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Abstract

In this analysis the decay B− → D∗0e−νe is measured. The underlying data sample consists of
about 226 million BB-pairs accumulated on the Υ (4S) resonance by the BABAR detector at the
asymmetric e+e− collider PEP-II. The reconstruction of the decay uses the channels D∗0 → D0π0,
D0 → K−π+ and π0 → γγ. The neutrino is not reconstructed. Since the rest frame of the B
meson is unknown, the boost w of the D∗0 meson in the B meson rest frame is estimated by
w̃. The w̃ spectrum of the data is described in terms of the partial decay width dΓ/dw given by
theory and the detector simulation translating each spectrum dΓ/dw into an expectation of the
measured w̃ spectrum. dΓ/dw depends on a form factor F (w) parameterizing the strong interaction
in the decay process. To find the best descriptive dΓ/dw a fit to the data determines the following
two parameters of dΓ/dw: (i) F (1)|Vcb|, the product between F at zero D∗0-recoil and the CKM
matrix element |Vcb|; (ii) ρ2

A1
, a parameter of the form factor F (w). The former parameter scales

the height of dΓ/dw and ρ2
A1

varies the shape of it. The determined values of F (1)|Vcb|, ρ2
A1

and
B
(
B− → D∗0e−νe

)
are

F (1)|Vcb| = (35.8± 0.5 ± 1.5 )× 10−3,

ρ2
A1

= (1.08± 0.05± 0.09) and

B
(
B− → D∗0e−νe

)
= (5.60± 0.08± 0.42)%,

where the uncertainties are statistical and systematic, respectively. The value of B
(
B− → D∗0e−νe

)
has been determined by an integration of dΓ/dw over the allowed w range using the fitted values
of F (1)|Vcb| and ρ2

A1
.

Kurzfassung

In dieser Analyse wird der Zerfall B− → D∗0e−νe gemessen. Der zugrundeliegende Datensatz
umfasst ca. 226 Millionen BB-Paare, die im Prozess Υ (4S) → BB am asymmetrischen e+e−-
Speicherring PEP-II erzeugt und vom BABAR-Detektor gemessen wurden. Der analysierte Zerfall
wird in den Kanälen D∗0 → D0π0, D0 → K−π+ und π0 → γγ rekonstruiert. Das Neutrino wird
nicht rekonstruiert. Da das B-Ruhesystem unbekannt ist, muss der Boost w vom D∗0-Meson im
B-Ruhesystem durch w̃ abgeschätzt werden. Das w̃-Spektrum der Daten wird beschrieben durch
die aus der Theorie bekannte partielle Zerfallsbreite dΓ/dw und durch die Detektorsimulation, die
jedes dΓ/dw in eine Erwartung für die gemessenen w̃-Spektren übersetzen kann. dΓ/dw hängt von
einem Formfaktor F (w) ab, welcher die starke Wechselwirkung im Zerfallsprozess parametrisiert.
Um das am besten beschreibende dΓ/dw zu finden, bestimmt eine Funktionsanpassung an die
Daten folgende zwei Parameter von dΓ/dw: (i) F (1)|Vcb|, das Produkt zwischen F bei minimalem
D∗0-Rückstoß und dem CKM-Matrixelement |Vcb|; (ii) ρ2

A1
, ein Parameter des Formfaktors F (w).

Der erstgenannte Parameter skaliert die Höhe von dΓ/dw und ρ2
A1

variiert die Form. Für F (1)|Vcb|,
ρ2

A1
und B

(
B− → D∗0e−νe

)
wurden die Werte

F (1)|Vcb| = (35.8± 0.5 ± 1.5 )× 10−3,

ρ2
A1

= (1.08± 0.05± 0.09) und

B
(
B− → D∗0e−νe

)
= (5.60± 0.08± 0.42)%

bestimmt, wobei die Unsicherheiten statistisch und systematisch sind. Der Wert für
B
(
B− → D∗0e−νe

)
ist aus der Integration von dΓ/dw über den erlaubten w-Bereich unter Be-

nutzung der gefundenen Werte für F (1)|Vcb| und ρ2
A1

bestimmt worden.
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Chapter 1

Outline

Chapter two and three help to understand the environment which this work is embedded in. The
environment regarded from a theoretical point of view is given in chapter two. It contains a brief
introduction to the Standard Model of Particle Physics with focus on the coupling between quarks
and the W boson. And it derives a description for the signal decay B− → D∗0e−νe in the framework
of Heavy Quark Effective Theory. The experimental situation is summarized in chapter three. The
storage ring and the B-meson generation are described briefly – the main focus of chapter three
is set on structure, functionality and performance of the BABAR detector. The chapters four and
five are the largest. They describe the entire machinery necessary to obtain the quantities of
interest from the data. Starting point is the definition of tracks and clusters from the detector
response to charged and neutral particles. Based on a set of simulated physics events the selection
cuts are developed with the aim to enhance the fraction of B− → D∗0e−νe events. Chapter four
also contains detailed discussions about variables discriminating signal and background, and about
variables interesting for the theoretical description of the signal. In chapter five the step-by-step
composition of a fit function is documented. At the end of the chapter there is a fit procedure
directly applicable to a signal-enhanced sample. Before the result of the fit on data is presented
in the second part of chapter six, a validation of the fit procedure preludes chapter six. Extensive
checks on the systematic uncertainties are documented in the seventh chapter. In the last chapter
all results are summarized. The document closes with a comparison to former measurements.
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Chapter 2

Theory

2.1 The Standard Model of Particle Physics

The Standard Model of Particle Physics (SM) summarizes today’s knowledge of the fundamental
particles. It is a quantum field theory and a gauge field theory describing three of the currently
known four fundamental interactions, namely the strong, the weak and the electromagnetic inter-
action. A higher theory additionally describing the gravitational interaction is searched but its
formulation is not yet successful. The consideration of symmetries was essential for the creation of
the SM. Emmy Noether is one of the pioneers of the symmetry considerations. In 1918 she proved
that there are conserved observables for each of nature’s symmetries. A very important symmetry
of the SM is the SU(3)C ×SU(2)L×U(1)Y gauge symmetry leading to the three fundamental SM
interactions. The subscripts C, L and Y indicate that the SU(3) gauge symmetry appears within
the group of Color-charged particles, the SU(2) gauge symmetry leads to the coupling between
Left-handed fermions and the U(1)Y gauge symmetry is not the electromagnetic U(1)Q gauge
symmetry but is related to the weak hypercharge Y.

The fundamental particles of the SM are ordered into three families (also called generations)
of fermions and 12 bosons for the mediation of the interaction between the fermions (see table 2.1
and 2.2). All fermions have a spin s = 1

2 whereas the bosons have integer-spin. The fermions build
up the visible matter known to us 1 and for each particle there is also a corresponding anti-particle
with opposite intrinsic parity. Each fermion family contains two flavors of quarks and two flavors
of leptons, and all of them have been observed experimentally. The quarks (u, d, s, c, b, t) are the
only strongly-interacting fermions; the left-handed parts of all fermions participate in the weak
interaction; and all fermions beside the neutrinos (νe, νµ, ντ ) interact electromagnetically. The
three generations of fermions appear to be equal in all of their quantum numbers2 and to differ
only in their masses. The increase of the fermion masses from one generation to the next is called
the mass hierarchy of the SM. Each particle of the first family has a heavier partner in the second
family and a still heavier copy in the third family. Within the SM the neutrinos were handled as
massless particles for a long time. Since the ’Solar Neutrino Problem’ observed by the Homestake
experiment has been solved by finding consistency between a neutrino oscillation model and the
data of the Super-Kamiokande experiment we know that also neutrinos have masses [1, 2].

1Since the results of the WMAP experiment[3] we assume that SM matter make only about 4% of the entire
mass of the universe and that the remaining 96% are made of dark matter (23%) and dark energy (73%), both not
explained by the SM.

2exactly spoken: all of their quantum numbers except strangeness, charm, beauty and topness
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2.1. The Standard Model of Particle Physics

Table 2.1: Fermions of the SM together with their quantum numbers and the underlying gauge symmetries.
Subscripts L and R denotes left- and right-handed fields, respectively. The listed quantum numbers are
the weak isospin (T ), the third component of the weak isospin (T3), the weak hypercharge (Y ), the elec-
tric charge (Q) and the color charge (C). The electric charge Q is a dependent quantum number, Q = T3+Y .

interaction→ electroweak strong
gauge group→ SU(2)L × U(1)Y SU(3)C

quantum number→ T T3 Y Q C
quarks:

+1/2 +2/3
Q1 =

(
u
d′

)
L

Q2 =
(

c
s′

)
L

Q3 =
(

t
b′

)
L

1/2 −1/2
+1/6 −1/3

uR cR tR 0 0 +2/3 +2/3
r,g,b

dR sR bR 0 0 −1/3 −1/3
leptons:

+1/2 0
L1 =

(
νe

e

)
L

L2 =
(

νµ

µ

)
L

L3 =
(

ντ

τ

)
L

1/2 −1/2
−1/2 −1 white

eR µR τR 0 0 −1 −1
νeR νµR ντ R 0 0 0 0

Table 2.2: The gauge bosons in the SM.
interaction mediating gauge boson
electromagnetic γ (photon)
weak W+,W−,Z0

strong g1, . . . , g8 (gluons)

A very important part of the SM concerns the masses of all fermions and the masses of the
only massive interaction bosons W+, W− and Z0. The SM-Lagrangian’s mass terms describing
the fermion masses have the structure mf Ψ̄fΨf , where mf and Ψf are the mass and the Dirac-
spinor of the fermion f , respectively. Because a simple by-hand-addition of the mass term to the
Lagrangian would destroy the local SU(2) gauge invariance one needs a more tricky way to obtain
mass terms. The SM solution of the problem is the Higgs mechanism named after Peter Higgs
who first suggested this mechanism [4]. It introduces a scalar, weakly-interacting Higgs-doublet
with a potential allowing for spontaneous breakdown of the SU(2)L × U(1)Y symmetry. However,
the Higgs-Boson defined within this mechanism is not yet observed experimentally. The main
goal of the soon starting LHC3-experiments is to compare the Higgs mechanism’s predictions with
the measurements in order to verify or to rule out the Higgs mechanism. The observation of the
Higgs-Boson is the central point for the verification.

2.1.1 The Electroweak Interaction and the Higgs Mechanism

The unification of the electromagnetic and the weak interaction to the so-called electroweak inter-
action is mainly attributed to Glashow, Weinberg and Salam (see Nobel lectures [5, 6, 7]). Their
theory unifies the SU(2)L gauge group with the U(1)Q gauge group to the SU(2)L × U(1)Y elec-

3LHC is an abbreviation for the Large Hadron Collider currently under construction at the Conseil Européen pour
la Recherche Nucléaire (CERN).

3



Chapter 2. Theory

troweak gauge group. If the fundamental gauge fields of SU(2)L are W1, W2 and W3 and that of
U(1)Y is B then the physical fields of the electroweak interaction are given by

W± =
1√
2

(W1 ∓ iW2)

Z = cos θW W3 − sin θW B (2.1)
A = sin θW W3 + cos θW B ,

where θW is the Weinberg angle, sin2 θW ≈ 0.231 [8]. The Lagrangian’s electroweak interaction
term LEW between the gauge bosons and the fermions is divided into a charged current part
LCC (describing the coupling of W+ and W− to the fermions) and a neutral current part LNC

(describing the coupling of fermions to the Photon field A and the Z), LEW = LNC + LCC . The
charged current part is divided into a leptonic part, Ll

CC , and a quark part, Lq
CC :

LCC = Lq
CC + Ll

CC (2.2a)

Lq
CC = − 1√

2
g
(
u′Liγ

µd′LiW
+
µ + d

′
Liγ

µu′LiW
−
µ

)
(2.2b)

Ll
CC = − 1√

2
g
(
ν̄Liγ

µeLiW
+
µ + ēLiγ

µνLiW
−
µ

)
. (2.2c)

In these equations, g is the weak coupling constant, the prime ( ′) denotes a quark state to be the
eigenstate of the electroweak interaction (in contrast to the mass eigenstate) and the index i runs
over the families (i = 1, 2, 3). The ui and the di are the up-type and the down-type quark states,
respectively, with u = (u, c, t) and d = (d, s, b). The corresponding symbols in the leptonic part, νi

and ei, denote the neutrino and the charged lepton states, respectively, with ν = (νe, νµ, ντ ) and
e = (e−, µ−, τ−). The index L indicates an fermion state f to be the left-handed part fL of the
fermion,

fL =
1− γ5

2
f with f = ui, di, ei, νi (i = 1, 2, 3). (2.3)

Two further important terms of the SM-Lagrangian are the Higgs term LHiggs and the Higgs-
fermion-coupling Yukawa-term LY . Both terms contain the weak interacting Higgs-doublet Φ =(
Φ1

Φ2

)
. The Higgs term is given by

LHiggs = (∂αΦ†)(∂αΦ) + V (Φ) , with V (Φ) = −µ2Φ†Φ + λ2
(
Φ†Φ

)2
. (2.4)

Due to µ2 > 0 and λ2 > 0 the potential V (Φ) has a Mexican Hat shape resulting in a non-zero
vacuum expectation value with

√
Φ†Φ = v√

2
= µ√

2λ
for the ground state of Φ. The Yukawa-term LY

describes the coupling of left-handed fermion-doublets, Higgs-doublet and right handed fermions,
where the fermions are either leptons or quarks. In the end LY produces the mass terms in the
SM-Lagrangian. With Φ̃ =

(
Φ2

−Φ∗
1

)
, the Lagrangian LY is given by

LY = Lq
Y + Ll

Y with (2.5a)

Lq
Y = −Λu

ijQ̄
′
LiΦ̃u′Rj − Λd

ijQ̄
′
LiΦd′Rj + (h.c.) and (2.5b)

Ll
Y = −Λe

ijL̄LiΦeRj − Λν
ijL̄LiΦνRj + (h.c.) (2.5c)

The fermion doublets QLi and LLi are defined in table 2.1. Λe
ij , Λν

ij , Λu
ij and Λd

ij are the Yukawa
coupling constants which are in general complex numbers. They are the only source of CP violation
in the SM.

4



2.1. The Standard Model of Particle Physics

The remaining part of this section focuses on the quark sector. Only at the end of this section a
short comment to the difference between equation 2.5b and 2.5c is appended. After the spontaneous
symmetry breaking the Higgs-doublet can be written as

Φ(x) =
1√
2

(
0

v + h(x)

)
. (2.6)

Thereby the Yukawa term from equation 2.5b simplifies to

Lq
Y = Lq

mass + Lq
h(x) (2.7)

Lq
mass = −mu

iju
′
Liu

′
Rj −md

ijd
′
Lid

′
Rj + h.c. (2.8)

with
mu

ij = Λu
ij

v√
2

md
ij = Λd

ij

v√
2

(2.9)

and Lq
h(x) containing interaction processes between quarks and the effective Higgs-field h(x). By

unitary transformation matrices V u
L, V u

R, V d
L and V d

R one can diagonalize the mass matrices mu

and md:

(V u
L)†muV u

R =

 mu 0 0
0 mc 0
0 0 mt

 , (V d
L)†mdV d

R =

 md 0 0
0 ms 0
0 0 mb

 . (2.10)

Because there are no restrictions to the choice of the mass matrices mu and md the diagonalizing
matrices for up-type and down-type quarks are, in general, different

V u
L 6= V d

L , V u
R 6= V d

R . (2.11)

The electroweak interaction eigenstates u′i (d′i) and the mass eigenstates ui (di) are related by

u′Li = V u
LijuLj d′Li = V d

LijdLj

u′Ri = V u
RijuRj d′Ri = V d

RijdRj . (2.12)

The transformation of equation 2.2b to an expression with mass eigenstates instead of weak inter-
action eigenstates results in

Lq
CC = − 1√

2
g
(
uLiγ

µVijdLjW
+
µ + h.c.

)
, (2.13)

where the appearing matrix V = (Vij) is defined by

V = (V u
L)†V d

L . (2.14)

V is called Cabibbo-Kobayashi-Maskawa matrix (CKM matrix) and is discussed in more detail in
the next section.

But what happens to LNC after the renotation using the mass eigenstates instead of the in-
teraction eigenstates? In case of Lq

CC it was just shown that the diagonalizing matrices appear
within the charged current interaction term Lq

CC . The situation is different for the neutral cur-
rent interaction term LNC . In LNC the renotation ends with the cancellation of the diagonalizing
matrices.
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2.1.2 The CKM Matrix

The matrix V from equation 2.13 transforms down-type quarks from a basis of mass eigenstates
to a basis of weak interaction eigenstates:4 d′

s′

b′


L

=

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


︸ ︷︷ ︸

=V

 d
s
b


L

. (2.15)

In honor for its originators it is called Cabibbo-Kobayashi-Maskawa matrix (CKM matrix). In
1973 Kobayashi and Maskawa extended Cabibbo’s idea of quark mixing from two families to three
families[9, 10] in order to explain the CP violation observed in the neutral kaon system in 1964 [11].
As is shown below, the three-family-mixing-mechanism leads to non-removable complex elements
of V responsible for SM CP violation. In the two-family-case the matrix could be written without
complex elements and therefore would not cause CP violation. The idea of Kobayashi and Maskawa
successfully predicted an entire third family at a time when even the first two families were not
completely experimentally observed.

Let us now study the structure of the CKM matrix. Because V is a complex 3 × 3 matrix it
could contain eighteen real parameters. But these parameters can not be completely independent
because V is a product of unitary matrices and therefore has to be unitary itself:

V †V = 1, (2.16)

or in index notation
3∑

k=1

VkiV
∗
kj = δij for i, j = 1, 2, 3 . (2.17)

The former equation sets nine constraints to the eighteen elements. That leaves V with nine
independent parameters which can be implemented as three mixing angles and six phases. Consider
now the transformation

V →

 e−iαu
1 0 0

0 e−iαu
2 0

0 0 e−iαu
3

V

 eiαd
1 0 0

0 eiαd
2 0

0 0 eiαd
3

 (2.18)

with the real numbers αq
i . On the one hand it leaves the Lagrangian LCC of equation 2.13 invariant

because it is equivalent to the allowed redefinition of quark phases,

qj → eiαq
j qj (q = u, d; j = 1, 2, 3) . (2.19)

On the other hand the phase differences among the eiαq
j terms can be chosen so that the transfor-

mation 2.18 eliminates five of the six independent phase parameters of V . A further simplification
of V is not possible so that it retains four parameters: three angles and one phase which, if not
equal to zero or π, forbids that V has a representation with only real elements.

4As one can see by equation 2.13 this is equivalent with transforming the up-type quarks by the matrix V †.
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2.1. The Standard Model of Particle Physics

The Standard Representation of V [8] is constructed by three real rotation matrices with the
phase parameter additionally inserted in one of them:

V =

 1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
−s13e

−iδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1


=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 . (2.20)

All factors are unitary, so the product V is also unitary. The matrix contains only the mixing
angles θ12, θ23, and θ13 and the Kobayashi-Maskawa-phase δ. Together, they are four of the 25
independent parameters of the SM. The used abbreviations for equation 2.20 are cij = cos θij and
sij = sin θij .

To understand the representation of V suggested by Lincoln Wolfenstein [12] one firstly needs
to know the approximate size of the CKM matrix elements. Measurements show that their order
of magnitude can be expressed by powers of λ, with λ = sin θ12:

• The diagonal matrix elements are of order one (∼ λ0).

• The off-diagonal elements |Vus| and |Vcd| are of order 0.227 (∼ λ1).

• The off-diagonal elements |Vcb| and |Vts| are of order 0.040 (∼ λ2).

• The remaining elements |Vub| and |Vtd| are of order 0.005 (∼ λ3).

The Wolfenstein approximation [12] exploits this natural hierarchy in the size of matrix elements
and with the definitions

sin θ12 = λ , (2.21a)

sin θ23 = λ2 A and (2.21b)

sin θ13 eiδ = λ3 A(ρ + iη) (2.21c)

it is given by

V =

 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) . (2.22)

This parametrization is obtained by expansions of the cosine terms in the standard representation
(equ. 2.20). In equation 2.22 the expansion is broken off at λ4 terms. The definition of the param-
eter set (λ, A, ρ, η) is divided into one part defining the order-of-magnitude-scale for the matrix
elements (λ) and into another part defining the fine-tuning-parameters for the matrix elements
(A, ρ, η). A and

√
ρ2 + η2 are of order 1. From the numbers of powers in λ one easily gets the

order of magnitude of any CKM term.
A further advantage of the definition of (λ, A, ρ, η) is that the Wolfenstein approximation can

be improved to be accurate up to O(λ6) without big expense [14]. In this case a parameter set
(λ, A, ρ̄, η̄) with ρ̄ = ρ(1− λ2/2) and η̄ = η(1− λ2/2) is used to parametrize V . The approximate
values of the CKM matrix parameters are λ ≈ 0.227, A ≈ 0.818, ρ̄ ≈ 0.221 and η̄ ≈ 0.340 [8].
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Figure 2.1: The Unitarity Triangle.

Relation 2.17 for i 6= j gives three equations, each summing up three complex numbers to
zero. The three equations can be represented by three triangles in the complex plain. Using the
Wolfenstein parametrization (WP) one can easily see by counting of λ-powers that two equations
sum up terms of different magnitude (i = 1, 3; j = 2) whereas one sums up terms of comparable
magnitude (i = 1; j = 3). The latter case in a non-compressed notation reads

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (2.23a)

( in WP: Aλ3(ρ + iη) − Aλ3 + Aλ3(1− ρ− iη) = 0 ) . (2.23b)

After the division of this equation by its second term one obtains

VudV
∗
ub

VcdV
∗
cb

+ 1 +
VtdV

∗
tb

VcdV
∗
cb

= 0 (2.24a)

( in WP: (ρ + iη) − 1 + (1− ρ− iη) = 0 ) . (2.24b)

The corresponding triangle which is shown in figure 2.1 is called the Unitarity Triangle (UT). It
depends only on the CKM parameters ρ and η. The angles of the triangle are given by

α = arg
[
−

VtdV
∗
tb

VudV
∗
ub

]
, β = arg

[
−

VcdV
∗
cb

VtdV
∗
tb

]
and γ = arg

[
−

VudV
∗
ub

VcdV
∗
cb

]
= π−α−β (2.25)

and the side lengths of the triangle can be read from equation 2.24. A very important property
of the UT is that all of its side lengths and angles can be determined from B meson observations
alone [14]. BABAR’s main goal is to perform the necessary measurements as precisely as possible.
This set of measurements could principally be inconsistent with the CKM formalism resulting in a
non-closing UT. The quality of the |Vcb| measurement is important for the determination of ρ and
η since |Vcb| acts as a scale for the two upper UT sides.

More generally spoken: All measurements of CKM matrix elements or combinations of CKM
matrix elements (such as α, β, γ) which are predicted in dependence on the four CKM matrix
parameters help to further constrain λ, A, ρ and η. The measurement of |Vcb| gives constraints
on all CKM terms containing Aλ2-expressions. The current agreement between measurements and
CKM formalism is very good as also shown e.g. by the CKMFitter group [13].
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2.2. The Decay B− → D∗0e−νe

2.1.3 The Strong Interaction

The theory of strong interaction is the Quantum Chromo Dynamics (QCD). It arises from the
SU(3)C gauge symmetry.

The fermions participating in QCD are the quarks. Each quark carries one of three different
strong color-charges which are named red, green and blue. Anti-quarks are charged anti-red, anti-
green or anti-blue. However, color-charged objects have not been observed in nature – only color-
neutral objects were observed. That means that in nature the quarks need to occur in bound white5

states which are named hadrons. The two simplest combinations forming such hadrons are:

qqq: The baryons which bind one red, one green and one blue quark. The most popular represen-
tatives are the proton and the neutron.

qq̄: The mesons which bind a quark q1 and an anti-quark q̄2 carrying the anti-color of q1. Examples
are the π-, K-, D- and B-meson.

Also other compositions with vanishing total color-charge are possible (qqq̄q̄, qqqqq̄, . . . ) but their
existence is not yet clear. The non-existence of free quarks is also called confinement – meant is
the confinement of quarks in hadrons.

The gauge bosons of the strong interaction are called gluons. Due to SU(3) gauge field theory
being a non-abelian theory the eight gluons are color-charged themselves and therefore they are
allowed to couple to each other.

A very important property of QCD is the running of the strong coupling constant αS. At
very high momenta k2 (as can be found at low distances, like in hadrons) the coupling constant
goes to very low values, αS � 1. This feature allows to apply perturbation theory in the high
momentum range and is also known as asymptotic freedom of quarks. The quark-gluon coupling
tends to grow as the momentum scale decreases which results in very strong interactions at energies
below ∼ 0.5 GeV (or distances above the typical hadron dimension of ∼ 1 fm). In contrast to the
high momentum range the perturbation theory can not be applied in this low momentum range.
Alternative methods for the calculation of the interaction processes have to be found.

There are several calculation techniques. Lattice QCD (LQCD) summarizes the procedures to
solve the QCD equations directly and numerically by simulations on a discrete space-time-lattice.
In principle it could reproduce all features of QCD with arbitrary accuracy, but due to its huge
needs of computing power the results have limited precision. The technique called QCD Sum Rules
uses quark-hadron duality to relate hadronic matrix elements to transition amplitudes of quarks
and gluons. The Heavy Quark Symmetry (HQS) exploits symmetries from the limit of infinitely
heavy quarks, namely spin- and flavor-symmetries. For the calculation of QCD-involved Feynman-
diagrams mostly combinations of such techniques are used. For the effective description of exclusive
QCD-involved processes, such as B− → D∗0e−νe, one uses the method of form factors.

2.2 The Decay B− → D∗0e−νe

This section contains the most important considerations and formulas to describe the signal decay
B− → D∗0e−νe. As a motivation of the analysis, subsection 2.2.1 clarifies why semileptonic decays

5In analogy to optical theory, color-neutral objects are white.
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are appropriate to determine |Vcb|. The Heavy Quark Symmetry (HQS) is discussed in subsection
2.2.2 because it is fundamental for the formulas describing the signal decay. Subsections 2.2.3 and
2.2.4 are the core parts of this section, since they derive the partial decay width of the signal decay
and go through the relevant items concerning the form factors used in this analysis.

2.2.1 Why Semileptonic Decays

To extract the values of the CKM matrix elements one needs to analyze processes containing the
coupling of quarks to the W boson. The corresponding Lagrangian Lq

CC was already given in
equation 2.13. For the determination of |Vcb| only the terms VcbcLγµbLW+

µ and V ∗
cbbLγµcLW−

µ

are interesting. At the end of this subsection, it should be clear (i) why semileptonic B decays
are appropriate for the extraction of |Vcb| and (ii) how the strong interaction complicates this
extraction. Figures 2.2a to 2.2d give the outline of the current subsection.

Semileptonic Decay on the Quark Level
If there would be no confinement of quarks in hadrons, |Vcb| could be determined by analyzing
the weak decay of a b quark into a c quark and a lepton pair (see figure 2.2a). The corresponding
formulas describing this decay are simple because there are no strong interaction effects to be taken
into account. The decay amplitude M(b → c`−ν`) would simply be a product of propagator terms
for quarks (Qµ), leptons (Lµ) and W boson (Pµν(q)),

M(b → c`−ν`) = −i
GF√

2
VcbL

µQµ , (2.26)

where

Qµ = cγµ(1− γ5)b , (2.27)
Lµ = ¯̀γµ(1− γ5)ν and (2.28)

Pµκ(q) =
−i(gµκ − qµqκ/M2

W )
q2 −M2

W

≈ i
gµκ

M2
W

. (2.29)

In equation 2.26 the approximation of 2.29 has been used. This approximation is valid for little
momentum transfers qµ from the quark current to the lepton current, q2 � M2

W . In this momentum
range it is common to use the Fermi-constant GF instead of the W mass MW . (Both are connected
by GF /

√
2 = g2/8M2

W .) At the end of this paragraph it should be re-emphasized: There are no
complicated calculations necessary to determine M(b → c`−ν`) because the strong interaction is
neglected. M(b → c`−ν`) is calculable as easy as M(µ− → e−νeνµ) for the muon decay.

Semileptonic Decay on the Hadron Level
However, because there is confinement one has to deal with quarks bound in hadrons and one

has to deal with QCD. There is still the b quark’s semileptonic decay described above, but instead
of an initial b and a final c quark state the decay has to be described in dependence of an initial
Xb and a final Xc hadron state. That is, because the hadrons are the observed particles — not
the quarks. Principally, the translation from the quark-decay-scenario to the hadron-decay-scenario
gives the desired decay amplitudeM(Xb → Xc`

−ν`), but for this translation one needs an exact and
computable description of quarks within hadrons. Unfortunately, the dynamics within hadrons are
given by QCD whose equations are not perturbatively solvable for the quark’s typical momentum
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Figure 2.2: Feynman diagrams for weak decays containing the quark transition b → cW−. The interesting
vertex where Vcb enters the decay is drawn bigger. (a,b) Due to the strong interaction within hadrons,
the theoretical description of B− → D∗0`−ν` is not as simple as the underlying decay on quark level . (c)
In comparison to the semileptonic B decay, there is an additional exchange of gluons within the hadronic
decay B− → D∗0π−. As illustrated by the boldly-drawn gluons , this interaction modifies the coupling
between the fermion currents and finally destroys the factorization of the decay amplitude (see text). (d)
The leptonic meson decay does not have the problems shown in (b) and (c) but its description also depends
on the precision limits of QCD calculations.

range within the hadron. Figure 2.2b shows the semileptonic decay on the hadron level. The
sketched gluons indicate that complicated QCD dynamics are responsible for the b quark state
within the hadron. These gluons destroy the simplicity of the description of the weak decay.

However, the decay Xb → Xc`
−ν` has also pleasant features: The leptonic current coupling to

the W boson does not strongly interact with the hadronic current. Therefore, the QCD calculations
necessary for the quark-to-hadron translation of the weak decay are limited to the hadronic cur-
rent. This feature leaves the product structure of equation 2.26 unchanged and therefore it is also
called factorization of hadronic current (Hµ) and leptonic current (Lµ). For the quark-to-hadron
translation of equation 2.26 one only needs to replace the quark current Qµ by the hadron current
Hµ and obtains

M(Xb → Xc`
−ν`) = −i

GF√
2
VcbL

µHµ , (2.30)

for the amplitude of the Xb decay. The leptonic current is still given by equation 2.28. The hadronic
current Hµ is connected to the quark current Qµ,

Hµ = 〈Xc|cγµ(1− γ5)b|Xb〉 = 〈Xc|Qµ|Xb〉 , , (2.31)

but can not be calculated in a simple manner. The complicated QCD part of Hµ is expressed
by form factors. For the decay B− → D∗0e−νe, where Heavy Quark Effective Theory (HQET) is
applicable, these form factors can be related to each other. This is shown in detail in section 2.2.3.

Weak Hadronic Decay
The replacement of the leptonic current by a second hadronic current illustrates the advantages

11
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of semileptonic decays for the |Vcb| determination (see figure 2.2c). To express the resulting decay
amplitude it is not enough to replace Lµ by a term similar to the Hµ term defined in equation 2.31.
Besides the strong interaction within the hadrons, there is also strong interaction between the two
hadronic currents. This destroys the factorization of the decay amplitude of the weak decay. In
figure 2.2c, this is emphasized by the bold drawn gluon lines.

At this point the importance of semileptonic decays should become clear: There is not only
the advantage to express the decay amplitude M(Xb → Xc`

−ν`) as a product. There is also the
possibility to learn more about the states of quarks in hadrons. In the quark-to-hadron transition
of semileptonic decays, all changes not explained by phase space effects should be assigned to effects
arising from the QCD within hadrons. In contrast to semileptonic decays, within weak hadronic
decays there is the occurrence of strong interaction (i) within each of the hadrons and (ii) between
the hadrons.

Leptonic Meson Decay
For completeness one should mention leptonic meson decays (see figure 2.2d). Are they more
appropriate for the determination of CKM matrix elements since they do not show the disturbing
QCD effects of weak hadronic and semileptonic decays? The difficulties to perform precise QCD
calculations enter also the analyses of leptonic decays. The leptonic decay rate of a meson M is
proportional to f2

M |Vq1q2 |2 where |Vq1q2 | is the corresponding CKM matrix element and fM is the
meson decay constant giving the overlap probability of the quarks q1 and q̄2 within the meson M .
To determine |Vq1q2 | from a measurement of the meson decay rate one has to give an input value
for fM . But this input is (mostly) only available by less-precise QCD calculations. Therefore,
a convincing determination of |Vq1q2 | is not possible from leptonic decays, but there are other
interesting issues for leptonic decays [14].

However, for a determination of |Vcb| from leptonic decays one would need to experiment with
Bc mesons. This is obviously not convenient.

2.2.2 Heavy Quark Symmetry and Isgur-Wise Function

If the b and the c quark masses are much larger then the other constituents of the Xb and the Xc

hadrons, mb ≈ mXb
and mc ≈ mXc , then for an effective description of Xb → Xc`

−ν` one can use
the Heavy Quark Symmetry (HQS). This description is obtained in two steps. Firstly, the hadronic
current Hµ defined in equation 2.31 is regarded in the limit mb,mc → ∞. This leads directly
to the symmetries summarized by the name Heavy Quark Symmetry and to the existence of the
Isgur-Wise function. Secondly, the corrections of HQS due to the finite masses of b and c quarks
are performed by the Heavy Quark Effective Theory (HQET).

Heavy Quark Symmetry
Assuming mb ≈ mXb

and mc ≈ mXc , the essential feature for the description of Xb → Xc`
−ν`

is a separation of the length scales within the hadrons. There are the two scales Rhad and λQ.
The former gives the typical size of a hadron, Rhad ∼ 1/ΛQCD ∼ 1 fm, where ΛQCD is the typical
momentum transfer between the light constituents and the heavy quark Q of the hadron. The
second scale within a hadron, λQ, is the Compton wavelength of the heavy quark. Since its value
is much smaller then the typical hadron size (λQ ∼ 1/mQ ∼ (0.04 . . . 0.1) fm � 1 fm) to resolve the
quantum numbers of the heavy quark would require a hard probe. The gluons exchanged between
the hadron’s light constituents and the hadron’s heavy quark can only resolve distances much larger
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t < t0 t = t0 t > t0

Figure 2.3: The elastic transition of the B meson. After the velocity of the heavy quark (centered dot)
changes at t = t0 the meson’s light degrees of freedom (grey area) have to be rearranged (see text).

then λQ. Therefore, they do not directly interact with the heavy quark but experience its color field
extending over distances large compared to λQ. In fact, only the heavy quark’s electric color field
is important and its relativistic effects such as color magnetism vanish in the limit mQ →∞. Since
the heavy quark spin only participates in interactions through such relativistic effects, it decouples.
Summarizing, one often says that the hadron’s light degrees of freedom are blind to the flavor
(mass) and the spin of the heavy quark. More precisely spoken: In the limit mQ → ∞, hadronic
systems which differ only in the flavor or spin of the heavy quark have the same configuration of
light degrees of freedom. These symmetries are commonly called Heavy Quark Symmetry.

Isgur-Wise Function
The (hadron-internal) strong interaction in the decay Xb → Xc`

−ν` is expressed by form factors
(see section 2.2.3 and [17]). In the HQS limit all of these form factors converge at one single
function, the Isgur-Wise function ξ(v · v′) where v and v′ are the initial and the final four velocity
of the hadron system, respectively, and the product w = v · v′ is the boost of the Xc hadron in the
Xb rest frame. HQS helps to relate the form factors to each other but can not predict their absolute
values. The only known absolute value is that of ξ(w = 1) — a fact playing an important role for
the determination of |Vcb|. At this interesting point in the decay’s phase space (w = 1) the hadron
is minimally disturbed and the normalization of the Isgur-Wise function is given by ξ(1) = 1.

To demonstrate the use and the origin of the Isgur-Wise function it is common to consider
the elastic scattering of a B meson, B(v) → B(v′), induced by a vector current coupled to the b
quark.6 What happens within the B meson during the scattering process? The initial situation
is the following: Due to mb ≈ mB, the b quark and B meson have the same average velocity v.
Therefore, the heavy quark is nothing else but a static source of color charge in the meson rest
frame. The meson’s light degrees of freedom (LDF) orbit around the b quark. At a time t0 the
meson’s heavy quark bv is instantaneously replaced by another b quark (bv′) moving with velocity
v′ (see figure 2.3). For t > t0 the LDF have to interact with a moving color source instead with a
static one. To ’repair’ the meson disordered by the b quark replacement, an exchange of soft gluons
between the heavy quark and the LDF is needed. This exchange re-establishes the old situation
within the B meson, i.e. the LDF within the rest frame of the initial B meson at t < t0 have to
look like the LDF within the rest frame of the final B meson at t > t0. As the difference between v
and v′ grows the probability to successfully rearrange the LDF decreases — there is a form factor
suppression of the elastic scattering. In the HQS limit the probability amplitude ξ of this elastic
scattering is found to depend only on the boost w = v · v′ between the rest frame’s of the initial
and the final B meson. In honor for its originators [15, 16], the probability amplitude ξ(w) is also

6From this point on, the discussion considers only the case where Xb and Xc are mesons (e.g. Xb = B and
Xc = D∗), although it is identical for the baryonic case (such as Xb = Λb and Xc = Λc).
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called the Isgur-Wise function. For v = v′ (which is equal to w = 1) there is no real scattering
process. Thus, the probability of a ’successful rearrangement’ within the B meson should be one,
ξ(1) = 1.

How does these considerations help to describe the process B → D∗`ν`? The conclusions of the
described elastic B scattering do not change . . .

• . . . if the heavy bottom quark bv is replaced by a heavy charm quark cv′ (instead of replacement
by a heavy bottom quark bv′) or

• . . . if an additional spin rotation is performed in the heavy quark replacement, i.e. if the heavy
bottom quark b⇑v with spin up is replaced by the heavy charm quark c⇓v′ with spin down.

These statements are due to flavor and spin symmetry, respectively. Since (i) the replacement of
b⇑v by c⇓v′ transforms the B meson into a D∗ meson and (ii) the vector current giving the kick to the
heavy quark could be a W boson, the conclusions of the elastic B scattering can directly be applied
to the decay B → D∗`ν`. All of these statements are only true in the HQS limit, i.e. mb, mc →∞.

Heavy Quark Effective Theory
Since the b and the c quark mass are finite, it is not correct to describe the meson in the HQS
limit. But it can be described by means of an effective theory where the HQS is broken. Within
the framework of this theory it should be easy to examine the limit mb, mc → ∞ and to use the
existence of the Isgur-Wise function in this limit. Such a theory is called Heavy Quark Effective
Theory (HQET). HQET systematically expands the QCD Lagrangian in terms of ΛQCD/mQ and
in terms of αs(mQ) where mQ = mb or mc, and αs is the strong coupling constant. The HQS-
breaking correction terms αn

s (mQ) can be calculated order by order by perturbation theory, whereas
the determination of the terms (ΛQCD/mQ)n is more difficult. Section 2.2.4 contains a discussion
of these corrections.

2.2.3 The Partial Decay Width of B− → D∗0e−νe

Usually, the amplitude of a process X → Y W± is expressed by the four-momentum transfer
q2 = (pX − pY )2, where pX and pY are the four momenta of the fermions X and Y coupling to the
W boson. However, for the HQET description of Xb → Xc`

−ν` it is more convenient to use the four
velocities of the Xb hadron (v) and the Xc hadron (v′) instead of their corresponding momenta.
This statement becomes plausible if one argues like this: The mass of the light constituents of
the Xb hadron is of order ΛQCD. Therefore, the square of the four momentum transferred to these
constituents during the decay must be ∼ Λ2

QCD(v−v′)2 = 2Λ2
QCD(1−v·v′), independent of the heavy

quark mass. But, four velocities are not only appropriate variables to describe the QCD dynamics
in the hadron transition. Since the velocity and the mass of a particle are independent the HQS
limit (mb,mc → ∞) can be easily performed, simultaneously checking the small HQS-breaking
terms.

Kinematic Range
Within the next lines the semileptonic decay B− → D∗0e−νe is regarded (see figure 2.2b) which
is a special case of the previously discussed general case Xb → Xc`

−ν`. A already mentioned, the
product w of the D∗0’s and the B’s four velocity,

w = vB · vD∗0 , (2.32)

14



2.2. The Decay B− → D∗0e−νe

plays an important role in HQET. Within the rest frame of the B meson the product can be
identified with the relativistic boost γD∗0 of the D∗0 meson,

w =
(

1
~0

)(
γD∗0

γD∗0 ~βD∗0

)
= γD∗0 . (2.33)

The boost w and the momentum transfer qµ = pµ
B − pµ

D∗0 from the hadron to the lepton system
are connected by

w =
m2

B + m2
D∗0 − q2

2mBmD∗0
. (2.34)

Setting w = 1 gives q2
max in the ’zero-recoil’ situation, and setting q2 = 0 gives wmax in the situation

of maximum momentum transfer to the D∗0 meson:

w = wmin = 1 ⇒ q2
max = (mB −mD∗0)2 = 10.71 GeV2 (2.35a)

q2 = q2
min = 0 ⇒ wmax =

m2
B + m2

D∗0

2mBmD∗0
= 1.5054. (2.35b)

Zero-recoil means, that there is no momentum transfer from the B meson to the D∗0 meson. The
daughter meson rests in its mother’s rest frame. Due to HQS, the meson system remains nearly
undisturbed at this interesting phase space point. Section 2.2.4 shows that this is important for
the |Vcb| determination. As also shown in this section, the small kinematic w-range of the decay
(∆w = wmax − wmin ≈ 0.5) helps to approximate the w dependence of the form factor.

Traditional Form Factors
In section 2.2.1, there was already given the decay amplitude M for semileptonic decays. For
reasons of clarity it is rewritten here. For the decay of a meson MQq̄ to a meson Xq′q̄ and a lepton
pair `−ν` it is given by

M(MQq̄ → Xq′q̄`
−ν`) = −i

GF√
2
Vq′QLµHµ , (2.36)

with the leptonic and hadronic currents

Lµ = ¯̀γµ(1− γ5)ν and (2.37)
Hµ =

〈
X|q̄′γµ(1− γ5)Q|M

〉
. (2.38)

The meson MQq̄ is composed by a heavy quark Q and a light quark q̄, the meson Xq′q̄ is composed
by a heavy quark q′ and the previous light quark q̄. For a semileptonic decay of a pseudoscalar
meson P (= MQq̄) to an vector meson V (= Xq′q̄) the most general form of the hadronic current
must be linear in the vector meson’s polarization vector ε.7 It is given by a set of traditional form
factors V (q2) and Ai(q2) with i = 0, 1, 2, 3 [17]:

Hµ =
〈
V (p′, ε)|V µ −Aµ|P (p)

〉
=

2iεµναβ

M + m
ε∗νp

′
αpβV (q2) − (M + m)ε∗µA1(q2)

+
ε∗ · q

M + m
(p + p′)µA2(q2) + 2m

ε∗ · q
q2

qµA3(q2)− 2m
ε∗ · q
q2

qµA0(q2),

(2.39)

7The polarization vector ε of a meson with velocity v satisfies the equations ε · v = 0 and ε · ε∗ = −1, as well
as

∑
pol. εµε∗ν = vµvν − gµν . It can be written as sum of three orthonormal vectors ei that are orthogonal to v:

εµ = ~a~eµ [18].
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Chapter 2. Theory

where V µ = q̄′γµQ and Aµ = q̄′γµγ5Q, and A3 is an abbreviation,

A3(q2) =
M + m

2m
A1(q2)− M −m

2m
A2(q2) (2.40)

A3(0) = A0(0). (2.41)

The total anti-symmetric tensor εµναβ fulfills the relation ε0123 = −ε0123 = −1. The variables M
and m are the masses of the P and the V meson, p and p′ are their four-momenta, respectively.
q = p− p′ defines the four-momentum transfer to the lepton pair. Since the term qµLµ vanishes in
the limit m` → 0 [18] the relevant hadronic current for ` 6= τ can be written in terms of the three
form factors:

〈
V (p′, ε)|V µ −Aµ|P (p)

〉
=

2iεµναβ

M + m
ε∗νp

′
αpβV (q2)

− (M + m)ε∗µA1(q2) − ε∗ · q
M + m

(p + p′)µA2(q2).
(2.42)

The form factors A1(q2) and A2(q2) can be associated with the exchange of a particle with quantum
numbers JP = 1+, whereas V (q2) is associated with JP = 1−.

Helicity Form Factors
Instead to express the hadronic current Hµ in terms of axial vector fractions (Ai terms) and vector
fractions (V term) it can be reordered in terms of helicity fractions. The reordered expression of
Hµ contains the form factors H0, H+ and H− corresponding to the possible helicities 0,+1 and −1
of the vector meson V , respectively. The helicity form factors are defined by

H0(q2) =
1

2m
√

q2

[
(M2 −m2 − q2)(M + m)A1(q2)− 4

M2|~p ′|2

M + m
A2(q2)

]
and (2.43a)

H±(q2) = (M + m)A1(q2)∓ 2M |~p ′|2

M + m
V (q2), (2.43b)

where ~p ′ is the momentum three-vector of the vector meson in the rest frame of P . Its magnitude
is |~p ′| = m

√
w2 − 1. (In general all q2 dependent expressions can be noted by w instead of q2.) In

the definition of H+, H− and H0 one can see that A1 dominates all three helicity form factors in
the range of high q2 values (range with w ≈ 1). This becomes important in section 2.2.4 where the
q2 dependence of the form factors is parametrized.

At this point, the resulting expression for Hµ would still contain the polarization vector ε of
the vector meson V . If V decays into two pseudoscalars, V → P1P2, then ε is determined by the
orientation of the V → P1P2 decay relative to the P → V `−ν` decay. In this case the differential
decay width resulting from equations 2.36 and 2.42 can be expressed in terms of the four kinematic
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Figure 2.4: The definition of the decay angles θ`, θV and χ is illustrated for the decay
B− → D∗0e−νe, D∗0 → D0π0. The daughters of the W boson and the D∗0 are drawn back-to-back because
the angles θ` and θV are defined in the corresponding B daughter rest frames.

variables θ`, θV , χ, and w as

dΓ(P → V `−ν`, V → P1P2)
dw d cos θV d cos θ` dχ

=
6

8(4π)4
G2

F

∣∣Vq′Q

∣∣2 M3r2
√

w2 − 1(1− 2wr + r2)B(V → P1P2)

×
[
(1− η cos θ`)2 sin2 θV |H+(w)|2

+ (1 + η cos θ`)2 sin2 θV |H−(w)|2

+ 4 sin2 θ` cos2 θV |H0(w)|2

− 4η sin θ`(1− η cos θ`) sin θV cos θV cos χH+(w)H0(w)
+ 4η sin θ`(1 + η cos θ`) sin θV cos θV cos χH−(w)H0(w)

− 2 sin2 θ` sin2 θV cos 2χH+(w)H−(w)
]
.

(2.44)

Figure 2.4 illustrates the relevant decay angles. It shows the decay for a special choice of particles,
B− → D∗0e−νe, D∗0 → D0π0. The angle between the charged lepton and the opposite direction of
the vector meson has to be measured within the `−ν` rest frame to define θ`. Similarly, θV is the
angle between the directions of V and P1 meson as measured in the rest frame of V . The angle χ
is defined as the angle between the momentum vector projection of P1 meson and charged lepton
onto the plane perpendicular to the direction of V in the P rest frame. If the heavy quark of the P
meson is a b quark then η = +1, if it is a c quark then η = −1. The variable r is an abbreviation
for the ratio of the V and P meson mass, r = m/M . Since the mother meson P has spin zero, the
vector meson V and the exchanged W boson must have the same helicity. Thus, the derivation of
the differential decay rate is simplified by using form factors in the helicity notation.

HQET Form Factors
So far, two sets of form factors have been introduced. Each is appropriate for a certain task. The
traditional form factor set is momentum related. It allows for an easy division of the matrix element
M into an axial-vector-coupled interaction part and a vector-coupled interaction part, helpful to
discuss physics. The helicity form factor set is appropriate to translate the decay amplitude into a
differential decay rate of clean structure.
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Chapter 2. Theory

The definition of a third set of form factors starts with the renotation of Hµ in terms of velocities
rather then momenta,〈

V (v′, ε)|V µ −Aµ|P (v)
〉

=
√

Mm
[
ihV (w)εµναβε∗νv

′
αvβ

− hA1(w)ε∗µ(w + 1) + hA2(w)vµε∗ · v
+ hA3(w)v′µε∗ · v

]
,

(2.45)

where w = v · v′. The comparison with equation 2.42 shows how the traditional form factors
V, A1, A2 and A3 are connected to the HQET form factors hV , hA1 , hA2 and hA3 :

R∗V (q2) = hV (w) (2.46a)

R∗−1A1(q2) =
w + 1

2
hA1(w) (2.46b)

R∗A2(q2) = hA3(w) +
m

M
hA2(w). (2.46c)

Thereby, R∗ is an abbreviation for the ratio between geometric and arithmetic mean of the V and
the P meson mass, R∗ = 2

√
Mm/(M + m), and q2 and w are connected by equation 2.34. One

important feature of the HQET notation is the simplification in the HQS limit (mQ,mq′ → ∞)
[15, 16],

hV (w) = hA1(w) = hA3(w) = ξ(w) and (2.47a)
hA2(w) = 0, (2.47b)

where ξ(w) is the already discussed Isgur-Wise function. The heavier the Q and the q′ quark are,
the closer are the HQET form factors to the Isgur-Wise function. The form factor ratios R1 and
R2, defined by

R1(w) =
hV (w)
hA1(w)

=
[
1− q2

m + M

]
V (q2)
A1(q2)

and (2.48a)

R2(w) =
hA3(w) + m

M hA2(w)
hA1(w)

=
[
1− q2

m + M

]
A2(q2)
A1(q2)

, (2.48b)

have a smaller w dependence at higher Q and q′ quark masses. At very high masses these ratios
become nearly constant, and in the HQS limit there is even R1(1) = R2(1) = 1.

At this point one should emphasize the big benefit of the HQET form factor notation. In
general, to calculate the q2 dependence of a semileptonic decay one needs the q2 dependence of
the form factors. Starting from the traditional form factors (equ. 2.42) one would need to feed
the calculations by q2 dependencies of V , A1 and A2 – these are three different functions one
has to ’guess’. Using the HQET form factors one only has to ’guess’ the w dependence (or q2

dependence) of one single form factor. The other two form factors are expressed by R1 and R2

whose w dependence is very mild or even negligible.8 As already mentioned before, in HQET one
calculates HQS-breaking corrections. Also due to equations 2.47, hA1 , R1 and R2 are the most-
appropriate functions for the calculation of these corrections. This discussion is continued in section
2.2.4.

8As for most statements within section 2.2, this is only true if the HQET assumptions are truly given. HQET
makes only sense for mesons composed by a heavy and a light quark.
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2.2. The Decay B− → D∗0e−νe

Partial Decay Rate dΓ/dw
In order to relate the formulas of this chapter to the entire document, the particles of the discussed
semileptonic decay P → V `−ν`, V → P1P2 are concretized by the decay B− → D∗0e−νe, D

∗0 →
D0π0. After the integration of equation 2.44 over the three decay angles θ`, θV and χ one obtains
the differential decay rate dΓ/dw depending on a form factor F (w):

dΓ
(
B− → D∗0e−νe

)
dw

=
G2

F

48π3
(mB −mD∗)2 m3

D∗

√
w2 − 1 (w + 1)2

×
[
1 +

4w

w + 1
m2

B − 2wmBmD∗ + m2
D∗

(mB −mD∗)2

]
× F (w)2 |Vcb|2.

(2.49)

The form factor F (w) can be expressed in terms of hA1(w), R1(w) and R2(w):

F (w) = |hA1(w)|2
[
1 +

4w

w + 1
m2

B − 2wmBmD∗ + m2
D∗

(mB −mD∗)2

]−1 ∑
i=0,+,−

∣∣∣H̃i(w)
∣∣∣2 (2.50a)

∣∣∣H̃0(w)
∣∣∣2 =

[
1 +

w − 1
1− r

(1−R2(w))
]2

(2.50b)

∣∣∣H̃±(w)
∣∣∣2 =

1− 2wr + r2

(1− r)2

[
1∓

√
w − 1
w + 1

R1(w)

]2

. (2.50c)

In the literature the H̃i(w) expressions are also called ’reduced helicity amplitudes’ because they
are related to the helicity amplitudes by [19]

H̃i(w) =
Hi(w)

(mB −mD∗0)
√

mBmD∗0/q2(w)(w + 1)hA1(w)
(i = 0,+,−). (2.51)

Branching Fraction
From the integration of dΓ/dw over the allowed w range one obtains the branching fraction
B
(
B− → D∗0e−νe

)
,

B
(
B− → D∗0e−νe

)
= τB−

wmax∫
wmin

dΓ
dw

dw, (2.52)

where τB− is the lifetime of charged B mesons, and wmin and wmax are given by equations 2.35.

2.2.4 |Vcb| Determination

Basic Idea
As can be seen in equation 2.49, the differential decay rate dΓ/dw of the B− → D∗0e−νe decay
is proportional to [F (w)|Vcb|]2. As discussed later in this section, theory can calculate the form
factor F at zero-recoil (w = 1) with a precision which is higher then at any other point in the
phase space (w > 1). Consequently, from a measurement of dΓ/dw at w = 1 one could obtain
[F (1)|Vcb|]2, and due to the high precision of F (1) this measurement would also give a precise value
of |Vcb|. However, since dΓ/dw is proportional to the factor

√
w2 − 1 the phase space is empty at
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Figure 2.5: The phase space fraction of dΓ/dw(B− → D∗0e−νe) from equation 2.49. One can see that the
phase space is empty at w = 1. This complicates the |Vcb| extraction.

w = 1 (see figure 2.5). The solution is to measure dΓ/dw as a function of w and to extract |Vcb|
from an extrapolation of this function to w = 1. For the extrapolation one needs the shape of the
form factor F in the neighborhood of w = 1. Since HQET gives no predictions for the shape of
hA1 , the principle shape of F remains also unconfined. There are different models predicting the
shape. One of the simplest models is the linear dependence hA1(w) = hA1(1)[1 − ρ̃2(w − 1)] with
one single parameter ρ̃2 which is also implemented in the BABAR simulation (see sec. 5.3.1.2). For a
comparison of various |Vcb| determinations, all following the strategy described above but basing on
different hA1 models or different data samples, one uses an expansion of the form factor F around
w = 1:

F (w) = F (1)
[
1 − ρ2

F (w − 1) + cF (w − 1)2 + . . .
]
. (2.53)

The parameters ρ2
F and cF are the negative slope and the curvature of the form factor F at zero-

recoil – they are the important parameters for the |Vcb| determining extrapolation. The small
allowed w-range of the B− → D∗0e−νe decay ranging only from w = 1 up to w ≈ 1.5, and the very
mild w dependence of the form factor ratios R1 and R2 (see equ. 2.64), both facts motivate the
expansion ansatz of F (w). In case of very big data samples one may be sensitive to higher order
terms , but so far the first two coefficients in equation 2.53 are enough.

Normalization of F (w)
In the HQS limit one finds F (w) = ξ(w). Due to the normalization of the Isgur-Wise function at
zero-recoil, ξ(1) = 1, one also knows the corresponding value of F (1) in the HQS limit,

lim
mQ→∞

F (1) = 1. (2.54)

Outside the HQS limit one has to install corrections to this value. The principle structure of the
corrected form factor at w = 1 is mostly expressed like this [8]:

F (1) = ηQED ηQCD

[
1 + �

��HHHδ1/m + δ1/m2 + . . .
]
, (2.55)

where ηQED and ηQCD are the short-distance radiative corrections of QED [20] and QCD [21],

ηQED = 1.007 and (2.56)
ηQCD = 0.960± 0.007. (2.57)
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The terms δ1/mn represent the non-perturbative (1/mb)n and (1/mc)n corrections (n = 1, 2, . . . ).
For n = 2 the correction is given by [22]

δ1/m2 = −0.055± 0.025. (2.58)

A combination of all contributions to the form factor value gives

F (1) = 0.914± 0.026. (2.59)

This result is in agreement with recent results from lattice QCD calculations [23],

F (1) = 0.919−0.030
+0.035. (2.60)

The non-perturbative correction term δ1/m in equation 2.55 is canceled due to Luke’s theorem [24].
Luke’s theorem states that 1/m corrections vanish for the form factor hA1 at zero-recoil (w = 1).
The form factors hA2 , hA3 and hV do have 1/m corrections. From equations 2.43 and 2.46b one
can recognize that only hA1 contributes to the decay rate at w = 1. The consequence is a form
factor F whose 1/m corrections vanish at w = 1. As one can see now, it has been useful to express
F in dependence on hA1 than in dependence on any other hx form factor. As can be seen from
equations 2.50, the form factors hA1 and F are equal at zero-recoil, F (1) = hA1(1).

Shape of F (w)
Constraints on the shape of F (w) are highly desirable because they improve the |Vcb|-determining
extrapolation. A suitable framework to derive such constraints is a dispersion technique proposed
some time ago [25, 26]. This technique has also been applied to heavy-meson form factors by authors
like Rafael and Taron [27, 28], or Boyd, Grinstein and Lebed [29, 30, 31]. As briefly described in
[32], the dispersion technique bases on first principles: the analyticity properties of QCD two-point
functions of local currents and the positivity of the corresponding hadronic spectral function. From
relations between the two-point function and the spectral function one obtains boundaries arising
from the positivity of the spectral function. Consequently, these bounds set constraints on the form
factors of the regarded states. Briefly said, the dispersion technique is a special type of the ’QCD
Sum Rules’ already mentioned in section 2.1.3.

Caprini, Lellouch and Neubert [32] apply the dispersion technique by fully exploiting the spin
symmetry of B(∗) and D(∗) mesons. They investigate all spin-parity channels (JP = 0+, 0−, 1+ and
1−) relevant for B(∗) → D(∗) transitions. This results in four inequalities giving constraints to the
allowed range of the parameters of the corresponding twenty form factors. Since the form factors
can be related to each other, strong constraints can be given also to hA1 . One of the results of
their work is a one-parameter description of the form factor hA1(w) describing the shape within
the relevant semileptonic region with an accuracy better then 2%9:

hA1(w)
hA1(1)

= 1− 8ρ2
A1

z +
(
53ρ2

A1
− 15

)
z2 −

(
231ρ2

A1
− 91

)
z3

with z =
√

w + 1−
√

2
√

w + 1 +
√

2
. (2.61)

9In formulas (35) and (38) of reference [32] the form factor function has been called A1(w) instead of hA1(w).
However, here the notation usually found in literature [18, 23, 33] is used.
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Figure 2.6: Form factor F (w) for the model of Caprini, Lellouch and Neubert [32]. The form factor is
shown for the ρ2

A1
values 0.6, 0.8, 1.0, 1.2 and 1.4, respectively from top function to bottom function.

The parametrization of hA1(w) is constructed in a way that its only parameter ρ2
A1

is the negative
slope of hA1(w) at zero-recoil,

dhA1(w)
dw

∣∣∣∣
w=1

= −ρ2
A1

. (2.62)

From the found dispersive bounds also follow an upper and a lower limit on ρ2
A1

,

−0.14 < ρ2
A1

< 1.54. (2.63)

For applying this parametrization to the differential decay rate in equation 2.49, Caprini, Lellouch
and Neubert give also the form factor ratio parametrization,

R1(w) =R1(1)− 0.12(w − 1) + 0.05(w − 1)2 and (2.64a)

R2(w) =R2(1) + 0.11(w − 1)− 0.06(w − 1)2. (2.64b)

Instead of their calculated values for w = 1,

R1(1) = 1.27 R2(1) = 0.80, (2.65)

for the |Vcb| determination in this analysis the form factor ratios obtained from a BABAR measure-
ment [33] are used,

R1(1) = 1.396± 0.075 R2(1) = 0.885± 0.047, (2.66)

where the uncertainties stated in [33] have been added in quadrature. The resulting form factor
F (w) in the model of Caprini, Lellouch and Neubert is shown for different values of ρ2

A1
in figure

2.6.
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Chapter 3

The BABAR Experiment

The BABAR experiment is located at the Stanford Linear Accelerator Center (SLAC) in California,
USA. Its primary goal is the measurement of time-dependent CP -violating asymmetries in the decay
of neutral B mesons to CP eigenstates. Secondary goals are precision measurements of decays of
bottom and charm mesons and τ leptons as well as studies of rare B decays. More generally said,
the BABAR experiment has been built up to perform precision tests on the CKM sector of the
Standard Model.

The information of this chapter is divided in two parts. The first part gives an overview about
PEP-II and the B meson production at BABAR in general. The second section is a description of
the BABAR detector. More detailed information about the detector and the physics at the BABAR

experiment can be found in [14, 34].

3.1 B Meson production at the e+e− Storage Ring PEP-II

The linear accelerator (LINAC) and the PEP-II1 storage ring system, they both together form
the “B-meson factory” at the Stanford Linear Accelerator Center. In the LINAC electrons and
positrons are accelerated to an energy of 9.0 GeV and 3.1 GeV, respectively, before being injected
into the high energy e− ring (HER) and the low energy e+ ring (LER) of PEP-II. The HER beam
and the LER beam are collided head on within the BABAR detector in the interaction region two
of PEP-II. A schematic sketch of the “B-meson factory” is shown in figure 3.1.

The PEP-II beam energies result in a center-of-mass energy
√

s = 10.58 GeV which corresponds
to the rest-energy of the Υ (4S) resonance, the lightest bb resonance above the BB production
threshold. The Υ (4S) decays to about 50% into B+B− and to about 50% into B0B0 meson pairs.

A big advantage of the B-meson production by the process e+e− → Υ (4S) → BB is the
very clean environment compared to hadronic production processes. The cross sections of the
background processes e+e− → qq(q = u, d, s, c), τ+τ− are of the same order as the cross section

1PEP-II for Positron Electron Project II

Table 3.1: Production cross sections at
√

s = 10.58 GeV. For e+e− → e+e− the cos θ integral of the
detector is given.

e+e− → bb cc ss uu dd τ+τ− µ+µ− e+e−

cross section (nb) 1.05 1.30 0.35 1.39 0.35 0.94 1.16 ∼40
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Figure 3.1: Shown is the B-meson factory at SLAC. After electrons and positrons have been accelerated
in the LINAC bunches of them are stored in the PEP-II ring system. The beams are collided in the BABAR

detector in the interaction region two of PEP-II.

of the B-meson production process (see table 3.1). Data taken at a center-of-mass energy
√

s =
10.54 GeV, which is below the BB production threshold, allow to study these background processes
at nearly unchanged kinematic conditions. Because these data are taken outside of the Υ (4S) peak
region they are also called off-peak data. Accordingly, data taken at

√
s = 10.58 GeV are called

on-peak data.
The asymmetry of the PEP-II beam energies is one of the novel and most important design

features for observing time-dependent CP violation in the neutral B-meson system. The asymmetry
leads to a Lorentz boost βγ = 0.56 of the Υ (4S) system against the laboratory system. Thereby,
the desired separation between the decay vertices of two sister B-mesons is significantly enlarged
(compared to the situation with symmetric beam energies) and becomes observable by polished
vertex tracker techniques.

The data recorded by BABAR till July 2006 comprises a sample of ∼340 million BB pairs
and ∼34 fb−1 off-peak data. Figure 3.2 shows how the integrated luminosity grows with time.
The design luminosity of 3 · 1033 cm−2s−1 has been surpassed by a record peak luminosity of
12.1 · 1033 cm−2s−1.

3.2 The BABAR Detector

The BABAR detector is a typical high energy physics detector. Figure 3.3 gives an overview to
its structure and the arrangement of its major components. Also shown is the BABAR coordinate
system. The detector is symmetric in the azimuthal angle φ but because of the boost of the
e+e− system against the laboratory system there is no mirror symmetry between the forward part
(positive z coordinates) and the backward part (negative z coordinates) of the detector. Instead of
this a boost-adapted design is necessary for an optimal acceptance of the detector along the polar
angle θ. The average angular acceptance of the components is 91% in the rest frame of the beam
system.

The order of the main subdetectors from the interaction point outwards together with their
major tasks is given in the following:

1. The innermost detector is the Silicon Vertex Tracker (SVT). Its task is to measure positions
and angles of charged particles just outside the beam pipe.
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Figure 3.2: The integrated luminosity delivered by PEP-II and recorded by the BABAR detector between
November 1999 and July 2006. This analysis uses the data taken until July 2004.

2. The Drift Chamber (DCH) together with the SVT forms the charged particle tracking system.
It measures the momentum of charged particles. Its dE/dx measurements are important for
the identification of charged particles.

3. The Detector of Internally Reflected Cherenkov Light (DIRC) is important for the identifica-
tion of charged particles, especially for the kaon-pion-separation.

4. The Electromagnetic Calorimeter (EMC) measures electromagnetic showers, mainly for the
reconstruction of photons and neutral π- and η-mesons. It is fundamental for the pion-
electron-separation.

5. The Superconducting Solenoid produces a magnetic field of 1.5 Tesla. This enables the DCH
and the SVT to measure the momentum of charged particles.

6. The Instrumented Flux Return (IFR) returns the magnetic flux outside the solenoid and
provides information for the identification of muons and neutral hadrons.

The success of this analysis depends strongly on the quality of the detector performance. The
most-crucial points are covered by the BABAR detector:

• Since the reconstruction of the analyzed decay includes three tracks and two photons for the
π0 meson one needs a high angular acceptance. It turns out that the 91% within the beam
rest frame are sufficient for the analysis.

• Also the π0 reconstruction efficiency of about 95% within this acceptance range ensures a
high total reconstruction efficiency for the analyzed decay.
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Figure 3.3: The BABAR detector with its main subdetectors. The electron beam comes from the left side
and the positron beam comes from right side. The BABAR coordinate system has its origin in the center of
the detector but for clarity the it is drawn outside the detector.
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(a) (b)

Figure 3.4: Cross-sectional view of the SVT: (a) in a plane orthogonal to the beam axis; (b) in a plane
containing the beam axis.

• The high granularity of the EMC provides a good angular resolution in the reconstruction of
electromagnetic showers. The high EMC energy-resolution is reached due to the little amount
of material in front of the EMC. Both features are important for a narrow mass distribution
of correctly reconstructed π0 mesons and therefore they are very helpful for the background
suppression.

• The previously mentioned angular and energy resolution properties are also important for the
clean identification of electrons. The EMC is not only there to measure photon energies but
also to identify electrons.

• The DIRC provides excellent particle identifying information, primarily used for the kaon-
pion-separation. This is extremely useful because there are about five times more pion tracks
then kaon tracks in an event. So the DIRC drastically reduces the combinatorial background
in the D0 reconstruction. The DIRC plays also an important role for the electron-pion-
separation.

3.2.1 The Silicon Vertex Tracker

The SVT is located in a 4.5 m long support tube. It consists of five layers of double sided silicon
micro strip detectors covering about 90% of the solid angle in the center-of-mass system. The three
inner layers are cylindrical and very close to the beam pipe at radii r = 32 mm, 40 mm, 54 mm.
That allows for good spatial resolution of track trajectories near the interaction point. The two
outer layers are arch-shaped and are located at radii r = 109mm, 129 mm. They are important for
the merging of DCH tracks and SVT tracks as well as for the SVT-stand-alone tracking of particles
not reaching the DCH (transversal momentum pT between 50MeV/c and 100 MeV/c). Two cross-
sectional views of the SVT are shown in figure 3.4. The outer sides of the silicon layers contain
stripes parallel to the z axis allowing for precise φ measurements. They are called φ stripes. The
stripes on the inner sides are aligned perpendicular to the φ stripes which allows for precise z
measurement. These stripes are called z stripes. The spatial resolution for the vertex of a B meson
decay is about 70µm to 140 µm. This makes it possible to measure the distance between the decay
vertices of two sister B-mesons (approximately ∼ 240 µm). The measurement of this distance is
required for one of BABAR’s primary goals,e.g. the sin2β measurement [35].
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Figure 3.5: (a) Longitudinal section of the DCH with its principal dimensions (lengths in mm, angles
in degree). (b) Schematic layout of drift cells for the four innermost superlayers. Lines have been added
between field wires to aid in visualization of the cell boundaries. The number on the right side gives the
stereo angles (in mrad) of wires in each layer.

3.2.2 The Drift Chamber

The principal dimensions of the DCH are shown in figure 3.5. The DCH is a multi-wire chamber.
It contains a gas mixture with 80% helium and 20% isobutane. Its volume is divided in 7104
hexagonal drift cells. These cells are arranged in ten superlayers of four layers each. There are
superlayers with wires parallel to the z axis (A) and there are superlayers with a positive small
stereo angle (U) or a negative small stereo angle (V) between the wires and the z axis. The order
of the superlayer wire alignment is AUVAUVAUVA. This alternation has been designed to achieve
an optimal spatial resolution of a trajectory. Figure 3.5b shows a part of the cross section of the
four innermost superlayers and lists the values of the corresponding stereo angles. In this figure one
can also see the arrangement of field wires and sense wires. Field wires are on ground potential,
the operating voltage for the sense wires is +1930V.

A charged particle flying through the DCH ionizes gas molecules along its track. The resulting
negative charges drift to the next neighboring sense wires and produce a signal in these wires. The
signal in one cell is called a DCH hit. All hits being consistent with the trajectory of a particle
are grouped to a track. (For more details see sec. 4.2.) The transverse momentum of a charged
particle is reconstructed from the radius of its track. Together with the z information of the track
hits the momentum vector of the track is accessible. A charged particle’s energy loss dE/dx provides
primary input for the particle identification, especially for the K/π separation below 700 MeV/c.

3.2.3 The Detector of Internally Reflected Cherenkov Light

The DIRC was designed for the identification of charged particles with momentum above 700MeV/c,
the momentum limit where the K/π separation power of the DCH breaks down. The DIRC provides
an excellent K/π separation for tracks with momentum between 0.5 GeV/c and 2.0GeV/c (better
then 5σ K/π separation) and has still good separation up to the kinematic limit of 4.5GeV/c (better
then 2.5σ K/π separation). To achieve this performance with a material thickness of only 20% of
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Figure 3.6: This schematic view shows the structure of the DIRC including the barrel, the standoff cone
and the photo multiplier tubes (PMT).

a radiation length X0 makes the DIRC to an outstanding particle identification device.

Figure 3.6 shows the structure of the DIRC. The active detector component of the Cherenkov
detector consists of 144 bars of fused silica. The bars are 4.9 m long and have a (1.7×3.5) cm2 cross
section. They are grouped in bar boxes with 12 bars per box. The 12 boxes are arranged parallel
to the z axis forming a 12-sided polygonal barrel around the DCH. Due to little gaps between
the bar boxes the azimuthal coverage of the bars is 94%. The polar angle coverage within the
center-of-mass system is 83%.

Figure 3.7 illustrates how the DIRC works. If a charged particle flies through one of the bars
with a velocity β > 1

n then it produces Cherenkov light (refraction index of the bars n = 1.473).
The Cherenkov photons are emitted at an angle θC relatively to the direction of the particle. The
Cherenkov angle θC depends on mass and momentum of the particle and on the refraction index n
of the silica bars:

cos θC =

√
1 +

(
m
p

)2

n
=

1
βn

. (3.1)

Inside the bars the Cherenkov photons are reflected many times until they enter the standoff box at
the rear side of the detector. While the backward-going Cherenkov photons are reflected more ore
less directly towards the standoff box, the forward-going Cherenkov light is reflected at the front
side mirror of the silica bars before being reflected towards the standoff box. This box is filled with
about 6000 liters of purified water and its rear is equipped with nearly 11000 photo multiplier tubes
(PMT) to detect the Cherenkov photons. After the reflections of the photons towards the PMTs
the information about the θC value is not lost but only modified by the refraction between the
silica and the water. Thus parts of a Cherenkov ring are imaged on the PMT array. Starting from
reconstructed DCH tracks going through the silica bars one can calculate the expected image on
the PMT array as a function of photons arrival time. This leads to the discriminating probabilities
for different mass hypothesis. The separation power of θC can bee seen in figure 3.8.
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Figure 3.7: This schematic view of the DIRC illustrates the operation of the DIRC when a charged particle
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Figure 3.8: The fitted Cherenkov angle of tracks from an inclusive sample of multi-hadron events plotted
against the momentum of the tracks at the entrance to the DIRC bar box. The grey lines are the predicted
values of the θC for the different particle species. The excellent K-π-separation is clearly visible. [36]
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Figure 3.9: This cross-sectional view of the EMC indicates the arrangement of the crystal rings along polar
angle θ. (The principal dimensions are in mm.)

Table 3.2: Properties of the EMC crystal material
Parameter Values
Radiation length X0 1.85 cm
Molière Radius 3.8 cm
Density 4.53 g cm3

Light Yield 50,000γ/ MeV
Lied Yield Temp. Coeff. 0.28%/◦C
Peak Emission λmax 565 nm
Refraction Index (λmax) 1.80

3.2.4 The Electromagnetic Calorimeter

The Electromagnetic Calorimeter (EMC) was designed to measure electromagnetic showers with
excellent efficiency, angle resolution and energy resolution over the energy range from 20 MeV to
9 GeV. The two major contributions of the EMC to this analysis are (i) measurements used for the
e/π separation leading to a very clean sample of electrons (see section 4.2.2) and (ii) the efficient
selection of the soft π0-mesons produced in D∗ decays. The energy resolution σE/E and the angular
resolutions σφ and σθ of the EMC are determined to be:

σE

E
=

(2.32± 0.30)%
4
√

E( GeV)
⊕ (1.85± 0.12)% (3.2)

σφ = σθ =

(
3.87± 0.07√

E( GeV)
+ 0.00± 0.04

)
mrad (3.3)

Figure 3.9 shows a longitudinal cross section of the EMC with its principal dimensions. The
EMC is divided into a barrel component and a forward endcap component containing 5760 and 820
crystals, respectively. The crystals are operating as scintillation detectors made of thallium-doped
caesium iodide. Some important material properties are listed in table 3.2. The crystals of the
barrel are arranged in 48 rings of 120 crystals for each ring. The endcap is composed of three 120-
crystal-rings, three 100-crystal-rings and two 80-crystal-rings. The tapered trapezoidal crystal cross
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section varies between (4.7×4.7) cm2 and (6.0×6.1) cm2 which is in the order of the Molière radius
to optimize between angle resolution and segmentation expense. The trapezoidal cross section
ensures hermetic coverage. The crystal length varies between 29.6 cm (backward detector side) and
32.4 cm (forward detector side) which translates into a 16-fold till 17.5-fold length of one radiation
length X0 and allows the deposition of the entire energy of photons, electrons and positrons.

Photons entering a crystal convert into e+e− pairs by interacting with the crystal material. The
so created electrons and positrons produce bremsstrahlung photons. The positron can also produce
two photons by an annihilation with an electron. Then the process is repeated many times with the
just created photons and the total process is the called development of an electromagnetic shower.
Interactions of the moving shower charges with the crystal material lead to atomic excitations
followed by the emission of scintillation light. Two (2× 1) cm2 silicon photo-diodes are glued onto
the rear side of the crystals to read out the light.

An electromagnetic shower is mostly distributed over more then one crystal, where the number
of crystals belonging to the shower depends on energy and impact point of the primary shower
particle.

The reconstruction procedure searches for groups of neighboring crystals with deposited energy.
Such a group is called a cluster. Roughly spoken, it contains only neighboring crystals (i) with
deposed energy Edep > 1 MeV per crystal, (ii) with at least one crystal with Edep > 10 MeV and
(iii) with a total energy Ecluster > 20 MeV. If a cluster contains more then one Edep maximum then
it is likely that it has been created by superimposed showers of different particles and therefore
the cluster is divided in so called bumps. The bumps remaining after the matching between EMC-
bumps and DCH-tracks are called neutral candidates of an event. (Section 4.3 contains a more
detailed description of the reconstruction in the EMC.)

Because the crystals change their behavior during their permanent irradiation they have to be
calibrated regularly. For the calibration in the high energy range non-radiative Bhabha events are
used. For the calibration in the low energy range the source calibration is used, where the EMC
is exposed to the radiation of the 6.13 MeV photons from the reaction 16O∗ →16 Oγ. The 16O∗ is
produced after the neutron-irradiation of 19F via 19F +n →16 N +α and 16N+ →16 O∗ +β−, and
is pumped through a system of small aluminum pipes passing the front of the inner EMC surface.
The crystal energy calibration is performed by an interpolation between the Bhabha calibration
and the source calibration.

3.2.5 The Superconducting Solenoid and the Instrumented Flux Return

The EMC is surrounded by a toroidal superconducting coil creating a magnetic field of strength
1.5T. Due to the Lorentz force on moved charges in magnetic fields the tracks of charged parti-
cles in the field are curved. The measurement of the curvature is translated into a momentum
measurement.

The outermost detector is the Instrumented Flux Return (IFR). It deals with two tasks: (i) It
has to return the magnetic flux outside the coil and (ii) it has to identify muons as well as neutral
hadrons such as K0

L mesons.
The IFR is divided into one barrel part and two end door parts as shown in figure 3.10. Each of

the three parts is segmented in 18 steel layers with gaps of about 3.2 cm thickness inbetween. The
steel layers have increasing thickness from 2 cm for the innermost layers to 10 cm for the outermost
layers. This is a compromise between the demands of the muon identification and the neutral
hadron identification. The total thickness of the layers sums up to 65 cm. The gaps of the barrel
part (end door parts) have originally been instrumented with 19 (18) layers of Resistive Plate
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Figure 3.10: The barrel sector (left) and the forward (FW) and backward (BW) end doors (right) of the
IFR. (The principal dimensions are given in mm.)

Chambers (RPC) [37] resulting in a total of 342 (216) RPC modules. The RPCs detect streamers
from ionizing particles via capacitive read out stripes. There are x̃ stripes and orthogonally arranged
ỹ stripes measuring the x̃-ỹ-coordinates of the track-layer-intersection within the x̃-ỹ-layer-plane.
The Chambers are filled with a gas mixture of approximately equal fractions of argon and freon
and a small fraction of isobutane.

Due to problems with the linseed oil used in the RPC-manufacturing the efficienies of the RPCs
were significantly decreased year by year. For that reason it has been decided to replace the RPCs
step by step by so called Limited Streamer Tubes (LST) [38]. A first replacement of the detectors
in the barrel top sextant and the barrel bottom sextant was successfully done during August and
September 2004. The next four sextants are planned to be replaced in the Summer of 2006.
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Chapter 4

Candidate Selection

The major goal of this analysis is to reconstruct B− → D∗0e−νe events in order to determine

• the CKM matrix element product F (1)|Vcb|,

• the branching fraction B(B− → D∗0e−νe) and

• the form factor parameter ρ2
A1

.

The three definitions and the connections between the three values are given in chapter 2. The
current chapter documents everything concerning the reconstruction and the selection of the desired
events. Chapter 5 describes the sophisticated fit directly giving F (1)|Vcb| and ρ2

A1
when being

applied to the data sample resulting from the reconstruction and the selection of chapter 4.

The Reconstruction Chain
The B meson is reconstructed in the decay chain

B− →D∗0e−νe (6.5±0.5)

D∗0 → D0π0 (61.9±2.9)

D0 → K−π+ (3.80±0.07)

π0 → γγ , (98.798±0.032) (4.1)

where the numbers on the right side are the branching fractions in percent reported by the Particle
Data Group [8]. Except for the neutrino, all particles of the decay chain are reconstructed. As a
general naming convention the D∗0e− combination is called Y and the high-energetic (low-energetic)
photon wrt. the laboratory frame is called γ1 (γ2), with Eγ1 > Eγ2 .

The D∗0 reconstruction channel D∗0 → D0π0 has been chosen because it has an advantage over
the only alternative channel D∗0 → D0γ. If one exploits the fact that the reconstructed γγ mass
should be the true π0 mass then one can obtain a nearly five times smaller ∆m1 distribution for
correctly reconstructed D∗0 particles (see section 4.5.2). That helps a lot because then the number
of correctly reconstructed D∗0 particles is determinable with a significantly higher accuracy. This
narrowing of the ∆m distribution is not possible for the channel D∗0 → D0γ and therefore this
channel is not considered in this analysis. A further advantage of the D∗0 → D0π0 channel is the

1∆m is the mass difference between the D∗0 candidate and the D0 candidate, ∆m = mKππ0 − mKπ, as defined
in the later section 4.5.2.
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Table 4.1: The amount of BABAR Monte Carlo (BMC) and data is given for each run period.

run NBMC
BB

/ 106 NBMC
cc / 106 NData

BB
/ 106 Lon / fb−1 Loff / fb−1

1 48.492 21.346 21.2 19.45 2.32
2 238.712 100.076 66.4 60.26 6.93
3 122.620 57.700 34.1 31.06 2.40
4 658.751 238.798 104.3 94.56 4.39

1− 4 1,068.575 417.920 226.0 205.35 16.06

two times higher decay rate compared to the alternative decay. The advantage to have the γγ mass
as an additional selection criterion cancels the disadvantage of combinatorial γγ background.

For the D0 reconstruction only the mode D0 → K−π+ is used because it is the cleanest
compared to the alternative practicable modes D0 → K−π+π+π− (B = (7.71 ± 0.28)%) and
D0 → K−π+π0 (B = (14.1± 0.5)%) which have higher combinatorial background and contain the
less exactly reconstructible π0. The branching fraction of the chosen D0 channel is the one with the
lowest uncertainty (∆B

B = 1.8%). There are only 3.80% decaying into K−π+ but the data sample
is large enough so that the analysis can be performed with the K−π+ mode only.

From a theoretical point of view, the B− → D∗0 µ− νµ events could have been included
in the analysis, but the electron channel has two practical advantages compared to the muon
channel: (i) The particle identification (PID) efficiency of electron tracks is stable with time. Due
to the linseed oil problem in the RPCs (see section 3.2.5) the PID efficiency of muon IFR-tracks
is significantly decreasing with time of data taking and its simulation has a significantly bigger
uncertainty compared to electron tracks. (ii) The selection of electrons is cleaner and more efficient.
The electron selector used in this analysis is about 92% efficient in the interessting kinematic range
and acceptance range and has a pion fake rate below 0.2% (see figure 4.2 and [66]). This compares
to clearly worse muon selector values of 73% efficiency at 3% pion fake rate [66].

Computing Frameworks
Two computing frameworks have been used to perform this analysis. In the first analysis part
the release version 14.5.5 of the BABAR software Beta with all its recommended bug fixes is used.
A package obtained by editing the BetaMiniUser package composes the particle candidates and
performs geometric candidate-by-candidate fits. It also applies very loose selection criteria and
stores the result in big ntuples. For the second step I wrote the ROOT [39] based framework
VcbFit which applies the final selection cuts and performs a fit (see chapter 5) extracting the three
desired values with their statistical uncertainties. It allows to vary the cuts and the fit options
in a clear and friendly way and provides automatic html- and plot-generation. The automatically
generated summaries are very helpful for making extensive checks of the fit performance [40].

4.1 The Data Sample

The data used for this analysis is listed in table 4.1. Generally, there are the data recorded by the
BABAR detector and there are the simulated BABAR Monte Carlo data (BMC). Both are briefly
commented on the following two subsections.
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4.1.1 Data Events

The data events used by this analysis have been recorded by the BABAR detector between May
1999 and July 2004. The data sample contains 205.35 fb−1 on-peak data taken at an e+e− center-
of-mass energy of about 10.58 MeV corresponding to the mass of the Υ (4S) resonance. It also
contains 16.06 fb−1off-peak data taken at a e+e− center-of-mass energy of about 10.54MeV which
is 20MeV below the BB production threshold. Since the off-peak data only contain the unwanted
background-events e+e− → qq (q = u, d, s, c) they are used to describe the amount of those qq
events in the on-peak data (see equation 5.20).

The number of BB events in the analyzed data sample, NData
BB

= (226.0 ± 2.5) · 106, has been
reported by BbkLumi [42] which is a bookkeeping tool of the BABAR computing model 2 (CM2).
The BbkLumi-reported value for NData

BB
has been determined as described in [41]. The number of

multi-hadron events is determined on a run-by-run2 basis in the on-peak data as well as in the
off-peak data. The subtraction of the luminosity-scaled numbers gives the excess of multi-hadron
events in the on-peak data. Assuming that the Υ (4S) resonance decays in 100% into B meson
pairs3, the excess of multi-hadron events is completely caused by Υ (4S) → BB decays and the
subtraction gives the number of B meson pairs (NData

BB
).

The luminosities are determined from e+e− → e+e−(γ), µ+µ−(γ), γγ events and have systematic
errors of about 1% [44, 45].

The entire data has been divided into four data subsets, namely run1 till run4, to group all
those data that has been commonly taken between two big shut downs4.

4.1.2 Monte Carlo Events

A very central point of the analysis strategy is to use simulated events, the so called Monte Carlo
events (MC). The simulation of a MC event is performed in four steps:

Generation of the physics event: In a first step the BABAR software package EvtGen [46] gen-
erates the events. The events used for this analysis are Υ (4S) → BB and e+e− → cc. EvtGen
describes about 60% of the B meson decays by exclusive decay models. The remaining 40%
and the cc events are handed to JetSet [47] to be described by an inclusive technique.

Particle transport and GHits: In a second step each generated event is traversed through the
BABAR detector model. This task is performed by the GEANT4 [48] based software package
BOGUS in a step-by-step technique where after each step the particles are allowed to decay, to
deposit energy, to produce secondaries or to perform multiple scattering. When the particles
are passed through the sensitive detector regions the information of their position and their
energy deposit is stored in so called GHits.

Detector response and background mixing: The task of the BABAR software package SimApp
is to transform these idealized GHits into raw detector signals (called digis) that mimic the real
detector electronics. The detector answer to a physics event is generated by also using real-
data background events, which makes the simulation more realistic. Because the conditions

2The data recorded within a time window of approximately one up to three hours is called a run.
3The CLEO collaboration measured B

(
Υ (4S) → BB

)
> 96% with a confidence level of 95% [43].

4Normally the detector takes data around the clock, aside from smaller breaks necessary for slight maintenance
work or caused by technical failures. However, about one time each year there is a bigger shut down for about one or
two months where the PEP-II operation is down. During these shut downs time-consuming upgrades and reparations
at the detector and the machine are performed.

36



4.1. The Data Sample

of the detector and the machine change with time there has to be a dedicated set of simulated
events for each run period.

Reconstruction: The last step applies the reconstruction procedure resulting in DCH tracks,
EMC clusters and so on. The procedure applied on the digis of simulated events is identical
to the one applied on the true-data digis.

Each MC event contains two types of information: The reco-side and the truth-side. The reco-
side contains all the information that is also available in true-data events, i.e. the DCH tracks,
the EMC clusters and further reconstruction information. The truth-side consists of the MC-truth
list and the GHits, where the MC-truth list is nothing else but the decay tree with the momentum
four-vectors of all participating particles as generated by EvtGen.

The first easily-understandable advantage of the MC simulation is that one can study what the
reco-side looks like for a given truth-side, i.e. for interesting decays such as signal or important
background events. That means one can learn the following: What will the real detector approx-
imately answer if it is confronted with a special type of physics event? For example, in the early
stages of this analysis the so called Signal MC was studied. Signal MC contains BB events where
one B meson decays generically and the other B meson decays as given by equation 4.1. This
technique uses the fact that for each truth-side there is an assigned reco-side. It is a unambiguous
assignment of the whole truth-part to the whole reco-part of an event.

A second very useful advantage is that one can successfully ask for the causal reason of a
reconstructed object (such as a DCH track or an EMC cluster): Which particle of the MC-truth
list is responsible for the existence of the reconstructed object? The answer is given by using a
technique called MC-truth matching which exploits the GHits of the event. The MC-truth matching
determines which particle of the MC-truth list caused a detector signal and is therefore responsible
for a certain reconstructed object. But sometimes this assignment is ambiguous. Since in special
cases more than one single MC-truth particle may be responsible for, e.g. a cluster in the EMC,
the matching between MC-truth particles and reconstructed objects is not one-to-one. For each
particle of the MC-truth list there is a weight for having contributed to the reconstructed object.
Fortunately, in most of the matching processes there is one MC-truth particle whose weight clearly
dominates.

The full simulation of the BABAR MC requires a lot of computing power and therefore it is
performed centrally by the Simulation Production Group [49]. For run1-3 there is the SP5 MC and
for run4 there is the SP6 MC, which are the fifth and the sixth revision of the BABAR simulation
production, respectively.

The used amount of MC events of generically decayed B mesons is listed in table 4.1. For each
of the four runs an equal amount of Υ (4S) → B+B− and Υ (4S) → B0B0 events has been used.
This so called ’generic BB MC’ includes a comprehensive cocktail of measured and expected B
meson decays. Because this analysis reconstructs the decay B− → D∗0e−νe all other semileptonic
charmed B decays are important and dominant background sources, especially those decays that
contain true D∗0 mesons in their decay chain. The EvtGen branching fractions of all such b → c`−ν`

decays are listed in table 4.2. The decay model of Goity and Roberts [52] describes all listed modes
with two hadrons in the final state.5 If there is only one hadron in the final state then the decay
is described by the ISGW2 decay model [53], an update of a model developed by Isgur, Scora,

5Citation from the EvtGen documentation [46]: ’This is not exactly what was published by Goity and Roberts,
partly due to errors in the paper and because the D∗ had to be removed from the Dπ non-resonant.’
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Table 4.2: Listed are the branching fractions B of all EvtGen decay modes where a B meson goes into
a lepton, a neutrino and a charmed hadronic system Xc. If the decays B → Xc`ν` (with ` = e, µ) and
B → Xcτντ contain true D∗0 mesons directly within the Xc system or in a subsequent decay of Xc then
they are of type 1; otherwise they are type 2 events. Since only events with correctly reconstructed D∗0

mesons can contribute to reconstructed signal events (see end of section 5.1) the events assigned to type 1
are a critical background for this analysis.

Type B0 → B (%)
2 D∗+ `− ν` 5.60
2 D+ `− ν` 2.10
1 D+

1 `− ν` 0.56
2 D∗+

0 `− ν` 0.20
1 D′+

1 `− ν` 0.37
1 D∗+

2 `− ν` 0.37
2 D∗+ π0 `− ν` 0.10
1 D∗0 π+ `− ν` 0.20
2 D+ π0 `− ν` 0.30
2 D0 π+ `− ν` 0.60

total Xc`
− ν` 10.40

2 D∗+ τ− ντ 1.60
2 D+ τ− ντ 0.70
1 D+

1 τ− ντ 0.13
1 D′+

1 τ− ντ 0.20
1 D∗+

2 τ− ντ 0.20
total Xcτ

− ντ 2.96

Type B− → B (%)
Signal D∗0 `− ν` 5.60

2 D0 `− ν` 2.10
1 D0

1`
− ν` 0.56

2 D∗0
0 `− ν` 0.20

1 D′0
1 `− ν` 0.37

1 D∗0
2 `− ν` 0.37

2 D∗+ π− `− ν` 0.20
1 D∗0 π0 `− ν` 0.10
2 D+ π− `− ν` 0.60
2 D0 π0 `− ν` 0.30

total Xc`
− ν` 10.40

1 D∗0 τ− ντ 1.60
2 D0 τ− ντ 0.70
1 D0

1τ
− ντ 0.13

1 D′0
1 τ− ντ 0.20

1 D∗0
2 τ− ντ 0.20

total Xcτ
− ντ 2.96

Grinstein and Wise [54]. The only exceptions are the decays B− → D∗0e−νe and B0 → D∗+e−νe,
which are described by an HQET inspired model (see sections 5.3.1 and 5.3.1.2).

Last but not least it is important to mention that EvtGen uses the PHOTOS algorithm [51] for
performing QED photon radiative corrections.

4.2 The Reconstruction of Charged Particles

4.2.1 The Reconstruction of a Track

The DCH and the SVT provide the information for the reconstruction of a charged track. Because of
the magnetic field ~B inside the detector a charged track has the shape of a helix. The parameter set
(d0, φ0, z0, κ, tanλ) and the associated covariance matrix define the charged track. The parameters
are determined at the point of closest approach (POCA) to the z axis. From the values of the first
three parameters one can read off the absolute position of the helix: The distance of the helix to
the origin of the coordinate system in z direction is given by z0 and the corresponding distance in
the x-y-plane sets the parameter d0; the azimuth of the track is given by φ0. The helix curvature
is expressed by κ and is connected to the particle’s transversal momentum pT by κ = Q/pT . The
sign of the variable depends on the particle’s charge Q. κ is connected to the radius ρ of the helix
by ρ = 1

| ~B|κ
= pT

Q| ~B|
. Together with λ — the dip angle of the track into the x-y-plane — one obtains
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4.2. The Reconstruction of Charged Particles

the particle momentum p = pT
cos λ . However, the raw DCH data are not directly translated into the

helix parameters but into so called DCH hits. (The same is true for the SVT.) A DCH hit appears
for these DCH cells whose collected charge exceeds a certain threshold value. From the DCH and
SVT hits the tracks are found and fitted by the Kalman filter algorithm [55]. Thereby the full map
of the magnetic field and the detailed distribution of material in the detector is taken into account.
Firstly, a reconstruction with only DCH hits is performed. Secondly, if there are SVT hits which
consistently belong to the found DCH tracks, then they are assigned to the corresponding DCH
tracks. At the end of this step all tracks are checked whether some of them could have been created
by the same primary particle — if yes then the corresponding tracks are merged. After that, the
BABAR tracking algorithm tries to reconstruct tracks that have only hits in the SVT, the so called
SVT only tracks. Finally, DCH hits consistent with an SVT only track are added to this SVT only
track. If there is a DCH track consistent with a SVT only track then both tracks are merged.

All charged particles in this analysis are required to have tracks fulfilling the BABAR Good Tracks
Loose (GTL) selection criteria:

• The polar angle θ (= 90◦ − λ) must be within the acceptance range: 23.5◦ < θ < 145.5◦.

• The distance of the helix’s POCA to the z axis must be low enough: d0 < 1.5 cm.

• Similarly there is a criterion for the distance in z direction: |z0| < 10 cm.

• The momentum must be lower than 10GeV/c.

• The track must have a minimum transverse momentum: pT > 0.1 GeV/c.

• Tracks with very few DCH hits are not selected: NDCH ≥ 12.

The tracking algorithm and the GTL selection criteria lead to the event-specific lists of available
tracks used in this analysis. Nearly 100% of all measured tracks stem from pions, kaons, electrons,
protons and muons. In generic BB events, the ratio of the average number of expected pion,
kaon, electron and proton tracks is about Nπ : NK : Ne : Np = 5 : 1 : 1 : 0.2 (see also section
4.2.2). Thus the biggest contribution comes from pions. To have a purer signal sample after the
combination to B− → D∗0e−νe candidates it is recommendable to require particle identification
(PID) from the particle candidates associated with the tracks. The electron purity and the kaon
purity can be increased significantly without big efficiency loss by applying PID selection criteria.
The corresponding criteria used in this analysis are briefly discussed in the next two subsections.
A tighter pion selection would reduce the combinatorial background not as much as in the electron
and kaon case but would introduce further systematic uncertainties. Therefore no extra pion
identification is applied but all tracks of an event remaining after the kaon and the electron selection
are used as pions.

4.2.2 The Electron Identification

The electrons for the reconstruction of the B− → D∗0e−νe candidates are selected by the
PidLHElectrons selector [56] which is a standard selector provided by the BABAR software. Its
decision to select or reject a track is made by cutting on the likelihood ratio R,

R =
AeLe(t)

AeLe(t) + AπLπ(t) + AKLK(t) + ApLp(t)
(4.2)

Ae : Aπ : AK : Ap = 1 : 5 : 1 : 0.2 , (4.3)
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where Ai are a priori probabilities of the appearance of an i-track (i = e, π,K, p) in the event and
Li are the likelihoods of track t to originate from an i-particle. Muons are excluded by requiring
that the track-associated EMC-cluster must have more than five crystals. All tracks with R < 0.95
are rejected by the PidLHElectrons selector. The likelihoods Li rely on five variables obtained from
the major detector components DCH, DIRC and EMC. The variables are the following:

E/p – the ratio between the energy E deposited in the EMC-cluster associated with the track t
and the momentum p measured in the DCH. Because the used electrons are very relativistic
particles ( E

m ≈ 2000) and deposit nearly all their energy in the EMC they have a narrow
E/p distribution peaking slightly below one. The biggest e-track background comes from
π mesons. Because they are less relativistic ( E

m ≈ 7) and often transverse the EMC with
depositing only a part of their energy the resulting E/p distribution is broader and shifted
to lower values. The situation for kaons and protons is similar.

∆Φ – the angle between the EMC cluster center and the intersection of the track with the EMC
surface with respect to the origin of coordinates. Hadrons produce electromagnetic showers
penetrating deeper into the EMC than those produced by electrons. Because the tracks enter
the EMC under a non-zero angle the variable ∆Φ contains information about the length of
the shower and therefore provides discrimination power.

LAT – the lateral shower shape of the track-associated EMC-cluster defined by

LAT =

∑N
j=3 Ejr

2
j∑N

j=1 Ejr2
j

(4.4)

where j, Ej and rj are the index of the crystal within the EMC cluster, the crystal energy
and the distance of the crystal center to the cluster center, respectively. E1 and E2 must
be the two biggest crystal energies in the cluster. By definition, LAT has values between
zero and one. Low values result from concentrated energy deposition in the EMC cluster —
high values come from clusters where the energy is deposited less compactly. Electrons (and
also photons) have a LAT distribution peaking between 0.2 and 0.4 whereas hadrons have a
nearly flat LAT distribution.

dE/dx – the specific energy loss in the DCH. The ionization energy loss of the DCH-transversing
charged particle within a DCH cell is proportional to the ratio Q/l with l and Q being the
track’s path length through the cell and the charge collected during the DCH hit. The 80%
truncated mean of the DCH-hit individual energy losses gives the DCH’s dE/dx of a track.
The expectation of the dE/dx is given by the Bethe-Bloch formula [8].

θC – the Cherenkov angle, measured in the DIRC. If less than six Cherenkov photons are measured
then this variable is excluded from the likelihoods.

Some of these variables are illustrated in figure 4.1. The selector has an excellent electron efficiency
at a very low hadron misidentification rate as can be seen in figure 4.2.

4.2.3 The Kaon Identification

The kaons for the reconstruction of the D0 candidates are selected by the KMicroVeryLoose selector
[59], which is a standard selector provided by the BABAR software. Its decision to select or reject
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(a)

E/p

(b)

LAT

(c)

θC[rad]

(d)

dE/dx

Figure 4.1: The distributions of the discriminating variables of the used electron selector illustrate the
separation power between electrons (in red) and pions (in black). The graphics are taken from [57] and were
obtained from data samples of nearly pure electron tracks (radiative Bhabha events) and nearly pure pion
tracks (K0

S → ππ events) [58].
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(d)

Figure 4.2: The selection rates of the PidLHElectrons selector are shown in dependence of the track
momentum p: (a) the electron efficiency for tracks reaching the backward part of the EMC barrel
(71.53◦ < θ < 141.72◦); (b)-(d) the misidentification rates for pions, kaons and protons for tracks reaching
the backward part of the EMC barrel (77.42◦ < θ < 137.38◦). The PID group [66] created the plots. The
numbers were obtained from data samples containing only tracks of the corresponding particle type [58].
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(b)

Figure 4.3: The selection rates of the KMicroVeryLoose selector are shown as a function of the track
momentum p for tracks reaching the backward part of the DIRC barrel (95.0◦ < θ < 146.1◦): (a) The
kaon efficiency and (b) the misidentification rate for pions. The PID group [66] created the plots from data
samples containing only tracks of the corresponding particle type [58].

a track is made by cutting on the neural net output of a K-NET [60]. The net input variables are
the track’s momentum and three individual likelihood ratios Rx,

Rx =
LK x

LK x + Lπ x
, (4.5)

with x =DCH, SVT, DIRC. The ratios are limited to only kaons and pions and do not include
electron and proton terms. The variables used for the likelihoods Lx are:

dE/dx: The (dE/dx)DCH is used for the likelihood LDCH and the (dE/dx)SVT is used for LSVT.

θC : The Cherenkov angle and the number of Cherenkov photons, both measured in the DIRC,
are used for the LDIRC calculation.

The performance of the KMicroVeryLoose selector is shown in figure 4.3. In the K momentum
range below 0.7 GeV/c, the separation power comes mainly from the DCH and is better than 2σ.
For the momentum range between 0.7 GeV/c and 3.0GeV/c the DIRC provides a K-π-separation
better than 4σ. Figure 4.4 shows the kaon momentum distribution for kaons coming from D0

mesons of the signal decay (equation 4.1).

4.3 The Reconstruction of Neutral π Mesons

A π0 meson is reconstructed from two photon candidates of the event as described below. Because
this analysis uses the π0 efficiencies provided by [61] the π0 reconstruction has to be exactly equal
to one of the BABAR standard π0 selectors.6 Before the definition of π0 candidates is given one
needs to know how a photon is reconstructed in the EMC.

6The analysis described in [61] determines the π0 efficiency with respect to the π0 standard selectors defined in
the BABAR software.
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Figure 4.4: The momentum distribution of kaons stemming from signal decays (equation 4.1) measured
for MC events in the laboratory frame. The little dent between 0.5 GeV/c and 0.6 GeV/c is caused by the
fact that the separation power of the DCH already decreases but the DIRC separation power is not yet high
enough. In the rest of the spectrum the DIRC and the DCH allow for a good K-π-separation.

EMC Clusters
The definition of a photon candidate bases on the EMC cluster objects. A group of contiguous
neighboring crystals in the EMC having the following properties is called a cluster:

• The crystal group must contain at least one seed crystal with a deposed energy Edep > 10 MeV.

• Each cluster crystals must have an energy Edep > 1 MeV.

• Each cluster crystal with Edep < 3 MeV must have at least one contiguous neighbor with
energy Edep > 3 MeV.

• The total energy of all crystals contributing to the cluster, Ecluster, has to be greater than
20 MeV.

In principal, a lower threshold on the single crystal energy would improve the energy resolution
because the fluctuations in the energy loss at the shower edges would be smaller. However, the value
1 MeV is necessary to keep the EMC data volume at an acceptable level. The main contributors
to the low energy background are electronics noise and beam-generated background. The beam-
generated background rises dramatically more when going to lower crystal energies (see figure 4.5).
The 20MeV cluster energy requirement reduces this background.

EMC Bumps
Since it is possible that a cluster is a superposition of electromagnetic showers generated by more
than one primary particle a search for the number of local energy maxima within the cluster is
performed. After that the cluster is split into as many bumps as it has maxima. To be a local energy
maximum, the corresponding crystal must (i) have an energy ELocMax greater than the energy of
each of its neighbors and (ii) it must satisfy the condition (N − 2.5)/2 > ENmax/ELocMax, where
ENmax is the highest energy of any of the neighboring N crystals with an energy above 2 MeV.
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Figure 4.5: The energy spectrum of photons recorded in the EMC by random triggers with single beams at
typical operating currents, LER at 1.1A and HER at 0.7A. The electronics noise has been subtracted. [34]

The splitting of a cluster consisting of Ncrys crystals into Nbump bumps is realized by giving
weights wik to each crystal so that the energy of the kth bump of a cluster is calculated

Ebump k =
Ncrys∑
i=1

wik Ei . (4.6)

Thereby the index i runs over all crystals of the cluster and Ei is the energy deposed in the ith
crystal. Trivially, for a cluster with one single bump all weights are one, wi1 = 1. For Nbump > 1
the crystal weights are calculated in an iterative process together with the position of the bump
centroid. In a first step the bump centroid positions

~rbump k =
∑Ncrys

i=1 Êik~ri∑Ncrys

i=1 Êik

(4.7)

are calculated, in a second step the crystal weights

wik =
Ei exp (−2.5rik/rM)∑Nbump

j=1 Ej exp (−2.5rij/rM)
(4.8)

are calculated, and after this the two steps are iteratively repeated until the centroid positions
are stable to within a tolerance of 1 mm. In equation 4.8, rM is the Molière radius and rik is the
distance between the ith cluster crystal and the kth bump centroid, rik = |~ri − ~rbump k|. For each
crystal i, the point ~ri is situated 12.5 cm deep inside the crystal on the longitudinal crystal axis.7

7In earlier software releases the inner EMC surface was used. The change shifts the bump centroid into the crystals
and thereby improves the track-bump matching described below [62].
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In the calculation of the bump centroids the crystal energies are weighted logarithmically

Êik = max
(

0 , a + ln
wikEik

Ebump k

)
, (4.9)

where a is a cutoff parameter (a ≈ 4).

Track-Bump Matching
At this stage of event reconstruction there are EMC bumps. In a next step one tries to match
the EMC bumps to the DCH tracks. The track-bump matching algorithm takes two things into
account:

• Spatial track-bump location: One can define the azimuthal and polar angle differences be-
tween (i) a point on the EMC-extrapolated track trajectory being 12.5 cm deep inside the
EMC and (ii) the EMC bump centroid. Both angle differences are used to calculate signifi-
cance levels.

• Energy of EMC crystal and DCH track: A significance level is also calculated from the ratio
of the energy of the struck EMC crystal to that of the track using the pion hypothesis.

A cut on the combined consistency separates the EMC bumps into matched and non-matched
bumps. The list of bumps remaining non-matched is called CalorNeutral in the BABAR language.
A newer documentation of the track-bump matching algorithm can be found in [62], older maybe
more detailed but not so up-to-date information can be obtained from [63, 64].

Photon Candidates
The photon candidates used to reconstruct π0 mesons are members of the CalorNeutral list and
must survive the following two selection cuts predefined by the π0 efficiency analysis [61]:

• The lateral momentum LAT defined in equation 4.4 must be lower than 0.8 to reject non-
compact bumps mainly produced by hadrons.

• The energy of the bump must be greater than 30 MeV.

Photon candidates satisfying these requirements are called GoodPhotonsLoose photons in the BABAR

language.

π0 Candidates
Again, the π0 selection criteria are predefined by the chosen standard π0 selector whose efficiency is
given by the study described in [61]. Because the phase space of the decay D∗0 → D0π0 is very small
the momentum spectrum of the π0 is very soft – a π0 coming from a D∗0 decay is also called soft
π0 (see figure 4.6a). As a result, an appropriate π0 list should contain low-energetic π0 candidates.
The pi0SoftDefaultMass list has been chosen as the most appropriate list for this analysis because it
is the list with the lowest π0 energies accompanied with the lowest combinatorial background. Each
π0 candidate of this list is composed by two GoodPhotonsLoose photon candidates. The detailed
π0 selection requirements are:

• The invariant two-photon mass satisfies the condition 0.115 GeV/c2 < mγγ < 0.150 GeV/c2

(see figure 4.6b).
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Figure 4.6: The plots show properties of unfitted π0 candidates correctly matched to a signal decay (see
equation 4.1): (a) the γγ momentum distribution within the Υ (4S) rest frame; (b) the γγ mass distribution.
The mγγ selection criterion is plotted too.

• The π0 momentum calculated in the Υ (4S) rest frame, pCM
π0 , must be lower than 0.45GeV/c.

Each selected π0 candidate is fitted by a VtxFitterOper object of the BABAR software package
VtxFitter. Thereby the photon energies are varied within their uncertainties and mγγ is constrained
to the value 134.976MeV/c2. The fit procedure is called π0-mass-constrained-fit and improves the
energy resolution of the photons, ∆Eγ = Eγtruth − Eγreco, where Eγtruth and Eγreco are the true
and the reconstructed photon energy. The improvement of ∆Eγ is shown in figure 4.7.

4.4 Efficiency Differences between Data and MC

Since this analysis tries to determine the absolute number of B− → D∗0e−νe events in the data
sample — detected and undetected events — one needs to know the detector efficiency εsig for
such decays as precisely as possible. To first order this efficiency is taken from the MC simulated
events (sec. 4.1.2) as the ratio of measured signal events Ňm

sig relative to the number of generated
signal events Ň tot

sig :
Nm

sig

N tot
sig

= εsig ≈ ε̌sig =
Ňm

sig

Ň tot
sig

. (4.10)

A symbol with (without) tilde on top is meant with respect to the simulated MC sample (true-
data sample). Equation 4.10 is a good approximation but ε̌sig can still be improved by tuning it
with true data: After one applies some efficiency corrections to the MC, the signal efficiency ε̌sig

is transformed into an improved signal efficiency ε̌′sig. To explain the transformation one needs to
express ε̌sig as a product,

ε̌sig = ε̌∗
∏

i=e,K,π,π0

ε̌i , (4.11)

where ε̌i is the efficiency to detect a particle i within a special range of acceptance (θi, φi), mo-
mentum (pi), transversal momentum (pT i) and event’s track multiplicity (M). The ε̌∗ takes into
account the correlations between the four particles. It acts as a correction to the product ansatz in
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Figure 4.7: The distribution ∆Eγ = Eγtruth − Eγreco is plotted for the lower-energy photons of the
π0 candidates correctly matched to a signal decay (see equ. 4.1). The distribution obtained after the
π0-mass-constrained-fit (red hatched) shows a significant improvement to the distribution obtained without
the fit (black).

4.11 and remains untuned. The tuning transforms ε̌i by a multiplication with a data-MC correction
factor Ri into an efficiency ε̌′i,

ε̌i 7−→ ε̌′i = ε̌iRi , (4.12)

so that the best estimate of the signal efficiency in data is given by

ε̌′sig = ε̌∗
∏

i=e,K,π,π0

ε̌′i . (4.13)

The value of Ri for charged particles is divided into two factors. The first factor, RTrack
i , is the

ratio of the track-finding efficiency for the used GTL tracks in data (εTrack
i ) and in MC (ε̌Track

i ).
The second factor, RPid

i , is the ratio of the particle-identification efficiency for the i-particle-selector
to select an i-particle from the GTL track-list in data (εPid

i )and in MC (ε̌Pid
i ):

Ri = RTrack
i RPid

i

=
εTrack
i

ε̌Track
i

εPid
i

ε̌Pid
i

(i = e,K, π) (4.14)

Because particle-identifying criteria are only applied to the electron and the kaon candidates but
not to the pion candidates we have εPid

π = ε̌Pid
π = 1 and therefore Rπ = RTrack

π . More detailed infor-
mation on the track finding efficiency (particle identification efficiency) can be found in subsection
4.4.1 (4.4.2).

The value of the data-MC correction factor Rπ0 is the ratio of the π0 reconstruction efficiency
in data (επ0) and in MC (ε̌π0) and is determined from e+e− → τ+τ− events [61]. Details on that
are discussed in section 4.4.3.

In practice, the analysis uses a reweighting technique not requiring the explicit calculation of
the signal efficiency (see chapter 5). Nevertheless, one can calculate the total signal efficiency ε̌′sig
effectively applied in this analysis. This efficiency is given later in table 4.3.
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Figure 4.8: The tracking correction factors RTrack
i for i = e,K, π are applied to the MC to obtain an

equal track reconstruction efficiency in data and MC (a). To correct the different selection efficiencies of
the PID selectors the MC is also tuned by the correction factors RPid

i for i = e,K (b). The final correction
factors applied to each Y candidate reconstructed in MC is the product Rtot of all correction factors,
Rtot = Re · RK · Rπ · Rπ0 . The distribution of Rtot for Y candidates correctly matched to a signal decay is
shown in subfigure (c).

4.4.1 The Tracking Efficiency

Reference [65] summarizes the information about the tracking efficiency. The probability to recon-
struct a GTL track along a particle’s trajectory is called track-finding efficiency or also tracking
efficiency. The ratio of its value in data and MC is RTrack and has been determined and tabulated
in bins of the following track properties: (i) transverse momentum pT , (ii) polar angle θ, (iii) az-
imuthal angle φ and (iv) track multiplicity M of the event the track is reconstructed in. For each
single track used in the reconstruction of the MC signal-candidates the analysis looks up the table
and assigns the corresponding weight to the track. Technically, the weights are applied as described
by the formulas 4.12 to 4.14 and formula 5.14. But how are these ratios RTrack determined?

For the determination of the tracking efficiency the independence of the two BABAR tracking
devices, SVT and DCH, is exploited. If a track is reconstructed in the SVT and has a transverse
momentum pT > 0.1 GeV/c then the DCH should have seen it. Assume that from the Nsvt tracks
reconstructed in the SVT a number of Ndch tracks is also reconstructed by the DCH. After sub-
tracting the Nf tracks which are falsely reconstructed in the SVT (so called SVT ghost tracks
whose number is estimated from Bhabha events) one gets an estimate for the tracking efficiency,
εTrack = Ndch/(Nsvt−Nf). The determination of this ratio in data and MC leads to the double ratio
RTrack = εTrack/ε̌Track where many systematic uncertainties of εTrack and ε̌Track cancel out. The
main contribution to the systematic uncertainty of RTrack springs from the fact that the BABAR

track finding does not exclusively rely on the DCH alone (see section 4.2.1). Altogether the system-
atic uncertainty on RTrack is 0.8%. Figure 4.8a shows the distributions of the tracking correction
factors RTrack

i .

4.4.2 The Particle Identification Efficiency for Charged Particles

Besides the tracking efficiency, also the efficiency of the applied PID selectors for electrons and kaons
could significantly differ between data and MC. Assume that starting from a pure sample of N tot

x-particle’s GTL-tracks the x-selector would select N sel tracks (x = e,K). The resulting x-particle
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identification efficiencies in data and MC are εPid = N sel/N tot and ε̌Pid = Ň sel/Ň tot, respectively.
The electron and the kaon efficiencies are determined and tabulated in bins of momentum, polar
angle and run range. For each single MC signal candidate the analysis looks up the corresponding
table and assigns the weight RPid

e ·RPid
K = (εPid

e /ε̌Pid
e )·(εPid

K /ε̌Pid
K ) improving the data-MC-agreement.

But the samples of pure electron and kaon GTL-tracks, how are they defined? This is docu-
mented in [58]. There are no PID cuts performed to create the two samples because that would
fake the desired efficiencies. Only kinematic and topological cuts are allowed.

Electrons: Starting from events with exactly two tracks belonging to oppositely charged particles,
a sample of radiative Bhabha events is created. The number of counted tracks before (N tot

e )
and after (N sel

e ) the electron selector is applied gives the selector’s efficiency εPid
e = N sel

e /N tot
e .

From the two tracks of an event only the low-energetic one is used.

Kaons: For the kaon efficiency one uses cuts to select D∗+ → D0(K−π+)π+ candidates from
multi-hadron events. A fit to the D0 mass determines the number of kaon GTL-tracks. N tot

K

is this number before the kaon selector is applied and N sel
K is this number after it is applied.

From both one easily determines the kaon efficiency, εPid
K = N sel

K /N tot
K .

Further information about the PID tables is available in [66] and [67]. Figure 4.8b shows the
distributions of the tracking correction factors RPid

i .

4.4.3 The Neutral Pion Reconstruction Efficiency

The data-MC-disagreement in the π0 reconstruction efficiency is corrected by using the correction
factor Rπ0 as given by the result of the τ analysis [61]. In the τ analysis result, Rπ0 is given as a
function of the magnitude of the π0 laboratory momentum (~pπ0) and as a function of the used π0

selector8. For the π0 selector used in the semileptonic analysis (pi0SoftDefaultMass) the correction
factor is given by the function [61]

Rπ0 = a + b · |~pπ0 |
GeV/c

, (4.15)

with
a = 0.9597 and b = 7.636 · 10−3. (4.16)

To improve the data-MC-agreement, each single signal candidate of the MC is weighted by |~pπ0 |,
according to equation 4.15. The π0 efficiency needs a bit more discussion than the tracking and
the PID efficiency, because an extrapolation of the result of the τ analysis is used. It is an ex-
trapolation because the parametrization 4.15 is validated by the τ analysis for a momentum range
from 0.3 GeV/c to ∼5.0GeV/c only, but the π0 mesons of the signal decay have momenta between
0.0GeV/c and 0.35GeV/c (see figure 4.9). As can also be seen in figure 4.11, in spite of the lower limit
of the validated momentum range (0.3 GeV/c), the τ analysis determined Rπ0 down to 0.1 GeV/c.

After presenting the basic ideas of the τ analysis, a few sentences give insight into the τ
event selection. Subsequently, the main sources of the data-MC-disagreement (low-energy photon-
background, hadronic split-offs) are briefly explained. The section closes with an argumentation
for the extrapolation of equation 4.15 into the π0 momentum range of the D∗0eν signal candidates.

8π0-selector properties, such as allowed γγ-mass-range or γ-energy-range (where γ is a π0 daughter) influence the
π0 efficiency.
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Figure 4.9: The π0 momentum distribution within the laboratory system, plotted for π0 candidates cor-
rectly matched to a signal decay (see equ. 4.1). The momentum range is situated at the boarder of the
validated range of the τ analysis.

4.4.3.1 Introduction of the τ Analysis

The τ analysis studies e+e− → τ+τ− events, where one τ is reconstructed in the decay channel
τ± → e±νν and the other τ is reconstructed in the decay channel (i) τ± → π±ν or (ii) τ± → ρ±ν →
π±π0ν. The selection and reconstruction of the events is described in more detail in [61] and in
appendix A.1. From the selected events one can determine ε′π0 and ε̌′π0 , which are proportional to
the π0 efficiency in data (επ0) and in MC (ε̌π0), respectively. One can define

επ0 ∝ ε′π0 =
N sel

N tot
(4.17a)

ε̌π0 ∝ ε̌′π0 =
Ň sel

Ň tot
, (4.17b)

where N sel, N tot, Ň sel and Ň tot are numbers of counted events obtained from the data and the
MC sample9 , respectively. The proportionality factors and the large systematic uncertainties of
ε′π0 and ε̌′π0 cancel in the ratio

Rπ0 =
επ0

ε̌π0

=
ε′π0

ε̌′
π0

=
N sel/N tot

Ň sel/Ň tot
. (4.18)

In principle, the authors of [61] determine the numbers N sel, N tot, Ň sel and Ň tot in two different
ways leading to two values of the double ratio Rπ0 :

(a) The first way of Rπ0 determination is performed for all π0 standard lists of the BABAR software.
Due to its procedure it uses a special case where επ0 = ε′π0 and ε̌π0 = ε̌′π0 . The strategy is
to use the MC-truth matching described on page 37. The denominator of equation 4.17b is
determined by

Ň tot = Ǎ− B̌, (4.19)

9 The numbers corresponding to the MC sample are not only counted but also luminosity-weighted. Thus, they
give a direct estimate for the numbers observed in the data sample.

51



Chapter 4. Candidate Selection

where Ǎ is the total number of all selected MC events containing a π0 candidate, and B̌ is
the number of all MC background-events, i.e. all MC events where the π0 candidate was
not successfully MC-truth matched to a π0 meson of the MC-truth list. The corresponding
numerator of equation 4.17b is calculated by

Ň sel
(x) = Ǎx − B̌x, (4.20)

where the definitions of Ǎx and B̌x are like before, but the events must be selected by the
BABAR standard π0 selector x (x = pi0VeryLoose, pi0Loose, pi0SoftDefaultMass, . . . ). The
definition of the data corresponding numbers N tot and N sel is obtained similarly,

N tot = A−B and (4.21)

N sel
(x) = Ax −Bx, (4.22)

where A and Ax are defined as before but with respect to the data sample instead of the MC
sample. The B and the Bx are taken from MC (B = B̌ and Bx = B̌x). Altogether, the π0

efficiency correcting factor Rx
π0 for a π0 selector x is defined by:

Rx
π0 =

εx
π0

ε̌x
π0

=

(
Ǎx − B̌x

)
/
(
Ǎ− B̌

)
(Ax −Bx) / (A−B)

. (4.23)

(b) The second type of Rπ0 determination can be interpreted as a detailed check for the Rx
π0 result

of (a). This time, the denominator of equation 4.17b is the number (Ňπ) of selected MC
events that have been assigned to τ → πν decays. Correspondingly, the numerator of 4.17b
is the number (Ňρ) of selected MC events assigned to τ → ρν decays. Due to

Ňρ

Ňπ
∝ ε̌π0 ε̌πB (τ → ρν) ε̌eB (τ → eνν)

ε̌πB (τ → πν) ε̌eB (τ → eνν)
(4.24)

the ratio Ňρ/Ňπ is proportional to the π0 efficiency ε̌π0 . Similarly defining the numbers of
data events assigned to the τ → πν and τ → ρν decays (Nπ and Nρ, respectively), one gets
the factor Rx

π0 corresponding to the π0 selector x (x = pi0VeryLoose, pi0Loose, . . . ):

Rx
π0 =

εx
π0

ε̌x
π0

=
Nρ

x/Nπ

Ňρ
x/Ňπ

. (4.25)

The two subscripts x in the right side of the equation indicate that each of the number of
events is taken after the π0 candidates were required to pass the selector x. One important
feature of strategy (b) compared to strategy (a) is that it does not rely on MC-truth matching.

The two types of Rπ0 determination are consistent within a broad π0 momentum range as shown in
figure 4.11. The disagreement in the two low-momentum bins of figure 4.11 is discussed in section
4.4.3.3. The important parametrization 4.15 has been obtained using method (a) for the π0 selector
pi0SoftDefaultMass, where the requirement on the π0 momentum (pCM

π0 < 0.45 GeV/c) was omitted.
The corresponding dependence of the MC-correction-factor Rπ0 on the π0 momentum is shown in
figure 4.10. Once again, the unphysical steep rise in the low-momentum bins is explained in section
4.4.3.3.
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Figure 4.10: Measurement of Rπ0 by the τ
analysis using the MC-truth-matching method.
The measured values are shown for the selector
pi0SoftDefaultMass. Also plotted is the obtained
parametrization (dotted), given in equation 4.15.
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Figure 4.11: Overlay of the correction factors Rπ0

for method (a)(blue) and (b)(red) of the τ anal-
ysis. The correction factor is shown for the π0

selector pi0VeryLoose. The disagreement in the
low-momentum range is discussed in the text. From
the level of agreement between the two methods, the
authors of the τ analysis state a systematic error
∆Rπ0 = 3%.

4.4.3.2 Main Differences between Data and MC

There are two effects giving the dominant contribution to the difference between data and MC,
where ’difference’ is mentioned in view of the reconstruction in the EMC. The listed effects do not
influence the π0 efficiency itself, but they complicate the determination of the π0 efficiency:

1.) Low-Energy Photon Background As can be seen in figure 4.5, the low-energy photon back-
ground from the machine rises dramatically when going to lower energies. This behavior is
modeled in the MC by also using real data (see page 36). More generally, the simulation of
the (low-energy) photon background does not exclusively rely on first principles. It also bases
on empiric models trying to match the distributions of various EMC-variables. However, as is
also shown in the τ analysis (see figure 4.12), the MC overestimates the amount of low-energy
photons.

2.) Hadronic Split-offs A hadron (e.g. a pion) interacts with the EMC material by electromag-
netic and hadronic interaction processes. As a result of the hadronic interaction, secondary
hadrons can be generated. If these secondary particles have (i) a large enough lifetime and (ii)
a very small probability to deposit energy in the EMC, then they can produce secondary EMC
clusters, separated from the primary EMC cluster. Such a secondary cluster is called hadronic
split-off. The true cause of the improper split-off description in MC is a bad description of
the EMC-internal hadronic interaction processes.

For method (b) explained on page 52, the τ analysis performs corrections accounting for the split-
offs and the low-energy photon background.
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Figure 4.12: Distribution of photon momentum for the events selected by the τ analysis. In a comparison
of data (black) and MC (blue) one can see an increase in the number of MC photons at low energies. (As
already mentioned on page 51, the MC is scaled to the same luminosity like data.)

4.4.3.3 Argumentation for an Extrapolation of the τ Analysis Result

At the beginning of the argumentation one should mention that the Rπ0 results of the τ analysis
are recommended by the Neutral Reconstruction Working Group of BABAR [68]. The results are
consistent to other BABAR-internal studies about π0 efficiency [69]. However, there is no completed
study giving the π0 efficiency with an acceptable uncertainty (∼ 3%) for the desired momentum
range of π0 mesons coming from D∗ mesons.

Since the effects dominantly contributing to the data-MC-disagreement concern the π0 back-
ground and not the true π0 mesons, there are good arguments to use an extrapolation of the τ
analysis result:

• First of all, the result of the semileptonic analysis is checked against systematic uncertainties
arising from the extrapolation by systematically cutting on the π0 momentum (see section
7.1.3).

• Second, how can the steep rise of Rπ0 (MC-truth-matching method) in figures 4.11 and 4.10
be explained? Since there are too many low-energy background-photons in the MC (compared
to data), the approximations used in equation 4.23 (B = B̌ and Bx = B̌x) are not allowed in
the low π0 momentum range. In this momentum range, the assumption of equal background
leads to an overestimation of the background in data. The resulting underestimation of N sel

and N tot leads to an overestimation of Rπ0 at low π0 momentum. The effect should become
more extreme when going from a tighter to a looser π0 definition, because the background
disagreement should grow. Indeed, in the plot with the looser π0 definition (figure 4.11, π0

selector = pi0VeryLoose) the Rπ0 edge in the low momentum bins is steeper than in the plot
with the tighter π0 definition (figure 4.10, π0 selector = pi0SoftDefaultMass).

4.5 The Selection Criteria

Due to the huge data sample, the uncertainty of the final result is not dominated by statistical
uncertainties. The main uncertainties are of systematic nature. Therefore, the selection criteria
increasing the signal fraction in the data sample have been optimized in a subjective way.
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4.5.1 The Event Selection

The BToDlnu Skim
Since the total branching fraction of the signal decay chain (equation 4.1) is about 1.5h one expects
only one out of 670 events to contain a signal decay.10 Of course, there are many events looking
similar to the searched events regarding the event’s detector response. But still, a big fraction
of the events of the analyzed data set is not interesting for this analysis and can be very easily
excluded, e.g. events having fewer than three charged tracks. Since this situation is comparable to
many of BABAR’s analyses, the BABAR computing model divides the total data set into subsamples
called skims. A certain skim is an appropriate starting point for many similar analyses [70].

The skim used in this analysis is the BToDlnu skim [71]. Besides the signal decay events, the
skim contains also events with reconstructed decays (i) where a semileptonic decay of a neutral B
meson is reconstructed instead of a charged B, (ii) where the daughter lepton of the B meson is
assumed to be a muon instead of an electron, and (iii) where an alternative reconstruction channel
of the D meson is used (e.g. D → Kππ). This (incomplete) listing illustrates that many BABAR

analyses can profit from the centrally created BToDlnu skim. The BToDlnu skim contains about
25% of the AllEvents skim, for data as well as for BB MC. Since the time-consuming steps of the
analysis are not only the combinatorics corresponding to equation 4.1 but also the uploading of
an event from the BABAR database, the use of the BToDlnu skim was very helpful to perform this
analysis.

The Second Normalized Fox Wolfram Moment
The second normalized Fox Wolfram moment R2 is defined by

R2 =
H2

H0
, (4.26)

with [72]

Hl =
∑
i j

|pi| |pj |
E2

vis

Pl (cos θij) . (4.27)

The double sum runs over all particles i and j of the event, where pi is the momentum of particle
i, θij is the opening angle between the momenta of particles i and j, and Pl is the lth Legendre
polynomial,

P0(x) = 1 and

P2(x) =
1
2
(
3x2 − 1

)
.

Evis is the total visible energy of the event. R2 is calculated from charged tracks and neutral clusters
passing loose quality requirements. By definition, the value of R2 ranges from zero to one. R2 is a
variable characterizing the event’s momentum distribution. For events with jet structure R2 gives
higher values (due to higher | cos θij | and higher P2 values) than for events with spherical structure.
Accordingly, the R2 distribution of e+e− → BB events is shifted to lower values compared to the
R2 distribution of e+e− → qq events (q = uds). In order to suppress qq events, each event with
R2 > 0.45 is rejected from the analysis. This selection criteria and the corresponding distributions
in BB and qq events are shown in figure 4.13.

10There are two charged B mesons in each second BB event.
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Figure 4.14: The electron momentum spectrum
for BB events. Electrons directly coming from a
B meson have a harder spectrum then electrons
coming from a B daughter or even from another
particle of the B decay chain. The requirement
pCM

e > 1.2 GeV/c increases the signal fraction in the
sample. (Histograms are stacked.)

4.5.2 The Candidate Selection

In the composition of the Y candidates the charge correlation between the tracks has been taken
into account. The charge of the kaon and the electron track have to be equal to each other, but
opposite to the charge of the pion track.

The Electron Momentum
A very important selection criteria, even already applied in the BToDlnu skim production, is the
requirement to select only candidates with high-momentum electrons. In principal, in the BB
events there are

• primary electrons directly originating from a B meson,

• secondary electrons originating from a direct daughter of a B meson, and

• further electrons originating from a still longer B decay chain.

The more intermediate states between the B meson and the electron, the softer is the corresponding
electron momentum spectrum. Figure 4.14 illustrates the electron momentum spectrum in BB
events for different types of electron origin. The BToDlnu skim only uses electrons with pCM

e >
0.8 GeV/c. For this analysis each selected candidate needs to satisfy the condition pCM

e > 1.2 GeV/c,
which increases the fraction of signal candidates in the final sample. The superscript CM marks
the electron momentum (pCM

e ) to be measured in the Υ (4S) rest frame.

The Vertex Probability
For the composition of D0, D∗0 and Y 11 candidates there is the possibility to simply add the
four-momenta of the charged tracks and the neutral pion, corresponding to the decay chain 4.1.

11Y = D∗0e−, as defined on page 34.
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Figure 4.15: Shown is the variation of the kaon momenta in the geometrical constrained fit of the D0

candidates surviving the cuts listed in table 4.3. The difference ∆p = |~p− ~pfit| is taken between the kaon
momentum before the fit (~p) and after the fit (~pfit). The two stacked histograms correspond to candidates
from signal (background) events containing (not containing) a signal decay on the MC-truth-side (see equ.
4.1). The corresponding distribution for the pions has the same shape.

From the resulting four-momenta of the composed candidates follow mass and angular distributions
providing selection criteria which increase the signal fraction in the data sample. But the detector
provides more information than ’just’ the momentum. It provides also the spatial information
about a track. If the pion and the kaon candidate really originate from one and the same mother
particle (D0 meson) then their reconstructed tracks should overlap at the mother’s decay vertex
within the track parameter uncertainties. In a fit called geometrically constrained fit, the pion
and the kaon track are forced to originate from one and the same common vertex. The fit varies
the parameters of the two tracks within their uncertainties. It is performed by a VtxFitterOper
object of the BABAR software package VtxFitter and relies on a least square method using Lagrange
multipliers. The probability of obtaining a higher value then χ2 at a given number of degrees of
freedom (n) is given by P (χ2, n),

P (χ2, n) =
∫ ∞

χ2

f(x, n) dx with (4.28a)

f(x, n) =

(
x
2

)n
2
−1

e−
x
2

2Γ
(

n
2

) , (4.28b)

where Γ(y) is the standard gamma function and P satisfies the condition 0 ≤ P ≤ 1 by definition.
For consistent track pairs originating from one common mother vertex, P is flatly distributed in x.
For inconsistent tracks χ2 is very large and results in very low values for P . To suppress candidates
with inconsistent track-fits the selected D0 candidates are required to satisfy PKπ > 0.01.

Besides the consistency check the track parameter variation in the fit gives also changed mo-
menta. The difference between momenta before and after the fit is very small (see figure 4.15).
However, the VtxFitterOper package performs the fit in a way that the magnitude of the momentum
vector remains unchanged (|~p| = |~pfit|) and only the direction of the momentum vector is corrected.
Therefore, the kinematic variables such as ∆m and mKπ remain unchanged. Nevertheless, for the
rest of this document the fitted momenta are used, except if the use of unfitted momenta is pointed
out. However, the main benefit from the fit is the rejection of badly matching track pairs.
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Figure 4.16: Shown is the distribution of the
reconstructed K-π-mass, mKπ, for candidates
from signal (background) events containing (not
containing) a signal decay on the MC-truth-side.
There are correctly reconstructed D0 candidates
in the signal and in the background events. The
candidates contributing to the two stacked his-
tograms survive all selection criteria listed in table
4.3 except for the illustrated mKπ cut.
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Figure 4.17: Shown is the distribution of
cos θ(D∗0, e), where θ(D∗0, e) is the angle between
the momentum vectors of D∗0 meson and electron
as reconstructed in the Υ (4S) rest frame. The
signal (background) candidates belong to events
containing (not containing) a signal decay on the
MC-truth-side. The candidates contributing to the
two stacked histograms survive all selection cri-
teria listed in table 4.3 except for the illustrated
cos θ(D∗0, e) cut. As explained in the text, the flat
fraction of the distribution mainly corresponds to
uncorrelated D∗0e− combinations.

Since the D∗0 meson has a negligible flight length one can similarly ask for a reasonable overlap
of the D0 flight path (arising from the refitted pion and kaon momenta) and the electron track.
This is also done by performing a geometrical constrained fit using the VtxFitter software package.
To reject badly matching D0-electron-pairs, signal candidates are required to satisfy PD0e > 0.01.

The D0 Mass
The mass of the D0 candidate (mKπ) is required to be within a 30 MeV/c2 broad mass window
centered at the D0 mass (mD0 = 1.8646 GeV/c2),

|mKπ −mD0 | < 15 MeV/c2. (4.29)

The suppression of combinatorial background due to this cut is shown in figure 4.16.

The Angle between D∗0 Meson and Electron
Due to the V −A nature of the weak interaction, the D∗0 meson and the electron, both coming from
the same semileptonic B decay, preferentially fly into different hemispheres in the B rest frame.
The angle between their flight directions, θ(D∗0, e), is calculated in the Υ (4S) rest frame and is
shown in figure 4.17.12 One can see the accumulation of signal events towards lower cos θ(D∗0, e)
values. The flat fraction in the histograms of figure 4.17 comes from wrongly reconstructed Y
candidates, whose origin can be explained as follows: If the Y candidate is reconstructed in a way

12On the one hand, the B rest frame is unknown due to the unknown flight direction of the B meson in the Υ (4S)
rest frame. On the other hand, the angle and momentum distributions are only mildly modified when changing from
one rest frame to the other because the B meson has a very small momentum in the Υ (4S) rest frame.
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Figure 4.18: Shown are ∆m distributions for candidates with: (a) correctly reconstructed D∗0 meson, and
(b) wrongly reconstructed D∗0 meson. All of the candidates passed the selection criteria listed in table 4.3.
After the π0-mass-constrained fit, (a) the ∆m distribution of correctly reconstructed D∗0 mesons becomes
about five times narrower and (b) the ∆m distribution of wrongly reconstructed D∗0 mesons gets a better
parameterizable shape.

that (i) the D∗0 comes from the one B meson of the event and (ii) the electron comes from the
other B meson of the event, then there is no correlation between the flight directions of the two Y
daughters; the corresponding cos θ(D∗0, e) distribution is flat. To reduce this type of background
events, each selected candidate has to satisfy the condition cos θ(D∗0, e) < 0.0.

The Mass Difference ∆m
The mass difference ∆m between a D∗0 and a D0 candidate is defined by

∆m = mKππ0 −mKπ, (4.30)

where mKππ0 is the mass of the D∗0 candidate. The use of the fitted π0 four-momentum rather
than unfitted π0 four-momentum (see π0-mass-constrained fit on page 47) brings two essential
advantages:

• For candidates with correctly reconstructed D∗0 mesons the mass difference is narrowed by
a factor 4.7. This is illustrated in figure 4.18a.

• For candidates without correctly reconstructed D∗0 mesons the shape of the ∆m distribution
is better parameterizable after the π0-mass-constrained fit. Due to the π0-mass-constraint,
the ∆m value must always be greater than the π0 mass. The corresponding distributions
before and after the π0-mass-constrained fit are shown in figure 4.18b.

Altogether, after the π0-mass-constrained fit there is a better separation between the candidates
with correctly and wrongly reconstructed D∗0 meson. As already mentioned, the ∆m distribution
does not depend on using the results of the geometrical-constrained fits.

As discussed in section 5.1, the variable ∆m is one of the three fundamental fit variables. It is
used to determine the number of correctly reconstructed D∗0 mesons in the samples as precisely as
possible. Together with the variable cos θBY (see section 4.6) it is possible to determine the number
of events that were successfully reconstructed in the decay mode 4.1.
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Figure 4.19: Plot (a) shows the number of MC Y candidates obtained after all selection criteria listed in
sections 4.5.1 and 4.5.2 were applied. After the Y candidates with equal e-K-π-combination were grouped
(see section 4.5.3) the number of candidate groups is only in few events greater than one (see plot (b)).

All candidates passing the selection are required to satisfy the condition ∆m < 0.153 GeV/c2.
This selection criteria is well visible in figure 4.18b. But how has it been chosen? There are two
competitive arguments for the choice of the ∆m selection cut:

• On the one hand, the ∆m selection cut should be chosen tight enough to suppress as many
background candidates as possible. As described below, in the case of multiple candidates per
event one has to select one candidate-group — the other candidate-groups of the event must
be rejected. A smaller allowed ∆m range increases the probability to select a candidate-group
contributing to the ∆m signal-peak because the other candidate-groups not contributing to
the ∆m signal-peak were already rejected by the ∆m selection cut.

• On the other hand, the ∆m selection cut should not be too hard. If the ∆m sideband becomes
too small the determination of the number of correctly reconstructed D∗0 candidates becomes
less and less precise.

4.5.3 Multiple Candidates per Event

After all selection criteria listed in table 4.3 have been applied, the samples very often contain
more than one candidate per event (see figure 4.19a). In the sister analysis, analyzing the B decay
channel B0 → D∗+e−νe [75], these multiple-candidate events appeared in only 1.5% of all events
containing reconstructed candidates. The reason for the big difference is that in the B0 → D∗+e−νe

analysis one has to deal with charged soft pions, but in the B− → D∗0e−νe analysis one has to
deal with neutral soft pions composed of two photon candidates. The combinatorial background
due to wrong γγ combinations increases the number of allowed Y candidates significantly. Since
there are many low-energetic (background) photons in the event most of the event’s Y candidates
base one the same three tracks (e-K-π combination) but use different γγ combinations. Which
candidate should be selected to be the final signal-candidate of the event? The sister analysis with
the semileptonic decay of a neutral B meson found a criterion defining one candidate of the event
as the final signal-candidate. But this is not the best method for the B− → D∗0e−νe analysis since
there are multiple candidates in about 40% of all events with reconstructed candidates (instead of
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1.5%). To understand the requirements on the candidate selection in case of multiple candidates
per event one should consider the following items:

• For the final fit explained in chapter 5 it is important that the efficiency for correctly recon-
structed D∗0 mesons is exactly known in data. The strategy is to use the values obtained
from the BB MC simulation (corrected as described in section 4.4).13

• Assume that there is an (arbitrary) decision criterion for events with multiple candidates, e.g.
the final candidate is randomly chosen from the candidates of the event. With such a criterion
the measured efficiency of correctly reconstructed D∗0 mesons depends on the number of
candidates passing all selection criteria. If one increases the number of low-energetic photons
per MC event then the number of Y candidates passing all selection criteria increases (in
the MC), and the measured efficiency decreases. In other words: If the low-energetic photon
spectrum14 in the event differs between the MC sample and the data sample then the measured
efficiency of correctly reconstructed D∗0 mesons should not be applied to the data sample.
The consideration remains unchanged with other selection criteria also taking one candidate
of the event as the final candidate.

The multiple-candidate problem is solved by the selection of one entire candidate-group of the
event. Instead of one selected final candidate there is one selected final candidate-group in each
event. All members of the same candidate-group base on the same e-K-π-combination but use
different γγ pairs. Members of different candidate-groups have different e-K-π-combinations. The
big advantage of this selection method is that each candidate-group contains either one or no
correctly reconstructed D∗0 candidate. The resulting number of candidate-groups per event is
shown in figure 4.19b. Only 8.6h of all events contain more then one candidate-group. In case of
multiple candidate-groups in the event the candidate-group with the K-π-mass (mKπ) closest to
the nominal D0 mass (mD0 = 1.8646 GeV/c2) is selected, i.e. the candidate-group with the lowest
value for

|mKπ −mD0 | . (4.31)

To summarize section 4.5, all applied selection cuts are listed in table 4.3. The table shows also
counted MC event numbers, efficiencies and purity, all characterizing the cuts.

4.6 The Definition of cos θBY and w̃

In the previous section, formula 4.30 already defines the variable ∆m. The aim of this section is
to define two additional variables, namely cos θBY and w̃. The three variables are very important
for this analysis because the ∆m-cos θBY-w̃ distribution of the data is used to determine F (1)|Vcb|
and ρ2

A1
. As already mentioned, the ∆m variable is necessary to determine the number of correctly

reconstructed D∗0 mesons. But not all Y candidates containing a correctly reconstructed D∗0

meson represent a signal decay. The fraction of correctly reconstructed D∗0 mesons coming from
signal and not from background events is determined by the different cos θBY distributions of signal
events and various types of background events. The third variable, w̃ is used to be sensitive to the
parameter ρ2

A1
, which describes the shape of the w distribution of the signal decays.

13The final fit (see chapter 5) implicitly uses efficiency of correctly reconstructed D∗0 mesons.
14mainly the multiplicity spectrum of low-energetic photons, but also the energy spectrum
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Table 4.3: The table lists the successively applied selection criteria together with information about effi-
ciency and purity. The numbers in the columns are obtained from run1 and run3 of the BABAR MC.a The
first column lists all selection criteria applied to the final samples. The second column lists the number
of events surviving the cuts listed until the corresponding row (Ntot). The third column gives the number
of events additionally containing a B meson decaying in the signal mode (Nsig tr)(see equation 4.1). In
Nsig ma of these events there is also a correctly reconstructed Y candidate that is fully matched to a signal
decay on the MC-truth-side. The efficiencies εtr and εma correspond to the numbers listed in the third
and the fourth column, respectively. The purity Pma of the sample is defined as the fraction of correctly
reconstructed Y candidates in the sample of all Y candidates belonging to the signal region defined by
140.12 MeV/c2 < ∆m < 144.12 MeV/c2 and −1 < cos θBY < 1.

Selection Criterion Ntot Nsig tr Nsig ma εtr εma Pma

MC Generated 171, 112, 000 258, 473 − 100.0% − −
Reconstructed in
BToDlnu Skim

576, 029 69, 671 38, 271 26.9% 14.8% 37.8%

R2 < 0.45 568, 235 68, 348 37, 488 26.4% 14.5% 37.6%
pCM

e > 1.2 GeV/c 309, 014 51, 113 28, 109 19.7% 10.8% 40.1%
PKπ > 0.01 273, 718 48, 802 26, 911 18.8% 10.4% 41.4%
PD0π > 0.01 248, 104 47, 147 26, 052 18.2% 10.0% 42.4%
|mKπ −mD0 | < 15 MeV/c2 181, 902 44, 438 24, 801 17.1% 9.5% 46.1%
cos θ(D∗0, e) < 0.0 153, 910 41, 362 23, 016 16.0% 8.9% 48.0%
∆m < 0.153 GeV/c2 85, 706 33, 188 22, 976 12.8% 8.8% 48.0%
Multiple Candidate
Group Selection

85, 706 33, 188 22, 894 12.8% 8.8% 48.1%

aThe calculation of the numbers in the table saves time if one omits the large subsamples run2 and run4. This is
no problem since the numbers have only illustrating character and no influence to the final result.

Definition of cos θBY

Under the hypothesis that a Y candidate belongs to a correctly reconstructed signal decay, energy
momentum conservation gives

p2
ν = (pB − pY )2 = m2

B −m2
Y − 2(EBEY − |~pB||~pY | cos θ) = 0, (4.32)

where θ is the angle between the momentum vector of the B meson (~pB) and the D∗0e combination
(~pY ). Solving for cos θ gives the definition of the variable cos θBY,

cos θBY =
2E∗

BE∗
Y −m2

B −m2
Y

2|~p ∗B||~p ∗Y |
. (4.33)

The additional stars at the energy and momentum of the B meson (E∗
B, ~p ∗B) and the D∗0e combi-

nation (E∗
Y , ~p ∗Y ) indicate that the variable cos θBY is calculated with energy and momentum values

taken in the Υ (4S) rest frame. This is necessary because EB and |~pB| can only be calculated in
this frame,

E∗
B =

Ecms

2
and (4.34a)

|~p ∗B| =

√(
Ecms

2

)2

−m2
B, (4.34b)
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Figure 4.20: The cos θBY distributions of three different types of Y candidates are shown. The histograms
are scaled to have the same area, otherwise the signal histogram would dominate the figure. The histograms
are drawn for candidates passing all selection criteria listed in table 4.3. The plot clearly shows the cos θBY

discrimination power between signal and background candidates.

where Ecms is the center-of-mass energy determined from the PEP-II collider conditions. In other
frames the Υ (4S) resonance does not rest and thus the magnitude of the B meson momentum is
variable and can not be determined. E∗

Y and ~p ∗Y are the reconstructed energy and momentum of
the D∗0e combination.

The calculation of cos θBY neglects the spread of the beam energies, which is of the order of
5 MeV. A possible uncertainty in the mean of the beam energies results in an uncertainty of |~p ∗

B|
and E∗

B and thus cos θBY has also a bias. As described in section 5.2.3.1, this effect is taken into
account by an additional parameter in the final fit to the data sample.

At the end of this paragraph the discrimination power of cos θBY is illustrated. All Y candidates
with correctly reconstructed D∗0 meson and correctly identified electron track belong to one of the
following three candidate classes (for more detail see table 5.1):

• If the D∗0 and the electron of the Y candidate are matched to a decay B− → D∗0e−νe, then
the Y candidate belongs to the ’signal’ class.

• If the electron comes from one B meson of the event and the D∗0 meson comes from the other
B meson of the event, then the Y candidate belongs to the ’uncorrelated bg’ class.

• If the electron and the D∗0 meson come from the same B meson decay but the decay was not
a signal decay, then the Y candidate is assigned to the ’D∗∗ bg’15 class or to the ’correlated
bg’16 class.

The cos θBY distributions of these three types of Y candidates are compared in figure 4.20. The
Y candidates belonging to the signal have a cos θBY distribution mainly occupying the allowed
range between −1 and +1. Due to resolution effects of the detector there is a small fraction of Y

15If the true B meson decay is B → D∗0π`ν` or B → D∗∗`ν` where D∗∗ is an higher excited charmed meson
(D∗0

2 , D′0
1 , . . . ) and the reconstructed D∗0 and e are matched to the decay products of this true B meson decay, then

the reconstructed Y candidate is assigned to the ’D∗∗ bg’ class.
16If the D∗0 and the e of a Y candidate are matched to particles coming from the decay cascade of the same B

meson and the Y candidate was not assigned to ’D∗∗ bg’, then the Y candidate is assigned to the ’correlated bg’
class.
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Figure 4.21: Momentum triangles of semileptonic B decays: (a) B− → D∗0e−νe; (b) B → D∗0πe−νe.
Consider subfigure (a): Starting from the Υ (4S) rest frame, the endpoints of all possible momentum vectors
~p ∗

B of the B meson form the surface of a sphere (solid circle). The radius is given by equation 4.34b. Since
the D∗0-e-combination is fully reconstructed one can calculate the neutrino energy, E∗

ν = E∗
B−E∗

D∗0e, which
is the radius of a second sphere (dashed circle). The intersection of both spheres defines the angle θBY .
(The intersection is visible as two points in the sketch, but in truth it is a circle.) In subfigure (b) the
true decay B → D∗0πe−νe is reconstructed in the decay mode B− → D∗0e−νe. The true momenta of the
participating particles are sketched as thin red arrows. The reconstructed momenta are sketched with bold
lines. Since the energy of the not reconstructed pion is assigned to the reconstructed neutrino momentum
(E∗

ν = E∗
B − E∗

D∗0e), the neutrino momentum is overestimated. Thus, the reconstructed variable cos θBY is
is shifted to lower values. If the reconstructed neutrino momentum gets too big then the circle lines do not
cross and cos θBY has values below −1.

signal-candidates with cos θBY > +1. The long tail below cos θBY < −1 arises from energy loss of
the Y candidates, e.g. due to bremsstrahlung of the electron. Appendix A.2 contains a calculation
showing why cos θBY can have values below −1 if the energy and the momentum of the Y candidate
were measured too low. This calculation can also be used to explain the allowed cos θBY range for
D∗∗ bg and for correlated bg (cos θBY < 1). The calculation is illustrated in figure 4.21. Since the
electron and the D∗0 meson of Y candidates of the uncorrelated bg class come from different B
mesons, a restriction of cos θBY similar to that of the other candidate classes is not possible.
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Figure 4.22: (a) Shown are the momentum vectors of various particles participating at a signal decay. Plane
D is defined by particles that can be reconstructed (D∗0, e). Plane B is defined by the non-reconstructed
particles (B, ν). Since the direction of the B meson is unknown, the angle ξ between the two planes is
unknown too. Assuming ξ = 0◦ defines βmin and is illustrated in subfigure (b). Assuming the other extreme
case ξ = 180◦ defines βmax and is illustrated in subfigure (c).

Definition of w̃
As explained in section 2.2.4, for the determination of F (1)|Vcb| one has to take into account the
shape of the w spectrum of the signal decays. However, to reconstruct w one needs to know the
angle β between the momenta of the B and the D∗0 meson because w is given by

w(β) = vBvD∗0 =
pBpD∗0

mBmD∗0

=

(
E∗

BE∗
D∗0 − |~p ∗

B|
∣∣~p ∗

D∗0

∣∣ cos β
)

mBmD∗0
. (4.35)

But since the direction of the B momentum vector is unknown, w can not be reconstructed. Because
|~p ∗

B| has small values (compared to the other variables of equation 4.35) one could replace cos β by
its average value, cos β = 0, to obtain a rough estimation w̃′ of the true value of w,

w̃′ =
EBED∗0

mBmD∗0
. (4.36)

The value of w̃′ is calculable from reconstructed particle properties only, but one can define a more
consistent estimator w̃. Using information from θBY and α, where α is the angle between the D∗0

meson and the D∗0-e combination, it is possible to find better limits for the unknown angle β:
βmin = α − θBY and βmax = α + θBY . This is illustrated in figure 4.22. Using this restriction one
can define another estimator w̃,

w̃ =
1
2

(w (βmin) + w (βmax)) . (4.37)

Using a cosine relation, this can be simplified to

w̃ =
1

mBmD∗0
(EBED∗0 − |~pB| |~pD∗0 | cos α cos θBY) . (4.38)
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Figure 4.23: The sketch illustrates how the direction of the B meson momentum vector is obtained. The
direction is needed to calculate w̃′′. True momentum vectors and angles are drawn in red. Reconstructed
momentum vectors and angles are drawn in black. For more details see text.
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Figure 4.24: The plot shows the resolution west − wtrue for the two different estimators w̃ and w̃′′. The
two histograms were created from Y candidates completely correctly matched to a signal decay.

Figure 4.23 illustrates a third possibility to get a well estimated w. After the reconstruction of
cos θBY the momentum vector ~p ∗

B of the B meson is restricted to lay on the girthed area of a cone
(in the Υ (4S) rest frame). If one would know the direction of the second B meson of the event
then one could determine an azimuthal angle φBY giving the direction of the hypothetic signal B
meson the Y candidate belongs to. The sum of the momentum vectors of the particle candidates
remaining in the event and not contributing to the Y candidate (unmatched EMC clusters with
photon hypothesis, DCH tracks with PID) give an estimate for the momentum vector ~p ∗

B2 of the
second B meson of the event. As illustrated in figure 4.23, the projection of −~p ∗

B2 onto the cone
area defines an estimated angle φ̃BY . From φ̃BY and the reconstructed cos θBY the momentum
vector ~p ∗

B is unambiguously defined. The use of this momentum vector ~p ∗
B in equation 4.35 defines

the estimator w̃′′.
Figure 4.24 shows a comparison of the resolutions R = w̃ − wtrue and R′′ = w̃′′ − wtrue. The

estimator w̃′ is not considered since it has a worse resolution than w̃ by definition. The two shown
resolutions have similar distributions. Their root mean square (RMS) is about the twentieth part of
the totally allowed w range, which principally allows for a successful determination of the w shape
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of B− → D∗0e−νe decays. The distribution of R′′ shows a sharper peak than the distribution of
R, but it has also longer tails to bad resolution values. This shape is an indicator for the fact that
either the w̃′′ estimates clearly better than w̃ (sharper peak) or it estimates clearly worse than w̃
(long tails). However,

• the RMS of the R-distribution (0.0260) is slightly better than the RMS of the R′′-distribution
(0.0270) and

• the consideration of the entire event brings additional systematic uncertainties.

Due to these two reasons, for the rest of the analysis w̃ is used as estimator of w.
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Chapter 5

Fit Method

5.1 Introduction

This chapter explains how the two parameters F (1)|Vcb| and ρ2
A1

are extracted. The abbreviations

V = F (1)|Vcb| and (5.1a)

ρ2 = ρ2
A1

(5.1b)

are used too keep the text and the complex formulas of this chapter readable. Before the details
are given the main features of the fit method are briefly summarized in the following.

First of all: For extracting V and ρ2 there is only one single three-dimensional fit of weighted
and corrected Monte Carlo distributions to the selected data. The three variables are: ∆m, cos θBY,
and w̃. Their definition was already given, but it is rewritten later in this section (equations 5.2
to 5.4) The fit is performed directly to the candidates surviving the selection criteria described in
chapter 4. It is a binned log-likelihood fit. In contrast to that, earlier analyses [73, 74, 75] were
performed in two steps. After a division of data into w̃ bins their strategy was (1) Determination
of the amount of signal for each w̃ bin (mostly by fitting ∆m and cos θBY distributions) and (2)
Extraction of V and ρ2 from this w̃ dependent amount of signal by fitting the w̃ distribution. For
those analyses the amount of signal in the single w̃ bins remains unchanged when determining V
and ρ2. The analysis described in this document performs the two steps simultaneously. So the
amount of signal per w̃ bin and the values of V and ρ2 are varied in one single common fit.

A second important feature of the V -ρ2 extraction method is that the full MC simulation is
varied by a reweighting technique presented in section 5.3. This reweighting technique changes
the actually inflexible MC simulation into a flexible one depending on the parameters V and ρ2.
The reweighting uses only generator level information and nothing coming from reconstruction.
The reweighting technique thus avoids uncertainties coming from the description of the w resolution
function. It also avoids to determine the signal efficiency explicitly; a corrected MC signal efficiency
is used automatically. Reweighting includes normalization of the MC expectation and therefore
the fit determines not only ρ2 but also V .

The third important main feature of the V -ρ2 extraction method is the structure of the PDFs
used in the fit. To model the ∆m-cos θBY-w̃ distribution of the selected MC candidates I group
them into w̃ bins and subclasses whose distributions factorize in ∆m and cos θBY.

68



5.2. The Fit Function

The observables ∆m, cos θBY, and w̃ are defined by the following equations:

∆m = mKππ0 −mKπ (5.2)

cos θBY =
2E∗

BE∗
Y −m2

B −m2
Y

2|~p ∗B||~p ∗Y|
(5.3)

w̃ =
1

mD∗0 mB

(
E∗

B E∗
D∗0 − |~p ∗

B ||~p ∗
D∗0 |x

)
(5.4)

x = cos θY D∗0 cos θBY

• The variable ∆m is just the mass difference between the D∗0 candidate and the D0 candidate.

• For correctly reconstructed signal candidates the variable cos θBY gives the cosine of the angle
between the momenta of the B meson and the Y . Both momenta and energies are taken in
the Υ (4S) rest system.

• The variable w̃ is an estimator for the relativistic boost w of the D∗0 in the B meson rest
frame. The D∗0 boost w can also be written as the product of the four velocities of B and
D∗0 meson. Because of that, x from equation 5.4 should be equal to cos θBD∗0 . But the B
meson flight direction is unknown and therefore cos θBD∗0 is not determinable. In principle
one could assume the mean value of cos θBD∗0 . But the estimator given by x of equation 5.4
is more efficient [75].

The task of the first two fit variables (∆m and cos θBY) is to enable the fit to determine the
number of correctly reconstructed signal candidates very precisely (see decay chain 4.1). Thereby,
∆m determines the number of events containing a correctly reconstructed D∗0 candidate. The
signal fraction within these events is determined using the variable cos θBY. The third fit variable
(w̃) is not good for signal-background-separation. The task of w̃ is to enable the fit to measure
the signal’s w-shape-parameter ρ2

A1
. As has been emphasized in section 2.2.4, this is important for

the determination of F (1)|Vcb| because it defines the form factor extrapolation to the zero-recoil
scenario where the meson system is minimally disturbed.

5.2 The Fit Function

At the beginning of this section a few comments are given concerning the notation used. Most of
the equations of this section apply to the i th w̃ bin. Index name i is exclusively reserved for the
w̃ bin number of mathematical objects. Similarly the index name j is exclusively reserved for the
code number of the candidate class. The third convention is, that all functions X with a hat (X̂)
are PDFs1. As all PDFs, X̂ is normalized to the corresponding subrange of the later defined fit
range. A fourth point concerns the meaning of the indices ’BMC’, ’RMC’ and ’Exp’. Most of the
functions and numbers of this chapter are assigned

• either to the BABAR MC simulation (BMC),

• or to the reweighted BABAR MC simulation (RMC),

• or to the expectations for the data (Exp).

1PDF is an abbreviation for probability density function.
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These functions and numbers are indexed accordingly with either BMC, RMC, or Exp, respectively.
After these comments on the notation let me summarize the general purpose of this section.

This section should answer the question: How is the function built that is fitted to the data? The
roadmap for the extraction of the fit function is divided into three parts.

1. The selected BMC events are reweighted and used to produce continuous distribution func-
tions. This production is done by fits of functions fRMC to the RMC events.

2. The RMC functions fRMC are transformed to expectation functions fExp. On the one hand
in the fExp functions all parameters are fixed which were still floating in the fRMC function
extraction. On the other hand the functions fExp obtain additional correction parameters
by taking into account characteristic and significant differences between data and simulation.
The normalization of the expectation functions is obtained by summing up the weights of the
MC events.

3. At the end all the functions fExp are put together to form the total expectation function for
data. In this step further parameters are introduced and at the end there is a function that
can be fitted to the data.

5.2.1 General Ansatz in the ∆m cos θBY Plane

5.2.1.1 Product Ansatz — the Definition Criteria for the Candidate Classes

The function F s
i (∆m, cos θBY) describes the ∆m cos θBY distribution of all selected candidates for

the i th w̃ bin. It can be written as

F s
i (∆m, cos θBY) = N s

i · F̂ s
i (∆m, cos θBY) (5.5)

i = 1, . . . , 10 (w̃ bin)
s = BMC, RMC, Exp

where N s
i is the number of candidates in the i th w̃ bin for the BMC, the RMC or the expec-

tation on data. The allowed range of index i anticipates that the used w̃ binning comprises ten
bins (see section 5.4). F̂ s

i (∆m, cos θBY) is the PDF belonging to the i th w̃ bin. The function
F s

i (∆m, cos θBY) is a sum of 24 candidate classes which the sample is divided in,

F s
i (∆m, cos θBY) =

24∑
j=1

N s
ij P̂ s

ij (∆m, cos θBY) . (5.6)

P̂ s
ij (∆m, cos θBY) and N s

ij are the two-dimensional PDF and the number of candidates for the j th
candidate class in the i th w̃ bin. Of course the N s

ij have to sum up to N s
i ,

N s
i =

24∑
j=1

N s
ij s = BMC, RMC, Exp. (5.7)

It would be very convenient and efficient for the calculation of function values of various
(∆m,cos θBY) pairs during the fit if P̂ s

ij (∆m, cos θBY) could be a product PDF

P̂ s
ij (∆m, cos θBY) = D̂s

ij (∆m) · Ĉs
ij (cos θBY) (5.8)

made of
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5.2. The Fit Function

D̂s
ij (∆m), a PDF describing the ∆m distribution of the j th candidate class in the i th w̃ bin and

Ĉs
ij (cos θBY), a PDF describing the cos θBY distribution of the j th candidate class in the i th w̃

bin.

At this point one should emphasize that the product structure in the ∆m cos θBY distribution is
the very basic idea of the final fit!

Now follows the explanation why the product ansatz is a good and reasonable ansatz. On the
one hand ∆m has a distribution strongly depending on the properties of the γγ pair. Because ∆m
is the distribution of the difference ∆m = mKπγγ −mKπ the influence of the tracks of Kπ is very
small but the influence of the γγ pair is very high. That is in spite of the fact that K and π are very
high energetic compared to the γγ pair. On the other hand cos θBY has a distribution only weakly
depending on the properties of γγ pair but strongly depending on the properties of e-, K- and π-
tracks. That is because cos θBY depends directly on the kinematic properties of the Y (= eKπγγ)
and not on differences between kinematic properties of Y candidate and the Y subcandidate eKπ
(see equation 5.3). If you change the low energy of the two γs within a reasonable range then
the change in the variables EY and |~pY |, entering cos θBY, is marginal.2 To sum up: The ∆m
distributions are governed by momentum and energy of the γγ pairs and cos θBY distributions are
governed by momentum and energy of e-, K- and π-tracks. What one has now still to take care of
is that distributions depend on the following two questions:

Q1: What are the true decays in the events of selected candidates?

Q2: How well are the various particles reconstructed (totally, partially, . . . )?

If one divides the sample of selected candidates into classes depending on the candidate-specific
answer to these two questions then one ends up with the candidate classes listed in table 5.1.
For these candidate classes the PDF with the product ansatz 5.8 models the two dimensional
distributions with a high quality. This is shown in the quality plots of appendix B.2.

5.2.1.2 The Normalization of the Candidate Classes

The number of candidates in the j th class and the i th w̃ bin for the BMC, NBMC
ij , is related to

the same number for the RMC, NRMC
ij , and to the expectation of this number in data, NExp

ij , by

N s
ij = NBMC

ij Wij (5.9)
j = 1, . . . , 22 s = RMC,Exp.

The formula is only valid for BB candidate classes. The expectations for numbers of cc-event
candidates in the data sample, NExp

i 23 and NExp
i 24 , are defined by equation 5.20. The weights Wij

2There is a weak correlation between ∆m and cos θBY. This correlation for each of the 22 candidate classes defined
in table 5.1 is listed in the appendix in table B.1.
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Table 5.1: This table contains the definition of the candidate classes. Third and fourth column correspond
to the questions Q1 and Q2 on page 71. The classes 1 to 4 contain candidates with a correctly reconstructed
D∗0 and an e candidate belonging to a true e. The classes 5 to 14 contain candidates populating mainly
the region | cos θBY| < 1.0. Their e- and D0-candidates belong to a true electron and a true D0 meson.
The candidates of the classes 17 to 22 are candidates with a wrongly reconstructed D∗0 which are not
sorted into other BB classes. There are also two candidate classes for the cc background. Signal means
B− → D∗0e−νe;D∗0 → D0(Kπ)π0(γγ).

j candidate class true decay reconstruction

1 Sig signal Complete signal is correctly reconstructed.
2 D∗∗eν (1) B → D∗0eνπ D∗0 and e are correctly reconstructed.
3 Correlated A D∗0 and an e come from

the same B meson.
D∗0 and e are correctly reconstructed.

4 Uncorrelated A D∗0 and an e come from
two different B mesons.

D∗0 and e are correctly reconstructed.

5 SemiSig (1) signal Like 1, but the reconstructed γ2 candidatea does
not belong to the true γ2.

6 SemiSig (2) signal Like 1, but the reconstructed γ1 candidatea does
not belong to the true γ1.

7 SemiSig (3) signal Like 1, but both reconstructed γs do not belong to
the true γs.

8 SemiSig (4) signal All signal decays not sorted to classes 1, 5, 6, or 7.
9 SigLike (1) like signal but π0 9 γγ D0 and e are correctly reconstructed.
10 SigLike (2) like signal but D∗0 → D0γ D0, e and γ are correctly reconstructed.
11 SigLike (3) like signal but D∗0 → D0γ D0 and e are correctly reconstructed.
12 D∗±eν B0 → D∗+e−ν;

D∗+ → D0π+
D0 and e are correctly reconstructed.

13 D0eν(1) B → D0eν D0 and e are correctly reconstructed.
14 D0eν(2) B → D0eν D0 and/or e are not correctly reconstructed.
15 D0πeν B → D0eνπ D0 and e are correctly reconstructed.
16 D∗∗eν(2) B → D∗eνπ;

D∗ → D0π/D0γ
D0 and e are correctly reconstructed.

17 CombD∗0 (1) D0 is correctly reconstructed. D0 and e b come
from same B meson.

18 CombD∗0 (2) D0 and π0 are correctly reconstructed. D0 and e
b come from different B mesons.

19 CombD∗0 (3) D0 and π0 are correctly and wrongly recon-
structed, respectively. D0 and e b come from dif-
ferent B mesons.

20 CombD∗0 (4) D0 is wrongly reconstructed. K, π and e b come
from same B meson.

21 CombD∗0 (5) D0 and π0 are wrongly and correctly recon-
structed, respectively. K, π and e b come from
two different B mesons.

22 CombD∗0 (6) D0 and π0 are wrongly reconstructed. K, π and e
b come from two different B mesons.

23 cc(peak) e+e− → cc event with a D∗0 D∗0 is correctly reconstructed.
24 cc(flat) e+e− → cc event D∗0 is not correctly reconstructed.

a The energy of γ1 is greater than the energy of γ2, Eγ1 > Eγ2 , w.r.t. the laboratory frame (see page 34).
bThe e track does not need to spring from a true e.
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have the structure

Wij =
1

NBMC
ij

NBMC
ij∑
k=1

Wijk (5.10)

Wijk = WPhy
ijk · WBB,run(k) · WCor

ijk (5.11)

WBB,r =
NBB,Data,r

NBB,BMC,r
r = 1, 2, 3, 4 (5.12)

WCor
ijk = WPid

ijk · WTrack
ijk · W π0

ijk . (5.13)

The index k codes a single candidate in the j th candidate class and runs up from the first candidate
(k = 1) to the last candidate (k = NBMC

ij ) of this class – the weights are given on a candidate-by-
candidate basis. The function run(k) gives the run period of candidate k. So run(k) returns 1, 2,
3, or 4. NBB,Data,r is the number of all analyzed BB pairs in the r th run of the data sample as
listed in table 4.1. NBB,BMC,r is the number of all used BB pairs in the r th run of the BMC as
listed in the same table. The three factors WPid

ijk , WTrack
ijk and W π0

ijk are PID efficiency correcting
factor obtained from PID weighting technique [66], track efficiency correcting factor [65] and π0

efficiency correcting factor [61] for the k th candidate of the j th candidate class, respectively. These
three factors and the efficiencies corrected by them are intensively discussed in section 4.4. The
connection to the correction factors Rx (x = e,K, π, π0) defined in section 4.4 is given by

WPid = RPid
e RPid

K WTrack = RTrack
e RTrack

K RTrack
π W π0

= Rπ0 , (5.14)

where the index set ijk has been omitted for a better readability. For the weight WPhy
ijk one has to

differentiate between four different types

WPhy
ijk =


WPhy,Sig

ijk l = 1, 5− 11
τB0,BMC

τB+,BMC
WPhy,Sig

ijk l = 12

WPhy,D0eν
ijk l = 13, 14

1 otherwise .

(5.15)

The weights WPhy,Sig
ijk and WPhy,D0eν

ijk are defined by equations 5.74 and 5.85 in section 5.3 describing
the reweighting of a candidate reconstructed in a B− → D∗0e−νe or an B− → D0e−νe event.

Now follows the explanation to the factor
τB0,BMC

τB+,BMC
in equation 5.15. If one assumes that the

decays B0 → D∗+e−νe and B− → D∗0e−νe have the same decay dynamics then one can write

Γ
(
B0 → D∗+e−νe

)
= Γ

(
B− → D∗0e−νe

)
and (5.16)

dΓ
dw

(
B0 → D∗+e−νe

)
=

dΓ
dw

(
B− → D∗0e−νe

)
(5.17)

and the equations are true up to corrections arising from the approximations mπ+ ≈ mπ0 and
mD∗+ ≈ mD∗0 . In the BMC the following input is given

B
(
B0 → D∗+e−νe

)
BMC

= 0.056,

B
(
B− → D∗0e−νe

)
BMC

= 0.056,

τB+,BMC = 0.502 mm /c, and
τB0,BMC = 0.462 mm /c . (5.18)
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That leads to the deviation

Γ
(
B0 → D∗+e−νe

)
BMC

=
0.502
0.462

Γ
(
B− → D∗0e−νe

)
BMC

(5.19)

of the two decay widths within the BMC. The factor
τB0,BMC

τB+,BMC
in equation 5.15 corrects the BMC in

a sense that the ratios among some of the candidate classes of RMC are based on the assumption
5.16.

The expected number of candidates for BB-event candidate-classes in the data sample, NExp
ij , is

given at the beginning of this section in formula 5.9. The expected number of cc-event candidates in
the on-peak data sample is calculated by scaling and correcting the number of selected candidates
in the off-peak data,

NExp
ij =

NRMC
ij

NRMC
i 23 + NRMC

i 24

σon

σoff

4∑
r=1

N cc off,r
i

Lon,r

Loff,r
(5.20)

j = 23, 24.

The first term divides the expected number of cc-event candidates into a ∆m peaking part (j = 23)
and a ∆m-flat part (j = 24). The sum term weights the number of selected candidates in the off-
peak data sample of run r, N cc off,r

i , with a run dependent luminosity ratio Lon,r/Loff,r. Lon,r and
Loff,r are the on-peak luminosity and the off-peak luminosity of run r. The term σon/ σoff performs
an energy correction between on-peak data and off-peak data. The used values of the cross sections
of e+e− → cc are [14]

σon = 1.30 nb and

σoff = 1.31 nb.
(5.21)

5.2.2 Extraction of ∆m PDFs and cos θBY PDFs for the BMC and for the RMC

In this section the extraction of D̂RMC
ij (∆m) and ĈRMC

ij (cos θBY) is described. There is one subsec-
tion for the PDFs of flat ∆m distributions, one subsection for the PDFs of peaking ∆m distributions
and one subsection for the PDFs of cos θBY distributions.

5.2.2.1 ∆m PDFs for Candidate Classes with correctly reconstructed D∗0 Candidates

In this section only candidate classes having correctly reconstructed D∗0 candidates are regarded.
For these candidate classes the PDF D̂RMC

ij (∆m) is one and the same function, which peaks in
∆m. This function is called D̂peak RMC

i (∆m),

D̂RMC
ij (∆m) =

{
D̂peak RMC

i (∆m) j = 1, 2, 3, 4, 23
D̂flat RMC

ij (∆m) otherwise .
(5.22)

What is the parametrization of D̂peak RMC
i (∆m)? The shape of the peaking ∆m distribution is

asymmetric and has a tail to values bigger than the maximum. The parametrization of D̂peak RMC
i (∆m)

uses a sum of six half Gaussians with one common mean parameter3 and individual widths. Three
3This ’mean parameter’ gives the maximum but not the mean of the parametrization, as one could assume from

the name.
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of the half Gaussians describe the distribution for ∆m values smaller than the mean parame-
ter, the other three Gaussians describe the distribution for ∆m values bigger than the mean pa-
rameter. There are six fraction parameters but only four of them are independent. The PDF
D̂peak RMC

i (∆m| . . .) is given by

D̂peak RMC
i

(
∆m|∆µi, σi, ~f∆m p

i , ~S∆m p
i

)

=


N left

i

3∑
t=1

f∆m p
i t G

(
∆m|µMCtr −∆µi , S∆m p

it · σi

)
for ∆m < µMCtr −∆µi

N right
i

6∑
t=4

f∆m p
i t G

(
∆m|µMCtr −∆µi , S∆m p

it · σi

)
for ∆m ≥ µMCtr −∆µi

(5.23)

with

G (∆m|µ, σ) =
1√
2πσ

e−
(∆m−µ)2

2 σ2 , (5.24)

~f∆m p
i =

(
f∆m p

i 1 , . . . , f∆m p
i 6

)
, (5.25)

~S∆m p
i =

(
S∆m p

i1 , . . . , S∆m p
i6

)
and (5.26)

µMCtr = mMCtr
D∗0 −mMCtr

D0 = 0.14212 GeV/c2. (5.27)

The value of µMCtr is the true mass difference between the D∗0 meson and the D0 meson as
implemented in the MC generator [46]. ∆µi and σi are parameters for position and width of the
∆m peak. To make the formulas and text better readable the index ’RMC’ is omitted at the symbols
∆µi , σi , ~f∆m p

i , ~S∆m p
i , N left

i and N right
i within this section. The fractions f∆m p

i t (t = 1, . . . , 6) are
only allowed to have values between 0 and 1. Not all of them are free parameters. The values of
f∆m p

i 3 and f∆m p
i 6 are functions of the other components,

f∆m p
i 3 = 1− (f∆m p

i 1 + f∆m p
i 2 ) and

f∆m p
i 6 = 1− (f∆m p

i 4 + f∆m p
i 5 ) . (5.28)

Also the scaler vector for the individual widths of the Gaussians, ~S∆m p
i , hasn’t six degrees of

freedom. Its first component is set to one,

S∆m p
i1 = 1, (5.29)

to give a meaning to σi. The variables N left
i and N right

i are allowed to depend on all parameters of
D̂peak RMC

i . Their values guarantee two things:

• D̂peak RMC
i is continuous at ∆m = µMCtr −∆µi.

• D̂peak RMC
i is normalized to one over the fit range discussed in a later section.

To extract the parameters of D̂peak RMC
i the function

Dpeak RMC
i (∆m) = N∆m pRMC

i D̂peak RMC
i

(
∆m|∆µi, σi, ~f∆m p

i , ~S∆m p
i

)
(5.30)
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Figure 5.1: The upper plot shows the ∆m dis-
tribution of the candidates with correctly recon-
structed D∗0 meson for the sixth w̃ bin. The func-
tion Dpeak RMC

6 (∆m) (red line) defined in equa-
tion 5.30 has been fitted to this distribution with
χ2/n.d.f. = 107.4/88. The bin-by-bin ratios between
the histogram and the fitted function are shown in
the lower plot.
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Figure 5.2: The upper plot shows the ∆m distri-
bution of the candidate class ’SemiSig(2)’ (j = 6)
for the sixth w̃ bin. The function Dflat RMC

66 (∆m)
(red line) defined in equation 5.34 has been fitted
to this distribution with χ2/n.d.f. = 34.1/39. The
bin-by-bin ratios between the histogram and the
fitted function are shown in the lower plot.

is fitted to the sum of the histogram h∆m p
i . h∆m p

i is filled with the ∆m values of RMC candidates
containing correctly reconstructed D∗0 mesons (candidate class =1, 2, 3, 4 and 23). N∆m pRMC

i is
not free but a fixed number within this fit. It is the sum of the contributing candidate classes,

N∆m pRMC
i =

∑
j=1,2,3,4,23

NRMC
ij , (5.31)

and is equal to the integral of the fitted histogram h∆m p
i . As an example, figure 5.1 shows the

fitted function Dpeak RMC
6 (∆m) overlayed to the histogram h∆m p

6 . Plots of all fits (i = 1, . . . , 10)
can be seen in [40].

5.2.2.2 ∆m PDFs for Candidate Classes with wrongly reconstructed D∗0 Candidates

This section treats the extraction of D̂flat RMC
ij (∆m) for candidate classes containing no correctly

reconstructed D∗0 meson (j = 5, . . . , 22, 24). The shape of these ∆m distributions is parametrized
by the threshold PDF

D̂flat RMC
ij (∆m|aij , cij) =

{
Nij · (∆m−mπ0)aij · e−cij(∆m−mπ0) for ∆m ≥ mπ0

0 for ∆m < mπ0

(5.32)

as already mentioned in equation 5.22. (Like in the previous section the index ’RMC’ is omitted for
better readability. ’RMC’ is omitted whenever aij and cij are used within this section.) For ∆m
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values above the threshold mπ0 the PDF is a product of a power law factor and an exponential law
factor where each factor gets one parameter. These are aij and cij , respectively. Nij normalizes
the function in the desired ∆m range to one. The threshold parameter mπ0 is set to

mπ0 = 0.13495 GeV/c2. (5.33)

That is because during the candidate reconstruction the mass of the γγ pair has been constrained
to that value. To extract the parameters aij and cij for each candidate class and each w̃ bin a fit
of the function

DflatRMC
ij (∆m) = NRMC

ij D̂flat RMC
ij (∆m|aij , cij) (5.34)

is performed on the histogram h∆m
ij . h∆m

ij is filled with the ∆m values of reweighted MC candidates
(RMC) belonging to the ith w̃ bin and the jth candidate class. The fit has two free parameters (aij

and cij). NRMC
ij is a fixed number in this fit and is equal to the integral of the fitted histogram. As

an example, figure 5.2 shows the ∆m distribution of the ’SemiSig(1)’ candidates (j = 6) of the sixth
w̃ bin together with the fitted function Dflat RMC

66 (∆m). Plots of all other fits (i = 1, . . . , 10; j =
1, . . . , 22, 24) can be seen in [40].

5.2.2.3 cos θBY PDFs

This section describes the generation of the cos θBY PDFs ĈRMC
ij . (The index ’RMC’ is suppressed

at all functions and parameters in the rest of this section.) Firstly, a KEYS function4 [79] is
constructed for each candidate class. from the MC ntuple containing the cos θBY values of the
corresponding candidate class. When constructing the KEYS function (RMC) for the jth candi-
date class the kth candidate of the class gets the weight Wijk as defined in equation 5.11. After a
normalization of the so constructed KEYS function one gets the PDF Ĉ∗

ij (cos θBY). For the cos θBY

peaking candidate classes

• Sig,

• D∗∗eν (1),

• SemiSig (1),

• SemiSig (2),

• SemiSig (3),

• SigLike (2),

• SigLike (3),

• D∗±eν,

• D0eν(1) and

• D∗∗eν(2)

the cos θBY distribution shows a steep edge at cos θBY ≈ 1. But the KEYS function does not sat-
isfactorily model this edge. Due to the construction rules of a KEYS function steep edges of the
true distribution are washed out. (Compare dashed line and histogram in figure 5.3.) That means
for the cos θBY peaking classes one has to correct the function Ĉ∗

ij (cos θBY):

Ĉ∗
ij (cos θBY) 7→ Ĉij (cos θBY|bij , rij) =

{
ĈCor

ij (cos θBY|bij , rij) for j = 1, 2, 5− 7, 10− 13, 16
Ĉ∗

ij (cos θBY) otherwise.

(5.35)
4KEYS is an abbreviation for Kernel Estimating Your Shape. A KEYS function provides an unbinned and

non-parametric estimate of the PDF from which a set of data is drawn.
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Figure 5.3: The cos θBY distribution of the candidate class ’Sig’ for the first w̃ bin is plotted together with
the two functions C∗RMC

11 (dashed) and CRMC
11 (solid). The left plot shows the mainly populated cos θBY

range. The right plot shows the range with the steep edge in the cos θBY distribution. The two areas enclosed
by the solid and the dashed line are equal. This property is a feature of the edge correction. The fitted
parameter values of CRMC

11 are r11 = 1.02±0.02 and b11 = 0.50±0.06. The correction substantially improves
the edge modeling.

The allowed ranges of the indices are i = 1, . . . , 10 and j = 1, . . . , 24. The parameterizations of
the edge-reshaped PDFs ĈCor

ij (cos θBY|bij , rij) are given by

ĈCor (cos θBY|b, r) = NCor ·


L (cos θBY|b, r) for cos θBY < r

Ĉ∗ (cos θBY) for cos θBY = r

R (cos θBY|b, r) for cos θBY > r

,

L (cos θBY|b, r) = Ĉ∗ (cos θBY) +
[
Ĉ∗ (2 r − cos θBY)−R (2 r − cos θBY|b, r)

]
and

R (cos θBY|b, r) = Ĉ∗
(

r +
cos θBY − r

b

)
. (5.36)

This correction effects a sharpening of the edge in the cos θBY PDF. To keep the parametrization
readable the indices i and j are omitted at the normalization factor NCor, at the parameters r and
b, and at the functions ĈCor, Ĉ∗, L and R. The parameter r is something like a fix point. It
should have its value at the steep edge around cos θBY ≈ 1. Parameter b defines the strength of the
correction and has to be positive. For b = 1 the function remains the same. For b < 1 the function
gets smaller in the range cos θBY > r and bigger in the range cos θBY < r. That is the desired
correction. As an illustrating example, figure 5.3 shows the KEYS correction of the candidate-
class ’Sig’ of the first w̃ bin. The factor NCor makes that ĈCor (cos θBY|b, r) is normalized. The
parameters bij and rij are determined by fits of

CCor
ij (cos θBY) = N cby

ij ĈCor
ij (cos θBY|bij , rij) (5.37)

to the histograms hij . The hij are filled with the cos θBY RMC distributions of the candidate class
j within the ith w̃ bin. The parameter N cby

ij is fixed to the integral of hij . For the correction typical
values of rij and bij are

rij = 1 and bij = 0.4 .
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Finally one has to consider that ĈRMC
ij (cos θBY) depends also on ρ2

A1
because the weights Wijk

from equation 5.11 are used for the generation of ĈRMC
ij (cos θBY). But it turns out that the ρ2

A1

dependence of the ĈRMC
ij (cos θBY) is marginal. Strong and important is the ρ2

A1
dependence of the

normalization factors NRMC
ij .

5.2.3 Corrections to the Expectation on Data Relatively to the RMC

Point 1 of the roadmap from page 70 is completed. That means: (1) The BABAR MC has been
reweighted. (2) The MC distributions have been transformed from discrete values given by the
selected MC candidates to continuous shapes given by RMC PDFs. Now comes point 2 of the
roadmap, the correction between PDFs for the reweighted MC and PDFs for the expectation on
data.

5.2.3.1 Corrections for cos θBY PDFs

First of all let me retype the cos θBY definition:

cos θBY =
2E∗

BE∗
Y −m2

B −m2
Y

2|~p ∗B||~p ∗Y |
with |~p ∗B| =

√
E∗ 2

B −m2
B. (5.38)

On the one hand cos θBY has input values from the reconstruction. These are energy (E∗
Y ), mo-

mentum (~p ∗Y )and mass (mY ) of the reconstructed Y system. On the other hand it has also E∗
B,

the energy of the B meson as input. The ∗ at the symbols indicates that the values are taken in
the center of mass system (CMS) of the beams. For on-peak data E∗

B is half of the beam energy
E∗

beam,

E∗
B =

1
2
E∗

beam, (5.39)

where E∗
beam is determined from the PEP-II collider conditions. For off-peak data equation 5.39

would result in E∗
B < m∗

B and thus |~p ∗B| could not be calculated. As a commonly used approximation
E∗

beam = 10.58 GeV is used to calculate the value of cos θBY in off-peak data. For the MC simulation
E∗

beam is fixed to 10.58 GeV. For completeness one should also give the value of mB. For MC and
data the same value mB = 5.2791 GeV is used. This is the BABAR MC value, which is equal to the
PDG value [8].

The expectation for the cos θBY distribution in data is given by

ĈExp
ij (cos θBY|ki) = ĈRMC

ij

(
1
ki
· cos θBY

)
. (5.40)

The task of parameter ki is to correct a wrongly assumed |~p ∗B| value. Uncertainties on E∗
B and

mB affect |~p ∗B| and therefore they also affect the cos θBY distribution. Because |~p ∗B| is indirect
proportional to cos θBY the simplest solution is to stretch or compress the cos θBY distribution
along the cos θBY axis (see figure 5.4a). This has been done in equation 5.40.

In principle, the stretch parameter (ki) should not depend on w̃. To check if this is true the
stretch parameter is treated as a function of the w̃ bin (using ki instead of k). As will be shown
in section 5.2.5 the used function is a first-order polynomial. If the fit finds that the slope of this
function is compatible with zero then the parameters ki do what they are expected to do. A more
intensive check is introduced in section 7.6.
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Figure 5.4: An illustration of the parameterizations correcting the RMC for a better description of the
expectation on data. The illustrated parameters from subfigure (a) to (d) are k, ∆µExp, ξ and α, respectively.
The plotted functions are ĈExp

11 (cos θBY), D̂Exp
11 (∆m), D̂Exp

11 (∆m) and D̂Exp
17 (∆m), respectively.
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5.2. The Fit Function

5.2.3.2 Corrections for ∆m PDFs

For the PDFs which describe the ∆m distributions in data there are also corrections. There is one
parametrization for the ∆m-flat part and there is one parametrization for the ∆m-peaking part,

D̂Exp
ij (∆m| . . .) =

{
D̂peak Exp

i (∆m| . . .) j = 1, 2, 3, 4, 23
D̂flat Exp

ij (∆m| . . .) otherwise .
(5.41)

For the ∆m-peaking candidate classes the following two-parameter PDFs for the expectation on
data are defined,

D̂peakExp
i

(
∆m|∆µExp

i , ξi

)
=

D̂peakRMC
i

(
∆m|∆µRMC

i + ∆µExp
i , ξi · σRMC

i , ~f∆m pRMC
i , ~S∆m pRMC

i

)
. (5.42)

D̂peakExp
i (∆m) has a parameter ∆µExp

i for taking into account that the peak maximum may not
be the same in data and RMC (see figure 5.4b). And it has the parameter ξi, a width scaler for
the peak, which accounts for differences of the peak width in data and RMC (see figure 5.4c). For
the ∆m non-peaking candidate classes the following one-parameter PDFs for data are defined,

D̂flat Exp
ij (∆m|αi) = D̂flat RMC

ij (∆m|bij , cij) ·NCor
ij ·

[
1 +

αi

δ−
(∆m− δ+)

]
(5.43)

where δ+ and δ− are the center and the width of the ∆m fit-range {∆mfrmin,∆mfr max},

δ± =
∆mfrmax ±∆mfr min

2
. (5.44)

The factor NCor
ij takes care of the normalization. The parametrization D̂flat Exp

ij (∆m) allows to
perform small corrections to the ∆m shape expected in data without varying the individual bij

and cij obtained from RMC (see figure 5.4d). Due to the excess of low-energetic photons in the
simulation compared to the data (see figure 4.12) the shape of the ∆m distribution in RMC is
expected to rise faster than in data. A parameter value αi < 0 could compensate this effect.

It should be emphasized that there are only three parameters (∆µExp
i , ξi, αi) per w̃ bin to vary

the shape of the ∆m distributions expected in data. The parameters are not class dependent.
Similarly as for the parameters ki of the cos θBY PDFs, the w̃ dependence of each of these three
parameters will be expressed by a first-order polynomial in w̃ (see section 5.2.5). A validation of
this is given in section 7.6.

5.2.4 Description of the Expectation Function on Data for one w̃ Bin

Up to this point there is only one item left on the roadmap of page 70: The assembly of the fit
function. This section gives the full expression for FExp

i (∆m, cos θBY), the function describing the
expectation on data within one w̃ bin, and the next section gives the full expression for the total
fit function FExp (∆m, cos θBY, w̃).

Using the expressions defined in the previous sections FExp
i (∆m, cos θBY) is given by

FExp
i

(
∆m, cos θBY|~p rew, ~p shape

i , ~Si

)
=

24∑
j=1

S∗ij · NExp
ij (~p rew) · P̂Exp

ij

(
∆m, cos θBY|~p shape

i

)
.

(5.45)
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The parameters of this function are

~p rew =
(
V, ρ2, ρ2

D

)
, (5.46)

~p shape
i =

(
ki,∆µExp

i , ξi, αi

)
and (5.47)

~Si = (Si Sig, Si D∗∗ , Si Cor, Si Uncor, Si Sig rel, Si D0eν , Si Comb D∗0 , Si cc) . (5.48)

The reweighting parameters V and ρ2 are defined in equation 5.1, the reweighting parameter ρ2
D is

defined in section 5.3.2.1. The reweighting parameters ~p rew feed the formulas derived in section 5.3.
The shape parameters ~p shape

i were already defined in section 5.2.3. The scaler parameters Si Sig till
Si cc simultaneously scale the expected number of reconstructed Y candidates (NExp

ij ) belonging to
a group of candidate classes,

~S∗i = (S∗i1, . . . , S
∗
i24) S∗ij =



Si Sig j = 1
Si D∗∗ j = 2, 15, 16
Si Cor j = 3
Si Uncor j = 4
Si Sig rel j = 5− 12
Si D0eν j = 13, 14
Si Comb D∗0 j = 17− 22
Si cc j = 23, 24

. (5.49)

As one can see from the latter equation, there are eight scalers for the 24 candidate classes. Three
of these scalers are fixed to one,

Si Sig = 1 Si Cor = 1 Si cc = 1. (5.50)

The signal scaler (Si Sig) is fixed to one because the variation of the amount of ∆m-peaking signal
is already controlled by the parameters V and ρ2; the scaler of the correlated background (Si Cor)
is fixed to one because (i) correlated background is difficultly to distinguish from D∗∗ background
by the fit and (ii) its expected number of candidates (NExp

i 3 ) is very small5; the scaler of the
cc background (Si cc) is fixed to one because the expectation was determined on off-peak data.
The number of expected D∗∗ events is varied by one single scaler (Si D∗∗ = S∗i 2 = S∗i 15 = S∗i 16),
independent of D∗0 meson being correctly or wrongly reconstructed. The numbers of wrongly
reconstructed signal candidates (NExp

i 5 , NExp
i 6 , NExp

i 7 , NExp
i 8 ) are scaled by one common scaler Si Sig rel

since the simulation of the reconstruction process is good enough and makes no separate treatment
of the commonly scaled candidate classes necessary6. Si Sig rel also scales the expected numbers of
candidate classes 9, 10, 11 and 12 since there is a strong similarity between the true decays of these
classes and the signal decay.

At this point all symbols of equation 5.45 are already defined. For completeness the references
of the definitions are given here or the definitions are retyped. The PDFs P̂Exp

ij (∆m, cos θBY) were
defined in the equation 5.8 as

P̂Exp
ij

(
∆m, cos θBY|~p shape

i

)
= D̂Exp

ij

(
∆m|∆µExp

i , ξi, αi

)
ĈExp

ij (cos θBY|ki) . (5.51)

5The systematic uncertainty due to fixing Si Cor to one is discussed in section 7.6.
6E.g., if the discrepancy between the low-energetic photon spectrum in data and MC (see figure 4.12) would be

much worse than one could expect that a separate scaling of candidate classes 5/6 and 7 is necessary.
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The normalization factors NExp
ij were defined in equation 5.9. Some of them depend directly on

the parameters V and ρ2, or ρ2
D. The PDFs ĈExp

ij (cos θBY) and D̂Exp
ij (∆m) are given in equations

5.40, 5.42 and 5.43.

5.2.5 The Final Fit Function

The final fit function FExp (∆m, cos θBY, w̃) describes the expectation of the three-dimensional
distribution in ∆m, cos θBY and w̃ for data. It is given by

FExp (∆m, cos θBY, w̃|~p rew, Stu, qxy) =



FExp
1 (∆m, cos θBY|~p1) if w̃ ε first w̃ bin

...
FExp

i (∆m, cos θBY|~pi) if w̃ ε i th w̃ bin
...
FExp

10 (∆m, cos θBY|~p10) if w̃ ε last w̃ bin

(5.52)

with

~p rew =
(
V, ρ2

A1
, ρ2

D

)
, (5.53)(

Stu

)
=

 S1 Sig . . . S1 cc
...

. . .
...

S10 Sig . . . S10 cc

 and (5.54)

(
qxy

)
=

(
q0(∆µDa) q0(ξ) q0(α) q0(k)

q1(∆µDa) q1(ξ) q1(α) q1(k)

)
. (5.55)

The parameter vector ~p rew was already defined in equation 5.46 and its definition is only retyped.
Its third component is fixed to a value taken from a previous measurement [81], ρ2

D = 1.12. The
parameter matrix Stu

7 contains 80 elements. Because St Sig, St Cor and St cc have been fixed to
one for t = 1, . . . , 10 (see equations 5.50) the number of free parameters in Stu is decreased to 50.
Furthermore the ten parameters St D0eν scaling the number of candidates reconstructed in events
with a B− → D0e−νe decay are reduced to one single parameter SD0eν ,

St D0eν = SD0eν (t = 1, . . . , 10), (5.56)

which decreases the number of free parameters in Stu down to 41. Since the number of expected
candidates for the uncorrelated background (NExp

i Uncor) gets very small at high w̃ values8 the fit is
confused by free parameters S9Uncor and S10 Uncor. Therefore it is necessary to fix these to values
to one,

S9Uncor = 1 S10 Uncor = 1, (5.57)

which reduces the number of free parameters in Stu down to 39. From the eight parameters qxy one
can calculate the shape parameters ~p shape

i of each of the ten w̃-bin functions FExp
i (∆m, cos θBY)

7Instead of Siu the notation Stu has been used because the index i is already used in the right side of equation
5.52.

8compared to the other candidates with correctly reconstructed D∗0 meson
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by simple first-order polynomials,

∆µExp
i = q0(∆µExp) + q1(∆µExp) (w̃i − 1) ξi = q0(ξ) + q1(ξ) (w̃i − 1)

αi = q0(α) + q1(α) (w̃i − 1) ki = q0(k) + q1(k) (w̃i − 1) , (5.58)

where w̃i is the centers of the ith w̃ bin (i = 1, . . . , 10).
As one can see now, the function FExp (∆m, cos θBY, w̃) has 2 + 39 + 8 = 49 free parame-

ters. The parameters of FExp (∆m, cos θBY, w̃) are converted to a parameter vector ~pi of function
FExp

i (∆m, cos θBY) by

~pi =
(
~p rew, ~p shape

i , ~Si

)
. (5.59)

5.3 The Reweighting Technique

The following two subsections (5.3.1 and 5.3.2) derive expressions used for the reweighting of
B− → D∗0e−νe events and B− → D0e−νe events. The results of the two subsections are the
reweighting factors WPhy,Sig

k and WPhy,D0eν
k used in equation 5.15.

5.3.1 The Reweighting Technique for B− → D∗0e−νe

Following [32] the differential decay rate of B− → D∗0e−νe, after integration over all decay angles,
is given by

dΓ
(
B− → D∗0e−νe

)
dw

=
G2

F |Vcb|2

48π3
(mB −mD∗)2 m3

D∗

√
w2 − 1 (w + 1)2

×
[
1 +

4w

w + 1
m2

B − 2wmBmD∗ + m2
D∗

(mB −mD∗)2

]
F (w)2 ,

(5.60)

where w is the product of the true four-velocities of the D∗ meson and the B meson

w = vB · vD∗ . (5.61)

These two equations were already discussed in section 2.2.3.
The aim of sections 5.3.1.1 and 5.3.1.2 is to give expressions for dΓ

(
B− → D∗0e−νe

)
/dw

∣∣
t

where t = BMC for the BABAR MC simulation and t = CLN for the form factor model of Caprini,
Lellouch and Neubert [32]. Section 5.3.1.3 derives the expression for the weights WPhy,Sig

k that are
given to the k th B− → D∗0e−νe event (compare with equation 5.15),

WPhy,Sig
k =

dΓ
(
B− → D∗0e−νe

)
(wk)

∣∣
CLN

dΓ (B− → D∗0e−νe) (wk)|BMC

. (5.62)

The reweighting of each B− → D∗0e−νe event changes the actual inflexible MC simulation into a
flexible one depending on the parameters of the weights WPhy,Sig

k . Two very important parameters
are V and ρ2, as defined in the introduction of this chapter (see equation 5.1). By varying V and
ρ2 one varies the BMC simulation. A fit to the data (section 5.4) determines the best values of V
and ρ2 and their statistical errors. Important to say is that the weights depend only on w but they
do not depend on decay angles.
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5.3.1.1 Hadronic Form Factor FCLN(w) in the CLN Theory

In [32] FCLN(w) is expressed by

FCLN(w)2 =
[
1 +

4w

w + 1
m2

B − 2wmBmD∗ + m2
D∗

(mB −mD∗)2

]−1

×

{
2
1− 2wr + r2

(1− r)2

[
1 +

w − 1
w + 1

R1(w)2
]

+
[
1 +

w − 1
1− r

(1−R2(w))
]2
}

h2
A1

(w),

(5.63)

where r is an abbreviation for the meson mass ratio, r = mD∗/mB. The w dependence of the only
form factor hA1 is is given by

hA1(w)
hA1(1)

= 1− 8ρ2z +
(
53ρ2 − 15

)
z2 −

(
231ρ2 − 91

)
z3,

where z =
√

w + 1−
√

2
√

w + 1 +
√

2
. (5.64)

The form factor ratios R1 and R2 are given by

R1(w) = R1(1)− 0.12(w − 1) + 0.05(w − 1)2 and (5.65)
R2(w) = R2(1) + 0.11(w − 1)− 0.06(w − 1)2. (5.66)

So the only parameters entering dΓ
(
B− → D∗0e−νe

)
/dw

∣∣
CLN

are

• the form factor ratios at zero D∗0 recoil, R1(1) and R2(1), whose values are taken from a
recently published BABAR measurement [33],

R1(1) = 1.396± 0.075 R2(1) = 0.885± 0.047, (5.67)

and

• V and ρ2 which will be estimated in the final fit to the data.

5.3.1.2 Hadronic Form Factor FBMC(w) in the BABAR MC Simulation

In the BABAR MC simulation FBMC(w) is expressed very similarly,

FBMC(w)2 =
[
1 +

4w

w + 1
m2

B − 2wmBmD∗ + m2
D∗

(mB −mD∗)2

]−1

×

{
2
1− 2wr + r2

(1− r)2

[
1 +

w − 1
w + 1

R2
1,BMC

]
+
[
1 +

w − 1
1− r

(1−R2,BMC)
]2
}

h2
A1,BMC(w),

(5.68)

with
hA1,BMC(w) = 1− ρ2

BMC (w − 1) . (5.69)

Differences to FCLN(w) are:
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• There is no w dependence in the form factor ratios R1 and R2.

• hA1,BMC(w) is parametrized using a linear hA1,BMC expansion around w = 1 in contrast to
hA1(w) which is parametrized as given in equation 5.64.

The parameter values of the BABAR MC define dΓ
(
B− → D∗0e−νe

)
/dw

∣∣
BMC

completely:

R1,BMC = 1.18,

R2,BMC = 0.72,

ρ2
BMC = 0.92, (5.70)

BBMC

(
B− → D∗0e−νe

)
= 0.056,

τB−,BMC = 0.502 mm/c.

Using these values and resolving the equation

BBMC

(
B− → D∗0e−νe

)
= τB−,BMC ·

wmax∫
1

dΓ
(
B− → D∗0e−νe

)
dw

∣∣∣∣∣
BMC

dw (5.71)

for |Vcb|BMC gives the value of |Vcb| used in the BMC simulation,

|Vcb|BMC = 3.514 · 10−2. (5.72)

5.3.1.3 The Event Weights W Phy,Sig
k

The event weight WPhy,Sig
k depends directly on the variables

V = hA1(1) · |Vcb| and
ρ2 = ρ2

A1

which will be varied in the fit. That means

WPhy,Sig
k = WPhy,Sig

k (wk|V, ρ2), (5.73)
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where wk is just w of the k th event. The full expression WPhy,Sig
k is given by9:

WPhy,Sig
k =

dΓ(B−→D∗0e−νe)
dw (w)

∣∣∣∣
CLN

dΓ(B−→D∗0e−νe)
dw (w)

∣∣∣
BMC

=
|Vcb|2

|Vcb|2BMC

· FCLN(w)2

FBMC(w)2

=
|Vcb|2

|Vcb|2BMC

·
h2

A1
(w)

h2
A1,BMC(w)

×
21−2wr+r2

(1−r)2

[
1 + w−1

w+1R1(w)2
]

+
[
1 + w−1

1−r (1−R2(w))
]2

21−2wr+r2

(1−r)2

[
1 + w−1

w+1R2
1,BMC

]
+
[
1 + w−1

1−r (1−R2,BMC)
]2

=

{
V

|Vcb|BMC
·
1− 8ρ2z +

(
53ρ2 − 15

)
z2 −

(
231ρ2 − 91

)
z3

1− ρ2
BMC (w − 1)

}2

×
21−2wr+r2

(1−r)2

[
1 + w−1

w+1R1(w)2
]

+
[
1 + w−1

1−r (1−R2(w))
]2

21−2wr+r2

(1−r)2

[
1 + w−1

w+1R2
1,BMC

]
+
[
1 + w−1

1−r (1−R2,BMC)
]2 . (5.74)

5.3.2 The Reweighting Technique for B → D0eν

The aim of this section is to derive a reweighting expression that allows to change the decay model
of B → D0eν events from the ISGW210 model [53] to the CLN11 model [32]. The reason for the
change to the CLN model is the possibility to vary the w distribution of B → D0eν events by an
extra parameter, the later defined ρ2

D. That possibility is not there in the ISGW2 model. The
ISGW2 model is used in the BABAR MC simulation and the CLN model is what one would like to
use in this analysis. Thus one has to give the weight

RCLN
ISGW2 =

dΓCLN

(
B → D0eν

)
dΓISGW2 (B → D0eν)

(5.75)

to each B → D0eν event of the BABAR MC. The differential decay widths dΓCLN and dΓISGW2

depend on only one kinematic quantity w, which is the relativistic boost of the D0 meson within
the B rest frame. It can be calculated as the product of the true four-velocities of the D0 meson
and the B meson,

w = vB · vD0 . (5.76)

In contrast to that what has been done in the reweighting of B− → D∗0e−νe events no direct
comparison of the BABAR MC model (ISGW2) to the new model (CLN) is performed. Instead

9To make the WPhy,Sig
k expression better readable the event index k is omitted at w — read wk instead of the

written w.
10ISGW2 is an abbreviation for an updated version of a decay model of N. Isgur, D. Scora, B. Grinstein and

M.B. Wise.
11CLN is an abbreviation for I. Caprini, L. Lellouch and M. Neubert.
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of this one compares both models to a third model, called HQET, and determines the two ratios
RCLN

HQET and RHQET
ISGW2, defined by

Ru
v =

dΓu

(
B → D0eν

)
dΓv (B → D0eν)

u , v = CLN , ISGW2 ,HQET. (5.77)

The searched weight RCLN
ISGW2 is, like the differential decay widths dΓ of all three models, w-

dependent and it is given by
RCLN

ISGW2 = RCLN
HQET ·R

HQET
ISGW2 (5.78)

In the next two subsections it is explained how the ratios RCLN
HQET and RHQET

ISGW2 are derived. Subsec-
tion 5.3.2.3 gives the expression for the weights of B → D0eν events.

The reason for the HQET model detour is the following. As you see later the CLN model has
one single parameter called ρ2

D. Thus the searched weight is ρ2
D dependent. Now it is much easier

to express the ratio RCLN
HQET by a mathematical term with ρ2

D than to do this for the ratio RCLN
ISGW2.

The ratio of the non-parametric models HQET and ISGW2 is extracted by a simple MC study.

5.3.2.1 Relation between the CLN Model and the HQET Model

The differential decay rate of B → D0eν events in the CLN model [32] and in the HQET model
[46] is given by

dΓ
(
B → D0eν

)
dw

∣∣∣∣∣
u

=
G2

F |Vcb|2

48π3
(mB + mD0)2 m3

D0(w2 − 1)3/2|V u
1 (w)|2 (5.79)

u = CLN ,HQET

where w is defined in equation 5.76 and V u
1 (w) is a form factor with one single parameter ρ2

D in
the case of CLN model. The differential decay widths of the two models differ only in their form
factors. The definition of the form factors V CLN

1 (w) and V HQET
1 (w) is

V CLN
1 (w) = V1(1)

(
1− 8ρ2

Dz +
(
51ρ2

D − 10
)
z2 −

(
252ρ2

D − 84
)
z3
)

and (5.80)

V HQET
1 (w) = 1− 1.12 (w − 1) (5.81)

with

z =
√

w + 1−
√

2
√

w + 1 +
√

2
. (5.82)

Important to say is that the constant V1(1) is approximately one [32]. The ratio RCLN
HQET follows

from the previous definitions and is

RCLN
HQET =

(
V1(1)

)2
(

1− 8ρ2
Dz +

(
51ρ2

D − 10
)
z2 −

(
252ρ2

D − 84
)
z3

1− 1.12 (w − 1)

)2

. (5.83)

5.3.2.2 Relation between the ISGW2 Model and the HQET Model

200 million events of HQET MC and 200 million events of ISGW2 MC have been produced for
the extraction of RHQET

ISGW2.
12 In both cases the BABAR software package EvtGen [46] generated B

12The MC has been produced on generator level without detector simulation.
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Figure 5.5: Plot (a) shows the w distribution of the HQET model and the ISGW2 model. The ratio R of
these distributions and the result of a fit with the fourth order polynomial pol (see equation 5.84) are shown
in plot (b). The goodness of this fit is verified by plots (c) and (d). Plot (c) shows the difference between
the fit result and the histogram from plot (b). Plot (d) shows the strength of deviations of R − pol from
zero. In plot (d) there is also drawn the expected distribution, a gauss function with mean=0 and sigma=1.

decay events with the decay chain B− → D0e−νe;D0 → K−π+. The HQET model was taken as B
decay model in the HQET MC and the ISGW2 model was taken as B decay model in the ISGW2
MC. The w distributions of both types of MC and their ratio are shown in figure 5.5a. To describe
the w dependence of RHQET

ISGW2 the ratio between the two w distributions has been fitted using a
fourth-order polynomial pol(w),

RHQET
ISGW2 = pol(w) =

4∑
l=0

al (w − 1)l. (5.84)

The fit and its quality are shown in the figures 5.5b-5.5d.
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5.3.2.3 The Weights for B → D0eν Events

The quantity RCLN
ISGW2 can be determined using the equations 5.78, 5.83 and 5.84. From this quantity

one can define the weight WPhy,D0eν
k for the kth B− → D0e−νe event,

WPhy,D0eν
k =

RCLN
ISGW2

V 2
1 (1)

=

(
1− 8ρ2

Dz +
(
51ρ2

D − 10
)
z2 −

(
252ρ2

D − 84
)
z3

1− 1.12 (w − 1)

)2

·

(
4∑

l=0

al (wk − 1)l

)
.

(5.85)

The coefficients al are given in figure 5.5b. The CLN model parameter ρ2
D remains a parameter of

WPhy,D0eν . By weighting each simulated B → D0eν event of the BMC with WPhy,D0eν
k one switches

from a w distribution following the ISGW2 model to a w distribution following the CLN model.

5.4 The Fit to the Data

A fit of the function FExp (∆m, cos θBY, w̃) defined in equation 5.52 extracts values for V and
ρ2. It is a log-likelihood fit minimizing the following sum,

NLL = −2 log L = 2
10∑
i=1

14∑
j=1

41∑
k=1

(
fijk − hijk log fijk + log hijk!

)
. (5.86)

The indices i, j and k run over the w̃-, the cos θBY-, and the ∆m-bin numbers of the fit range of
the three dimensional data histogram, respectively. The bins are equally sized over the fit range.
The ranges along w̃, cos θBY and ∆m are {1.000, 1.505}, {−4, 3} and {0.135 GeV/c2, 0.153 GeV/c2}.
The bin contents of the data histogram are named hijk. The integrals of the fit function over the
(ijk)th bins are named fijk.

The fit relies on the Minuit package [82] which has been converted into a C++ class to be used
in the ROOT frame work [39]. The best parameters of the fit function FExp (∆m, cos θBY, w̃) are
determined by the MIGRAD algorithm provided by Minuit. The corresponding error matrix is
obtained by calling the HESSE algorithm also provided by Minuit.

To help the fit to converge the range of the scaler parameters is limited by loose boarders. The
allowed range for the free scaler parameters is limited to the range 0.3 < Six < 3.0 for x =’D∗∗’,
’Uncor’ and ’Sig rel’. For the combinatorial D∗0 background the scalers are limited by 0.5 <
Si Comb D∗0 < 2.0 for i = 2, . . . , 10; in the first w̃ bin a looser limitation, 0.3 < S1 Comb D∗0 < 2.0,
was necessary.13

13See the explanation to the fitted value of S1 Comb D∗0 in section 6.2.2. The allowed range of S1 Comb D∗0 had to
be relaxed since the value of S1 Comb D∗0 was running against its lower limit.
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Fit Result

The set of abbreviations defined at the beginning of chapter 5 is extended,

V = F (1)|Vcb|, (6.1a)

ρ2 = ρ2
A1

and (6.1b)

BSig = B
(
B− → D∗0e−νe

)
, (6.1c)

to keep the text and the formulas of this chapter and the following chapters better readable.

6.1 Monte Carlo Validation

Method
The MC validation is performed in order to check whether the analysis is able to extract the desired
parameters V , ρ2 and BSig from the data sample. The basic idea of the test is to split the full MC
sample in two parts, where one part is used as pseudo data (PDA) and the other part is used as
pseudo MC (PMC). With these two samples the entire procedure is repeated. This includes (i) the
candidate selection, (ii) the extraction of MC shapes for cos θBY- and ∆m-distributions for each w̃
bin and (iii) the final three-dimensional fit extracting the desired parameters.

In data we expect the B− → D∗0e−νe events and the B0 → D∗+e−νe events to have a w
distribution as given by equation 5.60 and section 5.3.1.11. Therefore we should assign this w
distribution also to the B− → D∗0e−νe events and the B0 → D∗+e−νe events of the PDA sample.
This is done in the MC validation. But this times the reweighting is not the suitable technique
because the final fit is a maximum-likelihood fit and therefore requires non-weighted events. The
usage of weighted events would destroy the basis of the maximum-likelihood fit, it would destroy
the Poisson distribution of the bin contents of the finally fitted PDA histogram. To create the
PDA sample correctly one has to use a ’killing’ technique. If one wants the parameters (V̂ , ρ̂2) to
describe the signal w-distribution of the PDA sample then one has to remove each event assigned
to the PDA sample with the probability

PSig kill(w|V̂ , ρ̂2) = 1 − WPhy,Sig(w|V̂ , ρ̂2) . (6.2)

WPhy,Sig(w|V̂ , ρ̂2) is defined in equation 5.74, w is defined in equation 5.61, and V̂ has to be chosen
small enough, so that PSig kill ≥ 0 for all allowed w. The removing is performed in dependence on
the true value of w, the value of the reconstructed w̃ is not needed.

1The parametrization should describe nature’s true form factor shape with an accuracy of better then 2% [32].

91



Chapter 6. Fit Result

2
1A

ρ
0.70 0.75 0.80 0.85 0.90

3
10|

cb
F(

1)
|V

30.0

30.5

31.0

31.5 (a)

2
1A

ρ
1.05 1.10 1.15 1.20

3
10|

cb
F(

1)
|V

34.5

35.0

35.5

36.0
(b)

2
1A

ρ
1.35 1.40 1.45 1.50 1.55

3
10|

cb
F(

1)
|V

35.0

35.5

36.0

36.5 (c)

  [%]SigB
4.75 4.80 4.85 4.90 4.95

(d)

  [%]SigB
5.35 5.40 5.45 5.50 5.55

(e)

  [%]SigB
4.6 4.7

(f)

Figure 6.1: Subfigures (a) and (d) show the fit results of the five fits on PDA correspond-
ing to (V̂ , ρ̂2) = (0.03066, 0.8). The subfigures of the second and the third column correspond to
(V̂ , ρ̂2) = (0.03514, 1.1) and (V̂ , ρ̂2) = (0.03514, 1.4), respectively. The three hollow crosses in the first
row show these true values of V and ρ2 in the PDA samples. The corresponding true branching fractions
(B̂Sig) are shown by the dashed lines in the plots of the lower row and by the middle diagonal lines in the
plots of the upper row. The two other diagonal lines in the biplots are lines of constant branching fraction
with BSig = B̂Sig +0.2% and BSig = B̂Sig−0.2%. The ellipses in the upper row show the 1σ range (∆χ2 = 1).
One can see that the fit procedure is able to extract the true parameters. One could suppose that the fit
procedure gives a little bias to higher values, in particular for higher values of ρ2. However, if there is really
a bias then it can be neglected because it is much smaller than the systematic uncertainties on V , ρ2 and
BSig (see chapter 7).

As next, let me explain how the BB parts assigned to PDA and PMC are defined. The full
MC sample has been divided into five parts of nearly equal size. One of these parts is used to build
the PDA sample and the other four parts are used to define the PMC sample. The PDA sample
size is a quarter of the PMC sample size, that is also the approximate situation for the true data-
and MC-sample. Concerning the cc part of PDA and PMC I just used one half of the full MC cc
sample for the PDA and the other half for the PMC.

Result
The five-fold division of the full MC sample was done to perform five statistically independent tests
for one (V̂ , ρ̂2) parameter pair, each test using a different fifth for the PDA. Fifteen different PDA
samples obtained by three different (V̂ , ρ̂2) pairs have been fitted by the nominal fit procedure
described in chapter 5. The results of the fits are shortly summarized in figure 6.1 comparing
the fitted values of V , ρ2 and BSig with the true values. The figure shows that the fit behaves
as expected. A more detailed check is to look at the values of the background scalers. This has
been done for all fifteen fits. The background scalers of a typical fit are shown in figure 6.2. One
can see that there is a good agreement between the expectation and the fitted values. The fitted
polynomials q0(x) +q1(x)(w̃−1) for x = k, ∆µExp, ξ and α describe the fitted shape of the ∆m and
the cos θBY distribution (compare equation 5.58); these polynomials are shown in figure 6.3 and do
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Figure 6.2: Shown are the background scalers corresponding to the fit
whose result is drawn red in figure 6.1b (MC cross check). The scalers
are compatible with their expected values (dashed lines).

also agree with the expectation.

Discussion of χ2 Values of the Fits
It is also interesting to look at the χ2 values from the fifteen fits.2 The definition of χ2 is given by

χ2 =
∑
ijk ∗

(
fijk − hijk√

fijk

)2

, (6.3)

where the notation of equation 5.86 has been used.3 Let’s assume the fit function FExp (∆m, cos θBY, w̃)
would really be a parametrization of the true distribution function of the fitted sample. In this case
one would expect a mean value

〈
χ2
〉

= n where n is the number of degrees of freedom of the fit.
The latter equation is not exactly true but a very good approximation for big values of n, such as
n > 100. In this case the fitted χ2 values approximately follow a Gaussian distribution with mean〈
χ2
〉

= n and standard deviation σχ2 =
√

2n. But the distribution of p,

p = p
(
χ2, n

)
=

χ2 − n√
2 · n

, (6.4)

of the fifteen fits of the MC cross check has a mean value p = 2.0 and a root mean square of

RMSp =
√

p2 − p2 = 1.3. Why are the expected values, p = 0 and RMSp = 1, so far away from
the obtained values? The answer is that the assumption is not true; FExp (∆m, cos θBY, w̃) is not
able to describe the true distribution function of the fitted sample with arbitrary precision. It is
only an approximation of the true distribution function (F true (∆m, cos θBY, w̃)). With a growing

2The minimization has been performed using a log-likelihood fit (see equation 5.86). The χ2 value is obtained
from the fitted parameters.

3The star at the sum sign indicates that bins with less than five entries (hijk < 5) are merged with neighboring
bins until hijk ≥ 5. Thus, the description of the frequency distribution in these merged bins can be approximated by
a Gaussian.
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Figure 6.3: The solid lines show the fitted first-order polynomials
q0(x) + q1(x)(w̃ − 1) for x = k, ∆µExp, ξ, α. The polynomials were
obtained by the fit whose result is drawn red in figure 6.1b (MC cross
check). The yellow bands show the 1σ range of the polynomials. These
bands are compatible with the expectation (dotted lines).

statistic of the fitted sample the difference between the obtained χ2 values and the expected χ2

values4 becomes arbitrary high, the strength of the deviation is only a question of the size of the
fitted sample.

Conclusion
As shown in figure 6.1, the fit method described in chapter 5 extracts the true values of V , ρ2 and
BSig with a sufficient precision.

6.2 The Fit Result

6.2.1 Central Values and Statistical Uncertainties

The values of V , ρ2 and BSig obtained by the fit described in section 5.4 are: V = (36.32±0.51)·10−3,
ρ2 = (1.083±0.046) and BSig = (5.752±0.083) ·10−2. Table C.1 shows the values and the statistical
uncertainties of all parameters of FExp (∆m, cos θBY, w̃) determined in the fit. After the values
of V , ρ2 and BSig have been corrected for differences between x (x = τB+ , B(Υ (4S) → B+B−),
B(D∗0 → D0π0), B(D0 → K−π+), B(π0 → γγ)) in the simulation and the currently best known
value of x [8] 5 one obtains:

V = (35.8± 0.5) · 10−3 (6.5a)

ρ2 = 1.08± 0.05 (6.5b)
BSig = (5.60± 0.08) %. (6.5c)

The value of BSig is not a direct output of the fit but it is calculated from V and ρ2 using equation
2.52. The uncertainty on BSig follows from the partial derivatives ∂BSig/∂V and ∂BSig/∂ρ2, from

4The expectation assumes that FExp (∆m, cos θBY, w̃) can describe the true distribution F true (∆m, cos θBY, w̃).
5See appendix C.2 for this correction.
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Figure 6.4: Shown is the fit result numerically presented in equations 6.5. The ellipse gives the 1σ un-
certainties on V and ρ2. The diagonal lines are lines of constant branching fraction BSig. The solid line
corresponds to the value found by the fit and the dashed (dotted) line corresponds to the 1σ-band (2σ-band)
of the fitted BSig value.

Table 6.1: The result of the fit presented in equations 6.5 uses the currently best known values [8] of the
input parameters listed in this table.

Input Parameter Value
B (Υ (4S) → B+B−) (50.6± 0.8)%
B
(
D∗0 → D0π0

)
(61.9± 2.9)%

B
(
D0 → K−π+

)
(3.80± 0.07)%

B
(
π0 → γγ

)
(98.798± 0.032)%

τB+ (1.638± 0.011) ps
R1 1.396± 0.075
R2 0.885± 0.047

the uncertainties of V and ρ2, and from the correlation %stat between V and ρ2. The correlation
between V and ρ2 determined by the fit is

%stat = 0.86. (6.5d)

The values stated in equations 6.5 are graphically presented in figure 6.4. Table 6.1 lists the values
of the input parameters used for the numbers in equations 6.5.

6.2.2 Comparison Plots between Data and the Fit Function

Comparison plots between the data and the fit show how well the function FExp (∆m, cos θBY, w̃)
describes the data. The largest set of check plots is given on a web page [40] which enables the
visitor to get each of the nearly 100 comparison plots by one mouse click on a control panel.

∆m and cos θBY Distribution
Figure 6.5 shows the ∆m distributions (cos θBY distributions) in the signal region and in the
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Figure 6.5: The ∆m and the cos θBY distribution of the data (points) are compared to the distributions
modeled by the fitted function FExp (∆m, cos θBY, w̃) (stacked histograms, color code follows the classification
of equation 5.49). The subfigures show the distributions in the signal bands (b,e) and in the side bands
(a,c,d,f). The distributions are created using the entire w̃ signal range, for limited w̃ ranges see figures C.1,
C.2 and C.3 in the appendix. The corresponding ∆m and cos θBY distributions of any w̃ bin are visible in
[40]. The discrepancy at cos θBY ≈ 1 (visible in the subfigures (d) and (e)) is caused by the product ansatz
(see section 5.2.1.1) ignoring the mild correlation between cos θBY and ∆m.
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Figure 6.6: The w̃ distribution of the data (points) is compared to the distribution modeled by the fitted
function FExp (∆m, cos θBY, w̃) (stacked histograms, color code follows the classification of equation 5.49).
The distributions are plotted for the ∆m cos θBY signal-range (0.140 GeV/c2 < ∆m < 0.144 GeV/c2 and
−1 < cos θBY < 1).

sideband regions of cos θBY (∆m). The distributions in these plots are created using the entire w̃
signal range (1 < w̃ < 1.505). Appendix C.3 also contains plots for limited w̃ ranges. There is a
good agreement between the distributions obtained from the fitted function and the distributions
obtained from data.

The discrepancy at cos θBY ≈ 1, visible in the figures 6.5d and 6.5e, is caused by the product
ansatz (see section 5.2.1.1). Since there is a weak correlation between ∆m and cos θBY (see table
B.1) the steep edge at cos θBY ≈ 1 should be shifted to higher values of cos θBY with increasing ∆m
values. Since that is the case in data (and BMC) but not described by the PDFs P̂ij (∆m, cos θBY)
the steep edge of the fitted cos θBY distribution in the left ∆m sideband (figure 6.5d) is shifted to
a higher value with respect to the data. Accordingly, in the right ∆m sideband (figure 6.5f) the
edge is described at a cos θBY value lower than in data.

w̃ Distribution
Figure 6.6 compares the w̃ distribution of the data and the fitted function in the ∆m cos θBY

signal-range. The deviations in the ten w̃ bins are well compatible with statistical fluctuations.
Figure 6.7 shows the fitted values for the scaler parameters Six (i=1,. . . ,10; x=D∗∗, Uncor,

Sig rel 6, CombD∗0) and the resulting numbers of fitted background candidates Nix,

Nix = Six ·NExp
ix , (6.6)

where NExp
ix is the sum of all expected background candidates scaled by Six (see equation 5.49 and

table 5.1). The most precisely determined scalers are the scalers Si Sig rel. The fit result Si Sig rel < 1
confirms that there are more low-energetic photon candidates in the simulation than in data.

A significant discrepancy between the data and the simulation is given in the first w̃ bin with
S1Comb D∗0 = 0.471 ± 0.022. Figure C.1a shows that the fit has no other choice, the low value of

6The values of Si Sig rel are those after the translation described in appendix C.2.
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Figure 6.7: The left column shows the fitted values of the scaler variables as a function of w̃. The right
column shows the amount of fitted background resulting from these scalers also as a function of w̃.
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Figure 6.8: The left plot shows the bin-by-bin deviations Dab between the fitted function and the data
in the ∆m cos θBY plane for the entire w̃ fit-range. Since each color is homogeneously distributed over the
entire plane the fit function is a good description of the data. The values of Dab in the left plot are filled into
a histogram shown in the right plot. If the data histogram contains less than 5 entries in a bin (Hab < 5)
than this bin is merged with neighboring bins until Hab ≥ 5. The shape of the right histogram is close to the
expected shape (standard normal distribution which is also plotted) which means that the fitted function
describes the data well.
The big and the small rectangles in (a) show the fit range and the approximate signal range. The numbers
shown in (b) are the mean and the root mean square (RMS) of the Dab frequency histogram.

S1Comb D∗0 results from a data MC discrepancy. In the MC validation the fit was able to find the
correct values of the scalers (see figure 6.2). This gives confidence on the small value of S1Comb D∗0

– one has to accept that the scalers can show significant steps as a function of w̃. That is the reason
for using non-smoothed scalers. The technique used for the smoothing of the shape parameters
~p shape

i is not allowed for the scaler parameters.

Deviation Plots in ∆m cos θBY Plane
Another visualization of the difference between the data distributions and the distributions governed
by the fitted function are two-dimensional deviation plots showing the bin-by-bin deviations Dab

in the ∆m cos θBY plane,

Dab =
Hab − Iab√

Hab
. (6.7)

Here, (ab) is the bin number in the ∆m cos θBY histogram, Hab is the bin content of the data
histogram, and Iab is the integral of the fitted function over the bin range. Figure 6.8a shows Dab

for the entire w̃ fit-range, appendix C.3 shows the plots for the first, the fifth and the tenth w̃ bin.
If there are regions where the fitted function is a bad description for the data then the colors of the
deviation plot are more reddish (underestimation) or more bluish (overestimation) in this region.
The homogeneously distribution of each color over the ∆m cos θBY plane of the deviation plot
means that the fitted function describes the data well. In addition, figure 6.8b shows the frequency
distribution of the deviations Dab. As expected, this distribution relies in good approximation on
a standard normal distribution.
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Chapter 6. Fit Result

6.2.3 Value of χ2

The quantity NLL defined in equation 5.86 is minimized in the fit. But there is also the quantity
χ2 defined by equation 6.3.7 The value of χ2 is a simple check for the goodness of the fit and was
already discussed at the end of section 6.1. The nominal fit on data yields χ2 = 4435.5 with 4095
degrees of freedom. This translates into a value p = 3.8 (see equation 6.4) which is compatible with
the expectation from the fifteen MC cross checks (p = 2.0 and RMSp = 1.3).

7In contrast to NLL there is not only a meaning of the difference between two χ2 values calculated from different
parameter values, there is also a meaning of the absolute value of χ2.
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Chapter 7

Systematics

The equations 6.5 report the fitted values of V , ρ2
A1

and BSig
1 with their statistic uncertainties

as obtained by the fit method described in chapter 5. Since there are not only statistical but
also systematic uncertainties, these equations do not give the final result of this analysis. Various
systematic uncertainties have been identified and quantitatively determined. With respect to its
source each of these uncertainties can be grouped either into the analysis-internal or into the
analysis-external category of uncertainties:

• The category of analysis-internal uncertainties comprises everything specific to the BABAR

experiment, e.g. uncertainties due to imperfect simulation of the detector like reconstruction
and identification efficiencies of particles.

• The category of analysis-external uncertainties accounts for the uncertainties on input pa-
rameters taken from other measurements, e.g. branching fractions of decay channels used in
the reconstruction.

This classification indicates that the result can be redetermined at a later time with more precise
input parameters. E.g., there is hope that the uncertainty on F (1) will decrease in the next years
and therefore the value of |Vcb| can be redetermined giving a more precise value of |Vcb|. Another
classification groups the systematic uncertainties into two categories depending on their property

• to influence the shape of the w̃ distribution or

• to let it unchanged.

If a regarded uncertainty belongs to the latter category then it does not contribute to the uncertainty
of ρ2

A1
. Otherwise it is a source for uncertainties on BSig, V and ρ2

A1
.

A summary of all evaluated uncertainties is given in table 7.3 at the end of section 7.5. The
details are discussed in the subsections.

7.1 Efficiencies

Section 4.4 describes how the efficiency ratios Ri (i = e,K, π, π0) between data and MC are
obtained. Discussed are the track finding efficiency, the particle identification efficiency and the

1Following the notation introduced in equations 6.1, V and BSig are abbreviations for F (1)|Vcb| and
B

(
B− → D∗0e−νe

)
, respectively.
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Chapter 7. Systematics

neutral pion reconstruction efficiency. The selected MC candidates of this analysis are weighted with
the data-MC-ratios of these three efficiencies as can be seen by equations 5.13 and 5.14. However,
the efficiency ratios have an uncertainty themselves and this contributes to the uncertainty of the
final result.

7.1.1 Tracking Efficiency

The tracking efficiency dependents on transverse momentum pT and polar angle θ of the track as well
as on the track multiplicity M of the event (see section 4.4.1 and [65]). The systematic uncertainty
on the tracking correction factors is ∆RTrack

i = 0.8% per reconstructed track (i = e,K, π) [65].

No Drift of RTrack
i with w̃

In the first instance it is assumed that this uncertainty has no influence on the shape of the w̃
spectrum of the fitted signal. In this case it only effects an uncertainty in V and BSig, but the
resulting uncertainty on ρ2

A1
is zero. Because the candidate reconstruction uses three tracks this

results in a total systematic uncertainty of (∆BSig)/BSig = 2.4%. Due to BSig ∝ V 2 the resulting
uncertainty on V is only the half of the latter value, (∆V )/V = 1.2%. (Since the biases of RTrack

e ,
RTrack

K and RTrack
π have the same (unknown) value a quadratic addition of the uncertainties would

not be correct.)

Drift of RTrack
i with w̃

Is there a possibility that the uncertainty on the tracking efficiency leads to an uncertainty on ρ2
A1

?
As mentioned at the beginning of this section, the tracking correction factor RTrack

i of the i-track
depends on pTi and θi of the i-track and on the track multiplicity M of the event (i = e,K, π). If
variable x (x = pTi, θi,M) shows different distributions for different w̃ ranges then an x dependence
of the unknown bias ∆RTrack

i would result in a no-zero uncertainty on ρ2
A1

. As shown in figure 7.1,
the only variables with w̃ dependence are the transverse momenta pTi. The polar angles θi and
the track multiplicity M are nearly independent to w̃ (see also figure 7.1). The entire analysis has
been repeated with alternative correction factors

1RTrack = RTrack ·
[
1 +

0.008
1.25

(
pT

GeV/c
− 1.25

)]
and (7.1a)

2RTrack = RTrack ·
[
1 − 0.008

1.25

(
pT

GeV/c
− 1.25

)]
, (7.1b)

where the number 1.25 is obtained from figure 7.1a and the number 0.008 is the uncertainty on
RTrack

i . (The tracking efficiencies are independent to the particle type i.) The differences between
the fitted values of the nominal fit and the fitted values using modification 7.1a are ∆(ρ2

A1
)/ρ2

A1
=

0.5%, ∆(V )/V = 0.3% and ∆(BSig)/BSig = 0.2%. The corresponding differences using modifica-
tion 7.1b are ∆(ρ2

A1
)/ρ2

A1
= −0.5%, ∆(V )/V = −0.3% and ∆(BSig)/BSig = −0.2%. Since these

uncertainties on V and BSig are negligible compared to (∆V )/V = 1.2% and (∆BSig)/BSig = 2.4%
the uncertainties due to a possible drift of RTrack

i with w̃ are listed separately in table 7.3.

7.1.2 PID Efficiency

Electrons
The detector MC simulations predicts a total electron efficiency ε̌e sig. That means from Ňtot recon-
structed electron tracks Ňsel tracks were selected by the electron selector, and ε̌e sig = Ňsel/Ňtot. To
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Figure 7.1: The plots show distributions of reconstructed Y candi-
dates fully matched to a signal decay. The first row shows distributions
of transversal momenta pT , the second row shows distributions of po-
lar angle θ, and the last row shows the distribution of the number
of tracks per event. The histograms belong to the following three w̃
ranges: solid histogram for small w̃ values (1.00 < w̃ < 1.17); dashed
histogram for medial w̃ values (1.17 < w̃ < 1.34); dotted histogram
for large w̃ values (1.34 < w̃ < 1.51). (The histograms of the three w̃
ranges are normalized to the same number of events within one sub-
figure.) Only the pT distributions show a w̃ dependence. Therefore a
drift in the systematic uncertainty of RTrack

i as a function of pT could
result in an uncertainty on ρ2

A1
.

103



Chapter 7. Systematics

get an estimate of the electron efficiency εe sig in signal events of true data, ε̌e sig has been weighted
by the data MC ratio RPid

e of electron efficiencies obtained in radiative Bhabha events (εe bha and
ε̌e bha). Therefore, the electron efficiency effectively used for the final result is

εe = ε̌e sigR
Pid
e = ε̌e sig

εe bha

ε̌e bha
. (7.2)

εe is an estimate for the true value εe sig. The systematic uncertainty ∆εe sig = εe− εe sig is difficult
to estimate. However the most reliable value of ∆εe sig is given by [83]

∆εe sig = εe − εe bha, (7.3)

because (i) εe bha is the only value obtained from true data and (ii) one expects that the electron
efficiency depends only very mildly on the environment given by the event type (BB event versus
radiative Bhabha event). To estimate the uncertainties caused by ∆εe sig the entire analysis has
been repeated using εe bha instead of εe for the electron efficiency. The resulting differences to the
result obtained by the nominal fit are taken as systematic uncertainties. They are listed in table
7.3.

Kaons
The same strategy that has been used for electrons is also used for kaons. The kaon efficiency
effectively used for the final result is given by

εK = ε̌K sigR
Pid
K = ε̌K sig

εK D∗

ε̌K D∗
. (7.4)

where εK D∗ and ε̌K D∗ are the kaon efficiencies obtained from the D∗ data sample and the D∗ MC
sample [58], respectively. ε̌K sig is the selection efficiency of the kaon selector for kaons from the
signal decay in MC. To estimate the uncertainties introduced into the analysis by using εK instead
of εK sig the entire analysis has been repeated using εK D∗ instead of εK for the kaon efficiency. The
differences to the result obtained by the nominal fit are taken as systematic uncertainties. They
are listed in table 7.3.

7.1.3 π0 Reconstruction Efficiency

No Drift of Rπ0 with w̃
The authors of [61] state a total systematic uncertainty of ∆Rπ0 = 3%. This results in an uncer-
tainty of (∆BSig)/BSig = 3% and (∆V )/V = 1.5%.

Drift of Rπ0 with w̃
But of course, the uncertainty on Rπ0 also affects ρ2

A1
. If the function that describes Rπ0 in

dependence on the π0 momentum has a wrong shape (see figure 4.10 and equation 4.15) then this
spoils the w̃ spectrum of the fitted signal yields. The reason is (similar to the situation described
in section 7.1.1) that for signal decays there is a correlation between w̃ and pπ0 . The D∗0 mesons
with lower recoil relative to the B meson produce softer pπ0 spectra (see figure 7.2 and appendix
D.1). To check whether the uncertainty ∆Rπ0 has a systematic drift affecting the w̃ spectrum of
fitted signal yields the entire analysis is repeated with different cuts on pπ0 . The fitted values of
BSig, V and ρ2

A1
are shown as a function of the pπ0 cut in figure 7.3. Half of the difference between

the maximal and the minimal value of x (x = V, ρ2
A1

, BSig) is taken as systematic uncertainty on

104



7.1. Efficiencies

 [GeV/c]
0π

p
0.0 0.1 0.2 0.3 0.4

ev
en

ts
 [0

.0
08

 G
eV

/c
]

0

5

10
 < 1.05w~1.00 < 
 < 1.25w~1.20 < 
 < 1.50w~1.45 < 

Figure 7.2: The plot shows the π0 momentum spectrum of Y candidates fully matched to a signal candidate
(unweighted BABAR MC). The histograms show that there is a correlation between w̃ and π0 momentum.
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Figure 7.3: As a function of the π0 momentum cut
(pπ0 min)are shown: (a) the fitted branching fraction
BSig; (b) the fitted value of V ; (c) the fitted form fac-
tor parameter ρ2

A1
. The drawn errors are the statistical

errors from the fit. The results are stable as long as
the π0 momentum cut does not reject to many signal
candidates in the low w̃ bins. For pπ0 min > 117 MeV/c
the fit gets problems because most of the signal in the
first w̃ bin is rejected.

x arising from the uncertainties of describing the π0 efficiency as a function of pπ0 . Since the fit
results are only stable as long as the cut on the π0 momentum does not reject to many signal
candidates (especially in the low w̃ bins) only fits with cuts pπ0 min ≤ 117 MeV/c are used within
this procedure. The resulting uncertainties on V , ρ2

A1
and BSig are listed in table 7.3. Since the

statistics of the sample is changed by cutting on pπ0 the estimated uncertainties are not only due
to systematic effects but do also contain a little fraction of statistic uncertainty.
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Figure 7.4: Subfigure (a) shows the R1 R2 error ellipses for four assumptions on the correlation of the
systematic part of the covariance matrix of the used R1 R2 measurement [33]. The three colored ellipses
assume this correlation to be equal to -1 (red), 0 (green) or 1 (blue). The black ellipse assumes that
the correlation of the systematic part and the statistical part are equal, this case is used to derive the
uncertainties on the result of this analysis. The difference between the four ellipses is small because the
statistical uncertainties dominate. Since the correlation of R1 and R2 is due to the nature of the definition of
R1 and R2 the blue ellipse is rather unlikely. Subfigure (b) defines thirty points on the 1σ- and the 2σ-ellipse
of the R1 R2 measurement. The fit results for these thirty points in the R1 R2 plane are shown in table 7.1.

7.2 The Form Factor Ratios R1 and R2

The used form factor ratios R1 and R2 are taken from a BABAR measurement [33]. Reference
[33] states the statistical part of the full covariance matrix but for the systematic part only the
total uncertainties on R1 and R2 were determined. The correlation between R1 and R2 has not
been determined.2 But this correlation is needed to define an R1 R2 error ellipse. Figure 7.4a
shows the 1σ-ellipses for four different assumptions about this correlation. For the determination
of the systematic uncertainties of this analysis it is assumed that the statistical correlation and the
systematic correlation of R1 and R2 are equal (black ellipse in figure 7.4a).

From the central values (see [33] or equation 2.66) and the corresponding covariance matrix of
R1 and R2 one can draw the 1σ-ellipse and the 2σ-ellipse. The two ellipses are shown in figure
7.4b. To estimate the uncertainty on the fitted values arising from the uncertainty of the form
factor ratios the entire analysis has been repeated thirty times, ten times with R1-R2 input values
on the 1σ-ellipse and twenty times with R1-R2 input values on the 2σ-ellipse. The used points in
the R1-R2 plane are marked in figure 7.4b. The fit results of the thirty fits are listed in table 7.1.
Regarding the ten fits belonging to the 1σ-ellipse, the maximal deviation of x (x = V, ρ2

A1
,BSig)

from the value of the nominal fit is ∆x1σ. Regarding the twenty fits belonging to the 2σ-ellipse
one can similarly define ∆x2σ. As expected, it turns out that ∆x1σ ≈ 1

2∆x2σ for all three numbers
(V, ρ2

A1
,BSig). The uncertainty on x is defined by ∆x = max(∆x1σ, 1

2∆x2σ). The values of the
uncertainties are ∆(V )/V = 0.4%, ∆(BSig)/BSig = 3.0% and ∆(ρ2

A1
)/ρ2

A1
= 6.2%.

2The primary author of the analysis [33] was contacted and asked for the correlation of R1 and R2 due to the
systematic uncertainties. He advised to use the correlation from the statistical part of the covariance matrix. [84]
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7.3. D∗∗ Background

Table 7.1: The table shows the fitted values of V and ρ2
A1

using various R1 and R2 input values. Also
shown is the resulting value of BSig. The numbers are already translated to the parameter values listed in
table 6.1. The form factor ratios R1 and R2 corresponding to the code number i are visualized in figure 7.4.

i R1 R2 V ·103 ρ2
A1

BSig·102

1 1.469 0.843 35.86 1.136 5.456
2 1.462 0.865 35.79 1.108 5.513
3 1.431 0.894 35.74 1.070 5.606
4 1.385 0.919 35.70 1.034 5.701
5 1.344 0.932 35.73 1.016 5.759
6 1.322 0.926 35.80 1.025 5.756
7 1.329 0.904 35.88 1.055 5.694
8 1.36 0.875 35.94 1.094 5.600
9 1.406 0.850 35.96 1.128 5.509
10 1.447 0.837 35.93 1.144 5.455
11 1.542 0.802 35.88 1.188 5.314
12 1.543 0.821 35.81 1.165 5.357
13 1.529 0.845 35.74 1.134 5.424
14 1.503 0.874 35.68 1.097 5.510
15 1.466 0.904 35.63 1.057 5.608

i R1 R2 V ·103 ρ2
A1

BSig·102

16 1.422 0.931 35.59 1.018 5.709
17 1.375 0.954 35.56 0.984 5.801
18 1.331 0.971 35.58 0.961 5.874
19 1.293 0.979 35.60 0.948 5.921
20 1.265 0.977 35.65 0.948 5.935
21 1.249 0.967 35.73 0.965 5.915
22 1.248 0.948 35.81 0.991 5.863
23 1.262 0.924 35.91 1.027 5.787
24 1.288 0.895 35.98 1.066 5.694
25 1.325 0.865 36.05 1.107 5.596
26 1.369 0.838 36.08 1.143 5.501
27 1.416 0.815 36.07 1.171 5.418
28 1.460 0.798 36.05 1.192 5.353
29 1.498 0.790 36.00 1.201 5.313
30 1.526 0.792 35.94 1.199 5.299

7.3 D∗∗ Background

In this analysis, events with decays of type B → D∗∗eνe are called D∗∗ events if D∗∗ is a charmed
hadronic state D∗∗ = D1, D

′
1, D

∗
2, D

∗π, . . . but D∗∗ 6= D,D∗. The Y candidates belonging to class
2, 15 or 16 of the list in table 5.1 contribute to the reconstructed D∗∗ events. There are two
uncertainties on the final result which are both introduced by D∗∗ events. They are discussed in
the two following paragraphs.

Unknown Branching Fractions of B → D∗∗eνe Decays
The properties of Y candidates reconstructed in D∗∗ events are very similar to the properties
of Y signal candidates. This analysis discriminates D∗∗ events and signal events by exploiting
the different shapes in the cos θBY distribution (see figure 4.20). Since the knowledge about the
branching fractions of the B → D∗∗eνe decays is poor the shape of the cos θBY distribution of D∗∗

events has an uncertainty. This uncertainty propagates to the fitted values of F (1)|Vcb| and ρ2
A1

.
To evaluate this uncertainty, the entire analysis has been repeated 100 times. In each of the 100
tests the branching fractions Bi have been replaced by B′i,

B′i = ri Bi (i = 1, . . . , 6), (7.5)

where i indicates a group of decay modes of type B → D∗∗eνe (see table 7.2) and Bi is the
branching fraction of a decay from group i in the MC. The numbers ri are random numbers basing
on a Gauss distribution with mean µ = 1 and standard deviation σ = 0.3. In total there are
6× 100 = 600 random numbers. For V , ρ2

A1
and BSig, the maximal deviation from the value of the
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Table 7.2: The generator’s branching fractions of the decays B0 → D∗∗+e−νe and B− → D∗∗0e−νe are
varied in six independent groups. Due to isospin symmetry the ratios between the branching fractions within
one single group remain unchanged.

i D∗∗+ D∗∗0

1 D+
1 D0

1

2 D∗+
0 D∗0

0

3 D′+
1 D′0

1

4 D∗+
2 D∗0

2

5 D∗+π0, D∗0π+ D∗+π−, D∗0π0

6 D+π0, D0π+ D+π−, D0π0

nominal fit is taken as systematic uncertainty. This gives ∆(V )/V = 0.3%, ∆(ρ2
A1

)/ρ2
A1

= 0.7%
and ∆(BSig)/BSig = 0.3%.

∆m Distribution of B → D∗∗eνe Decays
There are Y candidates from D∗∗ events with correctly reconstructed D∗0 mesons, and there are Y
candidates from D∗∗ events with incorrectly reconstructed D∗0 mesons. The fit procedure described
in chapter 5 estimates their contribution to the fitted histogram without varying the ratio between
both. Only the total amount of Y candidates from D∗∗ events is varied, the ratio between these
candidates with correctly and incorrectly reconstructed D∗0 mesons is fixed to the expectation of
the MC (efficiency corrected). Since we know that there are too many background photons in the
simulated MC events we expect that the ratio is slightly shifted to values enhancing Y candidates
with incorrectly reconstructed D∗0 mesons. However, this could be slightly compensated by the
fitted contribution of other candidate groups (e.g. combinatorial D∗0 background). To see the
influence on V , ρ2

A1
and BSig the expected ratio between the numbers of D∗0 mesons correctly and

wrongly reconstructed is varied. The fit has been repeated two times, one time with a higher and
one time with a lower ratio, compared to the expectation from the simulation. To vary the ratio
the expected number of correctly reconstructed D∗0 mesons (NExp

i 2 ) remains unchanged and the
expected number of wrongly reconstructed D∗0 mesons (NExp

i 15 + NExp
i 16 )is increased or decreased by

10%. The shift of the fitted values compared to the nominal fit is taken as systematic uncertainty.
It has the same absolute values: ∆(V )/V = 0.1%, ∆(ρ2

A1
)/ρ2

A1
= 0.1% and ∆(BSig)/BSig = 0.2%.

Why was the uncertainty determined by using a variation on NExp
i 15 + NExp

i 16 of 10% instead of
20% or 30%? The answer is given by the nominal fit itself. The fit found that there is a variation
of the scalers Si Sig rel ranging from a minimum of Si Sig rel = 0.9 to a maximum of Si Sig rel = 1.1.
These values reflect the uncertainty on the expected ratio of correctly reconstructed D∗0 mesons
to wrongly reconstructed D∗0 mesons in signal decays. Since this uncertainty should be the same
in B → D∗∗eνe decays the 10% variation of NExp

i 15 + NExp
i 16 is reasonable.

7.4 w̃ Dependence of Shape Parameters of ∆m- and cos θBY-PDF

Proper Extraction of Polynomials
It has been checked whether the polynomials q0(y) + q1(y)(w̃ − 1) defined in equation 5.58 behave
in a way they are expected to behave (y = k, ∆µExp, ξ, α). The polynomials have the task to
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Figure 7.5: The figure illustrates the w̃ dependence of the four polynomials q0(y) + q1(y)(w̃ − 1) defined in
equation 5.58 for y = k, ∆µExp, ξ and α. The solid lines and the yellow bands show the fitted polynomials
and their statistical uncertainties from the nominal fit. Subfigure (a) shows the result of a fit where the
individual parameters ki were varied independently instead of being constrained to the polynomial’s values
q0(k) + q1(k)(w̃i − 1). Similarly, the fit was repeated for each of the other three shown parameters (b-d). In
each of the four alternative fits there is agreement between the ten parameters yi and the polynomial.

smooth the individual parameters yi in order to reduce the number of free parameters. The nominal
fit has been repeated varying the individual parameters ki (i = 1, . . . , 10) independently to each
other instead of constraining them to the polynomial’s values q0(k) + q1(k)(w̃i − 1). Similarly, the
fit was repeated three times corresponding to y = ∆µExp, ξ and α. The nominal fit and the four
alternative fits show agreement between the polynomials and the parameters yi (see figure 7.5).
However, more important than to look at the polynomials is to check whether the values of V , ρ2

or BSig have changed significantly. In the four alternative fits the maximal deviation of BSig to the
value of the nominal fit is ∆(BSig)/BSig = 0.1%. The corresponding maximal deviations of V and
ρ2 are ∆(V )/V = 0.4% and ∆(ρ2

A1
)/ρ2

A1
= 1.2%. But these deviations should not be taken as the

uncertainties introduced by the description of the w̃ dependence of FExp (∆m, cos θBY, w̃). This
paragraph only demonstrates the proper extraction of the polynomials.

Constants instead of First-Order Polynomials
A rigorous way to determine the uncertainties arising from the description of the w̃ dependence of
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Figure 7.6: As a function of a maximal w̃ are shown: (a,d) the fitted value of F (1)|Vcb|; (b,e) the
fitted form factor parameter ρ2

A1
; (c,f) the fitted branching fraction BSig. w̃fr max restricts the fit range to

candidates with w̃ < w̃fr max. The upper row shows the fitted values for the nominal fit using first-order
polynomials for the w̃ dependence of y (y = k, ∆µExp, ξ, α), and the lower row shows the fitted values
using constants for the four shape parameters. All fit results are stable within their statistical uncertainties.

FExp (∆m, cos θBY, w̃) is to repeat the nominal fit with q1(k), q1(∆µExp), q1(ξ) and q1(α) fixed to zero,
allowing only for constant ∆m and cos θBY shape parameters. Half of the deviations between the
fitted x (x = V, ρ2

A1
,BSig) and its value from the nominal fit are taken as systematic uncertainty

on x (see table 7.3).

Limited w̃ Range
This simplification of the nominal fit does not only estimate uncertainties. It is also interesting to
compare the results of this simplified fit with the results of the nominal fit after limiting the w̃ fit
range. This is shown in figures 7.6 and 7.7. If one limits the w̃ fit range by a maximal allowed w̃
value (w̃ < w̃frmax) then the fitted values of x (x = V, ρ2

A1
,BSig) are stable as a function of w̃frmax

within their statistical uncertainties. But if one limits the w̃ fit range by a minimal allowed w̃
value (w̃ > w̃frmin) then the fitted values of x are not stable as a function of w̃frmin. However, the
w̃ dependence of the fitted values of x is drastically reduced when using constants for the shape
parameter y instead of using polynomials (y = k, ∆µExp, ξ, α). This is a good reason for using
the difference between the two fits (y modeled by w̃ independent constants, and y modeled by
polynomials) as systematic uncertainty on V , ρ2

A1
and BSig.

7.5 Other Systematic Uncertainties

7.5.1 Branching Fractions

The signal reconstruction is performed using only one decay channel for each intermediate state
(see equation 4.1). Therefore, BSig and V 2 are proportional to the used branching fractions of
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Figure 7.7: As a function of a minimal w̃ are shown: (a,d) the fitted value of F (1)|Vcb|; (b,e) the fitted form
factor parameter ρ2

A1
; (c,f) the fitted branching fraction BSig. w̃fr min restricts the fit range to candidates

with w̃ > w̃fr min. The upper row shows the fitted values for the nominal fit using first-order polynomials for
the w̃ dependence of y (y = k, ∆µExp, ξ, α), and the lower row shows the fitted values using constants for
the four shape parameters. In contrast to reducing the w̃ fit-range by a maximal allowed w̃ value (see figure
7.6), the results presented in this figure are stable as a function of w̃fr min for the fits shown in the lower plots
but not for the fits shown in the upper plots.

these channels (see equation C.1). Since a drift of these branching fractions with w̃ is not possible
(branching fractions are constant numbers, independent to w̃) the uncertainties on these branching
fractions propagate only to V and BSig but not to ρ2

A1
. The uncertainties are listed in table

7.3. The largest contribution comes from the decay D∗0 → D0π0 which is nearly three times of
the uncertainty coming from the decay D0 → K−π+. The uncertainty of B

(
π0 → γγ

)
can be

neglected.

7.5.2 Number of Charged B Meson Pairs

In order to determine the values of V and BSig it is not enough to know how many Y candidates
have bee correctly reconstructed but one also needs to know NBc ,the number of charged B mesons
in the data sample. NData

B+B− , the number of charged B meson pairs in the data sample is given by

NData
B+B− = 2NBc

= B
(
Υ (4S) → B+B−)NData

BB
(7.6)

where NData
BB

is the number of neutral and charged B meson pairs in the data sample. NData
BB

enters
the analysis in formula 5.12 and B (Υ (4S) → B+B−) enters the analysis in formula C.1. Both
contributions are briefly commented in the following two paragraphs.

B
(
Υ (4S) → B+B−)

The discussion of B (Υ (4S) → B+B−) is completely the same as in 7.5.1. The uncertainties resulting
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from B (Υ (4S) → B+B−) are listed in table 7.3.

B Counting
The total number of B meson pairs (NData

BB
) is determined as already mentioned in section 4.1. The

basic idea is to subtract the luminosity scaled number of loosely selected multi-hadron events in
subsamples of on-peak and off-peak data. The BABAR database-tool BbkLumi [42] reports

NData
BB

= (226.03± 0.08± 2.49) 106 (7.7)

where the first uncertainty is statistical and the second one systematic. Adding the two uncertainties
in quadrature gives the total uncertainty, ∆(NData

BB
)/NData

BB
= 1.1%. The affect on the result is

∆(BSig)/BSig = 1.1% and ∆(V )/V = 0.6%. There is no resulting uncertainty on the form factor
parameter ρ2

A1
because NData

BB
scales the entire number of observed events, a drift of NData

BB
with w̃

is not expected.

7.5.3 B Lifetime

The true B life time (τB+) is needed in the translation C.1. Its uncertainty propagates to the fitted
value of V but it has no influence on BSig. The used value for τB+ is stated by the PDG [8] with

τB+ = (1.638± 0.011) 10−12s (7.8)

The resulting uncertainty on V is ∆(V )/V = 0.3%

7.5.4 e+e− → cc Events

In the nominal fit, the number of Y candidates from e+e− → cc events is fixed to a number obtained
from off-peak data (see equation 5.20). The number measured in off-peak data has been scaled
by the luminosity ratio between on-peak and off-peak data. In addition, there is a correction due
to the different cross sections at the different center-of-mass energies (off-peak data: 10.54 GeV/c2,
on-peak data: 10.58 GeV/c2).

Luminosity Scaling
The number of Y candidates reconstructed and selected in one w̃ bin in off-peak data is small3

and has a statistical uncertainty of about 12%. But the scaling factor to the on-peak data is about
13. That means statistical fluctuations could become important. The statistical uncertainty on
the numbers of expected Y candidates, NExp

i 23 and NExp
i 24 , is approximately given by (compare with

equation 5.20)

∆NExp
ij = kij ∆

(
4∑

r=1

N cc off,r
i

Lon,r

Loff,r

)

≈ kij
Lon, tot

Loff, tot
∆

(
4∑

r=1

N cc off,r
i

)
= kij

=∆Ncc Exp
i︷ ︸︸ ︷

Lon, tot

Loff, tot

√∑4

r=1
N cc off,r

i = kij ∆N ccExp
i

(j = 23, 24; i = 1, . . . , 10),

(7.9)

3numbers from the first to the last w̃ bin: 76, 93, 72, 68, 57, 51, 64, 71, 97, 220

112



7.5. Other Systematic Uncertainties

3 10| 
cb

F(1)|V
35.80 35.85 35.90

 / 
bi

n
fit

N

5

10

(a)

2
1A

ρ
1.075 1.080 1.085 1.090

 / 
bi

n
fit

N

5

10

15
(b)

 [%]sigB
5.600 5.605 5.610

 / 
bi

n
fit

N

0

5

10

15 (c)

3 10| 
cb

F(1)|V
35.80 35.85 35.90

<V
]

fit
  [

V
fit

N

0

50

100

V∆2

68%

(d)

2
1A

ρ
1.075 1.080 1.085 1.090

] 1
A2 ρ<

 fi
t

1
A2 ρ

  [
fit

N

0

50

100

1A
2ρ∆2

68%

(e)

 [%]sigB
5.600 5.605 5.610

]
si

g
<B

si
g 

fit
  [

B
fit

N

0

50

100

sig
B∆2

68%

(f)

Figure 7.8: Shown are the results of 100 fits where each fit was performed with a varied number of cc
events (N ′Exp

i 23 and N ′Exp
i 24 , see equation 7.10). The upper row shows the fitted values. The lower row shows

the cumulative distributions of the 100 fits. It also illustrates how the uncertainties are determined.

where kij is an abbreviation for
NRMC

ij

NRMC
i 23 +NRMC

i 24

σon

σoff . To check for uncertainties on the fitted values

of V , ρ2
A1

and BSig the fit has been repeated 100 times. Each time the numbers of expected Y

candidates, NExp
i 23 and NExp

i 24 , are replaced by N ′Exp
i 23 and N ′Exp

i 24 ,

NExp
ij 7→ N ′Exp

ij = NExp
ij + kijGi (j = 23, 24; i = 1, . . . , 10), (7.10)

where Gi are ten random numbers basing on a Gauss distribution with mean µ = 0 and standard
deviation σ = ∆N ccExp

i . The results of the hundred fits are shown in figure 7.8. The systematic
uncertainty ∆x (x = V, ρ2

A1
,BSig) is determined by ∆x = (x84 − x16)/2, where xi are the 100

fitted values of x after sorting them (xi < xi+1 with i = 1, . . . , 99). The resulting uncertainties are
∆(V )/V = 0.1%, ∆(ρ2

A1
)/ρ2

A1
= 0.4% and ∆(BSig)/BSig = 0.03%.

Number of Generated D∗0 Mesons
As can bee seen in equation 5.20, the ratio between Y candidates with correctly reconstructed D∗0

mesons and Y candidates with wrongly reconstructed D∗0 mesons is taken from the MC. This has
been done due to the low statistic of the off-peak data in the interesting kinematic range. What
is the uncertainty on the fitted value of x (x = V, ρ2

A1
,BSig) due to taking this ratio from MC? If

there is a deviation between the number of generated D∗0 mesons in simulation and data then this
deviation contributes to the systematic uncertainties of the fitted parameters. An overlay of the
∆m distribution for data and MC is shown in figure 7.9. To check the influence of the ratio the fit
has been repeated two times, one time with a number of Y candidates with correctly reconstructed
D∗0 meson scaled by a factor 1.1 (NRMC

i 23 7→ 1.1 ·NRMC
i 23 ), and a second time with a scaling factor

0.9 (NRMC
i 23 7→ 0.9 · NRMC

i 23 ). The deviation from the fitted values of the nominal fit are taken as
systematic uncertainties: ∆(V )/V = 0.2%, ∆(ρ2

A1
)/ρ2

A1
= 0.7% and ∆(BSig)/BSig = 0.01%. The

deviations using a scaling of 1.1 have the same absolute values like the deviations using a scaling
of 0.9, but they have opposite sign. The performed variation of the ratio by ±10% leads to a very
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Figure 7.9: Shown is the ∆m distribution of all reconstructed Y candidates for 1.0 < w̃ < w̃max. The
histograms origin from e+e− → cc MC events (open histogram: correctly reconstructed D∗0; hatched
histogram: no correctly reconstructed D∗0). They are overlayed on the off-peak data (red dots) which has
been scaled to the number of e+e− → cc MC events using the luminosity of the off-peak data and the cross
section σ(e+e− → cc) = 1.3 nb. If there is a deviation between the number of generated D∗0 mesons in
simulation and data then this deviation contributes to the systematic uncertainties of the fitted parameters.
Due to the low statistics of off-peak data it is difficult to say (i) if there is a deviation between simulation
and data and (ii) how big this deviation is. (Error bars are statistical only.)

conservative uncertainty estimation. However, the procedure is suitable since the ratio is only a
source of minor contribution to the final uncertainty.

7.6 Additional Cross Checks

Alternative π0 Selector
As a further check, the entire analysis has been repeated using the pi0SoftLoose selector instead
of the pi0SoftDefaultMass selector. The only difference between both selectors is the looser se-
lection criterion on the γγ mass (mγγ) required by the pi0SoftLoose selector (0.100 GeV/c2 <
mγγ < 0.160 GeV/c2 instead of 0.115 GeV/c2 < mγγ < 0.150 GeV/c2). The parameter values of the
parametrization Rπ0 (equation 4.15) were replaced according to the selector replacement [61]:

a = 0.9735 and b = 6.236 · 10−3. (7.11)

The result of the analysis remains unchanged when using the pi0SoftLoose selector instead of the
pi0SoftDefaultMass selector.

Multiple Candidate Selection
In case of multiple candidate-groups in the event the candidate group with the best D0 mass is

selected and the others are rejected (see section 4.5.3). To check whether this selection of a best
candidate group introduces an uncertainty in the analysis the entire analysis has been repeated
selecting a random candidate-group instead of the candidate group with the best D0 mass. The fit
result remains unchanged.
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Table 7.3: The table gives a summary of all systematic uncertainties on F (1)|Vcb|, ρ2
A1

and
B
(
B− → D∗0e−νe

)
(= BSig). All uncertainties are given as numbers relative to the fitted values. The

first block of systematic uncertainties lists the analysis-internal contributions, the second block lists the
analysis-external contributions.

Category ∆(F (1)|Vcb|)
F (1)|Vcb| [%]

∆ρ2
A1

ρ2
A1

[%] ∆BSig

BSig
[%]

total systematic analysis-internal 3.2 4.8 4.4
tracking efficiency (no drift with w̃) 1.2 - 2.4
drift of tracking efficiency with w̃ 0.3 0.5 0.2
PID efficiency (e±) 0.7 0.2 1.6
PID efficiency (K±) 0.6 2.0 <0.1
π0 reconstruction efficiency (no drift with w̃) 1.5 - 3.0
drift of π0 reconstruction efficiency with w̃ 2.1 3.5 0.9
∆m distribution of D∗∗ background 0.1 0.1 0.2
w̃ dependence of shape parameters 1.0 2.5 0.6
number of BB events 0.6 - 1.1
luminosity scaling of off-peak data 0.1 0.4 -

total systematic analysis-external 2.7 6.3 6.1
R1(1) and R2(1) 0.4 6.2 3.0
branching fractions of D∗∗ background 0.3 0.7 0.3
number of generated D∗0 mesons in cc events 0.2 0.7 -
B (Υ (4S) → B+B−) 0.8 - 1.6
B
(
D∗0 → D0π0

)
2.3 - 4.7

B
(
D0 → K−π+

)
0.9 - 1.8

B life time 0.3 - -

total systematic 4.2 7.9 7.5
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Correlated Background
In the nominal fit the amount of correlated background is fixed to the MC expectation. (The scalers
Si Cor are fixed to one in equation 5.50.) In principle, this is a source of systematic uncertainty
on the fitted values. However, since the fraction of correlated background candidates within the
candidates with correctly reconstructed D∗0 meson is very small (1.0%. . . 1.5%) the influence of
correlated background to the fitted values must be very small too. The nominal fit has been
repeated two times, one time with Si Cor = 0.67 and a second time with Si Cor = 1.5. The relative
deviations from the results obtained with Si Cor = 1.0 are smaller than 0.1%.

MINOS
To get more confidence to the obtained values the minimization of the fit procedure has been
checked by using the MINOS algorithm also provided by the MINUIT package [82]. As described
in [82] the MINOS algorithm provides a much more reliable way to estimate errors on parameters
of the fitted function, but it needs much more computing time. The best values of V and ρ2

found by MIGRAD remain unchanged after having used MINOS. In a good approximation the
MINOS-errors on V and ρ2 are symmetric. The parabolic errors given by the MINOS algorithm
(∆V = 0.48,∆(ρ2) = 0.043) are somewhat smaller than the errors given by the HESSE algorithm
(∆V = 0.51,∆(ρ2) = 0.046).

7.7 Systematic Correlation

The aim of this subsection is to give a value for the total systematic correlation %sys between V
and ρ2

A1
. For a correct determination of %sys one would need to determine the correlations %sysi

(i = 1, . . . , 17) of each of the seventeen contributions listed in table 7.3. This would give an
additional column of correlations between V and ρ2

A1
in this table. However, the determination

of these correlations is very complex. It is not enough to determine σV i and σρi, the individual
systematic uncertainties on V and ρ2

A1
. One also needs to determine the shift of the mean value of

the one parameter (say V ) when fixing the other (say ρ2
A1

) at various values.
An approximation for the calculation of %sys is given in the following lines. The covariance

matrices Ci of the individual contributions listed in table 7.3 have to be added to obtain the total
systematic covariance matrix C,

C =
∑

i

Ci (7.12)

with

C =
(

σ2
V %sys σV σρ

%sys σV σρ σ2
ρ

)
Ci =

(
σ2

V i %sysi σV i σρi

%sysi σV i σρi σ2
ρi

)
(7.13)

and

σ2
V =

∑
i

σ2
V i σ2

ρ =
∑

i

σ2
ρi. (7.14)

Therefore the total systematic correlation %sys is given by

%sys =
∑

i %sysi σV i σρi

σV σρ
. (7.15)
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7.7. Systematic Correlation

Let us regard the sum in the numerator of the latter equation. For all summands with σρi = 0 the
value of %sysi does not influence this numerator.4 For all summands with σρi 6= 0 one can make the
reasonable assumption %sysi = 1. This gives the value %sys = 0.43.

Another possibility to extract the systematic correlation %sys is to exploit the total systematic
uncertainty σB on the branching fraction BSig. Since the branching fraction is a function of V and
ρ2

A1
(see equation 2.52) the uncertainty on BSig can be expressed by

σ2
B =

(
∂BSig

∂V

)2

σ2
V +

(
∂BSig

∂ρ2
A1

)2

σ2
ρ + 2

(
∂BSig

∂ρ2
A1

)(
∂BSig

∂V

)
%sysσV σρ. (7.16)

Because all terms except %sys are known from the last row of table 7.3 and from equation 2.52 one
can calculate %sys by resolving the equation 7.16 for %sys,

%sys =
σ2
B −

(
∂BSig

∂V

)2

σ2
V −

(
∂BSig

∂ρ2
A1

)2

σ2
ρ

2
(

∂BSig

∂V

)(
∂BSig

∂ρ2
A1

)
σV σρ

. (7.17)

This yields a value of %sys = 0.45 which is close to 0.43, the value of the approximation using
%sysi = 1. Since %sys = 0.45 does not need this assumption it is used as systematic correlation
between V and ρ2

A1
.

4In fact, the ith correlation is not defined if σρi = 0.
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Chapter 8

Conclusion

8.1 Summary of the Analysis Method

The Standard Model of Particle Physics (SM) summarizes the present-day knowledge of funda-
mental particles and their interactions. It is a very successful model used as starting point of many
predictions that have been confirmed in experiments of the last decades.

One of the experiments checking the SM predictions is the BABAR experiment whose detector
is situated at the PEP-II storage rings at the Stanford Linear Accelerator Center in California.
One of its major tasks is to perform measurements which give constraints to the SM parameters
defining the CKM matrix. The high statistic data sample of pairs of B meson decays collected by
the BABAR detector allows for very precise measurements which in turn gives a high sensitivity to
the consistency between measurements and SM predictions.

The measurement of the decay B− → D∗0e−νe does not only give a value of the CKM matrix
element |Vcb|. It also gives constraints for the description of hadrons, namely the form factor
parameter ρ2

A1
. In addition, the measurement of the branching fraction B

(
B− → D∗0e−νe

)
is

possible. All of this three numbers are determined in this analysis which is briefly summarized in
the following lines.

The analysis is based on a data sample of 226 million B meson pairs whose decays were recorded
by the BABAR detector. It is divided into the following two steps:

1. Reconstruction of B− → D∗0e−νe decays defining a sample of possible signal candidates,

2. Description of this sample by the result of a fit of an expectation function to this sample.

The main idea in the first part is the application of a set of selection criteria enhancing the fraction
of correctly reconstructed B− → D∗0e−νe decays. Of high importance are the clean electron and
kaon identification provided by the BABAR detector. The second step has two tasks. On the one
hand it contains the determination of the background fraction in the sample of reconstructed signal
candidates. This is done by exploiting the separation power of the two variables ∆m and cos θBY.
On the other hand it also contains the determination of the product F (1)|Vcb| and the form factor
parameter ρ2

A1
, where F (w|ρ2

A1
) is a form factor as a function of the relativistic boost w of the D∗0

meson in the B rest frame. The sensitivity on ρ2
A1

is given by the variable w̃ estimating the true
value of w. The branching fraction B

(
B− → D∗0e−νe

)
is directly determined from the obtained

values of F (1)|Vcb| and ρ2
A1

by an integration of dΓ/dw over the allowed values of w.
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8.2. Results

8.2 Results

The result depends on a set of input parameters whose values are given by [8, 33]:

B
(
Υ (4S) → B+B−) = (50.6± 0.8)%

B
(
D∗0 → D0π0

)
= (61.9± 2.9)%

B
(
D0 → K−π+

)
= (3.80± 0.07)%

B
(
π0 → γγ

)
= (98.798± 0.032)%

τB+ = (1.638± 0.011) ps
R1 = 1.396± 0.075
R2 = 0.885± 0.047

(8.1)

When using this set of input parameters the analysis yields

F (1)|Vcb| = (35.8± 0.5± 1.1± 1.0) · 10−3

ρ2
A1

= (1.08± 0.05± 0.05± 0.07)

B
(
B− → D∗0e−νe

)
= (5.60± 0.08± 0.25± 0.34)%,

(8.2)

where the uncertainties are statistical, analysis-internal systematic and analysis-external system-
atic. The correlations from the statistical and the systematic covariance matrix between F (1)|Vcb|
and ρ2

A1
are found to be

%stat = 0.86 and
%sys = 0.45,

(8.3)

respectively. The addition of the covariance matrices gives a total correlation of

% = 0.51 (8.4)

between F (1)|Vcb| and ρ2
A1

.

Using F (1) = 0.914 ± 0.026 as stated in equation 2.59, the measured value of F (1)|Vcb| can be
translated into a value for the CKM matrix element |Vcb|,

|Vcb| = (39.2± 0.5± 1.6± 1.1) · 10−3, (8.5)

where the uncertainties are statistical, total experimental systematic and total theoretical system-
atic, respectively.

8.3 Comparison with other Measurements

Interpretation of ρ2
A1

As mentioned before, the form factor ratios R1 and R2 are very important input parameters for this
analysis. The two numbers were taken from a measurement [33] using reconstructed B0 → D∗+e−νe

decays. The authors of [33] did not only determine R1 and R2, simultaneously they also determined
ρ2

A1
.
By taking R1 and R2 from [33] one assumes that the decays B0 → D∗+e−νe and B− → D∗0e−νe

are governed by one and the same theory (described in section 2.2). This assumption is motivated
by the isospin symmetry between the two decays. Since the value of ρ2

A1
stated in equation 8.2

is compatible with the value from [33] (ρ2
A1

= 1.15 ± 0.07), the assumption that the same theory
applies to both decays is confirmed.
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Figure 8.1: Shown is a comparison between F (1)|Vcb| and ρ2
A1

with measurements obtained by ALEPH
[87], OPAL [88], DELPHI [89, 90], CLEO [74], BABAR [73] and BELLE [91]. All measurements have been
rescaled to a common set of input parameters (see equation 8.1) by the HFAG [85]. The diagonal lines are
lines of constant branching fraction corresponding to the result of this analysis (solid: central value, dashed:
±1σ, dotted: ±2σ).

F (1)|Vcb| and ρ2
A1

To compare the results of different measurements with each other one needs to translate these
different measurements to one common set of input parameters. The Heavy Flavor Averaging
Group (HFAG) [85] performs this translation for various measurements of (F (1)|Vcb|, ρ2

A1
). The

result of this translation for the parameter set called Winter 20061 is shown in figure 8.1. Within
the uncertainties the values obtained in this analysis agree with the other measurements. Only the
CLEO measurement [74] differs considerably.

It is very important to note that nearly all the values shown in the comparison plot rely on
measurements of the decay B0 → D∗+e−νe. Only the CLEO experiment used both channels
together, B0 → D∗+e−νe and B− → D∗0e−νe.2

The predominant uncertainty on ρ2
A1

comes from the uncertainty of the form factor ratios which
could be improved recently [33, 86]. The measurements compared to the results of this analysis
used R1 R2 input values with larger uncertainties, thus their error ellipses in figure 8.1 are broader.

1The parameter set Winter 2006 is identical to the parameter set used in this analysis (see equations 8.1).
2The CLEO collaborators found nearly equal results when analyzing B0 → D∗+e−νe decays and B− → D∗0e−νe

decays separately.
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4 5 6 74 5 6 7

ARGUS

CLEO

Prediction

This Analysis

B
(
B− → D∗0e−νe

)
[%]

Figure 8.2: Comparison of the branching fraction B
(
B− → D∗0e−νe

)
with two other measurements [93, 92]

and a prediction from an average value of B
(
B0 → D∗+e−νe

)
[8] (see text). The inner error bars are

statistical and the outer are statistical and systematic combined. (Instead of the original ARGUS value
reported in [93] an rescaled value [8] is shown.)

B
(
B− → D∗0e−νe

)
The branching fraction B

(
B− → D∗0e−νe

)
has been measured before by the ARGUS collabora-

tion [93] and the CLEO collaboration [92]. In addition it can be predicted from the averaged
branching fraction B

(
B0 → D∗+e−νe

)
= 0.0520 ± 0.0024 [8] exploiting the isospin symmetry

(Γ(B− → D∗0e−νe) = Γ(B0 → D∗+e−νe)) and the B lifetime ratio (τB+/τB0 = 1.071 ± 0.009)
[8]. Figure 8.2 compares these three values to the branching fraction measured in this analysis.
The result of this analysis and the prediction are in good agreement. This agreement to the mea-
surements in the channel B0 → D∗+e−νe is also illustrated by the lines of constant branching
fraction in figure 8.1.

Assuming consistency between the three measurements shown in figure 8.1 one can calculate
the weighted mean B(B− → D∗0e−νe) which is in good approximation the mean between this
measurement and the measurement of CLEO,

B(B− → D∗0e−νe) = (6.02± 0.48)%. (8.6)

However, the correct averaging procedure has also to take into account the correlation between the
systematic uncertainties.
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Appendix A

Reconstruction and Selection

A.1 Reconstruction and Selection in the τ analysis

The authors of the τ analysis [61] apply selection criteria which support the accumulation of
e+e− → τ+τ− events. Roughly spoken, they select events with exactly two oppositely charged
tracks where one of these tracks is very consistent with an electron hypothesis1 (e track) and the
other track is treated by the pion hypothesis (π track). Additionally taking into account the EMC
bumps, each selected event is assigned to one of the following two categories:

1. If there are no (unmatched) EMC bumps in the event then the event is assigned to the τ → π
category.

2. An event is assigned to the τ → ρ category if it contains a π0 candidate with very loose
selection criteria (mass lower than 0.250GeV/c2, momentum greater than 0.1 GeV/c). If there
are additional EMC bumps beside the one2 or two bumps necessary for the π0 reconstruction
then the event is not selected. The event also remains unselected if the reconstructed mass
(mππ0) of the π track and the π0 does not satisfy 0.55 GeV/c2 < mππ0 < 1.00 GeV/c2. This
criteria supports the ’τ → ρν, ρ → ππ0’ hypothesis of the π-track associated τ decay.

There are some further selection criteria applied in the τ analysis, all aiming at purer samples of
events with τ → ρν decays and τ → πν decays. Important to note is that only one PID selection
criteria has been applied to the π tracks: The energy-momentum-ratio E/p oft the charged π
candidate has to be lower than 0.8 to suppress τ → eνν decays3 . Waiving additional PID selection
criteria for the π tracks reduces the final systematic uncertainties. Consequently, in the τ → π
category there are more events then only τ → πν events included, e.g. there are also the similar
τ → Kν and τ → µνν events included. But also events that should have been sorted into the
category 2 contribute to the category 1, e.g. the π0 of the ρ → ππ0 decay could be missed
entirely as a function of EMC acceptance. To complete the thoughts, the events contributing to
the τ → ρ category contain not only τ → ρν decays but also, e.g. τ → K∗ν, K∗ → ππ0 decays, or

1The electron is selected by PidLHElectrons selector.
2The τ analysis takes also into account so-called merged π0 candidates reconstructed from only one single EMC

bump. Within the laboratory system, the two photons of a high-energetic π0 meson mostly form a small angle
leading to non-separable electromagnetic showers in the EMC, leading to one single bump after the reconstruction.
Due to coming from D∗0 mesons, the π0 mesons reconstructed in the semileptonic analysis are very low-energetic
and produce two separate bumps. Thus, merged π0 mesons are not interesting at this point.

3In this case the ’π track’ was caused by the electron.
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A.2. Values of the Variable cos θBY for Non-Signal Decays

τ → a1ν, a1 → ππ0π0 decays where one of the neutral a1-daughters flew into an EMC acceptance
hole. Summarizing, if one would be more correct then equation 4.24 would have to be replaced by

Nρ

Nπ
∝

επ0

[
επB (τ → ρν) + εKB

(
τ→K∗ν,
K∗→Kπ

)
+ επ(1− επ0)B

(
τ→a1ν
a1→ππ0π0

)]
εeB (τ → eνν)

[επB (τ → πν) + εµB (τ → µνν) + εKB (τ → Kν) + επ(1− επ0)B (τ → ρν)] εeB (τ → eνν)
,

(A.1)
but even that would only be an approximation.

After the events have been assigned to τ → ρ and τ → π categories, two corrections are applied
(for more detailed description see [61]):

Low-Energy Background Photons There are events which should have been assigned to the
τ → π category but due to the presence of background photons the event was assigned to
the τ → ρ category. The following correction is performed: Events with exactly one bump
are shifted from the τ → ρ category into the τ → π category if the bump energy is less than
0.1 GeV. Events with two bumps are shifted from the τ → ρ category into the τ → π category
if the sum of the two bump energies is less than 0.135 GeV.

Hadronic Split-offs A hadron (e.g. a pion) interacts with the EMC material by electromagnetic
and hadronic interaction processes. As a result of the hadronic interaction, secondary hadrons
can be generated. If these secondary particles have (i) a large enough life time and (ii) a very
small probability to deposit energy in the EMC, then they can produce second EMC cluster,
separated from the primary EMC cluster. Such a cluster is called hadronic split-off. The τ
analysis performs a correction due to these split-offs.

A.2 Values of the Variable cos θBY for Non-Signal Decays

Assume that one reconstructs the true decay B → D∗0Xe−νe in the channel B− → D∗0e−νe and
the reconstructed D∗0 (electron) is matched to the true D∗0 (electron). In other words, the D∗0

meson and the electron come from the same true B meson but the neutrino is not the only non-
reconstructed particle. What happens to the value of cos θBY? Let’s start from four-momentum
conservation of the true decay,

pB = pν + pY + pX . (A.2)

The equation can be transformed like this (The four four-momentum vectors are taken from the
truth-side of the event.):

pB − pY = pν + pX (A.3a)

m2
B + m2

Y − 2EBEY + 2~pB~pY = m2
ν + m2

X + 2EνEX − 2~pν~pX (A.3b)

−m2
B −m2

y + 2EBEY = −m2
ν −m2

X − 2EνEX + 2~pν~pX + 2~pB~pY (A.3c)

−m2
B −m2

Y + 2EBEY

2 |~pB| |~pY |︸ ︷︷ ︸
=(cos θBY)rec

= −
m2

X + 2Eν(EX − pX cos �(ν, X))
2 |~pB| |~pY |︸ ︷︷ ︸

=∆X

+
2~pB~pY

2 |~pB| |~pY |︸ ︷︷ ︸
=(cos θBY)true

(A.3d)

(cos θBY)rec = ∆X + (cos θBY)true (A.3e)

The term (cos θBY)true must have values between −1 and +1. Due to pX ≤ EX the first term on
the right side always satisfies ∆X ≤ 0. Now it should be clear: If a particle X is missing in the
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Appendix A. Reconstruction and Selection

reconstruction of the B decay then the reconstructed value of cos θBY (= (cos θBY)rec) can have
values below −1 but not above +1. For low-energetic photons (X = γ) additionally created in the
B decay the the effect is not so drastic. But for X = π the distribution of = (cos θBY)rec gets a long
tail to values below −1. This is helpful to discriminate against decays like B → D∗∗eν,D∗∗ → D∗0π.
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Appendix B

Fit Method

B.1 Correlations between ∆m and cos θBY

Table B.1: The table lists the correlation for each of the 24 candidate classes defined in table 5.1. The
correlations are determined from the selected MC candidates. They are given in percent and as a function
of w̃. The uncertainties are calculated using a method given in [78]. For candidate classes belonging to true
signal decays the correlation trends to positive values, as expected. In general, the correlations are very
small and the approximation of uncorrelated ∆m cos θBY distributions is a good one.

j Candidate Class 1.00 < w̃ < 1.15 1.15 < w̃ < 1.30 1.30 < w̃ < 1.51
1 Sig 0.99 ± 0.49 0.25 ± 0.41 0.08 ± 0.45
2 D∗∗eν (1) -0.81 ± 1.08 0.86 ± 1.11 2.36 ± 1.24
3 Correlated 2.38 ± 3.34 -4.55 ± 3.58 0.48 ± 3.45
4 Uncorrelated -0.85 ± 1.14 1.35 ± 2.05 2.47 ± 3.67
5 SemiSig (1) 0.21 ± 0.64 0.62 ± 0.52 0.92 ± 0.57
6 SemiSig (2) 1.07 ± 0.77 0.77 ± 0.69 1.17 ± 0.8
7 SemiSig (3) 1.32 ± 0.5 0.42 ± 0.48 0.58 ± 0.62
8 SemiSig (4) 1.59 ± 2.58 1.41 ± 2.88 5.79 ± 3.47
9 SigLike (1) 5.76 ± 3.73 -8.22 ± 3.34 -4.94 ± 4.2
10 SigLike (2) 2.55 ± 3.8 3.64 ± 3.42 7.26 ± 4.49
11 SigLike (3) 0.38 ± 0.64 0.38 ± 0.62 -0.35 ± 0.8
12 D∗±eν 1.09 ± 0.48 0.63 ± 0.46 -0.05 ± 0.6
13 D0eν(1) -1.24 ± 1.66 0.88 ± 0.88 -3.5 ± 0.65
14 D0eν(2) -1.07 ± 0.99 -0.4 ± 1.5 -2.29 ± 2.11
15 D0πeν 0.84 ± 0.96 2.6 ± 1.4 -0.05 ± 2.78
16 D∗∗eν(2) 0.37 ± 0.51 0.48 ± 0.57 1.33 ± 0.7
17 CombD∗0 (1) -0.61 ± 1.56 2.41 ± 1.74 -1.15 ± 1.64
18 CombD∗0 (2) -1.68 ± 1.11 4.52 ± 3.11 -14.21 ± 6.18
19 CombD∗0 (3) -1.03 ± 0.42 -0.67 ± 1.02 3.48 ± 2.23
20 CombD∗0 (4) -2.53 ± 2.24 -1.76 ± 2.77 0.43 ± 3.3
21 CombD∗0 (5) 2.96 ± 1.02 9.08 ± 1.36 8.88 ± 2.04
22 CombD∗0 (6) -0.6 ± 0.43 1.83 ± 0.61 -0.16 ± 0.96
23 cc(peak) 7.33 ± 8.94 -0.85 ± 5.57 -0.11 ± 2.23
24 cc(flat) -2.84 ± 1.4 -1.84 ± 1.82 0.85 ± 1.25
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B.2 Quality Check for the Product Ansatz

In the figures of this appendix there are plots showing the quality of the product ansatz from
equation 5.8. For each of the 24 candidate classes there are two plots.

1. There is a deviation plot between two differently generated histograms of the ∆m-cos θBY-
distribution. The bins (a, b) of the first histogram are filled with Mab, the selected reweighted
MC events in bin (a, b). The bins (a, b) of the second histogram are filled with Iab, the integral
of
∑10

i=1 NRMC
ij P̂RMC

ij (∆m, cos θBY) over the (a, b)-bin range. The deviation plot shows the
quantity

Dab =
Mab − Iab

σMab

, (B.1)

where σMab
is the statistic uncertainty on Mab. About 95.5% of all bins should have a

deviation between −2 and 2. If there are regions where P̂RMC
ij is a bad description of the

selected candidates, then the colors of the deviation plot are more reddish (underestimation)
or more bluish (overestimation). If all colors are homogeneously distributed over the ∆m-
cos θBY-plane of the deviation plot then P̂RMC

ij is a well-describing function. In this case the
product ansatz from equation5.8 is a good ansatz.

2. The quantity shown in the first quality plot should be a deviation by chance. Therefore, the
histogramming of the various deviations Dab should result into a Gaussian distribution with
mean=0 and sigma=1. The second quality plot shows this Gaussian-expected distribution
together with the expected gauss function. Because the distribution is spoiled in case of low
statistics I require at least five candidates per bin. If there are less candidates in a bin then
the bin is merged with the next bins until there are five candidates.

The resulting 2 · 24 = 48 plots are shown in figures B.1 to B.8. Figure B.9 shows the two quality
plots for the sum of all 24 candidate classes.
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Figure B.1: From the top row to the bottom row there are plots for the candidate classes ’Sig’, ’D∗∗eν (1)’,
and ’Correlated’ (see table 5.1). The left plots show deviations Dab between the ∆m-cos θBY-distribution in
RMC and its description by PDFs. The right plots show the frequency distribution of the deviations from
the left plots. For more detailed description see page 126.
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Figure B.2: From the top row to the bottom row there are plots for the candidate classes ’Uncorrelated’,
’SemiSig (1)’, and ’SemiSig (2)’ (see table 5.1). The left plots show deviations Dab between the
∆m-cos θBY-distribution in RMC and its description by PDFs. The right plots show the frequency dis-
tribution of the deviations from the left plots. For more detailed description see page 126.
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Figure B.3: From the top row to the bottom row there are plots for the candidate classes ’SemiSig (3)’,
’SemiSig (4)’, and ’SigLike (1)’ (see table 5.1). The left plots show deviations Dab between the
∆m-cos θBY-distribution in RMC and its description by PDFs. The right plots show the frequency dis-
tribution of the deviations from the left plots. For more detailed description see page 126.
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Figure B.4: From the top row to the bottom row there are plots for the candidate classes
’SigLike (2)’, ’SigLike (3)’, and ’D∗±eν’ (see table 5.1). The left plots show deviations Dab between the
∆m-cos θBY-distribution in RMC and its description by PDFs. The right plots show the frequency distribu-
tion of the deviations from the left plots. For more detailed description see page 126.
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Figure B.5: From the top row to the bottom row there are plots for the candidate classes
’D0eν(1)’, ’D0eν(2)’, and ’D0πeν’ (see table 5.1). The left plots show deviations Dab between the
∆m-cos θBY-distribution in RMC and its description by PDFs. The right plots show the frequency dis-
tribution of the deviations from the left plots. For more detailed description see page 126.
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Figure B.6: From the top row to the bottom row there are plots for the candidate classes ’D∗∗eν(2)’,
’CombD∗0 (1)’, and ’CombD∗0 (2)’ (see table 5.1). The left plots show deviations Dab between the
∆m-cos θBY-distribution in RMC and its description by PDFs. The right plots show the frequency dis-
tribution of the deviations from the left plots. For more detailed description see page 126.
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Figure B.7: From the top row to the bottom row there are plots for the candidate classes ’CombD∗0 (3)’,
’CombD∗0 (4)’, and ’CombD∗0 (5)’ (see table 5.1). The left plots show deviations Dab between the
∆m-cos θBY-distribution in RMC and its description by PDFs. The right plots show the frequency dis-
tribution of the deviations from the left plots. For more detailed description see page 126.
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Figure B.8: From the top row to the bottom row there are plots for the candidate classes
’CombD∗0 (6)’, ’cc(peak)’, and ’cc(flat)’ (see table 5.1). The left plots show deviations Dab between the
∆m-cos θBY-distribution in RMC and its description by PDFs. The right plots show the frequency distribu-
tion of the deviations from the left plots. For more detailed description see page 126.
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Figure B.9: The left plot shows deviations Dab between the ∆m-cos θBY-distribution of all candidates in
RMC and its description by PDFs. The right plot shows the frequency distribution of the deviations from
the left plot. For more detailed description see page 126.
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Appendix C

Fit Result

C.1 Fitted Parameters of F Exp (∆m, cos θBY, w̃)

Table C.1 lists the values and the statistical uncertainties of all parameters of FExp (∆m, cos θBY, w̃)
determined by the fit. The listed values correspond to values of branching fractions and B life time
assumed in the BABAR MC simulation (see table C.2). Appendix C.2 shows how the fitted values
are translated to the currently best known values of analysis input parameters.

C.2 Translation of Fit Result from Simulation’s Parameters to
PDG Values

The expectation values NExp
i Sig (i = 1, . . . , 10) for the numbers of correctly reconstructed signal

candidates rely on input parameters of the BABARMC simulation. These parameters are listed in
table C.2. The input parameter in the simulation is indirect proportional to V 2 in case of branching
fractions, and it is direct proportional to V 2 in case of the B life time.

Thus, to translate the fitted value V from a value using the input parameters xBMC
i to a value

using the input parameters xPDG
i (x =one of the parameters listed in table C.2) one has to scale

the fitted value V in the following way

V 7−→ V ×

√√√√ τPDG
B+

τBMC
B+

∏
m

BBMC
m

BPDG
m

, (C.1)

where the modi in the product are m = Υ (4S) → B+B−, D∗0 → D0π0, D0 → K−π+, π0 → γγ.
The less interesting parameters Si Sig rel (i = 1, . . . , 10) have to be rescaled by the quadrature of the
number used to rescale V to obtain a correct value for NData

i Sig rel = Si Sig rel ·NExp
i Sig rel

C.3 Comparison Plots between Data and Fitted Function

Figures C.1, C.2 and C.3 contain comparison plots of ∆m and cos θBY distributions. Figure C.4
shows deviation plots between the fitted function and the data in the ∆m cos θBY plane.
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C.3. Comparison Plots between Data and Fitted Function

Table C.1: Fitted parameters of FExp (∆m, cos θBY, w̃) corresponding to analysis input parameters as
assumed in the BABAR MC simulation. The fitted parameters are translated as described in appendix C.2.

Parameter Value

F (1)|Vcb| · 103 36.32 ± 0.51
ρ2

A1
1.083 ± 0.046

q0(∆µExp)/(MeV/c2) 0.129 ± 0.019
q1(∆µExp)/(MeV/c2) -0.009 ± 0.071
q0(ξ) 1.083 ± 0.035
q1(ξ) 0.20 ± 0.12
q0(α) 0.010 ± 0.012
q1(α) -0.081 ± 0.048
q0(k) 0.9817 ± 0.0068
q1(k) -0.017 ± 0.027
S1 Sig rel 0.804 ± 0.027
S2 Sig rel 0.807 ± 0.019
S3 Sig rel 0.789 ± 0.017
S4 Sig rel 0.798 ± 0.019
S5 Sig rel 0.749 ± 0.021
S6 Sig rel 0.833 ± 0.027
S7 Sig rel 0.837 ± 0.033
S8 Sig rel 0.892 ± 0.041
S9 Sig rel 0.930 ± 0.049
S10 Sig rel 0.825 ± 0.060
S1 D∗∗ 1.068 ± 0.065
S2 D∗∗ 0.615 ± 0.046
S3 D∗∗ 0.707 ± 0.044
S4 D∗∗ 0.610 ± 0.047
S5 D∗∗ 0.675 ± 0.054

Parameter Value

S6 D∗∗ 0.534 ± 0.061
S7 D∗∗ 0.464 ± 0.078
S8 D∗∗ 0.389 ± 0.090
S9 D∗∗ 0.116 ± 0.099
S10 D∗∗ 0.37 ± 0.13
S1Uncor 0.81 ± 0.14
S2Uncor 1.23 ± 0.20
S3Uncor 1.32 ± 0.23
S4Uncor 1.74 ± 0.33
S5Uncor 1.94 ± 0.47
S6Uncor 2.73 ± 0.50
S7Uncor 1.38 ± 0.62
S8Uncor 1.28 ± 0.73
S1Comb D∗0 0.471 ± 0.022
S2 Comb D∗0 0.802 ± 0.030
S3 Comb D∗0 0.822 ± 0.035
S4 Comb D∗0 0.850 ± 0.042
S5 Comb D∗0 0.963 ± 0.051
S6 Comb D∗0 0.901 ± 0.061
S7 Comb D∗0 0.992 ± 0.079
S8 Comb D∗0 1.18 ± 0.11
S9 Comb D∗0 1.68 ± 0.15
S10 Comb D∗0 0.87 ± 0.25
SD0eν 0.539 ± 0.029

Table C.2: The BABAR MC simulation (BMC) uses the input parameters listed in the second column. For
the final result the fitted values of F (1)|Vcb|, ρ2

A1
and BSig are translated to the currently best known values

of input parameters (PDG [8]).

Input Parameter BMC PDG [8]
B (Υ (4S) → B+B−) 50.0% (50.6± 0.8)%
B
(
D∗0 → D0π0

)
61.9% (61.9± 2.9)%

B
(
D0 → K−π+

)
3.83% (3.80± 0.07)%

B
(
π0 → γγ

)
98.8% (98.798± 0.032)%

τB+ 1.674 ps (1.638± 0.011) ps
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Figure C.1: The ∆m and the cos θBY distribution of the data (points) are compared to the distributions
modeled by the fitted function FExp (∆m, cos θBY, w̃) (stacked histograms, color code follows the classification
of equation 5.49). The subfigures show the distributions in the signal bands (b,e) and in the side bands
(a,c,d,f). The distributions are created using the lowest w̃ bin of the fit (1.00 < w̃ < 1.05).
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C.3. Comparison Plots between Data and Fitted Function
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Figure C.2: The ∆m and the cos θBY distribution of the data (points) are compared to the distributions
modeled by the fitted function FExp (∆m, cos θBY, w̃) (stacked histograms, color code follows the classification
of equation 5.49). The subfigures show the distributions in the signal bands (b,e) and in the side bands
(a,c,d,f). The distributions are created using the fifth w̃ bin of the fit (1.20 < w̃ < 1.25).
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Appendix C. Fit Result
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Figure C.3: The ∆m and the cos θBY distribution of the data (points) are compared to the distributions
modeled by the fitted function FExp (∆m, cos θBY, w̃) (stacked histograms, color code follows the classification
of equation 5.49). The subfigures show the distributions in the signal bands (b,e) and in the side bands
(a,c,d,f). The distributions are created using the highest w̃ bin of the fit (1.45 < w̃ < 1.51).
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C.3. Comparison Plots between Data and Fitted Function
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Figure C.4: The left plots show the bin-by-bin deviations Dab (see equation 6.7) between the fitted function
and the data in the ∆m cos θBY plane for (a) the first w̃ bin (1.00 < w̃ < 1.05), (b) the fifth w̃ bin
(1.20 < w̃ < 1.25) and (c) the tenth w̃ bin (1.45 < w̃ < 1.51). Since each color is homogeneously distributed
over the three planes the fit function is a good description of the data. The values of Dab shown in subfigure
(a) are filled into a histogram shown in (d). If a bin content Hab of the data histogram used to calculate
Dab is lower than 5 then the bin is merged with one of its neighbor bins until Hab ≥ 5 before the bin is filled
into the histogram shown in (d). Analogously, subfigures (e) and (f) are created from subfigures (b) and (c),
respectively. The shape of the right histograms is close to the expected shape (standard normal distribution
which is also plotted) which means that the fitted function describes the data well.
The big and the small rectangles in the left plots show the fit range and the approximate signal range.
The numbers shown in the left plots are the mean and the root mean square (RMS) of the Dab frequency
histogram.
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Appendix D

Sytematics

D.1 π0 Momentum Spectra in ten w̃ Bins
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Figure D.1: The plots show the π0 momentum spectra for Y candidates fully matched to a signal decay.
The plots show unweighted BABAR MC.
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D.1. π0 Momentum Spectra in ten w̃ Bins
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Figure D.2: The plots show the π0 momentum spectra for Y candidates fully matched to a signal decay.
The plots show unweighted BABAR MC.
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