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Introduction

Despite more than thirty years having elapsed since the discovery of CP violation,

our understanding about the source and the nature of this phenomenon is still very

limited. In the standard model of particle physics, CP violation is due to the presence

of an non-irreducible weak phase in the Cabibbo-Kabayashi-Maskawa(CKM) matrix.

Up to now, all the experimental results are in good agreement with the standard

model. However, it is important for us to over-constrain the CKM quark-mixing ma-

trix and explore the possibility of new physics beyond the standard model. The B

meson provides an ideal place to measure CP violation due to its heavy mass and

potentially large CP -violating effects. In particular, the angle γ of the Unitary Tri-

angle relating the elements of the CKM matrix is extremely crucial in terms of CP

violation and constraints on the new physics models.

Various methods using B− → D0K− decays have been proposed to measure γ

based on the interference between the Vcb and Vub amplitudes. Despite the simple

concept, the measurement turns out to be experimentally challenging due to the

small branching fraction and the small value of rB, the amplitude ratio between the

two contributing Feynman diagrams.

In this thesis a novel technique to measure γ in B− → D(∗)K− decay using a

Dalitz plot analysis of D0 → Ksπ
+π− is presented. Until the turn on of LHCb [1]
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later in the decade, this remains the most promising method to measure γ.

This thesis is roughly separated into two parts. The first part involves a study of

hadron spectroscopy and the Dalitz plot analysis of the D0 → K0
S
π+π−. The second

part of the thesis involves the measurement of γ in B− → D(∗)K− using the results

of the D0 → K0
S
π+π−dalitz plot analysis.
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Chapter 1

CP violation in the standard model

1.1 Overview of CP violation

Despite the fact that CP violation was first discovered in 1964 in K-meson decays

[2], the source and the nature of this phenomenon remains one of the open problems

in particle physics. The abbreviation CP stands for simultaneous charge conjugation

C and parity reversal P operations. Charge conjugation interchanges particles with

antiparticles, while parity P reverses space coordinates (t,−→x ) → (t,−−→x ). In fact,

discovery of CP violation, despite being a small effect 10−3, was clearly visible in the

early kaon experiments. Even larger effects were expected, and confirmed, in the B

system.

In the standard model, CP violation arises from the presence of an irreducible

phase in the Cabibbo-Kobayashi-Maskawa(CKM) quark-mixing matrix. However,
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there are 18 unknown parameters in the standard model which cannot be calculated

from field theory and must be measured experimentally[3]. Due to its large mass and

potentially large CP -violating effects, B mesons provide an ideal system to constrain

the standard model.

1.1.1 CP violation in the standard model

The standard model electroweak Hamiltonian can be written as:

HW = − g√
2
(ūL, c̄L, t̄L)γ

µVCKM











dL

sL

bL











W †
µ + h.c., (1.1)

where VCKM is the Cabibbo-Kobayashi-Maskawa matrix:

VCKM =











Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb











. (1.2)

There are various ways to parameterize this matrix. In the standard form there are

just three generalized Cabibbo angles (θ1, θ2, θ3) and one phase factor δ

VCKM =











c1 s1c3 s1s3

−s1c2 c1c2c3 − s2s3e
iδ c1c2s3 + s2c3e

iδ

−s1s2 c1s2c3 + c2s3e
iδ c1s2s3 − c2c3e

iδ











, (1.3)
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where ci stands for cos θi and si stands for sin θi. Although this is the original form

of the CKM parameterization, the physics is more transparent in the following less

well-known form:

VCKM =











1 0 0

0 c2 −s2

0 s2 c2





















c1 −s1 0

s1 c1 0

0 0 1





















1 0 0

0 1 0

0 0 −eiδ





















1 0 0

0 c3 s3

0 −s3 c3











,

(1.4)

which can be viewed as a product of Eulerian rotation matrices and an irreducible

phase matrix. The explicit dependence on δ corresponds to CP violation in the

standard model. Since VCKM is unitary, V V † = 1, we have

∑

i

VijV
∗
ik = 0. (1.5)

There are six such equations, each representing a triangle in the complex plane. Two

of these equations have sides of similar magnitude:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0, (1.6)

VudV
∗
td + VusV

∗
ts + VubV

∗
tb = 0. (1.7)
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The most popular parameterization used is the so-called Wolfenstein parameterization[4],

which consists of four parameters (λ,A, ρ, η) with λ as the expansion parameter:

VCKM =











1 − λ2/2 λ Aλ3(ρ − iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1











+ O(λ4). (1.8)

Here, λ = sin θ ≈ 0.22 and θ is the Cabibbo angle. The parameters A, ρ and η are

real numbers of order unity. A non-zero value for η is required for breaking of CP

symmetry in the standard model. With the Wolfenstein parameterization, Eq. 1.7

can be represented as a triangle in the complex (ρ,η) plane, as shown in Fig. 1.1.

The three angles of the Unitary Triangle are denoted by α, β and γ:

α ≡ arg

[

− VtdV
∗
tb

VubV ∗
ub

]

, β ≡ arg

[

−VcdV
∗
cb

VtdV ∗
tb

]

, γ ≡ arg

[

−VudV
∗
ub

VcdV ∗
cb

]

, (1.9)

and the lengths of the two complex sides are

Rb ≡
√

ρ̄2 + η̄2 =
1 − λ2/2

λ

|Vub|
|Vcb|

, Rt ≡
√

(1 − ρ̄2) + η̄2 =
1

λ

|Vtd|
|Vcb|

. (1.10)

1.1.2 Three types of CP violation

There are three types of CP violation observable in B decays, namely:

• CP violation in decay;
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• CP violation in mixing;

• CP violation in the interference between decays with and without mixing.

Each type of CP violation is explained in detail below.

CP violation in decay

CP violation in decay, often referred to as direct CP violation, measures the difference

in the decay rates for a particle and an antiparticle to the corresponding charge-

conjugate final states:

ACP ≡ B(B̄ → f̄) − B(B → f)

B(B̄ → f̄) + B(B → f)
. (1.11)

This type of CP violation is possible only if at least two different amplitudes contribute

to the overall decay rate and they have non-zero relative weak and strong phase.

Historically, Direct CP violation was first observed in neutral-kaon decays[5][6][7][8]

at the level of a few parts per million, and recently has been observed in neutral B-

meson decays to the Kπ final state [9] at a much higher level (|ACP | = 0.13 ± 0.03).

Fig 1.2 shows the mES distribution for the K+π− (solid histogram) and K−π+ (dashed

histogram) from the BABAR analysis.

CP violation in mixing

The other two types of CP violation involve B0 − B̄0 mixing. The first one, CP

violation via mixing, often referred to as indirect CP violation, results from second-
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Figure 1.3: Second-order weak processes that gives rise to B0 − B̄0 mixing
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order weak processes such as those shown in Fig. 1.3. The B0 and B̄0 mesons, which

are flavor eigenstates, are not mass eigenstates. If we denote the mass eigenstates by

BH and BL, they are linear superpositions of the flavor eigenstates:

|BL〉 = p|B0〉 + q|B̄0〉 (1.12)

|BH〉 = p|B0〉 − q|B̄0〉, (1.13)

where p and q are complex coefficients satisfying the normalization condition |p|2 +

|q|2 = 1. The time evolution of an arbitrary linear combination of the flavor eigen-

states

a|B0〉 + b|B̄0〉 (1.14)

can be described by the time-dependent Schrödinger equation:

i
d

dt







a

b







= H







a

b







≡







H11 H12

H21 H22













a

b







≡
(

M − i
2
Γ

)







a

b






, (1.15)

where M and Γ are 2 × 2 Hermitian matrices that originate from mixing and decay,

respectively. Note that CPT invariance guarantees H11 = H22, while the elements H12

and H21 are particularly important for CP violation, since they are the amplitudes for

mixing and they are zero if there is no B0 − B̄0 mixing. Furthermore, CP symmetry

requires |q|
|p| = 1. Consequently, there is CP violation in mixing if |q|

|p| 6= 1. The current
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world average of the asymmetry measurements gives [10]

∣
∣
∣
∣

q

p

∣
∣
∣
∣
= 1.0013 ± 0.0034, (1.16)

which is consistent with unity. CP violation in mixing is expected to be small O(10−3)

since it involves second-order weak processes.

CP violation between mixing and decay

The final form of CP violation arises from interference between mixing and decay

processes. For example, this can be observed in decay of either B0 and B̄0 to the

same final state, which is a CP eigenstate (f = f̄). If we define Af to be the amplitude

of the decay B0 → f and Āf to be the amplitude of the decay B̄0 → f̄ , the time-

dependent asymmetry is

ACP (t) =
Γ(B̄0 → fCP )(t) − Γ(B0 → fCP )(t)

Γ(B0 → fCP )(t) + Γ(B̄0 → fCP )(t)
(1.17)

=
2Im(λf)

1 + |λf |2
sin ∆mBt−

1 − |λf |2
1 + |λf |2

cos ∆mBt

= S sin(∆m∆t) − C cos(∆m∆t),

where λf = q
p
Ā
Af

. The cosine term arises from direct CP violation and it vanishes

if |λf | = 1. The sine term is due to interference between decays with and without

mixing and it vanishs if Im(λf ) = 0. The classic example is the decay channel in

B0 → J/ψKS, since it proceeds mainly via the tree diagram and there is negligible

9



contribution from CP violation in decay. Therefore, we expect |λf | = 1 and CP

violation only arises from the sine term, Im(λJ/ψKS
). Hence,

Im(λJ/ψKS
) = sin 2β, and (1.18)

ACP (t) = sin 2β sin ∆mBt. (1.19)

Both BABAR [11] and Belle [12] collaborations have measured sin 2β using a com-

bination of charmonium modes including J/ψKS. The latest results are as follow

1:

sin 2β = 0.722 ± 0.040 ± 0.023 BaBar (1.20)

sin 2β = 0.652 ± 0.039 ± 0.020 Belle (1.21)

sin 2β = 0.685 ± 0.028 HFAG average (1.22)

The non-zero value of sin 2β clearly establishes CP violation in B-meson decays.

Fig. 1.4 shows the time-dependent CP violation for charmonium decays based on 232

million BB pairs collected by the BaBar detector at SLAC.

1Latest update: HFAG Winter 2006 results.

10



E
ve

nt
s 

/ (
 0

.4
 p

s 
)

200

E
ve

nt
s 

/ (
 0

.4
 p

s 
)

200   tags0B 

  tags0 B

BABAR

 t [ps]∆
-5 0 5

R
aw

 a
sy

m
m

et
ry

-0.5

0

0.5

 t [ps]∆
-5 0 5

R
aw

 a
sy

m
m

et
ry

-0.5

0

0.5

 year

si
n 

2β

Figure 1.4: Left: The time-dependent CP violation for charmonium decays based
on 232 million BB pairs collected by the BaBar detector at SLAC. Right: The
evolution of sin 2β. This parameter was unknown prior to 1995, but 10 years later it
is a precision measurement. [13]

1.2 Measuring γ in B− → D0K− decays

The measurement of γ is often regarded as being very difficult from an experimental

point of view. Nevertheless, it can be measured using interference in the decay am-

plitudes of the channels B+ → D0K+ and B+ → D0K+, 2 as they are proportional

to the CKM elements Vub and Vcb and sensitive to the weak phase γ = arg(
V ∗

ub
Vcs

V ∗
cb
Vus

).

Figure 1.5 shows the corresponding Feynman diagram for the b → cus and b → ucs

processes. The amplitude for B+ → D0K+ decay is suppressed with respect to the

amplitude of B+ → D0K+, as the ratio between the two amplitudes, is small due to

2Charge-conjugate modes are implied thought-out this thesis.
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Figure 1.5: Diagrams contributing to B− → D0K− decay. The left diagram proceeds
via b → cus transition, while the right diagram proceeds via b → ucs transition and
is both doubly-Cabibbo and color suppressed.

the CKM factors:

|V ∗
ubVcs|

|V ∗
cbVus|

≈ 0.39. (1.23)

If we define the quantity rB as the ratio between the two amplitudes:

rB =

∣
∣
∣
∣

A(B+ → D0K+)

A(B+ → D0K+)

∣
∣
∣
∣
, (1.24)

the expected value from current measurements is approximately 0.1. Different meth-

ods have been proposed for the measurement of γ using the interference of the channel

in b → cus and b → ucs, the most common one are the GLW, ADS, and the Dalitz

method.

1.2.1 The GLW method

The Gronau-London-Wyler (GLW) method [14] is the first method proposed to mea-

sure γ using B− → D0K− decay. This method uses the decay B± → D0
±K

±, where

12



Figure 1.6: Triangle relations among B− → D0K−decay amplitude.

D0
± decay into CP eigenstates. They are reconstructed from final states with even

CP like π+π− and K+K−, or odd CP like K0
Sπ

0. As the CP eigenstate |D0
±〉 of the

neutral D meson system with CP eigenvalues ±1 is given by

|D0
±〉 =

1√
2
(|D0〉 ± |D0〉), (1.25)

the B± → D0
+K

± amplitudes can be expressed as

√
2A(B+ → D0

+K
+) = A(B+ → D0K+) + A(B+ → D0K+) (1.26)

√
2A(B− → D0

+K
−) = A(B− → D0K−) + A(B− → D0K−). (1.27)

These relations, which are exact, can be represented as two triangles in the complex

plane. To measure γ with this technique, one would measure the following four

quantities.

13



RCP± =
Γ(B+ → D0

CP±K+) + Γ(B− → D0
CP±K−)

Γ(B+ → D0K+) + Γ(B− → D0K−)
(1.28)

= 1 + r2
B ± 2r2

B cos γ cos δB

ACP± =
Γ(B+ → D0

CP±K+) − Γ(B− → D0
CP±K−)

Γ(B+ → D0K+) + Γ(B− → D0K−)
(1.29)

= 2rB sin γ sin δB/RCP±.

Here, rB and δB are the amplitude and strong phase difference between the b → c

and b→ u amplitudes. The main disadvantage of the GLW method is the low overall

branching fraction of these decays, and the eight-fold ambiguity in γ.

1.2.2 The ADS method

The Atwood-Dunietz-Soni (ADS) method [15] uses the B+ → D0K+ and B+ →

D0K+ decays, with the D0 decaying into flavor eigenstates. Either it can be decayed

via the color allowed B decay followed by the doubly- Cabibbo-suppressed(DCS)D

decay, or via color-suppressed B decay followed by the Cabibbo-allowed(CAD) D

decay. In this way, one can look at the interference between two amplitudes having

the same order of magnitude. Experimentally, one would like to measure the RADS

14



and AADS, defined as:

RADS =
Γ(B− → [f ]DK

−) + Γ(B+ → [f ]DK
+)

Γ(B− → [f ]DK−) + Γ(B+ → [f ]DK+)
(1.30)

= r2
D + r2

B ± 2rBrD cos γ cos(δB + δD)

AADS =
Γ(B− → [f ]DK

−) − Γ(B+ → [f ]DK
+)

Γ(B− → [f ]DK−) + Γ(B+ → [f ]DK+)
(1.31)

= 2rBrD sin γ sin(δB + δD)/RADS,

which are functions of γ, rB and δB. A particular final state of the D0 decay K−π+

is used in this analysis, which leads to two additional parameters:

rD =

∣
∣
∣
∣

A(D0 → K+π−)

A(D0 → K−π+)

∣
∣
∣
∣

(1.32)

and an additional strong phase shift δD from the D decay. Again, the limiting factor

in this method is that the product of the branching ratios of the B and D decays are

very small, and it is limited from the statistics. Figure 1.7 shows the mES distribution

of the signal events in the ADS analysis [16]. No significant signal was found.

1.2.3 The Dalitz method

The Dalitz method was first proposed by Giry, Grossman, Soffer and Zupan [17], and

uses the B− → DK− decays followed by the multi-body D decay. The advantage of

this method compared to the GLW or ADS method is two-fold: first, it involves the

entire resonant sub-structure of the three-body D decay, and second, the result has
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Figure 1.7: mES distributions for candidate signal events in the ADS method. (a)
DK events. (b) D∗K events with D∗ → Dπ0. (c) D∗K events with D∗ → Dγ, no
significant signal was found.

only a two-fold discrete ambiguity (γ, γ + π), compared to the four-fold ambiguity in

the ADS and GLW method.

The γ analysis with the Dalitz method is performed using the D0 → K0
S
π+π−

decay. Although in principle other D decay channels such as D0 → KsK
+K− can be

used, D0 → K0
S
π+π− has a larger branching fraction and an extremely rich structure

on the Dalitz plot that gives large interference effects.

Consider the following decay chain:

B− → D0K− → (Ksπ
+π−)D0K−. (1.33)

At leading order, two Feynman diagrams contribute to this decay:

A(B− → D0K−) = AB, and (1.34)

A(B− → D0K−) = ABrBe
i(δB−γ), (1.35)

where δb is the strong phase difference between two amplitudes and γ is the usual
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CKM angle. Since we are interested in the D0 decaying into multi-body final states,

we define the D meson decay amplitude as:

fD(s12, s13) = A(D0 → Ks(p1)π
+(p2)π

−(p3)), (1.36)

where sij = (pi + pj)
2 and p1, p2, p3 are the four-momenta of the Ks, π

+, π−, respec-

tively. Therefore, we can write the amplitude of the whole decay as

A(B− → (Ksπ
+π−)D0K−) = fD(s12, s13) + rBe

i(δB−γ)fD(s13, s12), (1.37)

and the corresponding CP -conjugate part is given by:

A(B+ → (Ksπ
+π−)D0K+) = fD(s13, s12) + rBe

i(δB+γ)fD(s12, s13). (1.38)

Note that under CP transformation the strong phase difference δb remains the same

since the strong interaction does not violate CP , while the weak phase γ changes

sign. However, to determine γ one needs the functional dependence of both the

moduli and the phases of the D0 meson decay amplitude, fD(s12, s13). In this thesis

we will present the model-dependent approach, which uses a high-statistics tagged D

sample, D∗− → D0π−, with D0 → K0
S
π+π−. This D sample can be used to extract

the moduli and the phase of fD(s12, s13) using the Dalitz plot technique. This will

be presented in the Ch. 4. Although in principle one can use a model-independent

17



approach [17], this method will not be feasible with the limited statistics currently

available in BABAR.

1.3 CKM γ and constraints on new physics

Since the B− → D0K− decay is dominated by tree-level processes, the determination

of γ is expected to be unaffected by new physics (NP). However, surprisingly the

measurement of γ might help us to understand physics beyond the standard model

through comparisons with higher-order virtual processes. For many extensions of the

standard model, new particles enter into the virtual loop diagrams(also known as

“penguins”), with the possibility to change the CP parameters. Therefore, together

with the measurement of Vub/Vcb, which can be determined from semi-leptonic decay

and also is not affected by new physics, the measurement of γ provides a constraint

in the ρ̄ − η̄ plane that must be fulfilled by any new physics model. This is a very

powerful constraint to exclude new physics models. Figure 1.8 shows the regions

selected by these two constraints.
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determination of Vub/Vcb and γ from tree-level processes.

19



Chapter 2

The PEP-II and BABAR Detector

2.1 Overview

The BABAR detector [18], located at the Stanford Linear Accelerator Center (SLAC),

Menlo Park, California, is a general multi-purpose detector with large acceptance,

good tracking, and excellent particle ID capability to measure different physics pro-

cesses. The primary goal of this experiment is to measure CP violation in B meson

decay. Although CLEO, was built more than 20 years ago, BABAR has the unique

feature that the beam energies are asymmetric, so the B mesons acquire a large boost

in the lab frame. This large boost enables the B-meson decay times to be inferred

from their measured decay lengths.
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Figure 2.1: The Stanford linear accelerator with the PEP-II storage rings and the
BABAR detector.

2.2 PEP-II and the BABAR Detector

The PEP-II B Factory is an asymmetric-energy electron-positron collider operating

at the center of mass(c.m.) energy of 10.58 GeV, corresponding to the mass of the

Υ (4S) resonance (which dominantly decays into BB). It consists of two 2.2-km-

circumference storage rings: the high energy electron ring (HER) and the low energy

positron ring (LER). Fig. 2.1 shows the linac and the BaBar detector, and Table 2.1

gives the parameters of these storage rings.

The asymmetry in beam energies leads to a lorentz boost to the c.m. frame of

βγ = 0.56, which makes it possible to reconstruct the decay vertices of the two B

mesons that are produced. This unique feature allow all the time-dependent CP
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Parameters Design Peak Luminosity
Current HER/LER (mA) 750/2140 1875/2900
Number of bunches 1722 1722
RMS size of the luminous region σx (µm) 110 120
RMS size of the luminous region σy (µm) 3.3 3.5
β∗

y (mm) 15 11-12
Luminosity (1033 cm−2s−1) 3.0 12.07

Integrated luminosity (pb−1/day) 130 910.7

Table 2.1: PEP-II beam parameters. The peak luminosity was on 18, August 2006.

measurements.

The Υ (4S) decays dominantly into B+B− and B0B̄0 pairs, and for the process

e+e− → Υ (4S) → B0B̄0 is approximately 1.1 nb. Figure. 2.2 shows the cross section

for e+e− annihilation into hadrons as a function of c.m. energy, as measured by the

CLEO Collaboration.

Some fraction (around 12%) of the data, referred to off-resonance data, are taken

at a c.m. energy 40 MeV below the Υ (4S) resonance. This data, which is taken

below the BB̄ production threshold, is used for studies of non-resonant e+e− → qq̄

background.

Figure 2.3 shows the total integrated luminosity recorded since the start of the

experiment. The peak luminosity achieved by PEP-II is 1.2 × 1034cm−2s−1.

2.3 Overview of BABAR detector

The BABAR detector consists of five major sub-detectors. The Silicon Vertex Tracker

(SVT) and the Drift Chamber (DCH) make up the BABAR tracking system. The

SVT is the first component of the tracking system, providing precise measurements
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Figure 2.2: The rate of particle production as a function of energy in the region of
various Upsilon states as measured by the CLEO collaboration.

of decay vertex positions and detection of low momentum charged particles.

The DCH serves as the outer component of the tracking system. The main purpose

of DCH is the momentum measurement for charged particles. In addition, it provides

the ionization energy loss per unit length (dE/dx) measurements for use in particle

identification (PID).

The Detector of Internally Reflected Cherenkov light (DIRC) is a novel device

providing separation of pions, kaons and protons from 500 MeV to 4.5 GeV.

The CsI(Tl) Electromagnetic Calorimeter (EMC) provides measurements of en-

ergy deposited by charged and neutral particles from 20 MeV to 4 GeV, which allows

detection of photons and electrons. π0 can be reconstructed from photon tracks as

π0 → γγ dominantly.

The outermost detector is the Instrumented Flux Return (IFR). This system is
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Figure 2.4: BABAR detector longitudinal section.

primarily used for identification of muons and neutral hadrons such as KL. Besides

IFR, the whole detector is surrounded by an uniform magnetic field of 1.5 T field

strength which is used for the momentum measurements of the charged particles.

Figure 2.4 shows a longitudinal section through the BABAR detector, while Fig 2.5

shows an end view. Each detector component is described in detail in the following

subsections.

2.4 Silicon Vertex Tracker(SVT)

The Silicon Vertex Tracker(SVT) is the innermost component of the BABAR detector,

which allows precise reconstruction of charged particle trajectories and the decay
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Figure 2.5: BABAR detector end view.

vertices near the interaction region. The SVT was designed to meet the following

physical requirements:

• It must provide spatial z-resolution at least 80µm to allow time-dependent CP

asymmetry measurements; 1

• Provide standalone tracking for particles with low transverse momentum; 2

• Long mean-time-to-failure, as SVT is inaccessible during normal operation;

• It must be able to stand over 2 Mrad of ionizing radiation.

These physical requirements led to the choice of the SVT having five layers of

double-sided silicon strip sensors made up of 52 modules. Figure 2.7 shows the lon-

1This number is obtained from Monte Carlo studies.
2The drift chamber alone cannot reliably measure pT below 120 MeV due to 1.5T magnetic field.
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Figure 2.6: Tranverse section of the SVT.

gitudinal section of the SVT.

SVT layout

The design consists of five layers of double silicon strip sensors, divided azimuthally

into modules, as shown in Fig. 2.6. The first three innermost layers run parallel to

the beam pipe, which provide impact parameter measurements of charged tracks with

high resolution.

The outer layers are placed closer to the Drift Chamber(DCH) to improve the

alignment between SVT and DCH. Also, the two outer layers are arranged into

arches(see Fig. 2.7) to minimize the amount of silicon required to cover the solid

angle.
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Figure 2.7: Side-view of the SVT.

SVT sensor

Each module is made up of four to eight 300µm-thick high-resistivity (6-15kΩ cm) n-

type silicon wafers, with n+ and p+ strips running orthogonally on opposite sides. The

φ strips run parallel to the beam direction and the z strips are oriented transversely

to the beam axis. The total active silicon area is 0.96m2, covering 90% of the solid

angle in the c.m. frame.

Monitoring and calibration

Since stable operation of the SVT is essential, various parameters are carefully mon-

itored continuously. Temperature and humidity are maintained by external cooling

of the beam pipe with chilled water and a flow of dry air though the support tube.

The relative position of the SVT has been determined from an optical survey during

assembly. Global SVT alignment is performed every 2-3 hours and new calibration

constants are determined by minimizing the difference between track parameters ob-

tained with SVT-only and DCH-only fits.

Besides the global alignment of the SVT, local alignment is sometimes necessary
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Figure 2.8: SVT reconstruction efficiency as measured in µµ events, the reconstruction
efficiency is more than 97% per module.

when the magnet quenches, or during a detector access. The alignment is performed

by fitting tracks from e+e− → µ+µ− events and cosmic rays.

SVT performance

The BABAR SVT has been performing extremely well during the life of operation.

Figure 2.8 shows SVT hit reconstruction efficiency as measured on µµ events. The

average efficiency reaches above 97%. Table 2.2 shows hit resolution in the z and φ

directions.

2.5 Drift Chamber(DCH)

The DCH is the second part of the BABAR tracking system. The main function of

DCH is to efficiently detect charged particles and measure their momentum. This

detector is particularly important to the Dalitz plot analysis since each point on the
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Parameters Design Achieved (typical)
φ resolution in µm 80 40
z resolution in µm 80 50

Table 2.2: Comparison of the design and achieved performance for the BABAR SVT
detector.

Dalitz plot represent the momentum of the resonances. It complements the SVT, as

daughters of long-lived particles, like K0
S
, whose decay vertices fall outside the SVT

volume can only be reconstructed by the DCH. The DCH was designed to meet the

following physical requirements:

• It must provide maximal solid angle coverage and good measurement of the

transverse momentum;

• Provide efficient track reconstruction over a wide range of momentum;

• Provide particle identification by measurement of ionization loss dE
dx

.

DCH design

In order to meet the physical requirements, the DCH has cylindrical structure. It is

2.8m long cylinder placed asymmetrically about the IP in order to increase coverage

in the forward direction. The DCH is mostly constructed from aluminum, where the

outer wall is made of 9mm-thick carbon-fiber-composite and the inner wall is made

of 1mm-thick beryllium. These materials are light in weight and have small radiation

length. Figure 2.9 shows the longitudinal section of the DCH.
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Figure 2.9: Longitudinal section of the DCH.
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Figure 2.10: Layout of all superlayers in DCH.
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DCH drift cells

The DCH is a wire chamber consisting of 7104 hexagonal cells each 11.9mm to

19.0mm-wide. Each of these cells is made of six gold-plated aluminum field wires

with a gold-plated tungsten-rhenium sense wire at the center. The field wires are

grounded, while the sense wires are operated at 1960V. In total, there are 40 layers

of wires filling the DCH volume and organized into 10 superlayers. Each layer in a

superlayer has the same wire orientation and an equal number of cells. The stereo

angles of the superlayers are alternated between axial(A) and stereo pairs(U,V) in

the order of AUVAUVAUVA to obtain longitudinal position information. Figure 2.10

shows the layout of all superlayers of the DCH.

DCH gas mixture

Gas mixture is critical to the operation of the DCH. The chamber is filled with a

80:20 mixture of helium:isobutane at a constant pressure of 4mbar. The choice of

the gas mixture keeps multiple scattering inside the DCH at a minimum. During

normal operation, one full volume of fresh gas is added every 36 hours, and the water

concentration is kept at 3500 ppm in order to prevent electrical discharges. 3

DCH performance

The DCH has been performing extremely well over the entire period of BABAR exper-

iment. The DCH track reconstruction efficiency in the acceptance region is around

3This effect is known as the Malter effect.
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Figure 2.11: dE/dx in the DCH as a function of track momenta for different charged
particles types.

93-94%. Figure 2.11 shows the dE/dx in the DCH as a function of track momenta

for different charged particles.

2.6 Detector of Internally Reflected

Cherenkov Light(DIRC)

The DIRC is a new kind of ring-imaging Cherenkov detector, designed to provide at

least 3σ separation between high-momentum pions and kaons. Almost every analysis

involving momentum above 500 MeV/c kaons will require DIRC information. The

DIRC was designed to meet the following physical requirements,

• thin and uniform to minimize degradation of the calorimeter energy resolution;
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• small in radial dimension to reduce the volume of the calorimeter;4

• fast signal response and able to tolerate high background.

The DIRC concept

The basic principle of the DIRC is quite simple: when a particle passes though the

fused silica bar, it radiates Cherenkov light, and the Cherenkov angle θC relates to

the particle velocity as:

cos θC =
1

nβ
=

c

nv
, (2.1)

where n is the index of refraction of the fused silica n = 1.473. Therefore, different

particles will have different θC value and this information can be used for particle

identification.

Fused silica is used because it not only serves as Cherenkov radiator, but also as a

wave guide. Silica is chosen because of its high index of refraction, long attenuation

length and low chromatic dispersion. Figure 2.12 shows a diagram of the DIRC

radiation bar and the imaging region.

The DIRC design

The DIRC consists of 144 silica bars, which are 17mm thick, 35mm wide and 4.9m

long. When a charged particle traverses the bar, the Cherenkov light propagates via

total internal reflection to the standoff box, where the light is detected by an array

4The calorimeter is the most expensive component in BABAR.
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Figure 2.12: The DIRC layout.

of photomultiplier tubes(PMT). In order to reduce the number of PMTs, one end of

the bar has a mirror that reflects the light toward the other end, which has a window

to the standoff box.

The standoff box, which is instrumented by 12 sectors of 896 PMTs each, is located

outside the flux return of the magnetic system. The magnetic field in the standoff box

is typically about 1 Gauss, which is achieved by means of bucking coil that conteracts

the solenoidal field. The two opposing coils are always ramped together to keep the

field low in the region of the phototubes. As the nominal field inside the detector is

about 15000 Gauss, the low magnetic field in standoff box allows to use conventional

PMTs to collect the Cherenkov light. Also, because those particles are produced

mainly forward in the detector due to the boost, the standoff box is placed at the
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backward end.

Water is used to fill the standoff box and as an inexpensive medium to transport

the Cherenkov photons. Water is chosen because the refractive index (n = 1.346)

matches reasonably well with fused silica to minimize refraction at the bar-water

interface. The water is purified with filters and a reverse osmosis unit, de-gassed,

de-ionized and exposed to UV radiation to prevent bacteria growth.

The DIRC performance

Due to good angular resolution of the DIRC it is possible to achieve ∼ 4σ or better

π/K separation for most particles of momenta higher than the DIRC threshold. Fig-

ure 2.13 shows a typical performance of the DIRC. This good performance at high

momentum plays a critical role in identification of two-body charmless decays such

as B → ππ and B → Kπ.

2.7 Electromagnetic Calorimeter(EMC)

Located outside the DIRC, EMC is the component of the detector dedicated to the

detection of photons and electrons. It also provides measurements of the energy

deposition of both charged and neutral particles. Neutral particles are particularly

important for the reconstruction of D∗, which primarily decays into D0γ and D0π0.

Not only that, efficient detection of electrons is vital to determine the flavor of the

B meson in all the semi-leptonic analysis(lepton tagging), and also important for
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Figure 2.13: Left. The DIRC particle identification performance. The θC is the
measured Cherenkov angle and pLAB is the charged track momentum. Right. The
Kπ invariant mass distribution with and without DIRC information for the kaon ID.
The mass peak corresponding to a D0 particle.

the search the FCNC(Flavor Changing Neutral Current) analysis like B → Xe+e−

analysis. The EMC was designed to satisfy the following physical requirements.

• excellent energy resolution over a wide energy range from 20 MeV to 9 GeV;

• capable to detect π0, γ as well as electrons efficiently;

• compatible with 1.5T magnetic field and operate reliably over 10 years.

The EMC layout

The requirements stated above lead to the choice of a hermetic, total-absorption

calorimeter, composed of finely-segmented array of 6580 thallium-doped cesium iodide

CSI(Tl) crystals. It consists of two parts: the barrel detector made of 5760 crystals
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Figure 2.14: Longitudinal cross section of the EMC.

arranged in 48 distinct rings with 120 crystals each. The forward endcap consists

of eight rings: three rings of 120, three rings of 100, and two rings of 80 crystals.

This roughly covers 90% of the solid angle. Figure 2.14 shows the longitudinal cross

section of the EMC layout.

The EMC crystal

The Thallium-doped CsI crystal meets the needs of the BABAR experiment. Based on

the successful experience at CLEO, CsI was adopted due to high light yield and small

Moliere radius, allowing for excellent energy and angular resolution. These crystals

were grown from a melt of CsI salt doped with 0.1% thallium. The length of the

crystals varies from 29.6 cm in the backward to 32.4 cm in the forward direction to

minimize the effect of shower leakage for higher momentum particles. This length

corresponds to 16-17 radiation lengths and allows for small shower leakage and good

energy resolution.
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The EMC performance

The BABAR EMC has good energy resolution and angular resolution. The energy

resolution of the calorimeter is determined from various processes. Usually a radioac-

tive source and Bhabha scattering are used. The single photon energy resolution was

determined to be

σE
E

=
σ1

4
√

E( GeV)
⊕ σ2 (2.2)

where σ1 is 2.32 ± 0.30% and σ2 is 1.85 ± 0.12%. The first term, which is energy

dependent, corresponds to the fluctuations in photon statistics, electronics noise and

low energy beam-generated backgrounds. The constant, second term arises from non-

uniformity in the light collection, leakage or absorption in the material between and

in front of the crystals.

Similarly, the angular resolution could be determined from the analysis of π0 and

η decays to two photons of approximately equal energy. The angular resolution was

determined to be

σθ = σφ =
σ1

√

E( GeV)
⊕ σ2 (2.3)

where σ1 is 3.87±0.07 mrad and σ2 is 0.00±0.04 mrad. Figure 2.15 shows the angular

resolution of the EMC for photons from π0 decays. The agreement between data and

Monte Carlo expectation is very good.
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Right. Invariant mass of two photons in BB̄ events. The solid line is a fit to the
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2.8 Instrumented Flux Return(IFR)

The Instrumented Flux Return(IFR) largely serves as the muon and KL identification

system. Detection of muons is particularly important for analyses involving τ and

FCNC B → Xl+l− decay, and in the reconstruction of J/ψ → µ+µ−. The IFR was

designed to satsify the following physical requirements:

• identify muons with high efficiency and good purity;

• detect neutral hadrons over a wide range of monenta and angles;

• large solid angle coverage, good efficiency and angular resolution;

• detector component must be relatively cheap, due to very large system.
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Figure 2.16: Overview of the IFR, barrel and endcap subsystems.

The IFR design

The following physical requirements lead to resistive plate chambers (RPCs) installed

in the gaps between 18 plates of the steel flux return, which is used as a hadron

absorber. The IFR detector covers a total active area of about 2000m2. Between the

steel plates, RPCs are installed and used for muon identification. Figure 2.16 shows

the barrel and endcap sections of the IFR.

The RPC system

As illustrated in Fig. 2.17, each RPC consists of two bakelite sheets kept 2mm apart by

polycarbonate spacers (0.8cm2) positioned about every 10 cm. High voltage (8000V)
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is applied to one of the surfaces of the bakelite sheets. Graphite is applied to the

external surfaces of these sheets to make it slightly conducting, while the other side is

grounded. The bakelite surfaces facing the gap are treated with lineseed oil. Next, 2-

4cm read-out strips are placed outside the graphite coating to read out the streamer

signals from ionizing particles. The orientation of the strips on the two sides of a

chamber is orthogonal, which allows three-dimensional reconstruction in the IFR and

the association of tracks reconstructed in the DCH or the neutral clusters from the

EMC.

The RPC is a gaseous chamber. Due to safety reasons, a non-flammable gas

mixture of 56.7% argon, 38.8% freon 134a, and 4.5% isobutane is chosen. The RPC

is operated in streamer mode, which uses higher voltage than a typical proportional

chamber, and leads to formation of a streamer with the collected charge no longer

proportional to the original ionization.

The IFR performance

Figure 2.18 shows the IFR performance for muon/pion separation. The muon detec-

tion efficiency in the first year of running was close to 90% with the pion misiden-

tification rate of about 5-6% for the momentum range of 2.0-4.0 GeV. Lower pion

misidentification can be achieved for tighter criteria, but at the expense of detection

efficiency.
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Figure 2.17: Cross section of a planar RPC with the schematics of the high voltage
connection.

Figure 2.18: Muon efficiency (left scale) and pion misidentification probability (right
scale) as a function of a) the laboratory track momentum and b) the polar angle (for
1.5 < p < 3.0 GeV momentum), obtained with loose selection criteria.
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Degraded RPC

At the early stage of the experiment it was found that a large number of RPCs were

degraded in the their response and continued to degrade with time, which caused

significant reduction of the IFR performance. Figure 2.19 shows the time evolution of

the RPC efficiency, showing a significant drop in performance. Extensive research on

the bad RPC led by Princeton physicist Changguo Lu5 revealed that in many cases

uncured linseed oil droplets had formed on the inner surface of the bakelike plates,

leading to current paths from oil stalagmites bridging the 2mm gap. Several remedies

were tried, including flowing N2/O2(40/60) and allowing oxygen to polymerize the

uncured linseed oil. However, none of these efforts proved successful.

5The author was also involved in the study the degraded RPC.
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Figure 2.20: Surface image of a bad RPC

Upgraded RPC for the endcap

The forward end-cap RPCs were replaced with an upgraded version in summer 2002.

The newer RPC has better quality control, and the thickness of the linseed oil is

greatly reduced to prevent the formation of oil stalagmites.

The new LST for barrel upgrade

Due to the bad experience with the linseed-oil-based RPC, the BABAR barrel IFR

is in the process of being upgraded with Limited Streamer Tubes(LST). The LST

consists of a silver-plated wire 100µm in diameter, located at the center of a cell of

9 × 9mm2 section. A plastic (PVC) extruded structure, contains 8 such cells, open

on one side. The profile is coated with a resistive layer of graphite, having a typical

surface resistivity between 0.2 and 1MΩ/cm2. High voltage (4.7 kV) is applied to

the tube typically and the gas mixture is based on a non-flammable combination of

CO2, Argon, and isobutine. The collaboration is in the process of upgrading the
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Figure 2.21: Photo of a standard LST.

barrel IFR, by replacing bad RPCs with LSTs. Two out of six sextants was replaced

in 2004 are operating with high efficiency. The remaining four sextants were recently

installed in the fall of 2006. Figure. 2.21 shows the layout of the standard LST.
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Chapter 3

Hadron Spectroscopy

3.1 Outline

This chapter is devoted to the physics of the Dalitz plot and hadron spectroscopy. In

the first part of this chapter the basic features of the Dalitz plot is described, and the

following topics will be covered to describe the dynamical properties of resonances:

• Dynamical function (Breit Wigner form factor)

• Spin dynamics (angular distributions)

• Finite-size effect of hadrons (Blatt-Weisskopf form factor)

The second part of this chapter is devoted to hadron spectroscopy. Although

hadron spectroscopy is a broad subject and involves rich structure of QCD physics,

this topic is not usually included in modern particle physics textbooks, thus it is
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worth to summarize the details here. The K-matrix theory, based on unitarity of the

S-matrix, is introduced and various dynamical functions are derived. The complex

S-matrix pole position of the hadron and the relationships to the usual Breit Wigner

parameters are also discussed. 1

3.2 Introduction to Dalitz plot

A Dalitz plot is a representation of a three-body decay, D → abc, in a two-dimensional

plane. The two axes of the plot are the squared invariant masses of two of the three

possible particle pairs. For example.

s12 ≡ (p1 + p2)
2,

s23 ≡ (p2 + p3)
2.

(3.1)

where p2 ≡ E2 − ~p2 and we denoted 1,2,3 as a,b,c respectively. Dalitz plots owe their

name to Richard Dalitz, who developed this technique in order to analyze the decay

K+ → π+π+π− [19]. 2 A Dalitz plot is an extremely powerful tool to explore the

dynamics of the resonances. For three-body final states when the parent particle is a

scalar, the decay rate is

Γ =
1

(2π)332
√
s3

|M|2 dm2
12dm

2
23, (3.2)

1I thank Prof. A. Weinstein and Prof. M.R. Pennington who taught me about S-matrix theory.
2At that time, the kaon was “τ -meson”
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where m2
12 and m2

23 are the squared invariant masses of respective particle pairs. If

|M|2 is constant, the allowed region of the plot will be uniformly distributed with

events. Any variation in |M|2 over the Dalitz plot is due to dynamical effect rather

than the kinematics. Figure 3.1 shows the kinematically-allowed region of a typical

Dalitz plot.

Figure 3.1: Dalitz plot for a three-body final state. Four-momentum conservation
restricts events to the shaded region, whose area is determined by the masses of the
decaying particle and parent particle. [20]

The matrix element |M|

We need to specify the matrix element |M| in order to calculate the decay rate

in Eq. 3.2. Typically, the matrix element is written as a sum of the resonances
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parameterized by the Breit Wigner (BW) resonance formula and a non-resonant term,

3

M = a0e
iφ0 +Σare

iφrAspin(ABC/r). (3.3)

The form factor Aspin(ABC/r) is computed as the product of the BW, describing the

underlying QCD dynamics, and an angular function describing the spin dynamics

of the decay. The first term a0e
iφ0 is the non-resonant term, which has unit matrix

element (i.e.,with no dynamical origin). In the following section we derive the BW

lineshape and the spin dynamics using the spin sum rule.

3.3 BW lineshape

The BW lineshape is an approximate model for a resonance propagator in quantum

field theory. It is only exact and well-defined for fundamental particles such as Z0

and W±. Hadronic resonances, which interact strongly with all other hadrons, are

very complex. Anyhow, the derivation of the BW formula is outlined below.

3It is often named as Isobar model.
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3.3.1 Non-relativistic BW – time dependence

The BW form factor arises in non-relativistic quantum mechanics. The time-dependent

wave function Φ(t) for an unstable particle with mean lifetime Γ = 1/τ is

Φ(t) = Φ(0)eiwRt−Γt
2 (3.4)

The energy dependence of the state is given by the Fourier transform of Φ(t)

Φ(w) =
1√
2π

∫

Φ(t)e−iwtdt (3.5)

=
Φ(0)√

2π

∫

ei(−w+wR−Γ
2
)tdt (3.6)

∝ 1

ER − E − iΓ
2

, (3.7)

This is the non-relativistic version of the BW formula.4 Note that some author define

the BW form factor as 1
E−ER+iΓ/2

[21], with an overall minus sign. In the Dalitz plot

context, this means the phase acquires an extra 180 degree shift. Therefore, care

must be taken when comparing the phase for different Dalitz plot results due to the

different sign conventions.

4The BW formula can be derived using partial wave expansion. The details are shown in appendix
A.1.
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Figure 3.2: A representation of the three body decay of D0 → ABC through an AB
resonance [22]. The spin sum is performed to obtain the angular dependence of the
decay.

3.3.2 Matrix element |M| from field theory approach

The BW formula derived above only valid in the non-relativistic regime. A more

formal treatment is needed from the quantum field theory approach. For example,

consider D → (AB)C where AB is a resonance as shown in the Feynman diagram in

Fig. 3.2. The matrix element M is [22],

M = FD(PD0 + PC)µ

∑

λ ε
µ∗
λ ε

ν
λ

s−m2(s) − i
√
sΓ(s)

(PA − PB)νFr (3.8)

if it proceeds via vector (spin-1) particle. If instead the AB system is a tensor (spin-2)

particle the amplitude is

M = FD(PD +PC)µ(PD +PC)ν

∑

λ ε
µν∗
λ εαβλ

s−m2(s) − i
√
sΓ(s)

(PA−PB)α(PA−PB)βFr. (3.9)
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The relativistic BW form factor is the propagator

1

s−m2(s) − i
√
sΓ(s)

, (3.10)

while the numerator contains a spin factor ελ which depends on the type of the decay:

scalar, vector, tensor, etc and FD and FR are the correction to the vertex factor.

The relativistic BW propagators are described in Sec. 3.4, the spin factor is de-

scribed in Sec. 3.5 and the correction of the vertex factor is described in Sec. 3.6.

3.4 Relativistic BW propagators

In relativistic quantum field theory, the relativistic BW form factor is the two-point

function propagator, or self-energy of an unstable particle.

The Feynman rules specify the propagator for an intermediate massive, unstable,

resonance:

BW =
1

s−m2(s) − i
√
sΓ(s)

, (3.11)

where s is the squared four-momentum of the resonance. The denominator describes

the energy dependence of the propagator. Since a resonance is related to the pole of

the S-matrix, it should read 1
s−Q

(s)
where

∏
(s) is the self-energy of the resonance:

∏

(s) = m2(s) + i
√
sΓ(s). (3.12)
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In general, the function
∏

(s) is very complicated (for hadronic resonances, it

is not possible to calculate in any fundamental way). For narrow resonances, (for

example φ(1020))
∏

(s) can be approximated by constants:
∏

(s) = m2
R + imRΓR

where m2
R ≡ m2(m2

R) is the pole mass and the propagator has a simple pole in

the complex energy plane. In this context, if the resonance is narrow, the standard

BW form 1
s−m2

R
−imRΓR

is obtained. However, if the resonance is broad (for example

ρ(770)), it will not be described exactly by BW shape. A rigorous form can only be

obtained if the total width is completely understood. However, most of the hadronic

resonances do not satsify this requirement!

Gounaris-Sakurai(GS) parameterization

The real part of the self-energy function is Re
∏

(s) = m2(s), and is in general not

constant. One can define the pole mass m2
R ≡ m2(m2

R), and separate the constant

and running-mass parts:

BW =
1

s−
∏

(s)
=

1

s−m2
R − δm2(s) + imRΓR(s)

, (3.13)

where δm2(s) is the running pole mass as a function of s. The running mass can be

related to the decay width
∏

(s) via the Kramers-Kronig dispersion relation

m2(s) = m2
R +

1

π

∫ ∞

s0

mRΓtot(s
′)

(s− s′)
ds′. (3.14)
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In practice, the total decay width is rarely understood well enough to calculate mean-

ingful values for the running mass, and the mass is usually taken to be constant.

For some specific cases, effort has gone into understanding
∏

(s) in some detail.

For example, in ρ(770) → ππ, G.J. Gounaris and J.J. Sakurai derived [23]
∏

(s) from

an effective-range formula for the P-wave ππ scattering phase shift. This yields a

modified propagator

1 + d · ΓR/mR

s−m2
R − δm2(s) + imRΓR(s)

, (3.15)

where δm2(s) is the correction to the propagator. Interested reader should refer to

appendix A.2 for details. Eq. 3.15 becomes the standard parameterization for ρ(770)

resonances.

3.5 Spin Formalism

When a resonance has a non-zero spin, a proper description of the angular distribution

on the Dalitz plot is required. To derive the expression, we start from the spin-sum

rule:

Spin Sum =
∑

λ

εµ∗λ ε
ν
λ. (3.16)

For a scalar, there is no polarization vector associated with the decay vertex and the

decay has uniform angular distribution. If we denote the spin function to be Z, then

Z = 1. (3.17)
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Figure 3.3: Simulated events in D0 → K0
S
π+π− dalitz plot. Left:Spin one ρ(770)

resonance. Right: Spin two K∗
2 (1430) resonance, the angular distributions are very

different.

For a vector (spin-1) resonance, the spin-sum in the numerator of Eq. 3.16 is

evaluated to give

∑

λ

εµ∗λ ε
ν
λ = −gµν +

P µ
ABP

ν
AB

M2
AB

, (3.18)

where λ specifies the helicity state. Note that the second term in Eq. 3.18 ensures

that the polarization vectors εµ are transverse: pµεµ = 0. (See Sec. 3.5.1 later about

this point.)

The procedure for higher-spin resonances involves a bit more algebra. For example,

in the spin-2 case, the spin sum has been previously calculated [22] to be

∑

λ

ε∗µνλ εαβλ =
1

2

(
T µαT νβ + T µβT να

)
− 1

3
T µνT αβ, (3.19)

where

T µν = −gµν +
P µP ν

M2
. (3.20)
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Once the spin-sum is calculated, we can insert the expression into Eq. 3.8 for a

vector particle, or Eq. 3.9 for a tensor particle, and sum over the repeated indices to

give the Lorentz invariant expression for the matrix element as a function of position

in the Dalitz plot:5

Z0 = 1 (3.21)

Z1 = M2
BC −M2

AC +
(M2

D −M2
C)(M2

A −M2
B)

M2
AB

Z2 =

[(

M2
BC −M2

AC +
(M2

D −M2
C)(M2

A −M2
B)

M2
AB

)2

−

1

3

(

M2
AB − 2M2

D − 2M2
C +

(M2
D −M2

C)2

M2
AB

)

(

M2
AB − 2M2

A − 2M2
B +

(M2
A −M2

B)2

M2
AB

)]

.

where Z0, Z1, Z2 are the spin functions for scalar,vector and tensor respectively.

3.5.1 Zemach Tensor vs Helicity model

In the previous section, the angular dependence is derived using the spin sum rule.

Here we come to a subtle but important issue. In the spin-sum formula of Eq. 3.18:

∑

λ

εµν∗λ εαβλ = −gµν +
P µP ν

M2
(3.22)

5Note in the ref. [22] there is a typo in the spin-1 formula. The labels A and B are swapped,
introducing an overall extra minus sign.
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what do we take for the M 2 in the denominator of the second term: m2
AB or m2

R? If

the former, this enforces transversality, εµλ(Pab)µ = 0, and enforces a spin-1 current.

This is the assumption built into the Zemach tensor formalism. However, if one

uses Zemach tensors, for the W boson propagator, for example, the amplitude of

π− → W− → µν would be zero, and the pion would not decay! In the standard

model, m2
W is used rather than m2

AB in the denominator of the second term, which is

referred to as the “helicity model”. When theW is far off-shell, it has an effective spin-

zero component to its current6, therefore it can couple to the spin-zero pion. Some

physicists argue that the same argument should apply for the unstable resonances like

ρ and K∗(892). However, the choice of the Zemach tensor vs. helicity model is an

unsettled question in the context of Dalitz plot analysis. To illustrate the difference,

Fig. 3.4 shows a Monte Carlo simulation of Ds → f2(1270)π+, where f2(1270) → ππ

using Zemach Tensor vs. Helicity model. Clear differences in the interference pattern

are visible.

Some effort has been expended on the Ds → π−π+π+ channel to answer this

question experimentally. In this channel only the ππ system is involved and there is

no evidence of a low mass scalar such as the σ(500). It also has a large contribution

from f2(1270) (roughly 15%). Figure 3.5 shows the actual data distribution of Ds →

π−π+π+. It shows that if the helicity model is used then a large non-resonant term

(∼ 25%) is observed. If the Zemach tensor is used then the non-resonant term is

reduced to ∼ 5%. There is evidence that the Zemach tensor model fits the Dalitz

6Note W is spin one and π is spin zero.
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plot better. If the helicity model does not fit the spin-2 component well, this requires

increasing the non-resonant term to absorb the remaining events. However, there is

no definite agreement in the HEP community yet.

3.6 Blatt-Weisskopf penetration factors

Next we return to the form factors FD and Fr in Eq. 3.8. Quantum field theory

assumes that all particles are point-like. However, in nuclear physics, the nucleus

has finite extent. To account for this finite-size effect, form factors are placed on the

vertex of the Feynman diagram to give the coupling constants a mass dependence.

The classical treatment is done by Blatt and Weisskopf [24] and the vertex factors

are referred to as Blatt-Weisskopf penetration factors. The interested readers should

consult this classic text on nuclear physics for further details. The idea is briefly

described here for complete reference.

The finite size of the decaying particle can be described crudely as a three-

dimensioned gaussian distribution with a parameter R,

Ψ(r) =
1

(πR2)
3
4

e−r
2/2R2

. (3.23)

The form factor F (p) is given by its Fourier transform

F (p) = e−(Rp)2/2 ≈ 1 − (Rp)2

2
+O(Rp)4. (3.24)
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Table 3.1: Blatt-Weisskopf penetration form factors, where pr is the momentum of
either daughter in the meson rest frame and pAB is the momentum of either daughter
in the candidate rest frame (same as pr except the parent mass used is the two-track
invariant mass of the candidate rather than the mass of the meson). R is the meson
radial parameter.

Spin Form Factor Fr
0 1

1

√
1+R2p2r√

1+R2p2
AB

2

√
9+3R2p2r+R4p4r√

9+3R2p2
AB

+R4p4
AB

Blatt and Weisskopf used this picture to calculate the barrier penetration factor.

They assumed the potential for the finite size nucleus is given by the spherical-well

potential. Recall in quantum mechanics that the solution of the three-dimensional

spherical-well potential are the spherical Hankel functions. Blatt-Weisskopf barrier

penetration factor is given by the logarithmic derivative of the Hankel wave functions

evaluated at r = R. It amounts to a measure of the suppression of the process at non-

zero angular momentum due to the centifugal barrier. The Blatt-Weisskopf formula

is shown in Table 3.1.

3.7 Hadron Spectroscopy and K-matrix Theory

Hadron spectroscopy is a broad topic, and there are still many controversial issues

left to resolve. In particular, the understanding of isoscalar scalars, with quantum
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numbers

JPC = 0++,

is still very poor. Moreover, the existence of very broad isoscalar states, σ(500)

and κ(800), commonly reported in various charm Dalitz plot analysis [25][26] is still

controversial. It is also well known that the BW approximation is only valid if the

resonance is narrow and does not overlap with other resonances. However, in the

JPC = 0++ isoscalar sector, the resonances are broad and heavily overlapping, which

violates the BW approximation. Figure 3.7 shows the I = 0 isoscalar ππ S-wave

intensity plot taken from Ref. [27]. The various resonances are highly overlapping,

and no simple BW peak is observed.

K-matrix theory is introduced because it can handle wide, overlapping resonances.

K-matrix analysis is commonly used in scattering experiment where the model inde-

pendent pole position can be determined. However, it is not a common practice to

adopt K-matrix theory in the production environment. The theory is introduced here,

and the production formalism is presented in the Dalitz plot context. The properties

of the hadron and its BW parameters are discussed in the final section.

3.7.1 K-matrix theory

The K-matrix formalism provides an elegant way of expressing the unitarity of the

S-matrix for processes of the type ab → cd. It has been originally introduced by

Wigner [28], and Wigner and Eisenbud [29], to study resonances in nuclear reactions.
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Figure 3.6: I = 0 Isoscalar ππ S-wave intensity. No simple Breit-Wigner peak struc-
ture is observed.
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The first use in particle physics goes back to an analysis of resonance production in

Kp scattering by Dalitz and Tuan [30].

S-matrix and T-matrix

S-matrix formalism was first developed by Heisenberg in 1942. In general, the ampli-

tude for a transition from initial state |i〉 to the final state |f〉 is written as

Sfi = 〈f |S|i〉, (3.25)

where Sfi is the scattering matrix. In practice, we define the transition operator T

via

S = I + 2iT, (3.26)

as we are not interested in the processes that are non-interacting.

Derivation of K-matrix based on unitarity

From the conservation of the probability, the scattering matrix S is unitary:

SS† = S†S = I, (3.27)

and from the unitarity of the S matrix one obtains

T − T † = 2iT †T = 2iTT †, (3.28)
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In terms of the inverse operators, Eq. 3.28 can be rewritten

(T †)−1 − T−1 = 2iI, (3.29)

which may further be transformed into

(T−1 + iI)† = T−1 + iI. (3.30)

One is now ready to introduce the K operator via

K−1 = T−1 + iI. (3.31)

From Eq. 3.30 one finds that the K operator is Hermitian, K = K†.

From time-reversal invariance of S and T , it follows that the K operator must

be symmetric, i.e. the K-matrix may be chosen to be real and symmetric. One can

eliminate the inverse operators in Eq. 3.31 by multiplying by K and T from left and

right, and vice versa, to obtain

T = K + iTK = K + iKT, (3.32)

which shows that K and T operators commute, i.e. [K, T ] = 0.
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Solving for T , one obtains

T = K · (I − iK)−1 = (I − iK) ·−1 K. (3.33)

and

S = (I + iK) · (I − iK)−1 = (I − iK) ·−1 (I + iK). (3.34)

Note that T is complex only through the i that appears in this Eq. 3.33. In other

words, T−1 has been explicitly broken up into its real and imaginary parts.(Eq. 3.31)

Combining Eq. 3.33 with Eq. 3.28, one finds that the unitarity condition takes on

the simple form ImT = |T |2, which is essentially the optical theorem. Finally, from

Eq. 3.31, one obtains

ImT−1 = −I. (3.35)

The Lorentz Invariant form

The transition amplitude T and the K-matrix defined in Eq. 3.31 are not Lorentz

invariant. The invariant amplitude is defined through two-body wave functions for the

initial and final states, and the process of the derivation involves proper normalization

for two-particle state. The resulting invariant amplitude contains the inverse square

root of the two-body phase-space element. The Lorentz-invariant amplitude, denoted

T̂ , is given by:

T =
√
ρT̂

√
ρ (3.36)
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and

S = I + 2i
√
ρT̂

√
ρ, (3.37)

where the phase-space matrix ρ is diagonal by definition

ρij =











ρi

. . .

ρj.











(3.38)

Here, ρi = 2qi
m

, and qi are the breakup momenta in the channel i. Following the same

exercise, the lorentz-invariant form of K-matrix can be written as (after a few lines

of algebra)

K̂−1 = T̂−1 + iρ, (3.39)

and the Lorentz form of T can be written as:

T̂ = (I − iK̂ρ)−1 · K̂ = K̂ · (I − iρK̂)−1. (3.40)

3.7.2 P-vector formalism

In the previous section the K-matrix theory has been developed in the two-body

scattering process ab → cd. However, the K-matrix formalism can be generalized to

describe the case of “production” of resonances in the decays of unstable particles.

The key assumption is that the two-body system in the final state does not interact
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simultaneously with the rest of the final state. Here the so-called “P-vector formalism”

is described which can be adopted in Dalitz plot analysis.

The P-vector formalism was proposed by I.J.R. Aitchison[31]. In the case of

scattering, the Lorentz invariant T matrix is written as:

T̂ = (I − iK̂ρ)−1 · K̂. (3.41)

In the production environment, the production amplitude F can be written as

F̂ = (I − iK̂ρ)−1

︸ ︷︷ ︸

propagator

·P̂ , (3.42)

where the term P is the initial production vector, and the term (I−iK̂ρ)−1 is the scat-

tering propagator. In the production environment, the system is produced initially in

the state P̂ , and propagates into the final state via the (I − iK̂ρ)−1 operator. Notice

that the introduction of the term (I − iK̂ρ)−1 guarantees consistency between scat-

tering and production as they contains same set of K-matrix propagator (I− iK̂ρ)−1.

Figure 3.7 shows the pictorial representation of the P-vector process.

3.8 K-matrix examples

Several examples are given here where a large class of form factor can be derived from

K-matrix theory, which demostrates the validity of the K-matrix model.
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Figure 3.7: The P-vector formalism. The vector P is responsible for the production
process, while the term (I − iK̂ρ)−1 is the scattering propagator.

69



Simple Breit-Wigner Formula

Consider now an isoscalar ππ scattering in S-wave below
√
s = 1 GeV. This is a

single-channel problem and unitarity is rigorously maintained. Let the K-matrix be

K = tan δ =
m0Γ(s)

m2
0 − s

. (3.43)

From Eq. 3.33, we obtain

T = K · (1 − iK)−1 (3.44)

=
m0Γ(s)

m2
0 − s

· m2
0 − s

m2
0 − s− im0Γ(s)

(3.45)

=
m0Γ(s)

m2
0 − s− im0Γ(s)

(3.46)

which is the well-known BW formula. Notice in the Eq. 3.43 the K-matrix pole

position occurs when s = m2
0, which is when the phase shift δ passes 90 degrees. As

an illustrative example, the BW lineshape and the phase shift for ρ(770) are shown

in Fig. 3.8.

Coupled-channel Breit-Wigner (Flatté Formula)

Consider next a two-channel problem (eg. f0(980) → ππ,KK̄) in which the S-matrix

may be expressed as 2 × 2 matrices. In the K-matrix representation, illustrated in
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Figure 3.8: (a)Breit-Wigner amplitude squared |ρT |2 as a function of invariant ππ
mass. The amplitude |T |2 is superimposed as dotted line. (b) ππ phase shift δ, which
reaches 90◦ at resonance mass.
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Figure 3.9: Scattering process using a K-matrix propagator. The boxes hide the
actual process.
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Fig. 3.9, let

K =







K11 K12

K21 K22







=







Kππ→ππ Kππ→KK̄

KKK̄→ππ KKK̄→KK̄,







(3.47)

where K12 = K21 and the Kij are real, as K-matrix is real and symmetric. We could

parameterize the elements of the K-matrix as

K11 = g2
π

m0Γ

(m2
0 − s)

,

K22 = g2
K

m0Γ

(m2
0 − s)

, (3.48)

K12 = K21 = gπgK
m0Γ

(m2
0 − s)

.

Then, from Eq. 3.40, one finds

T =
m0Γ

m2
0 − s− im0Γ(ρ1g2

π + ρ2g2
K)







g2
π gπgK

gπgK g2
K






, (3.49)

where ρ1 and ρ2 are the phase-space factors,

ρi(s) =

√

1 − (mi1 +mi2)2

s
.

This is the Flatté formula [32]. Note that both T and S must satisfy analyticity, which

implies that ρ(s) requires analytic continuation when the energy is below threshold.

From the K-matrix point of view, the coupling constants gπ and gK are process-

dependent. Therefore, different processes will have different values of gπ and gK,

72



]2m [GeV/c
0.7 0.8 0.9 1 1.1 1.2 1.3

2
|T

|

0

0.2

0.4

0.6

0.8

1

Figure 3.10: Effect of coupling variations in the Flatté formula. The stronger the
coupling on the second channel, the more dramatic are the effects on the lineshape.
The solid, dashed and dotted curves represent the coupling function g2

1/g
2
2 = 10 to 1

and 0.1 respectively for the two channels.

which parameterizes the coupling to ππ and KK̄ channels. Figure 3.10 shows the

effect of coupling variations in the Flatté formula. The red curve (with nice BW

structure) shows the coupling to ππ and the blue curve (shows up only above 1 GeV)

shows the coupling to KK̄.

This effect is clearly seen in charm meson decay. In D+
s → π−π+π+, the f0(980)

is strongly coupling to ππ and therefore shows a clear Breit-Wigner peak, while in

D0 → K0
S
π+π− it is strongly coupled to KK̄ and shows an abrupt cusp around

1 GeV. Figure 3.11 shows the different lineshape for f0(980) in the D+
s → π−π+π+

and D0 → K0
S
π+π− channels around 1 GeV.
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Figure 3.11: Left: Dalitz plot projection on D+
s → π−π+π+, where the BW is

observed near 1 GeV 2/c4. Right: Dalitz plot projection on D0 → K0
S
π+π−, notice a

sharp abrupt cusp around 1 GeV 2/c4, indicating the opening up of KK̄ channel.

Overlapping Resonances

Consider again in ππ scattering. Suppose two resonances exist with the pole masses

ma and mb. The prescription for the K-matrix in this case is that

K =
maΓa(m)

m2
a − s

+
mbΓb(m)

m2
b − s

. (3.50)

If ma and mb are far apart relative to the widths, the K-matrix is dominated either by

the first or second term, depending on whether m is nearma ormb. The corresponding

T -matrix is then given merely by the sum

T ∼ maΓa(m)

m2
a − s− imaΓa(m)

+
mbΓb(m)

m2
b − s− imbΓb(m)

. (3.51)
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Figure 3.12: Two overlapping resonances with the parameters: mA =
1275 MeV/c2,ΓA = 185 MeV/c2, mB = 1565 MeV/c2,ΓB = 150 MeV/c2. Left: shows
the result of adding the resonance poles in the K-matrix(blue line). The red line cor-
responds to the sum of the two BW amplitude (|TA + TB|2), which violates unitary
where |T |2 > 1. Note that the intensity does not drop to zero between the resonance
peaks. Right: shows the corresponding argand diagrams for the isobar model(in red)
and the K-matrix(in blue). Note that the amplitude in the K-matrix model always
remains on the unitary circle.

Therefore, simply adding two BW shapes is only valid when two resonances are far

apart.(|ma −mb| � Γa,Γb) See Fig. 3.12 for the details.

In the limit when ma = mb, then the transition amplitude becomes

T =
ma(Γa(m) + Γb(m))

m2
a −m2 − ima(Γa(m) + Γb(m))

. (3.52)

This shows that the result is a single BW form but its total width is now the sum of

two individual widths.
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LASS formula as K-matrix

In the early 1990’s LASS [33] at SLAC performed a scattering experiment K−p →

K−π+n at 11 GeV to study the Kπ system. A scalar resonance K∗(1430) was found

near 1.4 GeV with a broad width (300 MeV) that did not exhibit the usual BW

lineshape. LASS adopted effective-range parameterization to model the lineshape of

the K∗(1430) resonance

T = sin δbe
iδb + e2iδb sin δre

iδr , (3.53)

where

cot δr =
m2

0 − s

m0Γ(s)
(3.54)

cot δb =
1

aq
+
rq

2
. (3.55)

Here, a is the scattering length and r is the effective range while q is the four-

momentum of the spectator particle in the resonance frame,

q =

√

(s− (mK +mπ)
2)(s− (mK −mπ)

2)

4s
. (3.56)
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Equation 3.53 is not easy to interpret at first glance. However, the physics is trans-

parent in the K-matrix framework. Consider the following K-matrix:

K = tan(δr + δb), (3.57)

which from Eq. 3.33 leads to the following T -matrix

T = K · (1 − iK)−1 (3.58)

= sin δbe
iδb + e2iδb sin δre

iδr . (3.59)

This formula is exactly the LASS parameterization. The physics in K-matrix frame-

work is now apparent: the rapid (resonance) phase shift is coming from the term

δr (note that the δr is same as K-matrix in Eq. 3.43 and the δb corresponding to

non-resonant slow rising phase shift in Eq. 3.55.)

3.9 Model dependence of BW parameters

In this section the BW mass and width parameters and the relationship to the prop-

erties of hadrons are discussed. This subject can be confusing and it is therefore

worth to explore in more detail.

A resonance gives rise to a peak in a cross-section in the scattering experiment.

Typically, a BW amplitude is adopted to describe the lineshape and its mass and
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width are extracted. As described in Sec. 3.3, for narrow resonances, the self energy

of the propagator
∏

(s) is approximated by a constant:
∏

(s) = m2
R+ imRΓR. In fact,

from the S-matrix point of view, the pole of the S-matrix is the most fundamental

definition of a hadron, regardless of how the state appears in the experiment. In the

case of the narrow, isolated resonance, there is a close connection between the position

of the pole in the complex energy plane and the peak we observe in experiments

necessarily measured on the real axis. However, when a resonance is overlapping

with other resonances, this close connection is lost. Here three examples are given to

demonstrate this problem.

∆(1236) resonances

By 1971, the ∆(1236) resonance had been observed in several different channels.

Different experiments under a variety of experimental conditions reported varying

estimates for the BW mass and width. At the time, the PDF had difficulty combining

the various results, and concluded that [34] “the mass and width of ∆(1236) are in a

state of flux; therefore we do not quote any errors in the table.”

“A year later, it was recognized that this problem can be solved if we take

the mass and width to be given by the actual pole position of ∆(1236) in

the complex energy plane. [35]”

In summary, PDG found that different parameterizations of the lineshape,

• tan δ = m0Γ(s)

m2
0−s

Breit-Wigner
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• tan δ = γ(s)
2(m0−

√
s)

Layson

• tan δ = m0Γ(s)

2s(m2
0−s)

Chew-Low

• q3 cot δ =
∑N

n=1 anq
2q−2 Polynomial

can all fit the data well. However, the resonance parameters, (mass and width) are

highly model-dependent, ie. these values are not unique. This discrepancy is removed

if we take the mass and width to be given by the actual pole position of the ∆(1236) in

the complex energy plane. The complex pole position of ∆(1236), which is determined

to be Mpole = 1211.11 ± 0.24 MeV , Γpole = 100.01 ± 0.56 MeV is essentially process-

and parameterization-independent.

ρ(770) resonance

As a second example we consider the ρ(770) in greater detail. The Breit-Wigner

parameters are measured with different processes, for example in e+e− → π+π− , τ

decays, pp̄ annihilation, hadroproduction, photoproduction process etc. It is found

that the mass and width of the ρ(770) meson measured in these processes are not

consistent. Again PDG had difficulty averaging the values. Benayoun, O’Connell and

Williams et al [36] searched the pole of ρ(770) in the complex energy plane and found

the complex pole position lies in the range

Mpole = 756 − 759 MeV (3.60)

Γpole = 140 − 145 MeV (3.61)
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(The spread is less than 5 MeV), no matter which parameterization is used or which

production environment. However, the specific measured BW mass and width quoted

by the experiments has a large spread:

MBW = 763 − 780 MeV (3.62)

ΓBW = 141 − 157 MeV (3.63)

(The spread is more than 15 MeV with error typically ± 1 MeV). This is further

evidence that the BW parameters are model and process dependent. Figure 3.13

shows the 2006 PDG average of the BW mass and width of ρ(770). Despite the high

statistics from CMD2 and KLOE, the difference is still clearly visible. Figure 3.14

shows the results from Benayoun et al [36] for the complex pole position of ρ(770).

The BW parameters (cross) are scattered around but the complex pole position(

denoted by ⊗) are essentially same.

The K∗
0(1430) resonances

In the third example we point out that the mass and width parameters are also

dependent on the parameterization on the non-resonant term7. As was shown in

the Sec. 3.8, the lineshape of the Kπ S-wave obtained from LASS experiment is

parameterized as

T = sin δbe
iδb + e2iδb sin δre

iδr (3.64)

7This has a great effect on the ππ phase measurement in D0 → K0
S
π+π− dalitz plot analysis
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Figure 3.13: Weighted average of ρ(770) BW parameters. (Top) Different measure-
ments report different BW mass parameters. (Bottom) With more than one million
events collected in the e+e− → π+π− process, the ρ(770) width is still inconsis-
tent. [20]
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Figure 3.14: The complex energy plane of ρ(770). Both BW mass and width param-
eters (cross) and their corresponding pole mass and width parameters (denoted by
⊗) are plotted. The complex pole position is clearly process and parameterization
independent. The reference can be found in the paper by Benayoun et al. [36].

where

cot δb =
1

aq
+
rq

2
. (3.65)

Note that cot δb models the slow rising non-resonant contribution. To demonstrate

that the BW mass and width are parameterization dependent, Monte Carlo simula-

tion study was performed. We generated 30K events according to the measurement

reported by LASS. An alternative model parameterization of δb was used to study the

effect of mass and width of the resonances parameters. As an illustrative purpose, an

alternative non-resonant parameterization(3rd order polynomial) is used: 8

cot δb = aq + rq2 + bq3 (3.66)

8Any background model will work as long as they fit the data well.
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BW mass(generated) 1430(fixed) MeV
BW width (generated) 279(fixed) MeV

BW mass(LASS) 1431± 4 MeV
BW width(LASS) 271± 6 MeV

BW mass(alternative) 1453± 5 MeV
BW width(alternative) 241± 7 MeV

Table 3.2: Measured K∗
0(1430) BW parameters using simulated events generated by

the LASS model.

The measured mass and the width are shown in the Table 3.2. The variation with

the parameterization of the non-resonant component is clear. In fact, in the original

LASS paper, it mentioned the same problem [33]:

“These resonance parameters are correlated with the background param-

eters, and can change significantly when different background forms are

used.”
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Figure 3.15: Simulated K∗
0(1430) intensity plot with parameters taken from the LASS

parameterization. Blue line: The fit using standard LASS parameterization. Red line:
The fit using alternative parameterization. Note that both background parameteri-
zation describe the data well, although the resulting mass and width parameters are
very different.
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Chapter 4

D0 → K0
Sπ

+π−Dalitz plot analysis

4.1 Introduction

The dynamics of charmed-meson decays have been studied extensively during the past

decade. Dalitz-plot analysis of three-body D decays has proved to be a powerful tool

to investigate the effect of the resonance structure, interference pattern, and final-

state interaction. Moreover, the Dalitz-amplitude parameterization of the D0 →

K0
S
π+π−decay is essential for the measurement of the γ of the Unitarity Triangle [17].

In this context, a Dalitz plot analysis of the D0 → K0
S
π+π−decay was performed as

part of the first BABAR measurement of γ using this technique [37][38]. The Dalitz

amplitude was parameterized as a sum of relativistic BW resonances, including form

factors and a term describing the angular distribution of the two-body decay of each

intermediate state.
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However, this parametrization works well only in the case of narrow, isolated

resonances. In fact, resonances are associated generally with the poles of the S matrix

in the complex energy plane, and the Breit Wigner amplitude corresponds to only

the most elementary type of the possible extrapolations from the physical region to

the pole position in the complex energy plane. In the case of broad resonances that

overlap significantly, a more complex formalism is required. This is particularly true

for the S-wave component of the D0 → K0
S
π+π−decay.

The K-matrix formalism is an approach ideally suited to the study of overlapping

resonances in multichannel decays. Although this approach was developed in the con-

text of two-body scattering, it can be generalized to the case of resonance production

in multi-body decays when the two-body system in the final state is isolated, and

the two particles do not interact simultaneously with the rest of the final state in the

production process (isobar model). In addition, the K-matrix formalism provides a

direct way of imposing the two-body unitarity constraint that is not guaranteed in

the case of the BW model.
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4.2 D0 → K0
Sπ

+π− selection

The D0 and D∗ reconstruction

The D0 → K0
S
π+π−data sample is reconstructed from continuum e+e− → cc events

through the following decay chain:

D∗+ → D0π+

D0 → Ksπ
+π−, (4.1)

Selecting D0 from the D∗ decay has a superior advantage that the flavor of the D0

can be tagged via the slow pion from the D∗, and the purity can be significantly

improved via the mass difference between ∆m = mD∗ −mD0 .

The neutral kaon is constructed from pairs of oppositely-charged tracks assumed

to be pions. The di-pion mass is required to be in the region [0.488 − 0.508] GeV/c2,

corresponding to 3σ standard deviations around the nominal K0
S

mass. The proba-

bility of the vertex-fit χ2 must be greater than 0.001.

In order to remove fake K0
S

candidates, the K0
S

decay distance from the D0 vertex

is required to be greater than 0.4 cm. The angle αK0
S

between the reconstructed K0
S

momentum and its flight length (vector from the the D0 vertex to the K0
S

vertex) is

required to satisfy cosαK0
S
> 0.99. These cuts are aimed at rejecting fake K0

S
, and in

particular they remove the possible contamination from decays of D0 into four pions.

In order to improve the momentum resolution, mass constraint is applied to K0
S

and
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D0 while constructing the candidates. The center-of-mass (CM) momentum of the

D0 candidate is required to be greater than 2.2 GeV/c to remove D0 coming from

B decays. The D0 candidate is reconstructed with the K0
S

candidate and with two

opposite-charged pions, while the D∗ candidate is reconstructed combining the D0

candidate with a pion satisfying p < 0.6 GeV/c. The probability of the resulting D∗

vertex-fit χ2 must be greater than 0.001.

Final D0 → K0
S
π+π− selection

The final selection is based on two highly discriminating variables: D0 mass MD, and

the mass difference ∆m = MD∗ −MD0 , where MD∗ is the reconstructed mass of the

Dπ combination. The ∆m distribution (Fig. 4.1) has been fitted with a sum of two

Gaussian distributions for signal, and a threshold function,

∆mbkg =
(

1 − e
−(∆m−∆m0)

c

) (
∆m

∆m0

)a

+ b

(
∆m

∆m0
− 1

)

, (4.2)

for background. Signal candidates are selected in the range ±1.4 MeV/c2 (∼ 2σ)

around the mean of the ∆m distribution.

The MD0 distribution has been fitted with a sum of two Gaussian distributions

for signal, and a first-order polynomial for the background. Figure 4.1 shows the D0

mass spectrum and the result of the fit. We require a reconstructed D0 mass within

11 MeV(∼ 2σ) of the nominal D0 mass.

After all the requirements, a sample of 215449 events with a purity of S/(S+B) =
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Figure 4.1: Distributions of MD0 and ∆m and the fit results.

98.1% is obtained. Figure 4.2 shows the Dalitz plot distribution and Fig. 4.3 shows

the corresponding projections.

4.3 Background composition

In order to estimate the background composition, the same selection criteria is ap-

plied to the continuum background (uds, cc̄), and BB̄ generic Monte Carlo samples.

The MD0 distributions of the different Monte Carlo components and the Data-MC

comparison are shown in Fig. 4.4. The fraction of the wrong-flavor D0 is less than

0.1% and is neglected.

A Monte Carlo study gives a purity of 98.9%, which is consistent with the one

89



)4/c
2

) (GeV-πs(K2m
0.5 1 1.5 2 2.5 3

)4
/c2

) 
(G

eV
+ π s

(K2
m

0.5

1

1.5

2

2.5

3 BABAR

Figure 4.2: Dalitz plot projection in m2(Ksπ
+) vs. m2(Ksπ

−) for the decay D0 →
K0

S
π+π−.

90



)4/c
2

) (GeV-πs(K2m
0 0.5 1 1.5 2 2.5 3

 )4
/c2

E
ve

nt
s 

/ (
 0

.0
3 

G
eV

0

5000

10000

15000

20000

25000

30000

)4/c
2

) (GeV-πs(K2m
0 0.5 1 1.5 2 2.5 3

 )4
/c2

E
ve

nt
s 

/ (
 0

.0
3 

G
eV

0

5000

10000

15000

20000

25000

30000

)4/c
2

) (GeV+πs(K2m
0 0.5 1 1.5 2 2.5 3

 )4
/c2

E
ve

nt
s 

/ (
 0

.0
3 

G
eV

0

1000

2000

3000

4000

5000

)4/c
2

) (GeV+πs(K2m
0 0.5 1 1.5 2 2.5 3

 )4
/c2

E
ve

nt
s 

/ (
 0

.0
3 

G
eV

0

1000

2000

3000

4000

5000

)4/c
2

) (GeV-π+π(2m
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 )4
/c2

E
ve

nt
s 

/ (
 0

.0
2 

G
eV

0

1000

2000

3000

4000

5000

)4/c
2

) (GeV-π+π(2m
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 )4
/c2

E
ve

nt
s 

/ (
 0

.0
2 

G
eV

0

1000

2000

3000

4000

5000

Figure 4.3: D0 → K0
S
π+π−Dalitz plot projections. Top Left: Dalitz projection in

m2(Ksπ
+) channel, a strong K∗(892) is clearly seen. Top Right: Dalitz projection in

m2(Ksπ
−) channel. Bottom: Dalitz projection in ππ channel. A clear ρ− ω mixing

is seen around 0.6 GeV 2/c4, and the cusp rise around 1 GeV 2/c4, which corrsponding
to f0(980)(see sec. 3.8).
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Figure 4.4: Left: MD0 distributions of the different Monte Carlo components. The
background component is small and there is no sign of any peaking background.
Right: Comparison of data and MC, where good agreement is observed.

obtained with the MD0 fit to the data sample. Moreover the MD0 distributions of

the background components do not present a peak in the selected region, so we

parameterize the background distribution with a linear function.

4.3.1 Dalitz background parameterization

Since there is no indication of any peaking background in the MD0 distribution, the

MD0 sidebands can be used to parameterize the background Dalitz distribution. Two

sidebands are chosen: the “left” sideband centered at MD0 = 1.8 GeV/c2 and the

“right” sideband centered at MD0 = 1.92 GeV/c2. The width of both of these regions

is chosen to be 30 MeV/c2, the background component is parameterized with sum

of two terms described below. The first is a resonant component parameterized as

an incoherent sum of BW resonances, which is justified because the background is
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a sum of many different components that do not interfere and there is no dominant

component. The resonances include: K∗−(892), K∗+(892), ρ0(770), and a spin-zero

KSπ
+ component not corresponding to any real resonance, but introduced to improve

the goodness of fit. The second term is a non-resonant component parameterized by a

third-order polynomial in two dimensions. The relative fraction of the two background

components is evaluated from the data.
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Figure 4.5: Dalitz background distribution extracted from left sideband (top) and
right sideband (right). The blue line corrsponds to the fit result

Figure 4.5 shows the left and right sideband data samples and the fit results. The

mass and the width of the K∗(892) and ρ0(770) are taken from the PDG [20], while
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the mass and the width of the BW are extracted from the fit of the right sideband.

4.4 Efficiency and momentum resolution

4.4.1 Efficiency

The efficiency as a function of position in the Dalitz plot is evaluated using a signal

Monte Carlo sample of 2.82M events where the D0 is allowed to decay isotropically.

The 334853 events remaining after all selection criteria are fit to a third-order poly-

nomial in two dimensions:

ε(x, y) = |1 + a1 · x + a2 · y + a3 · x2 + a4 · x2 + a5 · x · y + (4.3)

a6 · x3 + a7 · y3 + a8 · x · y2 + a9 · y · x2|,

where x = m2
12 and y = m2

13. Figure 4.6 shows the Dalitz distribution of the MC

sample. The efficiency over the Dalitz plot is basically uniform.

4.4.2 Mass resolution

The imperfect reconstruction of tracks from the D0 leads to a modification of the

Dalitz structure. The momentum smearing worsens the agreement between the D0 →

K0
S
π+π−Dalitz plot distribution and the Dalitz model used to fit it, and causes about

2-3% of the reconstructed D0 decays to lie outside the kinematically-allowed region. In
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Figure 4.6: Efficiency distribution obtained from Monte Carlo distributions.

order to improve the momentum resolution of the D0 daughters, a D0 mass constraint

fit is applied during the reconstruction. There are two advantages: 1) the uncertainty

of the four-momentum of the particles is reduced, giving a more precise measurement

of the mass squared variables used to define an event position in the Dalitz plot,

and 2) the decay position in these variables is guaranteed to respect the kinematic

boundaries of the Dalitz plot.

Resolution function

To evaluate the effect of the of the mass resolution on the shape of the Dalitz am-

plitude we calculate the event-by-event difference in the generated and reconstructed

(m2
12, m

2
13) distributions. The resolution as a function of the Dalitz variables has been

obtained in bins of (0.1 GeV/c2 × 0.1 GeV/c2) by fitting the resolution function for
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parameter generated smeared

K∗(892) mass 8.9222e-01 ± 8.00e-05 8.9348e-01 ± 8.02e-05
K∗(892) width 5.1208e-02 ± 1.86e-04 5.1232e-02 ± 1.86e-04

ω(782) mass 7.8246e-01 ± 1.48e-05 7.8053e-01 ± 1.36e-05
ω(782) width 8.8380e-03 ± 2.67e-05 8.8995e-03 ± 2.93e-05

Table 4.1: Fit results of the mass and the width of the generated and smeared K∗(892)
and ω(782) samples.

(m2
12, m

2
13) with a sum of three Gaussian distributions.

In order to demostrate the effect of the resolution function on the K∗(892) shape, a

sample of 200000 events is generated and smeared according to resolution determined

in MC. We then fitted both the generated and the smeared samples. The results of

the fits are given in Table 4.1 and displayed in Fig. 4.7. A small effect on the mass

and the width of the K∗(892) is seen. We performed the same test with the ω(782)

in order to test the effect of the resolution function on a narrow resonance (Fig. 4.7

right) The overall conclusion is that the finite mass resolution has a negligible effect

on the analysis and will treat the momentum resolution as systematics.

4.5 Decay Amplitude

4.5.1 The Isobar model

The Dalitz plot distribution (m2
12, m

2
13) is fitted using the Isobar model described in

detail in Ref. [22]. In this formalism, the decay amplitude f can be written as a sum
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Figure 4.7: Left: BW distribution of the K∗(892) sample, Right: BW distribution
of the ω(782) sample. the smearing effect is not significant in both cases.

of two-body matrix elements and a non-resonant term according to

f = a0e
iφ0 +Σare

iφrAspin(ABC/r). (4.4)

The first term is the three-body non-resonant term and the sum is over the contri-

butions from the intermediate two-body resonances. The form factors Aspin(ABC/r)

are described in detail in Sec. 3.5, which we do not repeat here. The ΓAB is a func-

tion of the mass MAB , the momentum pAB of either daughter in the AB rest frame,

the momentum pr of either daughter in the resonance rest frame, the spin J of the

resonance, and the width Γr of the resonance. The explicit expression for ΓAB is [22]

ΓAB = Γr

(
pAB
pr

)2J+1 (
Mr

MAB

)

F 2
r . (4.5)
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For ππ vector resonances (ρ(770) and ρ(1450)) we use the Gounaris-Sakurai (GS)

parametrization [23] introduced in Sec. 3.4.

The form factors FD and Fr attempt to model the underlying quark structure of

the D0 meson and the intermediate resonances. We use the Blatt-Weisskopf penetra-

tion factors shown in Table 3.1. The one free parameter R represents the “radius”

of the meson and depends on the momentum pr of the decay particles in the parent

rest frame. We assume FD = 1 for the D0 and R = 1.5 GeV−1 for the intermediate

resonances.

4.5.2 The K-matrix Model

It is well-known that the isobar model is only suitable for relatively narrow and

isolated resonances. The treatment of S-wave states in D0 → K0
S
π+π−requires a more

general formalism to account for non-trivial dynamics due to the presence of broad,

overlapping resonances. We therefore use the K-matrix approach to parameterize the

S-wave component of the π+π− system in D0 → K0
S
π+π−. The amplitude is given

by

f = F1 +
∑

spin6=0

are
iφrAspin(ABC/r), (4.6)

where F1 is the contribution of the S-wave states (parameterized in the K-matrix

formalism) and the sum is over the contributions from the intermediate non-scalar
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resonances. The factor F1 is

Fl =
∑

j

(I − iKρ)−1
lj Pj, (4.7)

where I is the identity matrix, K is the matrix describing the S-wave scattering

process, ρ is the phase-space matrix and P is the initial production vector [31]. The

index l is the pion channel index where 1 = ππ , 2 = KK, 3 = 4π, 4 = ηη, and

5 = ηη′. In this picture, the production process can be viewed as consisting of an

initial preparation of several states, which are then propagated by the (I − iKρ)−1
lj

term into the final state (Fig. 3.7). Since we are describing the ππ channel, only the

F1 amplitude is present.

The masses and widths of the BW components are taken from the PDG [20].

The K-matrix parameters are obtained from the study of Anisovich and Sarantsev

(AS) [39], who performed a global fit of the available ππ scattering data from threshold

up to 1900 MeV/c2. The AS K-matrix parameterization is

Kij(s) =







∑

α

g
(α)
i g

(α)
j

m2
α − s

︸ ︷︷ ︸

pole

+f scatt
ij

1.0 − sscatt
0

s− sscatt
0

︸ ︷︷ ︸

SVP







(1 − sA0)

(s− sA0)
(s− sAm

2
π/2)

︸ ︷︷ ︸

Adler zero

, (4.8)

where the pole term
g
(α)
i g

(α)
j

m2
α−s

is responsible for the resonant contribution. The non-

resonant term is described by a slowly-varying function of s,
1.0−sscatt0

s−sscatt0
. The term
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Table 4.2: K-matrix parameters. Masses and coupling constants are in GeV/c2.

mα gππ gKK g4π gηη gηη′

0.65100 0.22889 -0.55377 0.00000 -0.39899 -0.34639
1.20360 0.94128 0.55095 0.00000 0.39065 0.31503
1.55817 0.36856 0.23888 0.55639 0.18340 0.18681
1.21000 0.33650 0.40907 0.85679 0.19906 -0.00984
1.82206 0.18171 -0.17558 -0.79658 -0.00355 0.22358
sscatt
0 f scatt

11 f scatt
12 f scatt

13 f scatt
14 f scatt

15

-3.92637 0.23399 0.15044 -0.20545 0.32825 0.35412
sA0 = −0.15 sA = 1

(1−sA0)
(s−sA0)

(s − sAm
2
π/2), is the “Adler zero” term1, to suppress the amplitude at ππ

threshold in accordance with the Adler-Weinberg theorem [41]. The g
(α)
i is the cou-

pling constant of the K-matrix pole mα to the ith channel. The parameter values

used in this analysis are listed in Table 4.2 (obtained through private communication

with Anisovich and Sarantsev).

By definition, K is real and symmetric. However, the K-matrix couplings and

poles may not have a physical meaning. The K-matrix is related to the physical (and

therefore, observable) T -matrix by the following expression:

T = (I − iKρ)−1 ·K. (4.9)

A one-to-one correspondence between K and T exists only in the simplest case of

a single pole and a single channel. (Sec. 3.8). The phase space matrix is diagonal,

1Note that there is a typo in Ref. [40].
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ρab = δabρa, and

ρi(s) =

√

1 − (m1i +m2i)2

s
. (4.10)

The normalization is such that ρi → 1 as s → ∞. Since the S-matrix has to respect

analyticity, we used an analytic continuation for ρa below threshold. The expression

for the multi-meson-state phase space is written as [39]

ρ5(s) =







ρ51 s < 1 GeV/c2

ρ52 s > 1 GeV/c2







, (4.11)

where

ρ51(s) = ρ0

∫ ∫
ds1

π

ds2

π

M2
ρΓ(s1)Γ(s2)

√

(s+ s1 − s2)2 − 4ss1

s[(M2 − s1)2 +M2Γ2(s1)][(M2 − s2)2 +M2Γ2(s2)]
(4.12)

and

ρ52(s) =

(
s− 16m2

π

s

)

. (4.13)

Here, s1 and s2 are the squared energies of the two pions, M is the ρ-meson mass

and Γ(s) is the energy-dependent width. The factor ρ0 provides the continuity of

ρ5(s) at s = 1 GeV2. Energy conservation in the di-pion system must be satisfied

when calculating the integral. This complicated expression reveals the fact that the ρ

meson has an intrinsic width. If one sets Γ(s) = δ(s), where δ is the Dirac δ function,
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Figure 4.8: The ππ phase-space factor as shown in Eq. 4.10, Note that ρ(s) → 1 as
s→ ∞.

the usual two-body phase-space factor is obtained.

Figure 4.8 shows the real part of the ππ phase-space factor and Fig. 4.9 shows the

4π phase-space factor. Figure 4.10 shows the ππ S-wave intensity, where the absence

of a simple Breit-Wigner-like structure is apparent. Figure 4.11 shows the Argand

plot diagram for the ππ S-wave. One can see that K-matrix satisfies unitarity, which

is a fundamental requirement of the S-matrix. In contrast, it is well known that

unitarity is not respected generally in the BW model. Figure 4.12 shows the ππ

scattering phase shift. There is a strong phase variation around
√
s = 1 GeV and

1.5 GeV, which corresponds to the narrow f0(980) and f0(1500) scalar resonances.

Fig. 4.13 shows the elasticity plot for ππ scattering. The process is purely elastic up

to 1 GeV, while new channels (e.g. KK̄) open up at higher energies and the scattering

process becomes inelastic.

102



0.25 0.5 0.75 1 1.25 1.5 1.75
GeV�c^2

0.2

0.4

0.6

0.8

1

Figure 4.9: The 4π phase-space factor as shown in Eq. 4.11.
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Figure 4.10: The ππ S-wave intensity, showing the lack of a simple Breit-Wigner
resonance structure.
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Figure 4.11: The Argand Plot Diagram for the ππ S-wave component, showing the
unitarity of the K-matrix parameterization.
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Figure 4.12: The ππ S-wave phase shift.
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Figure 4.13: The elasticity plot, indicating the purely-elastic nature of the scattering
process below 1 GeV.

4.6 Likelihood function and fit procedure

An unbinned maximum-likelihood technique is used to fit the population on the Dalitz

plot and to extract the amplitudes (anr, aj) and phases (φnr, φj). The likelihood

function is

L = x Psig + (1 − x) Pbkg,

where

Psig(m
2
12, m

2
13) =

ε(m2
12, m

2
13) |f(m2

12, m
2
13)|

2

∫
ε(m2

12, m
2
13) |f(m2

12, m
2
13)|

2
dDP

.

Here x is the fraction of the signal events and 1 − x is the fraction of background

events. f(m2
12, m

2
13) is the signal Dalitz Probability Density Function (PDF) which is

described in Sec. 4.5. The background dalitz distribution Pbkg(m
2
12, m

2
13) is described

in Sec. 4.3, while the efficiency ε(m2
12, m

2
13) is described in Sec. 4.4.1.
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4.7 Results

4.7.1 Isobar Model

For fitting the Dalitz plot we have considered a model with twelve resonances de-

scribed by the masses and widths listed in the PDG [20] (see Table 4.3). This leads

to 18 two-body decay amplitudes and phases, eight of which are ππ = σ1, ρ
0(770),

ω(782), f0(980), σ2, f2(1270), f0(1370), and ρ(1450); five are K0
S
π− = K∗(892),

K∗
0 (1430), K∗

2 (1430), K∗(1410), and K∗(1680)); and three are K0
S
π+ = K∗(892),

K∗
0 (1430), and K∗

2 (1430). All the considered resonances are well established except

the two ππ scalar resonances σ1 and σ2, which were used in the first measurement of

γ in this mode by the Belle experiment. [42]. The masses and widths of these two

scalars were obtained from an initial binned likelihood fit2 with all phases and ampli-

tudes varied together with the masses and widths of the two resonances. The binning

we use in this case consists of a uniform grid of 200× 200 bins, which corresponds to

about 3 MeV precision on the π+π− invariant mass, well below the expected width

of the two scalars. The values obtained in this way are later fixed to obtain all the

phases and amplitudes using the full unbinned maximum likelihood fit. Since there is

an arbitrary overall normalization factor and phase, we choose the K0
S
ρ mode as our

reference and set its amplitude and phase to unity and zero, respectively. Figure 4.14

show the projections of the fit results (corrected by efficiency) on top of the data

2We used binned likelihood technique since the standard fit with the additional parameters takes
a prohibitive amount of time to converge.
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Resonance Mass (MeV/c2) Width (MeV/c2) Spin
K∗(892) 891.66 50.8 1
K∗

0 (1430) 1412 294 0
K∗

2 (1430) 1425.6 98.5 2
K∗(1410) 1414 232 1
K∗(1680) 1717 322 1

σ1 484 ± 9 (from fit) 383 ± 14 (from fit) 0
ρ0(770) 775.8 146.4 1
ω(782) 782.6 8.5 1
f0(980) 975 44 0
σ2 1014 ± 7 (from fit) 88 ± 13 (from fit ) 0

f2(1270) 1275.4 185.1 2
f0(1370) 1434 173 0
ρ(1450) 1406 455 1

Table 4.3: Values for the masses and widths of the resonances used in the D0 →
Ksπ

−π+ Dalitz plot fit. The values and the width for the two scalars σ1 and σ2 have
been obtained floating them in the fit, while the other have been fixed according to
the PDG [20] values.

distributions.

4.7.2 The K-matrix Model

From Sec. 4.7.1 we see that in the BW model two ad-hoc σ scalars were needed to

obtain a reasonable fit. This was one of the primary reasons for pursuing a K-matrix

approach. Another difference is that the mass and the width of K∗(1680), which is

incorrectly averaged by the PDG as the LASS experiment observed K∗(1680) in the

K−p→ K−π+n and K−p→ K
0
π+π−n channels, but with quite different masses and

widths. Since we are considering only the K∗(1680) → Kπ channel, the mass and

width from K−p→ K−π+n measurement rather than PDG average value should be
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Resonance Amplitude phase (degrees) fit fraction (%)
K∗(892) 1.777 ± 0.018 131.0 ± 0.81 58.51
ρ0(770) 1 (fixed) 0(fixed) 22.33

K∗(892) DCS 0.1789 ± 0.0080 −44.0 ± 2.4 0.59
ω(782) 0.0391 ± 0.0016 114.8 ± 2.5 0.56
f0(980) 0.469 ± 0.011 213.4 ± 2.2 5.81
f0(1370) 2.32 ± 0.31 114.1 ± 4.4 3.39
f2(1270) 0.915 ± 0.041 −22.0 ± 2.9 2.95
K∗

0(1430) 2.454 ± 0.074 −7.9 ± 2.0 8.37
K∗

0 (1430) DCS 0.350 ± 0.069 −344.± 10. 0.60
K∗

2(1430) 1.045 ± 0.045 −53.1 ± 2.6 2.70
K∗

2 (1430) DCS 0.074 ± 0.038 −98 ± 30 0.01
K∗(1410) 0.524 ± 0.073 −157 ± 10 0.39
K∗(1680) 0.99 ± 0.31 −144 ± 18 0.35
ρ(1450) 0.554 ± 0.097 35 ± 12. 0.28
σ1 1.346 ± 0.044 −177.5 ± 2.5 9.11
σ2 0.292 ± 0.025 −206.8 ± 4.3 0.98

Non resonant 3.41 ± 0.48 −233.9 ± 5.0 6.82

Table 4.4: Amplitudes, phases and fit fraction of the different components obtained
from the likelihood fit of the D0 → K0

S
π+π−Dalitz plot. The total fit fraction is 1.24.
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Figure 4.14: Result of the unbinned likelihood fit to the D0 → K0
S
π+π−Dalitz plot.

On the first row the three projections are displayed : Cabibbo allowed (CA) (Ksπ
−),

the (Ksπ
+) and the (π+π−) (from left to right respectively). On the second row we

show the zoom of K∗(892) mass peak region (on the left) and of the K∗(1430) and
K∗(1680) (on the middle) on the Cabibbo allowed (Ksπ

−) projection . On the right
of the middle row we show the region of interference between the CA-DCS decays
involving K∗(892) mesons. On the bottom row we show, in the (π+π−) projection, the
ρ− ω mixing interference region (left plot) and the ρ region (left plot), the low mass
(π+π−) (middle plot) and the higher mass (π+π−) projection with f0(980).(right)
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Resonance Mass (MeV/c2) Width (MeV/c2) Spin
K∗(892) 891.66 50.8 1
K∗

0 (1430) 1412 294 0
K∗

2 (1430) 1425.6 98.5 2
K∗(1680) 1677 205 1

ρ0(770) 775.8 146.4 1
ω(782) 782.6 8.5 1
f2(1270) 1275.4 185.1 2
ρ(1450) 1406 455 1

Table 4.5: Values for the masses and widths of the resonances used for the fit in the
K-matrix model. Except K∗(1680), all values are obtained from the PDG. [20]

used. Table 4.5 lists the masses and widths of the resonances used by the K-matrix

fit.

In the K-matrix formalism the Dalitz amplitude f is written as a sum of a two-

body-decay matrix elements for the spin-1 and spin-2 resonances (isobar model),

and the spin-zero piece is written in terms of the K-matrix, which we denote as F1.

Therefore,

f = F1 +
∑

spin6=0

are
iφrAspin(ABC/r), (4.14)

where F1 is the contribution of ππ S-wave states,

F1 =
∑

j

(I − iKρ)−1
1j Pj, (4.15)
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Resonance Amplitude phase (degrees) fit fraction (%)
K∗(892) 1.7582 ± 0.0079 129.78 ± 0.38 59.01
ρ0(770) 1 (fixed) 0(fixed) 22.30

K∗(892) DCS 0.1708 ± 0.0042 −50.23 ± 1.3 0.58
ω(782) 0.04238 ± 0.00089 837.5 ± 1.2 0.64
K∗

0 (1430) 2.745 ± 0.036 −375.245 ± 0.71 9.82
K∗

0(1430) DCS 0.380 ± 0.029 −26.73 ± 4.6 0.19
K∗

2 (1430) 1.124 ± 0.020 −42.01 ± 1.3 3.00
K∗

2(1430) DCS 0.200 ± 0.018 −64.25 ± 5.3 0.09
K∗(1680) 1.634 ± 0.089 159.0 ± 2.7 1.17

β1 3.784 ± 0.067 −931.268 ± 0.81 N/A
β2 9.830 ± 0.081 17.7 ± 1.1 N/A
β4 13.45 ± 0.16 −6.77 ± 1.3 N/A

f prod1 10.93 ± 0.10 −153.379 ± 0.88 N/A
sum of S-wave 16.2

Table 4.6: Amplitudes, phases and the fit fraction of the different components ob-
tained from the likelihood fit of the D0 → K0

S
π+π−Dalitz plot. The total fit fraction

is 1.16.

and Pj is the production vector,

Pj(s) =

{
∑

α

βαg
(α)
j

m2
α − s

+ fproj
1j

1.0 − sscatt
0

s− sscatt
0

}

. (4.16)

The free parameters for the P-vector are βα and fproj
1j . Figure 4.15 shows projections

of the fit results (corrected by efficiency) and the data distributions.
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Figure 4.15: Result of the K-matrix fit to the D0 → K0
S
π+π−Dalitz plot. On the first

row the three projections are displayed : Cabibbo allowed (CA) (Ksπ
−), the (Ksπ

+)
and the (π+π−) (from left to right respectively). On the second row we show the
zoom of K∗(892) mass peak region (on the left) and of the K∗(1430) and K∗(1680)
(on the middle) on the Cabibbo allowed (Ksπ

−) projection . On the right of the
middle row we show the region of interference between the CA-DCS decays involving
K∗(892) mesons. On the bottom row we show, in the (π+π−) projection, the ρ − ω
mixing interference region (left plot) and the ρ region (left plot), the low mass (π+π−)
(middle plot) and the higher mass (π+π−) projection with f0(980).(right)
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Chapter 5

Analysis of B− → D(∗)K− decays

5.1 Introduction

In this chapter the detailed analysis of B− → D(∗)K− is presented. A charged B− can

decay into a D0(D
0
)K− final state via a Vcb(Vub) mediated process. CP violation can

occur if the D0(D
0
) decay to the same final state. The measurement of CP violation

in this mode is sensitive to the phase difference between |Vub|e−iγ and |Vcb|, and thus

to the angle γ of the Unitarity Triangle. In order to increase the statistics, the B

mesons are reconstructed in two decay modes: B− → D0K− and B− → D∗0K−. The

event selection, background suppression and background composition are presented

in this chapter; Dalitz plot efficiency and background parameterization are evaluated;

and the signal and background yields are extracted.
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5.2 B− → D(∗)0K− Selection

The D(∗)0 and K− reconstruction

We used the same D0 selection as in the Dalitz analysis in Chapter 4.2. The D∗ is

reconstructed in the D0π0 and D0γ modes. The photon candidates for D∗0 → D0γ

are reconstructed from clusters in the electromagnetic calorimeter, and are required

to have an energy greater than 30 MeV and to have a shower shape consistent with

the expected distribution for photons. The π0 candidates are reconstructed from pairs

of photons with 115 < m(γγ) < 150 MeV/c2 and total energy greater than 70 MeV.

The photon momenta are refit to the invariant mass to the world average value for the

π0 mass [20]. To reduce the combinatorial background we require the mass difference

∆m between the reconstructed D∗0 and D0 candidates to be within 2.5 MeV for the

D∗0 → D0π0(γ) and 10 MeV for the D∗0 → D0π0(γ) respectively. The bachelor kaon

is identified using standard BABAR particle identification(PID) algorithms that rely

on energy-loss measurements in the SVT and DCH, and the Cherenkov measurement

from the DIRC.

The B candidate selection

The charged B mesons are reconstructed from D(∗)0 and K−. The candidate B−

decay point is obtained by vertexing the D0 with the bachelor kaon. The probability

of the vertex-fit χ2 must be greater than 0.001. The main variables used in the B

meson selection are the beam energy-subsituted mass (mES) and the energy difference
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(∆E). The beam energy-subsituted mass is defined as:

mES =
√

(
√
s/2)2 − p∗2B . (5.1)

where p∗ is the B candidate momentum in the Υ (4S) (CM) rest frame. Since

|p∗B| � √
s/2, the experimental resolution on mES is dominated by beam energy

fluctuations. Therefore, the shapes of the mES distribution for B meson is Gaus-

sian, while the backgound is approximately flat with an endpoint near 5.29 GeV. The

energy differnece is defined as:

∆E = E∗
B −

√
s/2 (5.2)

where E∗
B is the energy of the B candidate in the Υ (4S) rest frame and

√
s is the

total energy of the e+ e− system in the CM rest frame. Signal events are Gaussian

distributed in ∆E around zero, while the background will have a downward sloping

linear distribution in the region of interest. Table 5.1 summarizes the selection re-

quirements and the number of selected events for signal and background in the range

mES >5.272 is shown. The overall efficiency for signal events is (18.0 ± 0.1%).

5.2.1 Comparison of data and Monte Carlo

Figure 5.1 shows the mES distribution(left) and the ∆E distribution(right) after ap-

plying the final selection criteria. For all the cases the colored histograms display
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selection cuts signal B0
d B+ Dπ D0 → 4π D∗0 uds charm

|cosθthr.| <0.8
|M(D0) − M(PDG)| <20MeV
|M(KS) − M(PDG)| <10MeV

|∆E| < 60 MeV
P (χ2, D0) >0.
P (χ2, B) >0.
tight K-id. 210.3 26.7 78.5 42.9 9.4 1.3 138.1 195.7

|M(D0)− < M > | <12MeV 193.2 13.9 49.9 40.5 9.0 1.3 83.2 131.7

|M(KS)− < M > | <9MeV 191.8 13.6 47.2 39.4 8.2 1.3 78.6 122.1

cosαKS
> 0.99 184.8 6.0 18.6 39.6 0.8 1.3 42.0 83.1

|∆E| < 30 MeV 175.1 3.4 9.0 6.3 0.8 0.3 23.6 44.1

range mES [5.20-5.29] 176.0 20.9 37.0 6.4 0.8 0.5 199.9 351.7

same cuts but
loose K-id 200.3 6.5 12.9 35.0 0.8 1.1 34.3 56.6

range mES [5.20-5.29] 201.3 32.1 50.3 35.0 0.8 1.5 267.7 447.1

same cuts but
very-tight K-id 160.3 2.3 6.7 3.5 0.6 0.0 20.6 41.9

range mES [5.20-5.29] 161.0 16.7 31.9 3.5 0.6 0.2 176.9 322.8

Table 5.1: Number of selected events for signal and backgrounds in the range
mES >5.272 reported from Monte Carlo sample. The number of events is based
on the estimation from 108 million BB events.
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Figure 5.1: Left: The mES distribution for various components obtained after ap-
plying the final selection criteria. The Monte Carlo samples are all shown together
with the data represented by points with error bars. Right: The Data/Monte Carlo
comparison for the ∆E variable. The distributions are obtained after having applied
all the cuts and for all the events entering in the Likelihood.

the various Monte Carlo components and the data are represented by crosses. The

simulation sample reproduces expected yield and we find good agreement between

the data and Monte Carlo.

5.3 Background composition

It is important to understand and suppress the background and extract the yield for

all background components. In a brief summary, there are several backgrounds that

require attention in this analysis:

• jet-like continuum e+e− → qq̄(q=u,d,s,c) background;
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• background from B → Dπ;

• Υ (4S) → B0B0, B+B− not containing a signal decay(“general B-background”);

• real and fake D0 from e+e− → cc̄;

• wrongly-tagged D0 and D̄0 in e+e− → cc̄.

In the following section the individual backgrounds are discussed in detail, including

the background-suppression technique and the yield determination.

5.3.1 Background from e+e− → qq̄ continuum light-quark

The dominant background in this analysis is from light-quark production in e+e−

annihilation. To suppress this background, the unique event topologies of BB vs. qq̄

events is exploited.

• cos θ∗B :the polar angle of B in the Υ (4S) center of mass system;

• the Legendre monomials (L0 and L2);

• cos θthrust : the angle between the rest of event thrust axis and the B direction,

where the thrust axis of an event is defined as the direction which maximizes the sum

of the longitudinal momenta of the particles. In a typical background event(jet-like

event), the decay products of each B candidate lie in one of the two jets, and thus

they are approximately back-to-back, while for a true signal event, the B decay axis

is uncorrelated with the thrust axis of the rest of the events, which has event topology
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Figure 5.2: Pictorical representation of the jet-like topology of qq̄ events (left), in
comparison to the spherical shape of BB events (right).

of spherical shape. Therefore, the event shapes provides an excellent way to separate

from signal to background. Figure 5.2 shows a pictorial representation of the event

shape in qq̄ and BB events.

Simulation studies indicate that a requirement of | cos θthrust| <0.8 is sufficient to

reduce this background without significantly affecting the signal efficiency.

udsc background yield extraction

The yields are determined from the mES distribution (Fig. 5.1), where the signal peaks

at 5.28 GeV/c2 and the background varies slowly with an endpoint given by the beam

energy in the CM frame. (5.29 GeV) To extract the signal and background yields,

the mES distribution is fitted with an empirical background function suggested by

the ARGUS collaboration [43], and a Gaussian distribution for the signal component.
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Mode Data MC

DK 67.2 ± 4.9% 64.3 ± 4.9 %
D∗K(π0) 92.0 ± 4.0% 91.0 ± 5.0 %
D∗K(γ) 47.0 ± 10.0% 62.0 ± 8.0 %

Table 5.2: Fraction of signal events satsifying mES > 5.272 MeV/c2

The ARGUS function is defined as:

dN

dmES

= N ·mES ·
√

1 − x2 · e−ζ(1−x2), (5.3)

where x = mES/mmax, mmax is the endpoint of the ARGUS distribution, and ζ is

determined from the fit. Table 5.2 shows the fraction of signal events satisfying

mES > 5.272 GeV/c2. It turns out that the D∗K(π0) has the highest purity due to

the constraint from π0 and the ∆m cut.

5.3.2 Background from B → Dπ decays

The B− → Dπ− and B− → DK− are very similar kinematically, with several conse-

quences. First, true B− → Dπ− events reconstructed as B− → DK− tend to peak

at the same mES value as signal. Second, the D0 is correctly reconstructed, so the

Dalitz distribution for these events is identical to signal. Therefore, this background

will dilute the accuracy of the γ measurement. Despite the excellent PID cabalility of

the BABAR detector, the B− → Dπ− background is irreducible because the branching

fraction B(B− → Dπ−) = 5.3 ± 0.5 × 10−3 is an order of magnitude larger than the

corresponding B(B− → DK−) = 3.7 ± 0.6 × 10−4.
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We estimate this fraction from data by fitting the ∆E distribution(Fig. 5.3), where

the B− → Dπ− events are shifted by approximately +50 MeV with respect to the

B− → DK− events. 1

For this fit, signal are parameterized by a Gaussian distribution centered at zero

with a width σDK = (14.6 ± 0.2) MeV. For the Dπ events, the parametrization

exploits the fact that the shift in ∆E between the kaon and pion hypothesis is known

on a event by event basis,

∆Eshift = ∆EK − ∆Eπ = γ

[√

m2
K + p2 −

√

m2
π + p2

]

, (5.4)

where p is the momentum of the bachelor track in laboratory frame and γ is the

PEP-II boost factor. The important adventage of this parameterization is that the

mean of the Dπ distribution is not an independent variable. The results of the fit are

shown in Fig. 5.3, where we found

f(Dπ) = 0.059 ± 0.012. (5.5)

5.3.3 Background from B → 4π

Another possible source of peaking background is B → 4π, as the dominant particles

produced in e+e− annihilations are pions that can be readily combined into fake B

1Only the region between [-0.100,0.120] GeV/c2 has been considered in the fit to exclude the
contribution from the D∗K events.
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Figure 5.3: The plots on left (right) show the ∆E distribution as obtained on the
data (Monte Carlo) with the fit superimposed. The two Gaussian distributions for
the DK (in center) and the Dπ events(on the right) are shown.

candidates. However, this background is easily suppressed by requiring cos(αKS
) >

0.99, which the efficiency of this cut is 99%.

5.3.4 Real D0 from e+e− → cc̄

There is an extra complication in the cc̄ background. In uds background the fraction

of real D0 is vanishingly small, and the Dalitz distribution does not display the same

structure as in a real D0 decay. The situation is different in cc̄ where there is a mix

of real and fake D0, where their Dalitz plot distribution is very different. For this

reason the background from the cc̄ and the background from the bb̄ events must be

considered separately, whether the D0 is real or not. The total fraction of the real

D0 in the combinatorial background is obtained on the data by checking the fraction
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Mode MC-counting

DK 22.1 ± 4.2 %
D∗K(π0) 36.0 ± 13.0%
D∗K(γ) 39.0 ± 6.0%

Table 5.3: Fraction of real D0 candidate in cc̄ background in the mES > 5.272 range.

of signal events in mD0 , which results in

fD
0

real = 0.221 ± 0.042 . (5.6)

Table 5.3 summarize the fraction of real D0 in other channels.

Charge correlation with kaons

Another delicate issue is the fraction of events with a real D0 associated with a

negative charged kaon in e+e− → cc̄ process: Due to the large mass of the D0-K

combination required to fake a B− → D0K− decay, the D0 and kaon are typically

obtained from opposite jets in e+e− → cc̄ events. Since the quark in the jet opposite

the D0 is likely to be a c̄, the resulting kaon is perferentially a K+, which is the

wrong sign combination with the D0. The fraction of right-sign combinations is

obtained from simulation and the results are shown in Table 5.4, where we find that

approximately 20% of kaons are tagged correctly.
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Mode MC-counting

DK(Rcc) 20.8 ± 3.3 %
D∗K(π0) 23.0 ± 11.0%
D∗K(γ) 16.0 ± 6.0%

Table 5.4: Fraction of right sign D0 candidate in udsc in the mES >5.272 range.

5.3.5 Random flavor-tagging kaon for signal events

Finally, another potential background arises when the correct D0 candidate in a signal

decay is incorrectly combined with a random kaon in the event. Half the time these

kaons will have the wrong sign and be misinterpreted as a D̄0. However, detailed MC

simulation indicates that this background is negligible.

5.4 B− → D0π− as control sample

A very similar analysis can be performed to select on the data the B → Dπ channel.

The kinematics of the decay is very similar to the B− → D0K− and therefore it is

possible to extract the relevant observables for the selection of the signal events and

the CP fit.

All the selection criteria are identical to those applied for the DK analysis except

that the events are selected in the ∆E region in the range [20 - 80] MeV (see Fig. 5.4).

We also required the bachlor’s tracks satsify the pion selection from BABAR PID

requirements.

The mES distribution for the different components and for the data are shown

in Fig. 5.4. The efficiency obtained on Dπ signal Monte Carlo is estimated to be
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Figure 5.4: (a) mES and (b) ∆E distributions for B− → D0π−, D0 → K0
S
π+π−. All

the cuts are applied but the one on the plotted variable. The different background
components are reported in colored filled histograms, the data are over-imposed with
full dots. The number of events is normalized to 288.5 fb−1.

ε = (13.8 ± 0.1)%.

The overall background fraction is smaller than in the DK sample. Nevertheless

the BB background shows more complicated peaking structure coming from many

different components with respect to DK. Considering that rB for this sample is

expected to be 0.007, it will be difficult to use this sample to extract γ. 2 Therefore,

this sample is used for the control samples.

5.5 Efficiency over the Dalitz plot

In Sec. 4.4.1 the efficiency as a function of position in the Dalitz plot was discussed.

Similiarly, the efficiency of the signal events in B− → D0K−must be consider seper-

2the rB in B− → D(∗)0π− can be roughly estimated as 1
3
|V ∗

ub
Vcd|

|V ∗

cb
Vud|

∼ 0.007, where the factor of 1
3

accounts for color suppression.
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Figure 5.5: Fitted efficiency over the Dalitz plot (Ksπ
+) vs (Ksπ

−). The color code
indicates the value (in percent) of the fitted efficiency. This is taken from high statis-
tics B− → D0K− signal Monte Carlo.
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Parameters a1 a2 a3

1.093 ± 0.162 −0.217 ± 0.049 0.013 ± 0.007

Table 5.5: The values and the errors for the parameters of the third-order polynomial
function as shown in Eq. 5.7.

ately. It was evaluated using a signal Monte Carlo sample distributed uniformly over

the Dalitz plot. The efficiency is fitted with a third-order polynomial taking into

account the symmetry of the Dalitz plot:

ε(x, y) = 1 + a1 (x + y) + a2 (x2 + y2 + xy) + a3 (x3 + y3 + x2y + xy2). (5.7)

Table 5.5 shows the corresponding fit result.

5.6 Background Dalitz shape

The Dalitz plot shape for continuum qq̄ background is determined from off-resonance

data using the D0 mass sidebands in order to exclude the real D0 (where MD0 < 1.85

GeV or MD0 > 1.88 GeV). For generic BB̄ background events, the Dalitz plot shape

is determined using Monte Carlo where real D0 is excluded. The selection criteria

are identical to those used for the D0K analysis except the ∆E requirement, which

is relaxed in order to increase the sample size. The distributions for qq̄ and BB have

been fitted to a third-order polynomial function, since studies have shown a clear
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asymmetry in the Dalitz shape for D0 and D0,

bkg(x, y) = 1 + a10 x + a01 y + a20 x
2 + a11 xy + a02 y

2 +

a30 x
3 + a21 x

2y + a12 xy
2 + a03 xy

3 , (5.8)

where x ≡ m2(Ksπ
+) and y ≡ m2(Ksπ

−).

5.7 Likelihood fit procedure

In this section the likelihood definition and strategy used to extract the CP parameters

is described. We first describe the generic (prototype) PDF for a given B and D decay

mode. This PDF is then replicated for all the different B and D decay modes in order

to make a combined fit.

Prototype likelihood definition

The likelihood function is built from the total probability density function(PDF),

which is constructed to distinguish the following signal and background components.

• B− → D0K−signal (sig);

• B → Dπ background;

• udsc background;

• BB̄ background.
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However, as explained Sec. 5.3, there are several components in the cc̄ and BB̄

background. They are subdivided into two categories:

• real D0 (D̄) combined with a flavor tagged kaons.

• combinatorics (fake D0).

The total PDF Pα is defined as:

Pα = fsigPα
sig + fDπPα

Dπ + fsigWSPα
sigWS +

fcont

{
(1 − Rcont)Pcomb

cont +Rcont

[
RRS

contPα
cont + (1 −RRS

cont)Pα
cont

]}
+

f
BB

{
(1 − R

BB
)Pcomb

BB
+R

BB

[
RRS

BB
Pα

BB
+ (1 −RRS

BB
)Pα

BB

]}
, (5.9)

where

• α = D
0, or D

0 and α is the charge conjugate state of α;

• fj is the fraction of component j = sig, cont,Dπ, sigWS,BB;

• Rcont (R
BB

) is the fraction of real D0 or D0 in the cont (BB) background com-

ponent;

• RRS
cont (RRS

BB
) is the fraction of right sign D0 or D0 in the cont (BB) background

component;

• Pα
j is the PDF for component j for the real D0;

• Pcomb
j is the PDF for component j for the fake D0.
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In the general PDF definition of Eq. 5.9 we intentionally omitted explicit dependencies

on variables, which are discussed in the following sections.

5.7.1 Signal yield determination

Component yields and PDF shape parameters were first determined by performing a

simultaneous fit using mES, ∆E, F as the discriminating variables. The PDF is

Pα
j ≡ Pα

j (mES,∆E,F) = Pα
j (mES)Pα

j (∆E)Pα
j (F) (5.10)

and the variables are assumed to be independent. The statistical uncertainty of the

yields is correctly determined by performing an unbinned extended likelihood fit

Lext =
e−ηηN

N !

∏

α

N∏

i=1

Pα(i), (5.11)

where N is the total number of events in the sample, and η is the expected value

according to Poisson statistics. The yields Nj can be calculated simply as Nj = ηfj,

the fractions satsifying
∑

j fj = 1. The fit is done in ∆E region [−80, 120] MeV for

kaon samples and [20, 80] MeV for pion samples. The background parameter for the

BB background component is fixed to Monte Carlo estimates obtained separately for

kaon and pion samples in the ∆E regions [−30, 30] and [20, 80] MeV, respectively.

Due to the small number of events, the estimates for (D0π0)K and (D0γ)K are made

combining both samples. The mES BB peaking background contribution is negligible
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for all DK samples but is significant for Dπ (both D0π and D∗0π). This has been

estimated to be about 30% relative to the BB combinatorial component. This value

is fixed in the fit and the relative fraction of peaking with respect to combinatorial

background was determined from data directly. The fit projections for kaon and pion

data formES, ∆E and F are shown in Fig 5.6 and 5.7, respectively. The corresponding

yields are given in Table 5.6.

Decay modes Signal BB Continuum Dπ

B− → D0K−,D0 → K0
Sπ+π− 393 ± 25 583 ± 121 4989 ± 139 138 ± 17

B− → D∗0K−,D0π0,D0 → K0
Sπ+π− 101 ± 13 125 ± 29 446 ± 32 33 ± 8

B− → D∗0K−,D0γ,D0 → K0
Sπ+π− 87 ± 12 345 ± 49 1275 ± 57 19 ± 8

Table 5.6: B− → D(∗)0K− yields, corresponding to 316.3 fb−1.

Decay modes Signal BB Continuum DK

B− → D0π−,D0 → K0
Sπ+π− 5549 ± 83 3469 ± 202 8089 ± 215 60 ± 31

B− → D∗0π−,D0π0,D0 → K0
Sπ+π− 1526 ± 44 978 ± 55 609 ± 45 32 ± 21

B− → D∗0π−,D0γ,D0 → K0
S
π+π− 991 ± 41 2608 ± 99 2247 ± 93 32 ± 23

Table 5.7: B− → D(∗)0π− yields, corresponding to 316.3 fb−1.
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Figure 5.6: Distribution of mES, ∆E and F for B− → D0K− (top), B− → D∗0K−,
D∗0 → D0π0 (middle) and B− → D∗0K−, D∗0 → D0γ (bottom), for D0 → K0

S
π+π−.

The data are overlaid on the projection of the shapes fit described in the text. Also
shown are the different components: signal (red), Dπ (blue), BB(green) and cont
(magenta).
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Figure 5.7: Distribution of mES, ∆E and F for B− → D0π− (top), B− → D∗0π−,
D∗0 → D0π0 (middle) and B− → D∗0π−, D∗0 → D0γ (bottom), for D0 → K0

S
π+π−.

The data are overlaid on the projection of the shapes fit described in the text. Also
shown are the different components: signal (blue), DK (red), BB(green) and cont
(magenta).
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Chapter 6

Measurement of γ in B− → D(∗)K−

decays

6.1 Introduction

In the final chapter of this thesis the procedure to extract the CKM angle γ is pre-

sented. The Dalitz PDF is first presented, and then the modification necessary for

B− → D∗0K−and B− → D0K∗−decay channels is explained. The sensitivity of anal-

ysis to γ is then discussed, and finally, the results and corresponding systematics are

summarized.
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6.2 The Dalitz PDF

A maximum likelihood fit technique is used to extract γ. As described in the Sec. 1.2.3,

the PDF describing B− → D0K− pdf is defined as:

P(m2
±, m

2
∓) = |f(m2

±, m
2
∓) + rBe

i(δB±γ)f(m2
∓, m

2
±)|2, (6.1)

where m2
± is the squared invariant mass of the Ksπ

±, f(m2
±, m

2
∓) is theD0 → K0

S
π+π−

Dalitz amplitude discussed in Sec. 4.5, and rB and δB are the amplitude ratio and

relative strong phase between B− → D̄0K− and B− → D0K−, respectively. In

principle the observables γ, δB and rB can be extracted using Eq. 6.1. However, there

are several additional experimental complications:

• choices between cartesian or polar coordinates;

• modification of the PDF for D∗K decay;

• modification of the PDF for DK∗ decay.1

Each point will be discussed here in detail.

6.2.1 Cartesian vs. polar coordinates

In Eq. 6.1, the CP parameters are written in terms of polar coordinates. Since rB is

by definition positive definite, it turns out the CP parameters are subjected to large

1The details can be found in appendix A.3
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Figure 6.1: Left: Error on γ as a function of rB. Right: rB value obtained in the
likelihood fit versus generated rB. When the true rB is small, the fit returns a biased
estimate of rB. The dashed line shows the theoretical estimate of rB, which is roughly
0.1.

non-gaussian effects, where the fit returns a biased estimate of rB. In addition, the

errors on γ and δB strongly depen on the measured value of rB. Figure 6.1 illustrates

this effect, as well as the saturation effect on the measured value of rB as a function

of the true value. The origin of this effect is easily seen by considering the limiting

case when rB → 0:(see Eq. 6.1) the terms involving γ are gone. Therefore, the error

on γ increases with decreasing rB.

This problem is solved by introducing the cartesian coordinates

x± ≡ Re(rB±e
i(δ±γ)) = rB±cos(δ ± γ), (6.2)

y± ≡ Im(rB±e
i(δ±γ)) = rB±sin(δ ± γ). (6.3)

The introduction of cartesian coordinate has several benefits. First, this particular
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basis has no physical boundaries, so the non-gaussian effect will not emerge. Second,

cartesian coordinates are largely uncorrelated, while (rB, δ, γ) are highly correlated.

Third, it is much easier to combine results from different experiments in cartesian

coordinates. Finally, direct CP violation has a simple geometric interpretation in

cartesian coordinates, where the distance d between the measured (x, y) coordinates

for B+ and B− is directly related to the weak phase γ:

d =
√

(x+ − x−)2 + (y+ − y−)2 = 2rB| sin γ|. (6.4)

The condition d 6= 0 indicates direct CP violation. In terms of cartesian coordinates,

the PDF can be written as:

P(m2
±, m

2
∓) = |f(m2

±, m
2
∓) + (x± + iy±)f(m2

∓, m
2
±)|2 (6.5)

= |f(m2
±, m

2
∓)|2 + r2

B|f(m2
∓, m

2
±)|2 +

2x±Re[f(m2
±, m

2
∓)f ∗(m2

±, m
2
±)] + 2y±Im[f(m2

±, m
2
∓)f ∗(m2

±, m
2
±)].

6.2.2 Modification of PDF for D∗K events

As noted in Ref. [44], the PDF requires modification in the B− → D∗0K−decay mode.

because the strong phase δ∗B depends on the D∗ decay mode. Considering the neutral
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D∗ meson produced in B− decay, denoted by D̃∗, we have:

D̃∗ = D∗0 + r∗Be
i(δ∗B−γ)D̄∗0. (6.6)

Defining CP eigenstates of the neutralD∗ system with the phase convention 2 CP (D∗0) =

D̄∗0, CP (D̄∗0) = D∗0 leads to the following:

D∗
+ =

D∗0 + D̄∗0
√

2
, D∗

− =
D∗0 − D̄∗0

√
2

, (6.7)

and thus

D∗0 =
D∗

+ +D∗
−√

2
, D̄∗0 =

D∗
+ −D∗

−√
2

, (6.8)

Thus Eq. 6.6 can be written as

D̃∗ =
D∗

+ +D∗
−√

2
+ r∗Be

i(δ∗B−γ)D
∗
+ −D∗

−√
2

. (6.9)

We now consider D∗ decays to the CP eigenstates Dπ0 and Dγ. The CP eigenvalue

for the D∗ → Dπ0 decay is, ηD∗ = ηD × ηπ0 × (−1)l, where conservation of angular

momentum requires l = 1. For the decay D∗ → Dγ we have ηD∗ = ηD × ηγ × (−1)l,

and conservation of parity requires l = 1. Thus ηD∗ = −1 × ηD, and D∗
± → D∓γ.

Next we consider the neutral D meson produced in the decay B− → D̃∗K−, where

2The choice of CP phase convention does not affect observable quantities.
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D̃∗ → D̃π0,

D̃ =
D+ +D−√

2
+
D+ −D−√

2
(6.10)

= D0 + r∗Be
i(δ∗

B
−γ)D̄0, (6.11)

while the neutral D produced in the decay D̃∗ → D̃γ is given by

D̃ =
D− +D+√

2
+ r∗Be

i(δ∗
B
−γ)D− −D+√

2
(6.12)

= D0 − r∗Be
i(δ∗B−γ)D̄0 (6.13)

= D0 + r∗Be
i(δ∗B+π−γ)D̄0. (6.14)

Hence there is an effective strong phase shift of π between the two cases.

6.3 Sensitivity to γ accross the Dalitz plot

The sensitivity to γ over the Dalitz plot can be calculated by computing the 2nd

derivative of log-likelihood with respect to γ. Mathematically, one would write

σ2(γ) =
1

d2log(L)
d2γ

, sensitivity ∝ d2log(L)

d2γ
(6.15)

To evaluate the sensitivity, a large ensemble of pseudo experiments of Monte Carlo

signal events is generated and the second derivative with respect to γ is evaluated
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CP parameter B− → D0π− B− → D∗0π−

x− −0.01142 ± 0.01458 0.01496 ± 0.02222
y− −0.01288 ± 0.01692 0.01777 ± 0.02791
x+ 0.02240 ± 0.01432 −0.02649 ± 0.02261
y+ −0.01268 ± 0.01691 0.02646 ± 0.02374

Table 6.1: Fit results using data sample for the cartesian coordinates, for the B− →
D0π−and B− → D∗0π− decay modes.

on an event-by-event basis. The result is shown in Fig. 6.2, where each event is

weighted by the value of the second derivative of the log-likelihood with respect to

γ. From Fig. 6.2 one can see that the highest sensitivity is coming from K∗(892)

doubly-cabibbo-suppressed(DCS) decays, K∗(1430) DCS decay, and the ρ(770) decay.

However, both K∗(892) DCS and K∗(1430) DCS are highly suppressed, (see Sec. 4.7).

Consequently, B− → ρ(770)K− gives the highest sensitivity to γ overall.

6.4 Fits to control samples

The fit procedure is tested on two large control samples: D∗− → D0π− from cc̄

continuum events and B− → D(∗)0π−. The D∗− → D0π− sample mimics a B− →

D0K− sample with rB= 0. The B− → D0π− sample is similar to B− → D0K−,

but the corresponding value of rB is expected to be approximately3 0.007. Table 6.1

shows the fit results, which are consistent with the expectations from fits to Monte

Carlo samples.

3The value of rB in B− → D(∗)0π− can be roughly estimated as 1
3
|V ∗

ub
Vcd|

|V ∗

cb
Vud|

∼ 0.007 where 1
3

accounts for color suppression.
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CP parameter B∓ → D̃(∗)0K∓

x− ≡ Re(rB−e
iθ−) 0.041 ± 0.059 ± 0.018 ± 0.011

y− ≡ Im(rB−e
iθ−) 0.056 ± 0.071 ± 0.007 ± 0.023

x+ ≡ Re(rB+e
iθ+) −0.072 ± 0.056 ± 0.014 ± 0.029

y+ ≡ Im(rB+e
iθ+) −0.033 ± 0.066 ± 0.007 ± 0.018

x∗− ≡ Re(rB
∗
−e

iθ∗
−) −0.106 ± 0.091 ± 0.020 ± 0.009

y∗− ≡ Im(rB
∗
−e

iθ∗
−) −0.019 ± 0.096 ± 0.022 ± 0.016

x∗+ ≡ Re(rB
∗
+e

iθ∗+) 0.084 ± 0.088 ± 0.015 ± 0.018
y∗+ ≡ Im(rB

∗
+e

iθ∗+) 0.096 ± 0.111 ± 0.032 ± 0.017

Table 6.2: CP -violating parameters x
(∗)
∓ , y

(∗)
∓ obtained from the CP fit to the

B∓ → D̃(∗)0K∓ samples. The first error is statistical, the second is the experimental
systematic uncertainty and the third is the systematic uncertainty associated with
the Dalitz model.

6.5 Results of CP parameters

Using an integrated luminosity of 316.3 fb−1, we have performed a Dalitz plot analysis

of B− → D(∗)0K−, with D∗ → D0π0, D0γ, D0 → KSπ
+π− decays, obtaining the

following results (Summarized in Table 6.2). Here θ
(∗)
± = δ(∗) ± γ, with γ the CKM

weak phase, δ(∗) the strong phase of the B− → D(∗)0K− decay, and rB
(∗) the absolute

value of the ratio of the corresponding A(b → u) and A(b → c) amplitudes, rB =

|A(b → u)/A(b → c)|. The first errors are statistical, the second are experimental

systematics, and the third are due to the Dalitz model assumptions. Figure. 6.3

shows the Dalitz plot distribution for B∓ → D̃0K∓, B∓ → D̃∗0(D̃0π0)K∓, B∓ →

D̃∗0(D̃0γ)K∓, separately for B− and B+.
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Figure 6.3: The D0 → K0
S
π+π−Dalitz distributions for (a,b) B∓ → D̃0K∓, (c,d)

B∓ → D̃∗0(D̃0π0)K∓, and (e,f) B∓ → D̃∗0(D̃0γ)K∓, separately for (a,c,e)B− and
(b,d,f)B+. The requirements mES > 5.272 GeV/c2 and |∆E| < 30 MeV have been
applied to reduce the background contamination.
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CP parameter B∓ → D̃(∗)0K∓

rB < 0.142
r∗B 0.110 ± 0.090 (stat.) ± 0.019 (syst.) ± 0.024 (model)
δB 118 ±64 (stat.) ± 21 (syst.) ± 28 (model)
δ∗B -62 ±59 (stat.) ± 16 (syst.) ± 13 (model)
γ 92 ±41 (stat.) ± 10 (syst.) ± 13 (model) .

Table 6.3: CP -violating parameters rB, r
∗
B, δB, δ

∗
B, γ extracted from frequentist (Ney-

man) procedure in B∓ → D̃(∗)0K∓ samples. The first error is statistical, the second is
the experimental systematic uncertainty and the third is the systematic uncertainty
associated with the Dalitz model.

6.5.1 Frequentist interpretation

In order to extract γ, rB, δB, r
∗
B, δ

∗
B, a frequentist (Neyman) procedure [20] has been

adopted to interpret the measurement of the CP parameters (x
(∗)
∓ , y

(∗)
∓ ) reported in

Table 6.2 in terms of confidence regions on p = (γ, rB, δB, r
∗
B, δ

∗
B). Using a large

number of pseudo-experiments with probability density functions and parameters as

obtained from the fit to the data but with many different values of the CP parameters,

a multivariate Gaussian parameterization of the PDF of (x
(∗)
∓ , y

(∗)
∓ ) as a function of p is

constructed which takes into account the statistical and systematic correlations. For

a given p, the five-dimensional confidence level C = 1−α is calculated by integrating

over all points in the fit parameter space closer (larger PDF) to p than the fitted data

values. The one- (two-) standard deviation region of the CP parameters is defined

as the set of p values for which α is smaller than 3.7% (45.1%). The corresponding

one-standard-deviation values are listed in Table 6.3.

Figure 6.5 show the rB−γ constraints for bothB− → D0K−andB− → D∗0K−mode,
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Figure 6.4: 39.3% (dark blue) and 86.5% (bright blue) 2-dimensional confidence-level
contours in the (x(∗), y(∗)) cartesian fit parameter space for B− → D0K−(a) and
B− → D∗0K−(b) events. Solid (dotted) contours are for B− (B+) decays.

145



Br
0 0.1 0.2 0.3 0.4

 (
d

eg
)

γ

-100

0

100

(a)

Br*
0 0.1 0.2 0.3 0.4

 (
d

eg
)

γ

-100

0

100

(b)

Figure 6.5: Two-dimensional projections in the rB − γ and r∗B planes of the five-
dimensional one- (dark) and two- (light) standard deviation regions, for (a) B− →
D0K−and (b) B− → D∗0K−events

including statistical and systematic uncertainties. The region of 1 (2)σ-equivalent 5D-

ellipsoid corresponds to the one where α(p) is smaller than 3.7% (45.1%).

6.6 Experimental systematic uncertainties

In the following subsections each systematic uncertainty contribution in the cartesian

coordinate space is described. Table 6.4 summarizes the main systematic uncertain-

ties for the combined measurement of the B− → D(∗)0K−modes. In all cases, each

contribution to the systematic uncertainty is taken as the difference between the

central values of the nominal and alternative fits.
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Source x− y− x+ y+ x∗
− y∗− x∗

+ y∗+
mES, ∆E, F shapes 0.002 0.004 0.003 0.004 0.011 0.012 0.008 0.008
Real D0 fractions 0.002 0.000 0.000 0.000 0.002 0.003 0.002 0.016
Fraction of right sign D0’s 0.008 0.002 0.002 0.002 0.005 0.005 0.001 0.022
Efficiency in the Dalitz plot 0.014 0.000 0.013 0.001 0.001 0.002 0.000 0.001
Background Dalitz shape 0.006 0.003 0.001 0.004 0.012 0.015 0.009 0.009
Dalitz amplitudes and phases 0.004 0.004 0.004 0.004 0.008 0.008 0.008 0.008
B− → D∗0K− cross-feed 0.000 0.000 0.000 0.000 0.004 0.001 0.004 0.004

CP violation in Dπ & BB bkg 0.000 0.000 0.000 0.000 0.005 0.002 0.002 0.005

Total experimental 0.018 0.007 0.014 0.007 0.020 0.022 0.015 0.032
D0 Dalitz model 0.011 0.023 0.029 0.018 0.009 0.016 0.018 0.017

Total 0.021 0.024 0.032 0.019 0.021 0.027 0.023 0.036

Table 6.4: Summary of the systematic error on the CP parameters x∓, y∓, x∗∓, and
y∗∓.

6.6.1 General systematics from shape variables

mES, ∆E and Fisher shapes

The effect of fixing the PDF shapes in the CP fit has been evaluated by perform-

ing a simultaneous fit varying the PDF shape parameters in additional to the CP

parameters in cartesian coordinates. The fit is performed simultaneously to the

B− → D(∗)0K−and B− → D(∗)0π−control sample, once with the shapes parame-

ters fixed and again with the shapes varied. The systematic uncertainty is taken as

the difference in quadrature of the statistical errors reported by the two fits.

mES endpoint

The mES endpoint in the ARGUS parameterization is fixed to 5.290 GeV/c2 in the

nominal fit. To account for its uncertainty we repeated the shapes and CP fits by

varying its value by ±0.5 MeV/c2.
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Fraction of peaking BB background

Another potential systematic error is the estimation of the fraction of BB background

peaking in ∆E. In the nominal fit, we use the values found in a large sample of BB

Monte Carlo events where the two B mesons are allowed to decay according to their

nautral branching fractions. We varied these fractions between 0 and 0.10 to account

the systematics.

The fraction of BB background peaking in mES is left floated in the nominal fit,

so the uncertainty is included in the statistical error. We have verified that the mES

peaking fraction found in the data is consistent within errors with that found in the

MC. The effect of fixing the parameterization (from the Monte Carlo estimate) for

mES and ∆E was found to be negligible.

PEP-II boost

In the nominal fit we use a momentum-dependent ∆E PDF that relates on an event-

by-event basis the ∆E for B− → D(∗)0K−and B− → D(∗)0π−events. The boost is

determined online on-line at 10-minute intervals [18] using e+e− → µ+µ− events. An

uncertainty due to the knowledge of the absolute value of the boost has been assigned

by varying it ±0.5%. Again, the systematics was found to be negligible.
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6.6.2 Background composition

Fraction of real D0

The fraction of real D0 has been estimated from data and Monte Carlo as explained

in Sec. 5.2. The uncertainty due to the fraction of real D0’s in continuum background

is estimated by varying this parameter within its statistical error from the D0 mass fit

on data, and independently using the central value from the data, and then repeating

the CP fit. For BB background the estimate is performed by varying the fraction

within its statistical error from the D0 mass fit on data and taking the maximum

variation.

Fraction of D0 with correct flavor tagging

The fraction of right sign (RS) D0 is taken from MC simulation. A value of 0.5 (no

flavor-charge correlation) is assumed instead of the nominal values to estimate the

systematic error.

6.6.3 Systematics from Dalitz shapes

Dalitz Plot efficiency

The reconstruction efficiency as a function of the point in the Dalitz plane has been

evaluated and parametrized using a 3rd-order 2-dimensional symmetric polynomial

function as described in Sec.5.5. To estimate the systematic error from the Dalitz

efficiency, the nominal CP fit was repeated assuming a flat distribution instead of the
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nominal 3rd order polynomial parameterization.

Dalitz shape for combinatorial background

The Dalitz shape for combinatorial background (without any real D0) from qq̄ and

BB background is taken from generic Monte Carlo after removal of the true D0

component. The systematic uncertainty is estimated from the difference in the CP

parameters using the shapes estimated from events in the D0 mass window that lie

in the mES sideband.

6.6.4 Other systematics

Cross-feed among the samples

Our monte carlo studies show that there is an overlap between the D0π0 and D0γ

channels at the 2-3% level in the B− → D∗0K− modes. Also, to reduce the amount

of cross-feed of D0π0 in D0γ we removed from the D0γ sample the common events

with the D0π0 sample (D0π0 veto). The effect of neglecting the remaining 4.8 cross-

feed events in the CP fit has been evaluated by introducing an additional background

component to the D0γ PDF.

CP violating effect in Dπ and BB background

To account for any bias due to a possible contribution from CP violating effects in

Dπ and BB backgrounds, we repeated the CP fit by introducing an independent
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set of Dπ and BB cartesian parameters. In the case of the Dπ background the

fit was repeated using for (x±, y±) and (x∗±, y
∗
±) the values obtained by fitting the

B− → D(∗)0π−control samples. For BB background we allow them to float in data,

as we do not have corresponding control samples.

6.6.5 Systematics from the Dalitz model

Statistical errors on Dalitz amplitudes and phases

The phases and amplitudes of the Dalitz model are fixed to the values found from

the fit to the high statistics D∗+ → D0π+
s sample. Although the effect coming from

the statistical errors on the Dalitz amplitudes and phases should be very small, we

estimated its effect by performing a simultaneous B− → D(∗)0K−and D∗+ → D0π+
s

fit with all these parameters floated. The difference of central values are consistent

with the quadratic difference of the statistical error.

Limited mass resolution

The nominal Dalitz model assumes perfect mass resolution. Given that all the reso-

nances present in the D0 → K0
S
π+π− decay are quite wide compared to the estimated

mass resolution (about 4 MeV/c2), the effect should be completely negligible. Only

the ω(782) has an intrinsic width (8 MeV/c2) comparable to the mass resolution, but

the sensitivity of the CP parameters in this mode is suppressed. The studies show

that the systematic uncertainty is neglectable in this case.
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Dalitz model systematic uncertainties

The largest single contribution to the systematic uncertainties in the CP parameters

comes from the choice of the Dalitz model used to describe the D0 → K0
S
π+π−decay

amplitude. The breakdown of the model systematics is described in next section.

6.7 Dalitz model systematic uncertainties

To estimate the uncertainty arising from our choice of Dalitz model, eight alternative

models have been considered. Our alternative models are constructed based on the

following arguments:

• ππ S-wave

The isobar model has two low-mass board σ scalars. The σ scalars are simply

introduced in an ad-hoc way to improve the quality of the fit and their existence

remains controversial. It is also well known that the isobar assumption violates

the unitary condition. An alternative model is employed using K-matrix fit

for D0 → K0
S
π+π−which requires that the ππ phase shift from ππ scattering

data is consistent with the production environment. The model with ππ S-wave

described by a K-matrix used as systematic uncertainty evaluation is described

in Ref. [45].

• Kπ S-wave LASS/BW parameterization
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In BABAR, D0 → Ksπ
+π− [46] and E791 [26] data favors similar mass and width

for the K∗0(1430) using BW lineshape, and we use this parametrization in the

nominal fit. The Kπ S-wave LASS parametrization is used as an alternative

model. LASS parameterization was introduced to describe the observed strong

interference between the resonant and non-resonant components. However, as

described in Sec. 3.9, the background component of this LASS parametrization

is process and parameterization-dependent, so the LASS model is used only as

a cross check to determine the systematic uncertainty from the Kπ S-wave.

• Helicity model and Zemach Tensor

As described in Sec. 3.5.1, the use of helicity model vs. Zemach tensor is related

to the description of angular distribution of decay products of resonances and

is not well settled in the literature. We used the helicity model as our choice of

nominal model, so we use the Zemach tensor as an alternative model evaluation

of the systematic uncertainty.

• K∗(892) parameters

The K∗(892) resonance is the dominant contribution in the Dalitz plot analysis

ofD0 → K0
S
π+π−and the uncertainty on its mass and width can affect the Dalitz

model. The mass and width are varied within their experimental uncertainties

according to PDG, and from a direct measurement using BABAR data as an

alternative. For K∗(892), the mass and width have also been measured in
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B+ → J/ψK∗+ decays using a partial wave analysis. The results are compatible

with the values obtained in the D0 → K0
S
π+π−sample.

• Blatt-Weisskopf penetration factors

Blatt-Weisskopf penetration factors are the phenomenological corrections to res-

onances accounting for the finite size of the meson. We obtained the systematic

uncertainty by varying the level of the penetration barrier (radius) within a

large interval, R ∈ [0, 10] GeV−1.

6.7.1 The procedure to determine the model systematics

A sample of B∓ → DK∓ and B∓ → D∗0K∓ signal events that is one hundred times

larger than the measured signal yields in data is generated. To obtain the systematic

uncertainty, alternative CP parameters are extracted by fitting the generated Dalitz

plot distributions to one of the eight alternative models. We take as the systematic

uncertainty of (x∓, y∓) (similarly for (x∗∓, y
∗
∓)) associated with the ith alternative

model the difference between the CP parameters fitted using the alternative model

(xi∓, y
i
∓) and the nominal model (x0

∓, y
0
∓): ∆xi∓ = xi∓−x0

∓, ∆yi∓ = yi∓−y0
∓. The total

systematic uncertainty is computed as the sum in quadrature of the contribution from

the alternative models: ∆x∓ =
√

∑8
i=1 ∆xi∓

2
, ∆y∓ =

√
∑8

i=1 ∆yi∓
2
. The systematic

uncertainties are summarized in Figs. 6.6 and 6.7. Surprisingly, most of the Dalitz

model systematics are negligible apart from the Kπ S-wave. This is most likely due

to the large sensitivity in the Kπ system while the nature of Kπ S-wave is least
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understood.
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Figure 6.6: Breakdown of the residual of the B− → D0K− CP parameters fitting with
the alternative Dalitz models with respect to the nominal model. The yellow vertical band
shows the statistical error for the nominal model.
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Figure 6.7: Breakdown of the residual of the B− → D∗0K− CP parameters fitting with
the alternative Dalitz models with respect to the nominal model. The yellow vertical band
shows the statistical error for the nominal model.
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Chapter 7

Summary and Future Outlook

7.1 Constraint on the (ρ̄, η̄) plane

The results presented in Sec. 6.5 give a direct measurement of γ with better sensitivity

than the GLW and ADS methods. The left in Fig. 7.1 shows a comparison of the total

γ distribution of BABAR results from the Dalitz method and ADS+GLW methods

separately, where it is seen that the main sensitivity comes from the Dalitz method.

Figure 7.2 shows the constraint on the (ρ̄, η̄) plane using the angle measurements

alone. Although the error is large compared to the measurements of β and α, the

analysis technique reported in this thesis represents the first direct measurement of

γ.

158



]o[γ
-100 0 100

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.2

0.4

0.6

-310×

]o[γ
-100 0 100

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.2

0.4

0.6

-310×
all

Dalitz

ADS+GLW

]o[γ
-100 0 100

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.2

0.4

0.6

-310×

Figure 7.1: Comparison of the combined constrain on γ from BABAR results using the
Dalitz and ADS+GLW methods alone.
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7.2 Future outlook

Although both BABAR [38] and Belle [47][48] have measured γ using the B− →

D0K−Dalitz analysis, the current measurement of this angle is still dominated by

statistical uncertainties. The next largest contribution to the error is coming from

the Dalitz model. In this thesis the K-matrix model is developed to study the effect

of the Dalitz model uncertainty on the π+π− S-wave, which is the least understood

component of the analysis. Figure 7.3 shows the projected errors on γ for both the

Dalitz method alone and the combination of all methods. The points correspond to

the values obtained from toy Monte Carlo simulations, and the curve is the smoothed

extrapolation obtained from a fit assuming the error on γ scales likes 1/
√

∫
Ldt, where

L is the integrated luminosity. The horizontal band is the Dalitz model uncertainty

under the mild assumption that the error will be ≈ 6◦. From the Monte Carlo sim-

ulation, the Dalitz model systematic uncertainty will not be a limiting factor, either

for the Dalitz method alone or combination of all the methods.

7.2.1 Future improvements

There are several ways to improve the measurement of γ besides simply increasing

the luminosity, which we list below:

• the model-independent approach;

• using Ψ(3770) → DD̄ from CLEO-c;
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• using Bs → DsK;

The model-independent approach

In the model-independent approach [17], allows γ to be extracted directly using B− →

D0K− events without any model assumption of the Dalitz model by binning the Dalitz

plot. Although this technique minimizes the model systematic uncertainty, it requires

much larger data sets than are currently available at the B-factories.

Using Ψ(3770) → DD̄ from CLEO-c

CLEO-c [49] is a charm factory operating at the ψ(3770), which primarily decays into

DD̄. The quantum correlations in the ψ(3770) → DD̄ system provide a unique way

to determine the CP eigenstate by tagging the CP flavor of one of the D mesons.

Studying the CP -tagged Dalitz plot allows a model independent determination of the

relative D0 and D̄0 phase at each point in the Dalitz plane.

Consider D0 → K0
Sπ

+π− decay which proceeds through intermediate states that

are CP+ eigenstates, such as K0
Sf0, CP− such as K0

Sρ, and flavor eigenstates such

as K∗−π+. The Dalitz plots for ψ(3770) → D0D̄0 → S+K
0
Sπ

+π− and ψ(3770) →

D0D̄0 → S−K
0
Sπ

+π− will be distinct, and the Dalitz plot for the untagged sample

ψ(3770) → D0D̄0 → XK0
Sπ

+π− will be different from that observed with uncor-

related D mesons from continuum production at ∼ 10 GeV. A simultaneous fit to

CP+, CP−, and flavor tag samples with BW/K-matrix hybrid models can reduce the

model-dependent systematic error on γ to a few degrees. Furthermore, a completely
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model-independent result can be obtained from a binned analysis of the CP -tag and

flavor-tag Dalitz plots.

Using Bs → DsK

This is the analog of using time-dependent measurement of Bd → J/ψKS to measure

the angle β [11][50]. Even though we could operate PEP-II at
√
s = M(Υ (5S)), this

method is still not feasible due to the small decay time difference between two Bs

meson [51]. However, this method should be accessible in LHCb [1], where the boost

is large. This method is theoretically clean since it only involves tree-level decay

amplitudes with negligible hadronic uncertainties.

7.3 Conclusion

In this thesis, γ is measured directly using a Dalitz plot analysis of D0 → K0
S
π+π−

in B− → D0K− decays. Using a sample of 347 million BB̄ events collected by the

BABAR detector, the following value of γ is obtained:

γ = 92 ± 41 ± 11 ± 12◦

where the first error is statistical, the second is the experimental systematic uncer-

tainty and the third reflects the Dalitz model uncertainty.

Accurate measurements of the CKM angle γ currently require a Dalitz plot anal-
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ysis of D0 → K0
S
π+π−, which has led to the need for a comprehensive study of

hadron spectroscopy in both ππ and Kπ system. In the first model the Dalitz plot

amplitude is parameterized as a sum of Breit-Wigner resonances which requires two

ad-hoc scalar resonances, σ and σ
′

, to describe the data. This leads to large model

uncertainty due to the controversial existence of the low mass scalar σ(500). It is well

known that the Breit-Wigner description, is only valid in the case of narrow, isolated

resonances. As Breit-Wigner structure is not seen from the ππ scattering experiment,

a proper treatment of ππ S-wave is needed.

This leads to a K-matrix formalism to describe the ππ S-wave. K-matrix has vari-

ous advantages that it can handle strongly overlapping resonances and coupled chan-

nels can be handled simultaneously, which is indeed the case in the D0 → K0
S
π+π−

decay. This alternative parameterization is used to evaluate the contribution to the

systematic uncertainty in the ππ S-wave, which is found to be 3◦.

The measurement of the CKM angle γ helps us to understand the physics beyond

the standard model. In the B− → D0K− decay are dominated by tree-level process,

any extension of standard model must fulfill the constraints in the (ρ̄ − η̄) plane

formed by the combination of γ and Vub/Vcb, which are also dominated by tree-level

processes. This helps theorist to identify the correct new physics model.

With higher and higher statistics the model independent approach will be feasible

for the measurement of γ. In this perspective CLEO-c data will help to narrow down

the model uncertainty.
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Finally, hadron spectroscopy, in particular in scalar mesons, remains one of the

long-standing puzzles despite the availability of high-statistics data. The existence of

the σ(500) , κ(800) remains controversial today. In this thesis, the relationship be-

tween the complex pole position of a resonance and its mass and width is explained,

and an illustration of the fact that the Breit-Wigner parameters are highly model-

dependent and should not be taken as fundamental properties of the resonance is

included. From the author’s perspective, the model-independent complex-pole po-

sition analysis of BABAR data should shed light on the existence of the σ(500) and

κ(800) scalar resonances.
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Appendix A

Miscellaneous Formulae

A.1 Breit-Wigner – partial wave phase shifts

More formally, the non-relativistic BW formula arises in the context of the partial

wave expansion in scattering theory. The l-th partial wave is given by

al = eiδl sin δl =
1

cot δl − i
, (A.1)

and when the phase shift δl is near π/2 at an energy E ∼ M, resonant scattering

occurs. Define M 2
R = E(δ = π/2) and expanding the partial-wave amplitude about

the resonance energy:

cot δ(E) ≈ cot δ(ER) + (E − ER) d
dE

cot δ(E)|E=ER
= (E − ER)(−Γ

2
), (A.2)
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where Γ
2

is defined as the first derivative of cot δ. From this we obtain the BW formula:

cot δl(E) =
Γ
2

(ER − E) − iΓ
2

. (A.3)

A.2 Gounaris-Sakurai(GS) parameterization

The propagator in GS parameterization can be written as:

1 + d · ΓR/mR

s−m2
R − δm2(s) + imRΓR(s)

, (A.4)

where

δm2(s) = ΓR
m2
R

k3
π(m

2
R)

[

k2
π(s)

(
h(s) − h(m2

R)
)

+ (m2
R − s) k2

π(m
2
R)
dh

ds

∣
∣
∣
∣
s=m2

R

]

(A.5)

and where kπ(s) is the pion momentum in the resonance rest frame.

h(s) =
2

π

kπ(s)√
s

ln

(√
s+ 2kπ(s)

2mπ

)

(A.6)

with

dh/ds|m2
R

= h(m2
R)

[
(8k2

π(m
2
R))−1 − (2m2

R)−1
]

+ (2πm2
R)−1. (A.7)
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The parameter d = f(0)/(ΓRmR) is the normalization factor and it is found to be [23]

d =
3

π

m2
π

k2
π(m

2
R)

ln

(
mR + 2kπ(m

2
R)

2mπ

)

+
mR

2π kπ(m2
R)

− m2
πmR

π k3
π(m

2
R)
. (A.8)

This becomes the standard parameterization for ρ(770) resonances.

A.3 Modification of PDF for DK∗ events

Compared to B− → D(∗)0K−, the decay B− → D0K∗− is affected by an additional

complication. Because the natural width of the K∗− is not small (∼50 MeV), inter-

ference with the non-resonant B− → D0(Kπ)−non−K∗ processes may not be negligible.

This changes the relationships between the angle γ and the experimental observables,

leading to additional modification of the PDF.

The amplitudes for the B− → (D0X−
s )p and B− → (D0X−

s )p processes is given

by

A(B− → (D0X−
s )p) = Acpe

iδcp (A.9)

A(B− → (D0X−
s )p) = Aupe

iδupe−iγ (A.10)

A(D0 → f) = Afe
iδf (A.11)

A(D0 → f̄) = Af̄e
iδf̄ , (A.12)

where Acp, Aup, Af and Af̄ are real and positive. The index p indicates the position
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in the phase space of DX−
s , and Ac, Au, δc and δu generally vary as a function of

p. The subscripts c and u refer to the b → c and b → u transitions, respectively.

The amplitudes Acpe
iδcp and Aupe

iδupe−iγ generally include both the resonant B− →

D0/D0K∗− processes and the non-resonant contributions. The amplitudes for the

D0 decay can generally include the case D0 →3-body (e.g., D0 → K0
Sπ

−π+). In

this case Afe
iδf = f(m2

−, m
2
+) and Af̄e

iδf̄ = f(m2
+, m

2
−), and now, Af , Af̄ , δf and δf̄

are functions of the Dalitz plot coordinates m2
±, where m2

− and m2
+ are the squared

masses of the K0
Sπ

− and K0
Sπ

+ combinations.

The amplitude for the process B− → D[→ f ]X−
s can be written as

A(B− → (D[→ f ]X−
s )p) = AcpAfe

i(δcp+δf ) + AupAf̄e
i(δup+δf̄−γ) , (A.13)

and the rate

Γ(B− → D[→ f ]X−
s ) =

∫

dp
(

A2
cpA

2
f + A2

upA
2
f̄ + 2AcpAfAupAf̄Re(e

i(δp+δD−γ))
)

,

(A.14)

where δp = δup− δcp and δD = δf̄ − δf . The rate for the charge-conjugate mode is the

one in Eq. A.14 with γ → −γ. Analogously, the partial rates Γ(B− → D0X−
s ) and

Γ(B− → D0X−
s ) are

Γ(B− → D0X−
s ) =

∫

dp A2
cp , (A.15)

Γ(B− → D0X−
s ) =

∫

dp A2
up . (A.16)
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Following the same notation as in [52], we introduce the quantities rs, k and δs, that

will be useful in the following sections:

r2
s =

Γ(B− → D0X−
s )

Γ(B− → D0X−
s )

=

∫
dp A2

up
∫
dp A2

cp

, (A.17)

keiδs =

∫
dp AcpAupe

iδp

√∫
dp A2

cp

∫
dp A2

up

, (A.18)

where 0 ≤ k ≤ 1 for the Schwartz inequality and δs ∈ [0, 2π]. In the limit of a

B → 2-body decay, such as B− → DK−, we have

rs → rB ≡ |A(B− → D0K−)|
|A(B− → D0K−)| ,

δs → δB ≡ strong phase of
A(B− → D0K−)

A(B− → D0K−)
, (A.19)

k → 1 .

In the case of theD0 → K0
S
π+π− decay, Afe

iδf = f(m2
−, m

2
+) andAf̄e

iδf̄ = f(m2
+, m

2
−).

The amplitude for the process B∓ → D[→ K0
Sπ

−π+]X∓
s can be written as

A(B∓ → D[→ K0
Sπ

−π+]X∓
s ) = Acpe

iδcpf(m2
∓, m

2
±) + Aupe

iδup∓γf(m2
±, m

2
∓) , (A.20)
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and the rate is

Γ(B∓ → D[→ K0
Sπ

−π+]X∓
s ) ∝ |f∓|2 + r2

s |f±|2 + (A.21)

2krs
{
cos(δs ∓ γ)Re[f∓f

∗
±] + sin(δs ∓ γ)Im[f∓f

∗
±]

}

≡ |f∓|2 + r2
s |f±|2 +

2krs|f∓||f±| cos(δs + δD(m2
∓, m

2
±) ∓ γ) ,

where δD(m2
∓, m

2
±) is the strong phase difference between f(m2

±, m
2
∓) and f(m2

∓, m
2
±)

and rs, k and δs are defined in Eqs. A.17 and A.18. We have simplified the notation

using f± ≡ f(m2
±, m

2
∓) and f∓ ≡ f(m2

∓, m
2
±). Let us stress that the parameteriza-

tion given in Eq. A.21 includes both resonant and non-resonant (Kπ)∓ contributions,

since the amplitudes in Eqs. A.9 and A.10 include both. The effective (and gen-

eral) parameterization given in Eq. A.21 can be rewritten in terms of the cartesian

coordinates

xs± = Re[krse
i(δs±γ)] ,

ys± = Im[krse
i(δs±γ)] , (A.22)

as

Γ(B∓ → D[→ K0
Sπ

−π+]X∓
s ) ∝ |f∓|2 + r2

s |f±|2 + (A.23)

2
[
xs∓Re[f∓f

∗
±] + ys∓Im[f∓f

∗
±]

]
.
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The measurement of γ in this analysis can be performed by extracting the terms

proportional to r2
s and krs independently. It is accomplished by using Eq. A.24

and fitting simultaneously for xs∓, ys∓ and r2
s . Since the experimental sensitivity

to γ comes from the interference term (linear in rs), we expect the effect of varying

the r2
s factor to be quite small (as the terms quadratic in rs are suppressed for rs

relatively small). This provides an easy way to extract directly the effective cartesian

coordinates from data without any assumption about the non-resonant contribution

and its interference with the resonant signal, with the additional advantage that both

resonant and non-resonant decays contribute coherently to the sensitivity to γ.
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