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ABSTRACT 

Title of Dissertation: A SIMULTANEOUS MEASUREMENT OF THE 
BRANCHING FRACTIONS OF TEN B TO 
DOUBLE CHARM DECAYS 

 Chung Khim Lae, Doctor of Philosophy, 2006 

Directed By: Associate Professor Douglas Roberts 
Department of Physics 

This dissertation presents a simultaneous measurement of the branching fractions 

of ten B → D(*)D̄(*) decays. The measurements are derived from a sample of 2.32 × 108 

BB̄ pairs collected by the BABAR detector at the PEP-II B Factory located at Stanford 

Linear Accelerator Center. The branching fractions (×10–4) are: 

• −0.10 ± 0.44 ± 0.15 (< 0.59) for B0 → D0D̄0 

• 1.01 ± 1.07 ± 0.35 (< 2.92) for B0 → D*0D̄0 

• −1.31 ± 1.05 ± 0.41 (< 0.92) for B0 → D*0D̄*0 

• 2.81 ± 0.43 ± 0.45 for B0 → D+D− 

• 5.72 ± 0.64 ± 0.71 for B0 → D*+D− 

• 8.11 ± 0.57 ± 0.97 for B0 → D*+D*− 

• 3.76 ± 0.57 ± 0.45 for B− → D−D0 

• 3.56 ± 0.52 ± 0.39 for B− → D*−D0 

• 6.30 ± 1.32 ± 0.93 for B− → D−D*0 

• 8.14 ± 1.17 ± 1.11 for B− → D*−D*0 

   



   

The first uncertainty is statistical while the second is systematic. The number in 

parentheses is the 90% upper limit using the Feldman-Cousins method with systematic 

uncertainties taken into account. These measurements are consistent with the Standard 

Model predictions using the factorization assumption. 
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1 Introduction 

Since the dawn of civilization, man has wondered about the building blocks of 

nature: “Is the world made of some elementary particles that cannot be divided further?” 

“What are these particles and how do we build matter from them?” “Are there rules that 

govern the behavior of these particles?” For more than 2000 years, we have been 

pursuing the answers to these questions. Today, physicists have a picture of the 

fundamental world. This picture is called the Standard Model. 

In the following section, I will give a brief overview of the Standard Model, 

hopefully, in a manner a non-physicist will find it easy to understand. No mathematics is 

involved. This is mainly to introduce someone unfamiliar with particle physics the names 

and terms that we will use later. The reader can jump to Section 1.3 if desired. 

1.1 The Standard Model 

The Standard Model is a theory describing the fundamental particles and how 

they interact with one another. According to the Standard Model, all known matter are 

composites of particles called quarks (q) and leptons (l), whose interactions are governed 

by three types of forces called weak, electromagnetic and strong1. 

To give an example, consider the structure of an atom. The atom consists of 

electrons, which are leptons, orbiting a dense nucleus due to the electromagnetic force 

                                                 

1 The force gravity is not described by the Standard Model. Its strength is too weak compare to the other 

three forces and so it can be neglected in particle interactions. 
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between the electrons and the nucleus. The nucleus is made of protons and neutrons held 

together by the strong force, which overcomes the electromagnetic repulsion between the 

positively charged protons. Each proton or neutron is in turn made of three quarks. 

Altogether, there are six types of leptons: electron (e−), muon (µ−), tau (τ−) and 

their neutrino partners νe, νµ, ντ. The quarks also come in six flavors or types known as up 

(u), down (d), strange (s), charm (c), bottom (b) and top (t). These particles and their 

charges are summarized in Table 1.1. The lightest quarks and leptons, u, d, e− and νe, 

made up more than 90% of the ordinary matter that we can see in the universe. 

Quarks Charge (e) Leptons Charge (e) 

d, s, b −⅓ e−, µ−, τ− −1 

u, c, t +⅔ νe, νµ, ντ 0 

Table 1.1: The elementary particles of the Standard Model with their 

charges given in units of the proton’s charge. 

For every particle, the Standard Model says there is an anti-particle of the same 

mass but opposite charge. For example, the anti-particle of an electron is the positron, 

denoted as e+ [1]. Similarly, anti-µ− ≡ µ+ and anti-τ− ≡ τ+. For a quark or neutrino, its anti-

partner is denoted by an over-bar like ū . When a particle collides with its anti-particle, 

they annihilate to produce other particles. Although we do not see anti-matter in nature, 

its existence has been confirmed in experiments [2], [3]. 

Unlike leptons, quarks do not exist alone in nature. They always come in pairs or 

triplets. A quark will bind with an anti-quark to give a meson, or with two other quarks to 
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give a baryon. The opposite is true for an anti-quark. Collectively, mesons and baryons 

are called hadrons. A list of some hadrons that we will encounter is given in Table 1.2. 

Hadrons Quark Composition Charge (e) 

π+, π− ud̄ , dū  +1, −1 

π0 uū  − dd̄  0 

K+, K− us̄ , sū  +1, −1 

KS, KL ds̄  ± sd̄  0 

D+, D− cd̄ , dc̄  +1, −1 

D0, D̄0 cū , uc̄  0 

B+, B− ub̄ , bū  +1, −1 

B0, B̄0 db̄ , bd̄  0 

Υ(4S) bb̄ 0 

proton (p+) uud +1 

neutron (n0) udd 0 

Table 1.2: A list of common hadrons with their charges given in units of 

the proton’s charge. Each hadron’s charge is given by summing the 

charges of the quarks that made up the hadron, and using the fact that an 

anti-quark has an opposite charge to its quark partner. Note that π0, KS, KL 

and Υ(4S) are their own anti-particles. 

In the Standard Model, the quarks and leptons interact by exchanging particles. 

The exchange particle responsible for the electromagnetic force is the photon (γ), more 
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commonly known as light1. For the weak force, there are three exchange particles: W+, 

W− and Z0, also known as the weak bosons. W+ and W− are anti-particles of each other 

while Z0 and γ are anti-particles of themselves. For the strong force, the exchange 

particles are called gluons (g) which are exchanged by the quarks but not the leptons. 

Although the Standard Model is successful in predicting all the particles that we 

have observed in the laboratories so far, there are still some open questions that it cannot 

address. For one, it is unable to explain the great difference between matter and anti-

matter in our universe. From the Big Bang Theory, the universe should have started out 

with equal amounts of matter and anti-matter, but experimentally, we have determined 

that less than 0.01% of the present universe consists of anti-matter [4]. If the Big Bang 

Theory is correct2, why is there so much matter now? 

It turns out that a process has to occur during the early universe to create the 

matter and anti-matter imbalance. This process is called CP violation [5]. 

1.2 CP Violation 

To understand CP violation, we need to know two operations: charge conjugation 

(C) and parity inversion (P). C is an operation that turns a particle to its anti-particle or 

vice versa, and P is an operation that reverses the space coordinates x → −x. CP is then 

                                                 

1 In the world of elementary particles, light or electromagnetic radiation behaves like a particle. We call this 

particle a photon. 

2 We have strong reasons to believe that the Big Bang Theory is correct. Observations that support the 

theory are: 1) the Hubble expansion of the universe; 2) the cosmic microwave background; 3) the relative 

abundance of light elements; and 4) the formation and evolution of galaxies. 
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the combined operation of C and P. If the equations of motion (or physics) remain the 

same after an operation, the operation is said to be conserved and we call it a symmetry. 

If not, we say the operation is violated. 

It is known that the strong and electromagnetic forces both conserve C and P, but 

not the weak force. This came as a surprise to many physicists at the time parity violation 

was discovered in 1957 [6], [7], as it was expected that the weak force would conserve C 

and P just like the other forces1. It was then believed that the combined operation CP 

would instead be conserved by the weak force and be a symmetry of nature. However, 

this was proven wrong in 1964 [8]. To restore the symmetry, a third operation, conserved 

by both the strong and electromagnetic forces, was introduced. This operation changed 

the time coordinate t → −t and was called time-reversal (T). Today, it is believed that the 

combined operation CPT is a fundamental symmetry of nature. 

u, c, t

d, s, b

W−

 

Figure 1.1: Weak interaction of the quarks. 

In the Standard Model, CP violation is manifested when a quark changes flavor 

via the weak bosons W± as shown in Figure 1.1. From the diagram, there are nine possible 

                                                 

1 In a sense, physicists prefer a theory to have symmetries. A theory with symmetries is more elegant as the 

calculations are much easier to perform. 
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ways the quarks can change flavor while conserving the charge at the interaction point. 

For each way, the strength of interaction is given by a number, and we can write these 

numbers in a 3 × 3 matrix called the Cabibbo-Kobayashi-Maskawa (CKM) matrix [9]: 

 . (1.1) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

tbtstd

cbcscd

ubusud

VVV
VVV
VVV

V

In general, V is complex to also account for flavor-changing of the anti-quarks (to 

give a total of 18 real numbers), but for physical results, V has to be unitary. That is, 

 , (1.2) 1† =VV

where V† is the transpose of the complex conjugate of V. From the unitarity of V, we can 

obtain six relations. The one favored by physicists is given by the first and third columns: 

 . (1.3) 0*** =++ tbtdcbcdubud VVVVVV

Equation (1.3) can be represented by a triangle in the complex plane as shown 

below, where one of the sides is normalized to one. This is called the Unitarity Triangle. 

β

α
*

*

cbcd

tbtd

VV
VV

*

*

cbcd

ubud

VV
VV

 

1 
γ 

Im 

Re 
 

Figure 1.2: Unitarity Triangle. 

One can actually construct two more triangles from Equation (1.2), but for these 

triangles, one side is much shorter than the other two, and so CP violating effects will be 

hard to observe. For the Unitarity Triangle, its sides are comparable in length as indicated 
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by experiments, and so physics related to the Unitarity Triangle (B decays) will have 

measurable CP quantities. This is why Equation (1.3) is favored by physicists. 

It can be shown (using a result from [10]) that the area of the Unitarity Triangle is 

proportional to the size of CP violation. Hence, if the area is zero, CP is conserved. Using 

the current measurements of the CKM elements, we find that the size of CP violation is 

several orders of magnitude smaller than what is required to account for the matter-

dominance that we observe today [11]. Therefore, there must be additional sources of CP 

violation from new physics beyond the Standard Model. It is by studying CP violation 

that we hope to uncover the new physics and increase our understanding of the universe. 

By studying the weak decays of B mesons, each of the sides and angles of the 

Unitarity Triangle can be independently measured. Hence, we can over-constrain and test 

the accuracy of the Standard Model by making these measurements from many different 

decays. Any inconsistency would indicate the existence of new physics. 

1.3 Double Charm Decays 

The double charm decays B → D(s)
(*)D̄(s)

(*), where B = B+ or B0 and D(s)
(*) = D+, 

D0, Ds
+, D*+, D*0 or Ds

*+, provide us with a rich field to study CP violation. (Here, “D*” 

denotes an excited state of D and charged conjugated decays are included implicitly.) But 

before we can make any CP measurement, we need to understand the theory behind these 

decays so that we can compare reliably our results with those from other decays. 

Central to the theory of double charm decays is the factorization assumption. To 

see how factorization works, let us consider the decay B0 → D+D−. We can represent this 

decay on a diagram shown in Figure 1.3. On such a diagram, quarks and leptons are 
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denoted by arrows and the exchange particles by dashed lines. The time axis is pointing 

to the right and a particle moving backward in time is treated as an anti-particle. 

W−

c

d

c

d

D−

D+

d 

b 
B0

t 
 

Figure 1.3: Tree diagram showing B0 → D+D− decay. 

Besides the tree diagram in Figure 1.3, the decay can also proceed via other paths 

like the one-loop diagram shown in Figure 1.4, also known as a penguin diagram. 

Usually, a path with more loops is less likely to occur and so to first approximation, one 

can just work with the tree diagram. In general, there are many diagrams and one must 

add up all their contributions to calculate the branching fraction of B0 → D+D−, which is 

the probability of a B0 meson decaying into a pair of D+D− mesons. This is a quantity that 

we can measure in experiments. 

c
t

g

W−

t
d

d

c

d

b
D+

B0

D−

 

Figure 1.4: A one-loop (penguin) diagram for B0 → D+D− decay. 
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To simplify the calculation, we ignore the strong interactions between the two 

daughters. Then, we can decompose the decay diagram into two parts as shown in Figure 

1.5. This is the factorization assumption. 

c

c

d

D−

D+

×≈
c

d
D+ B0 D−

d 

c 

d

b

b 
B0

fDdd  

Figure 1.5: An illustration of the factorization assumption. The shaded 

region indicates the strong interactions that are neglected between the two 

daughters. 

For simplicity, let us call the first term (cd vertex) as the decay constant fD and the 

second term as the form factor1. To give a physical interpretation of these quantities, we 

can think of the decay constant as measuring the probability of a quark and anti-quark to 

bind together to form a meson while the form factor measures the probability that the 

flavor-changed quark (b̄) and the spectator quark (d) will form a meson in the final state. 

Now, if we look at the leptonic decay D+ → l+νl, where l = e, µ, τ (see Figure 1.6), 

we find that it also contains the cd vertex. Since the leptons do not interact strongly, the 

leptonic decay is not complicated by the strong interactions between its decay products. 

Hence, we can obtain fD directly from the branching fraction of D+ → l+νl. Similarly, the 

                                                 

1  The decay constant and form factor are actually defined such that the first and second terms are 

proportional to them. 
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form factor of B0 → D+D− can be obtained from the semi-leptonic decay B0 → D−l+νl. 

Therefore, the basic idea of factorization is to write the branching fraction in terms of 

common quantities that we can measure from other decays. 

l−c

d
W−D+

νl  

Figure 1.6: Diagram showing the leptonic decay D+ → l+νl. 

Whether factorization is a valid assumption depends on the amount of strong 

interactions between the daughters. If the daughters are light, they will fly away quickly 

before they have a chance to interact and factorization will be a good approximation. On 

the other hand, if the daughters are heavy as in the case of the charmed mesons D(s)
(*), the 

assumption may fail. Hence, it is important to test the factorization assumption for the 

theory of double charm decays. 

One way to test the factorization assumption is to measure the branching fractions 

and compare them to the predicted values. Listed in Table 1.3 are the branching fractions 

of B → D(s)
(*)D̄(*) using three different models to calculate the decay constants and form 

factors. These models are the constituent quark model (CQM) [12 ], the light-front 

quantum chromodynamics (LFQCD) [13] and heavy quark symmetry with corrections 

(HQSC) [14]. We will not delve into these models here, but instead ask the interested 

reader to look at the references for details. Since the values are very close, a single 

measurement of a branching fraction is not enough and a simultaneous measurement of 

several branching fractions is required to pick out the correct model. 
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Decay6 CQM LFQCD HQSC 

B0 → D(*)0D̄(*)0 0.00 0.00 0.00 

B0 → D+D− 0.38 0.40 0.31 

B0 → D*+D− 0.73 0.78 0.71 

B0 → D*+D*− 1.06 0.99 0.91 

B− → D−D0 0.42 0.44 0.33 

B− → D*−D0 0.54 0.49 0.45 

B− → D−D*0 0.39 0.36 0.31 

B− → D*−D*0 1.16 1.08 0.98 

B0 → Ds
+D− 9.70 10.33 8.25 

B0 → Ds
*+D− 12.49 11.42 10.80 

B0 → Ds
+D*− 9.19 8.50 7.67 

B0 → Ds
*+D*− 28.78 27.09 25.51 

B− → Ds
−D0 10.58 11.26 8.94 

B− → Ds
*−D0 13.65 12.47 11.73 

B− → Ds
−D*0 10.02 9.27 8.34 

B− → Ds
*−D*0 31.37 29.52 27.69 

Table 1.3: Predictions of branching fractions (×10−3) from three different 

models using the factorization assumption (from Table IV of [14]). These 

values have uncertainties around 15–20%, mainly from the calculations of 

the decay constants and form factors. 

                                                 

6 We use B0 → D*+D− to denote both B0 → D*+D− and B0 → D*−D+ decays. 

 11  



   

Another way to test the factorization assumption is through the ratios of branching 

fractions. In Table 1.4, we list a few of these ratios for double charm decays predicted 

from the factorization approach. A different method to determine the decay constants and 

form factors is used in this case [15]. Since some of these values are related to the ratio of 

the decay constants of D+ to Ds
+, it will be interesting to compare the ratio of branching 

fractions of D+ to Ds
+ leptonic decays with those obtained from double charm decays. A 

difference will indicate a presence of non-factorizable effects in double charm decays. 

Decays Ratio Decays Ratio 
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Table 1.4: Ratios of branching fractions for B0 → D(s)
(*)+D(*)− decays 

(from Table III of [15]). 

Besides testing the factorization assumption, the branching fractions can also be 

used to determine theoretical uncertainties in the factorization approach. One of these 

uncertainties is the size of final-state interactions which can be significant in decays when 

the daughters are heavy. Such effects are assumed zero when calculating the penguin 

corrections to the angle β of the Unitarity Triangle for B0 → D*+D*− decay. (For details, 
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please refer to [16].) Therefore, it is important to check the size of these effects before we 

compare the value of β with those from other decays. The decays B0 → D(*)0D̄(*)0 are 

most suitable for this purpose. In the absence of final-state interactions, their branching 

fractions are predicted to be negligible. Hence, by measuring their branching fractions, 

we can determine the size of final-state interactions in double charm decays. 

Another source of theoretical uncertainty comes from the non-factorizable effects 

in the exchange diagram of B0 → D*+D*− (see Figure 1.7) when measuring the angle γ 

from B0 → D(s)
*+D*− decays [17]. In this case, since the diagram similar to Figure 1.3 

does not exist for B0 → Ds
*+Ds

*−, this decay proceeds mainly through the exchange 

diagram and so the ratio of the branching fractions of B0 → Ds
*+Ds

*− to B0 → D*+D*− can 

give an estimate of the size of the exchange contribution. 

W−

d

b c
D*−

d
B0

d
D*+

c  

Figure 1.7: Exchange diagram for B0 → D*+D*− decay. 

1.4 Summary 

As we have seen, measuring the branching fractions is an important step toward 

determining the amount of CP violation in double charm decays. We also see that one 

branching fraction is not enough, and that a simultaneous measurement of several 

branching fractions is necessary to verify the factorization assumption. 
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In this analysis, we present a simultaneous branching fraction measurement of ten 

double charm decays7: B0 → D0D̄0, B0 → D*0D̄0, B0 → D*0D̄*0, B0 → D+D−, B0 → D*+D−, 

B0 → D*+D*−, B− → D−D0, B− → D*−D0, B− → D−D*0 and B− → D*−D*0. Hopefully, this 

will provide a stringent test on the factorization assumption through the ratios of 

branching fractions. 

                                                 

7 We use B0 → D*0D̄0 to denote both B0 → D*0D̄0 and B0 → D̄0D*0 decays. 
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2 Detector 

At BABAR, B mesons are produced by colliding e− and e+ beams at a center-of-

mass energy8 of 10.58 GeV, corresponding to the mass of Υ(4S) (a bb̄  meson), which in 

turn decays almost exclusively to a pair of B0B̄0 or B+B− mesons. The rate of production 

at peak performance is roughly ten BB̄ pairs per second. 

To detect the decay products efficiently at such a rate, a detector has to be 

constructed from five sub-detectors: silicon vertex tracker (SVT), drift chamber (DCH), 

detector of internally reflected Cherenkov light (DIRC), electromagnetic calorimeter 

(EMC) and instrumented flux return (IFR). This is the BABAR detector. Its layout is 

given in Figure 2.1, which shows the SVT and DCH inside a uniform magnetic field of 

1.5 T provided by a superconducting solenoid. Together, they form the tracking system 

responsible for measuring the momentum and position of a charged particle. 

                                                 

8 We will assume that the reader is familiar with a few physical concepts like momentum, energy and the 

center-of-mass frame. The electron volt or eV is frequently used as a unit of energy in particle physics. 

1 eV = 1.602 × 10−19 J, which is the energy to move an electron through a potential difference of one volt, 

and 1 GeV = 103 MeV = 109 eV. Because mass, momentum and energy are related through the equation 

E2 = (pc)2 + (mc2)2, where c is the speed of light in vacuum, we also express mass in units of eV/c2 and 

momentum in eV/c. For example, the mass of an electron is 9.11 × 10−31 kg = 0.511 MeV/c2. 
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Figure 2.1: Longitudinal section of the BABAR detector. 

In the following sections, we give a brief overview of each sub-detector and its 

performance pertinent to this analysis. We will, however, omit the IFR, since its main 

purpose is to detect muons which are not used in our analysis. For a full description of the 

BABAR detector, one can refer to [18]. 

2.1 SVT 

The SVT is made out of five layers of silicon wafers cylindrically centered about 

the beam pipe. Each wafer has readouts on both sides to record the φ and z coordinates, 

thus allowing a 3D measurement of a charged particle’s position. (The r coordinate being 

given by the layer number.) 
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The SVT is designed to measure the angles and positions of charged particles just 

outside the beam pipe. The mean vertex resolution of a B meson is typically around 

100 µm. This precision allows us to reconstruct B0 → D+D− decays, where the distance 

between the two D mesons in the x-y plane is ~275 µm. The SVT also provides tracking 

for a particle with transverse momentum (momentum in the x-y plane) pt < 120 MeV/c. 

This is important for detecting slow pions from D*+ → D0π+ decays. 

To study the efficiency of detecting slow pions, D*+ → D0π+ decays are selected 

by reconstructing events of the type B → D*+X followed by D*+ → D0(K−π+)π+. Figure 

2.2 shows the mass difference, δM = m(D*+) − m(D0), for the total sample and the sub-

sample of events in which the slow pion has been reconstructed in both the SVT and the 

DCH. The difference between these two distributions shows the contribution from SVT 

standalone tracking, both in terms of the gain of signal events and of the resolution. The 

gain in efficiency is mostly at very low momenta, and the resolution is affected by 

multiple scattering and limited track length of the slow pions. From simulation, we 

determine the slow pion efficiency to be above 80% for pt > 70 MeV/c. 
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Figure 2.2: δM distributions (background-subtracted) of slow pions for all 

detected events (data points) and for events in which the slow pion is 

reconstructed both in the SVT and DCH (shaded histogram). 

Besides measuring the momentum of a charged particle, the SVT can also 

measure the energy deposited by the particle from the pulse height recorded, and so 

perform particle identification through the rate of energy loss over distance, dE ⁄ dx [19]. 

The dE ⁄ dx resolution from the SVT is around 14%, which can separate K± and π± up to a 

momentum of 500 MeV/c. 

2.2 DCH 

The DCH consists of 40 cylindrical layers of drift cells centered around the beam 

pipe. Each cell is made out of six field wires arranged in a hexagon and one sense wire in 

the center. To give a reading of the z coordinate, some layers have their wires aligned at a 
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small angle to the z-axis. Thus, the DCH is capable of both tracking a charged particle 

and measuring its momentum. 

Not only does the DCH complement the measurements of the SVT, it also 

increases the tracking efficiency of long-lived particles that decay outside the SVT, 

especially KS → π+π− which is used in this analysis. Tracking efficiency in the DCH is 

around 98% for pt > 200 MeV/c and polar angle θ > 500 mrad. The dE ⁄ dx resolution is 

7.5% and allows π-K separation up to pt of 700 MeV/c (see Figure 2.3). 

 

Figure 2.3: Left: Difference between the measured and expected dE ⁄ dx in 

the DCH for e±. The curve is a Gaussian fit to data with a width of 7.5%. 

Right: Measurement of dE ⁄ dx in the DCH as a function of track 

momentum. The curves show the Bethe-Bloch predictions [19] derived 

from selected control samples of particles of different masses. 
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2.3 DIRC 

The DIRC is a novel device based on the concept of Cherenkov radiation. A 

charged particle traveling faster than light in an optically dense medium will emit a cone 

of light whose apex angle depends on its velocity in the medium. In the DIRC, the 

emitted Cherenkov light travels along tubes of fused silica via total internal reflection 

(thus preserving its apex angle) to the backward end of the BABAR detector, where it is 

detected by photomultiplier tubes. 

The main purpose of the DIRC is to provide particle identification for K± and π± at 

high momentum up to 4.5 GeV/c. (Particle identification below 700 MeV/c relies on 

dE ⁄ dx in the SVT and DCH.) This is important for reconstructing a D decay containing a 

kaon daughter whose momentum peaks around 1 GeV/c. Such decays are common in this 

analysis. 

The figures below show the performance of the DIRC in kaon identification. 

From Figure 2.4, we see that the background is greatly reduced when DIRC information 

is used for reconstructing D mesons. From Figure 2.5, we find that the kaon efficiency is 

usually greater than 90% and the pion fake rate less than 10%. 
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Figure 2.4: Mass of D0(Kπ) with and without the use of the DIRC for kaon 

identification. 

 

Figure 2.5: Efficiency (top) and fake rate (bottom) for the selection of K± 

as a function of track momentum, determined using D*+ → D0(K−π+)π+. 
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2.4 EMC 

The EMC is an array of finely segmented crystals made of thallium-doped cesium 

iodide. These crystals have high light yields and short radiation lengths, thus allowing for 

high detector efficiency and shower containment. 

The EMC measures electromagnetic showers from e± and γ for energies between 

0.02 GeV and 9 GeV. The energy resolution σE ⁄ E ranges from 2% to 5%, while the 

angular resolution goes from 3 mrad to 12 mrad, resulting in a width of 6.9 MeV/c2 for 

the π0(γγ) mass (see figure below). 

 

Figure 2.6: Mass of π0(γγ). The curve is a fit to data with a peak at 

135.1 MeV/c2. 
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3 Reconstruction of Double Charm Decays 

3.1 Reconstruction Procedure 

The reconstruction of B → D(*)D̄(*) starts from the bottom of the decay trees. To 

illustrate, consider a decay tree of B0 → D*+D*− shown in Figure 3.1. We begin by 

selecting suitable π±, K± and γ candidates from the stable particles detected by our 

detector. Then, we combine the relevant candidates to give the composites higher up the 

decay tree. For example, a K− candidate is combined with a π+ candidate to give a D0 

candidate, which in turn is combined with another π+ candidate to form a D*+ candidate. 

At each level, we apply a set of selections to reduce the background while keeping about 

90% of the signal. We move up the decay tree this way until we reach the B0 meson. 

B0

D*+ D*–

D− π0π+ D0

π+ K− π− KS γ γ

π−π+
 

Figure 3.1: A possible decay tree for B0 → D*+D*−. 

Before we go on to describe our selection criteria in detail, let us, for the ease of 

explanation, define a few terms and notations: 
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• E: particle’s energy. 

• p ≡ (px, py, pz): particle’s 3-momentum. 

• p ≡ |p|: particle’s momentum (magnitude). 

• pt ≡ 22
yx pp + : particle’s transverse momentum. 

• CM frame: center-of-mass frame of the colliding beams 

• pCM: particle’s momentum in CM frame. 

• mPDG: particle’s mass given by the Particle Data Group (PDG) [20]. 

• Kinematic fit: creation of a parent by adding its daughters’ momenta and 

energies, assuming conservation of momentum and energy. 

• Vertex-constrained fit: a kinematic fit where the daughters are constrained 

to come from a common point. 

• Mass-constrained fit: a kinematic fit where the parent’s mass is 

constrained to its PDG value. 

• m: parent’s fitted mass before a mass constraint. 

• ∆m ≡ m − mPDG. 

• P(χ2): χ2-probability (a measure of the goodness-of-fit) from a constrained 

fit; a poor fit has a P(χ2) close to zero. 

• Beam spot: region where the e+ and e− beams collide. 

Note: In all the figures below, the vertical dashed lines denote the selections that 

are used in our analysis. Their efficiencies (fraction of selected signal) are given at the 

top right-hand corner. All figures are derived from simulated Monte Carlo events. 
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3.2 Event Level Selection 

At event level, (that is, before making any composite), there is a powerful variable 

that distinguishes between e+e− → qq̄  (q = u, d, s or c) and BB̄ events. This variable is 

given by the momentum distribution of all the stable particles measured by the detector 

and is called the Fox-Wolfram ratio [21]. It is defined as R2 = H2 ⁄ H0, where 

 ∑=
ji

ijljil Ppp
s

H
,

)(cos1 θ , (3.1) 

 s is the square of sum of beam energies in the CM frame; 

 Pl is the Legendre Polynomial of order l; 

 i and j are indices running over all the stable particles; and 

 θij is the angle between particles i and j. 

The ratio characterizes the shape of an event’s topology. For a jet-like event like 

e+e− → τ+τ−, since the CM energy (10.58 GeV) is much higher than the taus’ masses 

(mτ = 1.78 GeV/c2), the taus move away quickly and most of the taus’ daughters are 

produced in two cones directed opposite to each other. Hence, R2 is close to one. For an 

isotropic event like e+e− → BB̄, since mB = 5.28 GeV/c2, the mass-energy difference 

between e+e− and BB̄ is almost zero and the B mesons are essentially at rest. The decay 

products of B will be produced evenly in all directions, resulting in R2 being close to zero. 

Figure 3.2 shows the distributions of R2 for different types of simulated events. For our 

event selection, we take R2 ≤ 0.6. This has an efficiency of almost 100% for signal events 

while rejecting about 5% cc̄ , 11% uds and 73% τ+τ− background. 
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Figure 3.2: Normalized distributions of R2 for e+e− → cc̄ , e+e− → qq̄  

(q = u, d, s), e+e− → τ+τ− and signal events. R2 is zero if there is no 

detected particle in the event. 

3.3 Selection of π± 

In the presence of a magnetic field, a charged particle bends to form a helical 

track whose radius depends on its transverse momentum. From the hits in the SVT and 

DCH, we reconstruct the charged tracks by fitting the hits to helices via the Kalman filter 

algorithm [22], which has a high efficiency of 98% in the DCH. By default, the tracks’ 

masses are constrained to the PDG value of π± (139.57 MeV/c2). Candidates for π± are 

then selected from the list of charged tracks using the following criteria: 
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• Distance of closest approach to the beam spot in x-y plane, d0 ≤ 1.5 cm 

• Distance of closest approach to the beam spot along the z-axis, z0 ≤ 10 cm 

• Number of SVT + DCH hits ≥ 5 

• p ≤ 10 GeV/c 

This set of cuts is very loose and mainly serves to reduce the cosmic and machine 

backgrounds that do not originate from the beam spot. From Figure 3.3, we see that the d0 

and z0 cuts help to lower the number of e± arising from pair production (γ → e+e−) or 

from secondary decays like π0 → e+e−γ and K+ → π0e+νe. The cuts also lower the number 

of protons or anti-protons coming from particles interacting with the detector hardware. 

 

Figure 3.3: Normalized distributions of d0 (left) and z0 (right) for e−, µ−, p+ 

and daughters (K+ or π+) of D(*). The anti-particles are included in the 

histograms. 

From this list of good tracks, a sub-list called PionSoft is created for the slow pion 

of D*+ → D0π+. Because the mass difference between D*+ and D0 is small (PDG value of 
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145.42 MeV/c2), the daughter π+ will have a low momentum and so we can impose the 

additional cut for PionSoft: 

• pCM ≤ 0.45 GeV/c 

From the list of good tracks, another sub-list is created for the daughters of D 

mesons. It is called GoodTracksLoose and has the additional cuts: 

• pt ≥ 0.1 GeV/c (Figure 3.4, left plot) 

• Number of DCH hits ≥ 12 (Figure 3.4, right plot) 

 

Figure 3.4: Normalized distributions of pt (left) and number of DCH hits 

(right) for e−, µ−, p+ and daughters (K+ or π+) of D(*) (with anti-particles 

included). 

3.4 Selection of γ 

A photon creates a shower that stretches across several crystals when it deposits 

its energy in the EMC. From the shower shape, it is possible to distinguish a photon from 
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other types of particles. Hence, similar to the event shape variable R2, a quantity fLAT is 

defined for the shower shape based on the lateral distribution of deposited energy [23]: 
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 ri is the radius vector of crystal i; 

 Ei is the energy deposited in crystal i with E1 ≥ E2 ≥ … ≥ En; 

 n ≥ 3 is the shower size (number of crystals occupied by the shower); and 

 ra is the average distance between the centers of two adjacent counters. 

A photon, being a neutral particle, does not leave a track in the SVT or DCH. An 

electron, on the other hand, leaves a track and creates a shower in the EMC. Therefore, a 

list of photon candidates called PhotonLoose, to be used for reconstructing π0 → γγ, is 

made from the EMC showers as follows: 

• Showers that are not matched to any tracks 

• E ≥ 30 MeV 

• fLAT ≤ 0.8 (Figure 3.5) 

For the slow photons in D*0 → D0γ, a tighter list, PhotonSoft, is used: 

• E ≥ 0.1 GeV 

• pCM ≤ 0.45 GeV/c 

 29  



   

 

Figure 3.5: Normalized distributions of fLAT for γ, e−, µ−, KL and n0 with 

anti-particles included. fLAT is 0 if a shower size is less than 3. 

3.5 Selection of π0 

π0 decays to two photons almost 100% of the time [20]. We reconstruct this decay 

by combining two photons from PhotonLoose under the following conditions: 

• Kinematic fit, where the photons are assumed to come from the beam spot 

• 115 ≤ m ≤ 150 MeV/c2 (Figure 3.6) 

• Mass constraint 
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Figure 3.6: Normalized distribution of m for π0 daughters of D(*). 

From this list, two types of π0 are created. The first type, known as Pi0Soft, for 

the slow pions of D*+ → D+π0 and D*0 → D0π0 decays, has the cut: 

• pCM ≤ 0.45 GeV/c 

The second type, for the daughter of D0 → K−π+π0 decay, is called Pi0Default and 

has the cut: 

• E ≥ 0.2 GeV 

3.6 Selection of K± 

Particle identification (PID) is used to select K± from GoodTracksLoose. Charged 

tracks are identified as K± based on the dE ⁄ dx measurements in both the SVT and DCH, 
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and also on the Cherenkov measurements in the DIRC. Two types of PID criteria are 

considered. A tight PID is used for kaons (except D0 → K−π+) in B0 → D(*)0D̄(*)0 decays, 

where we expect to see high background-to-signal ratios. For all other decays, a loose 

PID, optimized to distinguish between kaons and pions, is used. For kaons that are 

daughters of D mesons, the loose criterion has an efficiency of more than 95% and a pion 

fake rate of less than 8% (see Figure 3.7). Although the proton fake rate is high, this is 

not a concern as the number of protons in our samples is low. 

 

Figure 3.7: Normalized distributions of kaon PID quality (kaonID) for K+, 

e−, µ−, π+ and p+ (anti-particles included). A charged track has kaonID ≥ 1 

(kaonID ≥ 2) if it passes the loose (tight) criterion. Otherwise, kaonID = 0. 
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3.7 Selection of KS 

KS → π+π− decay is reconstructed by fitting two charged tracks as follows: 

• Vertex constraint 

• |∆m| ≤ 15 MeV/c2 

• p ≥ 0.2 GeV/c 

• P(χ2) ≥ 0.001 

 

Figure 3.8: Normalized distributions of m(KS) before (green) and after 

(black) a vertex constraint. 

Figure 3.8 shows the improvement in the mass resolution when a vertex constraint 

is used. This improvement allows us to cut away most of the background. To further 
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reduce the background due to bad fits from random combinations of charged tracks, we 

cut on P(χ2) ≥ 0.001 which removes about 50% of the bad fits with a 14% drop in signal. 

3.8 Selection of D 

We use D0 → K−π+, D0 → K−π+π0, D0 → K−π+π+π−, D0 → KSπ+π−, D+ → K−π+π− 

and D+ → KSπ+ decays to make D candidates. These decays are chosen because of their 

high branching fractions and low backgrounds compared to the other D decays. Selected 

π± (from GoodTracksLoose), π0 (from Pi0Default), K± and KS candidates are combined in 

the following order: 

• Vertex constraint 

• |∆m| ≤ 20 MeV/c2, except for D0 → K−π+π0 where |∆m| ≤ 40 MeV/c2 

• Mass constraint 

• 1.2 ≤ pCM ≤ 2.2 GeV/c 

• P(χ2) ≥ 0.001 

Figure 3.9 shows the mass resolution and the efficiency of the mass cut for each 

decay. The wider resolution for D0 → K−π+π0 is due to the poorer energy resolution of π0. 

As we will see later, the mass constraint improves the energy resolution of the B 

candidates. For B decaying to two charm mesons, the CM momentum of the daughters is 

around 1.8 GeV/c (see Figure 3.10). Hence, the CM momentum cut reduces the number 

of charm mesons from cc̄  events, whose CM momenta are much higher on average. The 

P(χ2) cut further lowers the background due to random combinations. 
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Figure 3.10: Normalized distributions of pCM for real D decays from signal 

and cc̄  events, and fake D decays from uds events. 

For decays involving KS, we use the long lifetime of the KS meson to reduce the 

background due to fake KS candidates: 

• KS flight length divided by its error (l ⁄ σl) ≥ 3 (Figure 3.11, left plot) 

For D0 → K−π+π0, the decay proceeds mainly through the resonances ρ+(π+π0), 

K*−(K−π0) and K*0(K+π−) [20]. Hence, the decay probability for a resonant D0 → K−π+π0 

decay is relatively much higher than its non-resonant decay. Thus, we define a variable, 

known as the Dalitz weight, based on the decay probability by normalizing its maximum 

to one. The decay model is taken from [24]. To select mainly resonant decays and reduce 

the mostly non-resonant combinatorial background, we apply the cut: 

• Dalitz weight ≥ 0.06 (Figure 3.11, right plot) 

 36  



   

 

Figure 3.11: Left: Normalized distributions of l ⁄ σl for real (black) and 

fake (red) KS candidates in D0 → KSπ+π− and D+ → KSπ+ reconstruction. 

Right: Normalized distribution of Dalitz weight for real (black) and fake 

(red) D0 → K−π+π0 candidates. 

3.9 Selection of D* 

D* candidates are constructed from D*+ → D0π+, D*+ → D+π0, D*0 → D0π0 and 

D*0 → D0γ decays. The decay D*+ → D+γ is not considered due to its low branching 

fraction of 1.6% [20]. Slow π± and π0 candidates are taken from PionSoft and Pi0Soft 

respectively while the photon is taken from PhotonSoft. Note that the slow pions and 

photons have CM momenta less than 450 MeV/c each (see Figure 3.12). All the decays 

are reconstructed using kinematic fits. For D*+ → D0π+, a vertex constraint is also used. 

Define δM ≡ m(D*) − m(D). Then, the following mass cuts are applied: 

• 139.6 ≤ δM ≤ 151.3 MeV/c2 for D*+ → D0π+ 

• 135.0 ≤ δM ≤ 146.3 MeV/c2 for D*+ → D+π0 
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• 135.0 ≤ δM ≤ 149.3 MeV/c2 for D*0 → D0π0 

• 100.0 ≤ δM ≤ 170.0 MeV/c2 for D*0 → D0γ 

The lower limit of δM for each of the first three decays is due to the mass of the 

slow pion. Since D is mass-constrained, δM − δMPDG = ∆m(D*), and the above cuts 

correspond to |∆m| ≤ 5.85 MeV/c2 for D*+ → D0π+, |∆m| ≤ 5.66 MeV/c2 for D*+ → D+π0 

and |∆m| ≤ 7.14 MeV/c2 for D*0 → D0π0. From Figure 3.13, the efficiency for D*0 → D0γ 

is 92% and around 98% for the other decays. 

 

Figure 3.12: Normalized distributions of pCM for π and γ daughters of D*. 
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D*+ → D0π+ D*+ → D+π0

D*0 → D0π0 D*0 → D0γ

Figure 3.13: Normalized distribution of δM for each D* decay. 

3.10 Selection of B 

A B candidate is constructed from two D(*) candidates that have passed the 

selections described in the above sections. Instead of cutting on its mass and energy 

directly, we make use of the CM beam energy to improve on the mass and energy 

resolutions. Hence, we define the following two variables in the CM frame: 
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 22
beamES BpEm −= , beamEEE B −=∆ . (3.5) 

Figure 3.14 shows the improvement in ∆E resolution when we mass-constrain the 

D candidates. Although for our signal, mES ranges from 5.27 to 5.29 GeV/c2 and ∆E from 

−50 to 50 MeV, we cut loosely on mES and ∆E for the possibility of fitting the mES 

distribution and studying the background. Thus, the B candidates are selected as such: 

• Vertex constraint 

• 5.2 ≤ mES ≤ 5.3 GeV/c2 

• ∆E ≤ 0.2 GeV 

 

Figure 3.14: Normalized distributions of mES (left) and ∆E (right) for real 

B0 → D+D− candidates. The green histogram shows the ∆E distribution 

when the daughters D± are not mass-constrained. 

As you can see, there is still a lot of background left in our list of B candidates. In 

the next chapter, we will describe our procedure to optimize the signal significance and 

improve the signal-to-background ratio. 
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4 Optimization of Selection Variables 

4.1 Definitions 

We begin by introducing two terms that will be used throughout this dissertation: 

“B mode” and “sub-mode”. A B mode refers to one of the B decays like B0 → D*+D−. A 

sub-mode refers to a specific decay tree like B0 → D*+D− → (D0π+) (KSπ−) → 

((K−π+π0)π+) (KSπ−), where one daughter D*+ decays to D0π+ with D0 decaying to K−π+π0, 

and the other daughter D− decays to KSπ−. Hence, a B mode can have several sub-modes9. 

Moreover, when we mention the branching fraction of a B mode, we are referring 

to the parent B decay (with the D(*) daughters decaying to all possible modes), while the 

branching fraction of a sub-mode is the product of the branching fractions of the two D(*) 

decays taken from Table 4.1 (excluding the B decay’s branching fraction). For example, 

the branching fraction of the sub-mode given in the first paragraph is  

 0.677 × 0.131 × 0.0095 = 8.4 × 10−4. 

                                                 

9  The word “mode” alone can refer to a B mode or a sub-mode, and will be used interchangeably with the 

word “decay”. 
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D* Decays BF (%) D Decays BF (%) 

D*+ → D0π+ 67.7 ± 0.5 D0 → K−π+ 3.8 ± 0.09 

D*+ → D+π0 30.7 ± 0.5 D0 → K−π+π0 13.1 ± 0.9 

D*0 → D0π0 61.9 ± 2.9 D0 → K−π+π+π− 7.46 ± 0.31 

D*0 → D0γ 38.1 ± 2.9 D0 → KSπ+π− 2.03 ± 0.12 

D+ → K−π+π− 9.1 ± 0.6 
 

D+ → KSπ+ 0.95 ± 0.06 

Table 4.1: Branching fractions (BF) of D(*) decays that we reconstruct [20]. 

The branching fraction of KS → π+π− (0.6895 ± 0.0014) and a factor of 

half from K0 → KS are included for the decays containing KS. 

4.2 Event Samples 

The events that we use to optimize our selection variables come from simulation 

or Monte Carlo (MC). Two types of simulated events are generated. The first, known as 

signal MC, represents the signal decays that we reconstruct. The second, called generic 

MC, reproduces the background from all other decays. On average, about 1.2 × 105 signal 

MC events are produced per sub-mode. For generic MC, the breakdown is shown below. 
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Event Type Events Generated (×106) Relative to Real Data 

B0B̄0 547 4.7 

B+B− 539 4.7 

cc̄  418 1.5 

uū  + dd̄  + ss̄  (uds) 716 1.6 

Table 4.2: Breakdown of generic MC events. 

4.3 Selection Variables 

Besides ∆E that is used in our pre-selection, there are three other variables that we 

look at. The first variable, known as the mass likelihood, is defined based on the masses 

of the D(*) daughters: 
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where zm = ∆m ⁄ sm, sm is the mass uncertainty from the vertex-constrained fit;  

 ∆m = m − mPDG;  

 0 < f, f̄  < 1; and  

 G(x; µ, σ) is a Gaussian probability density function with mean µ and width σ: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−= 2

2

2
)(exp

2
1),;(

σ
µ

πσ
σµ xxG . (4.2) 

Instead of cutting on the D(*) masses directly, we combine the information into a 

likelihood variable which is more efficient in rejecting background. We divide ∆m(D) by 
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its uncertainty so that the same model (standard Gaussian with µ = 0 and σ = 1) can be 

used for all D decays. For the D* mass, it is modeled by a sum of two Gaussians with one 

having a wider width to accommodate the tails in the distribution (see Figure 3.13). In the 

case where a D* meson is absent from a B mode, the corresponding G term is set to one. 

We assume that zm(D) and ∆m(D*) are independent. This is supported by Figure 4.1. The 

values of f, µ1, µ2, σ1 and σ2 depend on the D* decay. They are given in Table 4.3. For 

selection purposes, we use the variable −log(Lmass), where a smaller value indicates a 

“better” B candidate. 

 

Figure 4.1: Left: Normalized distribution of zm(D) for all D decays in 

signal MC. The curve is a fit to a Gaussian with mean and width given in 

the plot. Right: A scatter plot of zm(D) vs. ∆m(D*). 
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D* Decay f µ1 (MeV/c2) µ2 (MeV/c2) σ1 (MeV/c2) σ2 (MeV/c2)

D*+ → D0π+ 0.6623 0.000 0.260 0.3224 1.513 

D*+ → D+π0 0.5289 0.000 0.161 0.5775 1.509 

D*0 → D0π0 0.5489 −0.105 0.126 0.6354 1.733 

D*0 → D0γ 0.6517 0.000 −6.83 4.527 12.51 

Table 4.3: Parameters used to model ∆m(D*) distributions as determined 

from signal MC. 

The second variable exploits our ability to distinguish the long D lifetime. 

Denoted as lD, it is the sum of the D candidates’ flight lengths divided by the sum’s 

uncertainty. The flight lengths and uncertainty are obtained from fitting the decay tree of 

B via the method described in [25], so that the correlation between the flight lengths is 

accounted for properly in the uncertainty. Note that the flight length is allowed to be 

negative in the fit. In this way, fake B → D(*)D̄(*) decays will have an average lD of zero 

while real decays will have a positive mean (see Figure 4.2). 
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Figure 4.2: Normalized distributions of lD for reconstructed B0 → D0D̄0 

events from signal and generic MC. 

The third variable is a combination of the event’s shape variables, namely, the B’s 

momentum, its thrust vector and the momentum distribution of the rest-of-event (tracks 

and showers that do not belong to B). The thrust vector T of B is defined such that 
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where pi is the momentum of a B’s daughter in CM frame; and  

 Amax is the unit vector that maximizes the above sum, called the thrust axis. 

To describe the momentum distribution of the rest-of-event, we consider the 

momentum flows in nine equal polar angular intervals of 10° each around Amax (see 
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Figure 4.3). The momentum flow in each interval is the scalar sum of the CM momenta 

of all tracks and showers (not from the B candidate) pointing in that interval. 

80
°

10°

40°50
°

Amax

i =
 1

i =
 5

i = 9

y

 

Figure 4.3: Illustration of the polar angular intervals. Imagine the cones 

formed by rotating the dashed lines of 10°, 20°, …, 80° about the thrust 

axis Amax of B. The shaded region between the cones (on both sides of the 

y-axis) given by the 40° and 50° lines is the fifth polar angular interval. 

For a better separation between signal and cc̄  background, we combine the shape 

variables into a Fisher’s linear discriminant [26]: 

 , (4.4) ∑
=

+=
11

1
0

i
ii xccF

where xi, i = 1, …, 9, is the momentum flow in the interval i;  

 x10 = |cos(θT)|, θT is the angle between Amax and the beam axis; and  

 x11 = |cos(θB)|, θB is the angle between the B’s CM momentum and the beam axis. 

 47  



   

The coefficients ci are determined from a separate study and shown in Table 4.4. 

The separation between signal and background can be seen in Figure 4.4. 

i 0 1 2 3 4 5 

ci 2.00000 −0.26033 −0.17384 −0.16185 0.00003 0.06730

i 6 7 8 9 10 11 

ci 0.37850 0.69457 0.78548 0.48972 0.71547 0.86215

Table 4.4: Coefficients of F. The polar angle decreases from i = 1 to i = 9. 

 

Figure 4.4: Normalized distributions of F for reconstructed B0 → D0D̄0 

events from signal and generic MC. 
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4.4 Procedure 

The optimization of the selection variables is performed by minimizing a function 

f (usually taken to be the fractional uncertainty of the branching fraction) with respect to 

the cut variables |∆E|, −log(Lmass), −lD and F. For B0 → D(*)0D̄(*)0, where we expect to see 

no signal, we use the formula given in [27]. For the other B modes, we use the square of 

the expected fractional uncertainty in the branching fraction. Therefore, 

 

⎪
⎪

⎩

⎪
⎪

⎨

⎧
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→
+

=

∗∗

modes other for ,

for ,
1

2
sig
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B
N

NN

DDB
N

N

f , (4.5) 

where Nsig (Nbkg) is the expected number of signal (background) events in data. 

From signal MC, we can obtain Nsig for each B mode via the formula 

 ∑=
i

iiiB NnNN
 mode-sub

sig bB , (4.6) 

where NB = 2.32 × 108 is the number of BB̄ events in data;  

 B is the branching fraction of the B mode;  

 i denotes a sub-mode of B;  

 Ni is the number of generated events for sub-mode i;  

 bi is the branching fraction of sub-mode i; and  

 ni is the number of MC events in the signal region for sub-mode i. 

Because each signal MC sample is generated with the D(*) mesons decaying solely 

to a given sub-mode, we multiply ni by bi to match the actual number in data. For Nbkg, a 

similar formula is applied where we scale the numbers of events in the signal region in 

generic MC to the expected numbers in data. The signal region is defined as the interval 

 49  



   

mES ≥ 5.27 GeV/c2 after all the cuts are applied. A B candidate passes a cut if its cut 

variable is less than the cut value. In an event when more than one B candidate per B 

mode passes all the cuts, the one with the lowest −log(Lmass) is selected. 

In the optimization, since the D(*) mass and ∆E resolutions vary across the sub-

modes, different |∆E| and −log(Lmass) cut values are used for each sub-mode. To reduce 

possible differences in resolutions between data and MC, a lower bound is set for each 

cut value such that its efficiency is at least 95%. We also set an upper bound that is two 

times higher than the lower bound to avoid keeping too much background. For −lD, only 

one cut value per B mode is used. The same is true for F. Therefore, taking B0 → D+D− as 

an example, where there are three sub-modes (two decays for a D± meson), a total of 

eight cut values (three |∆E| cuts, three −log(Lmass) cuts, one −lD cut and one F cut) are 

used to minimize f. 

At the end of each minimization, we check if a sub-mode is useful by comparing f 

before and after removing the mode. We keep a sub-mode if f is higher after removal. We 

also check if it is beneficial to keep a −lD or F cut, since each cut will have an associated 

systematic uncertainty. We keep such a cut if it decreases the expected fractional 

uncertainty sigbkgsig NNN +  by more than 3%. 

Hence, the optimization for each B mode consists of a series of minimization and 

cuts-checking until all the cuts are stable. 

Note that, in Equation (4.6), we have to assume a branching fraction for the B 

mode which is either taken from a previous experiment or from theory. To test the 

reliability of the cuts obtained, we repeat the optimization assuming different values for 

the branching fractions. We also increase Nbkg by 10% or 20% in case of a possible 
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difference in the background estimation between data and MC. We find that the cuts 

remain stable after all these tests. 

4.5 Results 

We summarize our optimized cut values in the tables below. A B candidate is 

selected if all its selection variables (|∆E|, −log(Lmass), −lD and F) are less than the given 

cut values. The lower bounds that are used in the optimization for the cut values of |∆E| 

and −log(Lmass) are also shown in Table 4.5 to Table 4.14. In these tables, we employ a 

simplified notation to represent the decay tree of a sub-mode. For example, the decay tree 

B0 → D*+D− → (D0π+) (KSπ−) → ((K−π+π0)π+) (KSπ−) is simply written as (Kππ0)π (KSπ). 

Finally, we show the expected signal and background events in the last table. From now 

on, events from data and MC that have passed all the cuts will be used for our analysis. 

|∆E| (MeV) −log(Lmass) 
Sub-Mode 

Cut Value Lower Bound Cut Value Lower Bound 

(Kπ) (Kπ) 15.1 15.1 8.8 4.4 

(Kπ) (Kππ0) 18.7 18.7 5.2 5.2 

(Kπ) (Kπππ) 16.1 15.5 6.8 5.6 

(Kπ) (KSππ) 15.6 15.6 5.6 5.6 

(Kππ0) (Kπππ) 19.0 19.0 6.2 6.2 

(Kπππ) (Kπππ) 15.9 15.8 6.9 6.8 

Table 4.5: Optimized |∆E| and −log(Lmass) cut values for the sub-modes of 

B0 → D0D̄0. 
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|∆E| (MeV) −log(Lmass) 
Sub-Mode 

Cut Value Lower Bound Cut Value Lower Bound 

(Kπ)π0 (Kπ) 17.4 16.3 7.6 6.2 

(Kπ)π0 (Kππ0) 19.6 19.6 6.7 6.6 

(Kπ)π0 (Kπππ) 17.4 16.7 7.2 7.2 

(Kππ0)π0 (Kπ) 19.5 19.4 6.8 6.8 

(Kπππ)π0 (Kπ) 16.8 16.8 7.4 7.4 

(Kπ)γ (Kπ) 24.5 24.4 5.8 5.8 

Table 4.6: Optimized |∆E| and −log(Lmass) cut values for the sub-modes of 

B0 → D*0D̄0. 

|∆E| (MeV) −log(Lmass) 
Sub-Mode 

Cut Value Lower Bound Cut Value Lower Bound

(Kπ)π0 (Kπ)π0 35.1 17.7 12.2 7.8 

(Kπ)π0 (Kππ0)π0 23.0 20.3 8.4 8.4 

(Kπ)π0 (Kπππ)π0 27.3 17.9 9.6 9.4 

(Kπ)γ (Kπ)π0 25.5 25.4 7.6 7.6 

Table 4.7: Optimized |∆E| and −log(Lmass) cut values for the sub-modes of 

B0 → D*0D̄*0. 
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|∆E| (MeV) −log(Lmass) 
Sub-Mode 

Cut Value Lower Bound Cut Value Lower Bound 

(Kππ) (KSπ) 15.5 15.0 6.3 5.4 

(Kππ) (Kππ) 15.1 15.0 6.0 5.6 

Table 4.8: Optimized |∆E| and −log(Lmass) cut values for the sub-modes of 

B0 → D+D−. 

|∆E| (MeV) −log(Lmass) 
Sub-Mode 

Cut Value Lower Bound Cut Value Lower Bound 

(Kπ)π (KSπ) 17.2 16.4 8.0 7.2 

(Kπ)π (Kππ) 18.0 16.2 8.2 7.4 

(Kππ0)π (Kππ) 19.4 19.4 8.4 8.4 

(Kπππ)π (Kππ) 18.6 16.7 8.8 8.8 

(KSππ)π (Kππ) 21.9 16.4 9.6 8.6 

Table 4.9: Optimized |∆E| and −log(Lmass) cut values for the sub-modes of 

B0 → D*+D−. 
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|∆E| (MeV) −log(Lmass) 
Sub-Mode 

Cut Value Lower Bound Cut Value Lower Bound

(Kπ)π (Kπ)π 35.5 18.3 13.0 9.0 

(Kπ)π (Kππ0)π 33.8 21.3 12.0 9.8 

(Kπ)π (Kπππ)π 30.4 19.1 17.3 10.4 

(Kπ)π (KSππ)π 35.2 18.6 19.8 10.0 

(Kπ)π (Kππ)π0 25.5 17.6 10.5 8.6 

(Kππ0)π (Kππ0)π 34.5 23.9 10.6 10.4 

(Kππ0)π (Kπππ)π 29.6 21.5 11.0 11.0 

(Kππ0)π (KSππ)π 23.5 21.2 18.3 11.0 

(Kππ0)π (Kππ)π0 27.4 20.4 9.5 9.4 

(Kπππ)π (Kπππ)π 23.5 19.3 11.7 11.4 

(Kπππ)π (Kππ)π0 18.2 18.2 9.8 9.8 

(KSππ)π (Kπππ)π 23.7 19.4 11.0 11.0 

Table 4.10: Optimized |∆E| and −log(Lmass) cut values for the sub-modes 

of B0 → D*+D*−. 
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|∆E| (MeV) −log(Lmass) 
Sub-Mode 

Cut Value Lower Bound Cut Value Lower Bound 

(Kπ) (KSπ) 16.4 15.0 9.6 4.8 

(Kπ) (Kππ) 15.5 15.2 7.3 5.0 

(Kππ0) (Kππ) 19.2 19.2 5.8 5.8 

(Kπππ) (Kππ) 15.4 15.4 6.5 6.4 

(KSππ) (Kππ) 15.5 15.4 6.2 6.2 

Table 4.11: Optimized |∆E| and −log(Lmass) cut values for the sub-modes 

of B− → D−D0. 
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|∆E| (MeV) −log(Lmass) 
Sub-Mode 

Cut Value Lower Bound Cut Value Lower Bound

(Kπ)π (Kπ) 18.1 16.3 8.6 7.0 

(Kπ)π (Kππ0) 20.2 19.9 8.5 7.6 

(Kπ)π (Kπππ) 17.1 16.6 8.2 8.2 

(Kπ)π (KSππ) 19.0 16.7 8.0 8.0 

(Kππ0)π (Kπ) 25.9 19.5 7.8 7.8 

(Kππ0)π (Kππ0) 22.5 22.5 7.8 7.8 

(Kππ0)π (Kπππ) 19.5 19.5 8.8 8.8 

(Kπππ)π (Kπ) 19.0 16.8 9.3 8.4 

(Kπππ)π (Kππ0) 20.4 20.3 9.4 9.2 

(Kπππ)π (Kπππ) 17.1 17.1 9.0 9.0 

(KSππ)π (Kπ) 16.9 16.7 15.1 8.0 

(KSππ)π (Kππ0) 19.7 19.7 9.2 9.0 

(Kππ)π0 (Kπ) 16.4 16.3 6.6 6.6 

Table 4.12: Optimized |∆E| and −log(Lmass) cut values for the sub-modes 

of B− → D*−D0. 
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|∆E| (MeV) −log(Lmass) 
Sub-Mode 

Cut Value Lower Bound Cut Value Lower Bound 

(Kπ)π0 (KSπ) 23.5 16.4 10.3 6.6 

(Kπ)π0 (Kππ) 25.9 16.4 9.9 6.8 

(Kππ0)π0 (KSπ) 19.5 19.4 7.0 7.0 

(Kππ0)π0 (Kππ) 20.0 19.9 7.5 7.4 

(Kπππ)π0 (Kππ) 17.1 17.1 8.0 8.0 

(KSππ)π0 (Kππ) 16.6 16.6 9.2 8.2 

(Kπ)γ (Kππ) 24.6 24.6 6.4 6.4 

Table 4.13: Optimized |∆E| and −log(Lmass) cut values for the sub-modes 

of B− → D−D*0. 
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|∆E| (MeV) −log(Lmass) 
Sub-Mode 

Cut Value Lower Bound Cut Value Lower Bound

(Kπ)π0 (Kπ)π 35.7 17.9 14.6 8.2 

(Kπ)π0 (Kππ0)π 40.9 20.5 11.5 9.4 

(Kπ)π0 (Kπππ)π 34.0 18.0 11.7 9.6 

(Kπ)π0 (Kππ)π0 19.1 17.3 8.2 8.2 

(Kππ0)π0 (Kπ)π 21.0 20.8 17.5 8.8 

(Kππ0)π0 (Kππ0)π 23.9 23.2 9.8 9.8 

(Kππ0)π0 (Kπππ)π 30.6 20.5 9.6 9.6 

(Kπππ)π0 (Kπ)π 26.0 18.0 9.2 9.2 

(Kπππ)π0 (Kππ0)π 21.4 19.4 10.7 9.6 

(Kπππ)π0 (Kπππ)π 20.6 18.5 10.4 10.4 

(Kπ)γ (Kπ)π 43.6 26.8 8.9 8.0 

(Kπ)γ (Kππ0)π 29.3 28.2 8.7 8.6 

(Kπ)γ (Kπππ)π 27.3 27.0 9.0 9.0 

Table 4.14: Optimized |∆E| and −log(Lmass) cut values for the sub-modes 

of B− → D*−D*0. 
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−lD F 
B Mode 

Cut Value Efficiency (%) Cut Value Efficiency (%) 

B0 → D0D̄0 0.4 89.4 0.51 71.0 

B0 → D*0D̄0 0.4 88.0 0.53 75.6 

B0 → D*0D̄*0 1.6 97.3 0.60 89.6 

B0 → D+D− −1.3 82.5 0.62 90.8 

B0 → D*+D− – 100 – 100 

B0 → D*+D*− – 100 – 100 

B− → D−D0 −0.5 83.2 0.53 75.0 

B− → D*−D0 1.3 96.6 0.53 75.7 

B− → D−D*0 0.0 88.2 0.53 75.3 

B− → D*−D*0 – 100 0.60 88.6 

Table 4.15: Optimized −lD and F cut values and their efficiencies for each 

B mode. A dash indicates a cut is not applied. 
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B Mode BF (×10−4) Nsig Nbkg
sig

bkgsig

N

NN +
 (%)

bkgsig

sig

NN
N
+

 (%)

B0 → D0D̄0 0.1 3.9 246.4 406 1.6 

B0 → D*0D̄0 0.1 1.3 122.1 855 1.1 

B0 → D*0D̄*0 0.1 0.7 51.9 1040 1.4 

B0 → D+D− 1.6 44.0 53.3 22.4 45.2 

B0 → D*+D− 8.0 236.3 159.5 8.42 59.7 

B0 → D*+D*− 8.0 288.1 86.7 6.72 76.9 

B− → D−D0 3.2 127.7 364.0 17.4 26.0 

B− → D*−D0 3.2 131.0 246.2 14.8 34.7 

B− → D−D*0 3.2 57.0 247.2 30.6 18.7 

B− → D*−D*0 8.0 203.6 364.9 12.2 35.8 

Table 4.16: Assumed branching fraction, and expected signal, background, 

fractional uncertainty and purity for each B mode. 
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5 Determination of Branching Fractions 

In this chapter, we will show the steps involved in measuring the branching 

fractions of B → D(*)D̄(*) decays. We will start by deriving an equation that will allow us 

to find the branching fractions of several decays simultaneously. Using this equation, we 

can systematically deal with two major problems that we encounter in this analysis: 1) the 

false reconstruction of events from one of our B modes to another; and 2) the background 

from decays other than our B modes. Then, we will describe our method of extracting the 

signal from our samples of events that have passed all the selections mentioned in the 

previous chapter in order to obtain the quantities appearing in the equation. In the last 

section, we will solve the equation to determine our branching fractions. 

5.1 Theory 

Let eij be the efficiency of reconstructing in mode i for an event generated in 

mode j. Then, the number of events reconstructed in mode i is 

 ∑=
j

jiji NeD , (5.1) 

where Nj is the number of events generated in mode j. 

We can split the generated events into two sets: one set containing the modes 

whose branching fractions we are measuring (signal modes); the other set containing all 

the other modes (generic modes). Let us denote the signal modes by S. Then, we can 

write Equation (5.1) as 

 I
SJ

JJI
SJ

JIJ DNeNe =+ ∑∑
∉′

′′
∈

B , (5.2) 
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where BJ is the branching fraction of mode J; and  

 N is the total number of events generated. 

Defining the vector P = [PI] as 

 )(, SINeP
SJ

JJII ∈≡ ∑
∉′

′′ , (5.3) 

and the matrix C = [CIJ] as 

 ),(, SJIeC IJIJ ∈≡ , (5.4) 

Equation (5.2) becomes 

 )(, SIPDCN II
SJ

JIJ ∈−=∑
∈

B . (5.5) 

We shall call PI as the peaking background (the reason for this name will be clear 

later), and CIJ as cross feed. PI is the amount of background from generic decays while 

CIJ is the amount of false reconstruction of events from one signal mode to another. To 

solve for the branching fractions, we simply invert the matrix C to get 

 . (5.6) N/)(1 PDC −= −B

If our MC is perfect, we can easily count the number of events in the signal region 

mES ≥ 5.27 GeV/c2 to obtain P from generic MC, C from signal MC and D from real data. 

However, we choose not to count since there is a difference in the efficiencies between 

MC and data. Instead, we fit the mES distribution to extract the signal. This method is 

described below. 

5.2 mES Fit 

Our method of signal extraction is via a fit to the mES distribution known as the 

mES fit. The mES distribution can be thought of having two components. One is a signal 

 62  



   

component from correctly reconstructed events, which is Gaussian in shape and peaks at 

the B mass. The other is a background component from badly reconstructed cc̄ , uds and 

generic BB̄ events, whose shape can be described by the Argus function [28], 

 
⎩
⎨
⎧

≥
<−=

=
−

0ES

0ES
2

0ES
0ES for ,0

for ,)/(1,),;(
Em
EmEmueuEmA

uκ

κ . (5.7) 

Therefore, the function to fit the mES distribution is given by a sum of a Gaussian 

function and an Argus function: 

 ( )),;(),;()( 0ESbkgESsigESES EmANmGNmmf κσµ +∆= . (5.8) 

This is known as the mES function and is defined on the interval 5.2 ≤ mES ≤ 5.3 GeV/c2. 

In the fit to MC, the mean µ is fixed to 5.2795 GeV/c2 for B0 modes or 

5.2792 GeV/c2 for B− modes. For data, it is fixed to 5.2798 GeV/c2 for B0 modes or 

5.2796 GeV/c2 for B− modes. These values are obtained from a fit to common B modes in 

signal MC and in data. 

The width σ is fixed in the fit for both MC and data. Each B mode has its own 

value which is determined from signal MC. For data, since there are not enough events to 

determine σ for each B mode, the same value in MC is used. 

κ is called the shape parameter. It is fixed as per B mode in MC but free to vary in 

data. The fixed value is obtained from a fit to generic MC after fixing µ and σ. 

E0 is the end-point of the mES distribution; a limit determined by the beam energy. 

For purpose of fitting, we fix E0 to 5.2891 GeV/c2 in MC or 5.2895 GeV/c2 in data. These 

values are obtained from a fit to all modes in generic MC or in data respectively. 

∆mES is the bin width used in the fit and is fixed to 2 MeV/c2, corresponding to 

fifty bins in the interval 5.2 ≤ mES ≤ 5.3 GeV/c2. 
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Nsig is called the signal yield. It can be interpreted as the number of signal events 

in the sample. Nsig is allowed to be negative in the fit. 

Nbkg is the normalization constant for the Argus function. It is a free parameter 

and scales with the amount of background in the mES distribution. It is constrained to be 

positive in the fit. 

Finally, the fit is performed using the least χ2 method. In the following sections, 

we will describe how we use the mES fit to obtain P, C and D in Equation (5.6). 

5.3 Peaking Background 

We can rewrite Equation (5.3) as 

 ∑
∉′

′=
SJ

JII nP , (5.9) 

where nIJ′ is the number of events reconstructed in B mode I from mode J′, and determine 

PI as a signal yield from generic MC10. 

Each event in generic MC is weighted by a factor to correct for the efficiency 

difference between data and MC. Each type of generic MC is also scaled appropriately to 

match the amount of collected data before fitting the mES distribution of events 

reconstructed in B mode I to obtain PI. In the mES fits, µ, σ and κ are fixed as mentioned 

in the earlier section. 

                                                 

nd”. 

10 We will now explain the name “peaking background” for PI. The Argus function is adequate to model 

the cc̄ and uds backgrounds that are not expected to peak in the signal region, hence the signal yield will 

not include such events. However, it is possible for events from a few generic BB̄ decays to peak at the B 

mass. In this case, PI will contain these peaking generic BB̄ events, thus the name “peaking backgrou
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Table 5.1 shows the signal yields from each type of generic MC. As expected, the 

peaking backgrounds from cc̄  and uds events are not significant (less than three standard 

deviations from zero). Hence, to reduce the uncertainties on PI, we assume no peaking 

background from cc̄  and uds events, and use only B0B̄0 and B+B− MC to determine PI. 

Furthermore, the table indicates significant peaking backgrounds for B0 → D0D̄0, 

B0 → D*0D̄0, B0 → D+D− and B− → D−D*0. For B0 → D+D−, this is mainly due to B0 

decaying to D−K+X or D−π+X, where D− decays to K+π−π− or KSπ−, and X is KS, ρ, a1 or ω. 

The light mesons (K+X) or (π+X) fake a D+ → K−π+π− or D+ → KSπ+ decay. 

B Mode B0B̄0 B+B− cc̄  uds 

B0 → D0D̄0 16.11 ± 3.16 −10.27 ± 3.50 −0.29 ± 4.07 −1.27 ± 1.48 

B0 → D*0D̄0 8.28 ± 2.02 −4.71 ± 2.51 −4.69 ± 1.71 0.00 ± 0.00 

B0 → D*0D̄*0 1.04 ± 1.04 −1.70 ± 1.71 −0.81 ± 1.59 0.00 ± 0.00 

B0 → D+D− 9.79 ± 2.18 0.12 ± 0.82 −0.18 ± 1.84 0.00 ± 0.00 

B0 → D*+D− 6.84 ± 2.92 0.04 ± 1.47 7.87 ± 4.70 0.69 ± 1.59 

B0 → D*+D*− 0.19 ± 2.16 −0.66 ± 0.70 −0.48 ± 2.60 0.00 ± 0.00 

B− → D−D0 −2.12 ± 3.71 3.82 ± 3.82 7.44 ± 6.03 0.16 ± 2.87 

B− → D*−D0 1.05 ± 3.38 7.95 ± 2.84 −1.37 ± 3.72 0.00 ± 0.00 

B− → D−D*0 −1.18 ± 2.46 28.44 ± 3.93 −7.57 ± 2.93 −1.62 ± 1.34 

B− → D*−D*0 −2.81 ± 3.48 −2.12 ± 2.52 −1.64 ± 3.41 0.00 ± 0.00 

Table 5.1: Peaking background from each type of generic MC. 
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Sub-Mode Efficiency (×10−4) Peaking Background 

(Kππ) (KSπ) 2.11 ± 0.02 8.46 ± 1.51 

(Kππ) (Kππ) 9.50 ± 0.08 3.57 ± 1.50 

Table 5.2: Branching fraction-weighted efficiencies from signal MC and 

peaking background from B0B̄0 MC for the sub-modes of B0 → D+D−. 

To see if we can reduce the peaking background of B0 → D+D−, we look at each 

sub-mode's contribution and its efficiency (weighted by the sub-mode’s branching 

fraction) from signal MC. From Table 5.2, one can see it would be beneficial to remove 

the sub-mode (Kππ) (KSπ). The same study is done for the other B modes which show 

possible peaking background. We remove sub-modes with high peaking background and 

low efficiencies so that the overall peaking background for the B mode is consistent with 

zero to two standard deviations. We list the sub-modes being removed below. 

• B0 → D0D̄0: (Kπ) (KSππ), (Kπ) (Kπ). 

• B0 → D*0D̄0: (Kππ0)π0 (Kπ), (Kπππ)π0 (Kπ). 

• B0 → D+D−: (Kππ) (KSπ). 

• B0 → D*+D−: (Kπ)π (KSπ). 

• B− → D−D0: (Kπ) (KSπ). 

• B− → D*−D0: (Kππ0)π (Kππ0). 

• B− → D−D*0: (Kπ)γ (Kππ), (Kπππ)π0 (Kππ), (Kππ0)π0 (KSπ), (Kπ)π0 (KSπ). 

The remaining sub-modes after removing the above dirty modes will be used for 

our analysis from now on. Using the clean modes, we determine PI from B0B̄0 and B+B− 

MC which is shown in Table 5.3. The mES fits are shown below the table. 
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B Mode I µ (GeV/c2) σ (MeV/c2) κ PI

B0 → D0D̄0 1 5.2795 2.48 45.98 −7.99 ± 4.10 

B0 → D*0D̄0 2 5.2795 2.68 41.00 −2.09 ± 2.57 

B0 → D*0D̄*0 3 5.2795 3.05 40.26 −1.98 ± 1.92 

B0 → D+D− 4 5.2795 2.44 51.08 1.04 ± 1.78 

B0 → D*+D− 5 5.2795 2.50 31.36 0.94 ± 3.08 

B0 → D*+D*− 6 5.2795 2.61 54.74 −0.87 ± 2.33 

B− → D−D0 7 5.2792 2.47 45.15 −1.63 ± 5.19 

B− → D*−D0 8 5.2792 2.51 29.94 0.96 ± 3.73 

B− → D−D*0 9 5.2792 2.64 30.58 2.74 ± 2.65 

B− → D*−D*0 10 5.2792 3.09 47.26 −5.20 ± 4.35 

Table 5.3: Peaking background (PI) from B0B̄0 and B+B− MC for each B 

mode. Also shown are the fixed values of µ, σ and κ used in the mES fits. 
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Figure 5.1: The mES fit to B0B̄0 and B+
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B− MC for each B mode. 

m signal MC by rewriting Equation (5.4), 

),(, SJIj ∈ , (5.10) 

  



   

where bj is the branching fraction of sub-mode j;  

 nIj is the number of events reconstructed in B mode I from sub-mode j; and  

 Nj is the number of generated events in sub-mode j. 

If we treat nIj as a signal yield from the mES distribution of sub-mode j, then CIJ is 

a signal yield from a weighted sum of mES distributions. Hence, we determine CIJ from 

signal MC as follows. After applying the efficiency correction factors to the events, the 

mES distributions for B mode I from the sub-modes j of J are weighted by bj ⁄ Nj and 

summed together. If this weighted sum of distributions has more than fifty entries, we 

take CIJ as the signal yield from an mES fit to the summed distribution, else CIJ is assumed 

to be zero since a fit is unreliable when the number of entries is low. The maximum 

amount of cross feed neglected (by integrating over the signal regions of neglected CIJ’s 

distributions of the same row) is 0.14% of CII. In the mES fit for CIJ, the parameters µ, σ 

and κ of row I are fixed according to Table 5.3. 

Due to page constraint, we are unable to show the mES fits for the full 10 × 10 

cross feed matrix. As an illustration, we show the mES fits for the modes with dominant 

non-diagonal elements in Figure 5.2. The cross feed matrix for the ten B modes is shown 

in Table 5.4. 

In reality, the simple model (Gaussian for signal and Argus for background) is not 

enough to describe the shapes of the non-diagonal distributions11. However, since most of 

these elements are small compared to the diagonal, they would not affect the branching 

fractions by much. We perform a study based on a detailed simulation of the 2 × 2 

                                                 

11 It is difficult to come up with a model that will fit for all the elements correctly. 
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distributions shown in Figure 5.2 for B0 → D*+D*− and B− → D*−D*0 modes that have the 

biggest non-diagonal cross feed contributions. The study gives a maximum possible bias 

of 7% to the branching fractions when such a simple model is used in the mES fit. Since 

the bias is small compared to the total uncertainty, a correction for this bias is not applied 

to our results. 

 

Figure 5.2: The mES fits for the 3 × 3 cross feed matrix for B0 → D*+D*−, 

B0 → D*0D̄*0 and B− → D*−D*0 in the same order as Table 5.4. 
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×10−3 D*+D*− D*0D̄*0 D*−D*0 D*+D− D−D*0 D*0D̄0 D*−D0 D0D̄0 D−D0 D+D−

B0 → D*+D*− 1.424(6) 0.000(0) 0.018(1) 0.001(0) 0     0 0.000(0) 0 0 0

B0 → D*0D̄*0 0.008(0) 0.260(2) 0.042(1) 0    0.000(0) 0.003(0) 0.001(0) 0 0 0

B− → D*−D*0 0.260(2) 0.023(1) 0.752(4) 0.000(0) 0    0.001(0) 0.007(1) 0 0 0

B0 → D*+D− 0.002(0)  0 0.001(0) 1.152(6) 0.008(1) 0    0.004(0) 0 0 0

B− → D−D*0 0.000(0) 0.001(0) 0.000(0) 0.041(1) 0.370(3) 0.001(0) 0.007(0) 0 0.000(0) 0.000(0)

B0 → D*0D̄0 0.000(0) 0.002(0) 0.001(0) 0.000(0) 0.001(0) 0.340(2) 0.046(1) 0.000(0) 0  0

B− → D*−D0 0.004(0) 0.000(0) 0.003(0) 0.006(0) 0.004(0) 0.011(1) 1.351(6) 0   0 0

B0 → D0D̄0 0.000(0) 0.000(0) 0.000(0) 0.000(0) 0.000(0) 0.001(0) 0.001(0) 1.202(10) 0.002(0) 0 

B− → D−D0 0.000(0) 0.000(0) 0.000(0) 0.002(0) 0.002(0) 0.001(0) 0.001(0) 0.005(1) 1.493(9) 0.006(1)

B0 → D+D−        0 0 0 0 0.000(0) 0 0 0 0.001(0) 0.951(8)

Table 5.4: Values and uncertainties (in parentheses) of the cross feed matrix for the ten B modes, grouped to show the 

sub-matrices (shaded) with significant cross feeds. Elements without uncertainties correspond to unfitted histograms 

with less than fifty entries. Their signal yields are assumed zero. The mES fits for the first 3 × 3 sub-matrix is shown in 

Figure 5.2. 



   

5.5 Data Yields 

DI is determined as a signal yield from data (in short, known as a data yield). We 

perform an mES fit on data for events reconstructed in B mode I to get DI. In the mES fit, µ 

and σ are fixed as shown in Table 5.5, while κ is free to vary. The data yields and mES fits 

are shown below. 

Decay Mode I µ (GeV/c2) σ (MeV/c2) κ DI

B0 → D0D̄0 1 5.2798 2.48 45.39 −10.60 ± 12.30 

B0 → D*0D̄0 2 5.2798 2.68 48.04 9.92 ± 8.36 

B0 → D*0D̄*0 3 5.2798 3.05 54.19 −0.32 ± 6.20 

B0 → D+D− 4 5.2798 2.44 40.77 62.97 ± 9.45 

B0 → D*+D− 5 5.2798 2.50 37.86 155.63 ± 17.04 

B0 → D*+D*− 6 5.2798 2.61 50.15 269.93 ± 18.59 

B− → D−D0 7 5.2796 2.47 41.15 129.44 ± 19.83 

B− → D*−D0 8 5.2796 2.51 35.41 115.31 ± 16.36 

B− → D−D*0 9 5.2796 2.64 36.40 62.94 ± 11.25 

B− → D*−D*0 10 5.2796 3.09 48.21 185.28 ± 19.87 

Table 5.5: Data yield (DI) for each B mode. The parameters µ and σ are 

fixed in the mES fit while κ is obtained from the fit. 
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Figure 5.3: The mES fit to data for eac

6 Branching Fraction Values 

With all the ingredients C, P and D 

nd the branching fractions of all the B mo

esons, therefore for B0 modes,  

N = Number of B0 mesons in data = 2
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h B mode. 

in place, we can now use Equation (5.6) to 

des. Since each BB̄ event produces two B 

 × Number of B0B̄0 events.  

  



   

Similarly for B− modes. If we assume that the branching fractions of Υ(4S) → B0B̄0 and 

Υ(4S) → B+B− are equal, then for all B modes,  

 N = Number of BB̄ events = NB = 2.32 × 108. 

To propagate the errors of the cross feed matrix, we use the formula [29]: 

 , (5.11) ),cov(),cov(),cov( 1111
LKJLIKJLIKLKJI FFCCCCFF −−−− +=BB

where FI = (DI − PI) ⁄ NB and 

 . (5.12) ),cov(),cov( 111111
PQMNQLJPNKIMJLIK CCCCCCCC −−−−−− =

Summation over repeated indices is implied. 

If we assume that the elements between P and D are uncorrelated, then Equation 

(5.11) becomes12

 .(5.13) ),cov(),cov(),cov(),cov( 111111
LKJLIKLKJLIKJLIKLKJI DDCCPPCCCCFF −−−−−− ++=BB

In this form, we can treat the uncertainties of branching fractions as having three 

parts. The first and second terms on the right-hand-side of the equation are, respectively, 

the systematic uncertainties from cross feed and peaking background, while the last term 

is the statistical uncertainty from data. 

In using the formula, we assume that cov(CMN, CPQ) = 0 for M ≠ P or N ≠ Q, and 

cov(PK, PL) = cov(DK, DL) = 0 for K ≠ L. The branching fractions and their uncertainties 

using these assumptions are shown in Table 5.6. The covariance matrix of B (excluding 

the cross feed and peaking background systematic uncertainties) is shown in Table 5.7. 

                                                 

12 The uncertainty of NB is treated as a systematic uncertainty later. 
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B Mode BI ),cov(11
LKILIK DDCC −− ),cov( 11 −−

ILIKLK CCFF  ),cov(11
LKILIK PPCC −−

B0 → D0D̄0 −0.10 0.44 (433.5%) 0.002 (1.6%) 0.15 (144.6%) 

B0 → D*0D̄0 1.01 1.07 (105.3%) 0.011 (1.1%) 0.33 (32.3%) 

B0 → D*0D̄*0 −1.31 1.05 (80.0%) 0.024 (1.9%) 0.32 (24.5%) 

B0 → D+D− 2.81 0.43 (15.3%) 0.024 (0.8%) 0.08 (2.9%) 

B0 → D*+D− 5.72 0.64 (11.2%) 0.032 (0.6%) 0.12 (2.0%) 

B0 → D*+D*− 8.11 0.57 (7.0%) 0.032 (0.4%) 0.07 (0.9%) 

B− → D−D0 3.76 0.57 (15.3%) 0.023 (0.6%) 0.15 (4.0%) 

B− → D*−D0 3.56 0.52 (14.7%) 0.016 (0.4%) 0.12 (3.4%) 

B− → D−D*0 6.30 1.32 (20.9%) 0.062 (1.0%) 0.31 (4.9%) 

B− → D*−D*0 8.14 1.17 (14.4%) 0.048 (0.6%) 0.25 (3.1%) 

Table 5.6: Branching fractions (BI) of all B modes. Statistical 

uncertainties from data are shown in the third column while systematic 

uncertainties due to cross feed and peaking background are shown in the 

fourth and fifth columns respectively. All values are in 10−4. 
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×10−8 D0D̄0 D*0D̄0 D*0D̄*0 D+D− D*+D− D*+D*− D−D0 D*−D0 D−D*0 D*−D*0

D0D̄0 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

D*0D̄0 0.00 1.13 −0.02 0.00 0.00 0.00 0.00 −0.05 0.00 0.00 

D*0D̄*0 0.00 −0.02 1.10 0.00 0.00 0.01 0.00 0.00 0.00 −0.25

D+D− 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.00 

D*+D− 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.00 −0.06 0.00 

D*+D*− 0.00 0.00 0.01 0.00 0.00 0.32 0.00 0.00 0.00 −0.13

D−D0 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 

D*−D0 0.00 −0.05 0.00 0.00 0.00 0.00 0.00 0.27 −0.01 −0.01

D−D*0 0.00 0.00 0.00 0.00 −0.06 0.00 0.00 −0.01 1.73 0.00 

D*−D*0 0.00 0.00 −0.25 0.00 0.00 −0.13 0.00 −0.01 0.00 1.37 

Table 5.7: Covariance matrix for the branching fractions. Cross feed and 

peaking background systematic uncertainties are not included. 

There are, of course, other sources of errors besides cross feed’s and peaking 

background’s that we have not considered. These errors are treated as systematic 

uncertainties (as opposed to statistical uncertainty which only depends on the amount of 

collected data) in the next chapter. 
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6 Systematic Uncertainties 

Other sources of uncertainties (besides cross feed and peaking background) that 

affect the branching fraction measurements are examined in this chapter. In evaluating 

their systematic uncertainties, one has to be careful in propagating the errors through the 

cross feed matrix. For convenience, we reproduce the error propagation formula below, 

where we have added the uncertainty of NB: 

 
),cov(),cov(

)var(),cov(),cov(),cov(

111111

2
1111

PQMNQLJPNKIMJLIK

B
B

JI
LKJLIKJLIKLKJI

CCCCCCCC

N
N

FFCCCCFF

−−−−−−

−−−−

=

++=
BB

BB
, (6.1) 

and F = (D − P) ⁄ NB. 

We can classify the errors into three types: 

1. Error that does not need to be propagated through the cross feed matrix like the 

error of NB. 

2. Error that needs to be propagated through the first term like the cross feed errors. 

3. Error that needs to be propagated through the second term like the data errors. 

Therefore, depending on the nature of the error, it will be treated as one of the 

above types when propagating through Equation (6.1) to determine its systematic effect 

on the uncertainties of the branching fractions BI. 

6.1 Number of Events in Data 

The number of BB̄ events (NB = 2.32 × 108) measured in data has an uncertainty 

of 2.6 × 106 events. This corresponds to a systematic uncertainty of 1.1% on BI. 
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6.2 Sub-modes’ Branching Fractions 

When calculating the cross feed matrix C, we use the D(*) branching fractions that 

are taken from the PDG to weight the MC events. These branching fractions can be split 

into four independent groups: D*+, D*0, D0 and D+. A systematic uncertainty is incurred 

from the uncertainties of each group. 

To propagate the errors, one needs to expand CIJ to the sub-mode level: 

 ∑
∈

=
}modes-sub s'{Jj
jIjIJ eC b , (6.2) 

where bj is the branching fraction of sub-mode j; and  

 eIj is the efficiency of reconstructing in mode I an event generated in mode j. 

Then, we have 

 ( )∑ ∑
∈ ∈

+=
}modes-sub s'{ }modes-sub s'{

),cov(),cov(),cov(
Nn Qq

PqMnqnqnPqMnPQMN eeeeCC bbbb . (6.3) 

The systematic uncertainty due to the sub-modes’ branching fractions is therefore 

given by the first term in Equation (6.3). The efficiency eIj is obtained in the same way as 

C: via an mES fit to signal MC events generated in sub-mode j and reconstructed in B 

mode I, with the parameters µ, σ and κ fixed as before. The errors after propagating 

through Equation (6.1) give us the required systematic uncertainties of B. 

6.3 Efficiency Correction Factors 

Each event in MC is weighted by a factor to correct for the efficiency difference 

between data and MC. Each factor is a product of efficiency corrections determined from 

four separate studies (which we will not go into details here): 
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• Tracking efficiency of charged particles (π±, K±) 

• KS reconstruction 

• Reconstruction of neutral particles (π0, γ) 

• Kaon particle identification (PID) 

From the results of these studies, an uncertainty (see Table 6.1) is assigned to 

each candidate based on its type. These uncertainties enter through the second term in 

Equation (6.3). The overall uncertainty of the correction factors on eIj depends on the 

sub-mode j. For example, the sub-mode (Kππ0)π (KSππ)π has four charged daughters 

from D0 (one kaon and three π±), two slow π±, one KS, one π0, and one kaon with PID13. 

From Table 6.1, we have  

 var(eIj) = (eIj)2 × [(4 × 0.8 + 2 × 2.2)2 + (2.5)2 + (3.0)2 + (2.5)2] × 10−4  

  = (7.93 × 10−3)(eIj)2.  

Since the first two uncertainties (0.8% and 2.2%) are derived from the same study, we 

treat them as 100% correlated and add them linearly. The same is true for π0 and γ that 

appear together in a sub-mode. The systematic uncertainties of B due to the efficiency 

corrections are obtained after propagating the errors through Equation (6.1). 

                                                 

13 The kaon gets two corrections: one from tracking, the other from PID. 
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Type Uncertainty (%)

π± or K± daughters of D 0.8 

Slow π± from D*± 2.2 

KS 2.5 

π0 3.0 

γ 1.8 

Kaon identification 2.5 

Table 6.1: Uncertainty of the efficiency correction for each type of 

candidate. Values of the same color are determined from the same study 

and hence correlated. 

6.4 Selection Differences Between Data and MC 

Each of the cuts used to select our events has slightly different efficiencies in data 

and in MC. As a result, C and P as estimated from MC will not reproduce exactly the 

values in data. In this section, we will consider the cuts |∆E|, −log(Lmass), −lD and F for B 

selection (Section 4.3), and P(χ2) and Dalitz weight for D selection (Section 3.8). The 

selection differences for π±, K±, KS, π0 and γ are treated in Section 6.3. 

To study the selection differences, B0 → Ds
*+D*− events from data and generic 

MC are used. These events have similar decay shapes to B → D(*)D̄(*) events. They are 

also reconstructed using the same D(*) decays with similar techniques as B → D(*)D̄(*). 

The much larger branching fraction of B0 → Ds
*+D*− (about twenty times more than that 
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of B0 → D*+D*−) allows us to have a reasonably sized data sample from which to measure 

the systematic differences between data and MC. 

 

Figure 6.1: A fit to the mES distribution in data for B0 → Ds
*+D*− using a 

Crystal Ball + Argus function. 

Figure 6.1 shows the mES distribution of B0 → Ds
*+D*− events after making cuts of 

|∆E| ≤ 35 MeV, −log(Lmass) ≤ 15, P(χ2) ≥ 0.001 (on both Ds and D candidates) and Dalitz 

weight ≥ 0.06. The fit is done using a Crystal Ball function for the signal and an Argus 

function for the background. The Crystal Ball function is defined as 
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Note that α is negative and denotes the point where the exponential tail begins. 
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We begin by finding the ratio r ≡ Ndata ⁄ NMC, where Ndata (NMC) is the number of 

B0 → Ds
*+D*− events seen in data (MC). Ndata (NMC) is determined from a fit to the mES 

distribution in data (MC) using a Crystal Ball + Argus function with µ and E0 (end-point 

of the Argus function) fixed. To reduce the systematic differences between data and MC, 

we use the double ratio r′ ≡ r ⁄ r0, where r0 is the ratio when the cuts |∆E| ≤ 35 MeV, 

−log(Lmass) ≤ 15, P(χ2) ≥ 0.001 and Dalitz weight ≥ 0.06 are applied. 

For P(χ2) and Dalitz weight, where the cuts are uniform across all B modes, we 

take the percentage change in r′ before and after each cut (in addition to |∆E| ≤ 35 MeV 

and −log(Lmass) ≤ 15) as the systematic uncertainty for that cut. The results are 3.80% for 

P(χ2) and 1.56% for Dalitz weight. The P(χ2) cut affects the efficiencies equally for all B 

modes, hence it is similar to NB and we treat it as a Type 1 error. For the Dalitz weight 

cut, it is only applied to sub-modes containing the decay D0 → K−π+π0, so it is treated as a 

Type 2 error. 

For each of the cuts |∆E|, −log(Lmass), −lD and F, where it varies across the sub-

modes or B modes, we plot r′ as a function of the cut value while fixing the other cuts to 

the values used to find r0. The root-mean-square of r′ over a range of cut values that gives 

the same efficiencies as B → D(*)D̄(*) MC is taken as the systematic uncertainty for that 

cut. The results are shown in Figure 6.2. These errors are treated as Type 1. 
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Figure 6.2: Graphs of r′ vs. |∆E|, −log(Lmass), −lD and F cuts. The root-

mean-square (rms) of r′ for each graph is also shown. 

6.5 Fit Model 

The data yield is obtained from an mES fit where the mean (µ), width (σ) and end-

point (E0) are fixed. These parameters are estimated and have uncertainties in them, 

giving rise to an uncertainty on the fit model. 
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For σ, the value is taken from signal MC for each B mode. To estimate its 

uncertainty due to possible differences between data’s and signal MC’s mES resolutions, 

we first look at this difference (∆σ = σdata − σMC) for those modes of high purity, 

including B0 → Ds
*+D*−. From Table 6.2, we see that these differences are consistent with 

zero, which justify our use of σMC in obtaining the data yields. We then find the weighted 

average of ∆σ, which is 0.11 ± 0.08 MeV/c2. As a conservative estimate, we repeat the 

data yield determination of each B mode by moving σ up and down by 0.2 MeV/c2, and 

take the average change in data yield as the uncertainty of σ on the fit model. 

B Mode σMC (MeV/c2) σdata (MeV/c2) ∆σ (MeV/c2) 

B0 → D*+D− 2.50 ± 0.01 2.47 ± 0.30 0.03 ± 0.30 

B0 → D*+D*− 2.61 ± 0.01 2.49 ± 0.16 0.12 ± 0.16 

B− → D*−D*0 3.09 ± 0.02 3.22 ± 0.36 0.13 ± 0.36 

B0 → Ds
*+D*− 2.64 ± 0.05 2.76 ± 0.10 0.12 ± 0.11 

Table 6.2: mES resolutions of signal MC and data for high purity modes. 

For µ and E0, they are estimated from a fit to common modes in data. Hence, we 

move the parameters up and down by their uncertainties from the fit (0.2 MeV/c2 for µ 

and 0.1 MeV/c2 for E0) to obtain their corresponding uncertainties on the fit model. 

For each B mode I, the total uncertainty of the fit model is given by a quadratic 

sum of the three uncertainties from µ, σ and E0. Since the fit model affects the data yield 

directly, the sum is propagated as a Type 3 error to give a systematic uncertainty on BI. 

The results are shown in Table 6.3. 
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B Mode µ σ E0 Sum Systematic Uncertainty (×10−4)

B0 → D0D̄0 0.60 0.93 0.62 1.27 0.05 

B0 → D*0D̄0 0.02 0.52 0.09 0.52 0.07 

B0 → D*0D̄*0 0.00 0.16 0.08 0.18 0.07 

B0 → D+D− 1.58 1.08 0.03 1.91 0.09 

B0 → D*+D− 0.56 5.44 0.20 5.48 0.21 

B0 → D*+D*− 1.24 4.65 0.19 4.82 0.15 

B− → D−D0 0.71 4.64 0.04 4.70 0.14 

B− → D*−D0 2.06 1.81 1.43 3.10 0.10 

B− → D−D*0 0.10 3.75 0.12 3.75 0.44 

B− → D*−D*0 0.71 6.83 0.07 6.87 0.40 

Table 6.3: Uncertainties (changes in data yields) on the fit model due to 

fixing µ, σ and E0 in the mES fits. The square-root of the quadratic sum of 

these uncertainties is given in the fifth column, which is used to find the 

systematic uncertainty due to the fit model. 

6.6 Decay Models 

For B0 → D*0D̄*0, B0 → D*+D*− and B− → D*−D*0 decays, the excited states of 

both daughters in each decay result in three possible configurations for the decay 

products. The distribution of the decay products is therefore a combination of the three 

configurations, with each having a certain probability that the B meson can decay to [30]. 
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Using B0 → D*+D*− → (D0π+) (D−π0) as an example, let us define a frame, called 

the transversity frame, by the coordinates (see Figure 6.3): 

• θ1, the angle between the momentum of π0 in the rest frame of D*− and the 

momentum of D*− in the rest frame of B0; 

• θtr, the angle between the normal to the decay plane of D*− and the 

momentum of π+ in the rest frame of D*+; and 

• the corresponding azimuthal angle φtr. 

 

θtr
D−

φtrD*+

D0

B0D*−

π0θ1

π+

Figure 6.3: Transversity frame for B0 → D*+D*− → (D0π+) (D−π0). Each 

straight arrow represents a particle’s momentum in its parent’s rest frame. 

In this frame, we can express the normalized angular distribution of the decay 

products as 
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where14 −1 ≤ a ≤ 1, 0 ≤ R ≤ 1 and −π ≤ δ < π. 

Our signal MC is generated using a particular set of (a, R, δ), which may not give 

the true decay model in data. From Equation (6.5), it is clear that different values of a, R 

and δ will result in different pt distributions of the slow pions. Since the efficiency of 

reconstructing a slow pion depends on its pt (see Figure 6.4), an uncertainty from the lack 

of knowledge of the true decay model is incurred on C. 

 

Figure 6.4: Efficiency of the slow π± as a function of its pt from MC. 

                                                 

14 We will not elaborate on the decay parameters a, R and δ, but just remark that R is one of the three decay 

probabilities, a is the ratio of the difference to the sum of the other two decay probabilities, and δ completes 

the set of three independent parameters that governs the decay model of a B meson decaying to two D* 

mesons. A discussion of the decay parameters is given in [31]. 
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To estimate this uncertainty, we produce a MC sample for each B → D*D̄* mode 

using a uniform angular distribution. For each parameter a, R or δ, a random number is 

selected from a uniform distribution over the parameter’s allowed range of values. For R 

of B0 → D*+D*−, since it has been measured in [31], a Gaussian distribution with mean 

and width fixed to the measured value and uncertainty is used instead. Each event in the 

MC sample is then weighted by the angular distribution given by the randomly selected a, 

R and δ, and the value of CII (assuming CIJ = 0 for I ≠ J) is obtained as before. The 

process is repeated a thousand times and the root-mean-squares of CII are determined, 

which are then propagated as Type 2 errors to give the systematic uncertainties of B due 

to the unknown decay models. The results are shown in Table 6.4, which also 

summarizes all the systematic uncertainties in the previous sections. 

6.7 Summary 
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Table 6.4: Systematic uncertainties (%) of the branching fractions of all B modes estimated from Equation (6.1). Type 

1 errors are shaded in red, Type 2 in green and Type 3 in blue. The total is a square-root of the quadratic sum of the 

uncertainties in each column. 

Systematic Uncertainty D0D̄0 D*0D̄0 D*0D̄*0 D+D− D*+D− D*+D*− D−D0 D*−D0 D−D*0 D*−D*0

NB 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 
P(χ2) cut 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 

−log(Lmass) cut 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 
|∆E| cut 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 
−lD cut 0.8 0.8 0.8 0.8 0.0 0.0 0.8 0.8 0.8 0.0 
F cut 0.9 0.9 0.9 0.9 0.0 0.0 0.9 0.9 0.9 0.9 

D*+ branching fractions 0.0 0.1 0.9 0.0 0.7 1.4 0.0 0.7 0.0 0.7 
D*0 branching fractions 0.0 1.6 4.9 0.0 0.0 0.0 0.0 0.0 4.4 2.1 
D0 branching fractions 5.7 3.7 7.4 0.0 2.7 5.0 2.7 4.5 3.3 5.2 
D+ branching fractions 0.4 0.2 0.1 13.2 6.5 1.4 6.5 0.3 6.5 0.1 

Tracking correction 4.7 3.0 7.9 4.8 6.5 7.9 4.4 6.0 3.8 6.0 
Neutrals correction 1.9 2.9 8.4 0.0 1.0 2.5 1.0 1.6 4.3 4.6 

KS correction 0.0 0.1 0.0 0.0 0.2 0.3 0.2 0.2 0.3 0.1 
Kaon PID correction 5.4 4.9 7.3 5.0 4.7 4.6 4.7 4.6 4.6 5.0 

Dalitz weight cut 1.0 0.2 1.4 0.0 0.5 1.0 0.5 0.8 0.7 1.0 
Decay model 0.1 0.0 6.1 0.0 0.0 1.0 0.0 0.0 0.0 4.1 

Cross feed 44.6 6.7 5.4 3.1 3.6 1.8 3.6 2.8 7.0 4.9 
Peaking background 144.6 32.3 24.5 2.9 2.0 0.9 4.0 3.4 4.9 3.1 

Fit model 1.6 1.1 1.9 0.8 0.6 0.4 0.6 0.4 1.0 0.6 
Total 151.7 34.2         31.0 16.1 12.3 12.0 11.9 11.0 14.8 13.6



   

7 Upper Limits 

For B0 → D(*)0D̄(*)0 decays whose data yields are consistent with zero, upper 

limits are determined for their branching fractions at the 90% confidence level. Such an 

upper limit can be estimated from the likelihood ratio method. 

7.1 Likelihood Ratio Method 

For an event α in data or generic MC reconstructed in B mode I, (I = 1, …, 10), 

the likelihood is given by 

 , (7.1) )(),;(),;()( ES0,bkg,sig mxExANxGNxf tt
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where G is a Gaussian function and A is an Argus function. The event type (data or MC) 

is denoted by t. To account for cross feed and peaking background, we set 
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where n is the sample size which is treated to have a Poisson distribution; and  

 α denotes an event belonging to the sample. 

For clarity, we have dropped the superscript “t” and subscript “I” on λ, n, Nsig and Nbkg in 

the above equation. The full likelihood for all our events in data and generic MC is 
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The maximum likelihood estimates of B are obtained by maximizing L with 

respect to κdata, P and B while keeping the other parameters (with NB = 2.32 × 108 and 

σdata = σMC) fixed to the values described in Section 5.2. In the maximum likelihood fit, 

the cross feed C is also fixed and taken from Table 5.4. The likelihood Lmax from this fit 

is then used to find the likelihood ratio (for a given B mode I) 

 ⎟⎟
⎠

⎞
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⎝

⎛
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)(
log2LR max

IBL
L

I , (7.5) 

where L(BI) is the likelihood from a fit with BI fixed. 
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for our likelihood ratio via a simulation involving B0 → D*0D̄*0 and B− → D*−D*0.) Since 

χ2
1 < LR80 corresponds to a two-sided 80% confidence interval, a 90% upper limit for the 

branching fraction is then given by the value of BI when LRI = LR80. 

The above method, however, does not guarantee that the upper limits will always 

be greater than zero. To ensure that the limits will always correspond to physical values, 

we make use of the Feldman-Cousins method [33]. 

7.2 Feldman-Cousins Method 

Let BMLE be the maximum likelihood estimate of B for a given B mode. (We will 

drop the subscript “I” of denoting a B mode in this section.) From Section 7.1, we find 

that the distribution of BMLE is approximately Gaussian with width s
B
 given by 

 
80

MLE90

LR
BB

B
−

=s , (7.6) 

where B90 is the 90% upper limit from the likelihood ratio method. 

Using the Gaussian approximation, we determine the measured mean 

 
B

B
s

x MLE
0 ≡ . (7.7) 
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Then, applying the Feldman-Cousins method, a 90% upper limit15 for B is obtained by 

multiplying the 90% upper limit of x0 (from Figure 7.2) by the estimated width s
B
. The 

results are shown in Table 7.1. 

 

Figure 7.2: Feldman-Cousins 90% confidence intervals (constrained to be 

non-negative) for the mean of a Gaussian distribution with unit width. The 

curve shows the upper limits of the measured mean x0 taken from Table X 

of [3 ]. The lower limits are all zero for the range of x3

                                                

0 shown. 

 

15 The Feldman-Cousins method actually gives a two-sided confidence interval. For the B0 → D(*)0D̄(*)0 

decays, the lower limits are all zero at the 90% confidence level. Put in another way, we have not observed 

any signal for these decays at the 90% level. 
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B Mode LR (×10−4) FC (×10−4)

B0 → D0D̄0 0.40 0.59 

B0 → D*0D̄0 2.44 2.85 

B0 → D*0D̄*0 0.32 0.91 

Table 7.1: 90% upper limits for the branching fractions of B0 → D(*)0D̄(*)0 

decays from the likelihood ratio (LR) and Feldman-Cousins (FC) methods. 

7.3 Systematic uncertainties 

Now, we add the systematic uncertainties to the upper limits. From Table 6.4, the 

dominant sources are the peaking background and the fit model. The systematic 

uncertainty from the peaking background is accounted for in constructing the likelihood L 

(see Equation (7.2)). For the fit model, its systematic uncertainty can be determined by 

adding to −2logL a χ2 constraint 

 ∑
=

⎟⎟
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⎞
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⎝

⎛ −10

1

2MCdata

I

II

sσ

σσ , (7.8) 

and repeating the maximum likelihood fit with µdata, σdata and E0
data free. sσ is the weighted 

average of ∆σ obtained in Section 6.5 and is equal to 0.2 MeV/c2. 

We treat the rest of the systematic uncertainties as one and account for this single 

uncertainty by multiplying to each BI in the likelihood L a scale factor AI, which is free in 

the maximum likelihood fit, and adding to −2logL a χ2 constraint 

 . (7.9) ∑
=

−−−
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1,
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To simplify the fit, we assume that the scale factors are uncorrelated, so 

cov(AI, AJ) = 0 for I ≠ J. For I = J, cov(AI, AJ) is the quadratic sum of the systematic 

uncertainties of BI in Table 6.4, with the contributions from peaking background and fit 

model excluded. Another fit is also done assuming the scale factors are 100% correlated. 

In this case, there is only one common scale factor A and we take var(A) to be the average 

of cov(AI, AI). The χ2 constraint in (7.9) reduces to A2 ⁄ var(A). 

A summary of the results from the Feldman-Cousins method is given below. 

Systematic Uncertainty B0 → D0D̄0 B0 → D*0D̄0 B0 → D*0D̄*0 

Fit model 0.59 2.86 0.91 

Others (uncorrelated) 0.59 2.90 0.91 

Others (100% correlated) 0.59 2.91 0.91 

All (uncorrelated) 0.59 2.91 0.92 

All (100% correlated) 0.59 2.92 0.92 

Table 7.2: 90% upper limits (×10−4) with systematic uncertainties included 

for the branching fractions of B0 → D(*)0D̄(*)0 decays using the Feldman-

Cousins method. By the fit’s construction, the systematic uncertainty from 

the peaking background is naturally included in each value. 
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8 Conclusion 

8.1 Summary of Results 

We summarize our measurements of the B → D(*)D̄(*) branching fractions in 

Table 8.1 and 90% upper limits for the B0 → D(*)0D̄(*)0 branching fractions in Table 8.2. 

The covariance matrix for the branching fractions, including all systematic uncertainties, 

is given in Table 8.3. 

Decay BF (×10−4) 

B0 → D0D̄0 −0.10 ± 0.44 ± 0.15

B0 → D*0D̄0 1.01 ± 1.07 ± 0.35

B0 → D*0D̄*0 −1.31 ± 1.05 ± 0.41

B0 → D+D− 2.81 ± 0.43 ± 0.45

B0 → D*+D− 5.72 ± 0.64 ± 0.71

B0 → D*+D*− 8.11 ± 0.57 ± 0.97

B− → D−D0 3.76 ± 0.57 ± 0.45

B− → D*−D0 3.56 ± 0.52 ± 0.39

B− → D−D*0 6.30 ± 1.32 ± 0.93

B− → D*−D*0 8.14 ± 1.17 ± 1.11

Table 8.1: Branching fractions (BF) of B → D(*)D̄(*) decays. The first 

uncertainty is statistical while the second is systematic. 
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Decay No Systematic (×10−4) With Systematic (×10−4) 

B0 → D0D̄0 0.59 0.59 

B0 → D*0D̄0 2.85 2.92 

B0 → D*0D̄*0 0.91 0.92 

Table 8.2: 90% upper limits, with and without systematic uncertainties, for 

B0 → D(*)0D̄(*)0 branching fractions from the Feldman-Cousins method. 

×10−8 D0D̄0 D*0D̄0 D*0D̄*0 D+D− D*+D− D*+D*− D−D0 D*−D0 D−D*0 D*−D*0

D0D̄0 0.22 0.00 0.00 0.00 −0.01 −0.01 0.00 0.00 −0.01 −0.01

D*0D̄0 0.00 1.25 −0.04 0.02 0.04 0.07 0.02 −0.02 0.05 0.07 

D*0D̄*0 0.00 −0.04 1.27 −0.03 −0.08 −0.15 −0.05 −0.06 −0.13 −0.53

D+D− 0.00 0.02 −0.03 0.39 0.26 0.22 0.16 0.08 0.26 0.16 

D*+D− −0.01 0.04 −0.08 0.26 0.91 0.55 0.26 0.19 0.37 0.46 

D*+D*− −0.01 0.07 −0.15 0.22 0.55 1.26 0.30 0.33 0.54 0.73 

D−D0 0.00 0.02 −0.05 0.16 0.26 0.30 0.53 0.11 0.27 0.27 

D*−D0 0.00 −0.02 −0.06 0.08 0.19 0.33 0.11 0.43 0.19 0.31 

D−D*0 −0.01 0.05 −0.13 0.26 0.37 0.54 0.27 0.19 2.61 0.55 

D*−D*0 −0.01 0.07 −0.53 0.16 0.46 0.73 0.27 0.31 0.55 2.60 

Table 8.3: Covariance matrix for B → D(*)D̄(*) branching fractions with all 

systematic uncertainties included. 
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8.2 Test of Factorization Assumption 

Comparing Table 8.1 to Table 1.3, it is interesting to note that the theoretical 

predictions of the B → D(*)D̄(*) branching fractions are generally higher than the 

experimental values. The differences in branching fractions between experiment and 

theory (∆B) for the constituent quark model (CQM) [12], the light-front quantum 

chromodynamics (LFQCD) [13] and heavy quark symmetry with corrections (HQSC) [14], 

are shown in Table 8.4. All the models rely on the factorization assumption and differ 

only in their calculations of the decay constants and form factors. 

To see how each model fares in their predictions of the B → D(*)D̄(*) branching 

fractions, we form the χ2 test statistic 

 . (8.1) ∑
=

− ∆∆∆∆=
10

1,

12 ),(cov
JI

JIJ BBBBIχ

Since the theoretical uncertainties are not provided in the papers, they are excluded from 

the covariance between ∆BI and ∆BJ. Given that the estimates of the branching fractions 

are approximately Gaussian, this test statistic should have a χ2 distribution with ten 

degrees of freedom (χ2
10). The probability that χ2

10 is greater than χ2 for each of the models, 

CQM, LFQCD and HQSC, is given in Table 8.5. Our results seem to favor the values 

predicted by HQSC, though the other two models cannot be ruled out since theoretical 

errors are ignored in the test. We conclude that our results are consistent with the 

factorization assumption. Furthermore, since the branching fractions of B0 → D(*)0D̄(*)0 

are consistent with zero, there is no evidence of final-state interactions in the double 

charm decays. 
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Decay CQM LFQCD HQSC Uncertainty (×10−4) 

B0 → D0D̄0 0.10 0.10 0.10 0.47 

B0 → D*0D̄0 1.01 1.01 1.01 1.12 

B0 → D*0D̄*0 1.31 1.31 1.31 1.13 

B0 → D+D− 0.99 1.19 0.29 0.62 

B0 → D*+D− 1.58 2.08 1.38 0.95 

B0 → D*+D*− 2.49 1.79 0.99 1.12 

B− → D−D0 0.44 0.64 0.46 0.73 

B− → D*−D0 1.84 1.34 0.94 0.65 

B− → D−D*0 2.40 2.70 3.20 1.61 

B− → D*−D*0 3.46 2.66 1.66 1.61 

Table 8.4: Differences (×10−4) in the branching fractions of B → D(*)D̄(*) 

decays between experiment (our results) and theory for the models CQM, 

LFQCD and HQSC. The uncertainty of each difference is experimental 

only and hence the same for all the models. 

Model χ2 P(χ2
10 > χ2)

CQM 22.3 1.3% 

LFQCD 19.6 3.4% 

HQSC 14.6 14.7% 

Table 8.5: The χ2 test statistics and their probabilities for the branching 

fraction predictions from the models CQM, LFQCD and HQSC. 
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It is unfortunate that the theoretical uncertainties are not given by the authors16 for 

us to do a proper χ2 test and make a definitive statement on the factorization assumption. 

Hopefully, with the covariance matrix we have provided, one can perform a χ2 test when 

the theoretical uncertainties become available. 

Perhaps, a stronger test can be carried out by adding B → Ds
(*)D̄(*) decays to the 

measurement. In this case, one is looking at Ds
+ → φπ+, whose branching fraction has an 

uncertainty of 13% [34]. This is a major source of systematic uncertainty which needs to 

be reduced before measuring the branching fractions of B → Ds
(*)D̄(*) decays. 

A better approach, as noted in the Introduction, is to measure ratios of branching 

fractions. In such a ratio, most of the experimental systematic uncertainties (such as those 

from the D(s)
(*) branching fractions and data-MC differences) will cancel out. The same is 

also true for the theoretical uncertainties. With twice the amount of data in the next year 

or so, the test of factorization using the double charm decays is certainly a possibility. 

8.3 Final Words 

This dissertation presents a simultaneous measurement of the branching fractions 

of ten B → D(*)D̄(*) decays. In performing this analysis, we have encountered difficulties 

like cross feed and peaking background, and we show how we deal with these problems 

systematically via a matrix equation. Furthermore, the propagation of errors through the 

matrix equation, especially the systematic errors, is handled by applying a simple formula. 

                                                 

  

16 Since in theory, the branching fractions are derived from common quantities, they will be correlated and 

a covariance matrix should preferably be given.
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The determination of the upper limits is a challenge too, but we overcome it by 

constructing a likelihood ratio where the likelihood is computed from a simultaneous fit 

to both data and generic MC to account for the peaking background. Incorporating the 

systematic uncertainties to the upper limits is achieved by adding χ2 constraints to the 

negative log-likelihood. These techniques are very general and in principle, can be 

applied to any number of decays. That is, adding B → Ds
(*)D̄(*) decays to the analysis will 

not be hard to do17. Finally, we conclude by stating that our measured branching fractions 

are consistent with the predictions from the Standard Model using the factorization 

approach, and a test of the factorization assumption in double charm decays through a 

simultaneous measurement of ratios of branching fractions is certainly feasible. 

                                                 

17 It is only limited by the processing time of a computer. 
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