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Abstract

The Standard Model (SM) of particle physics successfully describes all of the observed

interactions of the fundamental particles (with the exception of non-zero neutrino

mass). Despite this enormous success, the SM is widely viewed as an incomplete

theory. For example, the size of the asymmetry between matter and antimatter is

not nearly large enough to account for the abundance of matter observed throughout

the universe. It is thus believed that as-yet-unknown physical phenomena must exist

that introduce new asymmetries between matter and antimatter. In this thesis, by

studying decays that happen only rarely in the SM, we make measurements of asym-

metries between matter and antimatter that are potentially sensitive to the existence

of processes beyond the SM.

At the PEP-II asymmetric-energy B Factory at SLAC, electrons and positrons

are collided at the Υ (4S) resonance to create pairs of B mesons. The BABAR detector

is used to measure the subsequent decay products. Using 383 million Υ (4S) → BB

decays, we study the decay B0 → K+K−K0. In the SM, this decay is dominated by

loop amplitudes. Asymmetries between matter and antimatter (CP asymmetries) are

extracted by measuring the time-dependence of the complex amplitudes describing

the B0 and B0 decays as functions of their kinematics. The interference between

decays with and without the mixing of neutral B mesons allows for the measurement

of the angle βeff , which is a measure of CP violation. We also measure the direct CP

asymmetry ACP .

Data samples reconstructed from three K0 modes (K0
S
→ π+π−, K0

S
→ π0π0,

and K0
L
) are fit simultaneously. We find ACP = −0.015 ± 0.077 ± 0.053 and βeff =

0.352 ± 0.076 ± 0.026 rad, corresponding to a CP violation significance of 4.8σ. A

v



second solution near π/2−βeff is disfavored with a significance of 4.5σ. In a subsequent

fit to the region with mK+K− > 1.1 GeV/c2, we find ACP = −0.054 ± 0.102 ± 0.060

and βeff = 0.436 ± 0.087 +0.055
−0.031 rad, excluding the possibility that βeff = 0 at 5.1σ.

We use the data with mK+K− < 1.1 GeV/c2 to extract CP asymmetries separately

for B0 decays to φ(1020)K0 and f0(980)K0, finding βeff ,φ = 0.11 ± 0.14 ± 0.06 and

βeff ,f0 = 0.14 ± 0.15 ± 0.05.
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ski. Thanks also go to Vera Lüth, and to Mike Kelsey, Jim MacDonald, Karl Bouldin,

Helmut Marsiske, Steve Wagner, Adam Boyarski, Rainer Bartoldus, Stephen Gowdy,

Ingrid Ofte, Hojeong Kim, Jochen Dingfelder, Phillip Bechtle, Markus Cristinziani,

Bernie Culver, Anna Pacheco, Barbara Valdez, Mika Stratton, and everyone else in

Group C. Finally I would like to thank my reading committee for their efforts: David

Leith, JoAnne Hewett, Patricia Burchat, and Brent Sockness.

vii



Contents

Abstract v

Acknowledgments vii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The PEP-II Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 The BABAR Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory 5

2.1 Introduction to the Standard Model . . . . . . . . . . . . . . . . . . . 5

2.1.1 The Fundamental Particles . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Mesons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The Weak Interaction and the CKM Matrix . . . . . . . . . . . . . . 9

2.2.1 Mixing of B0 Mesons . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 CP Violation in B Mesons . . . . . . . . . . . . . . . . . . . . 13

2.3 CP Violation in b→ sss . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Analysis of B0 → K+K−K0 . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Quasi-Two Body Method . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 Parameterization of the Decay Amplitude . . . . . . . . . . . 21

2.4.3 Dalitz Plot Model . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.4 Standard Model Uncertainties . . . . . . . . . . . . . . . . . . 27

viii



3 PEP-II and the BABAR Detector 29

3.1 The PEP-II Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 The BABAR Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Silicon Vertex Tracker . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Drift Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.3 Detector of Internally Reflected Cherenkov Light . . . . . . . 44

3.2.4 Electromagnetic Calorimeter . . . . . . . . . . . . . . . . . . . 48

3.2.5 Instrumented Flux Return . . . . . . . . . . . . . . . . . . . . 52

3.2.6 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Collected Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Measurement of CP Violation in B0 → K+K−K0 59

4.1 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.2 Kinematic Variables . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.3 Particle Identification . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.4 K0
S

Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.5 Continuum Suppression . . . . . . . . . . . . . . . . . . . . . 66

4.1.6 Best Candidate Selection . . . . . . . . . . . . . . . . . . . . . 68

4.1.7 Signal Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Flavor Tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 ∆t Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Maximum Likelihood Method . . . . . . . . . . . . . . . . . . . . . . 73

4.3.1 Overview of fit procedure . . . . . . . . . . . . . . . . . . . . 74

4.4 Signal Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.1 Kinematic and Event Shape PDFs . . . . . . . . . . . . . . . 75

4.4.2 Choice of Dalitz Plot Variables . . . . . . . . . . . . . . . . . 77

4.4.3 Signal Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.4 Dalitz Plot PDF . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.5 Self Crossfeed . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

ix



4.4.6 Dalitz Plot Resolution . . . . . . . . . . . . . . . . . . . . . . 83

4.4.7 Correlations between observables . . . . . . . . . . . . . . . . 85

4.5 Background Parameterization . . . . . . . . . . . . . . . . . . . . . . 86

4.5.1 The mES sideband . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5.2 Correlations between observables . . . . . . . . . . . . . . . . 89

4.5.3 qq Background PDFs . . . . . . . . . . . . . . . . . . . . . . . 89

4.5.4 BB Background PDFs . . . . . . . . . . . . . . . . . . . . . . 95

4.6 Fit Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.6.1 Pure Toy Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.6.2 Embedded Toy Tests . . . . . . . . . . . . . . . . . . . . . . . 104

4.7 Fit Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.7.1 Fit to the Whole Dalitz Plot . . . . . . . . . . . . . . . . . . . 108

4.7.2 Fit to the High-Mass Region . . . . . . . . . . . . . . . . . . . 120

4.7.3 Fit to the Low-Mass Region . . . . . . . . . . . . . . . . . . . 125

4.8 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.8.1 Fit Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.8.2 Fixed PDF Parameters . . . . . . . . . . . . . . . . . . . . . . 131

4.8.3 Isobar coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.8.4 Other errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5 Conclusions 138

A PDF Details 143

A.1 Fisher discriminant PDF parameters . . . . . . . . . . . . . . . . . . 143

B Fit Correlations 145

C Measurement of Accelerator Parameters 147

C.1 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

C.1.1 The Hourglass Effect . . . . . . . . . . . . . . . . . . . . . . . 149

C.2 Measurement Technique . . . . . . . . . . . . . . . . . . . . . . . . . 150

x



C.2.1 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 150

C.2.2 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

C.2.3 Fit Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

C.2.4 Fit Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

C.2.5 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . 164

C.3 Fit Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

C.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Bibliography 178

xi



List of Tables

2.1 A summary of the quarks [4]. The masses of the light quarks (d, u, s)

are approximate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 A summary of the leptons [4]. Although the absolute masses of the

neutrinos are poorly known, it is well-established via the observation

of neutrino flavor oscillations that the masses are non-zero [4]. . . . . 6

2.3 A summary of the fundamental bosons [4]. Although it is predicted to

exist in the SM, the Higgs boson has not been observed experimentally

and is thus not listed. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 A summary of mesons most relevant to this thesis [4]. The quantum

number J is the total spin. The C and P quantum numbers are dis-

cussed in Section 2.1.3. For particles that are not eigenstates of C, JP

is given instead of JPC; for K0
S

and K0
L
, the C eigenvalue is only valid

when CP violation is neglected. The quark content of the f0(980) is not

known conclusively. The last column lists the modes of experimental

interest in the environment of the BABAR detector; a particle is listed

as “Stable in BABAR” if it is detected directly instead of reconstructed

from its decay products. . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 The spin dependence of the Blatt-Weisskopf form factors and the an-

gular distribution of resonance daughters. . . . . . . . . . . . . . . . . 24

2.6 Components of the Dalitz plot model. Parameters are from Ref. [4]

unless otherwise noted. RBW stands for relativistic Breit-Wigner. De-

tails of the parameterizations of the f0(980) and non-resonant compo-

nents are given in the text. . . . . . . . . . . . . . . . . . . . . . . . . 27

xii



3.1 Design beam parameters at the PEP-II IP. The numbers in parentheses

are the best-achieved values (not necessarily simultaneously). . . . . . 30

3.2 Details of the SVT geometry. . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Geometry of the superlayer structure of the DCH. The radius listed is

the radius of the innermost sense wire. The ranges of cell widths and

angles are due to variation over the layers in a superlayer. Widths and

radii are specified at the center of the chamber. . . . . . . . . . . . . 40

3.4 Properties of the DCH gas mixture of 80% helium and 20% isobutane.

The drift velocity is given for zero magnetic field, while the Lorentz

angle is for the nominal 1.5 T field. . . . . . . . . . . . . . . . . . . . 42

3.5 Luminosity recorded over the history the BABAR detector. The analysis

presented in this work uses the data from Runs 1-5. Offpeak data for

Run 7 includes all data taken away from the Υ (4S). . . . . . . . . . . 56

4.1 Production cross-sections at a CM energy of 10.58 GeV [38]. The cross-

section listed for e+e− production includes the effect of limited detector

acceptance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Table of signal efficiencies (in %), determined from phase-space signal

MC. The best candidate in an event is chosen from candidates that

pass the cuts listed above the line. The remaining cuts are applied after

the best candidate is selected. The “signal box” is defined as mES >

5.26 GeV/c2 and −0.06 (−0.12) < ∆E < 0.06 GeV for K+K−K0
S+−

(K+K−K0
S00). The final cut on F is only applied for some portions of

the analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Tagging performance parameters determined from the Bflav sample. . 71

4.4 Values of signal ∆t resolution function parameters determined in a fit

to the Bflav sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Models of direct CP asymmetry used in the various fits. . . . . . . . . 75

4.6 Fractions of self crossfeed events found in studies of phase space signal

MC. All numbers are in percent. . . . . . . . . . . . . . . . . . . . . . 82

xiii



4.7 For the K+K−K0
S+− mode, the correlations between ML fit observ-

ables, determined from phase-space signal MC with selection cuts ap-

plied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.8 For the K+K−K0
S00 mode, the correlations between ML fit observables,

determined from phase-space signal MC with selection cuts applied. . 85

4.9 Results of toys for the whole Dalitz plot fit. The means and widths

are derived from fits of Gaussian distributions to the pull results. . . 101

4.10 Comparison of errors from toy fits to K+K−K0
S+− versus toy fits to all

K+K−K0 (K+K−K0
S+−, K+K−K0

S00, and K+K−K0
L
). . . . . . . . . 102

4.11 Tradeoff between statistical error and fit bias in the low-mass embedded

toy fits. The last row is for fits to data samples with perfect Dalitz plot

resolution (MC truth information used to get the Dalitz plot position). 107

4.12 Event yields found in the whole DP fit. Errors are statistical only. . . 112

4.13 Isobar coefficients and corresponding fit fractions found in the whole

DP fit. Errors are statistical only. Fit fractions for the NR components

are combined into one fraction. The sum of the fit fractions is 177%. . 117

4.14 The values of the CP parameters found in the whole DP fit. . . . . . 118

4.15 Results of the high-mass fit to the data. . . . . . . . . . . . . . . . . 124

4.16 Event yields found in the low-mass fit to the data. . . . . . . . . . . . 126

4.17 φ(1020) isobar coefficients found in the low-mass fit. . . . . . . . . . . 128

4.18 CP parameters found in the low-mass fit. . . . . . . . . . . . . . . . . 128

4.19 Correlations found by the fitter in the low-mass fit. . . . . . . . . . . 129

4.20 Summary of systematic uncertainties on the CP -asymmetry parame-

ters bK+K−K0 and δK+K−K0 for the fit to the Whole DP. Translated to

ACP , the errors on bK+K−K0 correspond to: Model 0.004, Bias 0.003,

Other 0.052. This gives a total error on ACP of 0.053. . . . . . . . . . 134

4.21 Summary of systematic uncertainties on the CP -asymmetry parame-

ters bK+K−K0 and δK+K−K0 for the fit to the high-mass region. Trans-

lated to ACP , the errors on bK+K−K0 correspond to: Model 0.025, Bias

0.014, Other 0.053. This gives a total error on ACP of 0.060. . . . . . 135

xiv



4.22 Summary of systematic uncertainties on the f0(980) CP -asymmetry

parameters b and δ for the fit to the low-mass region. Translated to

ACP , the errors on b correspond to: Model 0.029, Bias 0.061, Other

0.029. This gives a total error on ACP of 0.074. . . . . . . . . . . . . . 136

4.23 Summary of systematic uncertainties on the φ(1020) CP -asymmetry

parameters b and δ for the fit to the low-mass region. Translated to

ACP , the errors on b correspond to: Model 0.003, Bias 0.028, Other

0.022. This gives a total error on ACP of 0.036. . . . . . . . . . . . . . 137

5.1 The CP -asymmetries for B0 → K+K−K0 for the entire DP, in the

high-mass region, and for φK0 and f0(980)K0 in the low-mass region.

The first errors are statistical and the second are systematic. . . . . . 138

5.2 The CP asymmetry parameters C and −ηfS obtained from the main

results using Eq. 5.1. Values are shown for B0 → K+K−K0 on the

whole DP, in the high-mass region, and for φK0 and f0(980)K0 in the

low-mass region. The first errors are statistical and the second are

systematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.1 PDF parameters for the signal Fisher discriminant distribution. . . . 144

B.1 Correlations among notable floating parameters in the whole DP fit. . 146

C.1 Fit results on simulated event samples. The errors are statistical only. 164

xv



List of Figures

2.1 The unitarity triangle showing the CKM angles α, β, and γ. . . . . . 11

2.2 The Feynman diagram of the dominant amplitude for B0-B0 mixing.

Similar diagrams where u or c quarks replace the t quarks are sup-

pressed by factors of (mq/mW )2. . . . . . . . . . . . . . . . . . . . . . 11

2.3 The dominant amplitude for the decay B0 → J/ψK0. . . . . . . . . . 17

2.4 The dominant amplitude for the decay B0 → φK0. . . . . . . . . . . 18

2.5 An example of a diagram for a flavor-changing neutral current process

beyond the SM. Squarks and a gluino replace the top quark and W

boson of the SM diagram. . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 An illustration of the isobar model, where the decay of the B0 is a

two-body process followed by the subsequent decay of the resonance r. 21

2.7 Subleading tree amplitude contributing to B0 → K+K−K0. . . . . . 28

3.1 Schematic of the BABAR detector as viewed along the beam pipe. Di-

mensions are given in millimeters. . . . . . . . . . . . . . . . . . . . . 33

3.2 Schematic of the BABAR detector as viewed from the side. Dimensions

are given in millimeters. . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 A cutaway side view of the SVT. . . . . . . . . . . . . . . . . . . . . 36

3.4 Schematic end-on view of the SVT sensor modules. . . . . . . . . . . 36

3.5 A schematic side view of the DCH. Lengths are given in millimeters;

angles are given in degrees. . . . . . . . . . . . . . . . . . . . . . . . . 39

xvi



3.6 Schematic layout of the drift chamber cells for the four innermost su-

perlayers. The stereo angles of the sense wires are given on the right in

mrad. Lines are shown connecting the field wires to illustrate the cell

boundaries. Guard wires are used to match the gain of boundary cells

to that of inner cells. Clearing wires collect charge created by photon

conversions in the DCH walls. . . . . . . . . . . . . . . . . . . . . . . 41

3.7 Measurement of dE/dx in the DCH as a function of momentum for

tracks recorded with beam background triggers. The curves are those

predicted by the Bethe-Bloch formula. . . . . . . . . . . . . . . . . . 43

3.8 Schematic view of the propagation of photons from the DIRC radiator

bars, through the wedge, and into the water-filled standoff box. The

backward end of BABAR is to the right in the diagram. . . . . . . . . . 45

3.9 View of the DIRC geometry. Dimensions are given in millimeters. . . 47

3.10 The distribution of Cherenkov angle θC versus momentum for a col-

lection of tracks from the data [33]. The lowest band is protons, the

middle band is kaons, and the upper band is mostly pions. . . . . . . 48

3.11 Cross section of the top half of the EMC. The EMC is symmetric about

the z-axis. Linear dimensions are given in millimeters. . . . . . . . . 49

3.12 Schematic of an EMC crystal. . . . . . . . . . . . . . . . . . . . . . . 50

3.13 A schematic overview of the IFR geometry, with dimensions shown in

millimeters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.14 Schematic cross section of an RPC. . . . . . . . . . . . . . . . . . . . 53

3.15 Delivered and recorded luminosity as a function of time. . . . . . . . 57

4.1 Distributions of the kinematic variables (left) mES and (right) ∆E,

before any cuts are applied. Signal MC is shown with green circles

(blue crosses) forK+K−K0
S+− (K+K−K0

S00). Data is shown with black

ticks (red stars) for K+K−K0
S+− (K+K−K0

S00). As shown in the left

plot, a cut is placed on mES to remove signal events in data from both

plots until the analysis procedure is finalized. All distributions are

normalized to unit area. . . . . . . . . . . . . . . . . . . . . . . . . . 63

xvii



4.2 Distributions of variables used for K0
S

selection, before any cuts are

applied. Signal MC is shown with green circles (blue crosses) for

K+K−K0
S+− (K+K−K0

S00). Background, taken from themES sideband

in onpeak data, is shown with black ticks (red stars) for K+K−K0
S+−

(K+K−K0
S00). The left plot shows cosαK0

S
, while the right plots shows

the lifetime significance. Distributions are normalized to unit area. . . 64

4.3 Distributions the dipion invariant mass of K0
S

candidates, before any

cuts are applied. Signal MC is shown with green circles (blue crosses)

for K+K−K0
S+− (K+K−K0

S00). Background, taken from an mES

sideband in onpeak data, is shown with black ticks (red stars) for

K+K−K0
S+− (K+K−K0

S00). . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Distributions of event shape variables used as inputs to the Fisher

discriminant: (a) | cos θT |, (b) cos θB, (c) L0, and (d) L2. . . . . . . . 67

4.5 Distributions of the Fisher discriminant for signal and continuum back-

ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Signal PDFs for the kinematic variables for the (top) K+K−K0
S+− and

(bottom) K+K−K0
S00 modes, with fits to signal MC events. . . . . . . 76

4.7 Signal PDFs for the Fisher discriminant F , used in the low-mass fit,

for (left) K+K−K0
S+− and (right) K+K−K0

S00. The fits are to signal

MC events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.8 Corrections applied to the raw efficiencies to account for differences

between data and MC in PID control samples. The plot shown here is

for K+K−K0
S+−. The corrections for K+K−K0

S00 are similar. . . . . . 79

4.9 Efficiency maps, derived from signal MC, for (left) K+K−K0
S+− and

(right) K+K−K0
S00. The top row includes the cut F > −2.5 while the

bottom row does not. The efficiency is higher in the leftmost column

of bins because the PID requirement is looser for mK+K− < 1.1 GeV/c2. 80

4.10 Distribution on the Dalitz plot of radiative signal events in K+K−K0
S+−. 82

4.11 For the K+K−K0
S00 mode, the fraction of reconstructed signal events

that are self crossfeed, as a function of position on the square Dalitz

plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xviii



4.12 mK+K− resolution, as measured in MC samples. The top row shows the

bias and the bottom row shows the width of the reconstructed mK+K−.

The K+K−K0
S+− mode is shown on the left while the K+K−K0

S00

mode is on the right. In all plots, the filled symbols refer to mK+K−

reconstructed using a B-mass constraint, which is what is used in the

final fit. The open symbols, calculated without a B-mass constraint,

are included for comparison. For the K+K−K0
S00 mode, the black

circles show all events, blue squares are for truth-matched events only,

and red stars are for self crossfeed events only. . . . . . . . . . . . . . 84

4.13 The mES − ∆E plane showing (right) K+K−K0
S+− and (left)

K+K−K0
S00 data events. The box on the right of each plot in-

dicates the signal region. A signal peak is clearly visible in the

K+K−K0
S+− mode. The box on the left of each plot is the mES

sideband, used for determination of the Dalitz plot background shape.

The upper region (∆E > 0.1 GeV) of each plot is the ∆E sideband,

used for determination of the mES background shape. . . . . . . . . . 86

4.14 Distributions of uds+cc MC events for the K+K−K0
S+− mode, in (left)

the mES sideband and (right) the signal region. . . . . . . . . . . . . 87

4.15 For the K+K−K0
S+− mode, one-dimensional projections of the Dalitz

plot distributions of uds+cc MC events in the mES sideband (black

points) and signal region (red diamonds). (A) mK+K− (B) mK+K− (φ

region) (C) cos θH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.16 Distributions of mES sideband events from onpeak K+K−K0
S+− data,

split by tagging category. . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.17 The average value of the Fisher discriminant F as a function of the

Dalitz distance ∆D for K+K−K0
S+−. Plots are shown for (top left)

onpeak data, (top right) offpeak data, (bottom left) uds MC, and

(bottom right) cc MC. All plots are for the mES sideband region. . . . 91

4.18 mES PDFs for qq background for (left) K+K−K0
S+− and (right)

K+K−K0
S00. The points are onpeak data from the ∆E sideband, used

in creating the PDFs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xix



4.19 ∆E PDFs for qq background for (left) K+K−K0
S+− and (right)

K+K−K0
S00. The points are onpeak data from the mES sideband, used

in creating the PDFs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.20 Fisher discriminant PDFs for qq background for (left) K+K−K0
S+−

and (right) K+K−K0
S00. The points are onpeak data from the mES

sideband, used in creating the PDFs. . . . . . . . . . . . . . . . . . . 93

4.21 ∆t PDFs for qq background for (left) K+K−K0
S+− and (right)

K+K−K0
S00, shown (top) on a linear scale and (bottom) a logarithmic

scale. The points are onpeak data from the mES sideband, used in

creating the PDFs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.22 Dalitz plot PDFs for qq background for (left) K+K−K0
S+− and (right)

K+K−K0
S00, shown on a logarithmic scale. Note the extremely fine

binning in the φ(1020) region, and along the top and bottom of the

square DP. The PDFs are constructed using onpeak data events from

the mES sideband. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.23 Kinematic PDFs for BB background for K+K−K0
S+−, with points

from generic BB MC. . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.24 Two-dimensional PDF for mES and ∆E for BB background in the

K+K−K0
S00 mode. Note that the PDF describes wider ranges of mES

and ∆E than are actually used in the fit. . . . . . . . . . . . . . . . . 97

4.25 ∆t PDFs for BB background for (left) K+K−K0
S+− and (right)

K+K−K0
S00. Points are from generic BB MC. . . . . . . . . . . . . . 98

4.26 Histogram PDFs describing the BB background for (left) K+K−K0
S+−

and (right) K+K−K0
S00. . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.27 Pull distributions for the CP asymmetry parameters (top) bK+K−K0

and (bottom) δK+K−K0. The curves are fits to Gaussian distributions. 100

4.28 Toy results for the low-mass fit to all K+K−K0 events: pull distribu-

tions for the isobar parameters and CP asymmetries. . . . . . . . . . 103

4.29 Toy results for the high-mass fit to all K+K−K0 events: pull distribu-

tions for the CP asymmetry parameters. . . . . . . . . . . . . . . . . 103

xx



4.30 Pull distributions for the CP asymmetry parameters (top) bK+K−K0

and (bottom) δK+K−K0, derived from embedded toy fits to all

K+K−K0 modes. The curves are fits to Gaussian distributions. . . . 105

4.31 Pull distributions for the CP asymmetry parameters (top) bK+K−K0

and (bottom) δK+K−K0, derived from embedded toy fits to all

K+K−K0 modes. The curves are fits to Gaussian distributions. . . . 105

4.32 Embedded toy results for the low-mass fit to all K+K−K0 events: pull

distributions for the isobar parameters and CP asymmetries. . . . . . 106

4.33 Embedded toy results for the low-mass fit to all K+K−K0 events,

using the MC truth information for the Dalitz plot coordinates. Pull

distributions for the isobar parameters and CP asymmetries are shown. 107

4.34 Pull distributions for the CP parameters, found in iterated embedded

toy fits to the high-mass region. . . . . . . . . . . . . . . . . . . . . . 108

4.35 Pull distributions for the CP parameters and φ isobar coefficients,

found in iterated embedded toy fits to the low-mass region. . . . . . . 109

4.36 (Left) The distribution of NLL for fits to the whole DP with ran-

domized initial parameters; (right) distributions of values of the CP

parameters (top) bK+K−K0 and (bottom) δK+K−K0 versus the fit NLL. 110

4.37 Distributions of whole DP fit results (NLL < −101995): (a) CP pa-

rameters versus NLL, (b) Isobar parameters versus NLL. . . . . . . . 111

4.38 mES projections for the fit to the whole DP in (left) K+K−K0
S+− and

(right)K+K−K0
S00. The points are the data. The curves show the PDF

projections: solid blue is the total, dashed red is the qq background,

and dotted magenta is the BB background. . . . . . . . . . . . . . . 113

4.39 ∆E projections for the fit to the whole DP in (top left) K+K−K0
S+−,

(top right) K+K−K0
S00, and (bottom left) K+K−K0

L
. The points are

the data. The curves show the PDF projections: solid blue is the

total, dashed red is the qq background, and dotted magenta is the

BB background. For K+K−K0
L

there is an additional BB background

category (the non-peaking BB background), shown in dashed-dotted

green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xxi



4.40 Distributions of the kinematic variables (left) mES and (right) ∆E

in the onpeak K+K−K0
S+− data. Points are derived using the sPlot

method, while the curves are the PDFs used in the fit. The top row

shows signal and the bottom row shows qq background. . . . . . . . . 115

4.41 Distributions of the kinematic variables (left) mES and (right) ∆E

in the onpeak K+K−K0
S00 data. Points are derived using the sPlot

method, while the curves are the PDFs used in the fit. The top row

shows signal and the bottom row shows qq background. . . . . . . . . 116

4.42 Distributions of the kinematic variable ∆E in the onpeak K+K−K0
L

data. Points are the data and the curve is the total PDF, including

signal and backgrounds. The signal is enhanced with a cut on the event

shape variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.43 (Top) ∆t distributions and (bottom) time-dependent CP asymmetry

for K+K−K0
S+−. For the ∆t distributions, B0- (B0-) tagged signal-

weighted events are shown as filled (open) circles, with the PDF pro-

jection in solid blue (dashed red). . . . . . . . . . . . . . . . . . . . . 119

4.44 The change in twice the negative log likelihood as a function of βeff for

the fit to the whole DP. . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.45 Projections of mK+K− for the data and the PDF of the whole DP

fit result. The plots in the left column show the whole mass range,

while the plots on the right zoom into the low-mass region (but still

show results of the whole DP fit). Projections are shown for (top)

K+K−K0
S+−, (center) K+K−K0

S00, and (bottom) K+K−K0
L
. The blue

lines denote the total PDF and the red lines are the qq background

component of the PDF. . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xxii



4.46 Projections of cos θH for the data and the PDF of the whole DP fit re-

sult. The plots in the left column show the whole mass range, while the

plots on the right zoom into the low-mass region (but still show results

of the whole DP fit). Projections are shown for (top) K+K−K0
S+−,

(center) K+K−K0
S00, and (bottom) K+K−K0

L
. The blue lines denote

the total PDF and the red lines are the qq background component of

the PDF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.47 sP lots of the Dalitz plot variables (left) mK+K− and (right) cos θH for

K+K−K0
S+− events. The points are the signal-weighted data events

and the histograms are projections of the signal Dalitz plot PDF. . . 123

4.48 (Left) The distribution of NLL for fits to the high-mass region with

randomized initial parameters; (right) distributions of values of the

CP parameters (top) bK+K−K0 and (bottom) δK+K−K0 versus the fit

NLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.49 The time-dependent CP asymmetry in the K+K−K0
S+− mode, for the

high-mass fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.50 Isobar coefficients and CP parameters versus NLL for the low-mass fit

to all K+K−K0 events. . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.51 Likelihood scan of the f0(980) CP parameters. The color axis is in

units of
√

2∆NLL (σ). . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.52 CP asymmetry of signal-weighted events in (top) the low-mass region,

and (bottom) the φ region (1.01 < mK+K− < 1.03 GeV/c2). Both plots

show the projection of the low-mass fit result (solution 1A). . . . . . 130

5.1 Winter 2008 HFAG compilation of −ηfS ≈ sin 2βeff [56] . . . . . . . . 140

5.2 Winter 2008 HFAG compilation of C = −ACP [56] . . . . . . . . . . . 141

C.1 Schematic view of two reconstructed muon tracks in the transverse plane.152

C.2 The doca error δ as a function of (left) the azimuthal angle φ1, and

(right) the longitudinal position zv of the µ+µ− vertex, for data (black

full circles) and for simulation (blue open squares). All selection cuts

are applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xxiii



C.3 Distributions of the track doca error (δ1 and δ2) in data for various

combinations of SVT bonding type in Layers 1 and 2. “Reg” means a

hit in an SVT section with all readout strips used; “Skip” means a hit

in a section with a floating readout strip. The two “misc” categories are

groups of various other possible combinations, including the possibility

that the track does not have a hit in a given layer. . . . . . . . . . . . 154

C.4 Width σm of the miss-distance distribution, as extracted from Gaussian

fits to real (full circles) or simulated (open squares) data, as a function

of the doca error δ. The lines are linear fits to the points. . . . . . . . 155

C.5 The core scale factor S1 found by fitting the resolution function to

data samples broken into bins of δ. Black points correspond to a data

sample, other points are for two different samples of MC events. . . . 157

C.6 Distribution of the miss distance m for a typical data sample. The

curve is the global fit to the resolution function of Eq. C.9, including

splitting the core scale factors as described in the text. . . . . . . . . 157

C.7 Scale factor S1 of the core component of the resolution function as a

function of φ1, from fits of Eq. C.9 to a representative data sample.

The detector is binned in three bins of cos θ: cos θ1 < 0.65 (top),

0.65 < cos θ1 < 0.75 (center), 0.75 < cos θ1 < 0.85 (bottom); and three

bins of zv: negative zv region (red triangle), central zv region (black

squares), positive zv region (blue triangles), where zv is measured in

detector coordinates and the exact boundaries of each zv region depend

on the data-taking period. . . . . . . . . . . . . . . . . . . . . . . . . 159

C.8 Scale factor S2 of the tail component of the resolution function as a

function of φ1, from fits of Eq. C.9 to a representative data sample.

The detector is binned in three bins of cos θ: cos θ1 < 0.65 (top),

0.65 < cos θ1 < 0.75 (center), 0.75 < cos θ1 < 0.85 (bottom); and three

bins of zv: negative zv region (red triangle), central zv region (black

squares), positive zv region (blue triangles), where zv is measured in

detector coordinates and the exact boundaries of each zv region depend

on the data-taking period. . . . . . . . . . . . . . . . . . . . . . . . . 160

xxiv



C.9 Measured distribution of d, the distance of closest approach to the

beam line, for a typical data sample. Top: all muons; center: quasi-

vertical muons (π/4 < |φ1| < 3π/4); bottom: quasi-horizontal muons

(|φ1| < π/4, |φ1 − π| < π/4). The points are the data; the curves are

described in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

C.10 Measured z-dependence of the vertical (top) and horizontal (bottom)

luminous size, extracted from a sample of 8.5 × 105 e+e− → µ+µ−

events collected over ten days in December 2003. The lines show the

result of the simultaneous fit to all events; the points with error bars

result from fitting the data separately in each z bin. . . . . . . . . . . 166

C.11 The inner, center, and outer curves show the boundaries of the 1, 2,

and 3 σ regions allowed by the fit around the central value indicated by

a cross. These results are from a typical fit to the data. The allowed

regions are tilted due to the correlation between β∗
y and σyL (z = zwy ). 167

C.12 Results of toy beam parameter fits. The upper left plot shows the

distribution of fit values of β∗
y , for a generated value of β∗

y = 1.1 cm.

The upper right plot shows the resulting distribution of pulls for β∗
y .

The lower plots show pull distributions for (left) σyL (z = zwy ) and

(right) σxL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

C.13 Difference between the fitted and the generated values of σyL in sim-

ulated event samples generated with no hourglass effect. The curve

fitted to the data points provides a parameterization of the measure-

ment bias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

C.14 Fit results for β∗
y for Runs 1-6. Red circles are independent measure-

ments made using the accelerator phase-advance. . . . . . . . . . . . 172

C.15 Fit results for σyL(z = zwy ) for Runs 1-6. . . . . . . . . . . . . . . . . 173

C.16 Fit results for σxL for Runs 1-6. . . . . . . . . . . . . . . . . . . . . . 174

C.17 Fit results for txy for Runs 1-6. . . . . . . . . . . . . . . . . . . . . . 175

C.18 Fit results for zwy for Runs 1-6. . . . . . . . . . . . . . . . . . . . . . . 176

C.19 Results for εy,eff for Runs 1-6, extracted from the fit results for β∗
y and

σyL(z = zwy ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

xxv



xxvi



Chapter 1

Introduction

Since becoming operational in 1999, the B Factory experiments BABAR and Belle have

made enormous contributions to particle physics, publishing hundreds of papers each.

Although both experiments have addressed a myriad of physics topics, both were

constructed with the principle goal of studying CP violation in the decay of B mesons.

This chapter gives a brief motivation for the construction of these experiments. It

also provides an introduction to the nature and scope of the PEP-II accelerator and

the BABAR experiment, which are the facilities whose operation provided the data for

this research.

1.1 Motivation

In 1956, C. S. Wu discovered that when a sample of Cobalt 60 is prepared with the

spins of its nuclei aligned, electrons from β decay are preferentially emitted along

the direction of the nuclear spin. Because the mirror image of this process flips

the apparent spin direction of the nuclei, but does not change the direction of the

emitted electrons, this process violates parity symmetry (P). This discovery was

quickly followed by the awarding of the 1957 Nobel Prize in Physics to Yang and

Lee, who had proposed the experiment to her [2]. Despite the strong violation of

P symmetry observed by Wu, the combination of charge conjugation (C) with P
appeared to yield a conserved quantity. In 1964, however, Fitch and Cronin observed

1
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the decay K0
L
→ π+π−, which violates CP symmetry [3]. In contrast to P-symmetry

violation alone, the observed CP violation was very small, at the level of O(10−3).

Although the violation of CP symmetry was a surprise at the time and considered

by some to be aesthetically unpleasing, it is actually a requirement of living in a

matter-dominated universe [6]. In a universe with perfect CP symmetry, the Big

Bang would have created equal amounts of matter and antimatter, resulting in a

sea of photons and little else. Astrophysicists tell us, however, that the observable

universe is made entirely of matter. Therefore, the violation of CP symmetry is not

unexpected. A puzzle remained since the amount of CP violation observed in the

kaon system is not sufficient to explain the observed dominance of matter in the

universe [7].

At the time of its discovery, CP violation lacked any theoretical explanation. In

1963, Cabbibo compared the decay rates of kaons and pions into identical final states

(µν and π0eν) and extracted the value of the mixing angle for strangeness-changing

processes [8]. Kobayashi and Maskawa expanded on this framework in 1973, showing

that to include CP violation required adding a third generation of quarks to the

mixing matrix [9]. The discovery of the charm quark in 1974 and later the third

generation of fundamental particles supported their proposed mechanism, but for

conclusive evidence one needs to study CP violation in decays of the bottom quark.

This is the key motivation for the construction of the B Factories. More detail on

the theoretical formulation of CP violation in the Standard Model (SM) is given in

Chapter 2.

1.2 The PEP-II Accelerator

The PEP-II collider consists of two storage rings, each 2.2 km in circumference. The

low energy ring (LER) stores positrons with an energy of 3.1 GeV, while the high

energy ring (HER) stores electrons with an energy of 9.0 GeV, yielding a center-of-

mass (CM) energy equal to the mass of the Υ (4S) resonance (10.58 GeV). Due to the

asymmetric beam energies, the CM system is boosted relative to the laboratory frame

by βγ = 0.56. The Υ (4S) decays almost exclusively to pairs of B mesons, which are
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produced nearly at rest in the CM frame. As will be discussed in Chapter 2, key

CP violation measurements require measuring the difference in decay times between

a pair of B0 mesons. The boost of the CM system separates the decay vertices of

the B mesons in the lab frame, allowing for the measurement of the decay time

difference. Electrons and positrons are accelerated to their final energies by the

SLAC linear accelerator, then injected into PEP-II. PEP-II has a design luminosity

of 3 × 1033 cm−2s−1 and has achieved a luminosity four times higher.

The design and operation of the accelerator complex are the fruits of the labors

of a diverse group of accelerator physicists, accelerator operators, engineers, and

technicians. Much of the success of the BABAR experiment can be attributed to the

success of the PEP-II team.

1.3 The BABAR Experiment

The BABAR detector is a general purpose particle physics detector, optimized for the

detection of B meson decays in the high-luminosity, asymmetric-energy environment

provided by the PEP-II collider. The detector will be described in detail in Chapter 3.

The BABAR Experiment is an international collaboration of physicists, with

roughly 500 members at any given time. The detector was designed and built in the

1990s with data collection beginning in 1999, all long before the author was a member

of the project. Data collection and processing for such a complicated detector is

necessarily a collaborative effort. The analysis presented in this dissertation would

not have been possible without the efforts of hundreds of physicists, engineers, and

technicians. Additionally, the specific analysis presented here was a collaborative

effort of several physicists.

1.4 Outline

In Chapter 2, a theoretical introduction to CP violation in B mesons is presented.

A detailed description of the BABAR detector is given in Chapter 3. The measure-

ment procedure is given in Chapter 4, including details of the event selection and fit
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procedures. Conclusions are presented in Chapter 5. Appendix C presents the au-

thor’s contribution to an effort to study the luminous region of the accelerator with

unprecedented precision.



Chapter 2

Theory

2.1 Introduction to the Standard Model

2.1.1 The Fundamental Particles

The Standard Model of particle physics is a comprehensive description of the fun-

damental interactions of matter, excluding gravity. The fundamental particles are

characterized by their masses and various quantum numbers, and by how they inter-

act with the other particles. The fundamental fermions, with spin 1
2
, are classified

into quarks and leptons, where the former carry the color charge of the strong inter-

action while the latter do not. The fundamental bosons, with spin 1, mediate the

interactions between the fermions. The fundamental quarks, leptons, and bosons are

listed in Tables 2.1, 2.2, and 2.3, respectively.

Both the quarks and leptons are groups into three “generations,” each consisting

of a pair of particles. The generations are similar in their properties, except that each

successive generation is more massive than the previous one.

2.1.2 Mesons

Quarks are not found in isolation in nature, but rather are bound into colorless objects

consisting of three quarks (baryons) or of a quark and antiquark (mesons). All of the

key particles discussed in this work are mesons, and are listed in Table 2.4.

5
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Table 2.1: A summary of the quarks [4]. The masses of the light quarks (d, u, s) are
approximate.

Name Symbol Charge Mass ( MeV/c2)
down d −1/3 3 − 7
up u 2/3 1.5 − 3.0
strange s −1/3 95 ± 25
charm c 2/3 (1.25 ± 0.09) × 103

bottom b −1/3 (4.20 ± 0.07) × 103

top t 2/3 (174.2 ± 3.3) × 103

Table 2.2: A summary of the leptons [4]. Although the absolute masses of the neu-
trinos are poorly known, it is well-established via the observation of neutrino flavor
oscillations that the masses are non-zero [4].

Name Symbol Charge Mass ( MeV/c2)
electron e −1 0.511
electron neutrino νe 0 < 2 × 10−6

muon µ −1 106
muon neutrino νµ 0 < 0.19
tau τ −1 1777
tau neutrino ντ 0 < 18.2

Table 2.3: A summary of the fundamental bosons [4]. Although it is predicted to
exist in the SM, the Higgs boson has not been observed experimentally and is thus
not listed.

Name Symbol Charge Mass ( GeV/c2) Mediated Interaction
photon γ 0 0 Electromagnetic
W W± ±1 80.403 ± 0.029 Weak
Z Z0 0 91.1876 ± 0.0021 Weak
gluon g 0 0 Strong
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Table 2.4: A summary of mesons most relevant to this thesis [4]. The quantum num-
ber J is the total spin. The C and P quantum numbers are discussed in Section 2.1.3.
For particles that are not eigenstates of C, JP is given instead of JPC ; for K0

S
and K0

L
,

the C eigenvalue is only valid when CP violation is neglected. The quark content of
the f0(980) is not known conclusively. The last column lists the modes of experimen-
tal interest in the environment of the BABAR detector; a particle is listed as “Stable
in BABAR” if it is detected directly instead of reconstructed from its decay products.

Symbol Charge Mass ( MeV/c2) JPC Quark Content Principle Decay Modes

π± ±1 139.57 0− ud Stable in BABAR

π0 0 134.98 0−+ uu− dd γγ
K± ±1 493.68 0− us Stable in BABAR

K0
S

0 497.65 0−− ds+ ds π+π−, π0π0

K0
L

0 497.65 0−+ ds− ds Stable in BABAR

f0(980) 0 980 ± 10 0++ See caption π+π−, K+K−

φ 0 1019.460 ± 0.019 1−− ss K+K−, K0
S
K0

L

B0 0 5279.4 ± 0.5 0− db Many

Υ (4S) 0 10579.4 1−− bb B0B0, B+B−

2.1.3 Symmetries

The invariance of physics under a transformation is known as a symmetry of nature,

and the study of symmetries is extremely important in both classical and modern

physics. Noether’s theorem tells us that there is a direct relation between continuous

symmetries and conservation laws [5]. A famous example is a translation in space,

which corresponds to the conservation of momentum. We will focus our attention on

three discrete symmetries: parity, charge conjugation, and time reversal.

Parity

The parity operator P causes the inversion of all three spatial coordinates; for a

four-vector this can be written as

(t, x, y, z) → (t, − x, − y, − z).
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The eigenvalues of P are ±1, and the operator is multiplicative, so P2 = 1. Parity is

conserved in the strong and electromagnetic interactions, and is thus a useful quantum

number for analyzing many interactions. The mesons are classified according to their

parity: spin zero mesons with even parity such as the f0(980) are known as scalars,

while those with odd parity such as the π0 are known as pseudoscalars. Similarly, spin

one mesons with odd parity such as the φ are called vector mesons, while those with

even parity are called pseudovectors (or axial vectors). The parity of a meson is related

to the orbital angular momentum l of its constituents by the relation P = (−1)l+1.

Charge conjugation

The charge conjugation operator C converts a particle to its antiparticle. Only parti-

cles that are their own antiparticles can be eigenstates of C. The eigenvalues are ±1,

and are multiplicative. As with parity, C is conserved in strong and electromagnetic

interactions, but is not conserved in weak interactions.

Time reversal and CP

The time-reversal operator T inverts the time component of the four-vector:

(t, x, y, z) → (−t, x, y, z).

T symmetry is more difficult to access experimentally than the symmetries discussed

above because no particle is an eigenstate of the operator. However, T violation has

been observed experimentally by comparing, as a function of time, the probability

of a K0 → K0 transition to the probability of a K0 → K0 transition [10]. Also, it

is well established that Lorentz-invariant quantum field theories must be invariant

under the combination of all three of the discrete symmetries described here, CPT .

With CPT conservation assumed, the violation of T symmetry implies the violation

of the combination of C and P symmetries, and vice versa. As mentioned in the

Introduction, CP violation was discovered in the kaon system in 1964, and the study

of CP violation in B meson decays is the main purpose of the BABAR experiment.
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2.2 The Weak Interaction and the CKM Matrix

The weak interaction contains two classes of interactions: the charged-current inter-

action mediated by the W boson, and the neutral-current interaction mediated by

the Z0 boson. The latter process has the important property that it cannot change

the flavor of the quark (or lepton) involved. Therefore it will not play a role in the

flavor-changing processes that we will discuss. In a charged-current process, a quark

emits a W boson and changes flavor to another type of quark. This process has a

vertex factor of −igw

2
√

2
γµ (1 − γ5)Vqq′, where gw is the weak coupling constant, γµ are

Dirac matrices, and Vqq′ is an element of the Cabbibo-Kobayashi-Maskawa (CKM)

quark-mixing matrix. The CKM matrix is a unitary matrix that expresses the mixing

of the up-type quarks with the down-type quarks:

VCKM ≡









Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb









. (2.1)

Any 3×3 unitary matrix can be expressed in terms of four parameters (neglecting

unphysical phases). The standard exact parameterization, in terms of the sines and

cosines of three mixing angles plus one complex phase, can be found in The Review of

Particle Physics (RPP) [4]. For our purposes the most useful form is the Wolfenstein

parameterization,

VCKM =









1 − λ2
CKM/2 λCKM Aλ3

CKM(ρ− iη)

−λCKM 1 − λ2
CKM/2 Aλ2

CKM

Aλ3
CKM(1 − ρ− iη) −Aλ2

CKM 1









+ O(λ4
CKM), (2.2)

which has a form inspired by the empirical observation that the magnitudes of the

matrix elements are neatly expressed in terms of powers of λCKM ≈ 0.22. The po-

tential for CP violation is created by the imaginary terms in this matrix. We can

exploit the unitarity requirement, VCKM
†VCKM = 1, to form several relations between
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the matrix elements, including

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (2.3)

This equation is used to construct a “unitarity triangle” in the complex plane, shown

in Fig. 2.1 with the sides normalized to the VcdV
∗
cb term. When normalized this way,

the base of the triangle has unit length and the apex is at (ρ̄, η̄), where ρ̄ and η̄ are

given by

ρ̄ ≡ (1 − λ2
CKM/2)ρ, and

η̄ ≡ (1 − λ2
CKM/2)η.

The angles of the triangle are

α ≡ arg

(

− VtdV
∗
tb

VudV ∗
ub

)

,

β ≡ arg

(

−VcdV
∗
cb

VtdV ∗
tb

)

, and (2.4)

γ ≡ arg

(

−VudV
∗
ub

VcdV
∗
cb

)

.

The values of the CKM matrix parameters are not predicted by the SM, but rather

must be measured experimentally. One of the main goals of the B Factory programs is

to redundantly measure the angles and sides of the unitarity triangle, overconstraining

the triangle and thus testing the CKM model. We will focus on the measurement of

the angle β.

2.2.1 Mixing of B0 Mesons

Although flavor-changing neutral currents are forbidden at tree level, they are easily

achieved through loop diagrams. One example, known as a box diagram, is shown in

Fig. 2.2, where the exchange of a pair of W bosons allows a B0 meson to transform

into a B0 meson. (Note that there is an equally valid diagram obtained by swapping

the W bosons and top quarks.) In this section we will study the details of this process,
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γ β

α

(0, 0) (1, 0)

)η, ρ( 

*
cb VcdV

*
ub VudV

*
cb VcdV

*
tb VtdV

Figure 2.1: The unitarity triangle showing the CKM angles α, β, and γ.

known as B0 mixing.

b

d

0
B

d

b

0
BW W

t

t

Figure 2.2: The Feynman diagram of the dominant amplitude for B0-B0 mixing.
Similar diagrams where u or c quarks replace the t quarks are suppressed by factors
of (mq/mW )2.

The B0 and B0 mesons are flavor eigenstates with definite quark content, but are

not the mass eigenstates that propagate through space. For a linear combination of

flavor eigenstates a|B0〉 + b|B0〉, the time evolution is governed by a time-dependent

Schrodinger equation,

i
d

dt

(

a

b

)

= H
(

a

b

)

=

(

M − i

2
Γ

)

(

a

b

)

, (2.5)



12 CHAPTER 2. THEORY

where M and Γ are 2× 2 Hermitian matrices, and H11 = H22 due to CPT symmetry.

Solving the eigenvalue problem, we can write the mass eigenstates in terms of

linear combinations of the flavor eigenstates:

|BL〉 = pB0 + qB0,

|BH〉 = pB0 − qB0, (2.6)

where the subscripts L and H refer to the lighter and heavier eigenstates, respectively,

and p and q are complex numbers, normalized so that |q|2 + |p|2 = 1. The mass

and width splitting between the eigenstates can be written in terms of the real and

imaginary parts of the difference between the eigenvalues:

∆m ≡ mH −mL = 2Re
√

(M12 −
i

2
Γ12)(M

∗
12 −

i

2
Γ∗

12) (2.7)

∆Γ ≡ ΓH − ΓL = −2Im
√

(M12 −
i

2
Γ12)(M∗

12 −
i

2
Γ∗

12). (2.8)

We can then derive the relations

(∆m)2 − 1

4
(∆Γ)2 = 4

[

|M12|2 −
1

4
|Γ12|2

]

, and (2.9)

∆m∆Γ = 4ReM∗
12Γ12, (2.10)

as well as an expression for the ratio q/p:

q

p
= − ∆m− i

2
∆Γ

2(M12 − i
2
Γ12)

. (2.11)

We can simplify these relations by noting the current experimental values ∆Γ/Γ =

0.009 ± 0.037 and ∆m/Γ = 0.776 ± 0.008 [4], implying that ∆Γ � ∆m. Applying
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this, we find that, to a good approximation,

∆m = 2|M12|, (2.12)

∆Γ = 2Re(M12Γ
∗
12)/|M12|, and (2.13)

q/p = −|M12|/M12. (2.14)

The matrix element M12 can be calculated by evaluating the amplitude corresponding

to the box diagram shown in Fig. 2.2, plus all the other subleading amplitudes that

also contribute to the process. The dominant amplitude depends on the CKM matrix

elements Vtd and Vtb, as well as several factors that depend on the hadronic physics

of the B0 meson. Fortunately we will see that CP violation depends largely on q/p,

with many of the hadronic quantities canceling in the ratio.

The mixing of a state that is purely B0 at time t = 0, |B0
phys〉, and similarly for a

state that begins as purely B0, |B0
phys〉, proceeds according to

|B0
phys〉 = e−iMBte−Γt/2

[

cos(∆mt/2)|B0〉 + i(q/p) sin(∆mt/2)|B0〉
]

,

|B0
phys〉 = e−iMBte−Γt/2

[

i(p/q) sin(∆mt/2)|B0〉 + cos(∆mt/2)|B0〉
]

, (2.15)

where MB = 1
2
(mH +mL).

A constraint is imposed on the flavor oscillations given in Eq. 2.15 by the fact

that the B0 and B0 mesons measured by BABAR are produced in decays of the Υ (4S)

to a coherent L = 1 state. As the mesons evolve in time, the constraint implies that

there is always exactly one B0 and one B0 present. After one of the mesons decays,

the other continues to evolve in time.

2.2.2 CP Violation in B Mesons

Violations of CP symmetry can manifest themselves in several ways:

1. CP violation in decay, where the total amplitude for a decay and its CP conju-

gate process have unequal magnitudes.

2. CP violation in mixing, where the neutral mass eigenstates are admixtures of
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the CP eigenstates.

3. CP violation in the interference between decays with and without mixing, where

both B0 and B0 can decay into a common final state.

We define the decay amplitudes to a final state f as:

Af ≡ 〈f |H|B0〉,
Āf̄ ≡ 〈f̄ |H|B0〉,

where the latter definition is for the CP conjugate process.

CP Violation in Decay

In the SM, the total decay amplitude Af can be written in terms of a sum of ampli-

tudes with magnitudes Ai, strong phases δi, and weak phases ϕi. The magnitudes

and strong phases are conserved under CP conjugation, while the weak phases change

sign. The ratio in Eq. 2.17 is then given by

∣

∣

∣

∣

Āf̄

Af

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

iAie
i(δi−ϕi)

∑

iAiei(δi+ϕi)

∣

∣

∣

∣

. (2.16)

If all the phases ϕi are equal, an overall factor of exp(−2iϕi) factors out of the sums

and the ratio is equal to one. However, if there are weak phase differences,

∣

∣

∣

∣

Āf̄

Af

∣

∣

∣

∣

6= 1, (2.17)

implying direct CP violation. The size of this deviation depends on the strong am-

plitudes as well as the weak phases, and so is difficult to predict theoretically.

CP Violation in Mixing

|q/p| 6= 1 (2.18)

implies CP violation in mixing. The SM predicts |q/p| to equal unity to a part

in 103. Consistent with this prediction, the current experimental value is |q/p| =
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1.0015 ± 0.0039 [4]. We will assume |q/p| = 1 in future calculations.

CP Violation in the Interference between Decays with and without Mixing

The final manifestation of CP violation is in the interference between decays without

mixing, B0 → f , and those with mixing, B0 → B0 → f , to a common final state f .

Obviously, this effect is limited to final states f that are accessible to both B0 and

B0. This type of CP violation is defined by

Im
(

q

p

Āf

Af

)

6= 0. (2.19)

Continuing from the expressions for the mixing of the B0 and B0 mesons

(Eq. 2.15), we can write an expression for the total decay rate of a B0-B0 pair. This

expression can be simplified if we impose the condition that one meson has decayed

to a final state that uniquely identifies, or “tags,” its flavor. (An example is the

decay B0 → D−`+ν`, where the charge of the lepton ` identifies the flavor of the B

meson.) Given this condition, the decay rate as a function of the decay times ttag

and tCP is

R ∝ e−Γ(ttag+tCP ) × (2.20)
{

|Af |2 + |Āf |2 ∓ 2Im
[

q

p
A∗
fĀf

]

sin ∆m∆t± (|Af |2 − |Āf |2) cos ∆m∆t

}

,

where the upper (lower) signs correspond to the tagging meson decaying as a B0 (B0),

and ∆t ≡ tCP − ttag. Dependence on the individual decay times can be integrated

out, giving an expression that depends only on the observable ∆t.

The time-dependent rate asymmetry is defined as

a(∆t) ≡ R(B0 → f) − R(B0 → f)

R(B0 → f) +R(B0 → f)
(2.21)

=
2Im

[

q
p
A∗
fĀf

]

sin ∆m∆t− (|Af |2 − |Āf |2) cos∆m∆t

|Af |2 + |Āf |2
. (2.22)
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The term proportional to cos ∆m∆t is non-zero only in the case of direct CP violation

(CP violation in decay). The first term, proportional to sin ∆m∆t, is the result of

CP violation caused by the interference of decays with and without mixing. For

simplicity, the expression in Eq. 2.22 is often written as

a(∆t) = S sin ∆m∆t− C cos ∆m∆t, (2.23)

where S and C are parameters to be measured experimentally.

Unlike CP violation in decay, the CP violation in the interference between decays

with and without mixing can be reliably calculated in the SM. Looking at the diagram

in Fig. 2.2 and using the expression in Eq. 2.14, we find that

q

p
=
V ∗
tbVtd
VtbV ∗

td

. (2.24)

The evaluation of the decay amplitude Af depends on the final state in question. For

the decay B0 → J/ψK0, the dominant amplitude is given by the tree diagram shown

in Fig. 2.3. From this diagram we see that the amplitude is proportional to V ∗
cbVcs.

The mixing of the K0 introduces another factor proportional to VcdV
∗
cs. Plugging

these expressions into Eq. 2.19, we find

Im
[

q

p

Āf

Af

]

= Im
[(

V ∗
tbVtd
VtbV ∗

td

)(

VcbV
∗
cs

V ∗
cbVcs

)(

V ∗
cdVcs
VcdV ∗

cs

)]

= Im
[(

V ∗
tbVtd
VtbV ∗

td

)(

VcbV
∗
cd

V ∗
cbVcd

)]

= ImVtd
V ∗
td

, (2.25)

where in the last step we have used the fact that most of the CKM matrix elements are

real in the Wolfenstein parameterization (Eq. 2.2). This leads to the SM prediction

that in B0 → J/ψK0,

−ηfSJ/ψK0 = sin 2β, CJ/ψK0 = 0, (2.26)

where ηf is the CP eigenvalue of the final state.



2.3. CP VIOLATION IN B → SSS 17
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0
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0
B
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Figure 2.3: The dominant amplitude for the decay B0 → J/ψK0.

This prediction is accurate to better than 1% in the SM, since contributions from

diagrams with a weak phase are highly suppressed compared to the dominant tree

amplitude. Because of this low theoretical uncertainty, the decay B0 → J/ψK0

and related b → ccs decays are known as the “Golden Mode,” providing a clean

environment for measuring the angle β in the SM. The current experimental value,

SJ/ψK = 0.685± 0.032 [4, 11], agrees well with other measurements and supports the

CKM explanation of CP violation in the SM.

2.3 CP Violation in b→ sss

With the SM value of sin 2β precisely measured using b→ ccs decays, one is interested

in measurements that might show deviations from the SM that would be hidden in the

tree-dominated decays. The dominant amplitude in b→ sss decays is a loop diagram,

also known as a “penguin” diagram. An example is shown in Fig. 2.4, illustrating the

specific process B0 → φK0. Other b → s processes have similar diagrams and the

same short-distance physics.

The analysis of CP violation for this class of decays is the same as for the B0 →
J/ψK0 decay shown in the previous section. The CKM matrix elements entering

through the decay amplitude are real in the Wolfenstein parameterization, with a
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Figure 2.4: The dominant amplitude for the decay B0 → φK0.

relative weak phase introduced by the q/p factor from B0-B0 mixing. The SM predicts

−ηfSb→sss = sin 2βeff , Cb→sss = 0, (2.27)

where βeff = β as long as we neglect hadronic uncertainties, which depend on the

exact final state being considered. (We will use βeff as the symbol for the effective

value of β measured in penguin-dominated decays, while reserving the symbol β for

the SM value measured in the Golden Mode.) The overall rate of the decay will be

smaller in the SM than for the b → ccs transitions, but the expected CP asymmetry

is the same.

Loop diagrams offer the possibility that physics beyond the SM, sometimes called

“New Physics” (NP), could contribute significantly. Just as the top quark and W

boson enter the SM loop amplitude, a NP amplitude could have heavy non-SM parti-

cles in the loop. An example diagram of a NP process is shown in Fig. 2.5. If such a

diagram exists, it would contribute at the same order as the dominant SM diagram,

and the effects of NP could be observable [12].

To illustrate this effect, consider the case where the total decay amplitude Af con-

tains contributions from both the SM diagram (Fig. 2.4) and a NP diagram (Fig. 2.5).
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Figure 2.5: An example of a diagram for a flavor-changing neutral current process
beyond the SM. Squarks and a gluino replace the top quark and W boson of the SM
diagram.

Using similar notation to Eq. 2.16, we can write this as

Af = ASM e
iδSM + ANPe

i(δNP+ϕNP ),

Āf = ASM e
iδSM + ANPe

i(δNP−ϕNP ), (2.28)

where we have assumed that the relative weak phase between the SM and NP decay

amplitudes is ϕNP . Defining rNP ≡ ANP/ASM , to first order in rNP the coefficients S

and C are

S = sin 2β − 2rNP cos 2β sinϕNP cos δSM−NP , (2.29)

C = 2rNP sinϕNP sin δSM−NP , (2.30)

where δSM−NP = δSM − δNP [13]. As one would expect, these expressions reduce to

the SM expectation given in Eq. 2.27 when either rNP = 0 or ϕNP = 0.

Note that there is nothing preventing NP processes from contributing to the total

decay amplitude in b → ccs decays such as B0 → J/ψK0. However, the SM tree

amplitude will have a much larger contribution than any NP loop amplitude, and the

value of rNP will be small. Because the dominant SM amplitude in b → sss decays

is itself a loop, rNP has the potential to be much larger. Also note that we have not
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considered the possibility of NP contributions to the B0-B0 mixing amplitude. Such

contributions would change the measured CP asymmetry identically in both b→ ccs

and b→ sss decays, which is disfavored by the precision measurement of SJ/ψK0.

2.4 Analysis of B0 → K+K−K0

The Feynman diagram shown in Fig. 2.4 illustrates the dominant amplitude for the

decay B0 → φK0. This is an ideal mode for the study of CP violation in b → sss

transitions because φK0
S

and φK0
L

are CP eigenstates, and the φ resonance is easy

to select experimentally because of its narrow width. Also, as will be discussed in

Section 2.4.4, the hadronic uncertainties in this mode are relatively small. However,

B0 → φK0 decays account for only about 15% of the total B0 → K+K−K0 rate.

By measuring the CP asymmetries in all B0 → K+K−K0 decays (an “inclusive”

measurement), the sensitivity of the measurement can be increased significantly.

2.4.1 Quasi-Two Body Method

In order to measure the CP asymmetries in the inclusive decay, at the minimum

we must split the sample into CP -odd and CP -even subsamples, and estimate the

purity of the CP content of each subsample. This “quasi-two body” method is the

original experimental approach used by both BABAR and Belle. As mentioned, the

φK0 subdecay is a CP eigenstate and can be analyzed without complication, although

care must be taken to estimate the amount of CP -even contamination of the sample.1

(Also, interference between decay amplitudes will be ignored.) Outside the φ region

of phase space, the CP content is not known a priori. However, measurements using

an isospin method, which relates the rate in B0 → K+K−K0 to the rate in B+ →
K+K0

S
K0

S
, indicated that this region is largely CP -even. Measurements of the CP

asymmetries in this region can then be made, using the measurement of the CP -even

fraction to interpret the results. Again, any effects caused by interference between

1Throughout this work, I will refer to measurements of decays including a K0 as shorthand for
individual measurements of the K0

S
and K0

L
states.
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decay amplitudes will be ignored, introducing a systematic error of a difficult to

quantify size.

2.4.2 Parameterization of the Decay Amplitude

A more comprehensive approach to measuring the CP asymmetries in the inclusive

three-body decay involves modeling the total decay amplitude over the entire phase

space. This type of amplitude analysis, often called a “Dalitz plot analysis,” is com-

monly used to understand the decay dynamics of three-body decays. The decay

amplitudes Af that enter into the decay rate for a B0-B0 pair as shown in Eq. 2.20

are functions of the position of the decay in the allowed phase space. For the decay

of a spin zero particle such as a B0 to three pseudoscalar daughters (called a, b,

and c in this section), the kinematics can be described completely by two kinematic

variables. The most common choice is to use two invariant masses of daughter pairs,

m2
ab ≡ (pa + pb)

2 and m2
ac ≡ (pa + pc)

2.

0
B

r
a

b

c

Figure 2.6: An illustration of the isobar model, where the decay of the B0 is a two-
body process followed by the subsequent decay of the resonance r.

Figure 2.6 illustrates the concept of the isobar model [14]. In this picture the decay

of the B0 is considered a two step process; first B0 → rc, then r → ab. Here r is a

resonance such as the φ(1020) or the f0(980). Each similar contribution is known as

an isobar, and the total amplitudes are given by the sum over the amplitudes of the
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isobars:

Af =
∑

r

Crfr,

Āf =
∑

r

C̄rf̄r, (2.31)

where Cr and C̄r are complex numbers that must be determined in a fit to the

data. The amplitudes fr and f̄r are described below. We parameterize these complex

coefficients in terms of four real-valued variables as follows:

Cr ≡ cr(1 + br)e
i(ϕr+δr)

C̄r ≡ cr(1 − br)e
i(ϕr−δr). (2.32)

We will refer to the average magnitude and phase cr and ϕr as the isobar coefficients,

while we will call the parameters br and δr the CP asymmetry parameters.

The amplitude fr for the process shown in Fig. 2.6 is

fr =
∑

λ

〈ab|rλ〉Tr(mab)〈crλ|B0〉

= ZL(~p, ~q)F
B0

L (|~p|)F r
L(|~q|)Tr(mab), (2.33)

where the sum is over the helicity states λ of r. L is the orbital angular momentum

between r and c, and ~p and ~q are the momenta of c and a, respectively, in the rest

frame of r. ZL is a function that describes the angular distribution of the final-state

particles, and FB0

(F r) is a barrier factor for the production of the rc (ab) system.

Finally, Tr(mab) is a dynamical function describing the resonance r.

Angular Distributions

When the resonance r is a scalar, L = 0 and the angular distribution is isotropic: Z0 =

1. For other spins, the angular distribution of the final-state particles is described

using the Zemach formalism [15]. An alternative formalism, used by CLEO [16], is
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derived as follows. For the case of a vector resonance,

Z1 = (pB0 + pc)µ
∑

λ

ε∗λ
µελ

ν(pa − pb)ν (2.34)

= (pB0 + pc)µ

[

−gµν +
(pa + pb)

µ(pa + pb)
ν

m2
ab

]

(pa − pb)ν

= (m2
ac −m2

bc) + (m2
B0 −m2

c)(m
2
b −m2

a)/m
2
ab, (2.35)

= −4~q · ~p. (2.36)

In Eq. 2.34, ελ is the polarization vector and the sum is over all helicity states λ =

{+, 0,−}. Note that the end result in Eq. 2.36 is identical to the Zemach form.

CLEO takes the additional step of relaxing the transversality requirement, replacing

m2
ab with m2

r in the denominator in Eq. 2.35, which also breaks the equality with

Eq. 2.36. We do not do this, and use the simpler Zemach form.2

Table 2.5 summarizes the expressions for angular distributions, rewritten in terms

of the helicity angle cos θH = ~p · ~q/(|~p||~q|). Expressions for spin 2 are listed for

completeness, although they are not used in this analysis.

Barrier Factors

For angular momentum to be conserved in a resonance decay, the spin J of the

resonance must be translated into orbital angular momentum L of the resonance

daughters. This is modeled by a “centrifugal” potential that varies as a function of

the radius ρ,

UL(ρ) =
h̄2L(L + 1)

2mrρ2
(for ρ > R), (2.37)

where R is the meson radius [17]. Higher angular momentum leads to a higher

potential barrier to be overcome in the decay. Solving the Schrodinger equation for

this potential gives the solutions listed in Table 2.5 as functions of z = |~q|R and

z0 = |~q0|R, where |~q0| is the value of |~q| when mab = mr. We choose a convention

2Note that our fitting code actually returns 4~q · ~p (no minus sign). This difference, like any
difference in overall normalization, is accommodated in the isobar coefficients and does not change
the shape of the resonance.



24 CHAPTER 2. THEORY

where the barrier factors are equal to one when z = z0, and use R = 1.5 GeV−1. The

barrier factor for the decay of the B0 can be neglected, so FB0

= 1.

Table 2.5: The spin dependence of the Blatt-Weisskopf form factors and the angular
distribution of resonance daughters.

Spin FL(z) ZL(cos θH)
0 1 1

1

√

1 + z2
0

1 + z2
−4|~q||~p| cos θH

2

√

9 + 3z2
0 + z4

0

9 + 3z2 + z4
|~q|2|~p|2(3 cos2 θH − 1)

Decay Dynamics

The dynamical function Tr(mab) describes the lineshape of the resonance r. For most

resonances the relativistic Breit-Wigner form,

Tr(mab) =
1

m2
r −m2

ab − imrΓ(|~q|) , (2.38)

is used. The mass-dependent width is given by

Γ(|~q|) = Γr

( |~q|
|~q0|

)2L+1
mr

mab
FL

2, (2.39)

where FL is the Blatt-Weisskopf barrier factor from Table 2.5.

The Breit-Wigner form is useful for modeling the lineshape of single-channel,

single-pole resonances. The f0(980) is a two-channel decay to π+π− and K+K−, and

so is better modeled by a coupled-channel lineshape as proposed by Flatté [18]. In

this case,

Tr(mab) =
1

m2
r −m2

ab − imrΓtot

, (2.40)
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where

Γtot = ΓK + Γπ

=
gK
mab

√

m2
ab − 4m2

K +
gπ
mab

√

m2
ab − 4m2

π. (2.41)

mK and mπ are the masses of the charged kaon and pion, respectively. The constants

gπ = 0.165± 0.010± 0.015 GeV/c2 and gK/gπ = 4.21± 0.25± 0.21 are taken from the

BES experiment [19]. Note that the literature contains a number of parameterizations

and parameters for the f0(980). The BES data are obtained from J/ψ decays to both

φπ+π− and φK+K−. Other experiments obtain data on the f0(980) from φ(1020)

decays where the available phase space is very limited [20], or from the decay D+
s →

π+π−π+ where the K+K− channel is not measured [21]. We feel the BES data are

most applicable to our measurements.

Definition of the Helicity Angle

We define the helicity angle θH as the angle between the K+ and the K0 in the rest

frame of the K+K− system. Because of this definition, for vector resonances there is

a sign flip between the amplitude for B0 decay and the amplitude for B0 decay:

f̄L=1 = −fL=1. (2.42)

For resonances with even L, f̄ = f .

Non-Resonant Amplitudes

Previous studies of Dalitz plot (DP) structures in three-body decays of D and B

mesons have found that in order to describe the data, models must include “non-

resonant” amplitudes in addition to resonant terms. In D decays, it has been sufficient

to parameterize the non-resonant contribution as a constant complex number with

no dependence on DP location. In B decays, however, the available phase space is

much larger and more complicated models are necessary.

Theoretical studies of charmless three-body B decays include the use of heavy
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meson chiral perturbation theory (HMChPT) to calculate inclusive branching frac-

tions [22]. However, results obtained with this method have predicted rates much

higher than the measured values, because HMChPT is only valid in a small amount

of the three-body phase space (where two of the daughters are soft) [23]. Alternatively,

HMChPT can be applied in a more limited fashion, using other methods to compute

the relevant form factors [24]. This approach suffers from the opposite problem —

the calculated non-resonant contribution is too small compared with the experimen-

tal results reported here and in the preliminary version of this analysis [25]. In the

absence of strong theoretical guidance, we take an empirical approach to modeling

the non-resonant contributions.

In B+ → K+K−K+ decays, an exponential shape fNR = exp(αNRm
2
K+K−) has

been used to fit the data, where αNR = 0.14±0.02 GeV−2c4 is a parameter determined

in the fit [26, 27]. We generalize that form to include three non-resonant amplitudes:

fNR,K+K− = exp(−αNRm
2
K+K−),

fNR,K+K0 = exp(−αNRm
2
K+K0), and (2.43)

fNR,K−K0 = exp(−αNRm
2
K−K0).

2.4.3 Dalitz Plot Model

We construct a Dalitz plot model based on previous measurements made by BABAR

and Belle. As noted in the preceding section, the similar decay B+ → K+K−K+

has been studied using DP analyses. The φ(1020), f0(980), χc0, and non-resonant

component (discussed in the previous section) were included in the model. In addition,

a wide spin-zero resonance near 1500 MeV/c2, which we will call the X0(1550), was

found to be necessary to fully describe the data. Other scalar resonances (for example,

the f0(1710)) were found not to be statistically significant.

In the B0 → K+K−K0
S

mode, BABAR previously reported the results of an angular

moments analysis, where the amplitude is analyzed as the sum of partial waves [28].

This analysis found that outside of the φ(1020) region, the decay is dominated by

S-wave contributions, including an excess of events around 1500 MeV/c2. No evidence
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was found of D-wave (or higher) contributions.

Based on known branching fractions [4], we expect to see some contribution from

decays of charged D mesons. Because of the long lifetime of the D meson, these will

not interfere with other amplitudes and so are incoherently added to the DP model.

Based on these experimental inputs, our nominal model for the decay amplitude

consists of the components given in Table 2.6.

Table 2.6: Components of the Dalitz plot model. Parameters are from Ref. [4] unless
otherwise noted. RBW stands for relativistic Breit-Wigner. Details of the parame-
terizations of the f0(980) and non-resonant components are given in the text.

Component Lineshape Mass ( MeV/c2) Width ( MeV/c2) Source
f0(980) Flatté 965 ± 10 See text [19]
φ(1020) RBW 1019.456 ± 0.019 4.26 ± 0.05
X0(1550) RBW 1539 ± 20 257 ± 33 [27]
NR K+K− Eq. 2.43 [27]
NR K+K0 Eq. 2.43 [27]
NR K−K0 Eq. 2.43 [27]
χc0 RBW 3415.19 ± 0.35 10.1 ± 0.7
D− Gaussian 1869.4 ± 0.4 6.7 ± 1.0 Width from MC
D−
s Gaussian 1968.3 ± 0.5 6.7 ± 1.0 Width from MC

2.4.4 Standard Model Uncertainties

If we observe a deviation of βeff from the SM value of β, we must take into account

possible SM effects on the value of βeff .

Several theorists have made calculations of the possible deviations of βeff from β

within the SM. Decays through a resonance, such as φK0, are easier to calculate than

the non-resonant decays. Using QCD factorization, the value of ∆SSM ≡ sin 2βeff −
sin 2β is estimated to be small (∆SSM = 0.02 ± 0.01) for φK0 decays [29, 30].

The color-allowed (but CKM suppressed) tree diagram shown in Fig. 2.7 could

cause ∆SSM to be as large as O(10%) for inclusive K+K−K0. (It cannot contribute

to φK0.) However, with the aid of the Dalitz plot model from this analysis, Ref. [25]

derives a value for K+K−K0 of ∆SSM = 0.047+0.028
−0.033.



28 CHAPTER 2. THEORY

b

d

u
s

s
d

s

u

0
K

-
K

+
K

0
B

Figure 2.7: Subleading tree amplitude contributing to B0 → K+K−K0.



Chapter 3

PEP-II and the BABAR Detector

As discussed in the Introduction, the PEP-II accelerator and BABAR detector were

designed to create and detect a large number of B meson pairs in order to study

CP violation. This section presents a more thorough introduction to the accelerator

and its operation. The interested reader can find more detail on the accelerator,

including some discussion of basic accelerator physics, in Appendix C. This section

also presents a summary of the BABAR detector and its subsystems. Unless otherwise

noted, the content of this section is derived from Ref. [31].

3.1 The PEP-II Accelerator

The B Factory complex consists of the SLAC linear accelerator (linac) and the PEP-II

storage rings. Electrons from an electron gun are accelerated starting at the beginning

of the linac, then extracted into a damping ring to reduce the emittance of the beam,

and finally returned to the linac where they are further accelerated through Sector

8 (out of 30). At this point they are extracted at the full energy of 9.0 GeV into a

bypass line. This bypass transports the electrons the rest of the length of the linac

to the high energy ring (HER) of PEP-II. Some electrons are accelerated through

19 sectors of the linac, where they are extracted and collided with a tungsten target

to create electron-positron pairs. The positrons are extracted from these collisions

into a positron return line, which transports them back to the beginning of the linac.

29
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Similarly to the electrons, the emittance of this beam is reduced by passing it through

a dampling ring. The positrons are then accelerated to 3.1 GeV in the first four sectors

of the linac, extracted into their own bypass line, and transported to the low energy

ring (LER) of PEP-II [32].

The HER is stacked on top of the LER in the pre-existing 2.2- km PEP tunnel.

The beams intersect at one interaction point (IP), which is surrounded by the BABAR

detector. The beams collide head-on, brought together and subsequently separated

by a pair of permanent dipole magnets. Operating parameters for PEP-II are given

in Table 3.1. The RF frequency is 476 MHz, but to avoid parasitic crossings of the

beams away from the IP only every other bucket can be filled, leading to a minimum

time between bunch crossings of about 4 ns.

Table 3.1: Design beam parameters at the PEP-II IP. The numbers in parentheses
are the best-achieved values (not necessarily simultaneously).

LER (e+) HER (e−) Units
Energy 3.1 9.0 GeV
εx/εy 64/2.6 48/1.9 nm-rad
β∗
x/β

∗
y 37.5/1.5 50/2.0 cm

σ∗
x/σ

∗
y 155/6.2 155/6.2 µm

σ′
x/σ

′
y 0.4/0.4 0.3/0.3 mrad

Current 2140 (3213) 990 (2069) mA
Nbunch 1658 (1722)

L 3 (12) × 1033 cm−2s−1

The nominal energies of 9.0 GeV and 3.1 GeV give a collision energy in the CM

frame of 10.58 GeV, the peak of the Υ (4S) resonance. Approximately 10% of the

data is collected with the CM energy lowered to about 40 MeV below the Υ (4S) peak,

below the threshold for production of B meson pairs, providing a control data sample

free of B mesons. Data collected at this lower energy are known as offpeak, while

data taken at the Υ (4S) are called onpeak.

For the first several years of operation, BABAR collected data continuously in blocks

(“runs”) of just under one hour. At the end of each run, the detector high-voltage

was ramped down to a safe state and PEP-II was refilled to the nominal currents from
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the linac. Subsequently, PEP-II was operated in a mode known as trickle injection,

in which electrons and positrons were injected at a rate of up to 10 Hz each without

interrupting data collection by BABAR. This mode of operation has several obvious

advantages: there is no need to regularly stop data collection, and beam currents and

thus luminosity are continuously maintained at peak values. Also, the non-changing

accelerator configuration tends to lead to greater stability of accelerator operations,

with fewer beam losses. Note that BABAR continued to break the data collection into

runs of about 55 minutes, even after the implementation of trickle injection. However,

the amount of time lost at each run transition is on the order of a second, rather than

the roughly five minutes required to refill the accelerator.

3.2 The BABAR Detector

The BABAR detector is a general-purpose particle physics detector, optimized for the

study of CP violation in B mesons in the asymmetric-energy environment of PEP-II.

Key design requirements are described here.

• A large acceptance in the CM frame, implying that the detector must be asym-

metric with more acceptance in the direction of the HER beam;

• good reconstruction efficiency down to low momenta, to allow the efficient re-

construction of rare B meson decay modes;

• good vertex resolution, for measurement of the distance between decays of B

mesons;

• excellent particle identification, in particular identification of leptons and dis-

crimination between pions and kaons for tagging the flavor of neutral B meson

decays;

• the ability to operate and process data in a high-luminosity environment.

Schematic views of the detector are shown in Fig. 3.1 (end view) and Fig. 3.2 (side

view). The key subdetectors, starting near the beam pipe and working outwards, are

the following:
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• Silicon Vertex Tracker (SVT), for tracking and precision vertex measurements;

• Drift Chamber (DCH), for tracking and momentum measurements;

• Detector of Internally Reflected Cherenkov light (DIRC), for particle identifi-

cation (PID);

• Electromagnetic Calorimeter (EMC), for detection of neutral particles; and

• Instrumented Flux Return (IFR), consisting of resistive plate chambers (RPC)

and limited streamer tubes (LST), for detection of long-lived particles.

All of the subdetectors are used in the analysis presented here, and are described in

more detail below. Note that the center of the detector is offset from the IP by about

37 cm in the direction of the HER beam.

In addition to the subdetectors listed above, the superconducting solenoid magnet

that surrounds the EMC is crucial for physics measurements. It provides a 1.5-Tesla

magnetic field, approximately parallel to the direction of the HER beam, to allow

momentum measurements of charged particles in the DCH. The field is quite uni-

form, with a maximum variation of 2.5% within the tracking volume. The azimuthal

component of the magnetic field does not exceed 1 mT.

The BABAR coordinate system is defined with respect to the DCH because it is

both the primary tracking detector and a stable frame of reference. The z-axis runs

down the center of the DCH, with +z (the “forward” direction) in the direction of the

HER beam. The +x direction points outward from the center of the PEP-II rings,

and the +y direction points vertically upward. This forms a right-handed coordinate

system.

3.2.1 Silicon Vertex Tracker

The SVT makes precise measurements of charged particle trajectories very close to

the IP. This is essential for reconstructing the decay vertices of B mesons, which

are produced nearly at rest in the CM frame and thus decay near the IP. Precise

measurement of B0 decay vertices is essential for time-dependent CP asymmetry
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Figure 3.1: Schematic of the BABAR detector as viewed along the beam pipe. Dimen-
sions are given in millimeters.
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Figure 3.2: Schematic of the BABAR detector as viewed from the side. Dimensions are
given in millimeters.



3.2. THE BABAR DETECTOR 35

measurements. For these measurements, the vertex resolution along the z-axis for

a fully reconstructed B decay must be better than 80µm on average. The SVT

must also provide standalone reconstruction of low-momentum tracks. Particles with

transverse momentum pT < 120 MeV/c are not reliably measured by the DCH and so

must be reconstructed solely with the SVT. Many B meson decays result in particles

of low pT , most notably the slow pion from the decay of the D∗±. The SVT also

makes the most precise measurements of track angles, which for high-momentum

tracks is particularly important as an input to measurements made by the DIRC.

dE/dx measurements made by the SVT are used directly for particle identification

of low-momentum tracks.

The SVT consists of five layers of double-sided silicon strip sensors. Strips on one

side of each sensor are oriented parallel to the beam and measure the azimuthal angle

(φ strips), while the strips on the other side are transversely oriented and measure

the z position (z strips). The inner three layers dominate the vertex measurement

precision and are located just outside the beam pipe. They are mounted parallel to

the beam in a hexagonal shape with a slight overlap between modules. The outer

two layers are at a larger radius to allow for standalone tracking, and also play an

important role in measuring charged pions from K0
S

decays. To minimize the amount

of silicon required and make the angle of incidence closer to normal for particles near

the edge of the acceptance, they are mounted in arch-shaped modules. Layers 4 and

5 consist of 16 and 18 modules, respectively. The geometry of the SVT layers is

shown in Figures 3.3 and 3.4. Note that the forward acceptance angle of 350 mrad is

limited by the magnets used to bring the beams into head-on collision. The backward

acceptance angle is less critical because of the forward boost of the CM system. The

geometric acceptance of the SVT in the CM system is 90%.

The SVT sensors are 300µm thick, and the total area of the silicon is 0.96 m2.

The sensors are reverse-biased and held at a voltage about 10 V above the depletion

voltage. Typical depletion voltages are 25−35 V. A charged particle passing through

the silicon creates electron-hole pairs. The electrons and holes move in opposite

directions in the electric field caused by the bias voltage. φ strips in each half-module

are connected with wire bonds, forming a single readout strip. z strips are individually
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Figure 3.3: A cutaway side view of the SVT.

Figure 3.4: Schematic end-on view of the SVT sensor modules.
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Table 3.2: Details of the SVT geometry.

Layer Radius ( mm) Readout pitch (µm) Floating strips Strip length ( mm)
1z 32 100 1 40
1φ 32 50 (100) 0 (1) 82
2z 40 100 1 48
2φ 40 55 (110) 0 (1) 88
3z 54 100 1 70
3φ 54 110 1 128
4z 91-127 210 1 104
4φ 91-127 100 1 224
5z 114-144 210 1 104
5φ 114-144 100 1 265

readout through fanout circuits in the inner three layers. In the outer layers pairs of

z strips are ganged together for readout, introducing an ambiguity that is resolved

during pattern recognition. To lower the number of readout channels necessary, most

modules have a floating strip interleaved between strips that are readout. Details of

the SVT geometry are given in Table 3.2.

The main component of the SVT front end electronics is a custom chip known as A

Time-Over-Threshold Machine (ATOM). On the ATOM chip, signals are processed

by a charge-sensitive preamplifier with a selectable gain. They are then passed to

a shaper, followed by a programmable-threshold comparator. The output of the

threshold comparator is sampled at 15 MHz and stored in a buffer. Upon receipt of

a Level 1 (L1) trigger, the time and time-over-threshold are sparsified and stored in

a second, smaller buffer. If the L1 trigger subsequently accepts the event, these data

as well as the address of the SVT strip are delivered to the readout module.

The SVT occupancy is dominated by machine backgrounds and is highest in the

horizontal plane of the innermost layer. After applying a time correction to account

for the delay between the particle transversing the sensor and the signal passing over

threshold, hits with times more than 200 ns from the event time as determined by

the DCH are discarded. Remaining hits are grouped into clusters according to their

geometry and timing.
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SVT performance is benchmarked using two-prong events (e+e− → e+e− and

e+e− → µ+µ−). Hit resolution is calculated from distributions of residuals between

reconstructed track trajectories and hit positions. For the inner three layers, the

hit resolution varies from 15 to 35 µm. In Layers 4 and 5, the φ hit resolution is

about 15µm, while the z hit resolution ranges from 40 to 50µm. Excluding defective

sections, the average hit efficiency of the SVT is 97%.

Alignment of the SVT is an important issue. The local alignment, which consists

of determining the relative positions of the 340 silicon sensors, is done first. Performed

using dimuon, cosmic ray, and some hadronic events, the local alignment is a com-

plex fit to all six degrees of freedom for each sensor. The sensors are relatively stable

with respect to each other, so the local alignment is done relatively infrequently. The

secondary alignment, known as the global alignment, corrects for movements of the

SVT with respect to the rest of the detector. The SVT is attached to the inside of the

4.5 m-long beryllium support tube, which is attached to the accelerator and indepen-

dent of the rest of BABAR. As a result, the SVT moves significantly with respect to

the DCH on relatively short time scales due to factors such as temperature variations.

The global alignment algorithm fits for rotations and translations of the SVT as a

whole in order to minimize the differences between tracks fit using information from

the SVT only and tracks fit using the DCH. Much simpler than the local alignment,

the global alignment is updated once per run.

3.2.2 Drift Chamber

The drift chamber is the main tracking detector for charged particles. It is the main

source of momentum measurements. It is also crucial for reconstruction of the K0
S
,

which often decays outside or near the edge of the SVT. The DCH provides time

measurements critical for triggering. Measurements of dE/dx made by the DCH are

used for PID for low-momentum tracks.

The DCH is a 3 m long cylinder with an outer radius of about 81 cm. Radially,

the DCH extends from the outside of the support tube to the inside of the DIRC.

Exact dimensions are shown in Fig. 3.5. As with the SVT, the detector is asymmetric
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to account for the asymmetric beam energies. The electronics and high-voltage cards

and cables are all mounted on the backward end.

Figure 3.5: A schematic side view of the DCH. Lengths are given in millimeters;
angles are given in degrees.

The inner cylindrical wall was kept as thin as possible to reduce multiple scatter-

ing and conversions, therefore improving momentum resolution, SVT to DCH track

matching, and backgrounds in the EMC. To further reduce mass, the field wires are

made of aluminum and the drift gas is an 80:20 mixture of helium:isobutane. At nor-

mal incidence, the DCH thickness is 1.08% of a radiation length (X0), where 0.2%X0

comes from the wires and gas. The outer wall was also made as thin as possible to

avoid degrading the performance of the DIRC and EMC. The forward endcap wall is

also kept to a thickness of 12 mm at a radius great than 46.9 cm (compared to 24 mm

at lower radii) in order to reduce the material seen by particles entering the EMC.

The DCH wires are arranged in 40 cylindrical layers, grouped in 10 superlayers.

The wires form small hexagonal cells (7104 in total), where each cell has one sense

wire at the center surrounded by six field wires. This arrangement is shown in Fig. 3.6.

Individual cells are 11.9 mm in the radial direction by 19.0 mm azimuthally. For tracks

with pT > 180 MeV/c, 40 measurements of position and energy loss are possible. The
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wires in six of the superlayers are tilted with respect to the z-axis, allowing the DCH to

provide longitudinal position information. Axial (A) superlayers, with wires parallel

to the z-axis, are followed by a pair of stereo (U, V) superlayers, with tilted wires,

to give an overall arrangement of AUVAUVAUVA. Further details on the superlayer

geometry are given in Table 3.3.

Table 3.3: Geometry of the superlayer structure of the DCH. The radius listed is the
radius of the innermost sense wire. The ranges of cell widths and angles are due to
variation over the layers in a superlayer. Widths and radii are specified at the center
of the chamber.

Superlayer Number Radius Width Angle
number of cells ( mm) ( mm) ( mrad)
1 96 260.4 17.0-19.4 0
2 112 312.4 17.5-19.5 45-50
3 128 363.4 17.8-19.6 -(53-57)
4 144 422.7 18.4-20.0 0
5 176 476.6 16.9-18.2 56-60
6 192 526.1 17.2-18.3 -(63-57)
7 208 585.4 17.7-18.8 0
8 224 636.7 17.8-18.8 65-69
9 240 688.0 18.0-18.9 -(72-76)
10 256 747.2 18.3-19.2 0

Passage of a charged particle through the drift chamber leaves a trail of ionization

in the drift chamber gas. The rate of ionization is listed in Table 3.4. The sense

wires are held at a positive high voltage, causing freed electrons to drift towards

them. (Field wires are held at ground.) In the vicinity of the sense wire, the drifting

electrons accelerate and cause an avalanche of secondary ionizations. The positive

ions left behind by this process cause an image charge to form on the sense wire, which

can be readout by the electronics connected to the wire. The sense wire voltage was

1930 V for most of BABAR operation, with brief periods at 1900 V and 1960 V in the

first year of operation. These voltages yield an avalanche gain of about 5 × 104.

The DCH electronics are housed in front-end assemblies (FEAs), which are

mounted directly onto the rear endplate. Each of the 16 azimuthally-symmetric

sectors of the DCH has three FEAs. The sectors are separated by brass bars that
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Figure 3.6: Schematic layout of the drift chamber cells for the four innermost super-
layers. The stereo angles of the sense wires are given on the right in mrad. Lines are
shown connecting the field wires to illustrate the cell boundaries. Guard wires are
used to match the gain of boundary cells to that of inner cells. Clearing wires collect
charge created by photon conversions in the DCH walls.
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Table 3.4: Properties of the DCH gas mixture of 80% helium and 20% isobutane.
The drift velocity is given for zero magnetic field, while the Lorentz angle is for the
nominal 1.5 T field.

Parameter Value
Radiation length 807 m
Primary ions 21.2/ cm
Drift velocity 22µm/ ns
Lorentz angle 32◦

dE/dx Resolution 6.9%

provide mechanical support and water cooling. Service boards connect the sense wires

to the FEAs, where the signals are amplified and digitized. The custom amplifier

circuit produces both a discriminator output signal for drift time measurement and

a shaped analog signal for dE/dx measurement. Digitized signals are held in a buffer

until receipt of an accept signal from the L1 trigger.

The leading edge of the amplified signal is used to determine the position of the

primary ionization. The digitizer achieves 1 ns precision for leading edge timing.

Samples of Bhabha and dimuon events are used to calibrate the conversion from drift

time to drift distance. The position resolution of the DCH is best for tracks passing

about 5 mm from the sense wire, where the resolution is 0.1 mm. Resolution degrades

to about 0.25 mm at the center of the cell and up to 0.4 mm at the cell edges.

The specific energy loss, dE/dx, is measured for each drift cell as part of the fea-

ture extraction algorithm in the ROM. dE/dx for a track is computed as the truncated

mean of the lowest 80% of the measurements for the individual cells contributing to

the track. Various corrections are applied to correct for variations in pressure, tem-

perature, and cell geometry. Global corrections are more important to the resolution

than corrections to individual cells. A sample of dE/dx data from the DCH is shown

in Fig. 3.7.
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Figure 3.7: Measurement of dE/dx in the DCH as a function of momentum for tracks
recorded with beam background triggers. The curves are those predicted by the
Bethe-Bloch formula.
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3.2.3 Detector of Internally Reflected Cherenkov Light

Identification of particles, in particular the discrimination of kaons from pions, is

important for BABAR in general and particularly important for the analysis presented

here. One of the main methods of tagging the flavor of B0 decays is to identify

kaons from the common decay chain b → c → s. Also, because we reconstruct a

final state with two charged kaons, efficient PID with a low fake rate is essential

for separating the relatively rare signal from similar decays with pions in the final

state. As shown in Fig. 3.7, the discrimination between pions and kaons provided by

dE/dx measurements is good only up to momenta of about 700 MeV/c. For higher

momentum tracks, BABAR relies on a novel detector of Cherenkov light known as

the DIRC. Cherenkov light provides a measurement of the particle’s velocity via the

relation cos θC = c/(nv), where θC is the angle of the Cherenkov light cone with

respect to the particle’s direction, c is the speed of light, n is the index of refraction

of the detector material, and v is the particle velocity.

The DIRC needs to be as thin as possible, both geometrically and in terms of

radiation lengths. Extra material and size would degrade the resolution of the EMC

and make the EMC more expensive, respectively. To meet this challenge, the barrel

of the DIRC consists of 144 radiator bars made of fused silica. The bars are only

17.25 mm thick, with a width of 35.00 mm. They are 4.9 m long to stretch the length

of the barrel. At normal incidence, the DIRC is 80 mm in the radial extent including

all supports, and has a thickness of 17%X0. The bars have a geometrical acceptance

of 94% azimuthally and 83% of the polar angle cosine.

Particles traversing the bars with v/c ≈ 1 emit Cherenkov radiation that is inter-

nally reflected in the bar. The forward ends of the bars are covered with mirrors. At

the backward end, photons pass through a wedge designed to reflect photons at large

angles relative to the bar axis and photons that reflect off the silica-water boundary.

The photons then emerge into a water-filled standoff box. The standoff box is out-

fitted with photomultiplier tubes (PMTs) to measure the position and timing of the

Cherenkov photons. The DIRC is shown schematically in Fig. 3.8, and to scale in

Fig. 3.9.

The radiator bars are housed in 12 hermetically-sealed aluminum bar boxes. The
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Figure 3.8: Schematic view of the propagation of photons from the DIRC radiator
bars, through the wedge, and into the water-filled standoff box. The backward end
of BABAR is to the right in the diagram.
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bars are optically isolated from each other within each bar box. Fused silica is an ideal

material for the radiator bars because of its radiation hardness, high light transmis-

sion, large index of refraction (n = 1.473), low chromatic dispersion, and the ability

to achieve a good optical finish on the bar surfaces. Each bar has its own wedge at

the forward end, made of the same material as the bar. The wedges in a bar box are

glued to a common fused silica window with a thickness of 10 mm. The standoff box

is made of stainless steel and holds about 6000 l of purified water. Water is used be-

cause it is inexpensive and has optical properties similar to fused silica. A steel shield

surrounds the standoff box, which, in conjunction with the bucking coil, reduces the

magnetic field in the PMT region to less than 1 G.

There are 12 sectors of 896 PMTs each, mounted at the rear of the standoff box

about 1.2 m from the ends of the bars. The PMTs are 29 mm in diameter, and

each has a hexagonal light-catching cone mounted around its photocathode. This

yields an effective active surface area fraction of 90%. Due to an extremely high

internal reflection coefficient in the radiator bars, about 80% of the initial Cherenkov

light is maintained through multiple reflections. The efficiency of photon detection is

thus dominated by the quantum efficiency of the PMTs. For a particle with v/c =

1 entering normal to the surface at the center of a bar, the expected number of

photoelectrons is about 28.

The DIRC front-end electronics are mounted on the outside of the standoff box.

Signals are processed by 168 front-end boards, each of which handles 64 PMTs. Each

board has custom electronics which amplify and shape the signals, then pass them

to custom time-to-digital converters (TDCs) with 0.5 ns binning. The electronics are

designed to measure the arrival time of each photon with an accuracy limited by the

intrinsic 1.5-ns time resolution of the PMTs.

The reconstruction algorithm associates candidate PMT signals with tracks mea-

sured by the tracking detectors. PMT signals generated within 300 ns of the trigger

time are used to calculate a vector from the center of the radiator bar end to the

center of each PMT. Using Snell’s law, the vector is extrapolated into the bar. This

determines the angle θC as well as an azimuthal angle around the track direction,

up to a 16-fold ambiguity. This ambiguity comes from the combination of left/right,
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Figure 3.9: View of the DIRC geometry. Dimensions are given in millimeters.
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top/bottom, and forward/backward ambiguities plus whether or not the photon was

reflected by the wedge. The ambiguity is reduced using timing information and by

requiring photons to take only physical paths. The algorithm uses a maximum likeli-

hood technique to calculate a likelihood for each of the particle hypotheses (e, µ, π,

K, p). If possible, a best fit value of θC and the number of signal photons is calculated

for each track. Figure 3.10 shows the distribution of θC versus momentum for a large

number of data tracks.
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Figure 3.10: The distribution of Cherenkov angle θC versus momentum for a collection
of tracks from the data [33]. The lowest band is protons, the middle band is kaons,
and the upper band is mostly pions.

3.2.4 Electromagnetic Calorimeter

The EMC is the innermost subdetector capable of detecting neutral particles. It is

designed to measure electromagnetic showers over the energy range from 20 MeV to

9 GeV. In this analysis, its main contributions are the detection of photons from the
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decay chain K0 → K0
S
→ π0π0 → γγγγ and the detection of K0

L
. It also contributes

to B0 flavor tagging by identifying electrons.

The EMC consists of 6580 thallium-doped cesium iodide (CsI(Tl)) crystals. As

shown in Fig. 3.11, the crystals are arrange in a barrel section plus an endcap at

the front end of the detector. This translates to solid-angle coverage of 90% in the

CM system. The barrel consists of 48 rings with 120 identical crystals each. The

remaining 820 crystals are arranged in eight rings in the endcap. The angle of the

crystals changes as a function of z so that the crystals point towards the IP. The

crystals are machined into tapered trapezoids, shown in Fig. 3.12, with a typical

front face area of 4.7 × 4.7 cm2 and back face area of 6.1 × 6.0 cm2.

Figure 3.11: Cross section of the top half of the EMC. The EMC is symmetric about
the z-axis. Linear dimensions are given in millimeters.

Thallium-doped CsI has a high light yield (50000 γ/MeV) and small Moliére

radius (3.8 cm), as well as a short radiation length (1.85 cm). These features allow

for excellent energy and angular resolution, as well as good containment of showers

in a compact design. The crystals range in length from 29.6 cm at the backward end
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Figure 3.12: Schematic of an EMC crystal.
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to 32.4 cm in the forward direction, corresponding to between 16.0 and 17.5 radiation

lengths. The crystals act as both a scintillator and a light guide. Light is internally

reflected at the polished surface of the crystals, with light retention aided by white

reflector material used to wrap each crystal.

As discussed in previous sections, the tracking detectors and DIRC are all designed

to keep the material inside of the EMC to a minimum. In keeping with this goal, the

EMC crystals are supported from the outside, with only a thin seal of gas at their

front. The barrel and outer five rings of the endcap have less than 0.3 − 0.6X0 of

material in front of their crystal faces. The SVT support structure and electronics, as

well as the innermost dipole magnet of the accelerator are in front of the inner three

endcap rings, increasing the material thickness there to 3.0X0.

Photons are detected by silicon PIN diodes, which are glued to the back of the

crystals with optical epoxy. A pair of the 2×1 cm2 diodes is attached to each crystal,

providing redundancy to improve operational reliability. These diodes, operated at

50 V, have a quantum efficiency of 85% for the crystal scintillation light. Each diode

is directly connected to a low-noise charge-sensitive preamplifier. The signals are

further amplified by a custom chip with four outputs, providing total gains of 256,

32, 4, and 1 corresponding to energy ranges of 0−50 MeV, 50−400 MeV, 0.4−3.2 GeV,

and 3.2 − 13.0 GeV. The appropriate range is digitized by a 10-bit analog-to-digital

converter. Upon receipt of an accept signal from the L1 trigger, samples within a

±1µs window are selected for feature extraction.

Signals measured in a given crystal must be translated to the deposited energy

using a calibration. Individual crystals are calibrated at opposite ends of the en-

ergy scale. On the low-energy side, a neutron source is used to start a decay chain

that generates single 6.13 MeV photons. Multi-GeV energies are calibrated using the

well-defined kinematics of Bhabha events, collected at a high rate during normal

data-taking. A GEANT-based Monte Carlo simulation is used to account for detector

inefficiencies. The high energy showers generated in these events are spread over

several crystals, but a set of linear equations can be used to determine the gain of

each crystal individually. To reconstruct the total energy deposited in the EMC by

a particle, the energy deposited in several crystals must be combined, accounting for
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losses at the front, rear, and sides of the crystals. This correction is applied in bins

of cluster energy and polar angle, and is derived from reconstruction of the π0 mass

and from e+e− → µ+µ−γ events.

Typical electromagnetic showers are spread over many crystals and often overlap,

requiring the development of algorithms to separate them. Each cluster is divided

into bumps defined by the local maxima of energy deposits in that cluster. The

position of each bump is then refined using an iterative weighting procedure. The

reconstruction algorithm then attempts to match each bump with a charged track. If

no charged track is found, the bump is assumed to correspond to a neutral particle.

3.2.5 Instrumented Flux Return

The IFR is used for detection of long-lived particles. Efficient identification of muons

is important for B0 flavor tagging as well as reconstruction of particles such as the

J/ψ . The IFR is also used to detect neutral hadrons, most notably the K0
L
. The steel

flux return of the solenoid magnet acts as a muon filter and hadron absorber, and

the detectors are placed in the gaps of the segmented steel. The IFR was initially

instrumented entirely with single gap resistive plate chambers (RPCs). However,

RPC performance quickly degraded during the first year of detector operation [34],

leading to the eventual replacement of most of the RPCs with limited streamer tubes

(LSTs) [35].

As shown in Fig. 3.13, the initial configuration of the IFR consisted of a barrel

portion with 19 layers of RPCs and an endcap with 18 layers. The IFR detectors

cover a total active area of about 2000 m2. The RPCs are constructed from two

2 mm-thick Bakelite sheets, separated by a 2 mm-thick gap filled with an argon-based

gas mixture. The outer surfaces of the Bakelite sheets are coated with graphite. A

high voltage of 8 kV is applied to one of the graphite surfaces, while the other is

held at ground. The RPCs are operated in limited streamer mode. Signals are read

out capacitively by strips located on the other side of an insulating layer from the

graphite surfaces. A schematic cross section of an RPC is shown in Fig. 3.14.

Signals from the strips are digitized by front-end cards. Digitized signals are
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Figure 3.13: A schematic overview of the IFR geometry, with dimensions shown in
millimeters.

Aluminum
X Strips
Insulator

2 mm

Graphite
Insulator

Spacers
Y Strips

Aluminum

H
.V

.

Foam

Bakelite

Bakelite
Gas

Foam

Graphite

2 mm
2 mm

8-2000
8564A4



Figure 3.14: Schematic cross section of an RPC.
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passed to boards that buffer strip hits, and to TDCs to measure hit timing. The

custom TDCs are designed to preserve the excellent 1-2 ns time resolution of the

RPCs.

Research and design of the LST system began in 2002, and the first LSTs were

installed in the summer of 2004. Installation was completed in the fall of 2006. There

are 1164 tubes in all, occupying the inner 18 layers of the IFR barrel previously filled

by RPCs (6 layers are filled with brass to provide additional absorbing material, while

12 layers are filled with LSTs).

Each streamer tube in the LST system consists of 8 cells coated internally with

graphite paint. At the center of each cell is a 100µm anode wire. The tubes are

filled with a gas mixture of argon, isobutane, and carbon dioxide in the ratio 3:8:89.

This gas is ionized by a passing charged particle, causing a streamer discharge in

the gas between the anode wire and the graphite coating. The potential difference

between the coating and the wire is 5.5 kV. The streamer is detected by measuring the

charge on the wire, and by detecting the induced charge on strips mounted below the

tube that run perpendicular to the wire direction. This arrangement provides two-

dimensional reconstruction of the hit position. Signals from the detector are amplified

and discriminated into 1-bit digital signals in the front end electronics, then passed

to the main BABAR data acquisition system.

3.2.6 Trigger

The trigger must quickly identify events of physics interest, while reducing spurious

events caused by beam backgrounds. The system must be highly efficient for BB and

continuum events (minimum goals are 99% and 95% efficiency, respectively), while

reducing the event rate from a beam-background rate of 20 kHz to an output rate of

several hundred Hz.

The BABAR trigger system has two levels. The Level 1 (L1) trigger executes in

hardware, while the Level 3 (L3) trigger is based in software. The L1 trigger decision

is primarily based on charged tracks in the DCH and showers in the EMC. These

detectors’ triggers are independent and largely redundant. There is also a trigger
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based on the IFR, used primarily for diagnostic purposes. The L1 trigger operates in a

continuous sampling mode, with three trigger processors sending summary data on the

position and energy of particles every 134 ns. L1 trigger decisions are reached within

12µs of the e+e− collision. Depending on background conditions and luminosity, the

typical output rate of the L1 trigger is 1 − 5 kHz.

The L1 DCH trigger (DCT) takes 1 bit from each of the 7104 DCH cells as

input and passes this data to 24 Track Segment Finder (TSF) modules. The TSF

modules search for hits in a contiguous set of cells that span all four layers of a DCH

superlayer. These segments are passed to the Binary Link Tracker (BLT), which

moves radially outward from the innermost superlayer, linking segments from the

TSFs into complete tracks. Long tracks from the BLT are analyzed by a transverse

momentum discriminator, which searches for tracks with pT > 800 MeV/c. Tracks are

thus classified by the DCT into three categories: short tracks, long tracks, and high

pT tracks. The L1 EMC trigger (EMT) treats the EMC barrel as divided into 7× 40

(θ × φ) towers, each composed of 8 × 3 (θ × φ) crystals. The endcap is divided into

40 towers, each with about 20 crystals. The sum in each tower of all crystal energies

above a threshold of 20 MeV is given as input to the EMT. The energy deposited in

each φ-sector is compared to a preset threshold to make the trigger decision.

The L3 trigger has access to the complete event data, as well as the output of the

L1 trigger processors. The L3 trigger operated in three phases. In the first phase,

events are classified into any number of input lines based on the L1 trigger output.

The second phase executes a number of classification tests, called scripts, that run

code from the standard event data analysis framework. The code is written so that

if a particular calculation is used by multiple scripts while processing one event, the

calculation is done only once. The final phase assembles the output of the scripts into

output lines. The output rate of the L3 trigger is roughly 300 Hz, depending on the

instantaneous luminosity. Using simulated events, the combined efficiency of the L1

and L3 triggers for generic BB events is found to be > 99.9%.
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Table 3.5: Luminosity recorded over the history the BABAR detector. The analysis
presented in this work uses the data from Runs 1-5. Offpeak data for Run 7 includes
all data taken away from the Υ (4S).

Run Date Range Onpeak Offpeak BB pairs
( fb−1) ( fb−1) (×106)

1 Oct 1999-Oct 2000 20.02 2.62 21.98
2 Feb 2001-June 2002 61.08 6.92 67.39
3 Dec 2002-June 2003 31.85 2.47 35.10
4 Sep 2003-July 2004 100.28 10.12 110.45
5 Apr 2005-Aug 2006 133.26 14.49 147.19
1-5 Subtotal 346.49 36.62 382.11
6 Jan 2007-Sep 2007 78.78 7.88 86.88
7 Dec 2007-Apr 2008 0.78 53.21 0.86

3.3 Collected Data

The PEP-II B Factory collected data from 1999 until 2008, with data taking broken

into seven Runs. The recorded luminosity is listed in Table 3.5. The total number

of BB pairs produced is determined to a precision of 1.1%. The first six Runs were

taken at or near the Υ (4S), while Run 7 was used to explore other Υ resonances.

The analysis presented in this work is based on data collected during Runs 1-5. A

plot of the luminosity delivered by PEP-II and the luminosity recorded by BABAR as

functions of time is shown in Fig. 3.15.

3.4 Monte Carlo Simulation

We make extensive use of several samples of simulated events, known as Monte Carlo

(MC). These events are generated according to physics-based models that simulate a

particular process (for example e+e− → B0B0). Each particle generated in the simu-

lation decays either in a customized fashion (for example, one B0 could be required to

decay to the signal mode) or according to the known properties of that particle (usu-

ally taken from the RPP). The generated particles traverse a detailed model of the

detector. Version 4 of the GEANT software package is used to simulate the interactions
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of the particles with the detector material and the responses of the detector subsys-

tems [36]. Real data obtained by reading out the detector at random beam crossings

are merged with simulated events in order to add realistic beam backgrounds to the

simulation.

We use several MC samples that simulate signal events, where one B0 (or B0) is

required to decay to K+K−K0
S
. A large sample of signal events is generated uniformly

in 3-body phase space. This “phase-space MC” is used for many studies. We also use

samples of signal events that have been generated according to an approximation of

the true distribution of events on the Dalitz plot. These samples are used primarily

for fit validation. To study background from B decays, we use samples of “generic

BB” MC, where both B mesons are allowed to decay according to a large table of

known B decays, supplemented by hadronization modeled using the software package

JETSET [37]. These samples are equivalent to 720.9 fb−1 of e+e− → B0B0 events and

638.2 fb−1 of e+e− → B+B− events. We make more minor use of samples consisting

of simulated e+e− → qq events, where one sample has q = {u, d, s} and another has

q = c.



Chapter 4

Measurement of CP Violation in

B0 → K+K−K0

In this chapter the analysis of the data, leading to measurements of CP violation in the

B0 → K+K−K0 system, is presented. The first sections describe the event selection

process for the subdecays B0 → K+K−K0
S
, where the K0

S
decays to either π+π−

(K+K−K0
S+−) or π0π0 (K+K−K0

S00). The later sections describe the fit procedure

for the combined analysis of those two subdecays plus B0 → K+K−K0
L
. The event

selection for the decays with K0
L

was primarily the work of others, and so is not

described in detail here.

This analysis is built on several previous BABAR analyses of the same decay mode.

For the quasi-two-body decay B0 → φK0, the branching fraction [39] and CP asym-

metries [40, 28] were measured and updated several times as more data was collected.

The branching fraction and CP asymmetries in B0 → K+K−K0
S

were first reported

by BABAR in 2004 [41]. (The branching fraction measurement was inclusive, while the

CP asymmetry measurements excluded φK0
S

decays.) The CP asymmetry measure-

ments were updated in 2005 [28]. Many of the analysis techniques described below, in

particular the event selection, were developed for these earlier analyses. These decays

have also been studied extensively by the Belle experiment [42, 43, 44].

59
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4.1 Event Selection

At 10.58 GeV, the hadronic cross section is dominated by the combined processes

e+e− → qq, where q = {u, d, s, c}, known as continuum events. As listed in Table 4.1,

the bb cross section is enhanced due to the presence of the Υ (4S) resonance but is

still not the dominant process. The first challenge of the analysis is to discriminate

between true B meson decays and the background due to these continuum processes.

A secondary priority is the efficient selection of true B0 → K+K−K0
S

decays while

eliminating backgrounds originating from other B meson decays.

Table 4.1: Production cross-sections at a CM energy of 10.58 GeV [38]. The cross-
section listed for e+e− production includes the effect of limited detector acceptance.

Products Cross-section( nb)

bb 1.05
cc 1.30
ss 0.35
uu 1.39

dd 0.35
τ+τ− 0.89
µ+µ− 1.16
e+e− ∼ 40

Because of the large data sample collected by the BABAR detector, it is impractical

for every analyst to individually select events from the entire dataset. Therefore,

BABAR runs a number of simple event selections known as skims in a centralized

manner. The goal of skimming is to vastly reduce the size of the dataset that an

individual analyst must examine, while maintaining nearly 100% efficiency for signal

events. This analysis is performed using the output of a skim called BToCPP, which

selects a group of similar three-body B decays. The output of the skim is 2.7% of the

size of the total dataset.

4.1.1 Reconstruction

Events are reconstructed using Release 18 of the BABAR software. The standard

reconstruction algorithms generate a number of lists for each event, where each list
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contains particle candidates that meet certain criteria. These lists are then used to

assemble B meson candidates. For charged kaons, we use the GoodTracksLoose list.

This list selects tracks with pT > 100 MeV/c, a maximum momentum of 10 GeV/c,

at least 12 hits in the DCH, |d0| of less than 1.5 cm, and |z0| < 10 cm. We also

require that candidates pass the NotAPion PID selector, which will be described

more completely in Sec. 4.1.3.

For K+K−K0
S+− decays, K0

S
candidates are taken from the KsDefault list. This

list is formed by geometrically fitting a pair of charged tracks that have an invariant

mass in a 100 MeV/c2 window around the K0
S

mass. K0
S

candidates that fall in an

invariant mass window of 50 MeV/c2 around the K0
S

mass after the fit are added to

the list. B0 candidates are created by vertexing the charged kaon and K0
S

candidates

with a fitting algorithm known as TreeFitter. In the fit, the production point of

the B0 candidate is constrained to the beamspot. Most observables used in later

stages of the analysis are calculated after this fit is complete. The B0 candidate is

then refit, adding mass constraints to the K0
S

and B0 candidates. This second fit is

used for the calculation of the candidate’s position on the Dalitz plot. (The B0 mass

constraint serves to restrict the reconstructed position on the DP to the physically

allowed region, simplifying the fitting procedure that will be discussed in later.)

For K+K−K0
S00 decays, K0

S
candidates are taken from the KsToPi0Pi0Default

list. Two pairs of photons with invariant masses roughly consistent with a π0 are

combined to form the K0
S

candidate. The B0 candidate is vertexed as described

above, except the K0
S

mass constraint is applied for both fits instead of only the

second. As above, the fit is repeated with the addition of a B0 mass constraint in

order to calculate the candidate’s DP coordinates.

4.1.2 Kinematic Variables

The most powerful variables for discriminating between signal and background are

two nearly uncorrelated kinematic variables, mES and ∆E, used in many B Factory

analyses.
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The beam-energy-substituted mass, mES, is defined as

mES ≡
√

(s/2 + ~pi · ~pB)2/E2
i − ~p2

B, (4.1)

where
√
s is the CM energy, (Ei, ~pi) is the laboratory four-momentum of the ini-

tial e+e− system, and ~pB is the B0 candidate momentum in the laboratory frame.

Conservation of energy is expressed by the other variable, ∆E, defined as

∆E ≡ EB −
√
s/2, (4.2)

where EB is the energy of the B0 candidate in the CM frame.

Perfectly reconstructed signal events have mES = MB and ∆E = 0. For the

initial event selection, we require candidates to fall in the window mES > 5.20 GeV/c2

and |∆E| < 0.20 GeV. Distributions of these variables are shown for signal MC and

data in Fig 4.1. Note that when plotting the data at this stage, we only plot events

in the region 5.20 < mES < 5.26 GeV/c2, called the mES sideband. Using this “blind

analysis” approach, we avoid looking at the signal region of the data until the analysis

procedure has been finalized [45].

The final selection of data used in the DP fits is taken from a smaller signal region,

defined as mES > 5.26 GeV/c2 and −0.06 (−0.12) < ∆E < 0.06 GeV for K+K−K0
S+−

(K+K−K0
S00). These tighter boundaries are chosen to reduce contamination of the

signal from BB backgrounds.

4.1.3 Particle Identification

Particles are identified using dE/dx measurements from the SVT and DCH, and the

Cherenkov angle and number of photons measured in the DIRC. These measurements

are used to form a likelihood LPID
i for each particle type i. By making cuts on ratios

of these likelihoods, several selectors are created for each particle type with varying

efficiencies and fake rates. Three of the kaon selectors are used in this analysis:

NotAPion, Loose, and Tight. The NotAPion selector requires that the ratio of kaon

or proton likelihoods to the pion likelihood be greater than 0.20. The Loose selector
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Figure 4.1: Distributions of the kinematic variables (left) mES and (right) ∆E, be-
fore any cuts are applied. Signal MC is shown with green circles (blue crosses)
for K+K−K0

S+− (K+K−K0
S00). Data is shown with black ticks (red stars) for

K+K−K0
S+− (K+K−K0

S00). As shown in the left plot, a cut is placed on mES to
remove signal events in data from both plots until the analysis procedure is finalized.
All distributions are normalized to unit area.

requires LPID
K /LPID

π > 0.8176 and LPID
K /LPID

p > 0.018, and also vetoes any particle

consistent with an electron. The Tight selection is similar, but the requirements are

tightened to LPID
K /LPID

π > 0.9 and LPID
K /LPID

p > 0.2 for tracks with momenta up to

2.5 GeV/c.1

Previous iterations of this analysis of inclusive B0 → K+K−K0
S

decays required

both charged kaon candidates to pass the Tight selection. This led to a pion misiden-

tification rate of less than 2% [41]. The analyses of B0 → φK0
S

made less stringent

cuts, requiring only that one kaon candidate pass the Loose selection and the other

pass the NotAPion selection [46]. In this analysis, this NotAPion+Loose selection is

used for events with K+K− invariant mass, mK+K−, less than 1.1 GeV/c2. In this

region, this selection increases the signal efficiency in K+K−K0
S+− by 13%, while the

increase in BB background is negligible as estimated from the generic BB MC. The

Tight+Tight selection is used for events in the rest of the phase space.

If we were to use the NotAPion+Loose selection across the whole DP, the number

of candidates in generic BB MC passing all cuts that have a PID error increases by

1For tracks with momenta greater than 2.5 GeV/c, the cuts increase as a function of momentum.
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nearly a factor of 5. Therefore we do not make that change.

4.1.4 K0
S

Selection

Several cuts are made on both K0
S
→ π+π− and K0

S
→ π0π0 candidates. First, a

requirement is placed on the lifetime significance, calculated as the reconstructed

lifetime of the K0
S

candidate divided by its uncertainty: τK0
S
/στ

K0
S

> 3. Second, we

require cosαK0
S
> 0.999, where αK0

S
is the angle between the line connecting the

reconstructed B0 and K0
S

decay vertices and the K0
S

momentum. Finally, we make a

cut on the reconstructed dipion invariant mass: mK0 −20 MeV/c2 < mπ+π− (mπ0π0) <

mK0 +20 MeV/c2 (30 MeV/c2). Plots of cosαK0
S

and the lifetime significance for signal

and continuum background are shown in Fig. 4.2.
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Figure 4.2: Distributions of variables used for K0
S

selection, before any cuts are
applied. Signal MC is shown with green circles (blue crosses) for K+K−K0

S+−
(K+K−K0

S00). Background, taken from the mES sideband in onpeak data, is shown
with black ticks (red stars) for K+K−K0

S+− (K+K−K0
S00). The left plot shows

cosαK0
S
, while the right plots shows the lifetime significance. Distributions are nor-

malized to unit area.

Additional cuts are imposed on each of the four photons used to reconstruct

K0
S

candidates in the K0
S
→ π0π0 subdecay. The initial selection used to form the

KsToPi0Pi0Default list required the photon energies Eγ to be greater than 30 MeV.

Studies of MC samples indicate that tighter cuts reduce BB backgrounds while also

reducing signal efficiency; we require Eγ > 50 MeV. We also make a cut on the lateral
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Figure 4.3: Distributions the dipion invariant mass of K0
S

candidates, before any cuts
are applied. Signal MC is shown with green circles (blue crosses) for K+K−K0

S+−
(K+K−K0

S00). Background, taken from an mES sideband in onpeak data, is shown
with black ticks (red stars) for K+K−K0

S+− (K+K−K0
S00).

moment (LAT ), defined as

LAT =

∑Ncrystals

i=2 Ei∆xi
∑Ncrystals

i=0 Ei∆xi
, (4.3)

where Ncrystals is the number of crystals in an EMC cluster, each with energy Ei and

ordered from the most energetic to the least. For i ≥ 2, ∆xi is the distance from

the cluster local maximum to crystal i, while ∆x0,1 = 5 cm. An EMC bump with

Ncrystals ≤ 2 has a LAT of zero by definition. Photons tend to have a low LAT

value, so we make the loose requirement that LAT > 0.01, thus rejecting events with

LAT = 0 while keeping most others.

The K0
S

selection for K+K−K0
S+− was largely inherited from previous iterations

of this analysis. For K+K−K0
S00, we made an attempt to optimize the cuts on ∆E,

the K0
S

mass, the minimum photon energy Eγ , and the lateral moment. We varied

the cut values for each of these variables over predefined ranges, evaluating the signal

significance (S/
√
S +B), self-crossfeed fraction, and BB background for each com-

bination of cut values. The amounts of signal and BB background were estimated
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using the appropriate MC samples, while the amount of qq background was estimated

using data from the mES sideband. For qq background, the number of events found

in the sideband is extrapolated to the number expected in the signal region using the

Argus shape discussed in Sec. 4.5.3. The cut values were selected with the goal of

maximizing the significance while keeping self-crossfeed and BB background as low

as possible.

4.1.5 Continuum Suppression

As discussed in Sec. 4.1, the dominant background is from continuum events. Because

the Υ (4S) is just above BB threshold, BB pairs are created nearly at rest in the CM

frame, giving their decay products a relatively isotropic distribution. Continuum

events are relatively “jetty” in the CM frame. This topological difference is exploited

using several variables, all calculated in the CM frame.

The variable θT is defined as the angle between the thrust axis of the B0 candi-

date’s decay products and the thrust axis of all charged and neutral particles in the

rest of the event (ROE).2 As shown in Fig. 4.4a, for continuum events | cos θT | peaks

near 1 while for signal events it is flat. We require | cos θT | < 0.9 as a first step in re-

jecting continuum background. We also use the angle θB between the B0-momentum

direction and the beam axis, as shown in Fig. 4.4b.

Finally, we use the Legendre moments

L0 =
∑

i

|~p∗i|, and (4.4)

L2 =
∑

i

|~p∗i|
3 cos2 θi − 1

2
, (4.5)

where the sums run over the ROE, and θi is the angle between the momentum ~p∗i

and the thrust axis of the B0 candidate. Distributions of these variables are shown

in Fig. 4.4.

The four event shape variables shown in Fig. 4.4 are correlated, and so cannot

2The thrust axis is defined to be the direction that maximizes the sum of the longitudinal momenta
of the particles in question [38].
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Figure 4.4: Distributions of event shape variables used as inputs to the Fisher dis-
criminant: (a) | cos θT |, (b) cos θB, (c) L0, and (d) L2.
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be independently included in a likelihood fit. Therefore, we combine them into an

optimized linear combination called a Fisher discriminant F [47], shown in Fig. 4.5.

In our initial selection, we make only a loose cut on the Fisher discriminant, requiring

−6 < F < 4.

Fisher discriminant
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Figure 4.5: Distributions of the Fisher discriminant for signal and continuum back-
ground.

4.1.6 Best Candidate Selection

Some events have more than one reconstructed B0 candidate. If there is more than

one K0
S

candidate, then we keep only the B0 candidates that are formed using the K0
S

candidate with reconstructed mass closest to the actual K0 mass. If there are more

than two charged kaon candidates, then we choose the B0 candidate whose daughter

kaons pass the tightest PID selectors. For the few events that still have multiple B0

candidates after these choices are made, we choose the candidate with the best vertex

probability from the B0 vertex fit.

The best candidate is selected from those candidates that pass all of the ba-

sic selection cuts. There are 1.02 (1.15) candidates per event in the K+K−K0
S+−

(K+K−K0
S00) mode.
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4.1.7 Signal Efficiency

The selection criteria described in the preceding sections, and the resulting effect

on the signal efficiency, are summarized in Table 4.2. Note that the actual average

efficiency is higher than the value quoted in the Table because the real signal is

concentrated in areas of phase space with higher efficiency. Using MC generated with

a more realistic model of the Dalitz plot, the average efficiency is found to be 26.9%

(6.6%) in K+K−K0
S+− (K+K−K0

S00).

Table 4.2: Table of signal efficiencies (in %), determined from phase-space signal
MC. The best candidate in an event is chosen from candidates that pass the cuts
listed above the line. The remaining cuts are applied after the best candidate is
selected. The “signal box” is defined as mES > 5.26 GeV/c2 and −0.06 (−0.12) <
∆E < 0.06 GeV for K+K−K0

S+− (K+K−K0
S00). The final cut on F is only applied

for some portions of the analysis.

K+K−K0
S+− K+K−K0

S00

Cut Relative eff. Total eff. Relative eff. Total eff.
mES > 5.2 GeV/c2,
|∆E| < 0.2 GeV 48.5 48.5 25.9 25.9

cos θT < 0.9 88.8 43.0 89.5 23.2
−6 < F 99.9 43.0 99.9 23.2
K0

S
cuts 87.7 37.7 52.8 12.2

Photon cuts N/A N/A 78.3 9.6
K± PID 69.7 26.3 71.1 6.8
Signal box 93.6 24.6 78.7 5.4
F < 4 99.9 24.6 99.9 5.4
−20 < ∆t < 20 ps,

0.01 < σ∆t < 2.5 ps 96.6 23.7 96.9 5.2
−2.5 < F 95.4 22.6 95.6 5.0

4.2 Flavor Tagging

As introduced in Sec. 2.2.2, in order to measure the time-dependent CP asymmetry,

we must determine several properties of the other, partially reconstructed, neutral B
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meson in the event (Btag). In particular, we need to measure the difference between

the proper decay times of the two mesons, ∆t, and determine the flavor (B0 or B0)

of the other meson at the time of its decay.

The flavor of the Btag meson is determined using a multivariate neural network

(NN) technique [11, 48]. The NN is trained using a large sample of MC events.

The output of the NN is broken into seven mutually exclusive tagging categories,

based on the characteristics of the event used to identify the tag flavor. In order

from highest purity to least, the categories are: Lepton, KaonI, KaonII, KaonPion,

Pion, Other, and Untagged. The Lepton category indicates the presence of a lepton

consistent with a semileptonic B decay, where the sign of the charge of the lepton

indicates the flavor of the parent b quark. Similarly, the KaonI and KaonII categories

identify the sign of the charge of a kaon in the event with the flavor of the b quark

via the decay chain b → c → s. The Pion category uses the charge of the slow

pion from D∗ decays to identify the flavor of the decaying B meson. The KaonPion

category combines properties of the kaon- and pion-based tagging methods. The

Other category combines the output of various methods, such as tagging using Λ

decays or the highest momentum track in the event. Events without a reliable flavor

tag are classified as Untagged.

The discriminating power of each tagging category i is quantified using an effective

tagging efficiency Qi = εi(1− 2wi)
2, where εi is the fraction of events assigned to the

category and wi is the mistag fraction (the fraction of events tagged with the wrong

flavor). The difference in mistag fraction between B0- and B0-tagged events is called

∆wi. The values of these parameters are determined in a fit to a data sample of

B0 mesons (Bflav) decaying to the flavor eigenstates D(∗)−h+ (h+ = π+, ρ+, a+
1 ) and

J/ψK∗0 (K∗0 → K+π−).

4.2.1 ∆t Reconstruction

The vertex of the Btag decay is reconstructed from all remaining tracks in the event

after the reconstruction of the signal candidate BCP . A geometric fit is performed

to these tracks, with the constraint that the B0-B0 pair originate in the beamspot.
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Table 4.3: Tagging performance parameters determined from the Bflav sample.

Category ε (%) w (%) ∆w (%) Q (%)
Lepton 8.68 ± 0.08 2.86 ± 0.32 0.1 ± 0.7 7.7 ± 0.1
KaonI 11.00 ± 0.08 5.62 ± 0.34 −0.7 ± 0.8 8.7 ± 0.1
KaonII 17.19 ± 0.10 14.94 ± 0.40 −0.5 ± 0.7 8.5 ± 0.2
KaonPion 13.74 ± 0.09 23.1 ± 0.5 −3.1 ± 0.9 4.0 ± 0.1
Pion 14.30 ± 0.09 32.7 ± 0.6 6.3 ± 0.8 1.7 ± 0.1
Other 9.61 ± 0.08 41.9 ± 0.7 4.8 ± 1.0 0.25 ± 0.04
Total 74.5 ± 0.2 30.8 ± 0.3

The distance along the boost axis between the reconstructed Btag and BCP vertices,

∆z, has an RMS resolution of 180µm. This resolution is dominated by the resolution

of the Btag vertex position (the BCP vertex alone has a resolution of approximately

50µm) and includes contributions from a long tail. When the resolution is parame-

terized as described below (Eq. 4.7), the narrowest Gaussian distribution has a width

of about 100µm [48].

A good approximation to the expression used to calculate ∆t is the relation

∆z = βγc∆t, (4.6)

where βγ ' 0.56 is the boost of the Υ (4S) system in the laboratory. In practice,

corrections are applied to account for the non-zero momentum of the B in the Υ (4S)

rest frame, and for the 20 mrad angle between the boost direction and the z-axis as

defined by the BABAR DCH [48].

The ∆t resolution is parameterized by a resolution function R that is the sum of

three Gaussian distributions (core, tail, and outlier):

R =

2
∑

k=1

fk

Skσ∆t

√
2π

exp

(

−(δt − bkσ∆t)
2

2(Skσ∆t)2

)

+
f3

σ3

√
2π

exp

(

− δ2
t

2σ2
3

)

, (4.7)



72 CHAPTER 4. MEASUREMENT OF CP VIOLATION IN B0 → K+K−K0

where δt = ∆t−∆t′. The core and tail distributions have means and widths propor-

tional to the error on ∆t, respectively scaled by bias factors bk and scale factors Sk.

The fractions fk are constrained so that f1 = 1−f2 −f3. The tail scale factor is fixed

to S2 = 3, and the outlier width is fixed to σ3 = 8 ps. The remaining parameters

of the resolution function are determined in a fit to the Bflav sample. The results of

this fit, used in our fits to the data, are shown in Table 4.4. The core parameters b1

and S1 are split by tagging category in the fit. Because the resolution is dominated

by the tag-side resolution, the resolution function parameters are independent of the

signal decay.

Table 4.4: Values of signal ∆t resolution function parameters determined in a fit to
the Bflav sample.

Parameter Value
b1,Lepton −0.042 ± 0.032
b1,KaonI −0.141 ± 0.031
b1,KaonII −0.204 ± 0.024
b1,KaonPion −0.167 ± 0.025
b1,Pion −0.220 ± 0.025
b1,Other −0.164 ± 0.031
b1,NoTag −0.205 ± 0.018
S1,Lepton 1.04 ± 0.05
S1,KaonI 1.05 ± 0.05
S1,KaonII 1.090 ± 0.036
S1,KaonPion 1.090 ± 0.038
S1,Pion 1.108 ± 0.038
S1,Other 1.11 ± 0.05
S1,NoTag 1.111 ± 0.027
f2 0.093 ± 0.006
b2 −1.35 ± 0.11
S2 3
f3 0.0045 ± 0.0007
σ3 8 ps
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4.3 Maximum Likelihood Method

All results are extracted from unbinned maximum likelihood (ML) fits. The likelihood

function L is

L =
∏

c

exp

(

−
M
∑

i=1

ni,c

)

Nc
∏

j=1

[

M
∑

i=1

ni,cPi,c (~xj; ~αi,c)
]

, (4.8)

where Nc is the total number of events j in category c, M is the number of signal and

background hypotheses i, and ni,c is the number of events in a given hypothesis and

category. The probability density function (PDF) Pi,c for each hypothesis depends

on the observables ~xj and the parameters ~αi,c.

The PDFs are split twice by category, meaning that the PDFs for different cate-

gories can have independent structure and parameters. The first split is by the four

ways of detecting the K0: K0
S
→ π+π−, K0

S
→ π0π0, K0

L
detected in the EMC, and

K0
L

detected in the IFR. Second, the PDFs are split by the seven tagging categories

discussed in Sec. 4.2. Therefore, there are 4×7 = 28 different variations on the PDFs,

depending on the categories a given event falls into.

The number of hypotheses M varies depending on the category. Both K0
S

modes

have three hypotheses: signal, continuum background, and BB background. The K0
L

modes have those plus an extra category of BB background, giving a total of four

hypotheses.

Each Pi,c is formed as a product of PDFs that describe the observables used in

the fit (mES, ∆E, mK+K−, cos θH , ∆t, and sometimes F), with slight variations
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depending on the K0 mode. The PDF structure is

PSignal,K+K−K0
S

= P(mES)P(∆E)P(mK+K−, cos θH ,∆t),

PSignal,K+K−K0
L

= P(∆E)P(mK+K−, cos θH ,∆t);

Pqq,K+K−K0
S

= P(mES)P(∆E)P(mK+K−, cos θH)P(∆t),

Pqq,K+K−K0
L

= P(∆E)P(mK+K−, cos θH)P(∆t);

PBB,K+K−K0
S+−

= P(mES)P(∆E)P(mK+K−, cos θH)P(∆t),

PBB,K+K−K0
S00

= P(mES,∆E)P(mK+K−, cos θH)P(∆t),

PBB,K+K−K0
L

= P(∆E)P(mK+K−, cos θH)P(∆t);

where we have suppressed the splitting over tagging categories and the EMC/IFR

splitting for the K0
L

mode because these splits do not change the structure of the

PDFs. (Instead, only the values of the PDF parameters depend on the category.) For

the low-mass fit (Sec. 4.3.1), each PDF listed above is multiplied by an additional

PDF: for the K0
S

modes, a PDF that depends on the Fisher discriminant, P(F); for

the K0
L

modes, PDFs that depend on the missing momentum Fisher discriminant and

the Legendre moments, P(Fmiss)P(L2/L0). Details about the PDFs used for the K0
L

mode can be found in Ref. [50].

The optimal values of the floating parameters are determined by maximizing the

function L. In practice, this is done by minimizing the quantity − lnL, also known

as the negative log likelihood (NLL).

4.3.1 Overview of fit procedure

Results are extracted from a sequence of three fits, summarized here.

The first fit is to all selected events. The event yields, isobar coefficients (cr and

ϕr), and one pair of CP parameters (br and δr) are free parameters in the fit. The

CP parameters are shared for all charmless contributions to the DP model. We refer

to this step as the fit to the whole Dalitz plot.

In the second fit, all isobar coefficients except those for the φ(1020) are fixed to

the values found in the first fit. In this step, called the low-mass fit, we fit only to
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the events in the region of the phase space with mK+K− < 1.1 GeV/c2. Event yields,

φ(1020) isobar coefficients, and CP parameters for the φ(1020) and f0(980) are free in

the fit. Because this fit is to a small region of the phase space, we are able to include

the Fisher discriminant as an observable in the fit.

In the final fit, called the high-mass fit, all isobar coefficients are fixed to the values

found in the fit to the whole DP. This fit is to events with mK+K− > 1.1 GeV/c2.

Similarly to the whole DP fit, the only floating parameters are the event yields and

one pair of average CP parameters shared by all charmless contributions.

The configuration of CP asymmetry parameters in the fits is summarized in Ta-

ble 4.5.

Table 4.5: Models of direct CP asymmetry used in the various fits.

Component Direct CP parameters
Whole DP Fit High-mass fit Low-mass fit

φK0 δφK0,bφK0

f0(980)K0 δK+K−K0, δK+K−K0, δf0K0,bf0K0

X0(1550)K0 bK+K−K0 bK+K−K0 δK+K−K0,
(K+K−K0

S
)NR bK+K−K0

χc0K
0, D−K+, D−

s K
+ No direct CP asymmetry

4.4 Signal Parameterization

This section describes the parameterization of the PDFs used to describe signal events.

4.4.1 Kinematic and Event Shape PDFs

The kinematic variables mES and ∆E for signal in both K+K−K0
S+− and K+K−K0

S00

are parameterized using the function

f(x) = exp

(

− (x− x0)
2

2σ2
L,R + αL,R(x− x0)2

)

, (4.9)
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where σL and αL are used for x < x0 while σR and αR are used for x > x0 Note

that when αL,R = 0, this form reduces to a Gaussian distribution with mean x0.

Distributions of signal MC events (generated with an approximation of the final DP

model) with fits to the functional form of Eq. 4.9 are shown in Fig. 4.6.
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Figure 4.6: Signal PDFs for the kinematic variables for the (top) K+K−K0
S+− and

(bottom) K+K−K0
S00 modes, with fits to signal MC events.

The fits to the whole DP and high-mass region cover wide ranges of the phase

space. As will be discussed in Sec. 4.5.2, correlations between the Fisher discriminant

and the DP in the continuum background prevent us from using the Fisher discrim-

inant in these fits. Therefore, for those fits we apply the cut F > −2.5, as shown

in the last line of Table 4.2, and do not include a PDF for F in the fit. In contrast,

the low-mass fit covers only a small slice of phase space, and therefore the correlation

between Dalitz plot location and F can be neglected. This allows us to use all data
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in the range −6 < F < 4, and include a PDF for F in the fit. We parameterize

the signal Fisher distributions with the sum of three Gaussian distributions, with the

parameters fit separately for each tagging category. Fits to signal MC are shown in

Fig. 4.7. The parameters used for these PDFs are listed in Appendix A.1.
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Figure 4.7: Signal PDFs for the Fisher discriminant F , used in the low-mass fit, for
(left) K+K−K0

S+− and (right) K+K−K0
S00. The fits are to signal MC events.

4.4.2 Choice of Dalitz Plot Variables

As discussed in Sec. 2.4.2, the decay of a pseudoscalar particle into three pseudoscalar

daughter particles can be completely described by two independent variables. The

Dalitz plot is traditionally made as a scatter plot with axes given by the squares

of invariant masses of daughter pairs. When constructed this way, the Dalitz plot

for a pure phase space decay is uniformly occupied within the kinematically allowed

two-dimensional space. Two-body resonances are easily identifiable as bands either

parallel to an axis or at a 45 degree angle to both axes. However, because of its

irregular shape, this construction of the Dalitz plot is often inconvenient when building

PDFs.

Instead of the traditional coordinates, we use the square Dalitz plot, parameterized

in terms of the variables mK+K− and cos θH (also see Sec. 2.4.2). The Jacobian of the
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transformation from the traditional coordinates to our variables,

dm2
ab dm

2
ac = |J | dmab d cos θH , (4.10)

is given by

|J | = (2mab)(2|~p||~q|), (4.11)

where ~p (~q) is the K0 (K+) momentum in the rest frame of the K+K− system.

4.4.3 Signal Efficiency

When fitting to the Dalitz plot distribution, it is critical to account for the variation

of the signal efficiency as a function of Dalitz plot location. Using phase space signal

MC, we calculate the efficiency ε(mK+K−, cos θH) of the selection cuts in bins in the

square Dalitz plot.

The BABAR group responsible for particle identification uses control samples to

calculate corrections to the efficiency based on the PID selector used and the mo-

mentum and location of each track in the detector. These corrections are shown in

Fig. 4.8. The final efficiency maps used in the fits, including the corrections, are

shown in Fig. 4.9, both with and without the requirement of F > −2.5.

4.4.4 Dalitz Plot PDF

The PDF describing the Dalitz plot for signal events is formed by combining Eq. 2.20

with the experimental effects of efficiency, tagging dilution, and ∆t resolution. The

final form of the PDF is:

PDP ∝
{

e−|∆t|/τB
[

k(|Af |2 + |Āf |2)
+ 2ηCP qtag D Im

(

e−2iβA∗
fĀf

)

sin ∆m∆t

− qtag D
(

|Af |2 − |Āf |2
)

cos ∆m∆t
]}

× |J |ε(mK+K−, cos θH) ⊗R(∆t, σ∆t), (4.12)
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Figure 4.8: Corrections applied to the raw efficiencies to account for differences be-
tween data and MC in PID control samples. The plot shown here is for K+K−K0

S+−.
The corrections for K+K−K0

S00 are similar.

where τB is the B0 lifetime, qtag is 1 (−1) for Btag tagged as a B0 (B0), ηCP is 1 (−1)

for K0
S

(K0
L
) decays, D = 1 − 2w is the dilution, and k = 1 − qtag∆w. Events in

the Untagged category are included in the fits with ω fixed to 0.5. Therefore they

contribute only to the PDF terms that do not depend on ∆t.

4.4.5 Self Crossfeed

Some events, although they contain a true signal decay, are misreconstructed so that

one or more of the reconstructed “signal” particles actually comes from the other B

meson in the event. These are known as self crossfeed (SXF) events. Self crossfeed

events can be problematic if they have a different distribution in the Dalitz plot than

properly reconstructed signal events, or if they introduce correlations between the

Dalitz plot variables and the kinematic variables.

In signal MC samples, we look for events that have been reconstructed and pass the

selection criteria but have not been marked as “Truth matched” (TM) by the BABAR

reconstruction software. (The truth-matching algorithm attempts to determine, for

each reconstructed track or neutral cluster in a MC event, the simulated particle to

which the reconstructed object corresponds. For instance, when we reconstruct a
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Figure 4.9: Efficiency maps, derived from signal MC, for (left) K+K−K0
S+− and

(right) K+K−K0
S00. The top row includes the cut F > −2.5 while the bottom row

does not. The efficiency is higher in the leftmost column of bins because the PID
requirement is looser for mK+K− < 1.1 GeV/c2.
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track in a MC event as a K+, if the algorithm can determine that this track did

in fact originate from a simulated K+, then the reconstructed track is marked as

“truth matched.” If the algorithm determines that this track came from some other

particle, for instance a π+, then the recontructed track is marked as failing to be

truth matched. For a composite candidate, the algorithm also checks if the candidate

is composed of the correct daughter particles. Truth matching is a non-trivial task,

and the algorithm is not perfect. However, because truth matching plays a relatively

minor role in this analysis, we use the algorithm nearly as is. We do make an attempt

to “recover” K0
S
→ π+π− candidates where one of the pions radiates a photon, which

nominally fail the truth-matching algorithm.) Events that fail truth matching can be

classified in three categories:

• Radiative events, where the reconstructed K+, K−, and K0
S

are from the signal

decay, but one of the charged particles on the signal side radiated a photon;

• events with a PID error (usually a pion from the decay of the other B0 replaces

one of the charged kaons in the reconstructed signal decay);

• other events where a decay product from the other B0 is reconstructed as part

of the signal decay, but with no PID error.

Radiative events have slightly broader distributions of mES and ∆E than nor-

mal signal events, but are uniformly distributed across the Dalitz plot as shown in

Fig. 4.10. They do not pose a problem for the analysis.

The latter two categories tend to occur primarily in the corners of the Dalitz plot,

and so can bias the Dalitz plot fit. These candidates have mES and ∆E distributions

that are very similar to continuum events, and so a restrictive cut in the mES-∆E

plane reduces the prevalence of these events. This is one of the reasons that we restrict

the event selection to mES > 5.26 GeV/c2 and −0.06(−0.12) < ∆E < 0.06 GeV for

K+K−K0
S+− (K+K−K0

S00). After this tight signal region is selected, the fractions of

self crossfeed events remaining are given in Table 4.6.

In the K+K−K0
S+− mode, the fraction of SXF events is less than 0.4% after the

selection criteria. This fraction is small enough that it can be ignored. SXF is much
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Figure 4.10: Distribution on the Dalitz plot of radiative signal events in K+K−K0
S+−.

Table 4.6: Fractions of self crossfeed events found in studies of phase space signal
MC. All numbers are in percent.

K+K−K0
S+− K+K−K0

S00

Fraction of Fraction of Fraction of Fraction of
non-TM all events non-TM all events

Non-truth matched 100 4.6 100 29
Radiative 92 4.3 11 3.2
SXF with PID error 1 0.02 0.1 0.03
Other SXF 7 0.3 89 26
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more common in K+K−K0
S00 because of the ease of forming K0

S
candidates from the

wrong combination of photons. As shown in Fig. 4.11, the fraction of self crossfeed

events is fairly constant over most of the Dalitz plot, with the exception of high

values of mK+K−. Because this region has relatively little signal, the overall shape is

not distorted severely and we do not treat self crossfeed differently from other signal

events when we construct the PDFs.
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Figure 4.11: For the K+K−K0
S00 mode, the fraction of reconstructed signal events

that are self crossfeed, as a function of position on the square Dalitz plot.

4.4.6 Dalitz Plot Resolution

The Dalitz plot variables mK+K− and cos θH are reconstructed with finite resolution,

which can broaden or distort the shape of resonance structures in the data. Also, as

noted in Sec 4.1.1, the Dalitz plot variables are calculated after refitting the B0 candi-

date with a B mass constraint. This is useful because it ensures that candidates will

fall within the kinematically allowed region of the Dalitz plot, but can also introduce

biases on the Dalitz plot variable reconstruction.
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The resolution is studied using signal MC samples. Because the resonances in our

model decay into K+K−, we focus on the mK+K− resolution and ignore the cos θH

resolution. In bins of the true mK+K−, we fit a Gaussian shape to the distribution of

the difference between the reconstructed and true values of mK+K−. The means and

widths of these Gaussian distributions are plotted in Fig. 4.12.
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Figure 4.12: mK+K− resolution, as measured in MC samples. The top row shows
the bias and the bottom row shows the width of the reconstructed mK+K−. The
K+K−K0

S+− mode is shown on the left while the K+K−K0
S00 mode is on the right. In

all plots, the filled symbols refer to mK+K− reconstructed using a B-mass constraint,
which is what is used in the final fit. The open symbols, calculated without a B-mass
constraint, are included for comparison. For the K+K−K0

S00 mode, the black circles
show all events, blue squares are for truth-matched events only, and red stars are for
self crossfeed events only.

Particularly in the K+K−K0
S00 mode, the resolution degrades significantly at high

mK+K−. Fortunately the only narrow resonance in that region is the (relatively
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unimportant) χc0. The important φ resonance is at 1020 MeV/c2, where both modes

have good resolution. We do not account for resolution in our ML fit. As will be

discussed in the section on fit validation, we assign a systematic error that includes

a contribution from resolution.

4.4.7 Correlations between observables

In Tables 4.7 and 4.8, we summarize the linear correlations between observables in

the ML fit.

Table 4.7: For the K+K−K0
S+− mode, the correlations between ML fit observables,

determined from phase-space signal MC with selection cuts applied.
Variable mES ∆E mK+K− cos θH ∆t
mES 1 -0.13 0.001 -0.002 0.03
∆E 1 -0.03 0.001 -0.0001
mK+K− 1 -0.0005 -0.0003
cos θH 1 -0.0005

Table 4.8: For the K+K−K0
S00 mode, the correlations between ML fit observables,

determined from phase-space signal MC with selection cuts applied.
Variable mES ∆E mK+K− cos θH ∆t
mES 1 0.03 -0.05 0.0008 0.008
∆E 1 -0.009 0.001 -0.004
mK+K− 1 -0.01 -0.001
cos θH 1 -0.002
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4.5 Background Parameterization

Continuum background is primarily studied with onpeak data that falls outside of

the signal region in mES and ∆E. Figure 4.13 shows the layout of these sideband

regions on the mES −∆E plane. The use of onpeak data to model the background is

useful because it avoids relying on the accuracy of MC simulation. However, it also

carries some assumptions about the nature of the sidebands that are discussed in the

following sections.
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Figure 4.13: The mES−∆E plane showing (right) K+K−K0
S+− and (left) K+K−K0

S00

data events. The box on the right of each plot indicates the signal region. A signal
peak is clearly visible in the K+K−K0

S+− mode. The box on the left of each plot is
the mES sideband, used for determination of the Dalitz plot background shape. The
upper region (∆E > 0.1 GeV) of each plot is the ∆E sideband, used for determination
of the mES background shape.

4.5.1 The mES sideband

Most events in the sideband regions are continuum background. However, there

is some contamination from BB backgrounds. Peaking BB background consists of

decays such as B0 → K∗+K−K0 (K∗+ → K+π0) where the π0 is lost in recon-

struction. Because of the lost particle ∆E peaks near −135 MeV for these events,

while mES is distributed in roughly the same manner as signal. The most impor-

tant reason for restricting the extent of the signal region and the mES sideband to
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∆E > −60 (−120) MeV for K+K−K0
S+− (K+K−K0

S00) is to reduce contamination

from peaking background.

Although peaking background is nearly eliminated from the signal region and

mES sideband by the requirement on ∆E, combinatoric BB background remains.

This class of events originates from BB events where decay products from both sides

of the event are reconstructed into a K+K−K0
S

candidate. We explicitly fit for the

yield of these events in the fit, but it is important to recognize that some of the events

used to form the continuum background PDFs actually originate from combinatoric

BB background. Using generic BB and uds + cc̄ MC samples, we have confirmed

that the fraction of BB events, relative to the number of continuum events, is roughly

the same in the mES sideband and the signal region. We also use uds + cc̄ MC to

check that the distribution of events on the Dalitz plot is consistent between the mES

sideband and the signal region, which is important since we use the sideband events

to model the background Dalitz plot distribution in the fit to the data. As shown in

Fig. 4.14 and Fig 4.15, the distributions are similar to the eye. A 2D Kolmogorov

test of the histograms shows in Fig. 4.14 gives a value of 0.47. The χ2 probability of

all three pairs of histograms shown in Fig. 4.15 is 1.
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Figure 4.14: Distributions of uds+cc MC events for the K+K−K0
S+− mode, in (left)

the mES sideband and (right) the signal region.
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Figure 4.15: For the K+K−K0
S+− mode, one-dimensional projections of the Dalitz
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4.5.2 Correlations between observables

The observables in a likelihood fit must be uncorrelated, so for a fit that includes

the Dalitz plot we must study the correlations between the Dalitz plot and other

observables used in the fit.

The fit PDF is split by tagging categories, so we must check whether the

background Dalitz plot shape depends significantly on the tagging category. One-

dimensional projections of the Dalitz plot distributions of the mES sideband of

onpeak data are shown in 4.16. χ2 comparisons of the distributions shown in the

Figure reveal that differences between the distributions are negligible.

In the center of the Dalitz plot, the momenta of all three daughters are equal

in the B0 rest frame, giving events a more spherical shape. This causes continuum

background to have more signal-like values of the Fisher discriminant in the center

of the Dalitz plot. To study the correlation of the Fisher discriminant and the DP

location, we define a “Dalitz plot distance” variable

∆D ≡ minimum(mK+K−, mK+K0
S
, mK−K0

S
). (4.13)

With this definition, an event at the edge of the Dalitz plot will have ∆D = 0, while

an event at the center will have a high value. As shown in Fig. 4.17, continuum back-

ground events show a clear correlation between F and ∆D. Therefore, as mentioned

earlier, we exclude F from the ML fits (except for the low-mass fit), and make the

cut F > −2.5.

4.5.3 qq Background PDFs

The continuum background mES distribution is parameterized with a threshold func-

tion, usually known as the Argus function [49],

f(mES) = mES

√

1 −mES
2/m2

0 exp
[

ξ
(

1 −mES
2/m2

0

)]

, (4.14)

where m0 is the endpoint of the mES distribution (approximately
√
s/2), and ξ is a

shape parameter. The distribution is undefined for mES > m0, so events in this range
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Figure 4.16: Distributions of mES sideband events from onpeak K+K−K0
S+− data,

split by tagging category.
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Figure 4.17: The average value of the Fisher discriminant F as a function of the
Dalitz distance ∆D for K+K−K0

S+−. Plots are shown for (top left) onpeak data, (top
right) offpeak data, (bottom left) uds MC, and (bottom right) cc MC. All plots are
for the mES sideband region.
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are removed from the data sample. The value of ξ is determined separately for each

tagging category and for the two K0
S

decay modes, while m0 is fixed to 5.2895 GeV/c2

for all events. The mES PDFs are shown in Fig. 4.18. ∆E is described with a linear

PDF, with the slope determined separately for K+K−K0
S+− and K+K−K0

S00. These

PDFs are shown in Fig. 4.19. Note that for the ∆E fit, we extend the mES sideband

to include all events in the range −200 < ∆E < 200 MeV.
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Figure 4.18: mES PDFs for qq background for (left) K+K−K0
S+− and (right)

K+K−K0
S00. The points are onpeak data from the ∆E sideband, used in creating the

PDFs.
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Figure 4.19: ∆E PDFs for qq background for (left) K+K−K0
S+− and (right)

K+K−K0
S00. The points are onpeak data from the mES sideband, used in creating

the PDFs.
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For the low-mass fit, we must also parameterize the shape of the Fisher discrimi-

nant distribution. It is described by the sum of two Gaussian distributions, as shown

in Fig. 4.20. Only events falling in the low-mass region of the Dalitz plot are used in

parameterizing these PDFs.
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Figure 4.20: Fisher discriminant PDFs for qq background for (left) K+K−K0
S+− and

(right) K+K−K0
S00. The points are onpeak data from the mES sideband, used in

creating the PDFs.

We assume that the ∆t distribution of continuum background events is uncor-

related with the Dalitz plot location. The ∆t PDF is parameterized as a sum of

“prompt” and “lifetime” contributions, where the latter originates from long-lived D

mesons:

P(∆t) =
[

fpromptδ(δt) + (1 − fprompt)e
−|∆t|/τbg/4τbg

]

⊗Rbg , (4.15)

where δ is the Dirac δ function. The ∆t resolution function Rbg is similar to the

signal resolution function given in Eq. 4.7, except the tail Gaussian distribution is

omitted. The parameters of the background ∆t PDF are determined in fits to the

mES sideband, shown in Fig. 4.21.

The continuum background Dalitz plot distributions are described by two-

dimensional histogram PDFs. The binning of these histograms presents a challenge

because events are distributed in an irregular fashion, with many events on the left,

top, and bottom edges of the square Dalitz plot but very few events in the center.

The bins must be fine enough to correctly model narrow structures in the continuum
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Figure 4.21: ∆t PDFs for qq background for (left) K+K−K0
S+− and (right)

K+K−K0
S00, shown (top) on a linear scale and (bottom) a logarithmic scale. The

points are onpeak data from the mES sideband, used in creating the PDFs.
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background (particularly real φ → K+K− decays). However, coarser binning is

necessary in the center of the square Dalitz plot to avoid large statistical fluctuations.

To solve these problems, we use a histogram PDF with arbitrary binning, where the

edges of every bin can be set independently.3 The PDFs are shown in Fig. 4.22.
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Figure 4.22: Dalitz plot PDFs for qq background for (left) K+K−K0
S+− and (right)

K+K−K0
S00, shown on a logarithmic scale. Note the extremely fine binning in the

φ(1020) region, and along the top and bottom of the square DP. The PDFs are
constructed using onpeak data events from the mES sideband.

4.5.4 BB Background PDFs

As noted earlier, peaking BB background originating from B → K+K−K0
S
h, where

h is a charged or neutral pion, is virtually eliminated by our choice of ∆E selection.

In the K+K−K0
S+− mode, the remaining BB background is shaped very much like

continuum background. We model the mES and ∆E shapes with the Argus function

(Eq. 4.14) and a linear PDF, respectively. The parameters of these PDFs are derived

from fits to generic BB MC, after removing all signal events. The PDFs are shown

with BB MC events in Fig. 4.23. Due to the limited statistics available in the BB

MC samples, we are not able to split the PDF parameters by tagging category.

Despite the wider ∆E cut in the K+K−K0
S00 mode, the peaking B → K+K−K0

S
h

background is still negligible. Excluding signal events, we find 38 events in the generic

3The PDF is implemented in RooFit as Roo2DArbHistPdf.
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Figure 4.23: Kinematic PDFs for BB background for K+K−K0
S+−, with points from

generic BB MC.

B0B0 MC sample and 77 events in the generic B+B− MC sample that pass all selec-

tion cuts. Scaling from the MC to the data luminosity, we expect a BB background

yield of 38/2.1 + 77/1.8 = 61 events.4 The dominant source of these events is misre-

constructed K0
S
→ π0π0 candidates. We observe a significant correlation between mES

and ∆E in these events, and so we model these variables with a two-dimensional his-

togram PDF. To make this PDF, we use the BB MC events passing the selection cuts

in the wide region defined by 5.2 < mES < 5.3 GeV/c2 and −200 < ∆E < 200 MeV.

We make a 2D KEYS PDF of mES and ∆E from these events, which helps to smooth

the statistical fluctuations caused by having a small event sample. The KEYS PDF

is then used to create a regular 2D histogram PDF, which is used in the fitting. The

histogram PDF is shown in Fig. 4.24.

The distribution of BB MC events across the tagging categories: { Lepton,

KaonI, KaonII, KaonPion, Pion, Other, Notag }= {16, 9, 26, 36, 31, 22, 53} in

the K+K−K0
S+− mode, is consistent with the tagging fractions in the high-statistics

Bflav sample. Hence, we use the same tagging fractions for the BB background as are

used for signal events.

4A veto is applied to remove events from the generic BB MC that are actually signal B0 →
K+K−K0

S
events.
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Figure 4.24: Two-dimensional PDF for mES and ∆E for BB background in the
K+K−K0

S00 mode. Note that the PDF describes wider ranges of mES and ∆E than
are actually used in the fit.

For both K+K−K0
S+− and K+K−K0

S00, the ∆t resolution function for BB back-

ground uses a similar parameterization to that used for qq background. We multiply

Eq. 4.15 by a factor

1 + qtagSBB sin ∆m∆t + CBB cos ∆m∆t (4.16)

to add the possibility of CP violation in the BB background. For the nominal fit,

SBB and CBB are fixed to zero, but we vary them when estimating the systematic

errors. The resolution biases and scale factors are fixed to the same values as used for

qq background, while the lifetime of the long-lived portion is fixed to the B0 lifetime.

The fraction of prompt decays is determined by fitting to the generic BB MC. ∆t

PDFs for BB background are shown in Fig. 4.25.

Two-dimensional histogram PDFs are used to describe the BB background dis-

tribution on the square Dalitz plot. For both K+K−K0
S+− and K+K−K0

S00, we use

generic BB MC events to fill 2D histograms with arbitrary binning. These histograms

are similar to those used for the DP distributions of qq events, but with much coarser

bins due to the limited statistics of the MC samples. These histogram PDFs are

shown in Fig. 4.26.
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Figure 4.25: ∆t PDFs for BB background for (left) K+K−K0
S+− and (right)

K+K−K0
S00. Points are from generic BB MC.
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Figure 4.26: Histogram PDFs describing the BB background for (left) K+K−K0
S+−

and (right) K+K−K0
S00.
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4.6 Fit Validation

As described in Sec. 4.3, all results are extracted using a series of ML fits to the data.

To check that the fit method is unbiased, we perform several “pure toy Monte Carlo”

studies. In this method, the PDFs are used to generate data samples, which are then

fit using those same PDFs. For each category, the number of events generated is

given by a Poisson distribution around the mean number of events expected for that

category. Other parameters (for example, the CP asymmetry parameters and isobar

coefficients) are set to reasonable values.

Over a large ensemble of trials, the average fit result for each floating parameter

should be equal to the value that was generated. A significant deviation from the

generated value could indicate a problem with the fit. For each trial we calculate the

normalized residual, or pull, for each floating variable, where

pull ≡ (xfit − xgenerated)/σxfit
. (4.17)

σxfit
is the error returned by the fit on the floating parameter x. With this definition,

the distribution of pulls for any floating parameter for an ensemble of toy trials should

be a Gaussian shape with unit width and a mean of zero. If the mean is different

from zero, then the fit is biased for that parameter. If the width differs from unity,

then the error on the parameter is misestimated. The results of our toy studies are

presented in Sec. 4.6.1.

We perform a separate check using a so-called “embedded toy” method. The tech-

nique is similar to pure toys, but only the background events are generated directly

from the PDFs. The signal events are taken from a signal MC sample which is gen-

erated with a realistic model of the Dalitz plot shape. Results of embedded toy tests

are presented in Sec. 4.6.2.

4.6.1 Pure Toy Tests

Toys are done separately for the fit to the whole DP, the high-mass fit, and the low-

mass fit. We also do toys for a fit to the K+K−K0
S+− mode alone, and then for a
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fit to all modes (K+K−K0
S+−, K+K−K0

S00, and K+K−K0
L
) combined. For the most

part, the discussion here will be restricted to the tests of the combined fit.

There are 44 floating parameters in the fit to the whole Dalitz plot: 2 CP parame-

ters, 6 pairs of isobar coefficients, 2 non-interfering isobar coefficients, 3 signal yields,

3 qq background yields, 3 BB background yields, 6 tagging category fractions for qq

backgrounds for each of the 3 modes, and the EMC fraction for qq background events

in the K0
L

mode. All fits are done with the MIGRAD routine of the MINUIT package,

with subsequent refinement of the error matrix performed by the HESSE algorithm.

The pull distributions for the CP asymmetry parameters in the whole DP fit to

all K+K−K0 modes are shown in Fig. 4.27. 1000 toy fits were performed. We reject

any fits (about 20) that do not have a full, accurate covariance matrix. The means

and widths of the pull distributions for key floating parameters are listed in Tab. 4.9.

Some pull distributions have non-zero means, however the CP asymmetry parameters

are unaffected by this problem.
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Figure 4.27: Pull distributions for the CP asymmetry parameters (top) bK+K−K0 and
(bottom) δK+K−K0. The curves are fits to Gaussian distributions.

Toy fits are also useful because they provide an estimate of the statistical er-

rors on the floating parameters. Most of the power in this analysis comes from the
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Table 4.9: Results of toys for the whole Dalitz plot fit. The means and widths are
derived from fits of Gaussian distributions to the pull results.

Parameter Mean Width
bK+K−K0 0.06 ± 0.03 1.00 ± 0.02
δK+K−K0 −0.03 ± 0.03 0.97 ± 0.02
c of φ −0.26 ± 0.03 0.94 ± 0.02
ϕ of φ 0.02 ± 0.03 0.99 ± 0.02
c of f0(980) −0.07 ± 0.03 0.96 ± 0.02
ϕ of f0(980) 0.26 ± 0.03 0.96 ± 0.02
c of X0(1550) 0.00 ± 0.03 0.94 ± 0.02
ϕ of X0(1550) 0.14 ± 0.03 0.97 ± 0.02
c of NRK+K0 −0.08 ± 0.03 0.92 ± 0.02
ϕ of NRK+K0 0.10 ± 0.03 0.97 ± 0.02
c of NRK−K0 0.10 ± 0.03 0.87 ± 0.02
ϕ of NRK−K0 −0.20 ± 0.03 1.03 ± 0.02
c of χc0 −0.37 ± 0.03 1.02 ± 0.02
ϕ of χc0 −0.11 ± 0.04 1.01 ± 0.03
c of D+ −0.21 ± 0.03 0.92 ± 0.02
c of D+

s −0.22 ± 0.03 0.95 ± 0.02
K+K−K0

S+− signal yield −0.02 ± 0.03 0.90 ± 0.02
K+K−K0

S+− qq yield −0.08 ± 0.03 0.99 ± 0.02
K+K−K0

S+− BB yield −0.02 ± 0.04 1.04 ± 0.03
K+K−K0

S00 signal yield −0.03 ± 0.03 0.96 ± 0.02
K+K−K0

S00 qq yield −0.07 ± 0.03 0.90 ± 0.02
K+K−K0

S00 BB yield 0.00 ± 0.03 0.99 ± 0.03
K+K−K0

L
signal yield −0.12 ± 0.04 1.01 ± 0.03

K+K−K0
L
qq yield −0.10 ± 0.03 0.96 ± 0.02

K+K−K0
L
BB yield 0.20 ± 0.03 0.96 ± 0.02
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K+K−K0
S+− mode. While the K+K−K0

S00 and K+K−K0
L

modes add signal events,

they also add a large amount of background. By comparing the errors on the float-

ing parameters found in toy experiments, we can assess the improvement gained by

adding the additional modes. As shown in Tab. 4.10, the additional modes do improve

the expected errors.

Table 4.10: Comparison of errors from toy fits to K+K−K0
S+− versus toy fits to all

K+K−K0 (K+K−K0
S+−, K+K−K0

S00, and K+K−K0
L
).

Mean error
Parameter K+K−K0

S+− All K+K−K0

bK+K−K0 0.043 0.040
δK+K−K0 0.09 0.08
c of φ 0.0016 0.0015
ϕ of φ 0.33 0.33
c of f0(980) 0.07 0.06
ϕ of f0(980) 0.27 0.26
c of X0(1550) 0.026 0.022
ϕ of X0(1550) 0.24 0.21
c of NRK+K0 0.09 0.07
ϕ of NRK+K0 0.32 0.26
c of NRK−K0 0.11 0.09
ϕ of NRK−K0 0.40 0.32
c of χc0 0.007 0.006
ϕ of χc0 0.6 0.5
c of D+ 0.24 0.20
c of D+

s 0.22 0.17

Independent toys are used to validate the low- and high-mass fits. As shown in

Fig. 4.28, the pull distributions of the CP parameters and isobar coefficients in the

low-mass fit toys show that the fit is well-behaved. Similar toy results for the CP

parameters in the high-mass fit are shown in Fig. 4.29.

Fits to pure toys are used to study several additional issues. In the data, we find

that the fits often converge to local minima of the likelihood function, thus failing

to find the true minimum. This raises a question of whether our model adequately

describes the data. To test this question, we perform the low-mass fit to a large pure
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Figure 4.28: Toy results for the low-mass fit to all K+K−K0 events: pull distributions
for the isobar parameters and CP asymmetries.
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Figure 4.29: Toy results for the high-mass fit to all K+K−K0 events: pull distribu-
tions for the CP asymmetry parameters.
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toy sample (where we know that the model describes the data perfectly), generated

with artificially enhanced signal purity. We repeat this fit many times, randomiz-

ing the initial values of the floating parameters before each fit. We observe similar

ambiguities as seen in the data, thus we are able to reject the hypothesis that the

ambiguities are created by an inadequate model of the signal on the DP.

We also use pure toy tests to evaluate whether there is a statistical difference

between floating the φ(1020) and f0(980) isobar coefficients in the low-mass fit. (If

these were the only two components in the fit, these two approaches would be mathe-

matically identical.) As expected, we find that it does not matter which set of isobar

coefficients is floated.

4.6.2 Embedded Toy Tests

The use of real signal MC events in embedded toys allows us to test for effects that

may be neglected in the PDF structure but exist in the actual signal. Correlations

between the observables in the fit that are neglected in the PDF construction (and

are thus neglected in pure toys) will be accounted for in embedded toys (as long as

the correlations are in the signal).

Given the number of signal MC events available, we are able to do 440 embedded

toy fits. Pull distributions for the CP asymmetry parameters on the whole DP are

shown in Fig. 4.30. No biases are observed. Similar plots for the high-mass fit are

shown in Fig. 4.31.

Pull distributions for low-mass fit embedded toys are shown in Fig. 4.32. Here

we observe significant biases in the CP asymmetry parameters. To study this issue,

we repeat the embedded toy study, but use the Monte Carlo truth information to

determine the Dalitz plot coordinates (mK+K− and cos θH) for each event. This

provides a test of whether the Dalitz plot resolution (discussed in Sec. 4.4.6), ignored

in the fit PDF, is responsible for the biases. As shown in Fig. 4.33, the biases are

reduced somewhat in this test. In particular the bias on δφ is eliminated. From

further embedded toy studies using the K+K−K0
S+− andK+K−K0

S00 modes alone, we

determine that these biases are largely caused by the poor resolution of the K+K−K0
L
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Figure 4.30: Pull distributions for the CP asymmetry parameters (top) bK+K−K0 and
(bottom) δK+K−K0, derived from embedded toy fits to all K+K−K0 modes. The
curves are fits to Gaussian distributions.
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Figure 4.31: Pull distributions for the CP asymmetry parameters (top) bK+K−K0 and
(bottom) δK+K−K0, derived from embedded toy fits to all K+K−K0 modes. The
curves are fits to Gaussian distributions.
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mode.
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Figure 4.32: Embedded toy results for the low-mass fit to all K+K−K0 events: pull
distributions for the isobar parameters and CP asymmetries.

The biases on the CP parameters can be accounted for as a systematic error.

Because this error is introduced by adding the K+K−K0
L

mode, we must consider the

tradeoff between statistical and systematic errors due to adding this mode. As shown

in Table 4.11, because the statistical errors are large, the gain in statistical error that

we get from adding the additional modes outweighs the increases in systematic error.

We perform a final stage of fit testing called iterated embedded toys. The purpose

of these tests is to emulate as closely as possible the actual fit sequence used in the

fits to data. For a given embedded toy sample, we first perform the whole DP fit. The

isobar coefficients determined from that fit are then propagated to the high- and low-

mass fits, just as in the fits to the data. This test is particularly important because of

the small but significant fit biases observed for some of the isobar coefficients in the

validation of the whole DP fit. These biases are not particularly important on their

own, but we must be sure that they do not introduce biases in the CP parameters
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Figure 4.33: Embedded toy results for the low-mass fit to all K+K−K0 events, using
the MC truth information for the Dalitz plot coordinates. Pull distributions for the
isobar parameters and CP asymmetries are shown.

Table 4.11: Tradeoff between statistical error and fit bias in the low-mass embedded
toy fits. The last row is for fits to data samples with perfect Dalitz plot resolution
(MC truth information used to get the Dalitz plot position).

φ(1020) b φ(1020) δ f0(980) b f0(980) δ
stat bias stat bias stat bias stat bias

K+K−K0
S+− 0.11 0.01 0.17 0.02 0.18 0.00 0.19 0.00

K+K−K0
S+− w/K+K−K0

S00 0.10 0.01 0.16 0.02 0.17 0.01 0.18 0.01
All K+K−K0 0.09 0.01 0.15 0.06 0.16 0.04 0.17 0.04
All K+K−K0 (truth) 0.09 0.02 0.14 0.01 0.16 0.00 0.16 0.01
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determined in the subsequent fits.

Because the iterated embedded toys are the most realistic emulation of the actual

fit procedure, we use the biases (or lack thereof) observed in these toys to evaluate the

corresponding systematic uncertainties. The pull distributions for the CP parameters

found in iterated embedded toys are shown in Figures 4.34 and 4.35 for the high-mass

and low-mass fits, respectively. In Fig. 4.35, the wide width of the pull distribution

for the cφ parameter is not fully understood, but since the CP violation results do

not depend on this parameter we feel this problem can be neglected.
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Figure 4.34: Pull distributions for the CP parameters, found in iterated embedded
toy fits to the high-mass region.

4.7 Fit Results

4.7.1 Fit to the Whole Dalitz Plot

The event selection criteria yield 3266 K+K−K0
S+−, 1611 K+K−K0

S00, and 27513

K+K−K0
L

candidates in the sample for the whole DP fit. When fitting the data, we
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Figure 4.35: Pull distributions for the CP parameters and φ isobar coefficients, found
in iterated embedded toy fits to the low-mass region.

run many fits, each time randomizing the initial values of the isobar coefficients and

CP parameters within reasonable ranges. Out of 725 fits, 623 converge with a full,

accurate covariance matrix from HESSE. As shown in Fig. 4.36, there are a number

of solutions. However, over a wide range of NLL, the CP parameter δK+K−K0 falls

either near the nominal solution or at the trigonometric reflection (near π/2 − β) of

that solution.

The best solution, at NLL = −102004, is clearly separated from the others. In

Fig. 4.37, we show only the results for the CP parameters and isobar coefficients for

solutions with NLL < −101995. These plots show that the fits which converge to

the best NLL have a unique set of isobar and CP parameters, with the exception of

an ambiguity in the phase of the χc0. The second best solution is suppressed by 6

units of NLL, corresponding to 3.5σ significance, allowing us to ignore it in the final

results.

Event yields for the best solution are listed in Table 4.7.1. Using the average effi-

ciency found in signal MC, these yields translate to branching fraction measurements
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Figure 4.36: (Left) The distribution of NLL for fits to the whole DP with randomized
initial parameters; (right) distributions of values of the CP parameters (top) bK+K−K0

and (bottom) δK+K−K0 versus the fit NLL.

of B(B0 → K+K−K0) = (26.6± 1.0)× 10−6 for K+K−K0
S+−, B(B0 → K+K−K0) =

(37.0 ± 4.4) × 10−6 for K+K−K0
S00, and B(B0 → K+K−K0) = (34.1 ± 3.1) × 10−6

for K+K−K0
L
. (Note that the errors quoted on the branching fractions are statistical

only. Also, the efficiencies do not include the efficiency corrections used in making

the efficiency maps shown in Fig. 4.9.) The first of these measurements is in good

agreement with the PDG value of B(B0 → K+K−K0) = (24.7 ± 2.3) × 10−6, while

the latter two are high but still statistically compatible. In K+K−K0
S00, the BB

background yield is in agreement with the number of events found in generic BB

MC.

mES projections of the data and fit PDF are shown in Fig. 4.38. As binned in these

plots, the χ2 per bin is 1.0 for K+K−K0
S+− and 1.3 for K+K−K0

S00. Similar plots are

shown for ∆E in Fig. 4.39. The χ2 per bin for these plots is 1.0 for K+K−K0
S+−, 0.7

for K+K−K0
S00, and 2.8 for K+K−K0

L
.

We also plot the data using the sP lot technique, an event-weighting method that

allows us to plot the data with the individual signal and background PDFs [51].

For K+K−K0
S+−, these plots are shown in Fig. 4.40. Similar plots are shown for

K+K−K0
S00 in Fig. 4.41. The sPlot technique requires the data be refit with the

total PDF modified to remove the PDF for the variable being plotted. It is not
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Figure 4.37: Distributions of whole DP fit results (NLL < −101995): (a) CP param-
eters versus NLL, (b) Isobar parameters versus NLL.
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Table 4.12: Event yields found in the whole DP fit. Errors are statistical only.

Mode Parameter Fitted Value
K+K−K0

S+− nSignal 947 ± 37
nqq 2235 ± 55
fqq,Lepton 0.0022 ± 0.0020
fqq,KaonI 0.067 ± 0.006
fqq,KaonII 0.144 ± 0.008
fqq,KaonPion 0.125 ± 0.008
fqq,Pion 0.156 ± 0.008
fqq,Other 0.118 ± 0.007
nBB 84 ± 25

K+K−K0
S00 nSignal 144 ± 17

nqq 1419 ± 41
fqq,Lepton 0.0026 ± 0.0017
fqq,KaonI 0.060 ± 0.007
fqq,KaonII 0.107 ± 0.009
fqq,KaonPion 0.106 ± 0.009
fqq,Pion 0.158 ± 0.010
fqq,Other 0.139 ± 0.009
nBB 49 ± 17

K+K−K0
L

nSignal 770 ± 71
nqq 24864 ± 198
Fqq,EMC 0.7304 ± 0.0031
fqq,Lepton 0.0099 ± 0.0008
fqq,KaonI 0.0591 ± 0.0016
fqq,KaonII 0.1386 ± 0.0023
fqq,KaonPion 0.1394 ± 0.0023
fqq,Pion 0.1675 ± 0.0025
fqq,Other 0.1225 ± 0.0022
nBB,Peaking 1074 ± 127
nBB,Non−peaking 851 (fixed)
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Figure 4.38: mES projections for the fit to the whole DP in (left) K+K−K0
S+− and

(right) K+K−K0
S00. The points are the data. The curves show the PDF projections:

solid blue is the total, dashed red is the qq background, and dotted magenta is the
BB background.

feasible to use this technique for ∆E in the K+K−K0
L

mode, because ∆E is the only

kinematic variable available. Instead we plot the ∆E distribution and PDF after

making a cut on the event shape variables (tighter than the cut used for the actual

event selection). This tighter cut has 16% efficiency for signal events. The resulting

plot is shown in Fig. 4.42.

The isobar coefficients found in the best solution are given in Table 4.7.1. Note

that the amplitudes can only be measured relative to each other, so one component

must have its amplitude fixed in the fit. We choose to fix the magnitude and phase of

the non-resonant K+K− component, as shown in the Table. The fit fraction FFr of

an individual resonance r is computed by integrating the lineshape of the resonance

over the phase space, and dividing by the integral of the coherent sum of all of the

isobars:

FFr =
2c2r (1 + b2r)

∫

dPS · |fr|2
∫

dPS · Γ . (4.18)

Because interference is ignored in the numerator of this definition, the sum of the fit

fractions will not, in general, be equal to unity.

The best solution for the average CP parameters bK+K−K0 and δK+K−K0 are given

in Table 4.7.1. These parameters translate to the standard CP violation observables
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Figure 4.39: ∆E projections for the fit to the whole DP in (top left)K+K−K0
S+−, (top

right) K+K−K0
S00, and (bottom left) K+K−K0

L
. The points are the data. The curves

show the PDF projections: solid blue is the total, dashed red is the qq background,
and dotted magenta is the BB background. For K+K−K0

L
there is an additional BB

background category (the non-peaking BB background), shown in dashed-dotted
green.
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Figure 4.40: Distributions of the kinematic variables (left) mES and (right) ∆E in
the onpeak K+K−K0

S+− data. Points are derived using the sP lot method, while the
curves are the PDFs used in the fit. The top row shows signal and the bottom row
shows qq background.
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Figure 4.41: Distributions of the kinematic variables (left) mES and (right) ∆E in
the onpeak K+K−K0

S00 data. Points are derived using the sPlot method, while the
curves are the PDFs used in the fit. The top row shows signal and the bottom row
shows qq background.
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Figure 4.42: Distributions of the kinematic variable ∆E in the onpeakK+K−K0
L

data.
Points are the data and the curve is the total PDF, including signal and backgrounds.
The signal is enhanced with a cut on the event shape variables.
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Table 4.13: Isobar coefficients and corresponding fit fractions found in the whole DP
fit. Errors are statistical only. Fit fractions for the NR components are combined
into one fraction. The sum of the fit fractions is 177%.

Parameter DP Component Fitted Value Fit Fraction (%)
c NRK+K−K0 1.0 (fixed) 112 ± 15
ϕ NRK+K−K0 0.0 (fixed)
c NRK−K0K+ 0.31 ± 0.09
ϕ NRK−K0K+ −1.34 ± 0.37
c NRK+K0K− 0.33 ± 0.07
ϕ NRK+K0K− 1.95 ± 0.28
c φ(1020)K0 0.0085 ± 0.0010 12.5 ± 1.3
ϕ φ(1020)K0 −0.02 ± 0.23
c f0(980)K0 0.622 ± 0.045 40 ± 10
ϕ f0(980)K0 −0.14 ± 0.14
c X0(1550)K0 0.114 ± 0.018 4.1 ± 1.3
ϕ X0(1550)K0 −0.47 ± 0.20
c χc0K

0 0.031 ± 0.005 3.0 ± 1.3
ϕ χc0K

0 0.8 ± 0.5 or − 2.3 ± 0.5
c D−K+ 1.11 ± 0.15 3.6 ± 1.5
c D−

s K
+ 0.76 ± 0.14 1.8 ± 0.6
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by the following relations:

ACP,r = −|cr|2 − |c̄r|2
|cr|2 + |c̄r|2

= − 2br
1 + b2r

, and (4.19)

βeff ,r = β + δr, (4.20)

where β = 0.379 is the SM value of the CKM angle measured in b→ ccs decays. Note

that in the whole DP fit and the high-mass fit, the b and δ parameters are shared by

all resonances, so we drop the subscript r in those cases.

Using these relations, the whole DP fit finds ACP = −0.015 ± 0.077 and βeff =

0.352± 0.076. Note that since the phase βeff enters from B0 mixing as 2βeff , there is

an unresolvable ambiguity between solutions at βeff and solutions at βeff + π.

Table 4.14: The values of the CP parameters found in the whole DP fit.

Name Fitted Value
bK+K−K0 0.008 ± 0.039
δK+K−K0 −0.028 ± 0.076

Correlations between the CP parameters are about 1%. Correlations between each

CP parameter and the isobar coefficients are somewhat higher, with a maximum of

about 10%. A list of important correlations is given in Table B.

We show in Fig. 4.43 the ∆t distributions of the sP lot-weighted signal component

for the K+K−K0
S+− sample.Events corresponding to B0- and B0- tags are shown,

and followed by a plot of the distribution of the time-dependent CP asymmetry

A(∆t) = (NB0 −NB0) / (NB0 +NB0).

To quantify the significance of the measured CP violation, we perform a likelihood

scan of the βeff parameter. δK+K−K0 (and thus βeff ) is fixed to various values, and at

each value a number of fits are done with randomized initial parameters to find the

best NLL and the best values of the other floating parameters. The results of this

scan are shown in Fig. 4.44. The significance of CP violation in the data is calculated

as nσ =
√

2∆NLL, where ∆NLL is the change in NLL between the best solution
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Figure 4.43: (Top) ∆t distributions and (bottom) time-dependent CP asymmetry for
K+K−K0

S+−. For the ∆t distributions, B0- (B0-) tagged signal-weighted events are
shown as filled (open) circles, with the PDF projection in solid blue (dashed red).

and the point where βeff = 0. Systematic errors are accounted for by convolving the

likelihood curve with a Gaussian distribution. The width of this Gaussian is given by

the systematic error on βeff (see Sec. 4.8). We find that βeff = 0 is excluded at 4.8σ

(5.1σ), including statistical and systematic errors (statistical errors only).

The local minimum on the right side of Fig. 4.44 (near βeff = 1.2 rad) is caused

by the ambiguity sin 2βeff = sin 2(π/2 − βeff ). This ambiguity is broken by terms

proportional to cos 2βeff , introduced by interference between S- and P-wave contri-

butions to the decay amplitude. (In most measurements of sin 2β, the data cannot

distinguish between these two solutions.) From the likelihood scan (and from the sec-

ondary solutions of the initial fit, some of which land in this local minimum), we find

the significance of the nominal solution against the reflection where βeff → π/2−βeff

to be 4.6σ.

Projections of the DP variables mK+K− and cos θH are shown in Fig. 4.45 and

Fig. 4.46, respectively. The PDF projection is normalized to the data indepen-

dently in each plot. The agreement between the data and the total PDF is good
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Figure 4.44: The change in twice the negative log likelihood as a function of βeff for
the fit to the whole DP.

for K+K−K0
S+− and K+K−K0

S00. For K+K−K0
L
, there is poor agreement when

looking at the whole DP. The situation improves somewhat when looking only at

the low-mass region, provided that the normalization is done independently in that

region. Signal-weighted distributions of the Dalitz plot variables mK+K− and cos θH

are shown for K+K−K0
S+− in Fig. 4.47.

The Dalitz plot model for this analysis adds amplitudes for non-resonant con-

tributions that depend on m2
K+K0 and m2

K−K0. These terms were not present in

our previous analysis [52],5 nor were they relevant in the Dalitz plot analyses of

B+ → K+K−K+. The shape parameter αNR for these terms is fixed to the value

used for the NR term proportional to mK+K−. To test the statistical significance of

these terms, we repeat the fits to data with cNR,K+K0 and cNR,K−K0 fixed to zero.

In 200 fits with randomized initial parameters, the best NLL is −101990. Compar-

ing with the NLL of the nominal fits, the statistical significance of these terms is:
√

2 × (−101990 − (−102004)) = 5.3σ.

4.7.2 Fit to the High-Mass Region

The high-mass fit sample consists of 2384 K+K−K0
S+−, 1406 K+K−K0

S00, and 20032

K+K−K0
L

events (the same sample as for the whole DP fit, but with mK+K− >

1.1 GeV/c2). Fixing the isobar coefficients to the best solution found for the whole

5Note that in our previous analysis, we tested incorporating these terms into our model, but the
magnitudes of the corresponding isobar coefficients were consistent with zero.
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Figure 4.45: Projections of mK+K− for the data and the PDF of the whole DP fit
result. The plots in the left column show the whole mass range, while the plots
on the right zoom into the low-mass region (but still show results of the whole DP
fit). Projections are shown for (top) K+K−K0

S+−, (center) K+K−K0
S00, and (bot-

tom) K+K−K0
L
. The blue lines denote the total PDF and the red lines are the qq

background component of the PDF.
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Figure 4.46: Projections of cos θH for the data and the PDF of the whole DP fit result.
The plots in the left column show the whole mass range, while the plots on the right
zoom into the low-mass region (but still show results of the whole DP fit). Projections
are shown for (top) K+K−K0
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L
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blue lines denote the total PDF and the red lines are the qq background component
of the PDF.
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Figure 4.47: sPlots of the Dalitz plot variables (left) mK+K− and (right) cos θH for
K+K−K0

S+− events. The points are the signal-weighted data events and the his-
tograms are projections of the signal Dalitz plot PDF.

Dalitz plot, we make 200 fits to the high-mass region, floating only the yields and

average CP parameters. The results are shown in Figure 4.48. There is a clear

solution with NLL of −62102.6. The results of the floating parameters for the best

solution are given in Table 4.7.2. The correlation between bK+K−K0 and δK+K−K0 is

4%. Correlations between the other parameters and the CP parameters are all less

than 1%.
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Figure 4.48: (Left) The distribution of NLL for fits to the high-mass region with
randomized initial parameters; (right) distributions of values of the CP parameters
(top) bK+K−K0 and (bottom) δK+K−K0 versus the fit NLL.

The CP parameters found by the fit translate to ACP = −0.05 ± 0.10 and βeff =
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Table 4.15: Results of the high-mass fit to the data.

Mode Parameter Fitted Value
All bK+K−K0 0.027 ± 0.051

δK+K−K0 0.057 ± 0.087
K+K−K0

S+− nSignal 673 ± 31
nqq 1643 ± 48
fqq,Lepton 0.0018 ± 0.0023
fqq,KaonI 0.072 ± 0.007
fqq,KaonII 0.158 ± 0.010
fqq,KaonPion 0.127 ± 0.009
fqq,Pion 0.160 ± 0.010
fqq,Other 0.115 ± 0.008
nBB 68 ± 24

K+K−K0
S00 nSignal 87 ± 14

nqq 1285 ± 39
fqq,Lepton 0.0034 ± 0.0020
fqq,KaonI 0.060 ± 0.007
fqq,KaonII 0.111 ± 0.009
fqq,KaonPion 0.107 ± 0.009
fqq,Pion 0.162 ± 0.011
fqq,Other 0.137 ± 0.010
nBB 34 ± 15

K+K−K0
L

nSignal 462 ± 56
nqq 18680 ± 178
Fqq,EMC 0.7499 ± 0.0036
fqq,Lepton 0.0123 ± 0.0010
fqq,KaonI 0.0626 ± 0.0019
fqq,KaonII 0.1407 ± 0.0027
fqq,KaonPion 0.1377 ± 0.0026
fqq,Pion 0.1693 ± 0.0028
fqq,Other 0.1224 ± 0.0025
nBB 318 ± 119
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0.436 ± 0.087. To calculate the significance of CP violation in the high-mass region,

we repeat the fit, fixing βeff = 0. In this fit we find NLL of −62087.7, a change of

14.9 units of NLL from the nominal result, corresponding to a significance of 5.5σ

for CP violation, accounting for statistical errors only. Using the low-side error of

the asymmetric systematic uncertainty (see Sec. 4.8), we find the significance of CP

violation to be 5.1σ. A plot of the tag asymmetry as a function of ∆t is shown in

Fig. 4.49.
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Figure 4.49: The time-dependent CP asymmetry in the K+K−K0
S+− mode, for the

high-mass fit.

4.7.3 Fit to the Low-Mass Region

1359 K+K−K0
S+−, 348 K+K−K0

S00, and 7481 K+K−K0
L

events with mK+K− <

1.1 GeV/c2 enter the fit to the low-mass region. (Note that the cut on the Fisher

discriminant is looser for this fit than the others, so the sum of the events entering

this fit and the high-mass fit does not equal the number of events entering the whole

DP fit.) We perform 200 fits to the data, randomizing the initial parameter values for

each fit. The event yields found in the fit are given in Table 4.7.3. These yields are

consistent between the various solutions discussed below. Also consistent between the

various solutions are several shape parameters for the K+K−K0
L
qq L2/L0 distribution

which are floated in the low-mass fit.
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Table 4.16: Event yields found in the low-mass fit to the data.

Mode Parameter Fitted Value
K+K−K0

S+− nSignal 282 ± 20
nqq 1040 ± 35
fqq,Lepton 0.0057 ± 0.0032
fqq,KaonI 0.068 ± 0.008
fqq,KaonII 0.137 ± 0.011
fqq,KaonPion 0.131 ± 0.011
fqq,Pion 0.158 ± 0.012
fqq,Other 0.128 ± 0.011
nBB 37 ± 15

K+K−K0
S00 nSignal 37 ± 9

nqq 274 ± 18
fqq,Lepton 0.0000 ± 0.0019
fqq,KaonI 0.065 ± 0.016
fqq,KaonII 0.120 ± 0.021
fqq,KaonPion 0.125 ± 0.021
fqq,Pion 0.146 ± 0.022
fqq,Other 0.146 ± 0.022
nBB 37 ± 9

K+K−K0
L

nSignal 266 ± 36
nqq 6878 ± 97
Fqq,EMC 0.657 ± 0.006
fqq,Lepton 0.0074 ± 0.0014
fqq,KaonI 0.0541 ± 0.0029
fqq,KaonII 0.1371 ± 0.0043
fqq,KaonPion 0.1442 ± 0.0044
fqq,Pion 0.161 ± 0.005
fqq,Other 0.1210 ± 0.0041
nBB 76 ± 47
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In Fig. 4.50, we show the best fit solutions for the CP parameters and φ isobar

coefficients. We find two sets of solutions, separated by ∆NLL ' 0.1. The isobar

coefficients for these solutions are listed in Tab. 4.7.3. The solution referred to as

“1A” in the table agrees quite closely with the result found in the whole DP fit.

The corresponding solutions for the CP parameters are given in Tab. 4.7.3. The

other components of the Dalitz plot have their CP parameters fixed to ACP = 0,

βeff = 0.370 [53].
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Figure 4.50: Isobar coefficients and CP parameters versus NLL for the low-mass fit
to all K+K−K0 events.

Solutions 1A and 1B have the same likelihood. They differ only by shifts of both

ϕ and βeff for the φ(1020) by exactly +π. (Similarly for solutions 2A and 2B.) This

is an unresolvable mathematical ambiguity created by terms of the form

±cP cS(1 ± bP )(1 ∓ bS)e
−i(δP +δS±φP∓φS)(f ∗

PfS)
(∗), (4.21)
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Table 4.17: φ(1020) isobar coefficients found in the low-mass fit.

φ(1020)
# cφ ϕφ NLL number of fits

1A 0.0095 ± 0.0008 −0.07 ± 0.25 -40571.3 13
1B 0.0095 ± 0.0008 3.07 ± 0.25 -40571.3 included with 1A
2A 0.0124 ± 0.0011 −2.16 ± 0.25 -40571.4 57
2B 0.0124 ± 0.0011 0.98 ± 0.25 -40571.4 included with 2A

Table 4.18: CP parameters found in the low-mass fit.

φ(1020) f0(980)
# ACP βeff ACP βeff

1A −0.08 ± 0.18 0.11 ± 0.14 0.41 ± 0.24 0.14 ± 0.15
1B −0.08 ± 0.18 3.25 ± 0.14 0.41 ± 0.24 0.14 ± 0.15
2A −0.11 ± 0.18 0.10 ± 0.13 −0.20 ± 0.31 3.09 ± 0.19
2B −0.11 ± 0.18 3.24 ± 0.13 −0.20 ± 0.31 3.09 ± 0.19

which enter the interference term of the time-dependent amplitude squared. In all

of these terms, the phases appear in the combinations δP + φP or δP − φP . So a

simultaneous shift by π in both δP and φP has no effect.

Of the four solutions listed in Tab. 4.7.3, only solution 1A has values of βeff for

both the φ and the f0 that correspond to the quadrant of the ρ-η plane consistent

with the Standard Model. So we choose solution 1A as our nominal solution, while

noting that our data cannot exclude the other solutions.

For solution 1A, the correlation coefficients returned by the fitter between key

parameters are given in Table 4.7.3.

In Fig. 4.51, we show a two-dimensional scan of the likelihood for the f0 CP

parameters. At each point in the scan, fits are repeated with the f0 CP parameters

held fixed. Other floating parameters have their initial values randomized before each

fit. Multiple fits are done at each point.

Because the low-mass region contains similar contributions from S-wave and P-

wave components, the visible time-dependent CP asymmetry tends to cancel out. A

slight enhancement can be seen if one plots the asymmetry in a tight window around
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Table 4.19: Correlations found by the fitter in the low-mass fit.

Correlation with
Name bφ(1020) δφ(1020) bf0(980) δf0(980)
bφ(1020) 1 −0.06 −0.29 0.13
δφ(1020) −0.06 1 0.45 0.71
bf0(980) −0.29 0.45 1 0.17
δf0(980) 0.13 0.71 0.17 1
cφ(1020) 0.07 0.14 −0.04 0.23
ϕφ(1020) −0.11 −0.02 −0.11 −0.14
nSignal,K+K−K0

S+−

0.00 −0.03 0.01 −0.04

nSignal,K+K−K0
S00

−0.01 0.00 0.03 0.01
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Figure 4.51: Likelihood scan of the f0(980) CP parameters. The color axis is in units
of

√
2∆NLL (σ).
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the φ(1020) mass. These plots are shown in Fig. 4.52.

t (ps)∆
-8 -6 -4 -2 0 2 4 6 8

A
sy

m
m

et
ry

-1

-0.5

0

0.5

1

t (ps)∆
-8 -6 -4 -2 0 2 4 6 8

A
sy

m
m

et
ry

-1

-0.5

0

0.5

1

t (ps)∆
-8 -6 -4 -2 0 2 4 6 8

A
sy

m
m

et
ry

-1

-0.5

0

0.5

1

t (ps)∆
-8 -6 -4 -2 0 2 4 6 8

A
sy

m
m

et
ry

-1

-0.5

0

0.5

1

Figure 4.52: CP asymmetry of signal-weighted events in (top) the low-mass region,
and (bottom) the φ region (1.01 < mK+K− < 1.03 GeV/c2). Both plots show the
projection of the low-mass fit result (solution 1A).

4.8 Systematic Uncertainties

In this section, we describe the procedures used to estimate the systematic uncertain-

ties on the measured CP asymmetries.

4.8.1 Fit Bias

Fit bias is estimated using the embedded toy fits shown in Sec. 4.6.2. For the low-

and high-mass fits, the iterated embedded toys are used. As discussed in that section,

this error is dominated by the contribution from the detector resolution, which is not
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modeled by the PDF. The bias is defined as the difference between the mean of the

distribution of fit values and the generated value.

4.8.2 Fixed PDF Parameters

Most of the parameters used in the PDFs are held fixed in the fits. These parameters

are derived from finite and imperfect sources, such as sidebands and Monte Carlo

events, and so introduce systematic uncertainty in the results. The procedure for

estimating the errors due to these fixed parameters is:

1. Split the fixed PDF parameters into groups of related parameters

2. For a given group of parameters, shift all parameters in the group by +1σ

3. Repeat the fit to data using the shifted parameters and note the difference ∆+

from the nominal fit

4. For the same group of parameters, shift all parameters by −1σ from their nom-

inal values

5. Repeat the fit to data using the shifted parameters and note the difference ∆−

from the nominal fit

6. Calculate the systematic uncertainty due to that group of parameters as (|∆+|+
|∆−|)/2.

The uncertainty σ on a given parameter is taken from the original source used in

determining the value of that parameter. The groups used are:

1. ∆t: ∆t resolution function parameters

2. Tagging: signal tagging category fractions

3. Selection: mES and ∆E PDF parameters

4. BB background: parameters related to BB background, most importantly the

S and C of the BB background, which are nominally zero. We shift them by

σ = 0.75.
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5. BB background tagging: BB background tagging category fractions

6. Fixed BB yield in K0
L

7. Isobar model: the f0(980) parameters are varied by their errors

8. Isobar model: Mass of the φ(1020)

9. Isobar model: Width of the φ(1020)

10. Isobar model: Mass and Width of the χc0

11. Isobar model: αNR parameter of the non-resonant components, shifted by σ =

0.02

12. Isobar model: Mass and Width of the D− and D−
s components

13. Isobar model: the X0(1550) component. Here instead of shifting by the errors,

we substitute the mass and width determined by Belle: m = 1.491 GeV/c2,

Γ = 0.145 GeV/c2 [26]. This is a much larger change than shifting by the

errors.

For the low- and high-mass fits, the fits to data with shifted parameters are iterated

from the whole DP fit with the parameters shifted in the same fashion.

4.8.3 Isobar coefficients

For the low- and high-mass fits, an additional systematic error is derived from the

statistical errors on the isobar coefficients. To estimate this error, we repeat the

fit to data many times, each time randomly smearing the isobar coefficients by the

covariance matrix from the fit to the whole DP. The widths of the distributions of

CP parameter results give estimates of the systematic errors introduced by these

fixed coefficients. For the δ parameter in the high-mass fit this distribution is rather

asymmetric, so we separately find 68% of the area to the left and right of the central

value in order to calculate an asymmetric error. For the low-mass fit, this error is

very small for the φ(1020) CP parameters because the φ isobar coefficients float in

the fit.
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4.8.4 Other errors

A number of other systematic uncertainties are common to all time-dependent analy-

ses. These include detector effects such as the uncertainty on the beam spot position

and possible misalignment of the SVT. We also assign an uncertainty due to the effect

of doubly CKM-suppressed decays [54]. Previous iterations of this analysis have found

these uncertainties to be similar in size to those estimated for other time-dependent

analyses, so we assign the same uncertainties as calculated for the most recent BABAR

sin 2β analysis [11].

4.8.5 Summary

For each fit, the various systematic uncertainties are added in quadrature to deter-

mine the total uncertainty. The systematic uncertainties for the whole DP fit are

summarized in Table 4.8.5, and Table 4.8.5 has a similar summary for the high-mass

fit. The uncertainties for the low-mass fit are in Tables 4.8.5 and 4.8.5, for the f0(980)

and φ(1020), respectively.
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Table 4.20: Summary of systematic uncertainties on the CP -asymmetry parameters
bK+K−K0 and δK+K−K0 for the fit to the Whole DP. Translated to ACP , the errors
on bK+K−K0 correspond to: Model 0.004, Bias 0.003, Other 0.052. This gives a total
error on ACP of 0.053.

Category b δ

Fixed Model parameters ∆+ ∆− Average ∆+ ∆− Average
f0(980) 0.000 0.000 0.000 0.001 -0.001 0.001
φ (Mass) 0.000 0.000 0.000 0.000 0.000 0.000
φ (Width) 0.000 0.000 0.000 0.001 -0.001 0.001
χc0 0.000 0.000 0.000 -0.001 0.001 0.001
αNR 0.000 0.000 0.000 0.008 -0.008 0.008
D−,D−

s 0.000 0.000 0.000 -0.001 0.001 0.001
X0(1550) 0.002 0.003
Model Subtotal 0.002 0.009

Fixed PDF parameters
∆t -0.007 -0.017 0.012 0.011 -0.019 0.015
Tagging -0.006 0.005 0.006 0.003 -0.003 0.003
Selection -0.002 0.002 0.002 -0.002 0.002 0.002
BB background -0.019 0.024 0.021 0.025 0.001 0.013
BB background tagging 0.000 0.000 0.000 0.000 0.000 0.000

From charmonium
Beamspot 0.002 0.006
DCSD 0.007 0.001
“Other” subtotal 0.026 0.021

Fit bias 0.002 0.001

Total 0.026 0.026
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Table 4.21: Summary of systematic uncertainties on the CP -asymmetry parameters
bK+K−K0 and δK+K−K0 for the fit to the high-mass region. Translated to ACP , the
errors on bK+K−K0 correspond to: Model 0.025, Bias 0.014, Other 0.053. This gives
a total error on ACP of 0.060.

Category b δ

Fixed Model parameters ∆+ ∆− Average ∆+ ∆− Average
Isobar coefficients 0.013 0.012 0.012 0.050 0.020 +0.050

−0.020

f0(980) 0.000 0.000 0.000 0.001 -0.001 0.001
φ (Mass) 0.000 0.000 0.000 0.000 0.000 0.000
φ (Width) 0.000 0.000 0.000 0.000 0.000 0.000
χc0 0.000 0.000 0.000 -0.002 0.002 0.002
αNR -0.001 0.001 0.001 0.012 -0.012 0.012
D−,D−

s 0.000 0.001 0.000 -0.002 0.002 0.002
X0(1550) 0.003 0.004
Model Subtotal 0.012 +0.051

−0.024

Fixed PDF parameters
∆t -0.003 -0.019 0.011 0.018 -0.015 0.017
Tagging -0.006 0.006 0.006 0.002 -0.003 0.003
Selection -0.001 0.001 0.001 0.000 0.001 0.001
BB background -0.019 0.026 0.022 -0.003 0.000 0.002
BB background tagging 0.000 0.000 0.000 0.000 0.000 0.000

From charmonium
Beamspot 0.002 0.006
DCSD 0.007 0.001
“Other” subtotal 0.027 0.018

Fit bias 0.007 0.008

Total 0.030 +0.055
−0.031
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Table 4.22: Summary of systematic uncertainties on the f0(980) CP -asymmetry pa-
rameters b and δ for the fit to the low-mass region. Translated to ACP , the errors on
b correspond to: Model 0.029, Bias 0.061, Other 0.029. This gives a total error on
ACP of 0.074.

Category b δ

Fixed Model parameters ∆+ ∆− Average ∆+ ∆− Average
Isobar coefficients 0.016 0.016 0.016 0.023 0.026 0.024
f0(980) -0.003 0.004 0.003 0.000 -0.006 0.003
φ (Mass) -0.001 0.001 0.001 -0.001 0.002 0.002
φ (Width) 0.000 0.000 0.000 0.002 -0.003 0.002
χc0 0.000 0.000 0.000 0.000 0.001 0.000
αNR 0.000 -0.003 0.001 0.000 0.015 0.008
D−,D−

s -0.001 0.001 0.001 -0.002 0.000 0.001
X0(1550) 0.003 0.031
Model Subtotal 0.017 0.041

Fixed PDF parameters
∆t -0.008 -0.021 0.015 0.001 0.029 0.015
Tagging -0.003 0.004 0.004 0.002 -0.002 0.002
Selection 0.001 -0.001 0.001 -0.002 0.000 0.001
BB background 0.002 -0.001 0.002 0.001 0.001 0.001
BB background tagging -0.001 0.000 0.000 0.001 0.000 0.000

From charmonium
Beamspot 0.002 0.006
DCSD 0.007 0.001
“Other” subtotal 0.017 0.016

Fit bias 0.035 0.031

Total 0.042 0.054
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Table 4.23: Summary of systematic uncertainties on the φ(1020) CP -asymmetry pa-
rameters b and δ for the fit to the low-mass region. Translated to ACP , the errors on
b correspond to: Model 0.003, Bias 0.028, Other 0.022. This gives a total error on
ACP of 0.036.

Category b δ

Fixed Model parameters ∆+ ∆− Average ∆+ ∆− Average
Isobar coefficients 0.001 0.001 0.001 0.004 0.005 0.005
f0(980) -0.002 -0.001 0.001 0.001 -0.005 0.003
φ (Mass) 0.000 0.000 0.000 -0.001 0.002 0.001
φ (Width) 0.000 0.000 0.000 0.001 -0.001 0.001
χc0 0.000 0.000 0.000 0.000 0.000 0.000
αNR 0.000 0.000 0.000 0.000 0.000 0.000
D−,D−

s 0.000 0.000 0.000 -0.002 0.000 0.001
X0(1550) 0.000 0.001
Model Subtotal 0.001 0.006

Fixed PDF parameters
∆t -0.007 0.006 0.007 -0.003 0.004 0.004
Tagging -0.005 0.005 0.005 0.000 0.000 0.000
Selection 0.001 -0.001 0.001 -0.003 0.001 0.002
BB background 0.000 0.000 0.000 0.001 -0.001 0.001
BB background tagging 0.000 0.000 0.000 0.000 0.000 0.000

From charmonium
Beamspot 0.002 0.006
DCSD 0.007 0.001
“Other” subtotal 0.011 0.007

Fit bias 0.014 0.055

Total 0.018 0.055
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Conclusions

Using a time-dependent Dalitz plot analysis, we measure the CP violation parameters

ACP and βeff for the inclusive decay B0 → K+K−K0, and separately for the events

with mK+K− > 1.1 GeV/c2. We also measure the CP violation parameters for the

decays B0 → φK0 and B0 → f0(980)K0 using events with mK+K− < 1.1 GeV/c2.

These measurements are made combining samples of K0
S
→ π+π−, K0

S
→ π0π0, and

K0
L

events. The results are summarized in Table 5.1, where we give only the primary

solution (called 1A in Table 4.7.3) for the low-mass fit.

Table 5.1: The CP -asymmetries for B0 → K+K−K0 for the entire DP, in the high-
mass region, and for φK0 and f0(980)K0 in the low-mass region. The first errors are
statistical and the second are systematic.

ACP βeff ( rad)
Whole DP −0.015 ± 0.077 ± 0.053 0.352 ± 0.076 ± 0.026
High-mass −0.054 ± 0.102 ± 0.060 0.436 ± 0.087 +0.055

−0.031

φK0 −0.08 ± 0.18 ± 0.04 0.11 ± 0.14 ± 0.06
f0K

0 0.41 ± 0.23 ± 0.07 0.14 ± 0.15 ± 0.05

In the fit to the entire DP, we find that the CP -conserving case of βeff = 0 is

excluded at 4.8σ, including statistical and systematic errors. This fit also allows us

to exclude the solution for βeff near π/2 − β at 4.5σ. To date, this is the best single

measurement available to establish that cos 2β > 0. In the fit to the high-mass region

only, we exclude the possibility of βeff = 0 at 5.1σ including statistical and systematic
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errors. This is the first observation of CP violation in this decay mode, and the second

observation of CP violation in penguin-dominated b→ s decays [44, 55].

The results of the fits to the whole DP and the high-mass region are consistent

with the SM expectation of β = 0.375 ± 0.017 [56], ACP = 0. The results for βeff

in φK0 and f0(980)K0 are 1.7σ and 1.5σ less than the SM value, respectively. Note

that because these two results are highly correlated, their combined significance is

not dramatically greater than for the individual results.

The results presented in this work are published in Ref. [57], and have been com-

piled by the Heavy Flavor Averaging Group (HFAG) into a summary of CP violation

results in all b → s penguin decays. The most recent HFAG compilations are shown

in Figures 5.1 and 5.2, and include the measurements made in the low-mass and high-

mass fits. Note that the results shown in these figures are translated from the results

given in Table 5.1, using the relations

C ≡ −ACP , and

(5.1)

−ηfS ≡ 1 − b2

1 + b2
sin(2βeff ),

where ηf is the CP eigenvalue of the final state. Our results expressed in these terms

are given in Table 5.2. Also, the result presented here for B0 → f0(980)K0 is averaged

with the BABAR result in B0 → f0(980)K0 with f0(980) → π+π− [58].

Table 5.2: The CP asymmetry parameters C and −ηfS obtained from the main
results using Eq. 5.1. Values are shown for B0 → K+K−K0 on the whole DP, in
the high-mass region, and for φK0 and f0(980)K0 in the low-mass region. The first
errors are statistical and the second are systematic.

C −ηfS
Whole DP 0.015 ± 0.077 ± 0.053 0.647 ± 0.116 ± 0.040
High-mass 0.054 ± 0.102 ± 0.060 0.764 ± 0.111 +0.071

−0.040

φK0 0.08 ± 0.18 ± 0.04 0.21 ± 0.26 ± 0.11
f0K

0 −0.41 ± 0.23 ± 0.07 0.25 ± 0.26 ± 0.10

We have performed the first time-dependent Dalitz plot analysis of the B0 →
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sin(2βeff) ≡ sin(2φe
1
ff)
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Cf = -Af

H
F

A
G

LP
 2

00
7

H
F

A
G

LP
 2

00
7

H
F

A
G

LP
 2

00
7

H
F

A
G

LP
 2

00
7

H
F

A
G

LP
 2

00
7

H
F

A
G

LP
 2

00
7

H
F

A
G

LP
 2

00
7

H
F

A
G

LP
 2

00
7

H
F

A
G

LP
 2

00
7

φ 
K

0

η′
 K

0

K
S
 K

S
 K

S

π0  K
S

ρ0  K
S

ω
 K

S

f 0 
K

0

π0  π
0  K

S

K
+
 K

-  K
0

-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

BaBar 0.08 ± 0.18 ± 0.04
Belle -0.07 ± 0.15 ± 0.05
Average -0.01 ± 0.12
BaBar -0.16 ± 0.07 ± 0.03
Belle 0.01 ± 0.07 ± 0.05
Average -0.09 ± 0.06
BaBar 0.02 ± 0.21 ± 0.05
Belle -0.31 ± 0.20 ± 0.07
Average -0.14 ± 0.15
BaBar 0.24 ± 0.15 ± 0.03
Belle 0.05 ± 0.14 ± 0.05
Average 0.14 ± 0.11
BaBar 0.02 ± 0.27 ± 0.08 ± 0.06
Average 0.02 ± 0.29
BaBar -0.43 +-

0
0

.

.
2
2

5
3 ± 0.03

Belle 0.09 ± 0.29 ± 0.06
Average -0.21 ± 0.19
BaBar -0.01 ± 0.18
Belle 0.15 ± 0.15 ± 0.07
Average 0.08 ± 0.12
BaBar 0.23 ± 0.52 ± 0.13
Belle 0.17 ± 0.24 ± 0.06
Average 0.18 ± 0.22
BaBar 0.05 ± 0.10 ± 0.06
Belle 0.09 ± 0.10 ± 0.05
Average 0.07 ± 0.08

H F A GH F A G
LP 2007

PRELIMINARY

Figure 5.2: Winter 2008 HFAG compilation of C = −ACP [56]



142 CHAPTER 5. CONCLUSIONS

K+K−K0 decay mode. The main goal of this analysis was to measure CP violation

parameters while correctly accounting for both the interference of multiple amplitudes

and the mixture of CP -even and CP -odd contributions in the decay. We have also

improved the knowledge of the amplitude structure of this decay, and we expect future

work on this mode to expand of that part of the analysis to include quantitative

results.

The results presented here were updated in the summer of 2008, using the same

technique as described in this thesis, to use the full BABAR dataset. The preliminary

results with the full dataset are in Ref. [59]. Also in the summer of 2008, the Belle ex-

periment released preliminary measurements of CP asymmetries in B0 → K+K−K0

using a time-dependent Dalitz plot analysis. Those results were extracted from the

data using an analysis method similar to that presented here, and are largely com-

patible with the results shown here [60].



Appendix A

PDF Details

A.1 Fisher discriminant PDF parameters

The signal PDFs used for the Fisher discriminant in the low-mass fit are described

in Sec. 4.4.1. Eight parameters are needed to parameterize the sum of three Gaus-

sian distributions, and these parameters are split over the seven tagging categories.

Therefore, there are 56 parameters each for K+K−K0
S+− and K+K−K0

S00.
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Gaussian 1 Gaussian 2 Gaussian 3
Category Fraction Mean Width Fraction Mean Width Mean Width

(10−3)

K+K−K0
S+−

Untagged 0.44 ± 0.02 −0.38 ± 0.02 0.52 ± 0.01 11 ± 2 −0.77 ± 0.17 2.6 ± 0.3 −1.55 ± 0.02 0.62 ± 0.01
Lepton 0.45 ± 0.02 −0.21 ± 0.02 0.52 ± 0.01 6 ± 2 −0.76 ± 0.36 2.3 ± 0.5 −1.60 ± 0.04 0.72 ± 0.02
KaonI 0.40 ± 0.03 −0.19 ± 0.03 0.56 ± 0.01 11 ± 3 −0.80 ± 0.35 2.8 ± 0.6 −1.57 ± 0.04 0.78 ± 0.02
KaonII 0.42 ± 0.02 −0.30 ± 0.03 0.55 ± 0.01 9 ± 2 −1.1 ± 0.3 3.2 ± 0.7 −1.55 ± 0.03 0.69 ± 0.02
KaonPion 0.43 ± 0.03 −0.34 ± 0.03 0.54 ± 0.01 11 ± 3 −0.77 ± 0.23 2.4 ± 0.4 −1.54 ± 0.04 0.67 ± 0.02
Pion 0.41 ± 0.02 −0.31 ± 0.03 0.52 ± 0.01 12 ± 2 −0.66 ± 0.28 2.8 ± 0.5 −1.52 ± 0.03 0.68 ± 0.02
Other 0.41 ± 0.03 −0.33 ± 0.04 0.53 ± 0.01 13 ± 4 −1.33 ± 0.20 2.23 ± 0.03 −1.53 ± 0.04 0.66 ± 0.02

K+K−K0
S00

Untagged 0.57 ± 0.05 −0.46 ± 0.05 0.57 ± 0.02 7 ± 3 −0.6 ± 0.8 3.1 ± 1.5 −1.64 ± 0.07 0.57 ± 0.03
Lepton 0.34 ± 0.04 −0.08 ± 0.03 0.47 ± 0.02 0 ± 0 N/A N/A −1.36 ± 0.06 0.82 ± 0.03
KaonI 0.22 ± 0.03 −0.04 ± 0.04 0.47 ± 0.03 0 ± 0 N/A N/A −1.22 ± 0.05 0.93 ± 0.02
KaonII 0.48 ± 0.07 −0.32 ± 0.07 0.56 ± 0.03 6 ± 3 −2.7 ± 2.2 3.8 ± 2.5 −1.5 ± 0.1 0.67 ± 0.04
KaonPion 0.35 ± 0.06 −0.22 ± 0.05 0.49 ± 0.03 5 ± 5 −0.3 ± 1.2 2.0 ± 0.7 −1.38 ± 0.09 0.75 ± 0.04
Pion 0.42 ± 0.08 −0.27 ± 0.08 0.54 ± 0.03 5 ± 4 −0.5 ± 1.1 2.6 ± 1.5 −1.5 ± 0.1 0.68 ± 0.04
Other 0.33 ± 0.07 −0.20 ± 0.07 0.47 ± 0.03 10 ± 10 −1.0 ± 0.6 2.1 ± 0.8 −1.39 ± 0.09 0.71 ± 0.04

Table A.1: PDF parameters for the signal Fisher discriminant distribution.



Appendix B

Fit Correlations

For the whole DP fit, correlation coefficients returned by the fitter between the CP

asymmetry parameters and other important parameters are listed in Table B. Cor-

relations for the low-mass fit were given in Table 4.7.3.
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Table B.1: Correlations among notable floating parameters in the whole DP fit.

Correlation with
Name bK+K−K0 δK+K−K0

cD− −0.035 −0.005
cD−

s
0.025 −0.001

cχc0
−0.039 0.002

ϕχc0
−0.052 0.015

cX0(1550) −0.033 0.022
ϕX0(1550) −0.062 0.013
cf0(980) 0.007 0.026
ϕf0(980) −0.043 −0.011
nSignal,K+K−K0

S+−

0.004 0.007

nSignal,K+K−K0
S00

−0.001 0.000

nSignal,K+K−K0
L

−0.080 −0.016

bK+K−K0 1 0.011
δK+K−K0 0.011 1
cNR,K−K0 0.096 0.029
ϕNR,K−K0 −0.091 0.047
cNR,K+K0 −0.067 0.074
ϕNR,K+K0 −0.115 0.077
cφ 0.055 0.022
ϕφ −0.021 −0.084



Appendix C

Measurement of Accelerator

Parameters

Typically, accelerator physicists learn about the parameters of the accelerator using

instruments such as synchrotron light monitors and beam position monitors placed

around the ring. While some measurements can made during normal running condi-

tions (at high currents), others are restricted to low current or single beam running.

No measurements (aside from basic luminosity measurements) are possible in the

interaction region (IR).

Using the CLEO detector, Cinabro et al. pioneered a technique to measure the

distribution of event vertices at the CESR e+e− collider, and extract various parame-

ters of the accelerator beams [61]. A similar approach was used at the Tevatron [62].

Building on these ideas, we have developed methods to use the large amounts of data

collected by BABAR to measure the beam parameters at the PEP-II IP. In this sec-

tion we focus on the measurement of the vertical luminous size, and the subsequent

extraction of beam parameters.

C.1 Formalism

A complete introduction to the formalism can be found in Ref. [63]. We repeat the

key portions of that reference here.
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Assuming that the particle bunches follow Gaussian distributions, and that there

is no coupling between the transverse dimensions, the particle distribution in a bunch

is

ρb(x, y, z, t) =
Nb

√

(2π)3σxbσybσzb
(C.1)

× exp

[

−(x− x̄b)
2

2σ2
xb

− (y − ȳb)
2

2σ2
yb

− (z − ct)2

2σ2
zb

]

,

where b = + and b = − are associated with the LER and HER, respectively. Nb

is the number of particles in the bunch, the σjb (j = x, y, z) are the transverse and

longitudinal stored-beam sizes, and x̄b and ȳb are the transverse bunch centroids.

The three-dimensional spatial luminosity distribution L(x, y, z), also known as the

luminous ellipsoid, is determined by the time-integrated product of the overlapping

particle densities of the two colliding beams.

The vertical luminous size is defined by

(σyL)2 = y2
L(z) =

∫

y2ρ+ρ−
∫

ρ+ρ−
, (C.2)

which is related to the stored-beam sizes by

σyL =

(

1

σy−2
+

1

σy+2

)−1/2

. (C.3)

A similar expression holds for σxL. σxL and σyL describe the transverse shape of the

luminous ellipsoid (sometimes called the beamspot). In the limit of perfect detector

resolution, they are directly measurable as the transverse Gaussian widths of the

distribution of event vertices.

The transverse beam size σib is given in terms of the beam parameters by

σ2
ib(z) = εibβib(z), (C.4)

where εib is the emittance of the beam and βib(z) is the value of the beam’s β function.
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The emittance is the amount of phase space occupied by the beam, while the β

function is determined by the magnetic optics of the accelerator. The notation β∗
ib

is used to denote the value of the β function at the IP. εy and β∗
y are the principle

quantities that we hope to measure in this analysis.

C.1.1 The Hourglass Effect

In the vicinity of the IP, the e± trajectories are straight lines, and the IP angular

spread σ′
ib (i = x, y) induces a longitudinal dependence of the transverse beam size:

σib
2(z) = σ∗

ib
2 + σ′

ib
2
(z − zwib)

2

where zwib is the longitudinal position of the optical waist, σ∗
ib is the IP spot size, and

σ′
ib =

√

εib
β∗
ib

is the RMS angular divergence. Equivalently,

σib
2(z) = εibβ

∗
ib

(

1 +
(z − zwib)

2

β∗
ib

2

)

. (C.5)

This hourglass effect is noticeable only when β∗
ib is smaller than or comparable to

the bunch lengths. In e± rings this is typically true in the vertical only: σyb(z)

increases with the distance to the waist, while within a few bunch lengths of the IP,

the horizontal beam sizes remain essentially constant (except possibly in the presence

of strong beam-beam effects).

In an asymmetric collider each beam is free to have its own emittance, β-function,

and waist. However, the expression in Eq. C.3 simplifies considerably if we make the

assumptions that the vertical β-functions and the location of the vertical waist are
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the same for the two beams. With these assumptions, σyL(z) is given by

σyL(z) =

√

√

√

√

εy,effβ∗
y

2

[

1 +

(

z − zwy
β∗
y

)2
]

(C.6)

= σyL(z = zwy )

√

1 +

(

z − zwy
β∗
y

)2

, (C.7)

where

εy,eff = 2
εy+εy−
εy+ + εy−

. (C.8)

Our analysis is based on Eq. C.6 — by measuring the left-hand side (the longi-

tudinal dependence of the vertical luminous size), we can extract quantities on the

right-hand side (notably β∗
y and εy,eff).

C.2 Measurement Technique

The measurement of σyL(z) is clearly non-trivial. The value of σyL at the waist is

expected to be 5µm or smaller. This is already small compared to the single-track

vertex resolution of roughly 20µm. To complicate things further, to extract the beam

parameters of interest we must not only measure the average size σyL, but must also

measure the change in this size (O(1µm)) as a function of z.

C.2.1 Event Selection

We use e+e− → µ+µ− events, which are produced and recorded by the BABAR detector

at roughly the same rate as BB events. The preliminary selection keeps only events

with exactly two charged tracks and less than 3 GeV of total energy deposited in the

EMC (to reject Bhabha events). We further require that the dimuon invariant mass

fall in a ±200 MeV/c2 range around the beam energy: 10.38 < mµ+µ− < 10.78 GeV/c2.

The track fit of each muon is done independently. Each fit returns the five helix

parameters of the track as well as an error matrix. These fits are performed in the
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BABAR coordinate system, defined by the DCH. To extract the luminous sizes, the re-

constructed tracks are then translated and rotated into the coordinate system defined

by the luminous ellipsoid as found by the beamspot calibration (the same calibration

used for beamspot-constrained vertexing). The error matrices are transformed ac-

cordingly.

Key observables are shown in schematic form in Fig. C.1. For each track, the point

of closest approach (poca) in the plane transverse to the beam axis is determined as

described above. The distances from the pocas to the beam axis, the distance of

closest approach (doca), are called d1 and d2. Note that d1 and d2 are signed quan-

tities, where the sign depends on the direction of the track relative to the direction

of the beam axis.1 Other relevant helix parameters are the azimuthal angles φ1 and

φ2, and the polar angles measured from the beam axis θ1 and θ2. The z coordinates

z1 and z2 are defined as the value of z along the corresponding track at the point

of closest approach (for z we use the DCH coordinate system, not the coordinates

defined by the luminous ellipsoid). The uncertainties on d1 and d2 are taken from the

error matrices of the track fits, and are called δ1 and δ2. In our notation, we always

refer to the more forward track in the detector as track 1, while the more backward

track is called track 2.

Based on the variables defined above, several additional quantities are defined

for each event. We estimate the doca of the overall event using the average doca of

the two muons, d ≡ (d1 − d2)/2. We also define the “miss distance” m as half the

distance between the pocas in the x-y plane: m ≡ (d1 +d2)/2. Note that m is zero for

a perfectly reconstructed event. The total error on d is estimated by δ ≡
√

δ2
1 + δ2

2/2,

which is mathematically identical to the error on m. We estimate the longitudinal

position of the µ+µ− vertex as a weighted average zv ≡ (z1 tanλ2+z2 tanλ1)/(tanλ2+

tanλ1), where the dip angle λi is given by λi = π/2 − θi. The azimuthal angles for

the two tracks are largely interchangeable (up to a minus sign); for most calculations

we use φ1 (which we will call φ, for simplicity).

The vertex resolution degrades significantly for very forward tracks, so we keep

1More precisely, the doca is positive if −~d × ~t is in the +ẑ direction, where ~d is the vector from
the origin to the track and ~t is the tangent to the track direction [64].
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Figure C.1: Schematic view of two reconstructed muon tracks in the transverse plane.

only those events with cos θ1 < 0.85. To ensure track quality, we require each track to

have at least 20 hits in the DCH and 5 hits in the SVT. We also require that tracks

be back-to-back using the selection cos(φ1 − φ2) > −0.99, although very few events

fail this selection. Taking advantage of the accelerator boost, cosmic ray events are

eliminated by requiring that tan λ1 + tanλ2 > 0.5.

Loose cuts are applied to several of the event variables: we require |d| < 1000µm,

|m| < 200µm, and |zv| < 5 cm. We also cut on the event doca error, requiring

2δ < 35µm. The motivation for this cut is given in detail below.

C.2.2 Resolution

At CLEO, the vertex resolution was found to be independent of the vertex position.

Therefore the resolution could be treated as a constant factor, added in quadrature

with the true luminous region size. Early studies of the vertex resolution at BABAR

made it clear that the vertex resolution is highly correlated with the trajectories of

the tracks in the detector [65]. Therefore, a more sophisticated treatment of the

resolution is required.

The correlation between the resolution and the track geometry is shown in
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Fig. C.2. The doca error δ varies roughly 40% peak-to-peak in an oscillatory manner

as a function of φ1. This variation is partially due to the hexagonal nature of the

SVT (see Fig. 3.4); the resolution is best for tracks hitting the SVT modules at near

normal incidence, where the measurement is made closest to the IP. However, the

structure shown in the figure is mostly caused by the two different readout pitches

used in the φ-strips of Layers 1 and 2 of the SVT (See Tab. 3.2). Regions with a

floating readout strip (known as “skip bonding”) have much poorer resolution than

those with all strips read out. The effects of the quality of the SVT measurement in

Layers 1 and 2 are shown in Fig. C.3.
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Figure C.2: The doca error δ as a function of (left) the azimuthal angle φ1, and (right)
the longitudinal position zv of the µ+µ− vertex, for data (black full circles) and for
simulation (blue open squares). All selection cuts are applied.

Even more critical for the measurement of σyL(z) is the dependence of the res-

olution on z shown in Fig. C.2. The resolution improves by almost 10% for tracks

with positive z compared to those with negative z. We found some indication that

this variation is also associated with the SVT bonding type (as one moves towards

positive z, a higher fraction of tracks hit the areas of the SVT without floating strips).

However we were not able to definitively explain this effect.

The overall conclusion from the variations observed in the resolution is that the
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Figure C.3: Distributions of the track doca error (δ1 and δ2) in data for various
combinations of SVT bonding type in Layers 1 and 2. “Reg” means a hit in an
SVT section with all readout strips used; “Skip” means a hit in a section with a
floating readout strip. The two “misc” categories are groups of various other possible
combinations, including the possibility that the track does not have a hit in a given
layer.
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resolution is extremely complicated, and needs to be accounted for carefully in any

attempt to measure the z-dependence of the luminous size. In the plots shown so

far, we have been using the doca error δ as an estimate of the resolution for one

given event. For an ensemble of events, the width of the miss-distance distribution

provides a direct measurement of the actual resolution in the data. In Fig. C.4,

the width of the miss-distance distribution is plotted as a function of δ. There is a

linear correlation between the two, indicating that δ is a good measure of the vertex

resolution, as expected. However, the slope of the line correlating the two quantities

differs significantly from unity, indicating that a scale factor is needed. Also, we find

that the shape of the miss distance distribution is not a simple Gaussian distribution.
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Figure C.4: Width σm of the miss-distance distribution, as extracted from Gaussian
fits to real (full circles) or simulated (open squares) data, as a function of the doca
error δ. The lines are linear fits to the points.

To model the measured resolution, we introduce a resolution function Rdoca that

incorporates the error estimate δ. Rdoca is the sum of three Gaussian distributions

Gi:
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Rdoca(m) = f1G1(m;µ1(δ), S1(δ)δ) (C.9)

+ f2G2(m;µ2, S2δ)

+ f3G3(m; 0, 62.5µm).

Here the coefficients fi represent the fraction in each component, and are constrained

by f3 = 1 − f2 − f1. The distributions have means µi, and widths that include scale

factors Si. To test the universality of the core scale factor in this resolution model,

we fit the model to data binned in δ, floating only S1 and fixing other parameters

to values determined in a global fit. The results of these fits are shown in Fig. C.5.

We see in this plot that the scale factor is not as universal as we hoped, although at

least in the data sample shown it is fairly constant over some of the range of δ. We

therefore decided to split the core Gaussian parameters (S1 and µ1) by δ, fitting for

independent values of these parameters for 2δ < 25µm and 2δ > 25µm. Also, we

reject events with 2δ > 35µm, as noted in Sec. C.2.1. Using the resolution function

modified with these split parameters, we are able to achieve a good fit to the miss

distance distribution, as shown in Fig. C.6.

Although this parameterization of the resolution gives a good fit to the overall miss

distance distribution, it remains insufficient to fully describe the detector resolution.

In particular, the scale factors vary significantly as a function of the position of the

tracks in the detector. Therefore, our final resolution model is determined in two

steps.

We first determine the fractions fi by fitting a large event sample (a minimum of

one month of data-taking) to the resolution function as described above, including

the splitting of the core mean and scale factor.

In the second step, we split the data in bins of the vertex position zv, azimuthal

angle φ1, and polar angle θ1. In each bin, we refit the miss-distance distribution to

Eq. C.9, with the fractions fi fixed to the values found in the first step and without

splitting µ1 and S1 by the value of δ. This yields the final scale factors Si and means

µi that define the resolution function we will use for extracting the beam parameters.
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Figure C.5: The core scale factor S1 found by fitting the resolution function to data
samples broken into bins of δ. Black points correspond to a data sample, other points
are for two different samples of MC events.
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Figure C.6: Distribution of the miss distance m for a typical data sample. The curve
is the global fit to the resolution function of Eq. C.9, including splitting the core scale
factors as described in the text.
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The result of this procedure is shown in Fig. C.7 for the scale factor S1 of the core

Gaussian, and Fig. C.8 for the tail scale factor S2. Significant variations are seen as a

function of φ1, and on close inspection variations across the other detector coordinates

are apparent as well. As shown in the figures, we divide the detector into 100 bins of

φ1, 3 bins of zv, and 3 bins of cos θ1 for a total of 900 bins.

C.2.3 Fit Procedure

The Gaussian PDF Pdoca that describes the doca distribution, neglecting resolution,

is given by

Pdoca(d, φ, z) = exp

(

−1

2

[d− (y0(z) cosφt − x0 sinφt)]
2

[σyL(z) cos φt]
2 + [σxL sin φt]

2

)

, (C.10)

where the variable φt ≡ φ− txy allows for a global rotation of the luminous ellipsoid

around the beam axis by an angle txy. The constant horizontal size σxL is a free

parameter in the fit, and the vertical size σyL(z) is given by the expression in Eq. C.7.

The parameters x0 and y0 account for medium-term drifts of the luminous centroid.

Recall that we shift reconstructed tracks into a coordinate system determined by

the orientation of the luminous ellipsoid, so in principle x0 and y0 should be zero.

However, we have found in the data that these parameters are often not zero, so we

let them float in the fit. Additionally, we have found that the beamspot calibration

does not have the precision to remove the small vertical tilt of the collision axis, so

we allow y0 to depend on z:

y0(z) = y0(z = 0) + (dy0/dz)z, (C.11)

where y0(z = 0) and dy0/dz are free parameters in the fit.

To extract the IP parameters, we perform an unbinned maximum likelihood fit of

the doca distribution to the convolution of the doca PDF and the resolution function,

Pdoca(d, φ, z) ⊗ Rdoca(d). The parameters of Rdoca(d) are held fixed to the values

determined in the fits to the miss distance distribution described in Sec. C.2.2. There

are 8 floating parameters in the fit: x0, y0(z = 0), dy0/dz, txy, z
w
y , σxL, σyL(z = zwy ),
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Figure C.7: Scale factor S1 of the core component of the resolution function as a
function of φ1, from fits of Eq. C.9 to a representative data sample. The detector is
binned in three bins of cos θ: cos θ1 < 0.65 (top), 0.65 < cos θ1 < 0.75 (center), 0.75 <
cos θ1 < 0.85 (bottom); and three bins of zv: negative zv region (red triangle), central
zv region (black squares), positive zv region (blue triangles), where zv is measured
in detector coordinates and the exact boundaries of each zv region depend on the
data-taking period.
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Figure C.8: Scale factor S2 of the tail component of the resolution function as a
function of φ1, from fits of Eq. C.9 to a representative data sample. The detector is
binned in three bins of cos θ: cos θ1 < 0.65 (top), 0.65 < cos θ1 < 0.75 (center), 0.75 <
cos θ1 < 0.85 (bottom); and three bins of zv: negative zv region (red triangle), central
zv region (black squares), positive zv region (blue triangles), where zv is measured
in detector coordinates and the exact boundaries of each zv region depend on the
data-taking period.
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and β∗
y .

Figure C.9 shows the measured doca distribution, overlaid with the fit results, for

three different cases. A typical data sample is shown on the top; the overall fit result

is shown in blue, while the red curve shows the contribution of the resolution to the

shape of the distribution. The subset of quasi-vertical muons (center) is primarily

sensitive to the horizontal luminous size. The overall fit result for those events is

shown in blue, and the contribution to that curve from the horizontal size only,

ignoring the vertical size and resolution, appears in green: it totally determines the

shape of this distribution. Finally, quasi-horizontal muons (bottom) determine the

vertical luminous size. Here the blue curve is defined as in the other two plots,

while the magenta curve displays the contribution of the vertical luminous-size size

only, ignoring horizontal size and instrumental resolution; the difference between the

blue and magenta curves reflects the combined contributions, for these muons, of the

resolution and of the horizontal luminous size.

As a check on the self-consistency of the fitting procedure, we refit the data in

slices of z. In each slice, we float the σxL and σyL(z = zwy ) parameters, while fixing the

others to the results of the global fit. The results of this check are shown in Fig. C.10,

where the results of the global fit are shown as curves and the results of the binned

fits are shown as points. The vertical hourglass shape is apparent, and the horizontal

luminous size is consistent with a constant. The hourglass shape is highly reproducible

from one dataset to the next. In some data samples (including the one shown) the

horizontal points show a hint of a linear slope or hourglass shape, but this behavior

is not consistent when examined over many samples. Both the hourglass effect and

the dynamic-β effect could introduce longitudinal variations in the horizontal size,

but neither effect is expected to be large enough to be seen clearly in the data. We

experimented with fitting for β∗
x but found the results to be unconvincing. (Note

that these fits were also unrealistic because they assumed β∗
x− = β∗

x+, a reasonable

assumption for the vertical but not for the horizontal.)

The values of β∗
y and σyL (z = zwy ) are highly correlated in the fits. Figure C.11,

which shows the error contours for the aforementioned parameters for a typical fit,

illustrates this correlation.
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Figure C.9: Measured distribution of d, the distance of closest approach to the beam
line, for a typical data sample. Top: all muons; center: quasi-vertical muons (π/4 <
|φ1| < 3π/4); bottom: quasi-horizontal muons (|φ1| < π/4, |φ1 − π| < π/4). The
points are the data; the curves are described in the text.

C.2.4 Fit Validation

Initial fit validation is provided by pure toy experiments, where the miss distance

and doca distributions are generated using the PDFs. For these tests, the resolution

function is generated and fit using the simpler resolution model (no detector bins) used

in the first step of the data fitting. Toy results are shown in Fig. C.12. A small (but

significant) bias is seen for β∗
y , and the error also appears somewhat underestimated.

Other parameters are consistent with no bias (including those not shown here). In

both data and toys we notice that the error on β∗
y is highly correlated with the value
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of β∗
y determined in the fit. A higher value of β∗

y corresponds to a less noticeable

hourglass shape, which translates into a higher error on β∗
y .

Further fit validations are performed using MC samples, which are more useful

for testing the complicated resolution modeling used for data. In a first step, ten

different simulated data samples were produced, with generated σyL values ranging

from 2 to 20µm but constant with z (i.e. ignoring the hourglass effect). Comparing

the “measured” vertical luminous size returned by the fit (σyLfit) to its “true” value

(σyLgenerated) reveals a systematic bias. As shown in Fig. C.13, a simple fit to the

function σyLfit =
√

σyLgenerated
2 + σyLbias

2 yields σyLbias = 2.0 ± 0.3µm. The source

of this effect remains unknown, and a z-independent 2µm subtraction is applied in

quadrature to all subsequent σyL fit results (including those already shown, such

as in Fig. C.10). Although this bias correction is strictly empirical, this approach

yields vertical luminous-size measurements that are fairly consistent with those of an

independent method (the “Boost” method of Ref. [63]).

In a second step, simulated dimuon samples were generated using realistic emit-

tance values and vertical-hourglass parameters, and analyzed using a procedure iden-

tical to that applied to real data. The results of this validation are presented in

Table C.1. The fitted values of β∗
y agree with the generated input within statistical

errors. The fitted values of σyL(z = zwy ) are somewhat high. If we allow the bias

correction parameter, nominally fixed to 2µm, to float and instead fix σyL(z = zwy )

to the generated values, we find that in these samples the fit prefers a bias correction

of about 3µm, but that β∗
y agrees less well with the generated values (it is too small).

Therefore we leave the bias correction set to 2µm, but use 1µm as the estimated

error on the bias correction (as opposed to the smaller error noted above).

The more complicated treatment of the resolution, with resolution function pa-

rameters determined independently in bins of detector position, was found to cor-

rect biases in fits to MC samples. Using the simpler resolution model with no di-

rect dependence on detector position, we found txy = 4.4 ± 0.9 mrad (4.9σ off) and

zwy = −1.4 ± 0.2 cm (2.5σ off) in a fit to Sample 1 of Tab. C.1. These biases seemed

to point to inadequate modeling of the resolution, and in fact they disappear when

fitting with the more complicated resolution function.
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Table C.1: Fit results on simulated event samples. The errors are statistical only.
Parameter Generated Fit result

Sample 1: 1,172,222 events
β∗
y+ =β∗

y− (cm) 1.21 1.16 ± 0.13
σyL (z = zwy ) (µm) 3.25 3.55 ± 0.17
zwy (cm) -0.9 −0.99 ± 0.08
txy (mrad) 0 0.33 ± 0.54
σxL (µm) 75.76 76.26 ± 0.06

Sample 2: 1,336,813 events
β∗
y+ =β∗

y− (cm) 0.80 0.88 ± 0.07
σyL (z = zwy ) (µm) 2.64 3.12 ± 0.15
zwy (cm) -0.9 −0.84 ± 0.06
txy (mrad) 0 0.11 ± 0.51
σxL (µm) 75.76 76.17 ± 0.06

C.2.5 Systematic Uncertainties

The main source of systematic uncertainty is the ∼ 2µm bias correction, which

because of the intrinsic correlation between σyL (z = zwy ) and β∗
y , affects both of

these parameters. We estimate this uncertainty by varying the correction by ±1µm

and refitting the data.

We use a standard BABAR procedure for estimating uncertainties due to possible

misalignment of the SVT. Simulated events are reconstructed using a variety of align-

ment configurations that purposely introduce errors in the alignment. We then repeat

fits to these samples to estimate the uncertainty introduced by alignment errors. This

method is intended to set an upper limit on the possible error. We find that in the

worst case, misalignment increases the measured values of β∗
y by about 20% and of

σyL (z = zwy ) by about 30%. We found that the effects of misalignment are largely

absorbed by the floating x0 and y0 parameters in the fit.

Additional systematic errors could be introduced by short-term drifts of the trans-

verse luminous centroid, that would remain unaccounted for by the medium-term

average parameters x0 and y0. For instance, rapid variations in the actual vertical

centroid could, if large enough, bias the σyL and β∗
y measurement. We have studied
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several weeks of data, binned in one-day intervals, and concluded that the trans-

verse centroid motion is typically slow enough and small enough for the associated

systematic errors to be neglected.
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Figure C.10: Measured z-dependence of the vertical (top) and horizontal (bottom)
luminous size, extracted from a sample of 8.5 × 105 e+e− → µ+µ− events collected
over ten days in December 2003. The lines show the result of the simultaneous fit to
all events; the points with error bars result from fitting the data separately in each z
bin.
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Figure C.11: The inner, center, and outer curves show the boundaries of the 1, 2, and
3 σ regions allowed by the fit around the central value indicated by a cross. These
results are from a typical fit to the data. The allowed regions are tilted due to the
correlation between β∗

y and σyL (z = zwy ).
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Figure C.12: Results of toy beam parameter fits. The upper left plot shows the
distribution of fit values of β∗

y , for a generated value of β∗
y = 1.1 cm. The upper

right plot shows the resulting distribution of pulls for β∗
y . The lower plots show pull

distributions for (left) σyL (z = zwy ) and (right) σxL.
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Figure C.13: Difference between the fitted and the generated values of σyL in simu-
lated event samples generated with no hourglass effect. The curve fitted to the data
points provides a parameterization of the measurement bias.
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C.3 Fit Results

A complete history of the beam parameters for Runs 1-6 is given in Figures C.14-

C.19. Figures C.14, C.15 and C.19 show a second set of error bars for a subset of the

points (Run 5). For these points the inner error bar reflects the statistical error while

the outer error bar shows the quadrature sum of the statistical and systematic error,

where the systematic error is found by varying the bias correction. Other errors are

statistical only.

Fig. C.14 includes a set of points reflecting independent measurements of β∗
y per-

formed by accelerator physicists using measurements of the accelerator phase-advance

at low current. We find values of β∗
y that agree remarkably well with these measure-

ments. In Ref. [63], we present two additional methods of extracting β∗
y from BABAR

events. These methods are independent of each other and this method, and have

different systematic uncertainties. Both of these methods consistently give somewhat

higher values for β∗
y than the method presented here (and thus have worse agreement

with the accelerator-based method shown in the Figure). This discrepancy is not

fully understood. One possibility is the impact of non-negligible x-y coupling. As

discussed in [63], we studied the impact of coupling on all three analyses using sim-

ulations, and found that the method shown here was the least sensitive to coupling,

while for the “Boost” method coupling increased the measured value of β∗
y by several

millimeters. However, the third method (involving the measurement of the longitu-

dinal distribution of luminosity, denoted dL/dz) was only slightly more sensitive to

coupling than this method, and found measurements of β∗
y in agreement with the

Boost method. Therefore, coupling does not provide a clear explanation for the dis-

crepancies between measurements. Another possibility is that the bias correction in

this analysis is overestimated, which would cause this method to underestimate the

value of β∗
y . However, reducing the bias correction would increase the discrepancy,

discussed below, between this analysis and the Boost method in measurements of

σyL(z = zwy ). The small bias (around 1 mm) found on β∗
y in pure toys (Fig. C.12) has

the wrong sign to account for the disagreement. Measurements of σyL(z = zwy ), shown

in Fig. C.15, range from 2 to 6µm. As shown in Ref. [63], these measurements are



C.4. CONCLUSION 171

consistently higher than those found using the Boost method. A larger bias correction

could alleviate this discrepancy, but would worsen the discrepancy in β∗
y noted above.

Again, the source of the disagreement is not certain, but could be due to coupling or

a combination of factors.

Figure C.16 shows the results for σxL. After a gentle decline over the first two

Runs, σxL decreased notably in the spring of 2003, when the horizontal tunes of

both rings were moved close to the half-integer. A horizontal size of about 65µm,

with fluctuations of several microns, was maintained for the rest of the running. The

global beamspot tilt txy is shown in Fig. C.17, and tn location of the optical waist

zwy is shown in Fig. C.18. The waist position is measured in the detector coordinate

system, and is in rough agreement with independent measurements [63].

The effective vertical emittance, shown in Fig. C.19, is extracted by the fit results

for β∗
y and σyL(z = zwy ). The results range from 2-5 nm rad, approximately consistent

with the design goal of 2-3 nm rad. Again, the values found here are consistently

larger than those found using the Boost method. This discrepancy could be due to

an underestimated bias correction, or the effect of x-y coupling [63].

C.4 Conclusion

Expanding on work done at previous accelerators, we have developed a novel technique

for measuring the IP parameters at PEP-II using the BABAR detector. A sophisticated

treatment of the detector resolution is required in order to measure the vertical size

of the luminous region with a detector whose resolution is several times larger. We

extract results for nearly the entire history of PEP-II operation. The results are

in approximate agreement with independent methods, although some discrepancies

remain. These disagreements may be due to residual biases in the measurement

techniques, unmodeled accelerator physics effects, or a combination of the two.
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Figure C.14: Fit results for β∗
y for Runs 1-6. Red circles are independent measure-

ments made using the accelerator phase-advance.
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Figure C.15: Fit results for σyL(z = zwy ) for Runs 1-6.



174 APPENDIX C. MEASUREMENT OF ACCELERATOR PARAMETERS

 Jan
2000

 Jul
2000

 Dec
2000

 Jul
2001

 Dec
2001

 Jul
2002

 m
]

µ [
xLσ

60

70

80

90

100

110

120

130

 Jan
2003

 Apr
2003

 Jul
2003

 Oct
2003

 Jan
2004

 Apr
2004

 Jul
2004

 Oct
2004

 m
]

µ [
xLσ

60

70

80

90

100

110

120

130

 Dec
2004

 Jul
2005

 Dec
2005

 Jul
2006

 Jan
2007

 Jul
2007

 Jan
2008

 m
]

µ [
xLσ

60

70

80

90

100

110

120

130

Figure C.16: Fit results for σxL for Runs 1-6.
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Figure C.17: Fit results for txy for Runs 1-6.
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Figure C.18: Fit results for zwy for Runs 1-6.
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Figure C.19: Results for εy,eff for Runs 1-6, extracted from the fit results for β∗
y and

σyL(z = zwy ).
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