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Abstract

Mirror symmetry is one of the most beautiful symmetries in string theory. It helps us

very effectively gain insights into non-perturbative worldsheet instanton effects. It was

also shown that the study of mirror symmetry for Calabi-Yau flux compactification leads

us to the territory of ”Non-Kählerity.”

In this thesis we demonstrate how to construct a new class of symplectic non–Kähler

and complex non–Kähler string theory vacua via generalized geometric transitions. The

class admits a mirror pairing by construction. From a variety of sources, including super-

gravity analysis and KK reduction on SU(3) structure manifolds, we conclude that string

theory connects Calabi-Yau spaces to both complex non-Kähler and symplectic non-Kähler

manifolds and the resulting manifolds lie in generalized complex geometry.

We go on to study the topological twisted models on a class of generalized complex

geometry, bi-Hermitian geometry, which is the most general target space for (2, 2) world-

sheet theory with non-trivial H flux turned on. We show that the usual Kähler A and B

models are generalized in a natural way.

Since the gauged supergravity is the low energy effective theory for the compactifi-

cations on generalized geometries, we study the fate of flux-induced isometry gauging in

N = 2 IIA and heterotic strings under non-perturbative instanton effects. Interestingly,

we find we have protection mechanisms preventing the corrections to the hyper moduli

spaces. Besides generalized geometries, we also discuss the possibility of new NS-NS fluxes

in a new doubled formalism.
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Chapter 1

Introduction and Overview

The superstring theory is a ten dimensional theory of quantum gravity, which unifies four

fundamental interactions in a consistent framework. It has the desirable finiteness property

due to the existence of supersymmetry in the theory and the fact that the string length

provides a good physical origin of the cutoff scale. Given the observation that our world

is four dimensional, we definitely want to find situations within string theory where the

nature of the extra dimensions is consistent with real world.

Under this guiding principle Calabi-Yau spaces first arose in the study of superstring as

an internal space for heterotic N = 1 compactifications, which people believed could lead

to realistic N = 1 four dimensional models [5]. Besides the phenomenological significance,

N = 2 type II superstring compactifications on Calabi-Yau spaces are also interesting on

its own because of the rich N = 2 dynamics and many mathematical impacts, among them

mirror symmetry is one such example.

Furthurmore, by incorporating the orientifold planes and turning on the background

p-form fluxes, one can get an N = 1 model with most of the moduli being stabilized. In

addition the Kähler moduli can be stabilized by using more complicated nonperturbative

effects [6] [7]. Now we turn our attentions to the subjects which will be covered in this

thesis.

1.1 Mirror symmetry

Mirror symmetry is T-duality along the T 3 special Lagrangian fibration in Calabi-Yau

spaces [8]. This spacetime picture is intuitive but does not give us much computational

power. The power of mirror symmetry comes from the fact that it helps us gain insights

1



2 CHAPTER 1. INTRODUCTION AND OVERVIEW

into the worldsheet instanton effects in string theory.

This will be best discussed in the worldsheet formalism. The sigma model action of

string theory is defined by a map Φ from a compact Riemann surface Σg of genus g to the

target space X and an action of a two dimensional field theory S(Φ, G, B). The bosonic

part of the action is given by:

S =
1

2πα′

∫

Σg

d2σ
√

h(hαβGij(φ)∂αφi∂βφj + εαβBij(φ)∂αφi∂βφj + · · · ) (1.1)

where φi (i = 1, ..., dim(X)) and σα are local coordinates on Σg and X respectively.

In order to have a classical string theory vacuum, this worldsheet theory is required to

be conformally invariant. That is to say, the β functions for dilaton, spacetime metric and

B field should vanish. The dilaton β function restricts the theory in the critical dimensions

while the other two are spacetime Einstein’s equation and the equation of motion for B

field.

The mirror symmetry essentially is a symmetry between two sigma model with topo-

logically different spacetime targets. It makes the study easier to incorporate worldsheet

(2, 2) SUSY into the sigma model. The SUSY will provide for us good control over the

system, because the path integral will localize to the fixed loci of the worldsheet fermions,

and make A and B twists possible 1. Without H flux, SUSY will imply Kählerity. The

Calabi-Yau condition will be furthur imposed as an anomaly cancelation relation for the

B-model. From now on we would like to focus on the CY cases and specialize to topological

twisted A and B models in our discussion.

The first explicit computation via the use of mirror symmetry was given in the semi-

nal paper by Candelas, de la Ossa, Green and Parkes [9] where the simplest Calabi-Yau

manifold was treated, the quintic M and mirror quintic M′, which only have one Kähler

modulus and complex modulus respectively.

The relevant physical quantities for the topological B-model on the mirror quintic M′

at genus g = 0 is a three point function (Yukawa coupling) built out of three (2, 1) form

as follows.

∫

M′
Ω ∧ bi ∧ bj ∧ bkΩijk (1.2)

where bi = (b)i
j̄
dz̄j̄ is the unique element in H1(M′, TX). It is related to the unique

1Readers interested in the A and B models are referred to [55] or chapter three.



1.2. TOPOLOGY CHANGING PROCESSES 3

harmonic (2, 1) form by (b)i
j̄

= 1
2|Ω|2 Ωiklbklj̄ . We can furthur parametrize the complex

deformation space by a complex variable ψ and obtain

∫

M′
Ω ∧ bi ∧ bj ∧ bkΩijk =

∫

M′
Ω ∧ ∂3Ω

∂ψ3
= (

2πi

5
)3

5ψ2

1− ψ5
(1.3)

Since the B-model does not depend on Kähler moduli we can perform the computation

at large radius limit. Therefore, this quantity can be computed from the classical geometry.

On the other hand, the corresponding three point function in A-model will be subject to

the worldsheet instanton effect because A-model depends on Kähler modulus. At g = 0

the three point function is,

∫

M
e ∧ e ∧ e +

∞∑

d=1

ndd
3 qd

1− qd
(1.4)

where e is the generator of H1,1(M) in the quintic M and nd is the number of degree

d rational curves. Moreover there is an exact mirror mapping between ψ and q [9] which

enables us to extract nd to arbitrarily large degree.

In retrospect, mirror symmetry is a perturbative symmetry in spacetime keeping fixed

the dilaton, while it is a non-perturbative symmetry on the worldsheet. Due to its quantum

non-perturbative feature on the worldsheet, we can simply perform the three point function

calculation on the perturbative side and obtain the knowledge of worldsheet instantons on

the other side. The complex/symplectic mirror construction in this thesis will mostly

rely on the spacetime picture instead of the worldsheet construction. This is because the

worldsheet formalism for non-Kähler spaces is not yet well established, unlike the CY case

in which we can use gauged linear sigma model approach [27] to produce a large number

of examples.

1.2 Topology changing processes

Many other amazing structures also have been studied in the N = 2 Calabi-Yau com-

pactifications [10]. For instance, it has been suggested that by using topology changing

processes, including extremal transitions and flops, one can roll among all the Calabi-Yau

spaces with different Hodge numbers. The transition has nice physical realization if we

take into account the massless brane states appearing at the conifold points. This property

turns into a mathematical statement that all the moduli spaces of Calabi-Yau spaces are

connected by the extremal transitions and flops [11].
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A stronger version of this conjecture is called ”Reid’s fantasy,” which states that the

moduli spaces of all the three folds with trivial canonical bundle are connected too [12].

In the second chapter we will show that in order to realize the transition physically, we

need to find a special point in the moduli space, where there is a single curve or three

cycle shrinking in the Calabi-Yau space. We will show that we can achieve this transition

smoothly, by turning on the appropriate fluxes over a certain cycle. A mirror pairing will

then be found by construction. We will compare hints from ten–dimensional supergravity

analysis and KK reduction on SU(3) structure manifolds and obtain a picture in which

string theory extends Reid’s fantasy to connect classes of both complex non-Kähler and

symplectic non-Kähler manifolds.

1.3 Generalized complex geometry

The complex/symplectic mirror construction naturally motivates the furthur study on the

mirror symmetry for generalized complex geometry, of which SU(3) structure manifold is

a special class. Generalized complex geometry (GCG) was first introduced by Hitchin and

Gualtieri [13] [14] as a single mathematical framework to unify complex and symplectic

geometries by treating the spacetimes B field and the metric on an equal footing. For

a short introduction to GCG, please see Appendix A. If we want to study the mirror

symmetry from the worldsheet approach, we will find bi-Hermitian geometry2 unavoidable,

for the reason that this is the most general geometry for (2, 2) worldsheet supersymmetry.

In the third chapter we will study the topological twisted sigma model on bi-Hermitian

geometry with H-flux and show that the resulting action consists of a BRST exact term

and pullback terms, which only depend on one of the two generalized complex structures

and the B-field.

1.4 Gauged supergravities and flux-induced gauging

The most general six dimensional manifold which can result in gauged N = 2 supergravity

as the low energy effective theory is simply the SU(3)×SU(3) manifold [44]. The intrinsic

torsions in the geometry will determine the gauging of the isometries in the hypermultiplet

moduli space. One interesting question to ask is, what is the fate of the flux-induced

isometry gauging or the torsion-induced isometry gauging after we take into account the

2Also known as Twisted Generalized Kähler Geometry, a class of GCG.
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nonperturbative effects in string theory? People have successfully answered the question

in IIA and M-theory setting [73] [80]. In the fourth chapter, we will take one step furthur

and demonstrate the protection mechanism in N = 2 heterotic strings.

1.5 Organization of the thesis

The thesis is organized as follows. The second chapter is based on the work done with

Shamit Kachru and Alessandro Tomasiello [1]. In the third chapter I discuss the frame-

work in which one can study the topological twisted models and mirror symmetry on

bi-Hermitian geometries [2]. The fourth chapter is about the protection mechanism for

the flux-induced isometry gauging in heterotic string theory, based on the paper [3] in

collaboration with Peng Gao. In the last chapter we will change gears and discuss the

non-geometric fluxes in the doubled geometry [4] 3.

3The doubled geometry in fact has some similarity with the generalized geometry.



Chapter 2

Complex/Symplex mirrors

Abstract

We construct a class of symplectic non–Kähler and complex non–Kähler string theory

vacua, extending and providing evidence for an earlier suggestion by Polchinski and Stro-

minger. The class admits a mirror pairing by construction. Comparing hints from a variety

of sources, including ten–dimensional supergravity and KK reduction on SU(3)–structure

manifolds, suggests a picture in which string theory extends Reid’s fantasy to connect

classes of both complex non-Kähler and symplectic non-Kähler manifolds.

2.1 Complex and symplectic vacua

The study of string theory on Calabi–Yau manifolds has provided both the most popular

vacua of the theory, and some of the best tests of theoretical ideas about its dynamics.

Most manifolds, of course, are not Calabi–Yau. What is the next simplest class for theorists

to explore?

The answer, obviously, depends on what the definition of “simplest” is. However,

many leads seem to be pointing to the same suspects. First of all, it has been suggested

long ago [15] that type II vacua exist, preserving N = 2 supersymmetry (the same as for

Calabi–Yau’s), on manifolds which are complex and non–Kähler (and enjoy vanishing c1).

Calabi–Yau manifolds are simultaneously complex and symplectic, and mirror symmetry

can be viewed as an exchange of these two properties [16]. The same logic seems to suggest

that the proposal of [15] should also include symplectic non–Kähler manifolds as mirrors of

the complex non–Kähler ones. Attempts at providing mirrors of this type (without using

6
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a physical interpretation) have indeed already been made in [17, 18].

In a different direction, complex non–Kähler manifolds have also featured in supersym-

metry–preserving vacua of supergravity, already in [19]. More recently the general condi-

tions for preserving N = 1 supersymmetry in supergravity have been reduced to geomet-

rical conditions [20]; in particular, the manifold has to be generalized complex [13]. The

most prominent examples of generalized complex manifolds are complex and symplectic

manifolds, neither necessarily Kähler. It should also be noted that complex and symplectic

manifolds seem to be natural in topological strings.

In this paper we tie these ideas together. We find that vacua of the type described in [15]

can be found for a large class of complex non–Kähler manifolds in type IIB and symplectic

non–Kähler manifolds in type IIA, and observe that these vacua come in mirror pairs.

Although these vacua are not fully amenable to ten–dimensional supergravity analysis for

reasons that we will explain (this despite the fact that they preserve N = 2 rather than

N = 1 supersymmetry), this is in agreement with the supergravity picture that all (RR)

SU(3)–structure IIA vacua are symplectic [21], and all IIB vacua are complex [22, 23, 21],

possibly suggesting a deeper structure.

In section 2.2, in an analysis formally identical to [15], we argue for the existence of

the new vacua. In section 2.3 we show that the corresponding internal manifolds are not

Calabi–Yau but rather complex or symplectic. More specifically, in both theories, they are

obtained from a transition that does not preserve the Calabi–Yau property. As evidence

for this, we show that the expected physical spectrum agrees with the one obtained on

the proposed manifolds. The part of this check that concerns the massless spectrum is

straightforward; we can extend it to low-lying massive fields by combining results from

geometry [24] and KK reduction on manifolds of SU(3) structure. We actually try in

section 2.4 to infer from our class of examples a few properties which should give more

control over this kind of KK reduction. Specifically, we suggest that the lightest massive

fields should be in correspondence with pseudo–holomorphic curves or pseudo–Special–

Lagrangian three–cycles (a notion we will define at the appropriate juncture).

Among the motivations for this paper were also a number of more grandiose questions

about the effective potential of string theory. One of the motivations for mathematicians

to study the generalized type of transition we consider in this paper is the hope that

many moduli spaces actually happen to be submanifolds of a bigger moduli space, not

unlike [12] the realization of the various 19–dimensional moduli spaces of algebraic K3’s as

submanifolds of the 20–dimensional moduli space of abstract K3’s. It might be that string
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theory provides a natural candidate for such a space, at least for the N = 2 theories, whose

points would be all SU(3)–structure manifolds (not necessarily complex or symplectic), very

possibly augmented by non–geometrical points [25]. We would not call it a moduli space,

but rather a configuration space: on it, a potential would be defined, whose zero locus

would then be the moduli space of N = 2 supersymmetric string theory vacua, including

in particular the complex and symplectic vacua described here. In this context, what this

paper is studying is a small neighborhood where the moduli space of N = 2 non-Kähler

compactifications meets up with the moduli space of Calabi-Yau compactifications with

RR flux, inside this bigger configuration space of manifolds.

2.2 Four–dimensional description of the vacua

We will now adapt the ideas from [15] to our needs. The strategy is as follows. We

begin by compactifying the IIB and IIA strings on Calabi-Yau threefolds, and we switch

on internal RR fluxes, F3 in IIB and F4 in IIA (our eventual interest will be the case

where the theories are compactified on mirror manifolds M and W, and the fluxes are

mirror to one another). As also first noted in [15], this will make the four–dimensional

N = 2 supergravity gauged; in particular, it will create a potential on the moduli space.

This potential has supersymmetric vacua only at points where the Calabi–Yau is singular.

However, on those loci of the moduli space new massless brane hypermultiplets have to be

taken into account, which will then produce the new vacua.

2.2.1 The singularities we consider

Let us first be more precise about the types of singularities we will consider. In IIB,

as we will review shortly, if we switch on F3 with a non–zero integral along a cycle B3

of a Calabi-Yau M, a supersymmetric vacuum will exist on a point in moduli space in

which only the cycle A3 conjugate to B3 under intersection pairing shrinks. It is often the

case that several cycles shrink simultaneously, with effects that we will review in the next

section, but there are definitely examples in which a single B cycle shrinks. These are the

cases we will be interested in. (We will briefly explain in section 2.3.2 how this condition

could be relaxed.)

In IIA, switching on F4 with a non–zero integral on a four–cycle Ã4 of W will generate

a potential which will be zero only in points in which the quantum–corrected volume of

the conjugate two–cycle B̃2 (the Poincaré dual to F4) vanishes. This will happen on a wall
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between two birationally equivalent Calabi–Yau’s, connected by a flop of B̃2. These points

will be mirror to the ones we described above for IIB.

The converse is not always true: there can be shrinking three–cycles which are mirror

to points in the IIA moduli space in which the quantum volume of the whole Calabi–Yau

goes to zero. These walls separate geometrical and Landau–Ginzburg, or, hybrid, phases.

One would obtain a vacuum at such a point by switching on F0 instead of F4, for instance.

The example discussed in [15] (the quintic) is precisely such a case. Since in the end we

want to give geometrical interpretations to the vacua we will obtain, we will restrict our

attention only to cases in which a curve shrinks in W – that is, when a flop happens.

Although this is not strictly necessary for IIB, keeping mirror symmetry in mind we will

restrict our attention to cases in which the stricter IIA condition is valid, not only the IIB

one: in the mirror pairs of interest to us, the conifold singularity in M is mirror to a flop

in W. It would be interesting, of course, to find the IIA mirrors to all the other complex

non–Kähler manifolds in IIB.

Looking for flops is not too difficult, as there is a general strategy. If the Calabi–Yau

W is realized as hypersurface in a toric manifold V , the “enlarged Kähler moduli space”

[11, 26] (or at least, the part of it which comes from pull–back of moduli of V ) is a toric

manifold WK itself. The cones of the fan of WK are described by different triangulations

of the cone over the toric polyhedron of V . Each of these cones will be a phase [27];

there will be many non–geometrical phases (Landau–Ginzburg or hybrid). Fortunately,

the geometrical ones are characterized as the triangulations of the toric polyhedron of V

itself (as opposed to triangulations of the cone over it). This subset of cones gives an

open set in WK which is called the “partially enlarged” Kähler moduli space. This is not

the end of the story, however. In many examples, it will happen that a flop between two

geometrical phases will involve more than one curve at a time, an effect due to restriction

from V to W. Worse still, these curves might have relations, and sometimes there is no

quick way to determine this. Even so, we expect that there should be many cases in which

a single curve shrinks (or many, but without relations).

Such an example is readily found in the literature [28, 29]: taking W to be an elliptic

fibration over F1 (a Calabi–Yau whose Hodge numbers are h1,1 = 3 and h2,1 = 243), there

is a point in moduli space in which a single curve shrinks (see Appendix 2.5 for more

details). By counting of multiplets and mirror symmetry, on the mirror M there will be

a single three–cycle which will shrink. This implies that the mirror singularity will be a

conifold singularity. Indeed, it is a hypersurface singularity, and as such the shrinking cycle
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is classified by the so–called Milnor number. This has to be one if there is a single shrinking

cycle, and the only hypersurface singularity with Milnor number one is the conifold.

2.2.2 Gauged supergravity analysis

After these generalities, we will now show how turning on fluxes drives the theory to a

conifold point in the moduli space; more importantly, we will then show how including

the new massless hypermultiplets generates new vacua. We will do this in detail in the

IIB theory on M, as its IIA counterpart is then straightforward. The analysis is formally

identical to the one in [15] (see also [30, 31]); the differences have been explained in the

previous subsection.

As usual, define the symplectic basis of three–cycles AI , BJ and their Poincaré duals

αI , βI such that

AI ·BJ = δI
J ,

∫

AJ

αI =
∫

BI

βJ = δI
J (2.1)

along with the periods XI =
∫
AI Ω and FI =

∫
BI

Ω. Additionally, the basis is taken so

that the cycle of interest described in subsection 2.2.1 is A = A1.

When X1 = 0, the cycle A1 degenerates to the zero size and M develops a conifold

singularity. By the monodromy argument, the symplectic basis (X1, F1) will transform

as follows when we circle the discriminant locus in the complex moduli space defined by

X1 = 0:

X1 → X1 F1 → F1 + X1 . (2.2)

From this we know F1 near the singularity:

F1 = constant +
1

2πi
X1lnX1 + . . . (2.3)

The metric on the moduli space can be calculated from the formulae

GIJ̄ = ∂I∂J̄KV , KV = − ln i(X̄IFI −XI F̄
I) . (2.4)

Therefore we obtain

G11̄ ∼ ln(X1X̄1) . (2.5)

Now, the internal flux we want to switch on is F3 = n1β
1. The vectors come from

F5 = F I
2 ∧ αI −G2,I ∧ βI , (2.6)
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where the F I
2 (G2I) is the electric (magnetic) field strength. The Chern-Simons coupling

in the IIB supergravity action is then

εij

∫

M4×CY
F̃5 ∧H i

3 ∧Bj
2 = n1

∫

M4

F 1
2 ∧B2 (2.7)

where M4 is the spacetime. By integration by parts, and since B2 dualizes to one of the

(pseudo)scalars in the universal hypermultiplets, we see that the latter is gauged under the

field A1 whose field strength is dA1 = F 1
2 .

The potential is now given by the “electric” formula

V = huvk
u
I kv

JX̄IXJeKV + (U IJ − 3X̄IXJeKV )Pα
I Pα

J (2.8)

where

U IJ = DaX
Igab̄Db̄X

J (2.9)

and the Pα are together the so–called Killing prepotential, or hypermomentum map. In

our situation only the flux over B1 is turned on, and the Killing prepotential is given by

P1
1 = P2

1 = 0 ; P3
1 = −eK̃H n

(2)
eI = −e2φn

(2)
eI (2.10)

where φ is the dilaton. The potential will then only depend on the period of the dual A1

cycle, call it X1:

V ∼ (n1)2

ln X1X̄1
. (2.11)

The theory will thus be driven to the conifold point where X1 = 0.

This is not the end of the story: at the singular point, one has a new massless hy-

permultiplet B coming from a brane wrapping the shrinking cycle A1. The world–volume

coupling between the D3-brane and F5 gives then
∫
R×A1 A4 =

∫
RA1, where R is the world-

line of the resulting light particle in M4. (The coincidence between the notation for the

cycle A1 and the corresponding vector potential A1 is rather unfortunate, if standard.)

This means that both the universal and the brane hypermultiplet are charged under the

same vector; we can then say that they are all electrically charged and still use the electric

formula for the potential (2.8), with the only change being that the Killing prepotential is

modified to be

Pα
1 = Pα

1 |B=0 + B+σαB ; (2.12)
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the black hole hypermultiplet is an SU(2) doublet with components (B1, B2). Loci on

which the Pα’s are zero are new vacua: it is easy to see that they are given by

B = ((eK̃H n1)1/2, 0) = (eφn
1/2
1 , 0) . (2.13)

The situation here is similar to [15]: the expectation value of the new brane hypermul-

tiplet is of the order gs = eφ. So, as in that paper, the two requirements that gs is small

and that B be small (the expression for the Pα is a Taylor expansion and will be modified

for large B) coincide, and with these choices we can trust these vacua. After the Higgsing

the flat direction of the potential, namely, the massless hypermultiplet B̃0, would be a

linear combination of the brane hypermultiplet and the universal hypermultiplet while the

other combination would become a massive one B̃m.

2.2.3 The field theory capturing the transition

It is useful to understand the physics of the transition from a 4d field theory perspective,

in a region very close to the transition point on moduli space. While this analysis is in

principle a simple limit of the gauged supergravity in the previous subsection, going through

it will both provide more intuition and also allow us to infer some additional lessons. In

fact, in the IIB theory with n1 units of RR flux, the theory close to the transition point

(focusing on the relevant degrees of freedom) is simply a U(1) gauge theory with two

charged hypers, of charges 1 and n1.

Let us focus on the case n1 = 1 for concreteness. Let us call the N = 1 chiral multiplets

in the two hypers B, B̃ and C, C̃. In N = 1 language, this theory has a superpotential

W ∼ B̃ϕB + C̃ϕC (2.14)

where ϕ is the neutral chiral multiplet in the N = 2 U(1) vector multiplet. It also has a

D-term potential

|D|2 ∼ (|B̃|2 − |B|2 + |C̃|2 − |C|2)2 . (2.15)

There are two branches of the moduli space of vacua: a Coulomb branch where 〈ϕ〉 6= 0

and the charged matter fields vanish, and a Higgs branch where 〈ϕ〉 = 0 and the hypers

have non-vanishing vevs (consistent with F and D flatness). The first branch has complex

dimension one, the second has quaternionic dimension one. These branches meet at the

point where all fields have vanishing expectation value.
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At this point, the theory has an SU(2) global flavor symmetry. This implies that

locally, the hypermultiplet moduli space will take the form C2/Z2 [32]. In fact, the precise

geometry of the hypermultiplet moduli space, including quantum corrections, can then be

determined by a variety of arguments [32, 33] (another type of argument [34] implies the

same result for the case where the hypermultiplets coming from shrinking three–cycles in

IIB). The result is the following. Locally, the quaternionic space reduces to a hyperKähler

manifold which is an elliptic fibration, with fiber coordinates t, x and a (complex) base

coordinate z. Let us denote the Kähler class of the elliptic fiber by λ2. Then, the metric

takes the form

ds2 = λ2
(
V −1(dt−A · dy)2 + V (dy)2

)
(2.16)

where y is the three-vector with components (x, z
λ , z̄

λ). Here, the function V and the vector

of functions A are given by

V =
1
2π

∞∑
n=−∞


 1√

(x− n)2 + |z|2
λ2

− 1
|n|


 + constant (2.17)

and

∇×A = ∇V . (2.18)

This provides us with detailed knowledge of the metric on the hypermultiplet moduli space

emanating from the singularity, though it is hard to explicitly map the flat direction to

a combination of the universal hypermultiplet and the geometrical parameters of M′ or

W ′. We shall discuss some qualitative aspects of this map in §3.3. For the reader who is

confused by the existence of a Coulomb branch at all, given that e.g. in the IIB picture

F3 6= 0, we note that the Coulomb branch will clearly exist on a locus where gs → 0 (since

the hypermultiplet vevs must vanish). This is consistent with supergravity intuition, since

in the 4d Einstein frame, the energetic cost of the RR fluxes vanishes as gs → 0.

2.3 Geometry of the vacua

We will first of all show that the vacua obtained in the previous section cannot come from

a transition to another Calabi–Yau. To this aim, in the next subsection we will review

Calabi–Yau extremal transitions. We will then proceed in subsection 2.3.2 to review the

less well–known non–Calabi–Yau extremal transitions, and then compare them to the vacua
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we previously found in subsection 2.3.3.

2.3.1 Calabi–Yau extremal transitions

Calabi–Yau extremal transitions sew together moduli spaces for Calabi–Yaus whose Hodge

numbers differ; let us quickly review how. For more details on this physically well–studied

case, the reader might want to consult [35, 36, 37, 11].

Consider IIB theory on a Calabi–Yau M. (Some of the explanations in this paper are

given in the IIB case only, whenever the IIA case would be an obvious enough modification).

Suppose that at a particular point in moduli space, M develops N nodes (conifold points)

by shrinking as many three–cycles Aa, a = 1, . . . , N , and that these three–cycles satisfy R

relations
N∑

a=1

ra
i Aa = 0, i = 1, · · · , R (2.19)

in H3. We are not using the same notation for the index on the cycles as in section 2.2,

as these Aa are not all elements of a basis (as they are linearly dependent). Notice that

it is already evident that this case is precisely the one we excluded with the specifications

in section 2.2.1. To give a classic example [35], there is a known transition where M is

the quintic, N = 16 and R = 1. Physically, there will be N brane hypermultiplets Ba

becoming massless at this point in moduli space. Vectors come from h2,1; since the Ba

only span N − R directions in H3, they will be charged under N − R vectors XA only,

A = 1, . . . N −R. Call the matrix of charges Qa
A, A = 1, . . . , N −R, a = 1, . . . N .

In this case, when looking for vacua, we will still be setting the Killing prepotential Pa

(which is a simple extension of the one in (2.12)) to zero: the flux is now absent, and the

B2 term now reads

PA =
∑

a

Qa
AB+

a σαBa . (2.20)

Notice that we have switched no flux on in this case; crucially, P = 0 now will have an

R–dimensional space of solutions, due to the relations.

Let us suppose this new branch is actually the moduli space for a new Calabi–Yau. This

new manifold would have h2,1 − (N − R) vectors, because all the XA have been Higgsed;

and h1,1 + R hypers, because of the N Ba, only R flat directions have survived.

This is exactly the same result one would get from a small resolution of all the N nodes.

Indeed, let us call the Calabi–Yau resulting from such a procedure M′, and let us compute

its Betti numbers. It is actually simpler to first consider a case in which a single three–cycle
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undergoes surgery1, which is the case without relations specified in section 2.2.1; we will

go back to the Calabi–Yau case, in which relations are necessary, momentarily.

The result of this single surgery along a three–cycle is that H3 → H3 − 2, H2 → H2.

This might be a bit surprising: one is used to think that an extremal transition replaces a

three–cycle by a two–cycle. But this intuition comes from the noncompact case, in which

indeed it holds. In the compact case, when we perform a surgery along a three–cycle, we

really are also losing its conjugate under Poincaré pairing; and we gain no two–cycle. The

difference is illustrated in a low–dimensional analogue in figure 2.1, in which H2 and H3

are replaced by H0 and H1.

C

����
����
����
����
����

����
����
����
����
����

B

A

D

Figure 2.1: Difference between compact and non–compact surgery: in the noncompact case
(up), one loses an element in H1 and one gains an element in H0 (a connected component).
In the compact case (down), one loses an element in H1 again, but the would–be new
element in H0 is actually trivial, so H0 remains the same. This figure is meant to help
intuition about the conifold transition in dimension 6, where H0 and H1 are replaced by
H2 and H3. We also have depicted various chains on the result of the compact transition,
for later use.

Coming back to the Calabi–Yau case of interest in this subsection, let us now consider N

shrinking three–cycles with R relations. First of all H3 only changes by 2(N −R), because

this is the number of independent cycles we are losing. But this is not the only effect on

the homology. A relation can be viewed as a four–chain F whose boundary is
∑

Aa. After

1This is a purely topological computation; in a topological context, an extremal transition is called a
surgery, and we will use this term when we want to emphasize we are considering purely the topology of
the manifolds involved.
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surgery, the boundary of F by definition shrinks to points; hence F becomes a four–cycle

in its own right. This gives R new elements in H4 (or equivalently, in H2). The change in

homology is summarized in Table 2.1, along with the IIA case and, more importantly, in a

more general context that we will explain. By comparing with the physical counting above,

we find evidence that the new branches of the moduli space correspond to new Calabi–Yau

manifolds obtained by extremal transitions.

To summarize, Calabi–Yau extremal transitions are possible without fluxes, but they

require relations among the shrinking cycles. This is to be contrasted with the vacua in

the previous section, where there are no relations among the shrinking cycles to provide

flat directions. Instead, the flux (and resulting gauging) lifts the old Calabi-Yau moduli

space (as long as gs 6= 0), but makes up for this by producing a new branch of moduli

space (emanating from the conifold point or its mirror).

2.3.2 Non–Calabi–Yau extremal transitions

In this section we will waive the Calabi–Yau condition to reproduce the vacua of the

previous section. This is, remember, a case in which cycles shrink without relations.

However, we will start with a review of results in the more general case, to put in perspective

both the case we will eventually consider and the usual Calabi–Yau case.

We will consider both usual conifold transitions, in which three–cycles are shrunk and

replaced by curves, and so–called reverse conifold transitions, in which the converse hap-

pens.2 As a hopefully useful shorthand, we will call the first type a 3 → 2 transition and

the second a 2 → 3. Though the manifolds will no longer be (necessarily) Calabi–Yau,

we will still call the initial and final manifold M and M′ in the 3 → 2 case (which is

relevant for our IIB picture), and W and W ′ in the 2 → 3 case (which is relevant for our

IIA picture).

We will first ask whether a 3 → 2 transition takes a complex, or symplectic, M into a

complex, or symplectic, M′, and then turn to the same questions about W, W ′ for 2 → 3

transitions. These questions have to be phrased a bit more precisely, and we will do so

case by case.

It is also useful to recall at this point the definitions of symplectic and complex mani-

folds, which we will do by embedding them in a bigger framework. In both cases, we can

2Implicit in the use of the word “conifold” is the assumption that several cycles do not collapse together
in a single point of the manifold M. More general cases are also interesting to consider, see for example
[37] for the complex case and [18] for the symplectic case.
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start with a weaker concept called G–structure. By this we mean the possibility of taking

the transition functions on the tangent bundle of M to be in a group G. This is typically

accomplished by finding a geometrical object (a tensor, or a spinor) whose stabilizer is

precisely G. If we find a two–form J such that J ∧ J ∧ J is nowhere zero, it gives an

Sp(6,R) structure. In presence of a tensor (1, 1) tensor (one index up and one down) j

such that j2 = −1 (an almost complex structure), we speak of a Gl(3,C) structure. For

us the presence of both will be important; but we also impose a compatibility condition,

which says that the tensor jm
pJpn is symmetric and of positive signature. This tensor is

then nothing but a Riemannian metric. The triple is an almost hermitian metric: this

gives a structure Sp(6,R)∩ Gl(3,C) =U(3).

By themselves, these reductions of structure do not give much of a restriction on the

manifold. But in all these cases we can now consider an appropriate integrability condition,

a differential equation which makes the manifold with the given structure more rigid. In the

case of J , we can impose that dJ = 0. In this case we say that the manifold is symplectic.

For j, a more complicated condition (that we will detail later, when considering SU(3)

structures) leads to complex manifolds.

Let us now consider a complex manifold M (which we will also take to have triv-

ial canonical class K = 0). First order complex deformations are parameterized by

H1(M, T ) = H2,1. Suppose that for some value of the complex moduli N three–cycles

shrink. Replace now these N nodes by small resolutions. The definition of small resolution,

just like the one of blowup, can be given locally around the node and then patched without

any problem with the rest of the manifold. So the new manifold M′ is still complex. Also,

the canonical class K is not modified by the transition because a small resolution does not

create a new divisor, only a new curve.3 Actually, the conjecture that all Calabi–Yau are

connected was initially formulated by Reid [12] for all complex manifolds (and not only

Calabi–Yaus) with K = 0, extending ideas by Hirzebruch [38].

If now we consider a symplecticM, the story is different. For one thing, now symplectic

moduli are given by H2(M,R) [39], so it does not seem promising to look for a point in

moduli space where three–cycles shrink. But 2.1 in [17] shows that we can nevertheless

shrink a three–cycle symplectically, and replace it by a two–cycle. Whether the resulting

3The conditions for N = 1–preserving vacua in ten–dimensional type II supergravity actually only
require c1 = 0. The role of this condition is less clear for example in the topological string: for the A
model it would seem to unnecessary, as there is no anomaly to cancel; for the B model, it would look like
the stronger condition K = 0 is required, which means that the canonical bundle should be trivial even
holomorphically.
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M′ will also be symplectic is not automatic, however. This can be decided using Theorem

2.9 in [17]: the answer is yes precisely when there is at least one relation in homology

among the three–cycles.4

The case of interest in this paper is actually a blending of the two questions considered

so far, whether complex or symplectic properties are preserved. In IIB, we will take a

Calabi–Yau M (which has both properties) and follow it in moduli space to a point at

which it develops a conifold singularity. Now we perform a small resolution to obtain a

manifold M′ and ask whether this new manifold is still Kähler; this question has been

considered also by [42]. As we have seen, the complex property is kept, and the symplectic

property is not (though the question in [17] regards more generally symplectic manifolds,

disregarding the complex structure, and in particular being more interesting without such

a path in complex structure moduli space).

Let us see why M′ cannot be Kähler in our case. A first argument is not too different

from an argument given after figure 2.1 to count four–cycles. If the manifold M′ after the

transition is Kähler, there will be an element ω ∈ H4 dual to the Kähler form. This will

have non–zero intersection ω · Ca = vol(Ca) with all the curves Ca produced by the small

resolutions. Before the transition, then, in M, ω will develop a boundary, since the Ca are

replaced by three–cycles Aa; more precisely, ∂ω =
∑

raAa for some coefficients ra. This

proves there will have to be at least one relation between the collapsing three-cycles.

We can rephrase this in yet another way. Let us consider the case in which only one

nontrivial three–cycle A is shrinking. Since, as remarked earlier (see figure 2.1), in the

compact case the curve C created by the transition is trivial in homology, there exists a

three–chain B such that C = ∂B; then we have, if J is the two–form of the SU(3) structure,

0 6=
∫

C
J =

∫

B
dJ . (2.21)

Hence dJ 6= 0: the manifold cannot be symplectic.5

Even if a symplectic J fails to exist, there is actually a non–degenerate J compatible

with j (since the inclusion U(3) ⊂ Sp(6,R) is a homotopy equivalence, not unlike the way

4We should add that the relations must involve all the three–cycles. If there is one three–cycle A which is
not involved in any relation, it is possible to resolve symplectically all the other cycles but not A. Examples
of this type are found in [41, 42] when M is Kähler, which is the case of interest to us and to which we will
turn shortly. These examples would play in our favor, allowing us to find even more examples of non–Kähler
M′, but for simplicity of exposition we will mostly ignore them in the following.

5In the mirror picture, a similar argument shows immediately that dΩ 6= 0 on W ′, and hence the
manifold cannot be complex.
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the homotopy equivalence O(n) ⊂ Gl(n) allows one to find a Riemannian metric on any

manifold). In other words, the integrable complex structure j can be completed to a U(3)

structure (and then to an SU(3) structure, as we will see), though not to a Kähler one.

This is also a good point to make some remarks about the nature of the curve C that

we will need later on. The concept of holomorphic curve makes sense even without an

integrable complex structure; the definition is still that (δ + ij)m
n∂Xn = 0, where X is

the embedding C in M. For j integrable this is the usual condition that the curve be

holomorphic. But this condition makes sense even for an almost complex structure, a fact

which is expressed by calling the curve pseudo–holomorphic [40]. We will often drop this

prefix in the following. In many of the usual manipulations involving calibrated cycles,

one never uses integrability properties for the almost complex or symplectic structures on

M. For example, it is still true that the restriction of J to C is its volume form volC .

Exactly in the same way, one can speak of Special Lagrangian submanifolds even without

integrability (after having defined an SU(3) structure, which we will in the next section),

and sometimes we will qualify them as “pseudo” to signify this.

Let us now consider 2 → 3 transitions. It will turn out that the results are just mirror of

the ones we gave for 3 → 2, but in this case it is probably helpful to review them separately.

After all, mirror symmetry for complex–symplectic pairs is not as well established as for

Calabi–Yaus, which is one of the motivations of the present work. (Evidence so far includes

mathematical insight [16], and, in the slightly more general context of SU(3) structure

manifolds, comparisons of four–dimensional theories [43, 44] and direct SYZ computation

[45].)

Suppose now we start (in the IIA theory) with a symplectic manifold W (whose moduli

space is, as we said, modeled on H2(M,R)), and that for some value of the symplectic

moduli some curves shrink. Then, it turns out that one can always replace the resulting

singularities by some three–cycles, and still get a symplectic manifold (Theorem 2.7, [17]).

The trick is that T ∗S3, the deformed conifold, is naturally symplectic, since it is a cotangent

bundle. Then [17] proves that this holds even globally: there is no problem in patching

together the modifications around each conifold point. One should compare this with the

construction used by Hirzebruch and Reid cited above.

It is not automatic that the resulting manifold W ′ is complex, even if W is complex

itself. The criterion is that there should be at least one relation in homology between the

collapsing curves Ca [46, 47] (see also [48] for an interesting application).6

6Actually, the criterion also assumes W to satisfy the ∂∂̄–lemma, to ensure that H2,1 ⊂ H3, which is not
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Let us collect the transitions considered so far in a table; we also anticipate in which

string theory each transition will be relevant for us. The symmetry among these results is

clear; we will not need all of them, though.

transition keeps symplectic keeps complex ∆b2 ∆b3

IIA 2 → 3 yes [17] if
∑

ra
i Ca = 0 [46, 47] N −R 2R

IIB 3 → 2 if
∑

ra
i Ba = 0 [17] yes R 2(N −R)

Table 2.1: The conditions for a transition to send a complex or symplectic conifold to a
complex or symplectic manifold.

2.3.3 Vacua versus geometry

We can now apply the results reviewed in the previous subsection to our vacua. Remember

that in IIB we have chosen a point in moduli space in which a single three–cycle shrinks,

and in IIA one in which a single curve shrinks.

From our assumptions, the singularities affect the manifold only locally (as opposed

for example to the IIA case of [15], in which the quantum volume of the whole manifold

is shrinking); it is hence natural to assume that the vacua of section 2.2 are still geomet-

rical. Given the experience with the Calabi–Yau case, it is also natural that the brane

hypermultiplet B describes a surgery. But then we can use the results of the previous

subsection.

In IIB, where we have shrunk a three–cycle, we now know that the manifold obtained

by replacing the node with a curve will be naturally complex, but will not be symplectic,

since by assumption we do not have any relations. As we have explained, the reason for

this is that on the manifold M′ after the transition, there will be a holomorphic curve C

which is homologically trivial; and by Stokes, we conclude that the manifold cannot be

symplectic.

Summing up, we are proposing that in IIB the vacua we are finding are given by a

complex non–symplectic (and hence non–Kähler7) manifold. This manifold M′ is defined

always true on complex non–Kähler manifolds; this assumption is trivially valid in the cases we consider,
where W is a Calabi–Yau.

7There might actually be, theoretically speaking, a Kähler structure on the manifold which has nothing
to do with the surgery. This question is natural mathematically [17], but irrelevant physically: such a
Kähler structure would be in some other branch of moduli space, far from the one we are considering,
which is connected and close to the original Calabi–Yau by construction.
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by a small resolution on the singular point of M, and it has (see table 2.1) Betti numbers

b2(M′) = b2(M), b3(M′) = b3(M)− 2 . (2.22)

In the example described in section 2.2.1, when M is the mirror of an elliptic fibration

over F1, M′ has b2 = 243, b3/2 = 3.

In IIA, a similar reasoning lets us conjecture that the new vacua correspond to having a

symplectic non–complex (and hence non–Kähler) manifold W ′, obtained from the original

Calabi–Yau W by replacing the node with a three–cycle. This manifold W ′ has

b2(W ′) = b2(W)− 1, b3(W ′) = b3(W) . (2.23)

In the example from section 2.2.1, when W is an elliptic fibration over F1, W ′ has b2 = 2,

b3/2 = 244.

Notice that these two sets of vacua are mirror by construction: we localize in IIA and

in IIB to points which are mirror to each other, and in both cases we add the appropriate

brane hypermultiplets to reveal new lines of vacua. What is conjectural is simply the

interpretation of the vacua. We now proceed to give evidence for that conjecture.

In the IIB case, the spectrum before the transition is clearly given by b3(M)/2−1 vector

multiplets and b2(M)+1 hypermultiplets (the “+1” is the universal hypermultiplet). We

have seen that the potential generated by F3 gives mass to one of the vector multiplets,

fixing it at a certain point in the complex moduli space. On the other side, the number of

massless hypermultiplets remains the same. Indeed, we have added a brane hypermultiplet

B; but this combines with the universal hypermultiplet to give only one massless direction,

the one given in (2.13).

This is to be compared with the Betti numbers of the proposed M′ from table 2.1:

indeed, b2 remains the same and b3 changes by 2. Since the manifold is now non–Kähler,

we have to be careful in drawing conclusions: “Kähler moduli” a priori do not make sense

any more, and though complex moduli are still given by H2,1 (by Kodaira–Spencer and

K = 0), a priori this number is 6= b3/2− 1, since the manifold is non–Kähler.

However, two circumstances help us. The first is that, by construction, the moduli of

the manifolds we have constructed are identified with the moduli of the singular Calabi–Yau

on which the small resolution is performed. Then, indeed we can say that there should be

b3(M′)/2−1+b2(M′) complex geometrical moduli in total (after complexifying the moduli

from b2 with periods of the anti-symmetric tensor field appropriately, and neglecting the



22 CHAPTER 2. COMPLEX/SYMPLEX MIRRORS

scalars arising from periods of RR gauge fields).

A more insightful approach exists, and will also allow us to compare low–lying massive

states. Reduction on a general manifold of SU(3) structure (along with a more general

class which will not concern us here) has been performed recently in [44]. (Manifolds

with SU(3) structures and various differential conditions were also considered from the

perspective of supergravity vacua, starting with [49, 50]). We have introduced a U(3)

structure in the previous section as the presence on the manifold of both a complex and

a symplectic structure with a compatibility condition. The almost complex structure j

allows us to define the bundle of (3, 0) forms, which is called the canonical bundle as in

the integrable case. If this bundle is topologically trivial the structure reduces further to

SU(3). The global section Ω of the canonical bundle can actually be used to define the

almost complex structure by

T ∗hol = {v1 ∈ T ∗|v1 ∧ Ω̄ = 0} . (2.24)

The integrability of the almost complex structure is then defined by (dΩ)2,2 = 0, something

we will not always require.

Let us now review the construction in [44] from our perspective. In general the results

of [44] require one to know the spectrum of the Laplacian on the manifold, which is not

always at hand; but in our case we have hints for the spectrum, as we will see shortly. We

have seen that a U(3) structure, and hence also an SU(3) structure, defines a metric. Let

us see it again: since J ∧ Ω = 0, J is of type (1, 1), and then a metric can be defined as

usual: gij̄ = −iJij̄ .

We can now consider the Laplacian associated to this metric. The suggestion in [44, 43]

is to add some low–lying massive eigen–forms to the cohomology. Since [∆, d] = 0 and

[∆, ∗] = 0, at a given mass level there will be eigen–forms of different degrees. Suppose for

example ∆ω2 = m2ω2 for a certain m. Then

dω2 ≡ mβ3 (2.25)

will also satisfy ∆β3 = m2β3, and similarly for α3 ≡ ∗β3 and ω4 ≡ ∗ω2. (The indices

denote the degrees of the forms.) We can repeat this trick with several mass levels, even if

coincident.

After having added these massive forms to the cohomology, we can use the resulting

combined basis to expand Ω = XIαI + βIFI and J = tiωi, formally as usual but with
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some of the α’s, β’s and ω’s now being massive. Finally, these expansions for Ω and J can

be plugged into certain “universal” expressions for the Kähler prepotential Pα. Without

fluxes (we will return on this point later) and with some dilaton factor suppressed, this

looks like [44]

P1 + iP2 =
∫

d(B + iJ) ∧ Ω, P3 =
∫

(dC2 − C0dB) ∧ Ω. (2.26)

Since the reader may be confused about the interpretation of the expressions
∫

d(B +

iJ)∧Ω and
∫

(dC2−C0dB)∧Ω which appear above (given the ability to integrate by parts),

let us pause to give some explanation. Our IIB solutions indeed correspond to complex

manifolds, equipped with a preferred closed 3-form which has dΩ = 0. However, the 4d

fields which are given a mass by the gauging actually include deformations of the geometry

which yield dΩ 6= 0, as we discussed above. Therefore, the potential which follows from

(2.26) is a nontrivial function on our field space.

Let us try to apply the KK construction just reviewed to the manifold M′. First of

all we need some information about its spectrum. We are arguing that M′ is obtained

from surgery. In [24], it is found that the spectrum of the Dirac operator changes little,

in an appropriate sense, under surgery. If we assume that this result goes through after

twisting the Dirac operator, we can in particular consider the Dirac operator on bispinors,

also known as the signature operator, which has the same spectrum as the Laplacian. All

this suggests that for very small B and gs the spectrum on M′ will be very close to the

one on M. Hence there will be an eigenform of the Laplacian ω with a relatively small

eigenvalue m (and its partners discussed above), corresponding to the extra harmonic forms

generating H3 before the surgery. By the reasoning above, this will also give eigenforms

α, β and ω̃.

Expanding now Ω = X1α + Ω0, J = t1ω + J0, B = b1ω + B0 and C2 = c1ω + C20

(where Ω0, J0, B0 and C20 represent the part of the expansion in cohomology) and using

the relation
∫
M′ β3 ∧ α3 = 1, we get from (2.26):

P1 + iP2 ∼ m(b1 + it1)X1, P3 ∼ m(c1 − C0b
1)X1 . (2.27)

The parameter m measures the non-Kählerness away from the Calabi-Yau manifold

M, and should be proportional to the vev of the brane hypermultiplet B̃0 of §2.2. Clearly

the formula is reminiscent of the quadratic dependence on the B hypermultiplet in (2.12).

The size of the curve C is measured by t1. Of course B̃0 is really a function of the t1 and
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universal hypermultiplets. Presumably, it and the massive hyper B̃m in section 2.2.2 are

different linear combinations of the curve volume and gs. It is even tempting to map the

M and M′ variables by mapping B directly to
∫
C J = t1, and (very reasonably) mapping

the dilaton hypermultiplet on M directly into the one for M′. Indeed, the size of C would

then be proportional to gs (at least when both are small), which is consistent with both

being zero at the transition point.

Fixing this would require more detailed knowledge of the map between variables. How-

ever, since the formula for the Killing prepotentials has the universal hypermultiplet in it

(which can be seen from (2.27), where C0 is mixed with other hypers and some dilaton

factor is omitted in the front), it could have α′ corrections. Moreover, (2.26) is only valid

in the supergravity regime where all the cycles are large compared with the string length.

Hence an exact matching between the Killing prepotentials is lacking.

We can now attempt the following comparison between the spectrum of the vacua and

the KK spectrum on the conjectural M′:

• On M, one of the vectors, X1, is given a mass by the gauging
∫

F3 ∧Ω. On M′, this

vector becomes a deformation of Ω which makes it not closed, Ω → Ω+α, ∆α = m2α.

In both pictures, the vacuum is at the point X1 = 0. On M, this is because we have

fixed the complex modulus at the point in which A1 shrinks. On M′, the manifold

which is natural to propose from table 2.1 is complex, and hence dΩ = 0.

• The remaining vectors are untouched by either gauging and remain massless.

• Both for M and for M′, there are b2 + 1 massless hypermultiplets.

• From the perspective of the gauged supergravity analysis on M there is a massive

hypermultiplet too: B and the universal hypermultiplet have mixed to give a massless

direction, but another combination will be massive. On M′, there is also a massive

hypermultiplet: it is some combination of gs and t1, which multiplies the massive form

ω (with ∆ω = m2ω) in the expansion of J . To determine the precise combination

one needs better knowledge of m(t1, gs) in (2.27).

Again, this comparison uses the fact that there is a positive eigenvalue of the Laplacian

which is much smaller than the rest of the KK tower, and this fact is inspired by the work

in [24].

This comparison cannot be made too precise for a number or reasons. One is, as we have

already noticed, that it is hard to control the spectrum, and we had to inspire ourselves



2.4. THE BIG PICTURE: A SPACE OF GEOMETRIES 25

from work which seemed relevant. Another is that the KK reduction of ten-dimensional

supergravity on the manifold M′ will not capture the full effective field theory precisely, as

we are close (at small B vevs) to a point where a geometric transition has occurred. Hence,

curvatures are large in localized parts of M′, though the bulk of the space can be large

and weakly curved. And indeed, we know that ten–dimensional type II supergravities

do not allow N = 2 Minkowski vacua from non-Kähler compactification manifolds in a

regime where all cycles are large enough to trust supergravity (though inclusion of further

ingredients like orientifolds, which are present in string theory, can yield large radiusN = 2

Minkowski vacua in this context [51]). The vacua of [15], and our own models, presumably

evade this no-go theorem via stringy corrections arising in the region localized around the

small resolution. Some of these corrections are captured by the local field theory analysis

reviewed in §2.3, which gives us a reasonable knowledge of the hyper moduli space close to

the singularity. It should be noted that the family of vacua we have found cannot simply

disappear as one increases the expectation values of the B fields and eφ: the moduli space

of N = 2 vacua is expected to be analytic even for the fully–fledged string theory. However,

new terms in the expansion of the Pα’s in terms of the B hypermultiplet will deform the

line; and large gs will make the perturbative type II description unreliable.

An issue that deserves separate treatment is the following. Why have we assumed

F3 = 0 in (2.26)? It would seem that the integral
∫
B F3 cannot simply go away. Usually,

in conifold transitions (especially noncompact ones) a flux becomes a brane, as the cycle

becomes contractible and surrounds a locus on which, by Gauss’ law, there must be a

brane. This would be the case if, in figure 2.1, the flux were on A: this would really mean

a brane on C. In our case, the flux is on B, on a chain which surrounds nothing. Without

sources, and without being non–trivial in cohomology, F3 has no choice but disappear on

M′.

To summarize this section, we have conjectured to which manifolds the vacua found

in section 2.2 correspond. In this way, we have also provided explicit symplectic–complex

non–Kähler mirror pairs.

2.4 The big picture: a space of geometries

There are a few remarks that can be made about the type of complex and symplectic

manifolds that we have just analyzed, and that suggest a more general picture. This is a

speculative section, and it should be taken as such.
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One of the questions which motivated us is the following. The KK reduction in [44]

says that
∫

dJ ∧ Ω encodes the gauging of the four–dimensional effective supergravity on

M′. Hence in some appropriate sense (to be discussed below), dJ must be integral – one

would like
∫

dJ ∧Ω to be expressed in terms of integral combinations of periods of Ω. This

is just because the allowed gauge charges in the full string theory form an integral lattice.

But from existing discussions, the integral nature of dJ is far from evident. Though one

can normalize the massive forms appropriately in such a way that the expression does give

an integer, this does not distinguish between several possible values for the gauging: it is

just a renormalization, not a quantization.

Without really answering this question, we want to suggest that there must be a natural

modification of cohomology that somehow encodes some of the massive eigenvalues of the

Laplacian, and that has integrality built in. It will be helpful to refer again to figure 2.1:

on M′ (the manifold on the right in the lower line of figure 1), we have depicted a few

relevant chains, obviously in a low–dimensional analogy. What used to be called the A

cycle is now still a cycle, but trivial in homology, as it is bounded by a four–cycle D.

The dual B cycle, from other side, now is no longer a cycle at all, but merely a chain, its

boundary being the curve C. This curve has already played a crucial role in showing that

M′ cannot be symplectic.

We want to suggest that a special role is played by relative cohomology groups H3(M′, C)

and H4(M′, A). Remember that relative homology is the hypercohomology of C•(C) ιC−→
C•(M′), with Ck being chains and the map ιC being the inclusion. In plain English, chains

in Ck(M′, C) are pairs of chains (ck, c̃k−1) ∈ Ck(M′) × Ck−1(C), and homology is given

by considering the differential

∂(ck, c̃k−1) = (∂ck + ιC(c̃k−1),−∂c̃k−1) . (2.28)

So cycles in Hk(M′, C), for example, are ordinary chains which have boundary on C. B is

precisely such a chain. A long exact sequence can be used to show that, when C is a curve

trivial in H2(M′) as is our case, dim(H3(M′, C)) = dim(H3(M′)) + 1. So (B, C) and the

usual cycles generate H3(M′, C). Similarly, dim(H4(M′, A)) = dim(H4(M′)) + 1, and the

new generator is (D, A).

Similar and dual statements are valid in cohomology. This is defined similarly as for
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homology: pairs (ωk, ω̃k−1) ∈ Ωk(M′)× Ωk−1(C), with a differential

d(ωk, ω̃k−1) = (dωk, ι
∗
C(ωk)− dω̃k−1) (2.29)

A non–trivial element of H3(M′, C) is (0, volC). Since C is a holomorphic curve, volC =

J|C ≡ ι∗CJ and hence this representative is also equivalent to (dJ, 0), using the differential

above.

When we deform M′ with the scalar in the massive vector multiplet X1, the manifold

becomes non–complex, as we have shown in the previous section; but one does not require

the almost complex structure to be integrable to define an appropriate notion of holomor-

phic curve. In fact, one might expect then that, when dΩ 6= 0, which corresponds to M′

being non–complex, one can also choose A to be SLag (as we remarked earlier, the defi-

nition will not really require that the almost symplectic structure be closed).8 Definitely,

the logic would hold the other way around – if such a SLag A can be found,
∫
A Ω 6= 0 and

then, again by integration by parts, it follows that dΩ 6= 0.

In our example, we expect the number of units n1 of F3 flux present before the transition

in the IIB picture, to map to “n1 units of dJ” on M′. The phrase in quotes has not been

precisely defined, but it is reasonable to think that it is defined by some kind of intersection

theory in relative homology. We will now try to make this more precise.

As we have seen, the dimension of the relative H3 can be odd (and it is in our case),

so we should not expect a pairing between A and B cycles within the same group. One

might try nevertheless to define a pairing between chains in H3(M′, C) and H4(M′, A); it

would be defined by

(B, C) · (D,A) ≡ #(B ∩A) = #(C ∩D) . (2.30)

In fact, if we think of another lower–dimensional analogy, in which both A and C are

one–dimensional in a three–dimensional manifold, it is easy to see that what we have just

defined is a linking number between C and A. Indeed, dim(C) + dim(A) = dim(M′)− 1.

This can also be rephrased in relative cohomology. Consider a bump–form δA which

is concentrated around A and has only components transverse to it, and similarly for C.

These can be defined more precisely using tubular neighborhoods and the Thom isomor-

phism [52]. Since A and C are trivial in homology, we cannot quite say that these bump

8The reader should not confuse this potential SLag, which may exist off-shell in the IIB theory, with
the pseudo-SLag manifold that exists on W ′ where dΩ 6= 0 even on the N = 2 supersymmetric solutions.
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forms are the Poincaré duals of A and C. But we can say that (δA, 0) ∈ H3(M, C) is

the Poincaré dual to the cycle (D,A) ∈ H4(M, A), with natural definitions for the pairing

between homology and cohomology. δA is non–trivial in relative cohomology but trivial in

the ordinary cohomology H3(M), and hence there exists an FA such that dFA = δA. Then

we have ∫

M′
FA ∧ δC =

∫

C
FA =

∫

B
dFA = #(C ∩D) ≡ L(A,C) . (2.31)

In other words, in cohomology we have L(A,C) =
∫

d−1(δA) ∧ δC .

Suppose we have now another form δ̃A which can represent the Poincaré dual (in relative

cohomology) to (D, A). Then we can use this other form as well to compute the linking,

with identical result. This is because (δA, 0) ∼ (δ̃A, 0) in H3(M′, A) means that, by the

definition of the differential above, δA − δ̃A = dω2 with ω2 satisfying ι∗Cω2 = dω̃1 for some

form ω̃1 on C. Then

∫

M′
d−1(δA − δ̃A) ∧ δC =

∫

M′
ω2 ∧ δC =

∫

C
ω2 =

∫

C
dω̃1 = 0 (2.32)

so L(A,C) does not depend on the choice of the Poincaré dual. But now, remember

that (dJ, 0) is also a non–trivial element of H3(M′, C); if we normalize the volume of C

to 1, it then has an equally valid claim to be called a Poincaré dual to (D, A). Indeed,∫
(B,C)(dJ, 0) ≡ ∫

B dJ =
∫
C J = 1 = (D, A) · (B, C), and for all other cycles the result is

zero. Similar reasonings apply to dΩ. Then we can apply the steps above and conclude

that

L(A,C) =
∫

M′
dJ ∧ Ω . (2.33)

In doing this we have normalized the volumes of C and A to one; if we reinstall those

volumes, we get precisely that
∫

dJ ∧Ω is a linear function of the vectors and hypers with

an integral slope.

Another point which seems to be suggesting itself is the relation between homologically

trivial Special Lagrangians and holomorphic curves on one side, and massive terms in the

expansion of Ω and J on the other. The presence of a holomorphic but trivial curve,

as we have already recalled, implies that dJ 6= 0: in the previous section we have seen

that one actually expects that such curves are in one–to–one correspondence with massive

eigenforms of the Laplacian present in the expansion of J (whose coefficients represent

massive fields, which vanish in vacuum). We have argued for this relation close to the

transition point, and for the M′ that we have constructed, but it might be that this link
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persists in general. This would mean that inside an arbitrary SU(3) structure manifold,

one would have massive fields which are naturally singled out, associated to homologically

trivial holomorphic curves.

Similarly, in the IIA on W ′, there is a 3-cycle which is (pseudo) Special Lagrangian but

homologically trivial. Its presence implies that dΩ 6= 0, in keeping with the fact that the

IIA vacua are non-complex.

Reid’s fantasy [12] involved the conjecture that by shrinking -1 curves, and then deform-

ing, one may find a connected configuration space of complex threefolds with K = 0. Here,

we see that it is natural to extend this fantasy to include a mirror conjecture: that the

space of symplectic non-complex manifolds with SU(3) structure is similarly connected,

perhaps via transitions involving the contraction of (pseudo) Special Lagrangian cycles,

followed by small resolutions. The specialization to -1 curves in [12] is probably mirror to

the requirement that the SLags be rigid, in the sense that b1 = 0.

In either IIB or IIA, we have seen that (at least close to the transition) there is a

natural set of massive fields to include in the low-energy theory, associated with the classes

of cycles described above. Allowing these fields to take on expectation values may allow

one to move off-shell, filling out a finite–dimensional (but large) configuration space, inside

which complex and symplectic manifolds would be zeros of a stringy effective potential.

While finding such an N = 2 configuration space together with an appropriate potential to

reveal all N = 2 vacua is clearly an ambitious goal, it may also provide a fruitful warm-up

problem for the more general question of characterizing the string theory “landscape” of

N ≤ 1 vacua [53].

In this bigger picture, this paper is a Taylor expansion of the master potential around

a corner in which the moduli space of M′ meets the moduli space of compactifications on

M with RR flux.

2.5 Details about an example

We will detail here the transition for the example mentioned in section 2.2.1. We will do

so on the IIA side, which is the one which involves the strictest assumptions, as explained

there.

The Calabi–Yau W is an elliptic fibration over the Hirzebruch surface F1. It is con-

venient to describe it as a hypersurface in a toric manifold V . The fan for the latter is
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described by the columns of the matrix

v1 v2 v3 v4 v5 v6 v7


0 0 0 1 0 −1 0

0 0 1 1 −1 0 0

0 −1 2 2 2 2 2

−1 0 3 3 3 3 3




.

The last five vectors lie in the same plane, determined by the last two coordinates; let us

plot the first two coordinates, along with three different triangulations:
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The vectors of the fan are indeed the right ones to describe the F1 base. The fan is

further specified by the higher–dimensional cones in the picture, with the first triangulation

really describing the elliptic fibration over F1, the last describing a space related to the

first by a flop, and the middle triangulation describing the singular case. (The points have

been labeled in the singular case only to avoid cluttering the picture.) We associate as

usual a homogeneous coordinate zi to each of the vi’s, with charge matrix given by the

(transposed) kernel of the matrix above:




0 0 3 −2 1 −2 0

6 4 1 0 1 0 0

3 2 0 0 0 0 1




From the picture we see that the flopped locus in V lies at z3 = z4 = z6 = z7 = 0.

One has to check whether this locus intersects the Calabi–Yau only once. This is done by

looking at the equation for W ⊂ V , which for a certain point in the complex moduli space

reads z2
1 +z3

2 +z12
3 z18

4 z6
7 +z12

5 z6
6z

6
7 +z12

3 z18
6 z6

7 +z6
4z

12
5 z6

7 = 0; hence we get the singular locus

z2
1 + z3

2 = 0 on W. Taking into account the C∗ actions, this corresponds to only one point

p as desired. To verify that the normal bundle of the shrinking curve has charges (−1,−1),

one can identify the combination of the charges that keeps p invariant; this action turns
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out to be (1, 1, λ, λ−1, 1, λ−1, λ), λ ∈ C∗, which is the right one for a conifold point.



Chapter 3

Topological twisted sigma model

with H-flux

Abstract

In this section we revisit the topological twisted sigma model with H-flux. We explicitly

expand and then twist the worldsheet Lagrangian for bi-Hermitian geometry. we show

that the resulting action consists of a BRST exact term and pullback terms, which only

depend on one of the two generalized complex structures and the B-field. We then discuss

the topological feature of the model.

3.1 Introduction

It is a very convenient and powerful approach to obtain topological field theories by twisting

supersymmetric field theory [54]. It was furthur shown that the N = (2, 2) worldsheet

sigma model with the Kähler target space admits A and B types of twisting [55]. However

the Kähler condition is not crucial to perform the A and B twists. What is really needed

is to have N = (2, 2) worldsheet supersymmetry so that U(1)V and U(1)A exist.

From the viewpoint of the N = (2, 2) worldsheet supersymmetry algebra the twists

are achieved by replacing the 2d Euclideanized spacetime rotation group U(1)E with the

diagonal subgroup of U(1)E × U(1)R, where U(1)R is either U(1)V or U(1)A R-symmetry

in the N = (2, 2) supersymmetry group.

In 1984 the most general geometric backgrounds for N = (2, 2) supersymmetric sigma

models was proposed by Gates, Hull, and Roček [57]. The geometric backgrounds (a.k.a.

32
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bi-Hermitian geometry) consists of a set of data (J+, J−, g, H). J± are two different inte-

grable complex structures and the metric g is Hermitian with respect to either one of J±.

Moreover J± are convariantly constant with respect to the torsional connections Γ±g−1H,

where H is a closed 3-form on the manifold. The manifold is apparently non-Kähler due

to the presence of the torsions.

Bi-Hermitian geometry started to re-receive new attention after Hitchin introduced

the notion of generalized geometry [13] and Gualtieri furthur showed that the geometry

is equivalent to a pair of commuting (twisted) generalized complex ((T)GC for short)

structures on the manifold M , namely, the twisted generalized Kähler structure [14].

Since the worldsheet theory with bi-Hermitian target has N = (2, 2) supersymmetry, we

definitely can consider its topological twisted models. In [58] Kapustin and Li considered

such a topological model and showed that on the classical level the topological observ-

ables in a given twisted model correspond to the Lie algebroid cohomologies associated

with one of the two twisted generalized complex structures. The same problem was also

considered by many other authors from Hamiltonian approach or using Batalin-Vilkovisky

quantization [59] [60] [61].

Although it is definitely true that the twisted models for bi-Hermitian geometries are

topological, the explicit construction of the twisted Lagrangian is lacking. The difficulties

of such a calculation lie in that people are so accustomed to using complex geometry that

they feel relunctant to perform a calculation which needs to be done in the real coordinate

basis with projectors. A priori, we should be able to express the twisted Lagrangian for the

generalized geometry as some BRST exact piece plus certain pullback terms which only

depend on one of the twisted generalized complex structures.

By the end of the paper we will see that this is indeed true. However since the pullback

object is not closed it is not clear that the action is topological. This issue is made clear in

[65]. The paper is organized as follows. In Section 3.2 we first review the sigma models with

Riemannian and Kähler targets and discuss the properties of the twisted Lagrangian. In

Section 3.3 we present the computation of the twisted topological models for bi-Hermitian

geometries and express the twisted Lagrangian in the aforementioned way. In section 3.4 we

conclude, discuss the limitation of the twisted models, and mention some open questions.

Some basics and definitions of the generalized geometry will be presented in the appendix.
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3.2 Topological sigma model with Kähler targets

We first recall some basic facts about the worldsheet sigma models with Riemannian or

Kähler manifolds as targets. Throughout the whole paper lowercase English letters a, b, c, ...

are indices for the real coordinates on the targets, while Greek letter µ, ν, σ, ... are those

for holomorphic coordinates. (And of course µ̄, ν̄, σ̄, ... for antiholomorphic coordiantes.)

Although it has been shown that the off-shell formalism exists even for the bi-Hermitian

geometry [62], we will only work in the on-shell supersymmetry formalism to simplify the

calculation.

The nonlinear sigma model with a Riemannian manifold M has natural (1, 1) worldsheet

supersymmetric formalism. The model is governed by an embedding map Φ : Σ → M

where Σ is a Riemann surface. The Lagrangian is

L = 2t

∫
d2z d2θ gab(Φ)D+ΦaD−Φb (3.1)

where

D± =
∂

∂θ±
+ iθ±(

∂

∂x0
± ∂

∂x1
) (3.2)

Φa = φa + θ+ψa
+ + θ−ψa

− + θ−θ+F a (3.3)

d2z =
i

2
dz ∧ dz̄ (3.4)

Exapnding out (3.1) and then setting F a = Γa
bcψ

b
+ψc− (the on-shell value of F a) we have

L = 2t

∫
d2z (

1
2
gab∂zφ

a∂z̄φ
b +

i

2
gabψ

a
−Dzψ

b
−

+
i

2
gabψ

a
+Dz̄ψ

b
+ +

1
4
Rabcdψ

a
+ψb

+ψc
−ψd

−) (3.5)

where Dz̄ψ
a
+ = ∂z̄ψ

a
+ + Γa

bc ∂z̄φ
b ψc

+ and Dzψ
a− = ∂zψ

a− + Γa
bc ∂zφ

b ψc−.

If the target space is Kähler the nonlinear sigma model will have an additional (1, 1)

supersymmetry, turning the theory into N = (2, 2) sigma model [56]. The Lagrangian of

such a sigma model is written as

L = 2t

∫
d2z (

1
2
gab∂zφ

a∂z̄φ
b + igµ̄µψµ̄

−Dzψ
µ
−

+ igµ̄µψµ̄
+Dz̄ψ

µ
+ + Rµµ̄νν̄ψ

µ
+ψµ̄

+ψν
−ψν̄

−) (3.6)
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The detailed supersymmetry transformations are listed as follows [55].

δφµ = iε−ψµ
+ + iε+ψµ

−

δφµ̄ = iε̄−ψµ̄
+ + iε̄+ψµ̄

−

δψµ
+ = −ε̄−∂zφ

µ − iε+ψν
−Γµ

νσψσ
+

δψµ̄
+ = −ε−∂zφ

µ̄ − iε̄+ψν̄
−Γµ̄

ν̄σ̄ψσ̄
+

δψµ
− = −ε̄+∂z̄φ

µ − iε−ψν
+Γµ

νσψσ
−

δψµ̄
− = −ε+∂z̄φ

µ̄ − iε̄−ψν̄
+Γµ̄

ν̄σ̄ψσ̄
− (3.7)

3.2.1 Kähler A model

An A-twist will turn ψµ
+ and ψµ̄

− into sections of Φ∗(T 1,0X) and Φ∗(T 0,1X), denoted as

χµ and χµ̄. And ψµ̄
+ and ψµ

− become sections of Ω1,0
Σ ⊗ Φ∗(T 0,1X) and Ω0,1

Σ ⊗ Φ∗(T 1,0X),

denoted as ψµ̄
z and ψµ

z̄ . In order to get the transformation laws we simply set ε+ = ε̄− = 0

in (3.7). After A-twist the Lagrangian becomes

L = 2t

∫
d2z (

1
2
gab∂zφ

a∂z̄φ
b + igµ̄µψµ̄

z Dz̄χ
µ

+ igµ̄µψµ
z̄ Dzχ

µ̄ −Rµµ̄νν̄ψ
µ
z̄ ψµ̄

z χνχν̄) (3.8)

The key fact as stated in [55] is that the Lagrangian can be recast into a very suggestive

form, which is a BRST exact term plus a pullback term depdending only on the Kähler

structure of the target space. Upon deriving this the equatoins of motion of ψ are needed.

L = it

∫
d2z{Q,VA}+ t

∫
Φ∗(K) (3.9)

with VA = gµν̄(ψν̄
z ∂z̄φ

µ + ∂zφ
ν̄ψµ

z̄ ) and K = −igµν̄dzµdzν̄ . From this expression we realize

that the Kähler A model depends only on the cohomology class of K.
∫

Φ∗(K) also depends

on the homotopy class of the mapping Φ, but in the path integral all the homotopy classes

will be summed over.

3.2.2 Kähler B model

We also recall some basics about the Kähler B model which will be useful later. The B twist

will turn ψµ̄
± into sections of Φ∗(T 0,1X), and ψµ

+ and ψµ
− into sections of Ω1,0

Σ ⊗Φ∗(T 0,1X)
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and Ω0,1
Σ ⊗ Φ∗(T 0,1X) respectively. The transformation can be written as

δφµ = 0

δφµ̄ = iεηµ̄

δηµ̄ = δθµ = 0

δρµ = −εdφµ (3.10)

where

ηµ̄ = ψµ̄
+ + ψµ̄

−

θµ = gµµ̄(ψµ̄
+ − ψµ̄

−)

ρµ = ψµ
+ + ψµ

− (3.11)

After the B twisting the Lagrangian explicitly becomes

L = t

∫
d2z ( gab∂zφ

a∂z̄φ
b + igµ̄µηµ̄(Dzρ

µ
z̄ + Dz̄ρ

µ
z )

+ iθµ(Dz̄ρ
µ
z −Dzρ

µ
z̄ ) + Rµµ̄νν̄ρ

µ
z ρν

z̄η
µ̄θσgσν̄) (3.12)

which can be reexpressed as follows.

L = it

∫
{Q,VB}+ tW (3.13)

where

W =
∫

Σ
(−θµDρµ − i

2
Rµµ̄νν̄ρ

µ ∧ ρνηµ̄θσgσν̄) (3.14)

and the D operator is the exterior derivative on the worldsheet Σ by using the pullback

of the Levi-Civita connection on M . The model is topological because it is independent

of the complex structure of the worldsheet and the Kähler structure of the target space.

However the model do depend on the complex structure, which can be seen from the BRST

variations of the fields.
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3.3 Bi-Hermitian geometry and its topological twisted mod-

els

As stated in the introduction the most general (2, 2) nonlinear sigma model with H is

described in [57], which is also known as ”bi-Hermitian geometry.” We will simply quote

the properties of the geometry, without any derivations of the requirements. With the

non-trivial B-field turned on, the worldsheet action is given by

L = 2t

∫
d2z d2θ (gab(Φ) + bab(Φ))D+ΦaD−Φb (3.15)

The first set of (1, 1) supersymmetry is as usual while the additional (1, 1) supersym-

metry transformations are given by two different complex structures

δ1Φa = iε1+D+Φa + iε1−D−Φa

δ2Φa = iε2+D+ΦbJa
+b + iε2−D−ΦbJa

−b (3.16)

where J+ and J− are the complex structures seen by the left and right movers re-

spectively. Requiring (3.15) to be invariant under the transformations leads us to the

conditions:

J t
±gJ± = g ∇±J± = 0 (3.17)

where ∇± are the covariant derivatives with torsional connections Γ± = Γ ± g−1H. The

first condition implies that the metric is Hermitian with respect to the either one of the

complex structures J±. And the second condition in (3.17) explicitly becomes

Ja
±b,c = Γd

±cbJ
a
±d − Γa

±cdJ
d
±b. (3.18)

Equation (3.18) will be used when we try to contruct the generalized A/B models in real

coordinate basis. Moreover the H field is of type (2, 1)+(1, 2) with respect to both complex

structures J±. Expanding (3.15) out and then setting F a to its on-shell value we have the
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following worldsheet action in component fields

F a = Γa
+bcψ

b
+ψc

− = −Γa
−bcψ

b
−ψc

+ (3.19)

L = 2t

∫
d2z(

1
2
(gab + bab)∂zφ

a∂z̄φ
b +

i

2
gab(ψa

−∂zψ
b
− + ψa

+∂z̄ψ
b
+) (3.20)

+
i

2
ψa
−∂zφ

bψc
−(Γabc −Habc) +

i

2
ψa

+∂z̄φ
bψc

+(Γabc + Habc) +
1
4
R+abcdψ

a
+ψb

+ψc
−ψd

−)

where R+abcd is the curvature of the torsional connection Γa
+bc.

R±abcd = Rabcd ± 1
2
(∇dHabc −∇cHabd) +

1
4
(He

adHebc −He
acHebd) (3.21)

Since the theory is of (2, 2) type there exist two U(1) R-symmetries for the worldsheet

fermions, U(1)V and U(1)A [58]. The topological A and B twists will shift the spins of

the fermions by the charges of U(1)V and U(1)A respectively. The charge assignments are

worked out in [58] and [64].

U(1)V : qV (P̄+ψ+) = −1 qV (P̄−ψ−) = −1

U(1)A : qA(P̄+ψ+) = −1 qV (P̄−ψ−) = +1 (3.22)

with the following projectors defined for conveniences.

P± =
1
2
(1 + iJ±), P̄± =

1
2
(1− iJ±) (3.23)

Moreover the U(1) R-symmetry used in the topological twist needs to be non-anomalous.

The anomalies are computed by Atiyah-Singer index theorem and the conditions are

U(1)V : c1(T
1,0
− )− c1(T

1,0
+ ) = 0

U(1)A : c1(T
1,0
− ) + c1(T

1,0
+ ) = 0 (3.24)

Using the language of generalized complex geometry we have two commuting twisted gen-

eralized complex structures (J1,J2). J1 and J2 are endomorphisms on TM ⊕T ∗M , which

square to −1. Let E1 and E2 be the i-eigenbundles of J1 and J2. The conditions can be

repackaged into
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U(1)V : c1(E2) = 0

U(1)A : c1(E1) = 0 (3.25)

The supersymmetry transformation laws can be derived from (3.16).

δ1
+φ = ψ+ δ1

−φ = ψ− δ2
+φ = J+ψ+ δ2

−φ = J−ψ−

δ1
+ψ+ = −i∂zφ δ1

−ψ+ = F δ2
+ψ+ = iJ+∂zφ δ2

−ψ+ = J−F

δ1
+ψ− = −F δ1

−ψ− = −i∂z̄ δ2
+ψ− = −J+F δ2

−ψ− = iJ−∂z̄φ (3.26)

We can then define the linear combinations of the supersymmetry generators.

Q+ =
1
2
(Q1

+ + iQ2
+) Q̄+ =

1
2
(Q1

+ − iQ2
+)

Q− =
1
2
(Q1

− + iQ2
−) Q̄− =

1
2
(Q1

− − iQ2
−) (3.27)

We then express the on-shell variation laws in the following forms

δφa = i(ε+(P+ψ+)a + ε̄+(P̄+ψ+)a) + i(ε−(P−ψ−)a + ε̄−(P̄−ψ−)a)

δψ+ = −ε+(P̄+∂zφ)a − ε̄+(P+∂zφ)a − Γa
+bcδφ

bψc
+

+ iHa
bc(ε+(P+ψ+)b + ε̄+(P̄+ψ+)b)ψc

+ −
i

2
(ε+P a

+d + ε̄+P̄ a
+d)H

d
bcψ

b
+ψc

+

δψ− = −ε−(P̄−∂zφ)a − ε̄−(P−∂zφ)a − Γa
−bcδφ

bψc
−

+ iHa
bc(ε−(P−ψ−)b + ε̄−(P̄−ψ−)b)ψc

− −
i

2
(ε−P a

−d + ε̄−P̄ a
−d)H

d
bcψ

b
−ψc

− (3.28)

where ε± are the variation parameters of Q±.

The BRST operators for the generalized A and B models can be taken as:

QA = Q+ + Q̄−, QB = Q̄+ + Q̄−. (3.29)

Before the topological twists we have the worldsheet fermions P+ψ+, P̄+ψ+, P−ψ−,

and P̄−ψ−. These fermions are sections of certain bundles. For instance P̄+ψ+ is a section

of K1/2 ⊗ Φ∗(T 0,1
+ X) where K is the canonical line bundle of the worldsheet (the bundle

of (1, 0) form.) and T 0,1
+ is the (0, 1) part of the tangent bundle with respect to J+. After
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performing topological A-twist, the spins of the fermions will be changed as follows.

(P+ψ+)a ≡ χa ∈ Γ(Φ∗(T 1,0
+ X))

(P̄+ψ+)a ≡ χa
z ∈ Γ(Ω(1,0)

Σ ⊗ Φ∗(T 0,1
+ X))

(P−ψ−)a ≡ λa
z̄ ∈ Γ(Ω(0,1)

Σ ⊗ Φ∗(T 1,0
− X))

(P̄−ψ−)a ≡ λa ∈ Γ(Φ∗(T 0,1
− X)) (3.30)

On the other hand the B-twist case can be obtained similarly. For completeness we list

the sections in the generalized B-model with the BRST charge QB = Q̄+ + Q̄−.

(P+ψ+)a ≡ χa
z ∈ Γ(Ω(1,0)

Σ ⊗ Φ∗(T 1,0
+ X))

(P̄+ψ+)a ≡ χa ∈ Γ(Φ∗(T 0,1
+ X))

(P−ψ−)a ≡ λa
z̄ ∈ Γ(Ω(0,1)

Σ ⊗ Φ∗(T 1,0
− X))

(P̄−ψ−)a ≡ λa ∈ Γ(Φ∗(T 0,1
− X)) (3.31)

3.3.1 Generalized A model

We will use the generalized A-model as our first explicit example. The BRST variation of

the fields can be written down by setting the variation of Q̄+ and Q− in (3.28) to be zero.

{QA, φa} = χa + λa

{QA, χa} = −iΓa
+bcλ

bχc

{QA, λa} = −iΓa
−bcχ

bλc

{QA, χa
z} = −iΓa

+bc(χ
b + λb)χc

z

−(P̄+∂zφ)a + iP̄ a
+dH

d
bcχ

bχc
z

{QA, λa
z̄} = −iΓa

−bc(χ
b + λb)λa

z̄

−(P−∂zφ)a − iP a
−dH

d
bcλ

bλc
z̄ (3.32)

After the twisting the Lagrangian becomes:
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L = 2t

∫
d2z(

1
2
(gab + bab)∂zφ

a∂z̄φ
b + igab(χa

z∂z̄χ
b + λa

z̄∂zλ
b) (3.33)

+ i(Γabc −Habc)χa
z∂z̄φ

bχc + i(Γabc + Habc)λa
z̄∂zφ

bλc + R+abcdχ
aχb

zλ
c
z̄λ

d)

We mimic the VA operator in Kähler A model (3.9) by virtue of the projectors.

VA = gab(χa
z(P+∂z̄φ)b + λa

z̄(P̄−∂zφ)b) (3.34)

The BRST variations of (P+∂z̄φ)b and (P̄−∂zφ)b will involve the derivatives of the

complex structures and can be re-expressed in terms of Γ± and the projectors (3.23) by

using (3.18) and J± = −i(P± − P̄±).

{QA, (P+∂φ)b} = ∂χb + (P+∂λ)b +
1
2
Γd

+ec(P+ − P̄+)b
d(χ

c + λc)∂φe

− 1
2
Γb

+cd(χ
c + λc)(P+∂φ− P̄+∂φ)d

{QA, (P̄−∂φ)b} = ∂λb + (P̄−∂χ)b − 1
2
Γd
−ec(P− − P̄−)b

d(χ
c + λc)∂φe

+
1
2
Γb
−cd(χ

c + λc)(P−∂φ− P̄−∂φ)d (3.35)

Here the ∂ operator could be either ∂z or ∂z̄. Performing the BRST variations to V by

using (3.32) and (3.35) we obtain

{QA,VA} = igab((P̄+∂zφ)a(P+∂z̄φ)b + (P−∂z̄φ)a(P̄−∂zφ)b) + gab(χa
z∂z̄χ

b + λa
z̄∂zλ

b)

+(Γabc + Habc)χa
z∂z̄φ

bχc + (Γabc −Habc)λa
z̄∂zφ

bλc (3.36)

The curvature term will be recovered if we use the equations of motion for χz and λz̄.

To visualize that the model only depends on one of the generalized complex structure one

can use the following identities.

g(P±·, P̄±·) =
1
2
g(·, ·) +

i

2
g(J±·, ·) =

1
2
g(·, ·) +

i

2
ω±(·, ·)

g(P̄±·, P±·) =
1
2
g(·, ·)− i

2
g(J±·, ·) =

1
2
g(·, ·)− i

2
ω±(·, ·) (3.37)
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The scalar term in (3.36) becomes

gab((P̄+∂zφ)a(P+∂z̄φ)b + (P−∂z̄φ)a(P̄−∂zφ)b) = 2gab∂zφ
a∂z̄φ

b − iω̃ab∂zφ
a∂z̄φ

b (3.38)

where ω̃ = 1
2(ω+ + ω−) which appear in J2 in (A.2).

Comparing the twisted action (3.33) and (3.36) we obtain the following suggestive

equation, modulo the equations of motion for χz and λz̄.

L = it

∫
d2z {QA,VA}+ t

∫
Φ∗(−iω̃) + t

∫
Φ∗(b) (3.39)

Apparently the action of the generalized A model depends on one of the generalized com-

plex structures J2 and the pullback of the spacetime b field. The topological feature of the

action will be made clear in the next section.

3.3.2 Generalized B model

The generalized B model has the field contents as listed in (3.31). By projecting out ε± in

(3.28) the BRST variations for these fields are similarly obtained.

{QB, φa} = χa + λa

{QB, χa} = −iΓa
+bcλ

bχc

{QB, λa} = −iΓa
−bcχ

bλc

{QB, χa
z} = −iΓa

+bc(χ
b + λb)χc

z

−(P+∂zφ)a + iP a
+dH

d
bcχ

bχc
z

{QB, λa
z̄} = −iΓa

−bc(χ
b + λb)λa

z̄

−(P−∂zφ)a − iP a
−dH

d
bcλ

bλc
z̄ (3.40)

with QB = Q̄+ + Q̄−. Comparing (3.32) and (3.40) we can see that the A and B model

variantion laws are simply exchanged if we substitute J+ by −J+. In generalized B model

the operator in the BRST exact term is given by

VB = gab(χa
z(P̄+∂z̄φ)b + λa

z̄(P̄−∂zφ)b) (3.41)

The variations of (P̄±∂φ)b are given by
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{QB, (P̄±∂φ)b} = (P̄±(∂χ + ∂λ))b − 1
2
Γd
±ec(P± − P̄±)b

d(χ
c + λc)∂φe

+
1
2
Γb
−cd(χ

c + λc)(P±∂φ− P̄±∂φ)d (3.42)

Note that P̄+χ = χ and P̄−λ = λ. Again the ∂ could be either ∂z or ∂z̄.

The Lagrangian after the twisting is given by

L = 2t

∫
d2z(

1
2
(gab + bab)∂zφ

a∂z̄φ
b + igab(χa

z∂z̄χ
b + λa

z̄∂zλ
b) (3.43)

+ i(Γabc −Habc)χa
z∂z̄φ

bχc + i(Γabc + Habc)λa
z̄∂zφ

bλc + R+abcdχ
aχb

zλ
cλd

z̄)

In order to determine the pullback term we compute {Q,VB}.

{QB,VB} = igab((P+∂zφ)a(P̄+∂z̄φ)b + (P−∂z̄φ)a(P̄−∂zφ)b) + gab(χa
z∂z̄χ

b + λa
z̄∂zλ

b)

+(Γabc + Habc)χa
z∂z̄φ

bχc + (Γabc −Habc)λa
z̄∂zφ

bλc(3.44)

In deriving this we have used the equations of motion of the fermionic fields. Note that

(3.36) and (3.44) are almost the same except for the scalar kinetic terms. This will result

in the different GCS dependence. Namely,

L = it

∫
d2z {QB,VB}+ t

∫
Φ∗(iδω) + t

∫
Φ∗(b) (3.45)

where δω = 1
2(ω+ − ω−) appearing in J1 (A.2). Contrary to the generalized A model,

the generalized B model depends on J1. At first sight the results (3.39) (3.45) seem nice

and confirm our original guess. A second thought, however, reveals the issue that neither

of b − iω̃ and b + iδω is closed. The consequence of this is that under small coordinate

repaprametrization the variation of the pullback will be nonvanishing and proportional to

H [66]. One way to solve this issue is to appeal to the GCG [65]. Working in generalized

B model, we assume the pure spinor s1 associated with TGC structure J1 can be put into

the following form:

s1 = exp(b + β) (3.46)

−β̄ = b∓ iω± − γ± (3.47)
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where dβ = 0 and the multiplication in the exponential is the wedge product. A direct

but lengthy computation shows, in generalized B model,

L = it

∫
d2z {QB,VB +

1
2
γ+abχ

a
z∂z̄φ

b − 1
2
γ−abλ

a
z̄∂zφ

b}+ t

∫
Φ∗(β̄) (3.48)

We refer the interested readers to [65] for more details about this construction. Alter-

natively one could simply say that without this construction the model is topological in

the sense that the worldsheet metric is irrelevant and the puckback term only depends on

the homotopy class of the embedding.

3.4 Conclusion and Discussion

In this paper we study the topological twisted models with H-flux. We explicitly expand

the N = (2, 2) worldsheet action with bi-Hermitian target spaces and twist the action.

We found that the generalized twisted models have many similar features to the Kähler

twisted models. For example, the action can always be written as a sum of a BRST exact

term and some pullback terms, from which the geometric dependence of the topological

models can be read off. The generalized A/B model depends only on one of the twisted

generalized complex structures J2/ J1.

Although it is very powerful to construct interesting examples of topological field the-

ories by ”twisting” the spins of the fields, some topological constraints for anomaly can-

cellations always come with it. Recently people have tried to construct the topological

models for generalized geometries by using Batalin-Vilkovisky formalism to get around

this limitation[63].

Another advantage of the twisted models is that it makes explicit the studying the

mirror symmetry, in this case, of the non-Kähler spaces. The lacking of the non-Kähler

examples, however, is a long-standing problem along this direction. Although the ”gener-

alized Kähler” examples provided in [1] are not twisted by H-field, it would still be very

interesting to study the topological models for those geometries. Another interesting prob-

lem is to generalize the usual Kähler quotients to obtain explicit bi-Hermitian examples.

We would like to visit these problems in the future.



Chapter 4

Flux-induced isometry gauging in

heterotic strings

Abstract

We study the effect of flux-induced isometry gauging of the scalar manifold in N = 2

heterotic string compactification with gauge fluxes. We show that a vanishing theorem

by Witten provides the protection mechanism. The other ungauged isometries in hyper

moduli space could also be protected, depending on the gauge bundle structure. We also

discuss the related issue in IIB setting.

4.1 Introduction

It is very difficult to build a fully realistic string model without using flux compactifications

[7]. There are by now various sources of evidence suggesting that we should not restrict

ourselves to the study of Calabi-Yau spaces as string theory vacua. The study of mirror

symmetry for Calabi-Yau flux compactification, for instance, will inevitably lead us to the

territory of ”Non-Kählerity” [67, 43, 45, 21, 44, 1]

It is also very interesting to study the fate of the well-known IIA/hetrotic string duality

if we compactify IIA string on the non-Kähler background. This nonpertubative duality

between IIA on K3 fibered Calabi-Yau and heterotic string on K3×T 2 was first studied in

[68, 69] and then generalized to the case with fluxes and SU(3)-structure manifolds[72, 70].

The effect of gauging induced by torsions in geometry and by various kinds of fluxes in IIA

were mapped to the gauge fluxes in heterotic string.

45
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When we turn on the RR or NSNS fluxes in IIA/IIB/heterotic N = 2 compactifi-

cation, supergravity analysis suggests that it will lead to the isometry gauging of the

scalar manifold [15]. This means the hypermultiplets become charged under certain vector

multiplets. The gauging and the charges are specified by the killing vectors, which are de-

termined by the fluxes turned on. The non-perturbative objects in string theory, D-branes

or D-instantons, presumably could destroy the isometries in the hyper moduli space by

introducing RR dependence into the action. In [73], the authors showed that the allowed

instantons in IIA string setting will not remove the flux-gauged isometries; namely the flux

will protect the gauged isometries1. However, other isometries are generically lifted by in-

stanton corrections. It is not clear whether the non-perturbative correction still preserves

the quaternionic structure. We notice similar arguments are not enough to reach the same

conclusion in IIB case, where the shift symmetry of RR scalar C0 is gauged by the NSNS

flux and multiple instanton branes can contribute C0 dependent corrections to the moduli

space metric.

In this paper we study the N = 2 gauged supergravity resulting from heterotic string

theory compactified on K3 × T 2 with gauge fluxes. The gauging in the supergravity

analysis is achieved by turning on the abelian gauge fluxes. The exact matching between

the IIA and heterotic flux parameters can be worked out straightforwardly. In N = 2

heterotic string compactification, the hyper moduli space could receive α′-correction [10],

perturbatively and non-perturbatively. A worldsheet instanton wrapping a holomorphic

cycle in K3, for example, could give correction to the hyper moduli space because there

are hypermultiplets coming from H2(K3). However, the isometry gauging is achieved by

turning on the abelian gauge fluxes over certain 2 cycle C in K3 [70], which means the

gauge bundle restricted to the 2 cycle V |C is non-trivial. This is precisely the situation

where the instanton correction is zero [78].

The paper is organized as follows. In section 4.2 we recall the isometry protection

mechanism in IIA setting. In section 4.3 we first review the IIA/heterotic duality and

then demonstrate how Witten’s vanishing theorem helps protect the gauged isometry in

heterotic string. Lastly, discussion and conclusion follow.

1See [80] for a similar result in the setting of five-dimensional heterotic M-theory.
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4.2 Isometry protection in IIA flux compactificatons

In this section we begin by reviewing the isometry gauging in IIA setting and how NSNS

flux protects certain isometries [73]. The protection follows from the tadpole consideration

on the world volume of the D-instantons.

First let us consider IIA on a Calabi-Yau M . Each N = 2 hypermultiplet contains

two complex scalars za, a = 1, . . . , h2,1 coming from complex structure moduli of the

Calabi-Yau and two scalars ϕα, ϕ̃α from expansion of the RR potential C3 in a particular

symplectic marking of H3(M)

C3 = ϕαAα + ϕ̃αBα , α = 0, . . . , h2,1 (4.1)

ϕ0, ϕ̃0, the dilaton φ and the NSNS axion a form the universal hypermultiplet obtained

by dualizing the tensor multiplet in four dimensions. In the dimensionally reduced N = 2

supergravity theory, these scalars reside on a quarternionic manifold with the metric given

by [74, 75]:

ds2 = dφ2 + gab̄dzadz̄b̄ +
e4φ

4
[da + ϕ̃αdϕα − ϕαdϕ̃α] [da + ϕ̃αdϕα − ϕαdϕ̃α]

−e2φ

2
(ImM−1)αβ [dϕ̃α +Mαγdϕγ ]

[
dϕ̃β +Mβδdϕδ

]
.

Expanding the background fluxes F4 and H3 we get

F4 = λI ω̃
I

H3 = pαAα + qαBα (4.2)

where ω̃i a basis for H2,2(M).

We now have the following killing vectors corresponding to the isometries to be gauged[76,

77]:

(kF )I = −2λI∂a

kH = (pαϕ̃α − qαϕα)∂a + pα∂ϕα + qα∂ϕ̃α (4.3)

where F4 and H3 determine the charges under the Ith vector and the graviphoton fields

respectively 2.

2Throughout the paper αβ . . . and IJ . . . denote hyper and vector indices respectively.
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Due to the absence of 1 and 5-cycles in the Calabi-Yau manifold, the only relevant IIA

D-instanton is the D2-instanton wrapping a 3-cycle. Consider an instanton state consisting

of E2 branes wrapping a cycle in the homology class expressible as the formal sum

Γinst =
∑

i

ciΓi . (4.4)

This configuration contributes a ϕi dependence

∫

Γ
C3 =

∑

i

ciϕi (4.5)

to the effective action3. Transforming the scalar manifold metric under kH we find

kH(
∫

Γ
C3) =

∑

i

cipi . (4.6)

For generic values of ci, the classical brane action breaks any isometry involving a shift in

the value of fields ϕi.

If this were true, it will certainly destroy the consistency of the gauging procedure.

However, as noticed in [73] there is a simple mechanism at work which prohibits this from

happening. The crucial observation of [73] is that the Bianchi identity for world volume

gauge flux reads

dF = −H3 . (4.7)

On a compact world volume without boundary this requires

∑

i

cipi = 0 , (4.8)

from which it’s obvious any physically realized instanton cannot break the gauged isome-

tries.

A more concise way to rephrase the protection mechanism is to recall that H flux

induces magnetic charges for the brane gauge field. It implies we can not wrap a D2-

instaton over a 3 cycle on which we turned on H flux. This is simply the constraint

imposed by Freed-Witten anomaly [79].

3Here we dropped the symplectic structure on H3 and expand in the basis {γi} dual to the homology
basis {Γi}. We have C3 = ϕiγ

i and H3 = piγ
i.
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4.3 Isometry protection in heterotic string

In this section we will review the IIA/heterotic duality with gauge fluxes. We wil provide

an exact matching between the flux parameters [69, 72, 70]. Then we show a theorem due

to Witten guarantees the protection of gauged isometries.

4.3.1 IIA/heterotic duality

The IIA/heterotic duality was first studied in [68, 69]. Besides the spectrum matching,

the conifold transitions in IIA string on CY is mapped to the Higgsing of the charged

hypermultiplets in heterotic string. The Higgsing can move the theory around the different

moduli space strata with different dimensions. This beautiful phenomenon is not the topic

of our paper although the transition in the presence of fluxes is certainly worth further

studying.

We will begin by recalling the results in [70, 72]. The anomaly cancellation in the 10d

supergravity requires we modify the heterotic H in the following way,

H = dB + ωgravity − ωY M . (4.9)

From this we get a new Bianchi identity:

dH = trR ∧R− trF ∧ F (4.10)

where R is the Riemann curvature of the internal manifold and F is the field strength of

the Yang-Mills fields.

For heterotic string on K3 × T 2, we will need 24 instanton number to cancel the∫
K3 tr(R ∧ R) contribution. In earlier literature, people usually studied the gauge bundle

with c1(V ) = 0. But in fact there exists no obstruction for us to turn on c1 of the gauge

bundle (equivalent to turning on abelian gauge fluxes). It is also possible to turn on c1

such that it does not contribute to
∫

tr(F ∧ F ). This can be seen as follows. Let us first

turn on the following gauge fluxes over the 2 cycles in K3,

∫

γα

F I
gauge = mαI , I = 0, · · · , nV , α = 1, · · · , 22. (4.11)

where I is the index for vector moduli and the zeroth component stands for the graviphton.
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These fluxes could contribute to the tadpole condition [70, 71]:

∫

K3
tr(Finst ∧ Finst) + δ = 24 (4.12)

where

δ =
∫

K3
F I

gauge ∧ F J
gaugeηIJ = mαImβJραβηIJ (4.13)

ραβ is the K3 intersection matrix with signature (3, 19) and ηIJ is the invariant tensor

on SO(2, nV − 1). As we will see later, turning on mαI in heterotic is dual to turning on

various kinds of fluxes in IIA. So if we start from IIA on K3-fibered CY with fluxes and

are interested in finding its heterotic dual with gauge fluxes, we should consider δ = 0 so

that the originally balanced tadpole condition will not be disturbed.4

Now let us consider the gauging effect of turning on gauge fluxes accroding to (4.11)

over 20 2 cycles in an attractive K3, following [70]. 5 After expanding ten-dimensional B
filed in terms of the H2(K3) basis ωα,

B = B + bαωα (4.14)

the covariant derivative of bα becomes

Dbα = dbα − (ηIJmαJ)AI = dbα −mα
I AI (4.15)

The resulting killing vector is

kI = −mα
I ∂bα . (4.16)

Recall that bα in heterotic string corresponds to some ϕα in (4.2). Comparing (4.16)

with (4.3), we immediately see that the gauging from the gauge fluxes does not correspond

to any H or F in IIA theory. But the effect can be dualized into the gauging coming from

the torsions in the geometry; it is dual to IIA on an SU(3) × SU(3) structure manifold

[70]. For a review on SU(3) × SU(3) structure manifolds in the context of supergravity,

see [44].

Note that there are also bundle moduli coming from the gauge bundle. Their number

is determined by the dimension of the sheaf cohomology group. In this case the sheaf will

4We would have to solve the anomaly cancellation condition from the very beginning if δ does not vanish.
5In [72] the gauge fluxes are turned on over the P 1 of the K3 in heterotic string, which corresponds

to F with support on the base of the K3 fibered Calabi-Yau. This flux will charge the axion in heterotic
string. The IIA dual of the gauge flux through T 2 fiber in heterotic K3 is unknown.
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be the endormophism of the gauge bundle [81]. It is easy to show that the first order

deformation of this sheaf is H1(K3, E∗ ⊗ E), where E∗ is the dual sheaf. The dimension

counting, which includes the high order obstruction, can be done by computing the Euler

character χ(E,E),

χ(E, E) =
∑

(−1)idimExti(E, E) =
∫

X
ch(E∗)ch(E)

√
Td(X) (4.17)

Let now X be a K3 surface. If E is a coherent sheaf on X with rk(E) = r, c1(E) = c1,

and c2(E) = c2, the complex dimension of the bundle moduli is given by 2rc2− (r− 1)c2
1−

2(r2 − 1).

At this moment it is not clear now to charge these bundle moduli under the gauge fields

because we know very little about the hyper moduli space. We will revisit this problem

in the future. In the next section, we will demonstrate the mechanism which protects the

gauged isometries from gauge fluxes in heterotic string.

4.3.2 Witten’s vanishing theorem

In this section we will show how Witten’s result [78] can protect the gauging in N = 2

heterotic theory. In the previous section, the gauging of the bα results from turning on

the gauge flux over the corresponding 2 cycle γα. So the worldsheet instanton wrapping

γα could break this gauging, by a calculation similar to in section 4.2. Namely we can

integrate B over γα and find that k(
∫
γα B) 6= 0, where k is the killing vector.

In [55], it was shown that the worldsheet instanton correction to the hyper moduli

space is given by

Uγα = exp(−A(γα)
2πα′

+ i

∫

γα

B)
Pfaff(∂̄V (−1))

(det′∂̄O)4
(4.18)

The exponential factor comes from the classical instanton action while the rest is the

one-loop determinant from fluctuations around the classical solution. More precisely, the

Pfaff(∂̄V (−1)) in the numerator comes from one loop determinant of non-zero modes of the

left-moving fermions. Three powers of (det′∂̄O) come from the complex bosons representing

the non-compact R4 directions and the T 2 factor. The remaining one follows by partly

canceling the contribution of the normal bundle (det∇O(−2)) in K3 against the right moving

fermions.

It is in general a very hard problem to compute this quantity. Fortunately the theorem
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states that Uγα vanishes if and ony if the gauge bundle V restricted to γα is non-trivial6.

The non-trivial gauge bundle is always the case if we want to gauge the isometry in heterotic

string. It is also very likely that the bundle restriction is already non-trivial before turning

on the gauge fluxes. In this case, some ungauged isometries are also protected 7. But we

should keep in mind the possibility that the theory can move in the bundle moduli space

such that the bundle becomes trivial along some 2 cycle in K3 and then the worldsheet

instantons re-appear.

The other potential worry is that the U(1)s coming from T 2 and graviphoton do not

belong to the E8×E8 bundle in the heterotic string. Turning on their gauge fluxes do not

change the bundle restriction V |γα . Therefore, in order to protect the gauged isometries,

we need the bundle structure to be non-trivial along the 2 cycles along which we turn

on the gauge fluxes. The study of the protection mechanism becomes model dependent;

we have to know the bundle structure first before commenting on whether certain gauged

isometries are lifted.

Nonetheless, in heterotic string the protection of the flux-induced gauging is still

stronger than the IIA case. In IIA case, we have no gauging protection mechanism if

we don’t turn on H and the ungauged isometries are generically lifted by the quantum

effects.

4.4 Discussion and conclusion

In this paper we study the flux-induced isometry gauging in N = 2 heterotic string com-

pactified on K3 × T 2 with gauge fluxes. A vanishing theorem by Witten [78] guarantees

that the gauging is protected against the worldsheet instanton effect. In heterotic string,

the isometry protection can even reach the ungauged ones, which is contrary to IIA. In IIA

we can not protect the gauging without H and usually lose the ungauged isometry due to

D-instanton effects. However, it is still not clear how to charge the bundle moduli under

the vector moduli, which is also contrary to IIA, where any hyper moduli can be charged

under the vectors.

In the IIB case, the situation remains obscure since various branes with different dimen-

sions come into play. Especially the D1 instanton wraps a 2 cycle and the Freed-Witten

6This is equivalent to that the operator (∂̄V (−1)) has a nonempty kernel. For our purpose, V can be
taken as the abelian vector bundle where the gauge flux sits and V (−1) = O(−1)⊗ V .

7For example, we can embed the K3 spin connection into the gauge group. The bundle will be non-trivial
along every 2 cycle in K3.
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anomaly argument does not eliminate its existence. In view of the relation between IIB and

type I theory, it seems possible that a combination of H flux and the argument discussed

here can achieve the protection of gauging in IIB. One could also try to study the closely

related problem in N = 1 orientifold setting. We leave this for future study.



Chapter 5

Non-geometric fluxes from

doubled geometry

5.1 Introduction

Recent arguments from T-duality have suggested the existence of new NS-NS fluxes in

string theory [25]. Whereas T-duality acts on R-R fields (and thus fluxes) by shuffling

them amongst themselves, the only p-form NS-NS field is the B field. T-duality must then

exchange this 3-form flux with some other NS-NS flux. Dualizing along the direction of

one U(1) isometry, H flux with a leg along this direction becomes a sort of topological

flux coming from the metric, as was formalized in [82] with much previous evidence [51].

Dualizing along two or three directions with H flux has remained mysterious and has been

related to, respectively, noncommutative and nonassociative spaces [83]. In other words,

from the non-dimensionally reduced point of view, T-dualizing can be very hard. Other

dualities are likely to be even harder. Already from S-duality arguments even more new

fluxes, this time in the R-R sector, been discovered [84].

In [25], T-duality was studied at the level of the reduced supergravity. There, argu-

ments about the O(d, d;Z) invariance of the superpotential required additional terms whose

coefficients were integers related to the H and metric fluxes through duality. On a torus

T d with indices i, j, k ∈ {1, 2, ..., d} and Ti representing the T-duality operation along the

i-direction, the formal rule for exchanging the generalized NS-NS fluxes is

Hijk
Ti←→ f i

jk

Tj←→ Qij
k

Tk←→ Rijk, (5.1)

54
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where f is the metric flux and Q and R are the new objects.

These fluxes appear not only in the superpotential, but also give the low energy gauge

group. Reducing on a torus with no flux gives a U(1)2d gauge group, coming from the metric

and B field. Denoting the d generators arising from the higher dimensional diffeomorphism

invariance by Zi and the d generators arising from B field gauge invariance by Xi, the gauge

algebra is

[Zi, Zj ] = HijkX
k + fk

ijZk

[Zi, X
j ] = −f j

ikX
k + Qjk

i Zk

[Xi, Xj ] = Qij
k Xk + RijkZk (5.2)

These structure constants must satisfy the Jacobi identity. When Q and R are set

to zero, the Jacobi identity becomes the condition that d2 = 0 and dH = 0, where the

differential operator d is modified by the metric flux.

This f flux dates back to the original Scherk-Schwarz compactifications [85]. From the

higher dimensional point of view, f flux gives the structure constants for some globally

defined 1-forms, i.e. 1-forms ηi satisfying

dηi = −1
2
f i

jkη
j ∧ ηk (5.3)

Their existence implies that the compactification manifold is parallelizable, locally the

group manifold for the Lie group defined by these structure constants. The integrability

of this equation is the Jacobi identity.

We suggest a similar interpretation be given not only to the new non-geometric fluxes,

but also to H flux. This requires doubling the dimension of the compactification manifold.

In the case of a torus with no flux, this involves simply means taking the product with

the dual torus. Flux will be interpreted as nontrivial topology of this manifold exactly as

in the Scherk-Schwarz case and complicated flux configurations will admit no good way to

separate out a “physical” space time from the dual one.

The motivation comes from the old observation that the momentum and winding modes

should be treated more equally, and perhaps even independently. See [86] and references

therein. From a string field theory point of view, [87], this seems very natural. States in

the string field theory on a torus are labeled by momentum and winding numbers which
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are the Fourier transforms of coordinates on the physical torus and on the dual torus.

There is further symmetry in the way that flux behaves. In some circumstances, Scherk-

Schwarz compactifications on local group manifolds are the same as reductions with “du-

ality twists” in the group of large diffeomorphisms of the torus [88]. A reduction with

duality twist means that in going around some cycle, there is a monodromy in a symmetry

of the theory. The ubiquitous example of compactifying on a torus bundle over a circle,

where the torus undergoes a monodromy

(
1 N

0 1

)
is a twisted torus compactification that

with a realization of a reduction with a geometric duality twist.

When f flux is associated with a duality twist, it is always in the geometric part of the

T-duality group. A flux f i
jk indicates either a mixing of the k momentum number into the i

momentum number by some monodromy when traversing the j circle or the same with the

roles of j and k interchanged. As we will see later, there is sometimes freedom to choose

around which circle there is the monodromy and sometimes not. Simultaneously, there is

also mixing of the i winding number into the k (or j) winding number, which is sometimes

overlooked.

Similarly, Hijk indicates mixing of the j momentum number into the i winding number

upon traversing the k direction, or some permutation thereof. In [?], it was noted that

what we would now call Q flux results in mixing of winding numbers into momentum

numbers. Such a monodromy is not geometric, and is related to reductions with duality

twists in elements of the T-duality group. This has been studied in several contexts , [90],

[91], [92], [93].

Following older approaches to constructing a manifestly T-duality invariant theory,

Hull introduced a doubled formalism in [94] for torus bundles. The doubled approach

incorporates the above intuition that there should be parity between the treatment of

the momentum and winding numbers, or their Fourier transforms. One considers torus

bundles over some space-time that locally have fibers of the form of a physical torus times

its dual. The transition functions of the torus are allowed to be to be in the entire O(d, d;Z)

T-duality group, which acts geometrically on the fiber.

The worldsheet action appears to be a sigma model action without B field. However,

one is forced to impose a self-duality constraint on-shell, much as with the five form in

IIB supergravity. This suggests that the formalism is not exactly correct for studying the

quantum theory. Nonetheless, solving the self-duality constraint shows what happened to

the B field. The metric on the doubled torus, subject to a consistency condition, contains
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exactly the information of usually written as G and B, but in a form that transforms

linearly under the T-duality group.

Unlike the B field, which is allowed to be only locally defined, the metric on the dou-

bled fiber is required to be a tensor on the total space of the bundle. Hence, H flux is

encoded in the topology of the space. This is not surprising, as Hull’s doubled bundles

are clearly related to the concept of a correspondence space. See the last chapter of [14]

for interesting conjectures on the role of correspondence spaces in duality transformations

and an understanding of why H flux should appear in their topology.

Hull restricts his formalism to situations in which nothing is allowed to depend on the

fiber directions, thus ruling out reductions with duality twist along fiber directions, i.e.

interesting topology of the fiber. We expand Hull’s formalism to allow for such situations,

making the fiber a local group manifold as in the usual Scherk-Schwarz compactifications.

Dependence on coordinates which are doubled is allowed only through globally defined one

forms on the doubled manifold, as is the usual ansatz.

When considering fluxes that are completely on the internal space, we discover that

they are simply encoding the topology of the doubled space, the natural generalization

of Scherk-Schwarz. This provides parity for the NS-NS fields, with the metric and the B

field entering on equal footing and likewise with their various fluxes. Moreover, we find

that dimensionally reducing the Einstein-Hilbert action on the doubled space reproduces

the lower dimensional theory normally found by reducing the entire NS-NS sector with

Einstein-Hilbert and Kalb-Ramond field strength terms when the consistency condition is

imposed on the doubled metric.

A possible remedy for the problems of Hull’s approach is in the older ideas of [86].

Tseytlin uses an action which lacks manifest Lorentz invariance, in fact only having local

Lorentz invariance on-shell, but has as the equations of motion the self-duality constraint.

One finds by computing graviton scattering amplitudes in this theory the Einstein-Hilbert

action, with the constrain on the metric, emerging as the low energy limit of the string

theory.

It is surprising that we are able to reproduce the NS-NS part of the dimensionally

reduced low energy action. It oughtn’t. There is never a regime in which keeping the

momentum and winding modes while throwing out the excited states is a good approxima-

tion. If the physical circle is large, many KK modes on that circle are much lighter than

any winding mode on the dual circle and vice versa. They only become comparable when

both circles are at the string scale. That this works remains a mystery.
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Nonetheless, it seems clear that this structure forms some topology feature of string

field theory. We conjecture that in a formulation of string field theory, the doubled manifold

will play the fundamental role. In generic situations, any choice of splitting into physical

and dual spaces is bad in the sense that the “physical” picture will not even be locally

geometric due to nontrivial dependence on winding numbers.

On a final note, connecting this idea back with the original observation that T-duality

may take regular spaces to noncommutative (or nonassociative) ones, we note that Tseytlin

observed certain stringy uncertainty principles [95] between a physical coordinate and

its dual suggest that noncommutativity plays a role in formulation in which both are

treated geometrically. Then one might suspect that fluxes which mix winding modes into

momentum modes introduce the noncommutativity into the closed string sector as well.

One should note that the noncommutativity of [83] was seen in the K-theory, not for closed

strings.

The organization of the paper is as follows. In section 5.2 we briefly review Hull’s

doubled formalism. Section 5.3 explores an example with the formalism and attempts to

use it understand something of the nature of Q flux. We then illustrate the obstruction to

using the formalism as is to understand nongeometric fluxes. This motivates our conjecture

that the formalism should be expanded to include doubled fibers that are local group

manifolds. Section 5.4 explores this idea in the case of a trivial bundle, but with general

fiber. We show how this accomodates general NS-NS flux on the fiber and note how the

Einstein-Hilbert action on the doubled manifold reproduces the correct low energy theory

upon dimensional reduction. This section can be read independently of section 5.3.

5.2 The Doubled formalism

In this section, we will briefly review the setup of [94]. The idea is to allow for general

O(d, d;Z) transition functions to have a geometric interpretation. To this end, suppose

that the target space M locally looks like a manifold with n freely acting U(1) isometries,

i.e. that M has the structure of a T d bundle. If M had the global structure of a torus

bundle, then changing between local patches on the base of the fibration would come with

some transition function g, where g takes values in Gl(d,Z) n U(1)d. Here the factor of

Gl(d,Z) is the group of large diffeomorphisms of the torus.

A fiber bundle is classified by its transition functions, which give an element of H1(B,G)
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where B is the base of bundle. Here the underline indicates the sheaf of continuous func-

tions into G. When G has the form G n U(1)d for some discrete group G, we have a

surjective map H1(B,G) → H1(B,G) ∼= H1(B,G) because G is discrete. The element of

H1(B,G) gives the monodromies of the torus fiber around the cycles in the base. While

nonabelian H1 is simply a set and not a group, we still have a trivial element. If and only

if the image of the transition functions in H1(B,G) is trivial is the bundle a principle torus

bundle. In that special case, one has the technology of [101].

To allow T-duality transition functions, we should pick G = O(d, d;Z). The natu-

ral action of O(d, d;Z) is on U(1)2d, leading us to promote the transition functions to

O(d, d;Z)n U(1)2d. To give this a geometric interpretation, it is natural to choose as the

fiber T 2d on which this group acts in the obvious way. The interpretation given by Hull is

that the fiber is now both the physical torus fiber and its T-dual. This is essentially the

generalization of the correspondence space used in [82] and [101].

We would like to have a sort of sigma model with this doubled torus bundle as the target

space, but to have this sigma model reduce to the normal sigma model in the case that

the transition functions can be chosen not to contain any T-duality transition functions.

To this end, we introduce worldsheet fields XI and Y µ where I ∈ {1, ..., 2d} is an index on

the torus fiber and µ is an index on the base B. The bosonic lagrangian is taken to be

L =
1
2
HIJ∂XI ∧ ∗∂XJ + ∂XI ∧ ∗JI + L(Y ) (5.4)

where L(Y ) is the standard lagrangian for the base. For the moment, we further restrict

to the case where the (positive definite) fiber metric H and source terms J depend only

on the base coordinates. We have taken the world sheet metric to be flat and the Hodge

dual is with respect to this metric.

It is further necessary to impose self-duality constraints

∂XI = LIJ ∗ (HJK∂XK + JJ) (5.5)

to reduce the number of degrees of freedom. The matrix L is chosen to be constant,

invertible, and symmetric. For consistency, LH must square to 1. LIJ will denote its

inverse. The self-duality constraint implies the equations of motion from the identity

d2 = 0. In [94], it is shown that solving the constraint reproduces the familiar sigma model

lagrangian.
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The lagrangian is invariant under the discrete Gl(2d,Z) preserving the periodic identi-

fication of the X coordinates and the self-duality constraint is invariant under an O(d, d)

subgroup of GL(2d). Then the entire theory is invariant under an O(d, d;Z) symmetry

which we will identity with T-duality. The convention of Hull is that under the T-duality

group, X → g−1X so that H → gtHg and J → gtJ .

One last piece for Hull’s formalism is an almost local product structure [57] RI
J sat-

isfying R2 = 1. At each point on the fiber, R defines two projectors Π = 1
2(1 +R) and

Π̃ = 1
2(1 − R). For this splitting to extend to a splitting of the coordinates, it must

agree with the periodicity of the coordinates and so we take R ∈ Gl(2d,Z). Note that

this restriction makes R a local product structure as the analog of the Nijenhuis tensor

automatically vanishes. It also means that R is constant over every patch. If L is further

“pseudo-hermitian” with respect to R, i.e. satisfies

LIJRJ
K + LKJRK

I = 0 (5.6)

then the rank of Π and Π̃ are each d and define locally a splitting of the fiber into a physical

T d and a dual T̃ d. R transforms under coordinate transformations on T 2d as R → g−1Rg.

Note that L and R are preserved by the diagonally embedded Gl(d) subgroup of Gl(2d).

Its intersection with Gl(2d,Z) is exactly the subgroup of the T-duality group corresponding

to coordinate redefinitions of the physical torus. When convenient, we also split the capital

indices I, J,K ∈ {1, ..., 2d} into lower case indices i, j, k ∈ {1, ..., d} with the convention

that when I is raised, a raised i is on the torus and a lowered i is on the dual torus, further

indicated by a tilde. So that XI = (Xi, X̃i) while XI = (Xi, X̃
i).

For convenience, we now work in coordinates where

L =

(
0 1

1 0

)
R =

(
1 0

0 −1

)
(5.7)

In this convention, the physical torus coordinates are the first d coordinates and the dual

torus ones the latter. Further, solving the self-duality constraint in these coordinates gives

H =

(
G−BG−1B BG−1

−G−1B G−1

)
(5.8)

with G and B being the metric and B-field on the physical torus, familiar from [97] [98] [99]

[102] [86]. Note that H transforms linearly under O(d, d;Z), while E = G + B transforms
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with fractional linear transformations.

In this language, a T-duality transformation corresponds to simultaneously acting in

every patch on H and J with an element of O(d, d;Z) as above while leaving R fixed or

vice versa. Transforming H, J , and R simultaneously changes nothing. Of course, the

theory in the doubled formalism is manifestly T-duality invariant, but the presentation of

the theory after solving the constraints will differ.

5.3 A first attempt at geometrizing non-geometric fluxes

Since Q flux seems to be related to T-duality monodromies, it seems reasonable to suspect

that in the doubled formalism we can give Q flux a geometric interpretation. What we

will see shortly is that this is possible only in special cases where the Q flux is T-dual to

normal geometric space-times. We begin by considering a trivial torus bundle with H flux

and T-dualizing. This calculation is very similar to one presented in [100].

5.3.1 H flux in the doubled language

Consider a space-time that admits the structure of a T d bundle, with base B. We will

recast the sigma model in the doubled language. The formalism requires that H and J
depend only on base coordinates1. Consequently, we are restricted to considering H flux

with only two legs on the torus fiber. If there is anything to be gained from using this

approach, it will occur with d=2. After making this restriction, there is one sort of non-

geometric flux to be understood, Q12
µ , the flux that is T-dual to H flux with two legs in the

fiber directions. For further simplicity, we begin with a principle torus bundle and choice

as our representative of the (trivial) class in H1(B, Sl(2,Z)) the co-cycle that consists only

of identity elements.

Cover B with patches Uα where the Uα are a good cover. This means that space-time

is covered with patches of the form Uα×T 2 and on each H is exact. We trivialize H = dBα

on each patch.We now double the fiber and put on T 4 the metric

Hα =

(
1ij −BikB

k
j Bj

i

−Bi
j 1ij

)
(5.9)

1This is not surprising. Hull’s formalism always gives a local geometric description, which is incompatible
with the presence of R flux [25]. A B field that depending on fiber coordinates would give H flux entirely
on the fiber and thus T-dual to R flux.
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H is required to patch together to form a tensor on the total space of the bundle.

Before doubling, Bα differed on different patches by a gauge transformation, which takes

the form Bα = Bβ −Nβαdx1 ∧ dx2, N ∈ Z. On E this takes the form

E → E + NβαJ (5.10)

with J the matrix

(
0 1

−1 0

)
and so gives a transition function

gβα =

(
1 0

NβαJ 1

)
(5.11)

The co-cycle condition gαγgγβgβα = 1 gives Nαγ + Nγβ + Nβα = 0, i.e. the {Nβα} define

an integral Čech co-cycle in the base. This is Hµ12, which we might also call π∗H in this

context. Here the map π∗ : Hn(M) → Hn−2(B) given by integration along the fiber. In

the language of [101] it is H1, as Λ2(t2) ∼= R.

We would like for this 1-form to be well-defined with respect to the choice of co-cycle.

To begin, consider changing the co-cycle by the action of a geometric 1-chain. That is, we

consider a collection {hα} with hα ∈ Sl(n,Z)nZ, the group of geometric transformations

on the torus fiber along with gauge transformations of the B field. These take the form

hα =

(
Aα 0

NαA−t
α J A−t

α

)
(5.12)

where Nα is the gauge shift in the B field and Aα is an Sl(2,Z) geometric transformation

on the torus. Then the new transition functions are

g′βα = hβgβαh−1
βα =

(
AβA−1

α 0

(Nβα + Nβ −Nα)A−t
β JA−1

α A−t
β At

α

)
(5.13)

Using the fact that AJAt = J for every A ∈ Sl(2,Z), for transition functions of this form,

multiplying the bottom left block on the right by the inverse of the top left block allows

one to recover the original co-cycle.

This also shows how can recover π∗H from the transition functions from a general
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bundle with only geometric monodromies. Here, the gβα are restricted to the form

gβα =

(
Aβα 0

NβαA−t
βαJ A−t

βα

)
(5.14)

from which we can recover the 1 cocycle corresponding to H with two legs on the fiber as

above.

It is important to note that in order for the procedure to work, we have restricted

ourselves to geometric transition functions, in effect considering H1(B,Sl(2,Z) n Z) and

so it is not surprising that we were able to identity a copy of H1(B,Z) sitting inside. What

we would really like to do is to consider T-duality transition functions.

5.3.2 T-Dualizing H Flux

First, consider the simple case of transition functions given by (5.11) and perform T-

dualities. The matrices giving T-duality along direction 1 and along both directions are

g(T 1) =




0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1




g(T 12) =




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0




=

(
0 1

1 0

)
(5.15)

Implementing T-duality along the first direction changes these transition functions into

the familiar twisted torus type geometric type transition functions, with A =

(
1 N

0 1

)
.

The more interesting example is conjugating the transition functions by g(T 12). When the

gβα are in the form (5.11), this T-duality rearranges the block 2x2 matrices to give

gβα =

(
1 NJ

0 1

)
(5.16)

As above, restricting to the Sl(2,Z)nZ subgroup that preserves this form of the transition

functions allows us to identity an element of H1(B,Z). This is one of the non-geometric

fluxes, Q12
µ .
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5.3.3 Flux, Topology, and Polarization

As seen in §5.3.1, the presence of H flux in a geometric compactification manifests itself

as a topological condition on the doubled bundle. The transition functions were forced

to be chosen in such a way that H was a tensor on the total space of the bundle. With

that topology, after solving the self-duality constraints, any choice of H would yielded a

physical B field with the correct curvature.

In §5.3.2, we confirmed that turning on Q12
µ determined the same element of H1(B,O(d, d;Z))

as turning on Hµ12 and so determine the same topology for the doubled bundle. This sug-

gests that while specifying the fluxes specifies the bundle, the converse is not true. Different

choices of polarization determine how the flux is interpreted after solving the self-duality

constraints.

Generically, the bundle cannot be specified by choices of 1-forms in the base. Our

ability to identify pi∗H from the topological data depended on identifying H1(B,Z) in

the transition functions of restricted form. Clearly this will fail for H1(B, O(d, d;Z)).

A detailed understanding of the interpretation of elements of H1(B, O(d, d;Z)) need not

concern us however, as most choices of bundle are inconsistent with string theory, as we

will see now.

5.3.4 Troubles with Turning on Multiple Fluxes

Using the doubled formalism, it is possible to give a geometric interpretation to turning

on one of the non-geometric fluxes, the Q12
µ . This is T-dual to a standard geometric

description, and so not particularly interesting. What would be more interesting is to

turn on some combination of fluxes that has no geometric description in the standard

formalism, but does in the doubled one. Unfortunately, there is an inherent difficulty in

this. We illustrate the general obstruction by consider the simple example of T 3.

Consider turning on the geometric flux f1
23 = N . One way to think of the resulting

space is as a circle bundle, with the 1 direction the fiber and the 2,3 directions as the

base. The flux can then be interpreted as the first Chern class of the bundle. Another way

to think about it is as a T 2 bundle over S1 where the torus fiber undergoes a geometric

monodromy after goes around the base. In the latter viewpoint, there is a choice. Either

the 2 or the 3 direction may be chosen as the base. Upon choosing, say, the 3 direction

as the base, the 1,2 fiber undergoes a monodromy g =

(
1 N

0 1

)
as x3 → x3 + 1. We can
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choose G and B to depend only on x3 and can use the doubled formalism.

Suppose we also want to turn on f2
13 = M . These fluxes satisfy the Jacobi identity and

traceless conditions, and so there’s no obstruction to doing this and the result is purely

geometric. Use of the doubled formalism requires that we be able to choose G and B

independent of the fiber that we wish to double. Therefore, to double a T 2 will require

that there is dependence on only one coordinate. This has a chance to be true only if we

can realize both fluxes as monodromies around the 3 direction.

A naive attempt at this is to multiply the monodromy matrices. One issue is that this

is not well defined on H1(S1, Sl(2,Z)), which as previously mentioned is only a set and

has no group structure. There does not seem to be an invariant meaning to this. A second

is that the monodromy matrices do not commute. Nonetheless, multiplying them appears

to give a valid monodromy matrix

gNgM =

(
1 + MN N

M 1

)
(5.17)

which defines a geometric monodromy. One can use the techniques in [?] to determine the

globally defined one forms on this space. Indeed, they do depend only on the x3 coordinate.

However, remembering that

dηi = −1
2
f i

jkη
j ∧ ηk (5.18)

where ηi are the global one forms, this requires turning on the further flux f1
13, which is

disallowed [85]. We expect this to be true of most choices of co-cycle H1(B,O(d, d;Z)).

Of course it is possible to realize this choice of fluxes geometrically. It is a nilmanifold

with the identifications (x1, x2, x3) ∼ (x1 + 1, x2 − Mx3, x3) ∼ (x1 − Nx3, x2 + 1, x3) ∼
(x1, x2, x3 + 1). With both fluxes, we were forced to choose the monodromies around the

circles that were not x3.

With a T 2 fiber, we must turn on Q12
µ , f1

µ2, f2
µ1, and Hµ12 to create scenario that

involves non-geometric flux regardless of choice of polarization. In other words, it cannot

be done. It’s pretty immediate to see that this problem will plague any attempt to use the

doubled torus formalism to study these new fluxes. However, the example just considered

suggests what must be done. We should consider the meaning of doubling more general

Scherk-Schwarz scenarios, where we allow monodromies around the fiber directions as well.
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5.4 The doubled Scherk-Schwarz compactification

The Scherk-Schwarz compactifications were introduced as a way to do consistently dimen-

sionally reductions of gravity to produce massive theories [85]. They are consistent in the

sense the solutions to the equations of motion in the reduced theory lift to solutions to

the equations of motion of the higher dimensional theory. Performing these types of re-

ductions of type II supergravities in ten dimensions yield in four dimensions supergravities

that gauge part of the O(d, d) symmetry that is present in reductions on a d-dimensional

torus. For an excellent discussion of the role of Scherk-Schwarz compactifications in string

theory, see [96].

In [96] it is noted that there are two types of Scherk-Schwarz reductions: those on

twisted tori and those with duality twists. The first refer to reductions on certain quotients

of group manifolds. In certain simple circumstances, these correspond to torus bundles,

but in general the name twisted torus is somewhat misleading. The second refer to first

compactifying d-1 dimensions and then compactifying on a further S1 with a monodromy in

some symmetry group of the theory. When the monodromy is symmetry with a geometric

realization, we have a compactification of the first type. However, more general non-

geometry symmetries, such as S-, T-, or U-duality transformations are allowed. In F-

theory, certain of these have geometric interpretations [103], [88]; typically there are none.

Recall however that the goal of the doubled formalism is to give a geometric interpretation

of T-duality. Some simple cases of this have been illustrated [94][100]. We will expand on

this further and to give new exotic types of compactifications that all have a geometric

interpretation in the doubled point of view.

5.4.1 Twisting the doubled torus

As illustrated in §5.3.4, turning on interesting fluxes necessitates a Scherk-Schwarz type

compactification where we have monodromies in multiple directions, many of which we

wanted to be fiber directions. If traversing a circle carries with it a monodromy, T-duality

done along that direction would introduce a monodromy around the dual circle. This

has no geometric interpretation and would usually be considered a situation in which the

T-duality is not allowed. However, [92] note that from the point of view of the string

field theory, there seems to be nothing wrong with allowing non-trivial dependence on the

dual circle, i.e. on the winding number. Moreover, the lack of geometric interpretation

is promising for understanding the mysterious R flux of [25], in whose presence even D0
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branes fail to be defined.

To implement this, consider a doubled bundle that is trivial, but allow the fiber to be

a local group manifold of the type used in Scherk-Schwarz. This is a reduction of string

theory to 10-d dimensions and so we are considering manifolds of the form R10−d × F

where F is a local group manifold, i.e. of the form G/Γ for some group G and some

discrete cocompact subgroup group Γ2. F is parallelizable with T ∗F trivialized by a basis

of left invariant 1-forms ηI which satisfy a Cartan-Maurer equation

dηI +
1
2
f I

JKηJ ∧ ηK = 0 (5.19)

where the f I
JK are structure constants of the group. The integrability for this equation is

the Jacobi identity.

In standard twisted tori reductions, where the local group manifold is the familiar com-

pactification manifold, the left invariant 1-forms are dual to the would-be killing vectors.

These vector fields generate the isometries of the group manifold G and so are the Kaluza-

Klein vectors. Dimensional reduction gives G as the gauge group. This strongly suggests

how, given a set of fluxes, we should chose the form of F .

Expanding on the algebra of [89], [25] gives the gauge algebra that should arise from

reducing ten dimensional type II supergravity in the presence of the new fluxes filling out

the T-duality multiplet. The structure constants are3

[Zi, Zj ] = HijkX
k + fk

ijZk

[Zi, X
j ] = −f j

ikX
k + Qjk

i Zk

[Xi, Xj ] = Qij
k Xk + RijkZk (5.20)

By considering a reduction with non-geometric O(d, d;Z) duality twist, [92] observed

an addition term in the dimensionally reduced gauge group that we would Q flux. There

they did not compute the commutator between Xy and Xi, where y is the direction is the

direction with the duality twist, leaving out a term in the algebra. Its existence is implicit

2Being cocompact means that G/Γ is compact, which is necessary for a mass gap. Not all groups admit
such subgroups and they are disallowed in the Scherk-Schwarz reductions. At least for nilpotent groups,
such a subgroup is admitted if and only if the structure constants can be chosen to be rational[104]. String
theory knows about this restriction as the structure constants are related to fluxes that are integrally
quantized.

3There is some issue of normalization between the numbers appearing in the gauge algebra and what
one would like to call flux. In this section, we will use H, f, Q, and R to denote the numbers appearing the
structure constants, as per [25].
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from duality arguments.

This is not quite symmetry algebra for the theory, but this is not important for our

application. See [96] for a discussion of how the gauge algebra listed above is related to

the (field dependent) symmetry algebra in the geometric case. Setting Q and R to zero

gives the familiar algebra from Scherk-Schwarz compactifications.

Using the conventions on indices from §5.2 and setting XI = (Zi, X
i), we can rewrite

this algebra compactly as

[XI , XJ ] = fK
IJXK (5.21)

which gives for the dual 1-form basis

dηI = −1
2
f I

JKηJ ∧ ηK (5.22)

In the physical-dual coordinates given by a polarization, this is

dηi = −1
2

(
f i

jkη
j ∧ ηk −Qij

k ηk ∧ ηj + Rijkηj ∧ ηk
)

dηi = −1
2

(
f j

ikη
k ∧ ηj + Qjk

i ηj ∧ ηk + Hijkη
j ∧ ηk

)
(5.23)

Luckily, this form of the algebra is exactly what is required to allow one to be sloppy about

the placement of indices. The appearance of f i
jk and Qij

k in both of the places where the

configuration of indices would allow it means that one doesn’t have to worry whether, for

example, f i
jk comes from f I

JK with all the indices “physical” or if it is from fJ
IK with both

J and K “dual” indices.

From the dimensionally reduced point of view, this comes as no surprise. We are

supposed to be gauging some subgroup of O(d, d) and these conditions on f and Q, along

with the total antisymmetry of R and H are required for the gauge group, in the adjoint

representation, to be a subgroup of O(d, d)4 From the higher dimensional perspective, it is

a condition that we must impose on the topology and is a sort of self-duality constraint.

As a concluding remark, note how this construction gives a nice geometric interpretation

to the NS-NS Bianchi identities found in [25]. The Scherk-Schwarz compactifications had

long given this status to the f flux and we have now extended it democratically not only

to H, but to all the fluxes that fill out the T-duality multiplet.

4This requirement that we look at the adjoint representation is nontrivial. U(1)2 ≮ O(1, 1) ∼= Sl(2), but
in the adjoint representation, U(1)2 is just the trivial group.
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5.4.2 Dimensional Reduction

As all of our arguments have been guided by the dimensionally supergravity, we should

see how this doubled construction connects with the reduced gravity theory. We continue

to ignore the RR-sector, which remains mysterious in our picture, and supersymmetry. To

this end, note that the doubled lagrangian (5.4) looks very much like the bosonic string

lagrangian. As noted, the doubled action is misleading. That we must impose the self-

duality constraint indicates that this is not the correct action. In fact, the constraint

is some how more fundamental than this action and presumably comes from the correct

formulation of the theory. Nonetheless, we will take this action seriously and write down

a “low energy” effective theory.

In the NS-NS sector, (5.4) looks a standard lagrangian on the base and only a metric

on the doubled torus. In the case of a standard geometric compactification, the H flux

on the base is not the same as the H flux on the total space restricted to the base. For

understanding how to pick out the gauge invariant field strength, see [89] or [96]. For a

mathematical discussion of the same idea in the case of a principal torus bundle, see [101].

We propose to adapt the familiar ansatz to the doubled twisted torus with, in Einstein

frame, a metric of the form5

ds2 = e2αϕgµνdxµdxν + e2βϕHIJνIνJ (5.24)

where as usual the 1-forms νI take the form

νI = ηI −AI = ηI −AI
µdxµ (5.25)

Here gµν is a metric on R10−d or whatever other manifold to which we are compactifying,

say B, and H is the metric on F . H has determinant one As is standard, we demand that

g, H, and A depend only on B, with the only dependence on F arising in the ηIs. This is

the most general left-invariant metric.

Consider reducing to 10-d dimensions a term in the action

S =
∫

R10+d ∗ 1 (5.26)

5For details of these results, including the definitions of α and β, see [96] and earlier references [85], [89],
[105]. Here we are simply comparing the reduced Einstein-Hilbert action in eq. 4.7 to the O(d, d) covariant
Scherk-Schwarz reduction in eq. 5.29 from Hull and Reid and noting the remarkable fact that they are
essentially the same.
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where R10+d is the 10+d dimensional Ricci scalar and ∗ is the 10+d dimensional Hodge

dual. The resulting 10-d dimensional term in the Lagrangian is

L10−d = R10−d ∗ 1− 1
2
∗ dϕ ∧ ϕ− 1

2
HIJHKL ∗DHIJ ∧DHKL

− 1
2
e2(β−α)ϕHIJ ∗ F I ∧ F J − 1

2
e2(β−α)ϕ(HIJHKLHMNf I

KMfJ
LN

+ 2HIJfK
ILfL

JK) ∗ 1 (5.27)

where HIJ is the inverse of HIJ , ∗ is the 10-d dimensional Hodge dual,

DHIJ = dHIJ +HIKfK
JLAL +HJKfK

ILAL (5.28)

and

F I = dAI +
1
2
f I

JKAJ ∧Ak (5.29)

is the field strength of vector fields AI . The reduction of this term gives the correct gauge

group. However, it does more. In the case where Q and R flux are set to zero and H is

written in the form (5.8), this is exactly the dimensionally reduced action modulo the term

coming from H flux on the base. From the O(d, d) covariant form of this action given in

[96], it’s clear the from T-duality that this equality should hold in general.

The necessary condition for the two actions to agree was the restricted form ofH. Recall

that H is not allowed to be any symmetric matrix, but is required to satisfy LHL = H.

This arose as a consistency condition for imposing the self-duality constraint. When this is

satisfied, the two actions coincide. Relating H to G and B involves solving the self-duality

constraint by choosing some variables to be the physical ones and solving for the others

in terms of them. This choice relied on the polarization and so was somewhat arbitrary.

Of course it works regardless of polarization, and so the we note that the fundamental

constraint is that raising the indices on H with the metric L inverts H.

5.4.3 Graviton Scattering and the Low Energy Effective Action

As stressed before, the doubled formalism can’t be exactly right. The imposition of the self-

duality constraint after solving for the equations of motion tells us that we have incorrectly

chosen the action. A solution is in the work of Tseytlin, [86], which takes a slightly different

approach to writing a manifestly T-duality covariant CFT. There, the action is such that

self-duality constraint is the equation of motion. The price on pays is a loss of manifest
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Lorentz invariance. In fact, local Lorentz invariance holds only on-shell.

These papers calculate a term in the low energy effective action of this doubled theory.

In particular, they consider an example with no B field, so that the doubled metric is set

to be

H =

(
G 0

0 G−1

)
(5.30)

From a calculation of three graviton scattering amplitudes, it is concluded that the action

contains terms whose natural off shell generalization is

L =
√

G
√

G−1(R(G) + R(G−1))d2dx = R(H) ∗ 1 (5.31)

This is further evidence that (5.26) is the correct low energy effective action.

5.5 Conclusion

In this paper we have attempted to understand the origins of the non-geometric fluxes

found in [25]. We have argued that they arise in an intrinsically stringy way, involving

nontrivial mixing between momentum and winding modes of the closed string. Previous at-

tempts at understanding reductions with duality twists and simple T-duality experiments

on T 3 with H flux indicated that non-geometric fluxes are related to T-duality type mon-

odromies or transition functions. Hull’s doubled formalism suggest a way to geometrize

such backgrounds. We have extended this line of thought to its natural conclusion.

Compactifications with all the new NS-NS fluxes turned on become compactifications

on local group manifolds of twice the usual dimension. Putting the ordinary Einstein-

Hilbert action on these twisted double tori dimensionally reduces to the entire NS-NS

sector following the familiar Scherk-Schwarz reductions. This approach unifies the metric

and the B field and turns all the flux into topological data.

The doubled formalism involves a self-duality constraint to be imposed after varying the

action, like the self-duality constraint of type IIA supergravity. This requires a consistency

condition on the doubled metric and must also be imposed on the low energy action.

Because of this, it is not clear how to quantize this picture.

At the expense of local Lorentz invariance, Tseytlin’s formalism may be used, which

appears a better candidate for quantization. Graviton scattering amplitudes computed in

Tseytlin’s original papers confirm the Einstein-Hilbert action as the low energy limit of the
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doubled approach. This remains somewhat mysterious, as the truncation to winding and

momentum modes while ignoring all other excited states is never a good approximation.

While not exactly correct, this approach is probing some underlying topological struc-

ture in string field theory. It would be interesting to see how to extend this to the other

sectors of string theory and to incorporate supersymmetry.



Appendix A

Generalized complex geometry

In the appendix we give a short summary of the definitions of (twisted) generalized complex

structure (GC or TGC for short). Let M be an even dimensional manifold and H be a

closed 3-form on M . The twisted Dorfman backet ◦ is defined as a binary operation on

the sections of TM ⊕ T ∗M .

(X ⊕ ζ) ◦ (Y ⊕ η) = [X, Y ]⊕ (LXη − ıY dζ + ıY ıXH) (A.1)

where X, Y ∈ Γ(TM) and ζ, η ∈ Γ(T ∗M). The bundle TM ⊕ T ∗M has a metric h with

(n, n) signature defined by an inner product for the sections in TM ⊕ T ∗M .

Definition A TGC-structure on M is an endomorphism J on TM ⊕ T ∗M such that

(1) J 2 = −1

(2) h(·, ·) = h(J ·,J ·)
(3) The i-eigenbundle of J is closed (or involutive) with respect to the twisted Dorfman

bracket. This condition is equivalent to an integrability condition for the (T)GC-structure.

Setting H = 0 the word ”twisted” is dropped everywhere and we will get the definitions

for Dorfman brackets and GC-structures.

Definition (Twisted) generalized Kähler structure consists of two commuting (T)GC-

structures J1 and J2 such that G = −J1J2 is a positive definite metric on TM ⊕ T ∗M .

A (twisted) generalized Kähler structure is physically relevant because it has been

shown that the structure is equivalent to the bi-Hermitian geometry [14]. The two (twisted)

commuting generalized complex structures J1 and J2 can be expressed in terms of the data

73
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of the bi-Hermitian geometry, namely, (J+, J−, g,H).

J1 =

(
J̃ −α

δω −J̃ t

)
, J2 =

(
δJ −β

ω̃ −δJ t

)
(A.2)

where

J̃ =
1
2
(J+ + J−), β =

1
2
(ω−1

+ + ω−1
− ), ω̃ =

1
2
(ω+ + ω−),

δJ =
1
2
(J+ − J−), α =

1
2
(ω−1

+ − ω−1
− ), δω =

1
2
(ω+ − ω−). (A.3)

ω±(·, ·) = g(J±·, ·) (A.4)

The H is preserved by J± in the sense that the following constraints are satisfied and

moreover it is of (2, 1) + (1, 2) type with respect to both J±.

H(X,Y, Z) = H(J±X,J±Y,Z) + H(J±X, Y, J±Z) + H(X, J±Y, J±Z) (A.5)

H(J±X, J±Y, J±Z) = H(J±X,Y, Z) + H(X, J±Y, Z) + H(X, Y, J±Z) (A.6)

The following identity is useful in deriving equations.

H(X, Y, Z) = ∓dω±(J±X,J±Y, J±Z) (A.7)
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[35] P. Candelas, P. S. Green and T. Hübsch, “Rolling Among Calabi-Yau Vacua,” Nucl.

Phys. B 330, 49 (1990); “Finite Distances Between Distinct Calabi-Yau Vacua: (Other

Worlds Are Just Around The Corner),” Phys. Rev. Lett. 62, 1956 (1989).



78 BIBLIOGRAPHY

[36] B. Greene, D. Morrison and A. Strominger, “Black hole condensation and the unifi-

cation of string vacua,” Nucl. Phys. B 451, 109 (1995) [arXiv:hep-th/9504145].

[37] T. M. Chiang, B. R. Greene, M. Gross and Y. Kanter, “Black hole condensation and

the web of Calabi-Yau manifolds,” Nucl. Phys. Proc. Suppl. 46, 82 (1996) [arXiv:hep-

th/9511204].

[38] F. Hirzebruch, “Some examples of threefolds with trivial canonical bundle,” notes by

J. Werner, Max Planck Inst. preprint no.85-58, Bonn 1985.

[39] J. Moser, “On the volume elements on a manifold,” Trans. Amer. Math. Soc. 120

(1965), 286–294.

[40] M. Gromov, “Pseudo-holomorphic curves in symplectic manifolds,” Invent. Math. 82

(1985), 307–347.

[41] B. van Geemen and J. Werner, “New examples of threefolds with c1 = 0,” Math. Z.

203 (1990), 211–225.
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