equally well regardless of the size 
and complexity of a given problem, i.e., no matter how many variables an objective function 
may have and how nonlinear the problem may be. 
 
 
 
 

 
 
Figure 2, plot of the solution path which ends at the global minimum. 
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Self-Adaptive Optimization and Examples 
 
One of the unique features of IMIGO is that both the values of the rate and path control 
parameters are adjusted adaptively along a path: rn=1,2,...,N  and pn=1,2,...,N . In order to enhance 
the convergence, the IMI algorithm adjusts their values using a special recipe developed by 
us in the Phase I work.  This recipe forms the core element inside the automatic method 
LWW for finding the global optimum solution automatically.  In addition, a simple graphical 
user interface (GUI) was developed to run IMIGO.  With this GUI added to IMIGO, users 
are able to run IMIGO in two different options:  hands-free or hands-on mode.   The 
hands-free option was developed to run IMIGO automatically, while the hands-on mode 
was developed for running IMIGO manually.  With the hands-free mode, it is possible to 
test IMIGO quickly on a variety of optimization problems with different number of 
variables and different objective functions.  In all cases tested, IMIGO is able to find the 
global minimum solution independent of the size and complexity of the problems for 
arbitrary chosen start solutions. With the hands-on mode, it is possible to use IMIGO 
for training new users as well as for exploring ways to customize IMIGO for solving 
unresolved optimization problems by expert users.  Three selected cases are presented 
in the following section as examples.  
  
 

(A) The Illustrative Problem in the Phase I Proposal: As an illustration of how 
IMIGO works, a typical small-scale minimization problem with two variables 1a  and  

2a  is presented.  A plot of the objective function to be minimized is shown in Fig. 1.   
For this case, the start solution is given by b1

start =100  and b2
start =102 , and the 

bounded variables are allowed to vary between: 0.2 > (bk − bk
start ) > −0.2  for 2,1=k .  

By running IMIGO in its hands-on mode repeatedly with different initial (r, p) 
values, IMIGO is able to find a set of solution paths starting at the same point and 
ending at the global minimum point: 13.1001 =enda  and 04.1022 =enda .  Figure 2 
shows the special feature of IMIGO—its unique ability to find the global-minimum 
solution when the start point is outside of the BOA of the global-minimum point 
(blue contour-line in the figure).  By running IMIGO automatically, IMIGO is able 
to search over the entire convergence control space for the initial (r, p) values with a 
path that ends at a point inside the BOA of the global-minimum point.  Figure 2 
shows one example of a contour plot of the objective function values in the search 
space for the initial control parameter values.   In this case, the paths corresponding 
to initial values at the points inside the colored (yellow/green) contour all end at 
solutions that are close to the global minimum solution.   These end solutions can be 
used as warm start solution for the next search using IMIGO.  In addition, if the 
users desire, they also can be used as warm start solution for conventional solvers.   

 
 
For the purpose of comparing IMIGO with other conventional solvers, one 
conventional optimization program, e.g., Levenberg–Marquardt (L-M) was used to 
find the global minimum solution for this case.  This program was unable to find the 
global minimum solution since the starting solution for this case is outside of the 
BOA corresponding to the global minimum solution.  As a test of this BOA-free 
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property of IMIGO, many other cases with different values of starting solutions 
were compared.  In all cases, whenever L-M failed to find the global minimum 
solution, IMIGO succeeded.   
 

 
(B) A Current Accelerator Problem:   

 
 

As an application of IMIGO to a real accelerator project, we have used IMIGO to 
optimize the two bunch compressors settings for the LINAC Coherent Light Source 
(LCLS1) at SLAC ii, which is an eight-variable problem. The objective function is 
formed to set the final electron rms bunch length, the final centroid energy, and the 
final energy chirp along the electron bunch; and simultaneously minimize the rms 
bunch length fluctuation and the final energy chirp fluctuation. The objective 
function is a function of eight variables: the LINAC acceleration phase and total 
acceleration voltage in the three LINAC sections, and the R56 (transport matrix 
element) of the two bunch compressors. As an example, the objective function as a 
function of the two LINAC section (L1 and L2) phases is shown in Fig. 3. The 
IMIGO solves this 8-variable problem and optimize the LINAC setting for LCLS.  
 

 
 
Figure 3: the contour surface plot of the objective function. 
 

                                                 
1 LCLS is the world’s first x-ray free electron laser recently commissioned at SLAC. 
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(C) Benchmarking of IMIGO with L-M using LOCO:  

 
One of the recently obtained historical models was used for this work. Three tasks in 
the Phase I work plan were:  (1) integrate IMIGO with the modeling code LOCO, 
(2) see if IMIGO can find the same solution as L-M, and (3) see if the original 
solution obtained by LOCO is a global minimum solution.  All three tasks have been 
done. The results are all positive.  For example, when the same starting solution in 
running L-M is used to run IMIGO, IMIGO is able to find the same solution as L-
M does. In addition, when the solution in the historical model is used as a start 
solution to run IMIGO, however, IMIGO is unable to find better solution—one 
with a lower value of the objective function than the one in the historical model.  
This observation leads to the conclusion—LOCO has found the “global” minimum 
solution within the search space as defined by the range limits imposed on the 
variables. The result will be reported with details of the results for the 2011 Particle 
Accelerator Conference in New Yorkiii. 
 
Here let us outline some features of the work done. Before the Phase I proposal was 
submitted, a linear solver was used by LOCO to find errors in the strength of the 
quadrupole magnets in SPEAR 3 ring without imposing constraints on their values.  
Since then, we have participated in the transition; so that this linear solver was 
replaced by a nonlinear solver (L-M in this case) in order to impose limits on the 
range of the variable quadrupole strength errors by SLAC. Substantial improvement 
in accuracy of the models obtained from L-M has been found as compared to the 
original ones obtained from using a linear solver.  This demonstrated the significance 
of the concept which we are trying to emphasize, i.e., modern accelerator and light 
source control systems should be upgraded to use non-linear solver rather than 
staying on the linear level only. Under this condition, tests were conducted to 
compare IMIGO and L-M. It was observed that IMIGO and L-M always find the 
same solution.  With the above mentioned success, instead of trying to benchmark 
IMIGO with L-M on the LOCO modeling problem, attention was redirected to see 
how the solutions found from using either solver can be improved.  This study led 
to the method to model the magnetic hysteresis effects in the quadrupole field errors 
(more details will be described in later part of this section).  

 
 
Phase I derived opportunities 
 
Since future work is a natural continuation and further development of the Phase I work, we 
view the task accomplished and started in Phase I as dual tasks both for Phase I and future 
work. Some summary and restatement is in the following. 

 
The work in Phase I can be divided into two main tasks:  A. Further develop OASIS 
Pathfinder and make it easy to learn and use; B. Testing it on modeling and finding a way to 
improve the existing models.   
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From working on A, a new automated search method LWW (Fig. 4) to find the global 
minimum solution was developed and a user friendly GUI was developed for user training 
(Fig. 5).   

 
As we mentioned above, no matter what the dimension of the optimization problem is, 
IMIGO is able to convert it into a 2-D search for the global minimum.  For example, in Fig. 
4, the 8-dimensional problem is visualized as a 2-D search. One nice feature there is that the 
BOA is widely enlarged, which makes the search not too difficult.  

 

 
 
Figure 4: A 8-dimensional optimization is visualized by using the (r, p) pair. 
 
 

                          
 
Figure 5: The Graphic User Interface (GUI) developed during Phase I. 
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To facilitate this 2-D search problem, a GUI is developed as show in Fig. 5. Users can 
simple type the (r, p) pair and the code will convert the multi-dimensional problem into this 
simple 2-D search. 

 
From working on B, a new approach based on historical models was conceptualized.  This 
approach can take into account of errors that have not been included in the existing models 
such as magnetic hysteresis.   
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Recommendations for Phase II study 
 
During the Phase I work, we identified the following problems which can be conducted in 
Phase II study.  
 
On-line error identification  
 
A typical example of an off-line model-based analysis is known as the Resolve techniqueiv.  
In this method, measured beam trajectories are compared to the set of data generated from 
the accelerator model in order to diagnose errors in a large set of system parameters such as 
field strengths of quadrupole magnets and calibrations of beam position monitors.  There 
are two problems with this method: (a) As mentioned above, it can only be done off-line; 
and (b) It uses a linear model that can only find the first-order lattice errors. Though several 
methods for finding an accurately calibrated model of an existing ring have been developed, 
there is another limitation—such a calibrated model can be used to control only the first-
order beam parameters accurately such as tunes and beta-functions.  To operate next 
generation accelerators, a well calibrated model will be needed to control even the second-
order beam parameters accurately.  Two things will be needed to address this problem:  First, 
an off-line error identification method needs to be developed, and then, this method needs 
to be put on-line.    
 
Therefore, an on-line error finding package that uses a highly nonlinear approach is yet to be 
invented. As explained above, with the nonlinear solver developed in the Phase I work, it is 
feasible to complete the development of this on-line nonlinear error identification system in 
Phase II. 
 
On-line multi-knob control 
 
Model-based control allows a function commonly known as a “multi-knob” to be designed 
to make changes in several beam parameters at the same time.  Currently, the process for 
making a multi-knob can only be done off-line by experts.  To make a multi-knob that 
changes a set of ‘N’ specific beam parameters linearly, typically the following method is used.  
First, select a set of N correctors and assign them to a multi-parameter control knob to be 
adjusted by an operator. As the knob is turned, the values of the corrector strengths change 
in a specific way such that the beam parameter values change linearly with the change in the 
position of the knob.  Typically, a model is used to compute the N corrector values 
corresponding to the N beam parameters. Similar to lattice error-finding problems there are 
two limitations with this control application:  (a) a multi-knob can only be designed off-line, 
and (b) it is difficult to make a multi-knob on demand by operators.  
 
Application of the aforementioned methods is limited to cases where the beam data or 
desired parameter changes can be computed from a single-particle or first-order optical 
model.  In practice, there are other cases in which such models do not exist.  For example, 
multi-particle tracking codes are often used to compute dynamic aperture.  Because of the 
lack of an analytical model, model-based optimization of dynamic aperture remains 
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unresolved in non-linear, multi-parameter, on-line optimization problems. Yet, based on the 
success of Phase I work, we see the hope and possibility to solve this problem as will be 
detailed in the following sections. 
 
Lack of an on-line control protocol for accelerators described by 
a complex simulation model 
 
Sometimes, an accelerator system can be described by a complex simulation model that 
includes space charge effects.  However, there is no commensurate on-line control protocol 
that can adequately deal with on-line system control for problems as such.  In practice, 
numerical simulations are often used to study such effects off-line.   
 
Experts in accelerator control can deal with the unavailability of an on-line protocol for the 
control of parameters that affect the response of a system described by a complex simulation 
model.   Their success in doing so, often based on heuristic control, depends on an 
extraordinary level of knowledge about the system, and also on experience and knowledge in 
the cause and effect of their control actions.   Because bad control decisions obviously lead 
to undesirable outcomes in system behavior, those decision steps are not taken lightly, 
resulting in a successful control process taking a very long time to go through.  Therefore, an 
easy-to-use, fast nonlinear solver combined with a non-model-based optimization method 
developed in Phase I is a necessary step towards finding a remedy for this problem.  The 
details of this combined approach will be described in a later section. 
 
Data-mining of past model-calibration files of an accelerator 
 
After an accelerator’s operating parameters have been properly calibrated, it will usually run 
well until: 1) certain uncontrolled changes in the accelerator begin to set in and then lead to 
undesirable changes in the performance of the system, or 2) reconfigurations of the 
accelerator operating parameters are required in order to change the performance of the 
accelerator to some other desired state.  In either case, recalibrations of the accelerator 
model become necessary.   Actually, quite a lot of information about the way the accelerator 
performs is contained in its stored data files, such as values of quadrupole-magnet strength 
errors.   However, prospective use of such data has never been attempted in any systematic 
way.  Therefore, a versatile and flexible-to-use nonlinear program to obtain a parametric 
model by mining such vast bodies of stored data can be a task for Phase II proposal.  The 
resulting parametric model can replace the first principle model now being used for 
operation.  
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Appendix:   
Background—OASIS for Solving Equationsv 

 
 
OSASIS uses a special iteratively algorithm to solve for the values of a set of 
variables (x1 ,x2,...,xm ) for a given set of equations:  
 

 fi(x1 ,x2,...,xm ) =1 for i =1,2,...,m , 
 
where fi(x1, x2,..., xm ) for i =1,2,...,m  are positive valued analytic functions of these m 
variables.    
 
The development of this algorithm started when it was first noticed that this set of equations 
can be put into a matrix form in terms of a non-zero constant parameter r and the unit 
vector ˆ u : 
 
      M(r x ,r) r x = ˆ u  
where 

   

 

1− (m −1)r
x1

f1
rf1

x2

rf1

x3

... rf1

xm
rf2

x1

1− (m −1)r
x2

f2
rf2

x3

... rf2

xm
... ... ...... ...

rfm

x1

rfm

x2

rfm

x3

... 1− (m −1)r
xm

fm

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

x1

x2

x3

...
xm

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

=

1
1
1
...
1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

. 

 
  
Since   M(r x ,r) can be inverted analytically to obtain  
 

  

M( r x ,r)−1 =
1

1− mr

(1− r)x1

f1

−rx1

f2

−rx1

f3

... −rx1

fm
−rx2

f1

(1− r)x2

f2

−rx2

f3

... −rx2

fm
... ... ... ...

−rxm

f1

−rxm

f2

−rxm

f3

... (1− r)xm

fm

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

, 

 
the given set of equations to be solved can also be put into an inverse matrix form:  
 

   
r x = M(r x ,r)−1 ˆ u . 

 
By grouping terms, the right-hand-side of this equation can be rearranged to become  
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      M(r x ,r)−1 ˆ u ≡ T(r x ,r)r x   
where 

 

  

T( r x ,r) ≡
1

1− mr

1
f1 (

r 
x ) − r 1

fk (
r 
x )

k=1

m
∑ 0 0... 0

0 1
f2 (

r 
x ) − r 1

fk (
r 
x )

k=1

m
∑ 0... 0

... ... ... ...
0 0 0 1

fm (
r 
x ) − r 1

fk (
r 
x )

k=1

m
∑

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

. 

 
Since this condition is satisfied for all values of  

r x , it is referred to as the Inverse Matrix 
Identity or IMI. 
 
The IMI Algorithm 
 
By defining  

   gk =
1
fk

 for k =1,2,...,m   

and  

go =
1
m

gk
k=1

m

∑ , 

 
the diagonal matrix T can be written as 
 

   

  

T( r x ,r) =
1

1− mr

g1 − mrgo 0 0... 0
0 g2 − mrgo 0... 0
... ... ... ...
0 0 0 gm − mrgo

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

. 

 
By replacing   M(r x ,r)−1I  with   T(r x ,r) r x , the inverse matrix equation  

r x = M(r x ,r)−1I  
becomes 
  
      

r x = T(r x ,r) r x . 
 
It is the formulation of this diagonal matrix equation that leads to the IMI algorithm for 
solving a given set of equations.  The steps in the IMI algorithm are:   
 
         0.Choose the values for   

r x start  and r.    
1. Compute  

r x first = T(r x start,r)r x start . 
2. Compute  

r x second = T(r x first,r)r x first . 
3. Compute  

r x third = T(r x second ,r)r x second . 
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Stop stepping when the value of   
r x end  converges.   

 
 
 
It can be seen that at the end point:  

r x end +1 ≈
r x end and  

     
  T(r x end ,r) = I   

 
where I is the identity matrix and 
  

     

  

T( r x end ,r) =
1

1− mr

1
f1 (

r 
x ) − r 1

fk (
r 
x )

k=1

m
∑ 0 0... 0

0 1
f2 (

r 
x ) − r 1

fk (
r 
x )

k=1

m
∑ 0... 0

... ... ... ...
0 0 0 1

fm (
r 
x ) − r 1

fk (
r 
x )

k=1

m
∑

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

r 
x =

r 
x end

. 

 
Under this condition, the values of 1)( ≅end

i xf r  for i =1,2,...,m , and the solution solutionxr  is 
given by the value of endxr , i.e.,   

r x solution ≅
r x end .   

 
The Rate Control Parameters: r 
 
Let n = 0,1,2,...,N  denotes the point at the beginning of each step— n=0 refers to the start 
point and n=N refers to the end point.  In OASIS Pathfinder, the set of points is referred to 
as a path.  It computes the values of (x1 ,x2,...,xm ) at each point using these formulas:  
 

   
  
xi

(n +1) =
gi(

r x (n )) − mrgo( r x (n ))
1− mr

xi
(n ) for i =1,2,...,m . 

 
The rate of convergence given by 
 

                 
  
Δxi

(n +1) ≡ xi
(n +1) − xi

(n ) =
gi(

r x (n )) −1( )− mr go( r x (n )) −1( )
1− mr

xi
(n ) for i =1,2,...,m . 

 
This expression shows how the convergent rate parameter r affects the rate of change of at 
each point along the path. 
 
 
 
The Unbounded Coordinate Transformation 
 
Before using IMI algorithm, two transformations are performed by OASIS Pathfinder:  The 
first is used to transform the coordinates from a set of bounded variables ),...,,( 21 mbbb to a 
set of unbounded variables ),...,,( 21 maaa ; the second is used to transform this set of 
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unbounded variables ),...,,( 21 maaa to a set of IMI variables (x1 ,x2,...,xm ).  Let the values of 
the variables be constrained to within given upper and lower limits: bk + > bk − bko > bk− 
where bko  is a constant. Let the set of equations to be solved be given: 
 

1),...,,( 21 =mk bbbf  for mk ,...,2,1= . 
 
The transformation from the given set of bounded variables ),...,,( 21 mbbb  to a set of 
unbounded variables ),...,,( 21 maaa is given by: 
 

ak − ako = tan π (bk − bko)
(bk + − bk−)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟   

 

with bko =
(bk + + bk−)

2
 and ako  are constant off-sets for mk ,...,2,1= . 

  
By substituting the inverse coordinate transformation 
 

 bk =
(bk + − bk−)tan−1(ak − ako)

π
+ bko  

 
into the set of given equations it becomes: 
 
    1),...,,( 21 =mk aaaf  for mk ,...,2,1= . 
 
The given set of equations to be solved for the value of  

r a  becomes: 
 
      M(r a (N ),r) r a (N ) = ˆ u  
 
where 
 

 

  

M(r a ,r) =

1− (m −1)r
a1

f1
rf1

a2

rf1

a3

... rf1

am
rf2

a1

1− (m −1)r
a2

f2
rf2

a3

... rf2

am
... ... ...... ...

rfm

a1

rfm

a2

rfm

a3

... 1− (m −1)r
am

fm

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

. 
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The Working Coordinates and the Rate Control Parameters: p 
 
 
Before using the IMI Algorithm, the set of unbounded variables (a1,...,am) is transformed 
into a set of working variables, (x1,...,xm).   This transformation involves the Hessian matrix 
of the given objective function evaluated at the start point of the unbounded variables 
(a1,...,am−2)start .  Let the extended Hessian matrix evaluated at the start point 

(a1,...,am )start be denoted as H with its elements given by
kj

start
aof

jk aa
f

h
∂∂

∂ 2

= .   Eigenvalue 

Decomposition of H  gives 
H = VΛV T , 

 
where V is an unitary matrix with TVV =−1 , and the elements of the diagonal Λ-matrix  are 
the singular values1of H .  This coordinate transformation is given by: 
 

aVx T rr
=  

where T
mxxx ),...,( 1=

r
.   

 
Note that for points near the start point 
 

       
r y p ≈

r 
J (r a ) −

r 
J (r a start ) + Hr a start , 

 
where J

r
 is the Jacobian of the objective function with its thk element given by 

k

maof

a
aaf

∂
∂ ),...,( 1  for k =1,2,...,m .  For points that are not close to the start point, IMIGO 

defines a parameter p to account for this approximation: 
 

  
r y p ≡

r 
J (r a ) −

r 
J (r a start ) + pHr a start . 

 

Furthermore, since 
  

r x = V T r a , the condition above can also be expressed as: 

 
     

r y = V T r y p = V T (
r 
J ( r x ) −

r 
J (r x start )) + pΛ

r x start . 
 
Note that the values of   

r y p at the points on a path depend on the values of p, IMIGO refers 
to it as the path control parameter.   
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