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ABSTRACT

This thesis describes studies of hyperons and hyperon resonances produced in

charm baryon decays at BABAR.

Using two-body decays of the Ξ0
c and Ω0

c , it is shown, for the first time, that

the spin of the Ω− is 3/2.

The Ω− analysis procedures are extended to three-body final states and prop-

erties of the Ξ(1690)0 are extracted from a detailed isobar model analysis of the

Λ+
c → ΛK̄0K+ Dalitz plot. The mass and width values of the Ξ(1690)0 are measured

with much greater precision than attained previously. The hypothesis that the spin

of the Ξ(1690) resonance is 1/2 yields an excellent description of the data, while spin

values 3/2 and 5/2 are disfavored. The Λa0(980)+ decay mode of the Λ+
c is observed

for the first time.

Similar techniques are then used to study Ξ(1530)0 production in Λ+
c decay.

The spin of the Ξ(1530) is established for the first time to be 3/2. The existence

of an S-wave amplitude in the Ξ−π+ system is shown, and its interference with the

Ξ(1530)0 amplitude provides the first clear demonstration of the Breit-Wigner phase

motion expected for the Ξ(1530). The Ξ−π+ mass distribution in the vicinity of the

Ξ(1690)0 exhibits interesting structure which may be interpreted as indicating that

the Ξ(1690) has negative parity.
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CHAPTER 1
INTRODUCTION

The world around us is composed of baryons, bound-states of three quarks,

whose dynamics is governed by strong interactions. Therefore, understanding the

dynamical degrees of freedom necessary to describe these systems is essential to the

development of the theory strong interactions (QCD).

Historically, the properties of light baryons have played a central role lead-

ing to the invention of the quark model and the emergence of an understanding of

the symmetry structure underlying baryon spectroscopy. The comparison of the ex-

perimentally measured properties of these states with model predictions is therefore

crucial in establishing the validity of such models.

This thesis contributes to the field of baryon spectroscopy by establishing

the spin of the Ω− hyperon and of the Ξ(1530) to be 3/2 in confirmation of the

quark model predictions, and by providing precise mass and width measurements

for the Ξ(1690), together with evidence favoring a spin value of 1/2. This state is

of significance because it seems to be the lowest-mass Cascade resonance above the

Ξ(1530). Models typically use the Ξ(1320) and Ξ(1530) as input to define the mass

scale, so that the Ξ(1690) provides a clear test of predictive power as it pertains to

mass, spin and parity; indeed this state is absent from certain quark model predictions

of Cascade baryon spectra.

The prediction and discovery of the baryons studied in this thesis are discussed

in the next sections, in connection with the motivation for analyzing the properties
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of these particles.

1.1 The Ω−, a Triply Strange Particle

By the early fifties, the first modern accelerators had begun producing newly

discovered heavy baryons such as the Δ’s, Σ’s and Ξ ’s. The behavior of these par-

ticles appeared “strange” in the sense that although they were produced with high

rates (i.e. via strong interactions), they appeared to decay rather slowly (i.e. via

weak interactions), indicating clearly that their production mechanisms differed from

their decay processes. Furthermore, experimental evidence indicated that a strange

particle was always produced with another. A clever idea proposed by Gell-Mann

and others [1, 2, 3, 4, 5, 6] provided an explanation of this phenomenon. They as-

signed a new quantum number, called “strangeness” (S), to each particle. The fact

that strangeness is conserved in the strong interactions and is not in weak decays

explained the production and decay behavior of strange particles.

A decade later, hadron physics was flooded with newly discovered strongly

decaying meson and baryon states (i.e. resonances) which could be characterized by

charge, mass, strangeness, and when known, spin and parity. There was a clear need

for an underlying principle which might lead to a procedure to organize the plethora

of newly discovered states.

At that time strong isospin (I) symmetry was known, and it explained the near

degeneracy in mass between the proton and the neutron. Although the proton has

a positive charge, and the neutron is neutral, the strength of the strong interaction
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between any pair of nucleons is the same, independent of whether they are interacting

as protons or as neutrons. Strong isospin is an SU(2) symmetry in which the neutron

and proton form an isospin doublet.

Gell-Mann, and independently Ne’eman [7, 8, 9], extended isospin symmetry

by proposing a model in which strong interactions are invariant under unimodular

unitary transformations of the the group SU(3). The irreducible representations

(called multiplets) of SU(3) correspond to groups of strongly interacting particles with

identical quantum numbers, JP for baryons, and JPC for mesons1. The vector (J = 1)

and pseudoscalar (J = 0) mesons are assigned to the octet2 irreducible representation,

and the ground-state baryons to octets and a decuplet. The arrangement of particles

in a given multiplet is according to I3, the third component of isospin, and strangeness

such that Q = I3 + (S +B)/2, where Q is charge, S is strangeness, and B is baryon

number. In nature this symmetry of strong interactions is broken, its brokenness

made manifest by the differences in mass among the isospin multiplets incorporated

in a given octet or decuplet.

Combining the pseudoscalar meson and baryon octets to yield a multiplet

(Fig. 1.1) including the I = 3/2 Δ resonance with JP = 3/2+ restricts the possible

representations to a 10 (decuplet) and a 27 3. Once the 27 had been ruled out by

1Where J is the spin quantum number, P , is parity and C, charge conjugation (for
neutral, non-strange mesons only).

2This arrangement was referred to by Gell-Mann as the “Eightfold Way”.

3It was believed that the Δ and Σ(1385) must be in a 27 which had this symmetry,
and as a consequence experimenters were urged to look for states with positive strangeness.
The assignment to the 27 representation was based on a wrong experiment which seemed
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Figure 1.1: The JP = 3/2+ 10 representation of SU(3) containing the Δ quartet, the
Σ(1385) Y = 0 triplet, the Ξ(1530) doublet with Y = −1 and the Ω−, a singlet with
Y = −2.

the absence of any I = 1, Y = 2 (Y = S +B is hypercharge, where B corresponds to

baryon number) low-mass resonance in KN interactions, only an equal-mass-spacing

decuplet containing the Δ quartet, the Σ(1385) triplet with Y = 0, a doublet with

Y = −1 and a singlet with Y = −2 was left. The Σ(1385) was believed to have

JP = 3/2+, and thus satisfied the triplet requirement, leading to mass estimates

of ∼ 1530 MeV and ∼ 1680 MeV for the remaining members, on the basis of the

equal-mass splitting prediction resulting from the Eightfold Way (Fig. 1.1).

to show that the Σ(1385) decayed only into Λπ and not into Σπ. The 27 gave a selection
rule forbidding decay to Σπ. The decuplet predicted the correct ratio of Σπ to Λπ, however
it took several years for this to be confirmed experimentally.
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Figure 1.2: The Eisenberg Cosmic-ray event was the first observation of a hyperon
thought to decay to a kaon. The event was later analyzed by Alvarez and understood
to be the interaction of the Ω− with a silver nucleus (Ω− +Ag → Ξ0 +K−+Ag) [13].

At the 1962 ICHEP conference, evidence was presented for a Ξ∗ resonance

of mass ∼ 1530 MeV, which was later shown to have JP = 3/2+. Gell-Mann [10]

following the relevant rapporteur talk, pointed out that the Ξ∗ could belong to this

multiplet and suggested that a search be carried out for the last particle of the de-

cuplet, the Ω−, as he named it4, with S = −3 and I = 0 and a mass ∼ 1685 MeV.

He predicted that the Ω− should decay weakly to ΛK−, Ξ0π− (the mode in which

it was first observed) and Ξ−π0. He suggested that it might explain the “old Eisen-

4Gell-Mann actually used this symbol for an S = −3 baryon in 1956 in the Appendix of
refce. [6]. There he speculated that such a particle would decay weakly to Ξπ, and possibly
ΛK− if it were sufficiently massive.
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berg event” (Fig. 1.2)[11], which it did, and that it might be found in the reaction

K−p→ K0K+Ω−, which it was (Fig. 1.3)[12].

Shortly after the SU(3) classification scheme predicted the existence of the

Ω− hyperon5, it was observed with the predicted mass in a bubble chamber experi-

ment [12]. In subsequent attempts to confirm the spin of the Ω− [14, 15, 16], K− p

interactions in a liquid hydrogen bubble chamber were studied. In each case only a

small Ω− data sample was obtained, and the Ω− production mechanism was not well

understood. As a result, these experiments succeeded only in establishing that the

Ω− spin is greater than 1/2. At BABAR exclusive hyperon production from charm

baryons (see section 1.3), enables the determination of the spin of the Ω− unambigu-

ously6, as described in chapter 4. Later, the quark model put the SU(3) classification

on more solid ground and the Ω− was understood to be a hyperon with three strange

quarks.

The quark model as it pertains to the symmetry structure of light (i.e. u, d, s)

baryon spectroscopy is reviewed briefly in the next section.

1.2 The Quark Model

Theoretical descriptions of hadrons are based on the concept of constituent

quarks. The assignment of quantum numbers to quarks sets the foundation for the

Quark Model.

5A hyperon is a baryon with non-zero strangeness

6Under the assumption that the charm baryon spin is 1/2.
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Figure 1.3: The first observation of the Ω− in a bubble chamber experiment at
Brookhaven National Laboratory. An incoming K− meson interacts with a proton in
the liquid hydrogen of the bubble chamber and produces an Ω−, a K0 and a K+.

1.2.1 The Mathematics of Quarks

The name “quark” first appeared in the literature 1964 in a paper by Gell-

Mann entitled “A Schematic Model of Baryons and Mesons” [17]7. The u, d and s

quarks belong to the fundamental representation of SU(3), which is a triplet with spin

1/2 and baryon number 1/3. This triplet contains the strong-isospin doublet, (u, d),

with electric charge assignments (2/3, -1/3) and strangeness 0, as well as the singlet,

s, with electric charge -1/3 and strangeness -1. The quantum numbers assigned

to the (u, d, s) quarks are summarized in Table 1.1. In SU(3) there are two non-

equivalent fundamental representations, the quark (3) and antiquark (3̄) multiplets

(Fig. 1.4). The fundamental SU(3)F (Flavor) multiplets are in the (Y, I3) plane, where

7A similar model in which mesons and baryons were constructed by a set a 3 fundamental
constituents called aces was implemented by Zweig [18] around the same time.
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Table 1.1: The (u, d, s) quark quantum numbers.

Quark Spin S B Y I3 Q

u 1/2 0 1/3 1/3 1/2 2/3

d 1/2 0 1/3 1/3 -1/2 -1/3

s 1/2 -1 1/3 -2/3 0 -1/3

Note: Hypercharge is Y (= B + S) and the charge is Q = I3 + Y
2
.

the additive quantum number hypercharge (Y = B + S) is related to strong-isospin

by the charge Q = I3 + Y
2
. The triangular arrangement of the fundamental multiplets

of SU(3)F of Fig. 1.4 is such that the centroid coincides with the origin and that the

conjugate configuration is obtained by means of a reflection in the origin.

Figure 1.4: The SU(3) quark and antiquark multiplets. The relationship between
strangeness and hypercharge is given by Y = B + S.

1.2.2 Degeneracies

In a world of perfect symmetries, the members of a particular SU(3)F multiplet

would be degenerate, meaning that in addition to having the same spin-parity they
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would have the same mass, thereby looking like one state.

This degeneracy is removed by the interactions which break the symmetry.

The SU(3)F multiplets are of rank 2 and can therefore contain SU(2) symmetries.

The mass degeneracy of the SU(2)F multiplet members is broken primarily because of

mass difference between the u and d quarks8 which yield observed mass splittings typ-

ically of a few MeV/c2. However, SU(2)F remains a good approximate symmetry due

to the fact that the u and d quark mass difference is much smaller than ΛQCD
9. Elec-

tromagnetic interactions contribute to a lesser extent to SU(2)F symmetry breaking.

The degeneracy of SU(3)F is further broken by the mass splitting between the (u, d)

doublet and the s quarks, resulting in mass splittings among the SU(2)F multiplets

of typically ∼ 100 − 150 MeV/c2. As a consequence, of the three SU(2) symmetries,

SU(2)I (I-spin), SU(2)V (V-spin), and SU(2)U (U-spin), contained in SU(3)F , the

latter two are badly broken10.

8The d quark mass is approximately twice that of the u quark.

9ΛQCD (100 MeV< ΛQCD <500 MeV) sets the scale of strong interactions.

10The symmetries of SU(2)I , SU(2)V , and SU(2)U are characterized by the raising and
lowering operators

I± =
1
2

[
q†

(
λ1 ± iλ2

)
q − q̄†

(
λ1 ± iλ2

)∗
q̄
]

=
(
u†d− d̄†ū
d†u− ū†d̄

)
,

for I-spin;

V± =
1
2

[
q†

(
λ4 ± iλ5

)
q − q̄†

(
λ4 ± iλ5

)∗
q̄
]

=
(
s†u− s̄†ū
u†s− ū†s̄

)
,

for V-spin;

U± =
1
2

[
q†

(
λ6 ± iλ7

)
q − q̄†

(
λ6 ± iλ7

)∗
q̄
]

=
(
s†d− s̄†d̄
d†s− d̄†s̄

)
,

for U-spin.
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1.2.3 Light Baryon Flavor Multiplets

Light baryons (qqq bound-states, with q = u, d, s) belong to the multiplets

obtained from the decomposition

3 ⊗ 3 ⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10,

yielding a singlet, two octets and a decuplet, corresponding to 27 states.

The wave-function describing a hadron is factorizable, and may be written

ψ(hadron) = ψ(space) · ψ(spin) · ψ(flavor).

Fermi-Dirac statistics require the baryon wave-function to be totally anti-

symmetric under the exchange of two quarks, since baryons are fermions. The ground-

state baryonic space configuration is symmetric11 under an interchange of position in

any two quarks.

The decuplet is fully symmetric. It contains in its corners the symmetric

combinations (uuu), (ddd), and (sss) (Fig. 1.5). This symmetry for the ground

state poses a problem: the spin-flavor wave-function describing the spin 3/2 Δ++

(u ↑ u ↑ u ↑), for example, is completely symmetric. Therefore the Δ++ overall wave-

function ψ(space)·ψ(spin)·ψ(flavor) does not obey the fermi-required antisymmetry

under the exchange of identical quarks.

The λa/2 (a = 1, ..., 8) matrices are the traceless Hermitian generators of the Lie algebra
of SU(3). The quark fields which transform according to the 3 of SU(3) are q†, q, and the
anti-quark fields which transform according to the 3∗ of SU(3) are q̄†, q̄.

11An antisymmetric two-quark wave-function ψ = (q1(�r1)q2(�r2) − q2(�r2)q1(�r1))/
√

2 van-
ishes when �r1 = �r2, which implies that the spatial baryon wave-function is required to be
symmetric.
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This problem almost caused the demise of the quark model, until it was realized

that one could incorporate into the model a new quantum number which would make

the wave-function antisymmetric with respect to interchanges in its assignments. If

the quarks possess an additional attribute called color, which takes values R, G, or

B, a combination of three quarks can be written such that the color wave-function is

completely antisymmetric, as follows:

ψ(color) =
1√
6

(RGB − RBG+GBR−GRB +RBG−BRG) .

The anti-symmetry of the baryon wave-function implies that baryons are sin-

glets under color SU(3), and as such are “colorless”. Colorlessness is postulated to

be a property of all hadrons. In addition, unlike SU(3)F , the color symmetry SU(3)c

is believed to be exact.

The SU(3)F octets, 8, have mixed symmetry, i.e. there states transform dif-

ferently when quarks 1 and 2 or quarks 2 and 3 are exchanged. One of the octets,

the 8MA, is anti-symmetric w.r.t. the exchange of quarks 1 and 2. So in the case of

the (uud) state, for example, the flavor wave function of this state in the mixed-anti-

symmetric (MA) octet is

ψ(uud) =
1√
2
[(ud− du)u].

The mixed-symmetric (MS) octet, the 8MS, is symmetric w.r.t. the exchange of

quarks 1 and 2. So in the case of (uud), the flavor wave function of this state in the

mixed-symmetric octet is

ψ(uud) =
1√
6
[(ud+ du)u− 2uud].
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Thus, under SU(3)F the ground state baryons belong to the multiplets on the

right side of

3 ⊗ 3 ⊗ 3 = 10S ⊕ 8MS ⊕ 8MA ⊕ 1A (1.1)

Note that since the SU(3)F singlet is completely anti-symmetric, it is not a suitable

multiplet for a ground state baryon.

The spin wave-function of the states in the L = 0 baryon octets (Fig. 1.5)

must also be mixed-(anti-)symmetric so that their total spin-flavor be symmetric, as

required by Fermi statistics.

Under the spin symmetry group SU(2),

2 ⊗ 2 ⊗ 2 = 4 ⊕ 2 ⊕ 2.

Here the 4 is fully symmetric, i.e.

ψS =
1√
3
[↑↑↓ +(↑↓ + ↓↑) ↑].

One of the 2 representations is mixed-anti-symmetric

ψMA =
1√
2
[(↑↓ − ↓↑) ↑],

and the other 2 is mixed-symmetric

ψMS =
1√
6
[(↑↓ + ↓↑) ↑ −2 ↑↑↓].

So that

2 ⊗ 2 ⊗ 2 = 4S ⊕ 2MS ⊕ 2MA. (1.2)
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Figure 1.5: The representations of SU(3)F under which elementary particles are ar-
ranged according to their quantum numbers. The constituents of the baryon decuplets
are symmetric under cyclic permutation of the quarks.
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Therefore, combining Eqs. 1.1 and 1.2,

(3, 2) ⊗ (3, 2) ⊗ (3, 2) = (10S, 4S) ⊕ (10S, 2MS) ⊕ (10S, 2MA)

⊕ (8MS, 4S) ⊕ (8MS, 2MS) ⊕ (8MS, 2MA) (1.3)

⊕ (8MA, 4S) ⊕ (8MA, 2MS) ⊕ (8MA, 2MA)

⊕ (1A, 4S) ⊕ (1A, 2MS) ⊕ (1A, 2MA)

Ground state baryons (which are required to have symmetric combinations of

quark spin and flavor wave-functions) live in the symmetric representation (8, 2)S, so

that their spin-flavor wave-functions satify ψ(8MS, 2MS)+ψ(8MA, 2MA) =
√

2ψ(8, 2)S.

On the other hand, the orthogonal representation (8, 2)A, ψ(8MS, 2MS)−ψ(8MA, 2MA) =

√
2ψ(8, 2)A is antisymmetric. So that the representations can be re-arranged in terms

of symmetry criteria as follows,

(8MS, 2MS) ⊕ (8MA, 2MA) = (8, 2)S ⊕ (8, 2)A. (1.4)

Therefore, the baryon octet (8, 2)S (JP = 1/2+) and the decuplet (10, 4)S

(JP = 3/2+) are the only totally symmetric representations of SU(3)F ⊗SU(2)S and

thus, the only representations allowed for ground state baryons.

Re-combining terms in Eq. 1.4 according to symmetry criteria, gives

(3, 2) ⊗ (3, 2) ⊗ (3, 2) = (10, 4)S ⊕ (10, 2)MS ⊕ (10, 2)MA

⊕ (8MS, 4S) ⊕ (8, 2)S ⊕ (8MS, 2MA) (1.5)

⊕ (8MA, 4S) ⊕ (8MA, 2MS) ⊕ (8, 2)A

⊕ (1A, 4S) ⊕ (1A, 2MS) ⊕ (1, 2)A
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In the approximate symmetry called spin-flavour SU(6) there are six quark

basis states: three flavors with two spins per flavor. States are then classified in

SU(6) × O(3) supermultiplets (Fig. 1.6), where the group O(3) gives the orbital

angular momentum of the particles in a multiplet. The SU(6) baryon multiplets of

Fig. 1.6 decompose into SU(3)F × SU(2)S according to the right side of:

56S = 410 ⊕ 28

70M = 210 ⊕ 48 ⊕ 28 ⊕ 21 (1.6)

20A = 28 ⊕ 41,

where the upper index corresponds to 2J + 1, where J corresponds to spin. Orbital

angular momentum separates states which would otherwise be degenerate, such as

those belonging to the 56 representation of supermultiplets shown in Fig. 1.6, for

example.

In Fig. 1.6, the Ω− and Ξ(1530) are assigned to the [56, 0+]0 decuplet, al-

though spin 3/2 has never been established for these states. The analyses presented

in chapters 4 and 6 of this thesis take advantage of their production in charm baryon

decay to demonstrate that the spin 3/2 assignments are in fact correct.

Very little is known about Cascade states which might populate the [70, 1−]1

and [56, 2+]2 multiplets indicated in Fig. 1.6 (see section 1.5 below). Only four states

are considered to be well-established and of these only the Ξ(1820) has some sem-

blance of a spin-parity assignment (“JP = 3/2− favored by the data”). The analysis

of chapter 5 of this thesis focuses on the Ξ(1690), concluding that spin 1/2 is the
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favored assignment.

Figure 1.6: The baryon multiplets in SU(6). The Cascade states are indicated in red.
Only the octet and decuplet states of the 56 representation have been assigned.
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1.3 Addition of the Charm Quark

In 1970, Glashow, Iliopoulos and Maiani (GIM) predicted the existence of a

fourth quark, the charm (c) quark, that paired with the strange quark.

In 1973, Burton Richter (SLAC) led the group that designed and built the

Stanford Positron Electron Asymmetric Ring (SPEAR). Experiments at SPEAR

looked at the rate of occurrence of events in which a colliding electron and positron

annihilate to produce other particles. At certain energies, the rate seemed inexpli-

cably large. On November 10, 1974, measurements in the problematic energy range

confirmed a dramatic rate increase. Many further checks found that this peak is due

to the production of particles containing a new kind of quark – the charm quark [19].

The observation of charm baryons (i.e. hyperons in which a strange quark

is replaced by a charm quark) soon followed, with the discovery of the Σ+
c (cud)

in a liquid hydrogen bubble chamber at the Brookhaven National Laboratory [20]

(Fig. 1.7).

Subsequent work at SPEAR by the Goldhaber-Trilling group of Lawrence

Berkeley National Lab demonstrated the existence of D mesons, thereby also ex-

plicitly confirming the charm discovery [21].

The bare mass of the c quark is of the order of 10 times that of the bare s

quark mass and approximately 300 times the (u, d) averaged bare mass. The large

mass splitting between the c quark mass and the (u, d, s) quark masses results in

the brokenness of SU(4) by multiplet mass difference of the order of 1 GeV/c2. In

contrast, recall that SU(3) flavor symmetry is broken by baryon mass differences of
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Figure 1.7: The photograph of the event in the Brookhaven 7-foot bubble chamber
which led to the discovery of a charm baryon, the Σ+

c . A neutrino enters the picture
from below (dashed line) and collides with a proton in the chamber’s liquid. The
collision produces five charged particles (a negative muon, three positive pions, and
a negative pion), and a Λ (decaying to a proton and a pion in a characteristic ‘V’
pattern). The kinematics of the decay imply that the Λ and four pions were produced
from the decay of a Σc with mass ∼ 2.4 GeV/c2 [20].

the order of 100 MeV/c2. Baryons with (u, d, s) quark-content are referred to as “light

baryons”, and charm (or ”heavy”) baryon ground state configurations are obtained

by replacing a strange quark in a light hyperon ground state (Λ,Σ,Ξ, or Ω) with a

charm quark. The resulting charm baryon states are denoted Λc, Σc, Ξc, or Ωc, and

the ground states are ∼ 1.0 − 1.25 GeV/c2 heavier than their hyperon ground state

counterparts as a consequence of the mass difference between the charm and strange

quarks. The quark content of the charm baryon ground states of relevance to the
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analyses described in chapters 4-6 of this thesis is indicated in Fig. 1.8.

Figure 1.8: The ground state charm baryons. The charm baryons used in the analyses
presented in this thesis are indicated by the colored rings.

Baryons containing a charm quark are produced copiously at BABAR. As a

result, charm baryon decays to light baryons containing at least one strange quark

are available in large numbers, and hence provide an excellent laboratory in which to

perform the hyperon and hyperon resonance analyses described in this thesis.

The decay of the Ξ0
c (cds) to Ω−K+, used in the analysis presented in chap-

ter 4, is an example of one such process. It is characterized by the W-exchange

diagram of Fig. 1.9 (a), and is listed by the PDG only as “seen” [22]. The BABAR

measurement [23]

B(Ξ0
c → Ω−K+)

B(Ξ0
c → Ξ−π+)

= 0.294 ± 0.018 (stat.) ± 0.016 (sys.)

indicates that B(Ξ0
c → Ω−K+) should be small. Nevertheless the analysis sample of

chapter 4 is found to contain ∼800 signal events over a very small background.
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Furthermore, the even rarer charm baryon decay process Ω0
c → Ω−π+, char-

acterized by the external spectator quark diagram of Fig. 1.9 (b), is observed in the

BABAR experiment at a statistical level sufficient to corroborate the result of the Ξ0
c

analysis (see chapter 4).

Figure 1.9: Tree-level Feynman diagram illustrating the transition of c to s quark in
the decays (a) Ξ0

c → Ω−K+ (W-exchange diagram). and (b) Ω0
c → Ω−π+ (external

spectator quark diagram).

1.4 Cascade Physics

The beginning of Cascade physics was marked by the discovery of the Ξ−

hyperon in a Cloud Chamber photograph. The original paper [24], however, did

not claim discovery but stated that the photograph of Fig. 1.10 shows the apparent

association of a V 0 track with a V − track, and gave the possible explanation that

V − → V 0
1 or 2π

−. If the V − decayed to V 0
1 (i.e. a Λ), the mass of the V − particle

would be about 2600 me, corresponding to ∼ 1315 MeV/c2. The current mass value

of the Ξ− is 1321 MeV/c2[22]. Cascade hyperons have strangeness −2 and the first

excited state is the Ξ(1530), corresponding to the Y = −1 doublet of the decuplet of

Fig. 1.1.
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Figure 1.10: A Cloud Chamber picture showing the apparent association of a V 0

track with a V − track; this in fact was the first observation of the decay of a Ξ−

hyperon.

The small observed widths of Cascade resonances makes them valuable ex-

perimentally, since this characteristic reduces potential overlap complications with

neighboring states. From a theoretical point of view, their quark content, one light u

or d quark with two comparatively massive strange quarks allows for simplifications

in the calculations of their properties. In particular, Ξ∗ states are much easier to

handle in Lattice QCD than N∗, Δ∗, Λ∗ or Σ∗ states as they have only one u or

d quark which reduces the reliance on chiral extrapolation12. These advantages are

offset, however, by the lack of experimental information on excited Cascade states,

as discussed in section 1.5.

12Lattice QCD simulations involve the use of light quarks at their physical mass values.
The chiral extrapolation is an extrapolation in the light quark masses to the physical up
and down quark masses.



22

1.5 Present Status of Cascade Resonance

Spectroscopy

Only a few Ξ resonances are well-established (****) or at least fairly likely

to exist (***), as indicated in Table 1.2 [22]. In addition it is pointed out in re-

fce. [22] that “...nothing of significance on Ξ resonances has been added since our

1988 edition,” thus indicating that there has been very little development in this area

of spectroscopy in the last decades. The only resonance with measured JP is the

Ξ(1530), but its spin-parity assignment still suffers from uncertainty, as will be dis-

cussed in chapter 6. The mass and width of this resonance are fairly well-established.

The spin-parity of the next resonance in the mass scale, the Ξ(1690), has not yet been

measured, and the existing mass and width measurements have large uncertainties

due to limited statistics.

It is for this reason that the analysis techniques employed in the Ω− spin

measurement of chapter 4 of this thesis have been extended to the study of quasi-

two-body production of the Ξ(1690) described in chapter 5. The precise mass and

width parameter values obtained, and the evidence favoring spin 1/2 should be of

considerable help in assessing the merits of models predicting the Cascade spectrum.

Predictions of the mass, width, decay modes and spin/parity of Cascade states

rely on model-based calculations (e.g. constituent quark models) which make use of

a momentum-dependent potential, and rely on kinematic approximations13. Exper-

13Such covariant quark model calculations are based on confining mass operators, that
contain a spatial-separation-dependent confining term and a hyperfine coupling correction.
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Table 1.2: The three- and four-star Ξ resonances listed in the 2006 edition of the
Particle Data Book.

Overall Seen in Seen in Seen in Seen in Seen in other

Particle L2I·2J Status Ξπ ΛK ΣK Ξ(1530)π Channels

Ξ(1318) P1 1 **** Decays weakly

Ξ(1530) P1 3 **** ****

Ξ(1690) *** *** **

Ξ(1820) D1 3 *** ** *** ** **

Ξ(1950) *** ** **

Ξ(2030) *** ** ***

Note: **** existence is certain, and properties are at least fairly well explored; ***
existence ranges from very likely to certain, but further confirmation is desirable
and/or quantum numbers, branching fractions, etc. are not well determined [22].

imental validations of these predicitions are badly lacking. The relativized14 quark-

model calculations by Capstick and Isgur [25] (Fig. 1.11 (a)) yield 45 Ξ states with

mass less than 2.4 GeV/c2, only three of which have been identified experimentally.

The Ξ(1690) is notably absent from Fig. 1.11 (a).

The covariant quark model of Coester, Dannbom and Riska [26] obtains baryon

spectra based on a phenomenological model for the hyperfine interaction where the

parameters of the flavor-spin operator are determined by the empirical spectrum

(Fig. 1.11 (b)). In particular, the properties of the Ξ(1690) are crucial in this regard,

as it is the is the first Cascade excited state not used as input in QCD calculations.

Finally, recent developments in fast algorithms have raised expectations for

14Non-relativistic quark models do not take into account the kinetic energy of the quarks
in the hadrons. This model assumes individual quark momentum distributions making use
of Jacobi coordinates.
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predictions of Ξ spectra from Lattice QCD, resulting in renewed interest in the exis-

tence and properties of excited Cascade states. There is ongoing discussion at Jeffer-

son Lab. concerning a future experimental program dedicated to the investigation of

this spectroscopy [27], and this community has already shown considerable interest

in the capability of the charm baryon analysis procedures described in this thesis to

provide new and precise experimental results in this area.

(a) (b)

Figure 1.11: An example of discrepancies between covariant quark models. (a) The
predictions by Captick and Isgur [25] miss the Ξ(1690). (b) The model obtained by
Coester, Dannbom and Riska [26] predicts the existence of the Ξ(1690) with spin 1/2
and positive parity.
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1.6 Thesis Content

In this thesis, studies of hyperon and hyperon resonance production in charm

baryon decays at BABAR are presented.

An overview of the BABAR detector and the SLAC PEP-II asymmetric-energy

e+e− collider is given in chapter 2. In chapter 3, the procedures followed in selecting

the data samples used in the analyses described in chapters 4, 5, and 6 are explained.

The analysis detailed in chapter 4 consists of a measurement the spin of the Ω− using

two-body decays of the Ξ0
c and Ω0

c [28, 29]. In chapter 5, these analysis procedures

are extended to three-body final states, and properties of the Ξ(1690)0 are extracted

from a detailed isobar15 model analysis of the Λ+
c → ΛK̄0K+ Dalitz plot [30]. In

chapter 6, similar techniques are used to study Ξ(1530)0 production in Λ+
c decay and

the amplitude structure of the Ξ−π+ system [29]. Conclusions and future possibilities

are discussed in chapter 7. Detailed explanations of efficiency-correction procedures

and the formalism used in the analyses are presented in Appendices A-E.

15The term “isobar model” has become part of the jargon related to the analysis of three-
body states. It originated in 1957 in a paper [S. J. Lindenbaum and R. M. Sternheimer,
Phys. Rev. 105, 1874 (1957)] analyzing data on reactions of the type πN → ππN obtained
using the high-energy pion beams made available by the Brookhaven Cosmotron. At lower
energies such data were adequately described by the Fermi (i.e. phase space) model, but
this was not the case in the new higher energy region. An “isobar model” was proposed
instead, in which an excited isobaric state of the nucleon (i.e. an N∗) was produced and then
decayed via N∗ → Nπ, and this provided a better description of the data. In later papers
this isobar model was extended to include additional non-N∗ amplitudes [M.G. Olsson and
G. B. Yodh, Phys. Rev. 145, 1309 (1966)], and subsequent partial wave analyses (PWA) of
reactions of the type πN → ππN also incorporated resonances (isobars) in the ππ system.
Eventually this approach was extended to PWA such as that of the Kππ system produced
in KN → KππN reactions, and to the analyses of Dalitz plots resulting from charm meson
decay to three pseudoscalar mesons, among others. The term “isobar model” is thus meant
to convey the idea of an analysis of a three-body state in terms of a superposition of quasi-
two-body amplitudes; it certainly has nothing to do with weather maps!
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CHAPTER 2
PEP-II AND THE BABAR DETECTOR

2.1 Brief Description of the Collider

The primary goal of the BABAR detector at the SLAC PEP-II asymmetric-

energy e+e− collider is to study CP -violating asymmetries in the decay of B mesons

to CP eigenstates. The design of the detector makes it also suitable to contribute

to many other physics topics such as precise measurements of the decays of charm

hadrons and τ leptons, charm meson and baryon spectroscopy, etc., as well as the

search for rare processes that become accessible with high luminosity.

The PEP-II asymmetric e+e− collider illustrated in Fig. 2.1. operates at 10.58

GeV nominal center-of-mass energy, the energy necessary to produce the Υ (4S) which

decays almost entirely to B meson pairs. Approximately 10% of the data are taken

40 MeV below the Υ (4S) energy in order to study continuum events (ie. e+e− → qq̄),

which contribute background to the B meson analyses.

The accelerator has asymmetric beam energies, with a 9 GeV electron beam

colliding head on with a 3.1 GeV positron beam, which results in a boost, βγ = 0.56,

of the Υ (4S) resonance in the direction of the electron beam in the laboratory frame.

This boost insures significant separation of the B meson decay vertices, al-

lowing the determination of their relative decay times and the measurement of the

time dependence of B0B0 oscillations [31]. This requires events in which one B me-

son decaying to a CP eigenstate is fully reconstructed (into typically two or more
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Figure 2.1: The PEP-II storage ring facility. Bunches are accelerated in the SLAC
Linear Accelerator and injected into the storage rings in order to collide at the BABAR

detector, located as shown at IR2.

charged particles and one or two π0’s), and the other B meson is identified (tagged)

as a B0 or B0 by its decay products; e.g. a charged lepton, or other flavor-identifying

final state particles. Combining these requirements with the branching fractions for

B mesons to CP eigenstates of typically 10−3 − 10−6, places stringent requirements

on the detector, which should have [32]:

• a large and uniform acceptance down to small polar angles relative to the boost

direction;

• excellent reconstruction efficiency for charged particles down to 60 MeV/c lab.
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momentum and for photons to 20 MeV lab. energy;

• very good momentum resolution in order to separate small signals from back-

ground;

• excellent energy and angular resolution for the detection of photons from π0 and

η0 decays, and from radiative decays in the lab. energy range from 20 MeV to

4 GeV;

• very good vertex resolution, both transverse and parallel to the beam direction;

• efficient electron and muon identification, with low misidentification probabilities

for hadrons; this feature is crucial for tagging the B flavor, for the reconstruction

of charmonium states, and is also important for the study of decays involving

leptons;

• efficient and accurate identification of hadrons over a wide range of momenta for

B flavor-tagging, and for the reconstruction of exclusive states; e.g. modes such

as B0 → K±π∓ or B0 → π+π−, as well as charm meson and τ decays;

• a flexible and selective trigger system with built-in redundancy;

• low-noise electronics and a reliable, high bandwidth data-acquisition and control

system;

• detailed continuous monitoring and automated calibration;

• an online computing and network system which can control, process, and store

the expected high volume of data;

• and detector components which can tolerate significant radiation doses and op-

erate reliably under high-background conditions.
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Runs 1-6 have been very successful with a total integrated luminosity1 of 408.21

fb−1 delivered by PEP-II, of which 392.76 fb−1 has been recorded by BABAR as of Feb

2, 2007 (Fig. 2.2). In addition to this, PEP-II has achieved a maximum instantaneous

luminosity of ∼ 1.2 × 1034 cm−2s−1, which is approximately four times larger than

originally designed.

To date ∼400 million BB̄ pairs have been produced, so that the goal of op-

erating machine and detector in factory mode has been convincingly realized, with

much more production to come.

Figure 2.2: Integrated PEP-II-delivered and BaBar recorded luminosities

1For a process of cross section σ fb and integrated luminosity L fb−1, N = L× σ events
of that type have been produced over the running period.
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2.2 Overview of the Detector

The detector illustrated in fig. 2.3, is composed of several sub-detectors each

of which is responsible for fulfilling one or more of the physics requirements outlined

in section 2.1.

The tracking system consists of a five-layer double-sided-readout silicon ver-

tex detector (SVT) and a 40-layer drift chamber (DCH). Both devices also provide

particle identification (PID) information through measurements of specific ionization

energy loss (dE/dx). The drift chamber is surrounded by the DIRC, a detector of

internally reflected Cherenkov light, which is the primary source of charged particle

identification at high momentum. These systems are enclosed in a CsI(Tl) electro-

magnetic calorimeter (EMC) which is used for photon and neutral hadron detection

and e± identification. The assembly is mounted within a solenoidal superconducting

coil which provides a 1.5 T magnetic field approximately in the direction of the e−

collision axis. The last layer of the detector consists of the instrumented flux re-

turn (IFR), which incorporates resistive plate chambers as well as limited streamer

tubes to serve as a muon and neutral hadron detection system. Further details of the

BABAR detector and reconstruction software are given elsewhere [32]. The trigger,

data acquisition and data monitoring systems are controlled by online software.
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Figure 2.3: A representation of the BABAR detector. Starting at the collision axis
and radially moving outward, the detector components shown are the Silicon Ver-
tex Tracker (SVT), the Drift CHamber (DCH), the Detector of Internally Reflected
Cherenkov Radiation (DIRC) particle identification system, the ElectroMagnetic
Calorimeter(EMC), and the Instrumented Flux Return (IFR) housing the muon and
neutral hadron detector. Some of the beamline magnets (namely, Q1, Q2 and Q4)
near the interaction region are shown as they aid the production of the high luminosity
required at PEP-II.
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2.3 Silicon Vertex Tracker (SVT)

The Silicon Vertex Tracker (SVT) was designed for very high precision mea-

surement of azimuthal (φ) and longitudinal (z) coordinates on the trajectories of

charged particles just outside the beampipe2.

Figure 2.4: The partially assembled SVT, showing the positioning of the silicon wafers
around the IP region, and the B1 bending magnets

The SVT consists of five layers of double-sided silicon micro-strip detectors

that are pitched at ∼ 20-50 microns, depending on function (i.e. whether measuring

φ or z) and layer number. Layers 1-3 occupy a radial range from ∼ 3 to ∼ 6 cm,

2The beampipe in essence consists of 2 Beryllium cylinders with a layer of cooling water
in between. The inner cylinder (2.4976 cm inner radius, 2.5824 cm outer radius) is the
actual beampipe and the outer cylinder is the water jacket (2.7345 cm inner radius, 2.8346
cm outer radius).
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with each layer forming a hexagonal cylinder coaxial with the beampipe axis. Layers

4 and 5 are in the radial range from ∼ 12 - ∼ 15 cm, in 16- and 18-sided polygon

configurations with innovative lamp-shade structures fore and aft. The detector is

divided vertically into x > 0 and x < 0 “clamshells”. Fig. 2.4 shows the beampipe in

the process of being captured by the x > 0 clamshell. The second picture in Fig. 2.4

shows the completed detector mounted between the B1 magnets to which the SVT

carbon fibre support frame is attached.

The outer two layers provide coordinates which are linked with coordinate in-

formation from the Drift Chamber (DCH) in the BABAR charged track reconstruction

software, to produce very accurate information on position, direction and momentum

for charged particles produced in PEP II e+e− collisions.

In addition to providing coordinate measurements, the SVT strip clusters as-

sociated with a charged particle track provide specific ionisation (dE/dx) information

by means of time-over-threshold measurements. After calibration these are equivalent

to measurements of energy deposition in the silicon as a result of ionisation of the

medium. Since the number of samples used in calculating dE/dx for a given track is

quite small (typically ∼ 6) the resolution is not particularly good ( ∼ 18% of dE/dx).

The decision to build a five-layer SVT was driven by the idea that the SVT

system should be capable of performing stand-alone track-finding. The thinking was

that three layers are needed to define a candidate helix, a fourth layer is required for

corroboration, and a fifth layer is necessary in order to compensate for inefficiency, etc.

In practice, this works quite well, and pion tracks of transverse momenta from ∼100
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down to ∼50 MeV/c can be found with reasonable efficiency. Above ∼100 MeV/c, the

DCH track-finding takes over for the most part, although higher momentum tracks

which interact or decay between the outer radius of the SVT and the inner radius

of the drift chamber can still be found by the SVT track reconstruction software.

This capability is particularly relevant for physics analyses such as those involving

D∗(2010) production and decay to D0 π±, since the π± produced tend to have rather

low lab. momentum.

The SVT stand-alone track-finding capability is also of great relevance to the

so-called Global Alignment (GA) of the BABAR detector. In order to satisfy earth-

quake safety requirements, the Support Tube containing the SVT may not be attached

directly to the DCH. However, it is subject to thermal, mechanical and magnetic

stresses, the last because it contains the B1 and Q1 permanent magnet machine ele-

ments. This causes the position and orientation of the SVT to vary slightly over time

w.r.t. the DCH, which defines the BABAR coordinate system. The SVT coordinate

system is mapped into the DCH system by means of a set of GA parameters which

define a rigid body translation and rotation. This set of six parameters is obtained

for each run number during data-taking by matching an ensemble of charged tracks,

each of which is reconstructed separately in the SVT and DCH coordinate frames, at

the wall of the Support Tube. By means of these GA parameters, local SVT mea-

surements are converted to the DCH coordinate system for use in the general track

reconstruction software.

Finally, the z coordinate measurement precision in the SVT is at least an
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order of magnitude better than that which can be obtained from the DCH because

of the small wire angle values in the stereo layers of the latter. It follows that the

dip angle (essentially dz/dr) for a charged track is defined almost entirely by the

SVT z measurements on the track. This of course has important consequences for

the total momentum of the track, but it also has a significant impact on the particle

identification capability of the DIRC. The latter is very sensitive to the position and

direction in three dimensions of a charged particle trajectory at entry to the relevant

quartz bar, and in this sense the coordinate measurements provided by the SVT play

a crucial role in reliable particle identification as well as in precision vertexing.

Figure 2.5: Schematic view of the SVT
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2.4 Drift Chamber (DCH)

The Drift Chamber (DCH) is the main charged particle tracking device in

BABAR, and as such must provide efficient pattern recognition capability and high

precision transverse momentum (pT ) and position measurements over its large fiducial

region. At the same time it is expected to yield corresponding measurements of

specific ionization (dE/dx) of sufficient quality as to contribute significantly to the

process of charged particle identification in BABAR. In addition, the DCH serves to

define the BABAR coordinate system.

The DCH is a large cylindrical tracking volume of internal length 276.4 cm

oriented within the cryostat of the BABAR superconducting magnet such that its axis

coincides to a good approximation with the axis of the ∼1.5 T magnetic field. The

Figure 2.6: Drift Chamber Side View [32], dimensions in mm. The interaction point
(IP) is not located in the center of the chamber, but rather is offset to the left by ∼
37 cm in order to optimize C.M. acceptance, given the asymmetric beam energies.
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inner cylinder, which can be seen in Fig. 2.7 during DCH stringing at TRIUMF,

consists of fore and aft sections of Al of 5 mm thickness, internal radius 23.6 cm, and

a low-mass central section of Be of thickness 1 mm and internal radius 23.8 cm whose

length is defined by the tracking fiducial region. The inside and outside surfaces of

the Be section are coated with BR127 anti-corrosion paint, which contains sodium

chromate, hence the greenish color visible in Fig. 2.7. The Al endplates are 24 mm

thick, but the forward endplate is thinned to 12 mm thickness beyond radius ∼47 cm

in order to reduce the amount of material in front of the Electromagnetic Calorimeter

(EMC) endcap. All of the front-end electronics used to read out the DCH data is

mounted on the rear endplate. The outer cylinder is composed of a hexagonal Nomex

foam structure contained within carbon fiber skins, each of which is clad in Al foil in

order to provide r.f. shielding.

The chamber is strung with 7104 gold-coated tungsten-rhenium sense wires of

20 micron diameter; the field and clearing wires are of gold-coated Al, 120 micron

in diameter, while the guard wires have the same composition but are of diameter

80 micron; there are 28768 wires in total, and the stringing operation required 15

weeks. The sense wire pattern forms 40 approximately cylindrical layers (the stereo

layers cannot define a cylindrical surface), with radially-sequential groups of four

layers clustered to form 10 superlayers. The field wires are arranged to create the

approximately hexagonal drift cell pattern illustrated in Fig. 2.7 for the four innermost

superlayers; the lines connecting the field wires are drawn merely to illustrate the

relevant drift cell boundaries. The individual cells have radial height ∼1.2 cm and
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azimuthal width ∼1.8-1.9 cm, so that the maximum drift distance is ∼9 mm, which

corresponds to a drift time of ∼600 nsec. The time-to-distance calibration then yields

position resolution of ∼100 microns over most of the drift cell, although this degrades

to more than 200 microns close to the sense wire and near the cell boundary. The

individual superlayers provide axial (A) or stereo (U or V) information. From the

innermost superlayer (minimum radius ∼26 cm, 96 cells per layer) to the outermost

(maximum radius ∼78 cm, 256 cells per layer) the sequence is AUVAUVAUVA, and

the values of the stereo angle increase in magnitude from ∼2.6 deg. to ∼4.3 deg. with

increasing radius.

The gas mixture used was chosen to minimize multiple scattering, and hence to

optimize transverse momentum resolution. A mixture consisting of 80% He and 20%

isobutane by volume satisfied this requirement while providing a level of performance

which compares favorably to those obtained in the past for the more traditional

argon-based gas mixtures. The DCH was designed to operate at a high-voltage value

of 1960 V with no water vapor added to the gas mixture. However, after a near-

disastrous high-voltage accident during commissioning, this was reduced to 1900 V

for the period October, 1999 to July, 2000. During this time, a loss of track-finding

efficiency was observed for tracks at near normal incidence to the DCH sense wires,

for which saturation effects are maximal. The high-voltage was increased therefore

to 1930 V in January, 2001, and the DCH has operated at this voltage ever since. At

the same time it was decided to add 3500 ppm of water vapor to the gas mixture in

order to reduce the probability of electrical discharge.
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The BABAR coordinate system3 is defined by the DCH. Horizontal (x) and

vertical (y) axes are specified in terms of the nominal positions of the holes in the

DCH endplates into which the sense-wire feed-throughs are inserted. It should be

noted that the actual hole positions relative to nominal were surveyed by means of

a Coordinate Measuring Machine at the factory of the manufacturer, and that these

corrections are incorporated when specifying the end-locations of each individual sense

wire. At assembly, care was taken to align these two sets of axes, and to ensure that

the line connecting their origins was normal to the surfaces of both plates. This line

then specifies the z-axis of the BABAR coordinate system, and its direction is chosen

to coincide to a good approximation with the axis of the BABAR magnetic field, with

positive z in the direction of the field. In the collider hall, this is also the approximate

direction of the high energy (e−) beam; the orientation of the DCH is then such that

the chosen y direction points upward toward the roof, and the x-direction is in the

horizontal plane pointing outward from the center of the PEP II rings. The origin

of the coordinate system along the z-axis is then chosen to be located at 37 cm in

the negative z direction relative to the center of the magnet cryostat. This defines

the Interaction Point (IP in Fig. 2.6), and is the nominal point at which the e− and

e+ beams collide. This choice of coordinate system matches the asymmetric detector

configuration, which compensates for the energy asymmetry between the colliding

beams in such a way as to yield approximately symmetric detector acceptance in the

center-of-mass frame. Systematic studies making use of charged particle trajectories

3Right-handed coordinate system.
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in this coordinate system are then used to transform local measurements in the other

detector subsystems into this DCH frame (e.g. the GA transformation described in

Section 2.2).

Typically a charged particle track traversing the full radial extent of the DCH

will have ∼36 DCH coordinate measurements associated with its trajectory. If the

track originated within the PEP II beampipe, ∼10 SVT coordinates will also be

associated with this track. In order to extract precise momentum and position in-

formation from these measurements, they are incorporated into a Kalman filter [33]

fit which takes into account variation of the magnetic field with position, multiple

scattering and energy loss in the materials of the BABAR detector traversed, and

how these corrections depend on the mass hypothesis being made concerning the

identity of the charged particle. The momentum resolution which results from this

process can be extracted directly from cosmic ray data. Cosmic rays which enter

the DCH preferentially in the upper half of the chamber, pass close to the collision

region within the beampipe, and exit through the bottom half of the DCH, can be

reconstructed separately as upper DCH and lower DCH tracks. By comparing the

upper and lower DCH versions of the same track, estimates of transverse momentum

resolution, dpT /pT , can be obtained from actual DCH and SVT measurements (as

opposed to Monte Carlo simulation). The momentum resolution dependence on pT

obtained in this way can be parametrized by [32]:

dpT

pT

= (0.45 + 0.13 × pT )% (2.1)

with pT in GeV/c. The first term represents the multiple scattering limit, while the
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second term results if the precision of the measurement of the sagitta of the curved

trajectory in the transverse (i.e. x-y) plane remains constant while the sagitta itself

decreases as 1/pT . It follows that the resolution varies from ∼0.5% at ∼ 0.5 GeV/c

to ∼ 1% at 5 GeV/c. This is in excellent agreement with the design objective, and

reflects the high quality of BABAR charged track reconstruction. It is this quality

which yields the excellent invariant mass and vertex precision necessary for precision

measurements performed at BABAR.

In addition to providing coordinate information through drift-time measure-

ment, the DCH also provides specific ionization (dE/dx) information by means of the

pulse-height recorded simultaneously for the relevant sense wire. After calibration,

this measures the ionization energy loss in the DCH cell in question, and, when nor-

malized to unit path length, provides a local dE/dx sampling. Since such samples fol-

low a Landau distribution, they will not yield a reliable estimate of the most-probable

dE/dx value if simply averaged; it is the most-probable value which exhibits a Bethe-

Bloch dependence on velocity, and hence yields particle identification information. In

order to obtain a reliable estimate of the most-probable dE/dx value for the track

in question, the 20% of dE/dx samples with the largest values are discarded, and

the mean value for the remaining samples is calculated. This removes the so-called

“Landau tail”, and the resulting “80% Truncated Mean” provides a good estimate of

the most-probable dE/dx value. For a typical track with ∼36 samples, ∼29 are used

to obtain the dE/dx estimate. A single sample provides an estimate with ∼42% res-

olution, and so the resolution in dE/dx would be expected to be 42/
√

29 − 1 ∼7.9%
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of dE/dx for a typical track. The DCH provides very high quality energy-loss infor-

mation which thus permits excellent mass discrimination for charged particle tracks

with lab. momentum below ∼ 1.2 GeV/c.
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Figure 2.7: The DCH: (left) a robot was used to string the DCH, (right) the DCH
drift cell design.
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2.5 Detector of Internally Reflected Cherenkov

Radiation (DIRC)

Distinguishing hadrons from leptons over a large range of solid angle and

momentum is an essential requirement for meeting the physics objectives of BABAR.

In particular, measurements of CP violation require particle identification (PID),

both to reconstruct exclusive final states and to tag the quark content of B decays.

Information from the SVT, DCH, EMC, and the IFR is used to identify electrons and

muons and contributes to hadron identification. However, an additional dedicated

particle identification system is essential to distinguish charged pions from kaons for

momenta greater than ∼0.6 GeV/c, and from protons for momenta above ∼1.2 GeV/c

as this is required to obtain efficient tagging and event reconstruction. In order to

meet this requirement, a DIRC system is incorporated into the barrel region of the

detector. It is azimuthally symmetric w.r.t. the z-axis, and its coverage extends in

lab. polar angle from 25.5◦ to 141.4◦; in azimuth, it covers ∼92% of 2π, since there

are small gaps in coverage between the bar boxes.

The DIRC is an internal reflection imaging device that uses 144 synthetic

fused silica bars arranged in a 12-sided polygon around the beam line as illustrated in

Fig. 2.8. This maximizes azimuthal coverage, simplifies construction, and minimizes

edge effects.

For sufficiently fast charged particles, some part of the Cherenkov radiation

cone emitted by the particle (Θc(E) = cos−1[1/nβ], with n ∼1.473) is captured by

internal reflection in the bar and transmitted to the photon detector array located at
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Figure 2.8: An illustration of the DIRC [32] particle identification system. The
DIRC comprises 144 thin fused silica bars positioned in a 12-sided cylindrical polygon
parallel to the beam-pipe. The cylinder of the DIRC is cantilevered off the standoff
box (SOB). Therefore, the SOB acts as a support structure and houses the water
used to direct the light from the quartz bars to the photomultiplier tubes.

the backward end of the detector. (Forward-going light is first reflected from a mirror

located at the end of the bar.) The high optical quality of the quartz, along with

rigorous specifications of squareness, flatness and polish of the bar surfaces, preserves

the angle of the emitted Cherenkov light and minimizes absorption. The measurement

of this angle, in conjunction with knowledge of the track angle and momentum from

the drift chamber, allows a determination of the particle mass. An advantage of

the DIRC for an asymmetric collider is that the high momentum tracks are boosted

forward, which gives a much higher light yield than for particles at normal incidence.

This is due to two effects: the longer path length in the quartz and a larger fraction
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of the produced light being internally reflected in the bar.

Each quartz bar is 1.7 cm thick, 3.5 cm wide, and 490 cm long, and is con-

structed by glueing four shorter bars end-to-end. The total radial space occupied by

the DIRC, including quartz thickness, sagitta from the polygonal shape, mechanical

supports, and a 1 cm clearance on each side, is 10 cm. This material represents 0.19

X0 (radiation length) at normal incidence. An effort has been made to minimize both

the radial thickness and the amount of material, since these increase the size and cost

of the barrel EMC while degrading its performance.
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Figure 2.9: Shown is a schematic of a single quartz bar in the DIRC detector il-
lustrating the principle of the detector [32]. As a particle enters the quartz bar, a
Cherenkov cone is created which then propagates to the end of the bar and onto the
PMT detector surface.

Fig. 2.9 illustrates the principle of the DIRC. A quartz “wedge” is glued to
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the readout end of each bar. This reflects the lower Cherenkov ring image onto the

upper one, moving it inside the PMT acceptance. The wedge is a 9.1 cm long block

of quartz with the same width as the bars, and a trapezoidal profile, 2.7 cm high at

the bar end and 7.9 cm high where it is glued to the quartz window which provides

the interface to the water-filled standoff-box (SOB). Total internal reflection on all

sides of the quartz wedge provides nearly loss-free transmission.

Within the water, the Cherenkov cone image is allowed to expand in diameter

and is then detected by an array of ∼11,000 conventional 2.5 cm-diameter photomul-

tiplier tubes located on the exterior of the tank. They are organized in a close-packed

array at a distance of about 120 cm from the end of the radiator bars. Light-catcher

attachments provide increased light-collection efficiency. Water is used because if

pure it has good transmission properties for the Cherenkov spectrum detected by the

PMTs, has a similar refractive index to that of quartz, a good match in dispersion,

and it is also inexpensive.

The phototubes, together with modular bases, are located in a gas-tight vol-

ume as protection against helium leaks from the drift chamber. The photo-detection

surface approximates a partial cylindrical section in elevation and a toroid when

viewed from the end. To maintain good PMT single photon efficiency, the SOB is

surrounded by a steel box which, along with a bucking coil, provides adequate mag-

netic shielding for the phototubes.
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2.6 ElectroMagnetic Calorimeter (EMC)

The Electromagnetic Calorimeter (EMC) is designed to detect electromagnetic

showers with excellent energy and angular resolution over the 20 MeV to 4 GeV energy

range. This capability allows the detection of photons from secondary hadronic decays

and radiative and electromagnetic processes (along with n’s and hadronic showers

from K0
L’s). By means of electron identification, the EMC contributes to J/ψ and τ

reconstruction, along with flavor identification of neutral B-mesons via semi-leptonic

decays.
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Figure 2.10: A longitudinal cross-section of the EMC (only the top half is shown)
indicating the arrangement of the 56 crystal rings. The detector is symmetric around
the z-axis. All dimensions are given in mm.

The EMC consists of a cylindrical barrel (5760 crystals), and a conical for-

ward endcap (820 crystals). A longitudinal cross section of the EMC indicating the

arrangement of the 56 crystal rings, is shown in Fig. 2.10. The detector is symmetric

around the z-axis, its coverage extends in lab. polar angle from 15.8◦ to 140.8◦ (90%
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in the C.M. system) and over the full azimuth.

Thallium-doped caesium iodide (CsI(Tl)) scintillating crystals (Fig. 2.11), have

a short radiation length (1.85 cm) allowing for shower containment at BABAR energies

with a relatively compact design. Their high light yield and emission spectrum permit

efficient use of silicon photodiodes which operate well in magnetic fields. These are

coupled to the back surface of the crystals with a polystyrene plate.

To enable the calorimeter to make an accurate measurement of the energy of

the particles at the time of creation, and due to the sensitivity of the π0 efficiency

to the minimum detectable photon energy, it is important to keep the amount of

material in front of the EMC to the lowest possible level, so as to reduce the chance

of pre-shower and γ conversions. The barrel and the outer five rings of the endcap

have ∼ 0.3−0.6 X0 of material in front of the crystal faces. The three innermost rings

of the endcap are shadowed by the SVT support structure (although the main crystal

support structure is at the rear of the crystal to minimize material) and electronics

as well as the B1 bending dipole, resulting in up to 3X0 for the innermost ring. The

principal purpose of the two innermost rings is to enhance shower containment for

particles close to the acceptance limit.

Figure 2.11: A thallium-doped Caesium Iodide [CsI(Tl)] Crystal.
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2.7 Instrumented Flux Return (IFR)

Surrounding the EMC is a large iron yoke that is instrumented to provide muon

and hadron identification. The iron structure also provides the external flux return

for the magnetic field from the superconducting solenoid. The primary purpose of the

IFR is to identify muons; this information can then be used in the same way as that

for electrons identified with the EMC. The IFR can also be used in K0
L reconstruction

by detecting the appearance of neutral energy, with the corresponding position in

the IFR then providing a direction vector to be matched to the missing momentum

vector in an exclusive final state. The IFR can also be used as a tail catcher for

electromagnetic or hadronic showers not fully contained in the EMC.

The IFR, illustrated in Fig. 2.12 consists of 18 layers of steel, of increasing

thickness from 2 cm at the inner layer to 10 cm at the outer layer, which screen out

pions by preventing “punch through”. Single gap resistive plate chambers (RPC’s) are

inserted between the steel absorber plates, and these detect streamers from ionizing

particles via external capacitive readout strips. The planar RPC’s (Fig. 2.12) consist

of two bakelite sheets separated by a 2-mm-wide gap kept uniform by polycarbonate

spacers. There are 19 layers of RPC’s in the barrel section and 18 in the end doors.

Unfortunately, the performance of the original RPC’s declined unexpectedly

and steadily soon after BABAR turned on in 1999. The Forward end door RPCs

were replaced in the summer of 2002, and the barrel RPCs needed to be replaced

with Limited Streamer Tube (LST) technology before efficiency reaches unacceptable

levels. LST’s were placed in the top and bottom sextants of the hexagon during the
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Figure 2.12: Diagram showing the Instrumented Flux Return (IFR) [32]. Resistive
Plate Chambers are inserted between the many iron plates that serve as the magnet
flux return to detect muons and showers from neutral hadrons.

down time in 2004, and the replacement was completed in 2006 for the remaining four

sextants, which are at an angle and therefore required a more lengthy installation

process. The LST’s have been essential in restoring BABAR ’s muon identification

capability, and efficiency levels greater than 90% should be attainable as a result of

this complex and demanding upgrade effort.
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2.8 The Magnets

The primary magnet is a superconducting solenoid with a nominal 1.5 T field

strength and a field uniformity of ∼ 2% in the tracking region. The conductor is made

of superconducting Niobium Titanium (NbTi) cable which operates at a temperature

of 20K. Due to the low temperature required for the operation of the superconducting

magnet, a surrounding cryogenic system is also necessary.

The Samarium Cobalt (SmCo) permanent magnets used to focus the two par-

ticle beams and bend them into head-on collision are located very near to the in-

teraction region (±20cm in z), thus allowing for accurate positioning and steering

just prior to collision. The resulting transverse beam size at the interaction point is

6.2(y) × 155(x)μm.

Figure 2.13: The Magnetic Field
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2.9 Electronics, Trigger and Data Acquisition System

The electronics, trigger, data acquisition, and online computing represent a

collection of tightly coupled hardware and software systems designed to maximize

the acceptance of physics events of interest with high efficiency.

Front-End Electronics (FEE) assemblies, located directly on the detector, per-

form signal processing tasks followed by transfer of data to the Data Acquisition Sys-

tem (DAQ) via optical fibre. Each FEE consists of an amplifier, a digitizer, a trigger

latency buffer and an event buffer for storing data prior to transfer to the DAQ.

The BABAR trigger is designed to accept physics events of interest with high

efficiency while rejecting background, thereby reducing the flow of data to a manage-

able rate for storage. A trigger efficiency greater than 99% for BB̄ events is necessary

for CP violation studies. The trigger is implemented in two stages: the Level 1 hard-

ware trigger is designed to retain nearly all physics events, at an output rate of <∼ 2

kHz, while rejecting background. The Level 3 trigger software algorithms then se-

lect events of interest at an output rate limited to 120 Hz. At design luminosity

beam-induced background rates are typically about 20 KHz for at least on track in

the DCH with transverse momentum greater than 120 MeV/c2 or at least one EMC

cluster with E > 100 MeV.

Data retrieved from the subsystems are collected by the “front-end” electron-

ics. Selected data from the DCH, EMC and IFR are then used to form Level 1 (L1)

trigger “primitives”; these are the raw data such as track transverse momentum from

the DCH, energy deposited in the EMC and clusters in the IFR. The maximum Level
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1 response latency is 12 μs.

The DCH track primitives are formed from track segments by the Track Seg-

ment Finding (TSF) modules. These modules also classify the quality of track seg-

ments. From the TSF modules, the data are sent to the Binary Link Tracker (BLT),

which forms complete tracks from the segments; these tracks are required either to

reach the outer layer of the DCH and be present in at least eight of the ten DCH

superlayers, or to penetrate to the middle layer of the DCH. Tracks are then further

classified depending on how far they have penetrated into the DCH. EMC primitives

are formed using data collected from the 280 towers from the barrel and the endcap

calorimeter (which are divided into 7×40 and 8×3 regions in θ and φ respectively).

The energy is then summed over θ for each φ region and compared to various thresh-

olds. The IFR primitives are used to identify di-muon and cosmic ray events. These

are defined by OR signals of all φ read-out strips in eight layers in each sector, where

a sector is one of ten regions of the IFR (six barrel sextants, four half end doors). A

trigger object is formed when four out of the eight trigger layers have hits within a

time window of 134 ns.

These data are then passed through the Global Trigger, where a decision is

made to accept or reject the event based on predetermined logic and prescaling rates

(the logic and rates are not fixed and are highly configurable). A L1 signal is sent

through the Read Out Modules (ROMs) back to the “front-end” where the data are

finally extracted. These data are then shipped to the event builder ROMs which

assemble the event so that it can be processed by Level 3 (L3) trigger farm nodes and
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other “Online Event Processing” nodes assigned to monitoring tasks.

The L3 trigger, a software implementation, further classifies data coming from

Level 1. Level 3 output lines can be prescaled to reduce the rate at which certain

processes are recorded; for example Bhabha scattering events are required for calibra-

tion and luminosity measurements, but not at the rate at which they occur, and so

prescaling is applied. In order to allow calculations of efficiency some events that do

not pass Level 3 are accepted anyhow at a certain prescaled rate. These events are

known as “L1 Pass-Through” events. Events which pass the L3 Trigger are sent to

the logging manager which writes the data to an eXtended Tagged Container (XTC).

Each XTC file represents a single “run”, typically 1 hour of continuous data acqui-

sition time. At the end of a run, the XTC file is archived and made available for

further processing.

An intermediate Level 2 trigger has not been implemented in BABAR, even

with increased data rates and higher luminosity, because the L3 capacity is easily

able to handle the observed rates.

Figure 2.14: Schematic diagram of the Data Acquisition System.
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A schematic diagram of the DAQ is shown in Fig. 2.14. Following the initial

processing of the raw detector output by the subsystem Front End Electronics the

digitized signals are sent over fast optic fibre links to VME dataflow crates containing

the dataflow ROMs. For all systems except the EMC, the ROMs contain Triggered

Personality Cards (TPCs), meaning that the signals are only collected from the FEE

on receipt of a Level 1 Accept (L1A) signal from the Fast Control and Timing System

(FCTS). For the EMC however, the ROMs connected to the FEE contain Untriggered

Personality Cards (UPCs), meaning that the signals are continuously received from

the FEE, processed and, on receipt of an L1A, passed to another TPC ROM. The TPC

ROMs run subsystem specific software that performs feature extraction (FEX) in an

attempt to isolate signals and suppress background and noise. The ROMs and other

boards in the dataflow crates are configurable on a run by run basis. This is achieved

by using the configuration database, in which system-specific conguration objects are

stored. The data are then passed to the Online Event Processing (OEP) farm for

further processing by the Level 3 Trigger and data quality monitoring. Events passed

by Level 3 (XTC files) are then picked up by the Online Prompt Reconstruction

(OPR) farms. Information on detector conditions, such as temperature, voltages,

gas supply and humidity, are extracted from the ROMs and placed in the conditions

database for later use in the event reconstruction by OPR. The XTC file data are

then sent to the Prompt Calibration (PC) farm, and then to Event Reconstruction

(ER) at which time the events are sequentially calibrated and reconstructed using

algorithms, and then written into the event store.
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CHAPTER 3
EVENT SELECTION PROCEDURE

3.1 General Description

The data samples used in the analyses presented in this thesis were collected

with the BABAR detector at the PEP-II asymmetric-energy e+e− collider at center-

of-mass energies 10.58 (at the Υ (4S) resonance) and 10.54 GeV (below the Υ (4S)

production threshold).

Although BABAR was primarily intended to be a B-meson factory, it is also

an excellent charm hadron factory. The present data sample (corresponding to an

integrated luminosity of 390 fb−1) contains over 400 M Υ (4S) → BB̄ events and over

1200 M e+e− → qq̄ (q = c, s, u, d) events out of which 500 M are e+e− → cc̄ reactions.

The relevant production cross sections at
√
s = m(Υ (4S)) are listed in Table 3.1 [34].

The BABAR detector has excellent resolution as can be seen from the Λ and KS
1

Table 3.1: The e+e− → qq̄ production cross sections at
√
s = m(Υ (4S)).

e+e− → cross section (nb)

bb̄ 1.05

cc̄ 1.30

ss̄ 0.35

uū 1.39

dd̄ 0.35

(q = b, c, s, u, d)

1Neutral kaons decay weakly into CP eigenstates (CP |K0 >= |K̄0 >). The CP-even
eigenstate, which decays to two pions, may written to a good approximation (assuming a
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invariant mass distributions of Fig. 3.1, with 0.1 and 0.4 MeV/c2 histogram bins,

respectively.

Furthermore very high statistics charm baryon production and decay such as

Λ+
c → pK−π+ and Λ+

c → pKS, and fair statistics in rare decay modes (such as

Λ+
c → Σ0KSK

+) are available (Fig. 3.1)[50].

The large samples of charm baryon two-body and quasi-two-body decays avail-

able at BABAR, as well as accessibility to rare decay modes with reasonable statistics,

provides an excellent opportunity to study hyperons and hyperon resonances with

high precision, and three such analyses constitute the work to be described in this

thesis. The present chapter is devoted to a description of the selection procedures

employed to obtain the relevant data samples, and the corresponding analyses are

presented in detail in chapters 4, 5, and 6.

The selection of charm baryon candidates requires the sequential reconstruc-

tion of initial and intermediate state candidates using four-momentum addition of

tracks. Particle identification (PID) selectors [35] based on specific energy loss (dE/dx)

and Cherenkov angle measurements have been used to identify proton, pion and kaon

final tracks. Each intermediate state candidate is required to have its invariant mass

within a ±3σ mass window centered on the fitted peak position of the relevant dis-

tribution, where σ is the mass resolution obtained from a fit to the mass spectrum.

In all cases, the fitted peak mass is consistent with the expected value [22], and the

negligible amount of CP violation) |K0
S >= 1√

2

(|K0 > +|K̄0 >
)
, while the CP-odd eign-

state, |K0
L >= 1√

2

(|K0 > −|K̄0 >
)
, decays to three pions. Therefore, in the study of

Λ+
c → ΛK̄0K+, the K̄0 is reconstructed as a KS .
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intermediate state invariant mass is then constrained to this value, with correspond-

ing vertex fit probability required to be greater than 0.001. Due to the fact that

each weakly-decaying intermediate state (i.e. the KS and hyperons) is long-lived, the

signal-to-background ratio is improved by imposing a vertex displacement2 criterion

(in the direction of the momentum vector). In order to further enhance signal-to-

background ratio, a selection criterion is imposed on the center-of-mass momentum,

p∗, of the parent charm baryon, since it is found empirically that combinatorial back-

ground is reduced significantly w.r.t. signal at higher p∗ values. The use of charge

conjugate states is implied for all studies presented in this thesis.

3.2 Selection of Ξ0
c →Ω−K+ and Ω0

c →Ω−π+ Events

The data samples used for this analysis correspond to a total integrated lumi-

nosity of 116 fb−1 and 230 fb−1 for Ξ0
c → Ω− K+ and Ω0

c → Ω− π+, respectively.

The selection of Ξ0
c and Ω0

c candidates requires the intermediate reconstruction

of events consistent with Ω− → Λ K− and Λ → p π−; PID selectors are used to

identify the proton and the kaon tracks and the pion daughter of the Ω0
c , while the

pion daughter of the Λ is reconstructed as a charged track with no additional particle

identification needed.

The weak decays of the Ω− and Λ lead to an event topology represented

schematically in Fig. 3.2; the lifetime of the charm baryon is so short that there is

no significant displacement of its decay point w.r.t. the e+e− collision axis. The

2The distance between the production and decay vertex position.
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signal-to-background ratio is improved by imposing vertex displacement criteria on

the Ω− and Λ decay points. The distance between the Ω−K+ or Ω−π+ vertex and

the Ω− decay vertex, when projected onto the plane perpendicular to the collision

axis, must exceed 1.5 mm in the Ω− direction. The distance between the Ω− and

Λ decay vertices is required to exceed 1.5 mm in the direction of the Λ momentum

vector. In order to further enhance signal-to-background ratio, a selection criterion is

imposed on the center-of-mass momentum, p∗, of the charm baryon: p∗ > 1.8 GeV/c

for Ξ0
c and p∗ > 2.5 GeV/c for Ω0

c candidates. In addition, a minimum laboratory

momentum requirement of 200 MeV/c is imposed on the π+ daughter of the Ω0
c in

order to reduce combinatorial background level due to soft pions.

The Λ invariant mass spectrum obtained from an inclusive 1.2 fb−1 data sub-

sample is shown in Fig. 3.3. The invariant mass distribution (in data) of Ω−’s pro-

duced from Ξ0
c decay, for the Ξ0

c mass signal region of Fig. 3.5, is shown in Fig. 3.4.

As can be seen from this distribution, the Ω− spectrum is almost completely free of

background.

The invariant mass spectra of Ξ0
c and Ω0

c candidates in data are shown be-

fore efficiency correction in Figs. 3.5(a) and (b), respectively [28]. The signal yields

(770±33 Ξ0
c and 159±17 Ω0

c candidates) are obtained from fits with a double Gaussian

(Ξ0
c ) or single Gaussian (Ω0

c ) signal function and a linear background function. The

corresponding average selection efficiencies obtained from Monte Carlo simulations

are 14.7% and 15.8%, respectively.
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Figure 3.1: The invariant mass spectra of Λ, KS and Λ+
c candidates produced inclu-

sively [50].
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Figure 3.2: Sketch of the decay topology for Ξ0
c → Ω−K+; Ω− → ΛK−; Λ→ pπ−.
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Figure 3.3: The uncorrected Λ invariant mass spectrum in ∼1.2 fb−1 of data. Super-
imposed on the distribution is a fit with a double Gaussian function with a common
mean and a linear polynomial to parametrize the signal and background, respectively.
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Figure 3.4: The uncorrected Ω− invariant mass spectrum corresponding in ∼ 100 fb−1

data. Superimposed on the distribution is a fit with a double Gaussian function with
a common mean and a linear polynomial to parametrize the signal and background,
respectively.
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Figure 3.5: The uncorrected Ω−K+ (a) and Ω−π+ (b) invariant mass spectra in
data. (a) The signal yield is obtained from an unbinned maximum likelihood fit to
the invariant mass spectrum, with a double Gaussian and a linear function to fit the
signal and background, respectively. The total yield is 770 ± 33; the narrow and
wide Gaussians have respective widths 3.2± 0.2 and 11.8± 2.2 MeV/c2; the χ2/NDF
is 80/49. (b) The signal yield is obtained from a fit with a single Gaussian signal
distribution over a linear background function. The yield is 159 ± 17; the Gaussian
width is 5.69 ± 0.79 MeV/c2; the χ2/NDF is 45/53.
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3.3 Selection of Λ+
c → ΛK̄0K+ Events

Figure 3.6: Sketch of the decay topology for Λ+
c → ΛK̄0K+; Λ→ pπ−; KS → π+π−.

The data sample used for this analysis corresponds to a total integrated lumi-

nosity of about 200 fb−1, and the relevant event topology is as shown schematically

in Fig. 3.6. The selection of Λ+
c candidates requires the intermediate reconstruction

of oppositely-charged track pairs consistent with Λ→ p π− and KS → π+ π− decays.

The Λ and KS candidates are then vertexed with a positively charged kaon track to

form a Λ+
c candidate. In the reconstruction, proton and kaon candidates are required

to satisfy PID criteria. The pion daughter of the Λ is reconstructed as a charged

track. The signal-to-background ratio is improved by requiring that the Λ and KS
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decay vertex be separated from the event primary vertex by at least of 2.0 mm and

1.0 mm, respectively, in the flight direction of the Λ or KS. In order to further en-

hance the signal-to-background ratio the center-of-mass momentum, p∗, of the Λ+
c is

required to be greater than 1.5 GeV/c.

The invariant mass spectrum of Λ+
c candidates satisfying these selection cri-

teria is shown before efficiency-correction in Fig. 3.7. A signal yield of 2930 ± 105

candidates is obtained from a fit to the invariant mass spectrum with a double Gaus-

sian signal function and a linear background.
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Figure 3.7: The invariant mass distribution of uncorrected ΛKSK
+ candidates in

data. The superimposed curve corresponds to a binned χ2 fit which uses a double
Gaussian signal function and a linear background parametrization denoted by the
dashed line. The vertical lines delimit the signal region used in this analysis (solid)
and the corresponding mass-sideband regions (dotted). The total yield is 2930± 105;
the narrow and wide Gaussians have respective widths 2.1±0.1 and 7.2±0.2 MeV/c2,
corresponding to an r.m.s. of 4.2± 0.6 MeV/c2 and an HWMH of ∼ 3.1 MeV/c2; the
χ2/NDF is 72.2/72.
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3.4 Selection of Λ+
c → Ξ−π+K+ Events

Figure 3.8: Sketch of the decay topology for Λ+
c → Ξ−π+K+; Ξ− → Λπ+; Λ→ pπ−.

The data sample used for this analysis corresponds to a total integrated lumi-

nosity of about 230 fb−1, and the relevant event topology is as shown schematically

in Fig. 3.8. The selection of Λ+
c candidates requires the intermediate reconstruction

of oppositely-charged track pairs consistent with Λ → p π− and subsequently, the

vertexing of the Λ candidate with a π− to form a Ξ− → Λπ− candidate. The Ξ−

and π+ candidates are vertexed with a positively charged kaon track to form a Λ+
c

candidate. In the reconstruction, proton and kaon candidates are required to satisfy

PID criteria, the pion daughter of the Λ is reconstructed as a charged track, as before.

The distance between the Ξ−K+π+ vertex and the Ξ− decay vertex, when

projected onto the plane perpendicular to the collision axis, must exceed 1.5 mm in

the Ξ− direction. The distance between the Ξ− and Λ decay vertices is required
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to exceed 1.5 mm in the direction of the Λ momentum vector. The invariant mass

distribution of uncorrected Ξ− → Λπ+ candidates in 59 fb−1 is shown in Fig. 3.9. For

illustration purposes, a fit with a double Gaussian on a linear background is overlaid.

In order to improve the purity of the sample the center-of-mass momentum,

p∗, of the Λ+
c is required to be greater than 2.0 GeV/c.
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Figure 3.9: The invariant mass distribution of uncorrected Ξ− → Λπ+ candidates in
59 fb−1 of data. For illustration purposes, a fit with a double Gaussian on a linear
background is overlaid.

The invariant mass spectrum of Λ+
c candidates satisfying these selection cri-

teria is shown before efficiency-correction in Fig. 3.10. A signal yield of 13035 ± 163

candidates is obtained from a fit to the invariant mass spectrum with a double Gaus-

sian signal function and a linear background.
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Figure 3.10: The invariant mass distribution of uncorrected Λ+
c → Ξ−π+K+ candi-

dates in data. The superimposed curve corresponds to a binned χ2 fit which uses
a double Gaussian signal function and a linear background parametrization denoted
by the dashed line. The vertical lines delimit the signal region used in this analy-
sis (solid) and the corresponding mass-sideband regions (dotted). The total yield is
13035 ± 163; the narrow and wide Gaussians have respective widths 3.5 ± 0.1 and
9.5± 0.3 MeV/c2, corresponding to an r.m.s. of 4.2± 0.5 MeV/c2 and an HWMH of
∼ 7.5 MeV/c2; the χ2/NDF is 19.6/20.
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CHAPTER 4
MEASUREMENT OF THE SPIN OF THE Ω− HYPERON

As discussed in chapter 1, although the existence of the Ω− has been known

since 1964, although it is firmly believed that it has spin J = 3/2, the spin value has

never been established experimentally. It has been shown that J ≥ 3/2 [14, 15, 16],

but values greater than 3/2 have never been ruled out. The analyses presented in this

chapter, based on the assumption that the ground-state charm baryons have spin 1/2

establish unequivocally that the Ω− does indeed have spin 3/2.

Measurements of the Ω− spin are obtained using Ω− samples from the decay

of Ξ0
c and Ω0

c charm baryons. The primary Ω− sample is obtained from the decay

sequence Ξ0
c → Ω−K+, with Ω− → ΛK−, while a much smaller sample resulting

from Ω0
c → Ω−π+, with Ω− → ΛK− is used for corroboration. It is assumed that

each charm baryon type has spin 1/2 and, as a result of its inclusive production, that

it is described by a diagonal spin projection density matrix. The analysis does not

require that the diagonal matrix elements be equal.

4.1 Predicted Angular Distributions for

Charm Baryon Spin 1/2

The helicity formalism [36, 37] is applied in order to examine the implications

of various Ω− spin hypotheses for the angular distribution of the Λ from Ω− decay.

By choosing the quantization axis along the direction of the Ω− in the charm

baryon rest-frame, the Ω− inherits the spin projection of the charm baryon, since
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Figure 4.1: Schematic definition of the helicity angle θh in the decay chain Ξ0
c →

Ω−K+, Ω− → ΛK−; as shown in b) θh is the angle between the Λ direction in the
Ω− rest-frame and the Ω− direction in the Ξ0

c rest-frame.
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any orbital angular momentum in the charm baryon decay has no projection in this

direction. It follows that, regardless of the spin J of the Ω−, the density matrix

describing the Ω− sample is diagonal, with non-zero values only for the ±1/2 spin

projection elements, i.e. the helicity λi of the Ω− can take only the values ±1/2.

Since the final state Λ and K− have spin values 1/2 and 0, respectively, the net final

state helicity λf also can take only the values ±1/2. The helicity angle θh is then

defined as the angle between the direction of the Λ in the rest-frame of the Ω− and

the quantization axis (Fig. 4.1). The probability for the Λ to be produced with Euler

angles (φ, θh , 0) with respect to the quantization axis is given by the square of the

amplitude ψ, characterizing the decay of an Ω− with total angular momentum J and

helicity λi to a 2-body system with net helicity λf ,

ψ = AJ
λf
DJ ∗

λiλf
(φ, θh, 0), (4.1)

where the transition matrix element AJ
λf

represents the coupling of the Ω− to the final

state, DJ
λiλf

is a Wigner D-function [38], and the ∗ denotes complex conjugation; AJ
λf

does not depend on λi because of rotational invariance (Wigner-Eckart theorem [39]).

The angular distribution of the Λ is then given by the total intensity,

I ∝
∑
λi,λf

ρi i

∣∣∣AJ
λf
DJ ∗

λiλf
(φ, θh , 0)

∣∣∣2 , (4.2)

where the ρi i (i = ±1/2) are the diagonal density matrix elements inherited from the

charm baryon, and the sum is over all initial and final helicity states.

Using this expression, the Λ angular distributions integrated over φ are ob-
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tained for spin hypotheses JΩ = 1/2, 3/2, and 5/2, respectively:

dN/dcosθh ∝ 1 + β cosθh (4.3)

dN/dcosθh ∝ 1 + 3 cos2θh + β cosθh(5 − 9 cos2θh) (4.4)

dN/dcosθh ∝ 1 − 2 cos2θh + 5 cos4θh

+β cosθh(5 − 26 cos2θh + 25 cos4θh), (4.5)

where the coefficient of the asymmetric term

β =

[
ρ1/2 1/2 − ρ−1/2−1/2

ρ1/2 1/2 + ρ−1/2−1/2

]⎡⎢⎣
∣∣∣AJ

1/2

∣∣∣2 − ∣∣∣AJ
−1/2

∣∣∣2∣∣∣AJ
1/2

∣∣∣2 +
∣∣∣AJ

−1/2

∣∣∣2
⎤
⎥⎦

may be non-zero as a consequence of parity violation in charm baryon and Ω− weak

decay1. The derivations of Eqs. 4.3, 4.4 and 4.5 are presented in detail in Appendix

A.

4.2 Exclusive Ω− Production in Ξ0
c → Ω−K+ Decay

In this analysis, measurements of the Ω− spin are obtained using Ω− samples

from the decay of Ξ0
c and Ω0

c charm baryons inclusively produced in e+e− collisions

at center-of-mass energies 10.58 and 10.54 GeV. The selection of these data samples

has been described in chapter 3, section 3.2. The primary Ω− sample is obtained

from the decay sequence Ξ0
c → Ω−K+, with Ω− → ΛK−.

1Eqs. 4.3 and 4.4 are the distributions considered in connection with the discovery of
the Δ(1232) resonance [40], generalized to account for parity violation.
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4.2.1 Treatment of Background

The cosθh(Λ) distribution is divided into ten intervals of equal size ranging

from -1 to +1. For each interval, the Ω−K+ invariant mass spectrum (cf. Fig. 3.5 (a))

from data is fitted with a double Gaussian signal function and linear background

function, with the RMS fixed to the line shape obtained from the fit to the mass

spectrum for the full range of cosθh(Λ) described previously (section 3.2). Each

fitted yield gives the background subtracted content of that interval of the cosθh(Λ)

spectrum. The fitted invariant mass spectrum for each interval is shown in Fig. 4.2

and the corresponding fit parameters are included in Table 4.1.

Table 4.1: The parameter values obtained from unbinned maximum likelihood fits to
the Ξ0

c invariant mass for the individual intervals of cosθh(Λ).

cosθh(Λ) Uncorrected Fit Fit Efficiency-Corrected

Interval Yield χ2/NDF Prob. Yield

(-1.0, -0.8) 112.4 ± 11.2 39.4/49 0.86 805.3 ± 80.4

(-0.8, -0.6) 100.6 ± 10.9 43.7/49 0.72 713.5 ± 77.3

(-0.6, -0.4) 76.5 ± 9.4 45.2/49 0.67 537.2 ± 66.1

(-0.4, -0.2) 48.2 ± 7.6 62.0/49 0.12 335.5 ± 53.0

(-0.2, 0.0) 36.4 ± 6.7 29.5/49 0.99 250.7 ± 46.0

( 0.0, 0.2) 46.3 ± 7.5 49.0/49 0.51 315.1 ± 50.8

( 0.2, 0.4) 58.8 ± 8.5 49.1/49 0.50 396.3 ± 57.5

( 0.4, 0.6) 66.1 ± 8.7 34.5/49 0.95 441.4 ± 58.3

( 0.6, 0.8) 89.0 ± 9.8 58.9/49 0.18 588.4 ± 64.8

( 0.8, 1.0) 138.7 ± 12.4 51.5/49 0.41 908.4 ± 81.5

The resulting background-subtracted uncorrected cosθh(Λ) distribution shown

in Fig. 4.3 is fitted using a parameterization of the form α(1+3cos2θh), corresponding
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Figure 4.2: The invariant mass distribution of Ξ0
c candidates for each interval of

cosθh(Λ); the curves correspond to the fits described in the text.
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Figure 4.3: The background-subtracted uncorrected cosθh(Λ) distribution.

to a spin-3/2 hypothesis for the Ω− and a spin-1/2 hypothesis for the Ξ0
c [40]. This

fit has a χ2 probability of 65% with χ2/NDF = 6.9/9, even though the distribution

has not yet been efficiency-corrected.

4.2.2 Efficiency-corrected Ω− → ΛK− Decay

Angular Distribution

The cosθh(Λ) distribution is expected to be symmetric about zero. However,

the distribution seen in data has a predominant asymmetry in the region |cosθh(Λ)| >

0.8. This effect is studied using a signal Monte Carlo (MC) sample of Ω− → Λ0K−

continuum events. An asymmetry similar to that observed in data, is apparent in the

helicity angular distribution of truth-matched reconstructed signal MC events shown

in Fig. 4.4. In contrast, for generated events (Fig. 4.5), it is symmetric.

In Figs. 4.6 and 4.7 scatter plots of the cosine of the angle between the K+,−

and the lab z-axis (cosδ1,2) versus the cosine of the opening angle between the parent
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Figure 4.4: Truth-matched reconstructed Signal MC cosθh(Λ) distribution weighted
by 1+3cosθ2(Λ).

baryon (Ξ0
c , Ω−) and its decay kaon (cosα1,2) are shown. There is an empty band in

cosδ in the reconstructed spectra, corresponding to the effect of detector acceptance.

Due to this effect, the reconstructed distribution suffers from a loss of events in the

region where the parent baryon and its daughter kaon are almost collinear. This

however, is not the case for the generated spectrum. This loss of reconstructed events

in the region cosδ1 < 0.98 and cosα2 < 0.99 induces an asymmetry in the backward

end of the helicity cosine distribution. In order to further establish this point, it

is required that cosδ1 < 0.98 and cosα2 < 0.99 in the reconstructed and generated

spectra. As can be seen from Fig. 4.8, where the generated distribution is scaled

to that of the reconstructed truth-matched distribution, this criterion induces an

asymmetry in the generated spectrum similar to that in the reconstructed one.

Based on this MC study, it is clear that the spectrum in data can be cor-

rected by obtaining the MC efficiency as a function of cosθh(Λ). The truth-matched
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Figure 4.5: Generated signal MC cosθh(Λ) distribution weighted by 1+3cosθ2(Λ).
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Figure 4.6: The scatter plots of the cosine of the angle between the K+ and the lab
z-axis (cosδ1) versus the cosine of the opening angle between the Ξ0

c and its decay
kaon (cosα1).



78

/0.005 [Generated]2αcos
0.7 0.75 0.8 0.85 0.9 0.95 1

/0
.0

2
2δ

co
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

/0.005 [Reco. Truth-Matched]2αcos
0.7 0.75 0.8 0.85 0.9 0.95 1

/0
.0

2
2δ

co
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

/0.005 [Data - p*>1.8 GeV/c]2αcos
0.7 0.75 0.8 0.85 0.9 0.95 1

/0
.0

2
2δ

co
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.7: The scatter plots of the cosine of the angle between the K− and the lab
z-axis (δ2) versus the opening cosine of the angle between the Ω− and its decay kaon
(cosα2).
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Figure 4.8: The reconstructed (red lines) and generated (black dots) MC distributions
satisfying cosδ1 < 0.98 and cosα2 < 0.99.
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Figure 4.9: The Signal MC efficiency as a function of cosθh(Λ).

distribution of signal MC satisfying the selection criteria is plotted in 40 intervals of

cosθh(Λ). In Signal MC, the helicity cosine distribution is generated flat; however,

all angular effects cancel in the ratio of reconstructed to generated events. Similarly,

the generated cosθh(Λ) distribution in the region p∗ > 1.8 GeV/c is plotted in 40

intervals of cosθh(Λ). The efficiency in each interval is obtained as the ratio of the

reconstructed to generated event numbers in that interval. The efficiency is fit with

a linear function and the efficiency at the center of each interval of cosθh(Λ) is ob-

tained from the efficiency parametrization shown in Fig. 4.9. The fit to the efficiency

distribution has a χ2 probability of 41% with χ2/NDF = 39.4/38, and the average

value is about 15%.

4.3 Results of Fits to the Efficiency-Corrected Data

Figure 4.10 shows the efficiency-corrected cosθh(Λ0) distribution. The yield

and its uncertainty after corrections is listed in Table 4.1 for each interval.
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Figure 4.10: The efficiency-corrected cosθh distribution for Ξ0
c → Ω−K+ data. The

dashed curve corresponds to expression (2), which allows for a possible asymmetry
through the parameter β. The solid curve represents the fit to the data with β = 0.

The chi-squared probability values for fits to the angular distribution functions

given in section 4.1 are given in Table 4.2. The dashed curve corresponds to a fit of

the JΩ = 3/2 parameterization of Eq. 4.4 and yields β = 0.04 ± 0.06. Since the fit

probability is good (64%), this indicates that the data show no significant asymmetry

and so β is set to 0. The solid curve represents the fit to the data with β = 0 and

actually yields a slightly better probability because of the extra degree of freedom.

The efficiency-corrected cosθh(Λ) distribution with fits corresponding to Eqs. 4.3

and 4.5 is shown in Fig. 4.11. The solid (dashed) line represents the expected distri-

bution for JΩ = 1/2 with β = 0 (β �= 0), while the solid (dashed) curve corresponds

to JΩ = 5/2 with β = 0 (β �= 0); the fit results are indicated in Table 4.2, and the

corresponding fit probabilities are extremely small.

The forward-backward asymmetry A = F−B
F+B

, of the efficiency-corrected cosθh(Λ)
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Figure 4.11: The efficiency-corrected cosθh distribution for Ξ0
c → Ω−K+ data. The

solid (dashed) line represents the expected distribution for JΩ = 1/2 with β = 0
(β �= 0), while the solid (dashed) curve corresponds to JΩ = 5/2 with β = 0 (β �= 0).

Table 4.2: The fit probabilities corresponding to Ω− spin hypotheses 1/2, 3/2 and
5/2, assuming JΞc = 1/2.

JΩ Fit χ2/NDF Fit probability Comment

1/2 100.4/9 1 × 10−17 (β = 0) Fig. 4.11, solid line

1/2 100.4/8 3 × 10−18 (β = 0.02 ± 0.11) Fig. 4.11, dashed line

3/2 6.5/9 0.69 (β = 0) Fig. 4.10, solid curve

3/2 6.1/8 0.64 (β = 0.04 ± 0.06) Fig. 4.10, dashed curve

5/2 47.6/9 3 × 10−7 (β = 0) Fig. 4.11, solid curve

5/2 45.3/8 3 × 10−7 (β = 0.12 ± 0.08) Fig. 4.11, dashed curve

distribution of Fig. 4.10, where B and F represent the number of signal events satis-

fying cosθh(Λ) ≤ 0 and cosθh (Λ) ≥ 0, respectively, is 0.001± 0.019. This value shows

quantitatively that the distribution has no significant asymmetry and corroborates

the results given by the fits of of Figs. 4.10 and 4.11.

Clearly, the only viable possibility is that the Ω− has spin 3/2, provided the
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Ξ0
c has spin 1/2.

For Ω− spin greater than 5/2, the predicted angular distributions peak even

more strongly at cosθh(Λ) ∼ ±1, and have 2JΩ −2 turning points, and so such values

may be discounted.

4.4 Exclusive Ω− Production in Ω0
c → Ω−π+ Decay

The Ω− spin measurement obtained from the Ξ0
c → Ω−K+ sample is cor-

roborated using a much smaller data sample resulting from Ω0
c → Ω−π+, with

Ω− → ΛK−.

The Ωc baryon is presumed to belong to the 6 representation of an SU(3)

JP = 1/2+ multiplet; as a result the angular distribution of Ω’s produced exclusively

from the decay of this charm baryon is expected to be α(1 + 3cos2θh).

Due to the limited statistics, a mass-sideband subtraction method is used to

extract the number of signal events in each interval of cosθh(Λ). The Ω0
c signal region

corresponds to the mass range 2.677 to 2.711 GeV/c2; the left and right mass-sideband

regions are defined as (2.643, 2.660) GeV/c2 and (2.728, 2.745) GeV/c2, respectively

(cf. Fig. 3.5 (b)).

Figure 4.12 shows the uncorrected cosθh(Λ) distribution. The curve shown

corresponds to a fit of the function α(1 + 3cos2θh) with χ2/NDF = 7.3/9 and a

probability of 61%.

The efficiency as a function of cosθh(Λ) shown in Fig. 4.13 is obtained from

Signal MC and is parameterized with a fourth order polynomial; the fit has χ2/NDF



83

)Λ(hθcos
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

E
n

tr
ie

s/
0.

2

0

5

10

15

20

25

30

35

40

Figure 4.12: The mass-sideband-subtracted uncorrected cosθh(Λ) distribution in data
for the Ω0

c signal events.

of 61.5/91 and a corresponding probability of 90%.

After correcting the spectrum by the efficiency calculated in each bin from

the parametrization obtained from the MC, the distribution shown in Fig. 4.14 is

obtained; it is consistent with the helicity cosine distribution hypothesis for a spin

1/2 to 3/2 transition. The fit to the corrected distribution with a function α(1 +

3cosθ2
h(Λ)) has a χ2/NDF of 6.5/9 and a probability of 69%. Although, when letting

the β parameter free in the fit for the parametrization corresponding to the spin 3/2

hypothesis for the Ω− (as done in section 4.3), β = 0.4±0.2 is obtained; the calculated

value for the forward-backward asymmetry is A = F−B
F+B

= 0.013 ± 0.058, which

corroborates the previously established observation that the angular distribution is

symmetric.
The chi-squared probability values for fits to the angular distribution functions

of Eqs. 4.3 and 4.5 with β = 0 are given in Table 4.3.
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Figure 4.13: The detection efficiency for Ω0
c → Ω−π+ as a function of cosθh(Λ); the

curve is obtained from the fit of a fourth-order polynomial to the measured values.

)Λ(hθcos
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

E
n

tr
ie

s/
0.

2

0

50

100

150

200

250

Figure 4.14: The efficiency corrected cosθh(Λ) distribution in data for the Ω0
c signal

events using the mass-sideband-subtraction method; the curve corresponds to a fit of
the function α(1 + 3cos2θh(Λ)) to the data points.
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Table 4.3: The fit probabilities corresponding to Ω− spin hypotheses 1/2, 3/2 and
5/2, assuming JΩc = 1/2 and β = 0.

JΩ Fit χ2/NDF Fit probability Comment

1/2 14.6/9 0.10 Fig. 4.15, solid line

3/2 6.5/9 0.69 Fig. 4.14, solid curve

5/2 13.1/9 0.16 Fig. 4.15, dashed curve

The lack of statistics in this mode compared to the Ξ0
c → Ω−K+ sample, is

such that the uncertainty in the fits is much larger. Thus, the fit probability assuming

that the Ω0
c has spin 1/2, and the Ω− has spin 3/2 does not differ as strongly from

the other hypotheses considered as for Ξ0
c → Ω−K+. Nevertheless, it is clear that if

the Ω0
c has spin 1/2, spin value of 3/2 is preferred for the Ω−.
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Figure 4.15: The efficiency corrected cosθh(Λ) distribution in data for the Ω0
c signal

events using the mass-sideband-subtraction method; the curves correspond to the fits
described in the text.
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4.5 The Use of Legendre Polynomial Moments in

Spin Determination

For Ω− spin J , the angular distributions obtained in the previous section can

be written (after efficiency-correction and background subtraction):

dN

dcosθh
= N

[
lmax∑
l=0

〈Pl〉Pl (cosθh)

]
, (4.6)

where lmax = 2J − 1, and if l is odd 〈Pl〉 = 0. The normalized Legendre Polynomials

satisfy

∫ 1

−1

dcosθhPi (cosθh) Pj (cosθh) = δi j ; (4.7)

so that

∫ 1

−1

dN

dcosθh
Pl (cosθh) dcosθh = N〈Pl〉 ≈

N∑
j=1

Pl

(
cosθhj

)
(4.8)

Each assumption for J defines lmax, so that 〈Pl〉 = 0 for l > lmax and 〈Pl〉 is calculable.

The relation

N∑
j=1

Plmax

(
cosθhj

)
〈Plmax 〉

= N (4.9)

implies that the number of Ω− signal events in a given mass bin is obtained by giving

each event, j, in that bin, a weight

wj =
Plmax

(
cosθhj

)
〈Plmax 〉

. (4.10)

In particular, for J = 3/2, giving each event a weight wj =
√

10P2(cosθhj
) projects

the complete Ω− signal, where the distribution of Ni =
∑

j wj is called the PL(cosθh )
〈Plmax 〉
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moment distribution. In order to test the J = 5/2 hypothesis, each event is given a

weight wj = 7√
2
P4(cosθhj

).

The effect of this weighting procedure on data is demonstrated by using the

Ξ0
c → Ω−K+ candidate sample of Fig. 3.4(a), but with no p∗ cut in order to increase

the signal size. The corresponding Ω−K+ invariant mass distribution is shown in

Fig. 4.16, with signal and sideband regions as indicated, and the dependence of signal-

efficiency on cosθh(Λ) for this sample is a shown in Fig. 4.17.

Figures 4.18 and 4.20 show the Ω− invariant mass distributions correspond-

ing to the Ξ0
c → Ω−K+ mass-signal region (2.452 < m < 2.488 GeV/c2) indicated

Fig. 4.16. The solid histogram represents the efficiency-corrected (using the efficiency

parametrization of Fig. 4.17), unweighted Ω− mass spectrum, while the open cir-

cles represent the efficiency-corrected (Fig. 4.18(a))
√

10P2(cosθh) and (Fig. 4.20)

7/
√

2P4(cosθh) moments of the distribution. As expected, the
√

10P2(cosθh) moment

projects out the Ω− signal, whereas the 7/
√

2P4(cosθh) moment does not.

Figure 4.18(b) shows the efficiency-corrected Ω− mass spectrum corresponding

to Ξ0
c low- and high-mass sideband regions (Fig. 4.16), each of width 6-σ (i.e. 2.398 <

m < 2.434 and 2.506 < m < 2.542 GeV/c2, respectively). The peak indicates

that the Ξ0
c mass-sidebands contain real Ω− events. However, since these Ω−’s are

not produced from real Ξ0
c candidates, the corresponding

√
10P2(cosθh(Λ)) moment

distribution has no structure. Thus, the effect of weighting each event j by the factor

(< P2 >)−1 P2(cosθj ) is to project away background candidates from the invariant

mass spectrum.
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Figure 4.16: The Ω−K+ invariant mass spectrum in data for Ξ0
c candidates with no

p∗ cut (c.f. Fig. 3.4(a)). The solid red lines delimit the selected signal region and
the dotted blue lines, the low and high mass-sideband regions, used in the analy-
sis. The superimposed curve represents a fit with a double Gaussian to parametrize
the Ξ0

c signal and a linear function to describe the background lineshape. This fit
(χ2/NDF = 60.9/73, prob=0.84) gives a total yield of 1153 ± 124 and an r.m.s. of
7.7 ± 0.8 MeV.
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Figure 4.17: The efficiency calculated from Ξ0
c → Ω−K+ Signal Monte Carlo as a

function of cosθh(Λ). The superimposed green curve represents a fit to the distribution
with an 8th order polynomial function (χ2/NDF = 12.6/11 prob. = 0.32).
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Figure 4.18: The efficiency-corrected normalized
√

10P2(cosθh(Λ)) moment distribu-
tions (open circles) as a function of theΩ− invariant mass obtained from Ξ0

c → Ω−K+

events corresponding to (a) the Ξ0
c mass-signal region, (b) the Ξ0

c mass-sideband re-
gions (Fig. 4.16); the solid histogram shows the efficiency-corrected, unweighted Ω−

mass spectrum for (a) the mass-sideband-subtracted Ξ0
c mass-signal region, (b) the

Ξ0
c mass-sideband regions . The histograms have been scaled by the overall efficiency

factor of 0.14.
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Figure 4.19: The χ2 calculated between the unweighted Ω− mass spectrum (solid
histogram) and the normalized moment

√
10P2(cosθh(Λ)) distribution (open circles)

of Fig. 4.18; for the Ξ0
c signal region (red), and the Ξ0

c mass-sideband regions (blue).

A χ2 is then computed between the Ω− mass spectra (solid histograms) and

the normalized moment distributions (open circles) of Figs. 4.18 and 4.20. The results

are shown in Figs. 4.19 and. 4.21.

As expected, the χ2 value for the Ξ0
c mass-sideband regions distributions is

large, in particular in the signal region of the Ω−, which corroborates the finding

that these Ω− candidates are not produced from Ξ0
c signal events. The χ2 distribu-

tion obtained for the 7/
√

2P4(cosθh(Λ)) weighting is also very poor, as indicated by

Fig. 4.21.

The use of Legendre polynomial moments illustrated here will prove to be use-

ful in connection with the spin determination of hyperon resonances to be presented

in chapters 5 and 6.
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Figure 4.20: The efficiency-corrected normalized 7/
√

2P4(cosθh(Λ)) moment (open
circles) as a function of the Ω− invariant mass obtained from Ξ0

c → Ω−K+ events;
the solid histogram shows the efficiency-corrected, unweighted Ω− mass spectrum for
the Ξ0

c mass-signal region, after mass-sideband-subtraction. The distributions have
been scaled by the overall efficiency factor of 0.14.
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Figure 4.21: The χ2 calculated between the unweighted Ω− mass spectrum (solid
histogram) and the 7√

2
P4(cosθh(Λ)) weighted distribution (open circles) of Fig. 4.20.



92

4.6 The Implications of JΞc = 3/2

The analyses presented in the prior section of this chapter have relied on the

assumption that the parent charm baryon has spin 1/2. The implications of charm

baryon spin 3/2 for the spin of the Ω− are now considered.

As the observed helicity cosine distribution has no forward-backward asym-

metry, the Λ angular distributions for JΞc = 3/2 and different spin hypotheses for the

Ω− are (neglecting the asymmetric term):

JΩ = 1/2 : 1 (4.11)

JΩ = 3/2 : (1 + 3 cos2θh) + 2x (1 − 3 cos2θh) (4.12)

JΩ = 5/2 : (10 cos4θh − 4 cos2θh + 2) − x (25 cos4θh − 18 cos2θh + 1). (4.13)

where, x = ρ3/2 + ρ−3/2 and Tr(ρ) = 1. [The details of the derivations are given in

Appendix A, section A.2.] Note that if x = 0.5 expressions 4.11 and 4.12 yield a flat

distribution, and Eq. 4.13 becomes becomes

JΩ = 5/2 : −5 cos4θ + 10 cos2θ + 3,

i.e. for JΩ = 5/2, x = 0.5

dN

d cosθh
∝ −5 cos4θh + 10 cos2θh + 3, (4.14)

which has a minimum at cosθh = 0, maxima at cosθh = ±1, as can be seen from

Fig. 4.22. If x is allowed to vary, the best fit to the data has x = 0.4, which corresponds

to

dN

d cosθh
∝ 1 + 2 cos2θh; (4.15)
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Figure 4.22: The efficiency-corrected cosθh distribution for Ξ0
c → Ω−K+ data; the

curves correspond to the possible distributions for JΞc = 3/2 and JΩ = 5/2 (β = 0).
The solid curve corresponds to ρ1/2 +ρ−1/2 = 0.4, while the dashed curve corresponds
to ρ1/2 + ρ−1/2 = 0.5.

the quartic term is thus cancelled. This fit is represented by the solid curve of

Fig. 4.22; it has χ2/NDF of 7.06/8 and a probability of 0.53. If it is assumed that

the density matrix elements of the parent baryon are equally polulated, x = 0.5, and

the fit (represented by the dashed curve in Fig. 4.22) has χ2/NDF of 9.02/9 and a

probability of 0.44. From this result, we conclude that although for JΞc = 3/2, the

hypothesis JΩ = 1/2 is ruled out, and JΩ = 3/2 may reasonably be considered dis-

favored on the basis of the polarization study described in Appendix A, section A.3,

the hypothesis JΩ = 5/2 is entirely acceptable.

4.7 Summary

In summary, the angular distribution of the decay products of Ω− baryon,

resulting from theΞ0
c andΩ0

c decays is consistent with being of the form α(1+3cos2θh).
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This observation is consistent with spin assignments 1/2 for the Ξ0
c and the Ω0

c and

3/2 for the Ω−. Spin values of 1/2 and 5/2 (obtained from Ξ0
c decays) for the spin

of the Ω− are excluded at the 99% confidence level.

If the spin of the Ξ0
c is 3/2, spin 1/2 for the Ω− is excluded and spin 3/2 is

disfavored on the basis of a polarization study. However, spin 5/2 yields perfectly

acceptable fits to the observed angular distribution.

There are ongoing BABAR analyses which in principle provide direct informa-

tion on charm baryon spin (e.g. B → Λ+
c p̄), but statistical limitations may prevent a

definitive result in the near future.
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CHAPTER 5
STUDY OF THE Ξ(1690)0 RESONANCE PRODUCED IN

Λ+
c → ΛK̄0K+ DECAY

5.1 Extending the Ω− Spin Formalism

to Quasi-two-body Λ+
c Decay

In the present chapter, and in chapter 6, the two-body-decay formalism devel-

oped in chapter 4 in order to establish the spin of the Ω− is extended to the study

of charm baryon quasi-two-body decay modes of the type Λ+
c → K+Ξ∗0, where Ξ∗0

denotes a resonant Cascade state which decays strongly (i.e. has significant decay

width) to a hyperon-pseudoscalar meson final state. As in chapter 4, it is assumed

that the parent charm baryon, in this case the Λ+
c , has spin 1/2. Parity is conserved

in such Ξ∗ decays so that, in the notation of chapter 4,

∣∣AJ
1/2

∣∣ =
∣∣AJ

−1/2

∣∣ ,
where J denotes the Ξ∗ spin. As a consequence, the asymmetric terms in Eqs. 4.3-4.5

vanish (i.e. β = 0), and the expected angular distributions for Ξ∗ spin 1/2, 3/2 and

5/2 are much simplified.

However, as is well known, there is no free lunch, and the analyses of interest

are found to be rendered rather complex as a result of strong interaction effects in

the three-body final states studied.

In chapter 6, the analysis is focused on the decay sequence Λ+
c → K+Ξ(1530)0,

Ξ(1530)0 → Ξ−π+, however strong interaction Ξ−π+ amplitudes other than that

responsible for the Ξ(1530) are found to be present. These result in interference
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effects which greatly complicate the understanding of the Ξ(1530) although it turns

out that they do exhibit behavior which is interesting in its own right.

The goals of the analysis described in the present chapter are to obtain precise

values for the mass and width parameters of the Ξ(1690)0, and to determine its

spin via the decay sequence Λ+
c → K+Ξ(1690)0, Ξ(1690)0 → ΛK̄0. In this case

complications arise because the three-body final state K+K̄0Λ exhibits clear evidence

for the presence of a sizeable contribution resulting from the process Λ+
c → a0(980)+Λ

with a0(980)+ → K+K̄0. The amplitudes describing this decay interfere with those

describing decay via Ξ(1690)0, such that extraction of the properties of the latter

requires an isobar model description of the entire Dalitz plot corresponding to the

ΛK̄0K+ final state.

5.2 Present Status of the Ξ(1690)

The Ξ(1690) has been observed in its ΛK̄, ΣK̄ and Ξπ decay modes with var-

ious degrees of certainty. However, its quantum numbers have not yet been measured.

The first evidence for the Ξ(1690) came from the observation of a threshold enhance-

ment in the Σ+,0K− mass spectrum produced in the reaction K−p → (Σ+,0K−)Kπ

at 4.2 GeV/c in a bubble chamber experiment [42]. There were also indications of

signals in the ΛK̄0 and ΛK− channels. Subsequently, the Ξ(1690)− was observed in a

hyperon beam experiment at CERN, in which an enhancement around 1700 MeV/c2

was seen in ΛK− pairs diffractively produced by a 116 GeV/c Ξ− beam [43, 44]. The

Ξ−π+ decay mode of the Ξ(1690)0 was first reported by the WA89 Collaboration on
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the basis of a clear peak in the Ξ−π+ mass spectrum resulting from the interactions

of a 345 GeV/c Σ− beam in copper and carbon targets [45]. Evidence of Ξ(1690)0

production in Λ+
c decay was reported by the Belle experiment, on the basis of 246±20

Λ+
c → (Σ+K−)K+ and 363 ± 26 Λ+

c → (ΛK̄0)K+ events [46].

5.3 Two-body Invariant Mass Projections

The present analysis concerns the Dalitz plot corresponding to Λ+
c → ΛK̄0K+

decays with the aim of obtaining mass, width and spin information on the Ξ(1690)0

via its ΛK̄0 decay mode. The sample of Λ+
c candidate events is selected as described

previously in section 3.3, and results from a BABAR integrated luminosity of ∼ 200

fb−1.

Figures 5.1- 5.3 show the invariant mass projections in data. In (a) the black

histogram represents the uncorrected (i.e. without efficiency-correction) invariant

mass projection corresponding to the Λ+
c signal region, while the solid red and blue

dots represent the uncorrected mass projections corresponding to the Λ+
c high- and

low-mass sideband regions, respectively; (b) shows the uncorrected Λ+
c mass-sideband-

subtracted invariant mass projection; and (c) shows the efficiency-corrected1 Λ+
c mass-

sideband-subtracted invariant mass spectrum. In each of Figs. 5.2 and 5.3, the thresh-

old mass value has been subtracted from the invariant mass in order to show clearly

the behavior near threshold.

The efficiency-corrected Λ+
c mass-sideband-subtracted m(ΛKS) distribution

1Each selected event is weighted by the inverse value of the relevant efficiency, which is
parametrized as described in Appendix B.
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(Fig. 5.1(c)) exhibits a clear peak which is consistent with the Ξ(1690)0. The skew-

ing of the peak toward high mass proves to be an important feature of the ob-

served Ξ(1690)0 lineshape. The Λ+
c mass-sideband-subtracted m(KSK

+) distribution

(Fig. 5.2(c)) shows the accumulation of events near KSK
+ threshold observed in the

Dalitz plot of Fig. 5.6, discussed later in this section. The distribution turns over near

threshold, but does not drop to zero as would be expected because of phase-space

suppression. This indicates the presence of significant dynamical effects in the K̄0K+

system in this region, which, as described below in the analysis of the Dalitz plot,

results from proximity to the a0(980)+ resonance mass position, and the existence of

a significant Λ+
c → Λa0(980)+ decay mode.

There is no evidence for structure in the corrected ΛK+ mass distribution of

Fig. 5.3(c).
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Figure 5.1: The ΛKS invariant mass projection in data. In (a) the black histogram
represents the uncorrected (i.e. without efficiency-correction) ΛKS invariant mass
projection corresponding to the Λ+

c signal region, and the solid red and blue dots
represent the uncorrected ΛKS mass spectrum corresponding to the Λ+

c high- and
low-mass sideband regions, respectively; (b) shows the uncorrected Λ+

c mass-sideband-
subtracted ΛKS invariant mass projection, and (c) shows the efficiency-corrected Λ+

c

mass-sideband-subtracted ΛKS invariant mass projection.
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Figure 5.2: The KSK
+ invariant mass projection in data. In (a) the black histogram

represents the uncorrected KSK
+ invariant mass projection corresponding to the Λ+

c

signal region, and the solid red and blue dots represent the uncorrected KSK
+ mass

spectrum corresponding to the Λ+
c high- and low-mass sideband regions, respectively;

(b) shows the uncorrected Λ+
c mass-sideband-subtracted KSK

+ invariant mass pro-
jection, and (c) shows the efficiency-corrected Λ+

c mass-sideband-subtracted KSK
+

invariant mass projection. In each figure, the KSK
+ threshold mass value has been

subtracted from the invariant mass in order to show clearly the behavior close to the
a0(980)+ mass position.
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Figure 5.3: The ΛK+ invariant mass projection in data. In (a) the black histogram
represents the uncorrected ΛK+ invariant mass projection corresponding to the Λ+

c

signal region, and the solid red and blue dots represent the uncorrected ΛK+ mass
spectrum corresponding to the Λ+

c high- and low-mass sideband regions, respectively;
(b) shows the uncorrected Λ+

c mass-sideband-subtracted ΛK+ invariant mass pro-
jection, and (c) shows the efficiency-corrected Λ+

c mass-sideband-subtracted ΛK+

invariant mass projection. In each figure, the ΛK+ threshold mass value has been
subtracted from the invariant mass in order to show clearly the behavior near thresh-
old.
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5.4 Legendre Polynomial Moments for

the ΛK̄0 System

The procedures demonstrated in section 4.5 can be applied in the context

of quasi-two-body decays to investigate hyperon resonance spin by obtaining the

mass-dependent Legendre polynomial moment projections for the relevant mass spec-

trum. In order to test the hypothesis JΞ(1690) = 3/2, the weighted efficiency-corrected

m(ΛKS) distribution is obtained for events in the Λ+
c signal region by assigning to

each event i, a weight wi =
√

10P2(cosθΛi
), where θΛ is defined for Ξ(1690) decay

just as illustrated in Fig. 4.1 for Ω− decay. If the spin of the Ξ(1690) were 3/2, as for

the Ω−, the effect would be to project away the background such that the number

of weighted events would be consistent with the total number of signal events seen

in Fig. 5.1 (c). Fig. 5.4 (a) shows the efficiency-corrected
√

10P2(cosθΛ) moment dis-

tribution as a function of m(ΛKS); clearly there is no evidence for such a signal in

the Ξ(1690)0 mass region. Similar conclusions are drawn from the distribution of the

7/
√

2P4(cosθ(Λ)) moment shown in Fig. 5.4 (b), and for those obtained for higher

even-order Legendre polynomial moments (not shown).

This suggests that the spin of the Ξ(1690) is 1/2, and leads to the expecta-

tion that the cosθΛ distribution in data corresponding to the Ξ(1690)0 signal region

(1.665< m(ΛKS) <1.705 GeV/c2) should be flat. However, as shown in Fig. 5.5, this

distribution is not at all flat, but exhibits an almost linear tripling of intensity as

cosθΛ increases from −1 to +1. In order to investigate this effect, the Dalitz plot for

the decay Λ+
c → ΛK̄0K+ is next studied in detail.
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Figure 5.4: The efficiency-corrected moments as a function of m(ΛKS) corresponding
to the Λ+

c signal region: (a)
√

10P2(cosθΛ) and (b) 7/
√

2P4(cosθΛ).
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Figure 5.5: The efficiency-corrected, background-subtracted cosθΛ distribution in data
for the Λ+

c signal region for 1.665< m(ΛKS) <1.705 GeV/c2.

5.5 The Dalitz plot for Λ+
c → ΛK̄0K+

Evidence for a0(980)+ Production

The Dalitz plot for Λ+
c → ΛK̄0K+ signal candidates is shown, without efficiency-

correction, in Fig. 5.6(a). A clear band is observed in the mass-squared region of the

Ξ(1690)0, together with an accumulation of events near K̄0K+ threshold at the upper

boundary of the Dalitz plot; since the a0(980)+ is the only known I = 1 meson state

in the accessible K̄0K+ mass range (m(K̄0K+) < 1.17 GeV/c2), this is indicative

of the occurrence of the weak decay Λ+
c → Λa0(980)+ where the a0(980)+ decays

strongly into K̄0K+.

In contrast, the Dalitz plots corresponding to the Λ+
c mass-sideband regions

(Fig. 5.6(b) and (c)) exhibit no structure.
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Figure 5.6: The Dalitz plots for Λ+
c → ΛK̄0K+ candidates. The distribution in (a) is

for the Λ+
c signal region, and those in (b) and (c) are for the Λ+

c high- and low-mass
sideband regions indicated in Fig. 3.7.
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5.6 Mass and Width Measurement of the Ξ(1690)0

Assuming J = 1/2

The properties of the Ξ(1690)0 are extracted from a two-dimensional fit to the

rectangular Dalitz plot of cosθΛ versus m(ΛKS) corresponding the Λ+
c signal region

(Fig. 5.7).

The kinematics and phase-space properties of this type of plot are discussed at

the beginning of Appendix B, and the simple procedure followed in order to represent

the reconstruction efficiency at any point in the rectangular Dalitz plot is explained

in detail also in this Appendix. This simple approach to efficiency parametrization

readily lends itself to descriptions of the rectangular plots corresponding to the Λ+
c

sideband regions, and thus by interpolation to a two-dimensional representation of

the incoherent background contribution to the Λ+
c signal region of Fig. 5.7.

2)/5 MeV/cS KΛm(
1.62 1.64 1.66 1.68 1.7 1.72 1.74 1.76 1.78

/0
.1

Λθ
co

s

-1

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

Figure 5.7: The rectangular Dalitz plot of cosθΛ versus m(ΛKS) corresponding the
Λ+

c signal region. The dashed line indicates the approximate Ξ(1690)0 mass; the
solid curve indicates the locus corresponding to the a0(980) central mass value of 999
MeV/c2.
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In the fit procedure described in the following sections, it is assumed first that

the Ξ(1690) has spin 1/2 2, since this choice seems favored by the moments analysis

of section 5.2.

The ingredients necessary in order to fit the data distribution of Fig. 5.7 are:

• an efficiency parametrization as a function of m(ΛKS) and cosθΛ

• after efficiency-correction, a description as a function of m(ΛKS) and cosθΛ of the

incoherent background present in the Λ+
c mass-signal region.

• a description of the dependence of the (ΛKS) mass resolution on m(ΛKS).

These topics are discussed separately in sections 5.6.1-3 prior to a description

of the actual fit procedure.

5.6.1 Efficiency Parametrization as a Function

of m(ΛKS) and cosθΛ

The reconstruction and selection efficiency is determined from a simulated

sample of Λ+
c → ΛK̄0K+ Monte Carlo (MC) events uniformly distributed on the

Dalitz plot (i.e. a phase-space distribution). The procedure followed is described in

detail in Appendix B. For a given mass interval in m(ΛKS), the angular dependence

of the efficiency is described by an expansion in terms of Legendre polynomials, with

L = 6, as follows:

E(cosθΛ,m(ΛKS)) = E0(m) + E1(m)P1(cosθΛ) + ...+ EL(m)PL(cosθΛ). (5.1)

2The spin 3/2 and 5/2 hypotheses will be considered later.
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The (ΛKS) mass dependence of the coefficients E0, ...EL is obtained by interpola-

tion, so that the efficiency can be evaluated at any point in Fig. 5.7. Each selected

event can then be weighted inversely according to its efficiency obtained from this

parametrization, and in this way efficiency-corrected distributions are obtained.

The average efficiency is found to vary from ∼ 14% at ΛKS threshold to

∼ 15.5% at the maximum accessible mass value, and the dependence on cosθΛ is very

weak (see Appendix B), so that the net effect of efficiency-correction on the Dalitz

plot analysis is quite small.

5.6.2 Background Parametrization as a Function

of m(ΛKS) and cosθΛ

In order to fit the Dalitz plot of Fig. 5.7, the ΛKS mass is restricted to the

range 1.615 ≤ m(ΛKS) ≤ 1.765 GeV/c2. This is done in order to accommodate the

mass-smearing procedure described in the next section as it affects the fit to the data.

The loss of integrated function contribution from the fit region 1.615 ≤ m(ΛKS) ≤

1.765 GeV/c2 due to smearing can then be compensated properly by the smeared

contributions from the regions below 1.615 GeV/c2and above 1.765 GeV/c2.

This restriction of ΛKS mass range has a small effect on the estimated back-

ground contribution in the Λ+
c signal region. This can be seen by comparing the

Λ+
c candidate mass distribution before (Fig. 3.7) and after (Fig. 5.8) the restriction.

The effect is to slightly reduce the slope of the background and the estimate of the

number of background events in the signal region indicated in Fig. 5.8. The curve
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in Fig. 5.8 results from a binned χ2 fit using a double Gaussian signal function and

linear background function. A similar fit to the distribution of Fig. 5.8, after the

efficiency-correction procedure of section 5.6.1 has been applied, yields corrected es-

timates of 18810± 764 signal events and 9392± 237 background events in the signal

region denoted by the solid vertical lines. The efficiency-corrected rectangular Dalitz

plot for the background in the signal region which results from the high- and low-

mass sideband regions (indicated by the dashed vertical lines in Fig. 5.8) is therefore

normalized to 9392 events and then allowed to vary by ±237 events in order to obtain

estimates of systematic uncertainty in the mass and width parameter values of the

Ξ(1690) associated with the treatment of background.

The method chosen to parametrize the sideband rectangular Dalitz plots is

very similar to that used to parametrize the efficiency.
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Figure 5.8: The invariant mass distribution of uncorrected ΛKSK
+ candidates cor-

responding to the restriction 1.615 ≤ m(ΛKS) ≤ 1.765 GeV/c2. The superimposed
curve is explained in the text.
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In a given m(ΛK̄0) interval, the distribution of events in cosθΛ may be de-

scribed by the expression:

dN

dcosθΛ
= N (< P0 > P0(cosθΛ)+ < P1 > P1(cosθΛ) + ...+ < PL > PL(cosθΛ)) , (5.2)

where
∫ 1

−1
Pi(cosθΛ)Pj (cosθΛ)dcosθΛ = δij as previously, and N is the efficiency-

corrected total number of events. The orthogonality of Legendre polynomials then

yields

N < Pj >=

∫ 1

−1

Pj(cosθΛ)
dN

dcosθΛ
dcosθΛ. (5.3)

The integral is approximated by

Nobs∑
i=1

Pj (cosθΛi
)wi ,

where wi is the weight due to efficiency-correction, and the index i runs over the

observed events in this mass interval I, so that

N < Pj >∼
Nobs∑
i=1

Pj (cosθΛi
)wi . (5.4)

The range of m(ΛK̄0) from near threshold (1.615 GeV/c2) to the upper limit

(1.765 GeV/c2) is divided into four equal intervals, for both the low- and high-mass Λ+
c

sidebands; for each interval, the efficiency-corrected number of events, N , is obtained,

and the coefficients Cj = N < Pj > (j > 0) are calculated; it is found that L = 4

provides an adequate description of the data. The efficiency-corrected distributions

and curves obtained using expression 5.2 are shown in Fig. 5.9 and Fig. 5.10 for the

low- and high-mass sideband regions, respectively; the corresponding values of N and

of the Cj coefficients are shown in Fig. 5.11.
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The representation of the background distribution in the signal region is ob-

tained by first of all averaging the low- and high-mass values for N and Cj shown in

Fig. 5.11, to yield the average values, < N > and < Cj > plotted in Fig. 5.12. An in-

terpolation procedure is then required to specify the cosθΛ dependence at a particular

ΛKS mass value. For < N >, the data are well-represented by a quadratic function

multiplied by a two-body phase space factor, as shown by the blue curve. For the

coefficients < Cj >, quadratic fit functions are used in the primary analysis, and a

linear interpolation procedure is used to study systematic uncertainties associated

with this procedure. In each case, the integral over the rectangular Dalitz plot for

1.615 ≤ m(ΛKS) ≤ 1.765 GeV/c2 of the resulting distribution is normalized to the

estimated number of efficiency-corrected background events in the signal region, as

indicated at the beginning of this section.

The outcome of this procedure is illustrated in Fig. 5.13. The black dots repre-

sent the averaged low- and high-mass sideband projections of the rectangular Dalitz

plots, while the open blue (red) dots result from the quadratic (linear) interpola-

tion procedure. Both procedures give almost indistiguishable results, and provide

excellent representations of the averaged sideband behavior. There is no significant

structure in either projection, and for cosθΛ, the observed oscillation above a flat

distribution has a maximum amplitude of only ∼ 5%. Consequently, the corrections

for this background behavior should have little impact on the outcome of the Dalitz

plot analysis.
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Figure 5.9: The efficiency-corrected cosθΛ distributions corresponding to the four 37.5
MeV/c2 intervals from m(ΛKS) = 1.615 GeV/c2 to m(ΛKS) = 1.765 GeV/c2 for the
Λ+

c low-mass sideband region. Superimposed are curves representing the function
dN/dcosθΛ = N

(
1
2

+ ...+ < P4(m) > P4(cosθΛ)
)
.
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Figure 5.10: The efficiency-corrected cosθΛ distributions corresponding to the four
37.5 MeV/c2 intervals from m(ΛKS) = 1.615 GeV/c2 to m(ΛKS) = 1.765 GeV/c2

for the Λ+
c high-mass sideband region. Superimposed are curves representing the

function dN/dcosθΛ = N
(

1
2

+ ...+ < P4(m) > P4(cosθΛ)
)
.
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5.6.3 (ΛKS) Mass Resolution Function Parametrization

For a narrow resonance such as the Ξ(1690), the measurement of its mass

and width may be sensitive to detector resolution effects; in particular the apparent

width will tend to be larger than its true value. In addition, because of the fact

that resolution tends to increase with Q-value 3, it is necessary to study the mass-

dependence of the resolution function as a function of m(ΛKS). A parametrization

of the resolution lineshape is obtained, and it will then be incorporated into the fit

procedure used to measure the mass and width of the Ξ(1690), in order to extract

more precise values for these parameters.

The behavior of ΛKS mass resolution is investigated using reconstructed truth-

associated MC signal events. These events are divided into seven sub-samples corre-

sponding to 20 MeV/c2 intervals of reconstructed ΛKS mass in the range 1.615−1.755

GeV/c2, and the distribution of (generated-reconstructed) mass is obtained for each

sub-sample. Each distribution is well-described by a function composed of a core

Gaussian and a wide Gaussian, both centered at zero mass difference. The results

of fits using this functional form are summarized in Fig. 5.14. The mass dependence

of the sigma of the core (wide) Gaussian in Fig. 5.14 (a) ((b)) shows the expected

increase with increasing Q-value. The fractional yield associated with the wide Gaus-

sian (Fig. 5.14 (c)) oscillates about a value of ∼ 0.4, and so it was decided to fit

for the average value and to fix the fractional yield to the fitted value (0.38 ± 0.03)

obtained.

3Q-value is the difference between the invariant mass and its value at threshold.
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Figure 5.14: The m(ΛKS) dependence of the resolution function parameter values
obtained from Signal MC events as described in the text. The fitted average value of
the ratio of the yield of the wide Gaussian to the total yield (0.38±0.03) is represented
by the dashed line in (c).

The fit procedure was then repeated with the ratio of the yield of the wide

Gaussian to the total yield fixed to the value obtained from the fit shown in Fig. 5.14

(c), i.e. 0.38. The value of this ratio is subsequently varied by its uncertainty as part

of the study of the systematic uncertainty due to the resolution function lineshape.

The new results are shown in Fig. 5.15 (a) and (b), and correspond to the fixed

value of the yield ratio (Fig. 5.15 (c)). In order to interpolate the mass resolution

dependence, the measured values of Figs. 5.15 (a), (b) are fit with second order

polynomials, with the results shown by the curve in each figure. The net behavior
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of the mass resolution is represented by calculating the half-width-at-half-maximum

(HWHM) of the net fit function, and this behaves as shown in Fig. 5.15 (d).
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Figure 5.15: The resolution function parameters obtained using reconstructed Signal
MC events as described in the text. The distributions of the narrow and wide sigmas
are fitted to the second order polynomials represented by the curves in (a) and (b).
The net HWHM behavior is shown in (d). A yield ratio of 0.38 is obtained, as shown
in (c).

The following (ΛKS)-mass-dependent parametrization of the resolution func-

tion is obtained in this way:

R = (1 − r)G(σ1(m)) + rG(σ2(m))

with r = 0.38; G is a Gaussian function centered at zero and
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σ1(m) = −0.1042 + 0.1155m− 0.0315m2

σ2(m) = −0.1647 + 0.1805m− 0.0483m2,

where σ1 and σ2 represent the respective narrow and wide Gaussian r.m.s. deviation

values, and m = m(ΛKS). At m(ΛKS) ∼ 1.69 GeV/c2, the net resolution function

has HWHM ∼ 1.5 MeV/c2.

A similar resolution function for cosθΛ has been calculated using reconstructed

Signal MC events by taking the difference between the generated and reconstructed

values of cosθΛ for truth-associated events. The distribution, shown in Fig. 5.16,

is well represented by a triple Gaussian function. The HWHM for this fit function

is 0.015, which is well below the interval size (0.2) in cosθΛ used in the fits to the

rectangular Dalitz plot to extract the mass and width values of the Ξ(1690)0. For

this reason no cosθΛ smearing is incorporated in the fit procedure.
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Figure 5.16: The cosθΛ resolution function obtained using reconstructed Signal MC
events as described in the text. The superimposed lineshape consists of a triple
Gaussian function with a common mean. This fit has a χ2/NDF of 80.2/84 and a
probability of 0.60, and the net fit function has a HWHM of 0.015.
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5.6.4 Isobar Model Description of the Λ+
c → ΛK̄0K+

Dalitz Plot

It is shown in the remainder of section 5.6 that a model incorporating the

isobars characterizing Λa0(980)+ and Ξ(1690)0K+ decay of the Λ+
c gives an excellent

description of the Λ+
c → ΛK̄0K+ Dalitz plot. No additional isobars are needed in

order to accurately model the data. As such, the analysis not only provides precise

information on the properties of the Ξ(1690), but also constitutes the first observation

of the Λa0(980)+ decay mode of the Λ+
c charm baryon [22].

The amplitude describing the Ξ(1690)0 is chosen to be

A(Ξ [1690]) =
1

(m2
0 −m2) − im0Γ(m)

, (5.5)

where m0 = m(Ξ(1690)0) and m is the ΛKS invariant mass. Assuming that the ΛKS

system is in an S-wave state, and ignoring the contribution of other partial widths to

the total width, the latter is described by

Γ(m) = Γ(m0)
q

m

m0

q0
, (5.6)

where Γ(m0) is the total width parameter to be extracted from the data. It is assumed

that the Ξ(1690)0 is produced in an orbital angular momentum S-wave with respect

to the recoil K+, although P-wave is also allowed, and hence that no additional

form factor describing Λ+
c decay to Ξ(1690)0K+ is required. Effects due to possible

P -wave production and/or decay are considered in the context of systematic error

contributions (section 5.6.8).

The a0(980) is known to couple to both ηπ and K̄K, and is therefore charac-
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terized by the following (Flatté) parametrization:

A(a0[980]) =
gK̄K

m2
a −m2

K̄K
− ig2

K̄K

(
ρK̄K + 1

r2ρηπ

) . (5.7)

In this expression, ma and mK̄K correspond to the mass of the a0(980)+ and of the

(K̄0K+) system, respectively; ρj(m) = 2qj/m is the phase space factor for the decay

into the two-body channel j = ηπ, K̄K, and r = gK̄K/gηπ. It is assumed that the

a0(980)+ is produced in an S-wave orbital angular momentum state with respect to

the recoil Λ, although P-wave is also allowed, and hence that, as for the Ξ(1690)0K+

amplitude, no additional form factor describing the Λ+
c decay to the Λa0(980)+ final

state is required.

The Λa0(980)+ and Ξ(1690)0K+ amplitudes describe transitions between the

same initial and final state particles, and as such it is expected a priori that they

should be added coherently (i.e. with the possibility of interference) in order to

provide a description of the observed rectangular Dalitz plot intensity distribution.

In order to demonstrate experimentally the need for such coherence, an initial

attempt is made to describe the Dalitz plot intensity using an incoherent superpo-

sition of the Ξ(1690)0K+ and Λa0(980)+ contributions. The relevant distributions

are calculated as described in Appendix C, sections C.1 and C.2, respectively, and,

based on the moments analysis of section 5.4, it is hypothesized at present that the

Ξ(1690) has spin 1/2.

The Dalitz plot intensity, I(m, cosθΛ), for the incoherent superposition may



122

then be written

I = pq|A|2 (5.8)

with

|A|2 = C
[|p0A(Ξ [1690])|2 + |A(a0[980])|2]

= C
[
p2

0I1 + g2
K̄KI2

]
; (5.9)

p0 represents a constant relative strength of the amplitudes, C is a normalization

constant, and

M2 = (m2
a −m2

K̄K)

G2 = ρηπg
2
ηπ + ρK̄Kg

2
K̄K ,

M1 = (m2
0 −m2),

G1 = m0Γ(m), (5.10)

I1 =
1

M2
1 +G2

1

,

I2 =
1

M2
2 +G2

2

.

The mass of the (K̄0K+) system is a function of the kinematic variables of the

rectangular plot (i.e. in the rest-frame of the (ΛK̄0) system), and is given by:

mK̄K =
√
m2

K̄
+m2

K + 2 (EK̄EK − qp′cosθΛ), (5.11)

where q and p′ correspond to the 3-momenta, in the (ΛK̄0) rest-frame, of the Λ and

K+, respectively. Written explicitly in terms of m and cosθΛ, this becomes:

m2
K̄K = m2

K̄ +m2
K +

(
M2

Λc
− (m2

K +m2)
)
(m2 +m2

K −m2
Λ)

2m2

+cosθΛ

(
2MΛc

m

)
pq, (5.12)
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where

p =

√(
M2

Λc
− (mK +m)2

) (
M2

Λc
− (mK −m)2

)
2MΛc

is the momentum of the K+ in the Λ+
c rest-frame, and

q =

√
(m2 − (mK̄ +mΛ)2) (m2 − (mK̄ −mΛ)2)

2m

is the momentum of the Λ in the ΛK̄0 rest-frame.

The fit procedure followed is described in detail in sections 5.6.5 and 5.6.6 in

conjunction with the Dalitz plot fits using a coherent amplitude superposition. At

present, the results of applying that same procedure to the incoherent superposition

are simply summarized in Fig. 5.17 and Table 5.1. Clearly, inclusion of the a0(980)+

contribution greatly improves the description of the cosθΛ distribution, and of the non-

resonant contribution to the ΛKS mass distribution. The corresponding Dalitz plot fit

probability is 14% which seems acceptable. However, the resulting Ξ(1690) lineshape

deviates systematically from the observed distribution. This is shown explicitly in

Fig. 5.18, where the difference between the latter and the red histogram of Fig. 5.17

is plotted.

In the Ξ(1690) region, the phase of the a0(980)+ amplitude of Eq. 5.7 should be

approaching 180◦. In the absence of any additional overall phase w.r.t. the Ξ(1690)0

amplitude, interference would then be expected to yield a projected contribution

to the ΛKS mass distribution proportional to the real part of the Ξ(1690)0 BW

amplitude multiplied by (−1).

The curve superimposed on the distribution in Fig. 5.18 corresponds to just
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such a projection, with Ξ(1690)0 mass and width parameters fixed to the values of

Table 5.1. The fact that this curve gives an adequate representation of the data is an

indication that an improved description of the Dalitz plot can be obtained by using

a coherent superposition of the Ξ(1690)0K+ and Λa0(980)+ amplitudes.
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Figure 5.17: The projections of the efficiency-corrected, background-subtracted rect-
angular plot in data. The red histograms result from the fit function smeared by the
mass resolution function. The blue curve corresponds to the fit function with reso-
lution effects unfolded; the green and black curves represent the contributions to the
total fit function from the a0(980)+ and the Ξ(1690)0 amplitude squared, respectively.
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Under the assumption of spin 1/2 for the Ξ(1690), the total amplitude-squared

characterizing the intensity at a point in the Dalitz plot has no additional angular

structure due to Ξ(1690) spin and is therefore a simple coherent superposition of the

amplitudes of the Ξ(1690) and a0(980), as shown in Appendix C, section C.3, i.e. in

Eq. 5.8,

|A|2 = C
(
p2

0I1 + g2
K̄KI2 (5.13)

+2p0gK̄KI1I2k [(M1M2 + G1G2)cosδ + (G1M2 − G2M1)sinδ]) .

where k is an effective scale factor and δ is an effective phase between the two ampli-

tudes, and the other quantities are defined as in Eq. 5.8.

As discussed in Appendix C, section C.3, Lorentz boost effects between the

Λ+
c and ΛKS rest-frames are also taken into account through the use of the effective

parameters k and δ. The impact on the interference term of Eq. 5.13 due to the

associated Wigner rotations is expected to be small anyway, as discussed in section

5.8.

The ratio of coupling constants measured by the Crystal Barrel (CB) experi-

Table 5.1: The MIGRAD fit parameter values corresponding to Fig. 5.17.

Fit Parameter Value

Ξ(1690) Amplitude Relative Strength [MeV] (p0) 26.7 ± 11.4

Ξ(1690) Mass [MeV/c2] 1685.0 ± 0.7

Ξ(1690) Width [MeV] 9.7 ± 2.1

Overall Normalization Factor 1380.8 ± 1041.6

gK̄K [MeV] 303.2 ± 138.0

Coupling Ratio Squared (r2) 0.4 ± 0.3

Note: The likelihood value from Eq. 5.14 is 1562.5 for this fit.
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Figure 5.18: The difference between the mass projection of the efficiency-corrected,
background-subtracted rectangular plot in data and the fit function smeared by mass
resolution (histogram of Fig. 5.17 (a)). The curve superimposed corresponds to the
real part of the Breit-Wigner function characterizing the amplitude of the Ξ(1690)0,
with the mass and width parameters fixed to the fit result of Table 5.1, but multiplied
by (−1) to take account of the phase of the a0(980)+ (see text).

ment [48] is

g2
K̄K

g2
ηπ

= 1.03 ± 0.14

where, gηπ = 324 ± 15 MeV, and the value of the a0(980) mass obtained from this

experiment is 999 ± 2 MeV/c2.

In the fit procedure the ratio of coupling constants and the value of the gK̄K

coupling strength are free parameters. The mass of the a0(980) is fixed to the value

obtained by the CB experiment, but is then varied by its uncertainty in order to obtain

the related systematic error estimates. In addition, as part of the study of systematic

uncertainties due to the Flatté parametrization parameter values, the ratio of coupling

strengths is fixed to that from the CB experiment, and gK̄K is allowed to be a free

parameter in the fit.
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5.6.5 (ΛKS) Mass Resolution Smearing Procedure

As explained previously, it is important to incorporate (ΛKS) mass resolution

effects into the fit procedure, especially with regard to the measurement of the width

of the Ξ(1690)0. To this end, the (ΛKS) invariant mass range is divided into 0.1

MeV/c2 wide intervals from threshold to 1.78 GeV/c2, and for each such interval the

cosθΛ range is further divided into intervals of width 0.01. The fit function intensity

value, f(m(ΛKS), cosθΛ), is evaluated in the middle of each of the resulting small

boxes. The intensity per box is then smeared over the relevant intervals of (ΛKS)

mass, separately for the narrow and wide Gaussian of the resolution function. The

relevant intervals are taken to be those within ±6 standard deviations of the central

box, each Gaussian being considered separately. The contribution to each individual

(m(ΛKS), cosθΛ) interval used in the fit procedure (see Fig. 5.19) is then obtained as

the difference in the Error Function4 values at the mass limits of that interval. The

smeared contributions are then accumulated for all (m(ΛKS), cosθΛ) intervals of the

rectangular Dalitz plot used in the fit procedure.

5.6.6 The Binned Maximum Poisson Likelihood Fit

For the Λ+
c → ΛKSK

+ signal region, a grid is defined within the rectangular

plot of m(ΛKS) versus cosθΛ (Fig. 5.19). This starts above threshold and ends below

the maximum accessible ΛKS mass because mass resolution smearing is incorporated

4For a Gaussian (with known σ) distributed measurement, the probability that the
measured value x will fall within ±δ of the true value μ is given by the Error Function,
erf

(
δ√
2σ

)
= 1√

2πσ

∫ μ+δ
μ−δ e

−(x−μ)2/2σ2
dx.
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in the fit procedure. The range over which smearing is performed is from threshold to

1.780 GeV/c2, and the grid is chosen interior to this region in order to avoid problems

with the lowest and highest mass intervals. As shown in Fig. 5.19, the mass range

from 1.615 GeV/c2 to 1.765 GeV/c2 is divided into 5 MeV/c2 intervals, and each

interval is further divided into intervals of cosθΛ, each of width 0.2. In performing the

fits using the smeared fit function, it was decided to exclude the interval 1.615-1.620

GeV/c2 in order to avoid any problems related to mass resolution.

The number of events indicated within each box of Fig. 5.19 corresponds to

the Λ+
c signal region; the values range from 0 to 37, and it is this rather low occupancy

which has motivated the Poisson probability approach to the fit to the rectangular

plot.

Within the ith box of the grid:

[i] Nobs
i events are observed, and these are composed of Λ+

c signal and background

events;

[ii] each event has its own efficiency for the ith box, ε, calculated as per section 5.6.1,

so that the average efficiency for the ith box, < ε >i, may be obtained as the inverse

of the average efficiency weight

< ε >i=
Nobs

i∑Nobs
i

j=1 1/εij

,

where εij is the efficiency for the jth event in the ith box; for the box with 0 events,

the efficiency value for the center of the box is used;

[iii] the background parametrization (section 5.6.2) yields an estimate of the efficiency-
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corrected number of events in the ith box resulting from background, Bi; it follows

that the expected number of observed background events in the ith box can be

estimated as

μB
i =< ε >i Bi;

[iv] in a similar way, the signal function can be integrated over the ith box (with or

without mass smearing), to yield an efficiency-corrected signal estimate, Si, and

the expected number of observed signal events can be obtained similarly as

μS
i =< ε >i Si;

[v] it follows from this that the expected number of observed events in the ith box is

μi = μS
i + μB

i ,

and that the Poisson probability for Nobs
i events to be observed is

pi = e−μi
(μi)

Nobs
i

(Nobs
i )!

.

This treatment of the ith box of Fig. 5.19 is illustrated graphically by Fig. 5.20.

The likelihood function describing the observed distribution of events over the

grid is then given by the product of these probabilities for the range of bins of interest,

i.e.

L = ΠNbins

i=1 e−μi
(μi)

Nobs
i

(Nobs
i )!

.

The values of the parameters describing the signal function can then be estimated

by maximizing this likelihood function. In practice, since the minimization routine
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Figure 5.19: The rectangular plot of m(ΛKS) versus cosθΛ. The data are for the
Λ+

c signal region, and the gray shaded area is excluded from the fits described in the
text. The dark lines denote the fit regions which are combined for the purpose of
chi-squared calculation (see the upper plot in Fig. 5.24).

MINUIT [41] is used to do this, it is actually the function L = −2ln(L) which is

minimized, where the explicit minus sign changes the process from maximization to

minimization. The factor of 2 ensures that the errors are correctly estimated, as

MINUIT estimates errors on the basis of a change in the function value of 1 unit

with respect to the minimum value; this is fine for chi-squared minimization, but for

a likelihood function the appropriate change is half a unit.

The function to be minimized is then:

L = −2
Nbins∑
i=1

ln

[
e−μi

(μi)
Nobs

i

(Nobs
i )!

]
.

This simplifies to

L = 2

⎡
⎣Nbins∑

i=1

[
μi −Nobs

i ln(μi)
]
+ ln

(
Γ(Nobs

i + 1)
)⎤⎦ .

Clearly, the last term is a constant, so that the final form of the function to

be minimized is

L = 2
Nbins∑
i=1

[
μi −Nobs

i ln(μi)
]
. (5.14)
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Figure 5.20: Illustration of the treatment of the ith box in the Binned Maximum
Poisson Likelihood procedure used to fit the Λ+

c signal region rectangular plot of
cosθΛ versus m(ΛKS).

In order to obtain an absolute assessment of goodness-of-fit a χ2 value based

on the fit function is calculated. Furthermore, in order to ensure that
√
N provides

a reasonable uncertainty estimate for a box containing N events, it is required that

there be a minimum number of 10 observed events (corresponding to the Λ+
c signal

region) in each box used in the χ2 calculation. This requires a modification of the

grid structure, and that indicated by the dark lines on Fig. 5.19, and shown explicitly

in the upper plot of Fig. 5.24, has been chosen.

For each box of the original grid the efficiency-corrected signal function and

background contributions are calculated and multiplied by the average efficiency for

that box, as before, in order to obtain the expected number of observed events. These

estimates can be added to provide estimates for combined boxes when required, and
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a χ2 function is defined as

χ2 =

Ncomb∑
j=1

⎡
⎣Nobs

j − μcombined
j√

μcombined
j

⎤
⎦

2

,

where N comb is the total number of boxes (combined and uncombined) used in the

calculation, and is smaller than the number of boxes in the original grid of Fig. 5.19.

The χ2 can then be converted into a C.L. using NDF = N comb − 8, where 8 is the

number of free parameters used in the fit. For the grid shown in Fig. 5.19, the 290

boxes used in the likelihood fit yield N comb = 200 for use in the χ2 calculation.

5.6.7 Fit Results

Following the prescription of the previous section, the fit results given in Ta-

ble 5.2 and shown in Fig. 5.21 are obtained. In Fig. 5.21 the solid dots represent

the efficiency-corrected, background-subtracted distribution in data, where the back-

ground contribution was estimated following the procedures described in section 5.6.2.

The red histograms represent the integrated fit function after mass resolution smear-

ing. The blue curves correspond to the fit function with no resolution effects; the

green, magenta and black curves represent the contributions to this total fit func-

tion from the a0(980)+ amplitude squared, the interference between the a0(980)+ and

the Ξ(1690)0 amplitudes, and the Ξ(1690)0 amplitude squared, respectively. The

likelihood value (Eq. 5.14) for this fit is 1550.4, and the corresponding χ2/NDF is

188.4/192, which represents a C.L. of 56.4%.

The quality of the fit is demonstrated by the normalized residual distribution

shown in Fig. 5.23. The distribution is centered at zero and is well-described by a



133

Gaussian with unit r.m.s. deviation, indicating that the fit is excellent.

A differential look at the χ2 value is provided by the rectangular Dalitz plots

of Fig. 5.24 for the Λ+
c signal region. The upper plot shows the event content of the

boxes used to obtain the χ2, while the lower plot shows the the χ2 contribution from

each individual box. Only four boxes yield contributions larger than 5 (c.f. Fig. 5.23),

and these show no tendency to cluster in the (comparatively) high-population regions

of the plot, i.e. there is no evidence of systematic deviation between the data and the

fit result.

For comparison, the fit results obtained without mass resolution smearing are

listed in Table 5.3. As expected this fit yields a width parameter value which is larger

(by 0.9 MeV) than that of Table 5.2, while the other parameter values are unaffected,

and the likelihood value is only very slightly worse.

The isobar description obtained for the Dalitz plot appears to be in qualitative

agreement with that expected on the basis of the associated quark diagrams. Decay of

the Λ+
c to Λa0(980)+ would be characterized by the external spectator quark diagram

of Fig. 1.9 (b), but for the transition Λ+
c → Λ, and with the W coupling to an

a0(980)+ instead of a π+. A W-exchange diagram corresponding to Fig. 1.9 (a), but

for the transition Λ+
c → Ξ(1690)0, would similarly characterize Λ+

c → Ξ(1690)0K+

decay. There are no obvious dynamical suppression mechanisms at work, other than

the threshold mass of the ΛK̄0 system which excludes coupling to the Ξ(1530).

It is interesting to compare the fit results obtained using the coherent and

incoherent superposition of the Λa0(980)+ and Ξ(1690)0K+ amplitudes. The red his-
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tograms representing the mass-integrated cosθΛ distributions shown in Fig. 5.17(b)

and Fig. 5.21(b) are almost identical. However, them(ΛKS) projections of Fig. 5.17(a)

and Fig. 5.21(a) exhibit significant differences in the Ξ(1690) signal region. The sys-

tematic deviations discussed in section 5.6.4 and shown in Fig. 5.18 for the incoherent

superposition are no longer apparent in Fig. 5.21 (a), where the Ξ(1690)0 signal shape

is well-reproduced. This is shown explicitly by the distribution of Fig. 5.22, where the

systematic deviations between the data and the fit result seen Fig. 5.18 are no longer

evident. The fit results summarized in Tables 5.1 and 5.2. indicate an associated

likelihood function (Eq. 5.14) reduction of approximately 12 points, and although the

fitted value of the width changes by only 0.4 MeV, use of the coherent superposition

results in a decrease of the fitted mass value of 2.1 MeV/c2. This is because, for

overall relative phase ∼ 0◦, the interference term is able to describe the skewing of

the lineshape toward high mass, as discussed in conjunction with Fig. 5.18, whereas

in the absence of interference, the entire fitted lineshape moves to a higher mass value

in attempting to respond to the skewing and so improve the fit.

Although the systematic changes in the fitted Ξ(1690)0 lineshape resulting

from the use of the coherent amplitude superposition do not appear overly signifi-

cant, the impact on the interpretation of the observed signal is in fact significant.

The Ξ(1690)0 signal represented by the black histogram in Fig. 5.17(a) has been

reduced by ∼ 25% in Fig. 5.21(a), the difference being absorbed by the Ξ(1690)0K+-

Λa0(980)+ interference contribution generated in order to accommodate the skewing

of the observed signal. It follows that the Λ+
c decay rate to Ξ(1690)0K+ obtained
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from a description of the final state Dalitz plot is significantly smaller than would

be obtained from a fit to the mass projection using a BW signal function and an

incoherent background function, as for Fig. 5.17(a), or as in the analysis of ref. [46].

However, the analysis presented to this point assumes that the Ξ(1690) has spin 1/2.

The discussion of Λ+
c decay rate needs to be revisited after investigation of the spin

3/2 and 5/2 hypotheses.

The differential chi-squared distribution of Fig. 5.24 demonstrates quite clearly

that the fit quality is very good over the entire rectangular Dalitz plot, and in par-

ticular in the Ξ(1690) signal region. This is shown explicitly in Fig. 5.25 for the

signal region defined as 1.660 < m(ΛKS) < 1.705 GeV/c2. In Fig. 5.25 the solid

dots represent the efficiency-corrected, background-subtracted distribution in data,

as before. The contributions to the total fit function (after mass resolution smearing),

from the a0(980)+ amplitude squared (green curve), the interference term (magenta

curve) and the Ξ(1690)0 amplitude squared (black line) account for 59.7%, 11.8%

and 28.5% of the total intensity (blue curve), respectively, and the latter provides an

excellent description of the data in the Ξ(1690) region.
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Figure 5.21: The projections of the efficiency-corrected, background-subtracted rect-
angular plot in data. The red histograms represent the integrated fit function after
mass resolution smearing. The curves are described in the text.

Table 5.2: The MIGRAD fit parameter values corresponding to Fig. 5.21.

Fit Parameter Value Neg. Error Pos. Error

Ξ(1690) Ampl. Rel. Strength [MeV] (p0) 24 ± 8 – –

Ξ(1690) Mass [MeV/c2] 1682.9 ± 0.9 -0.9 +0.9

Ξ(1690) Width [MeV] 9.3 ± 1.9 -1.7 +2.0

Effective Phase δ [rad.] 0.3 ± 0.5 -0.4 +0.6

Effective Scale k 0.4 ± 0.2 -0.2 +0.3

Overall Normalization Factor 1205 ± 726 – –

gK̄K [MeV] 349 ± 136 – –

Coupling Ratio Squared (r2) 0.5 ± 0.4 – –

Note: The last two columns list the MINOS error estimates. The likelihood value
(Eq. 5.14) for this fit is 1550.4, and the corresponding χ2/NDF obtained as described
in the text is 188.4/192.
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Figure 5.22: The difference between the mass projection of the efficiency-corrected,
background-subtracted rectangular plot in data and the fit function smeared by mass
resolution (histogram of Fig. 5.21).
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Figure 5.23: The normalized residual distribution Δ =

[
μcombined
j −Nobs

j√
μcombined
j

]
, corresponding

to the fit results of Fig. 5.21 and Table 5.2. Superimposed on the distribution is the
result of a fit with a single Gaussian function with an r.m.s. value of 0.98±0.05 and
a mean value of −0.02 ± 0.07, which is consistent with zero, as expected if the fit is
unbiased.
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Table 5.3: The MIGRAD fit parameter values obtained without mass resolution
smearing.

Fit Parameter Value

Ξ(1690) Amplitude Relative Strength [MeV] (p0) 25 ± 8

Ξ(1690) Mass [MeV/c2] 1682.9 ± 0.9

Ξ(1690) Width [MeV] 10.2 ± 1.8

Effective Phase δ [rad.] 0.3 ± 0.5

Effective Scale k 0.4 ± 0.2

Overall Normalization Factor 1197 ± 714

gK̄K [MeV] 349 ± 135

Coupling Ratio Squared (r2) 0.5 ± 0.4

Note: The likelihood value from Eq. 5.14 is 1550.5 for this fit.

Figure 5.24: The rectangular plot of m(ΛKS) versus cosθΛ for the Λ+
c signal region

modified such that every box contains at least 10 events. The χ2 contributions from
the boxes of the rectangular plot. Boxes yielding χ2 contributions exceeding 5 are
highlighted in both plots.
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Figure 5.25: The cosθΛ projection of the efficiency-corrected, background-subtracted
rectangular plot in data for the region 1.660 < m(ΛKS) < 1.705 GeV/c2 (solid dots
with error bars). The superimposed curves are explained in the text.

A further check of fit quality is provided by the efficiency-corrected, background-

subtracted m(K+KS) and m(ΛK+) distributions corresponding to the fitted region of

the rectangular plot. These are shown by the solid dots with error bars in Figs. 5.26 (a)

and (b), respectively. The color-coding in Fig. 5.26 is the same as in Fig. 5.25, and

again the fit provides an excellent description of the data. The kinks in the curves,

which are especially noticeable in Fig. 5.26 (b), are due to the restriction of m(ΛKS)

to the range 1.620 − 1.765 GeV/c2 used in the fit [cf. Fig. 5.6 (a)].

A three-dimensional representation of the fit function intensity over the rect-

angular Dalitz plot is shown from two perpectives in Fig. 5.27. The pronounced ridge

associated with Ξ(1690)0 production is clear in both, while the left view exhibits a

pronounced intensity decrease toward threshold on the low side of the ridge, and the

right view shows the rise at high mass and cosθΛ ∼ 1 resulting from the presence of
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Figure 5.26: The efficiency-corrected, background-subtracted projections in data cor-
responding to the region 1.620 < m(ΛKS) < 1.765 GeV/c2 (solid dots with error
bars). (a) The m(K+KS) projection. (b) The m(ΛK+) projection. The superim-
posed curves are explained in the text.

a significant a0(980)+ contribution on the high side of the ridge. The total fit func-

tion intensity distribution over the fit region of the rectangular plot, and its separate

contributions are illustrated in the color contour plots of Figs. 5.28 and 5.29. In each

figure, the upper left plot corresponds to the total intensity, the upper right plot re-

sults from the Λa0(980)+ amplitude squared, the lower right is from the Ξ(1690)0K+

amplitude squared, and the lower left represents the interference contribution; in the
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latter, the white region denotes negative values resulting from destructive interfer-

ence. In Fig. 5.28, each plot has its own intensity scale in order to make structure

clear; in Fig. 5.29, all plots have the scale of the total intensity plot (upper left). Fig-

ures 5.28 and 5.29 illustrate quite clearly how important the inclusion of a coherent

amplitude describing the Λa0(980)+ decay mode is to a detailed understanding of the

ΛK̄0K+ final state, and hence to precise extraction of the properties of the Ξ(1690)0.
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Figure 5.27: Three-dimensional representations of the fit function intensity distribu-
tion of the rectangular Dalitz plot.
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Figure 5.28: Contour plots representing total fit function intensity (top left) and
the contributions from the a0(980)+ amplitude squared (top right), the interference
between the a0(980)+ and the Ξ(1690)0 amplitudes (bottom left), and the Ξ(1690)0

amplitude squared (bottom right). Each plot has its own intensity scale, and the
white area of the bottom left plot correspond to negative intensity, i.e. destructive
interference.
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Figure 5.29: As for Fig. 5.28, except that all plots use the scale of the total intensity
plot (upper left).
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5.6.8 Study of Systematic Uncertainties

It proves to be the case that all of the sources of systematic error considered

affect the parameter values only slightly if at all. Consequently, a conservative point of

view is adopted, in that the largest measurement excursion in a given study is assigned

as the related systematic estimate. The study of systematic error contributions to

the measured values of Ξ(1690)0 mass and width described in this section assumes

spin 1/2 for the Ξ(1690).

The fit procedure of the previous section is repeated using the background

parametrization obtained by linear interpolation of the< N > and< Ci > coefficients

plotted in Fig. 5.12 (dashed red lines). The new fit results indicate that there is no

change in the mass value, but the width is changed by 0.2 MeV.

Next a systematic error due to the background normalization is assessed by

varying the total number of background events by the one sigma uncertainty in the

estimated number of events under the Λ+
c peak, as described in section 5.6.2. The

results corresponding to the variations by this uncertainty yield no change in the

Ξ(1690)0 mass, and the larger change in width is only +0.1 MeV.

One the basis of these studies, the systematic error associated with the mass

value is considered to be 0.0 MeV/c2, while that associated with the width is conser-

vatively estimated to be
√

(0.2)2 + (0.1)2 MeV, i.e. 0.2 MeV.

The fractional contribution of the wide Gaussian to the total resolution func-

tion is varied by its uncertainty, and the fit procedure repeated. The results of a ±1σ

variation indicate no change in mass value, and that the width value changes by 0.1
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MeV at most. As a result, systematic uncertainly contributions of 0.0 MeV/c2 and

0.1 MeV, respectively, are assigned.

The fit procedure was repeated using the modified efficiency parametrization

described in Appendix B. The fitted mass and width values change by 0.1 MeV/c2 and

0.1 MeV, respectively, and so these are assigned as the relevant systematic uncertainty

values.

In the description of the isobar model in section 5.6.4 it was pointed out that,

for the decay Λ+
c → Ξ(1690)0K+, the final state orbital angular momentum, L, could

be 0 or 1, corresponding to S- and P -wave decay, respectively, and that the final

state orbital angular momentum describing the ΛKS system from Ξ(1690)0 decay, l,

can also take values 0 or 1, under the assumption of spin 1/2 for the Ξ(1690). The

choice of L = 0, l = 0, was made in fitting the rectangular Dalitz plot, and so in

order to investigate systematic effects on the values of the mass and width parameters

resulting from this choice, the other possibilities are now considered.

The values L = 1 and l = 1 imply the need for the inclusion of a P -wave

centrifugal barrier factor5 contribution describing the relevant decay. For P -wave,

5From the covariant description of the decay amplitudes, one obtains a mass-dependent
expression for the width of the resonance. The width of the resonance proceeding via a
partial wave of orbital angular momentum l is given by:

Γ(m) ≈ Γ0

(
q

q0

)2l+1

,

where, Γ0 and q0 are the width and 3-momentum of the resonance. This expression is only
valid for low energies, and the case of a wave scattered far away from thresholds needs to be
addressed using a more general description using centrifugal barrier factors. In the Classical
picture for the scattering of a particle in spherically symmetric potential U(r), the radial
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this is done by introducing the factor

p√
1 +R2p2

,

where R is the Blatt-Weisskopf radius [49], and p is the quasi-two-body momentum in

the rest-frame of the decaying particle. Typically, R � 3 GeV−1 (i.e. 0.6 fermi), and

this is the value chosen in the present study. For L = 1, the effect is to introduce an

additional factor p/
√

1 +R2p2 in the numerator of Eq. 5.5, where p is the momentum

of the bachelor K+ in the Λ+
c rest-frame. For l = 1, the corresponding factor is

q√
1 +R2q2

,

where q is the momentum of the Λ in the ΛKS rest-frame. This factor also appears

in the numerator of Eq. 5.5, but in addition, it causes modification of Γ(m), which

appears in the denominator. Equation 5.6 must then be written

Γ(m) = Γ(m0)
q

m
· m0

q0
·
(

q2

1 +R2q2

)
·
(

1 +R2q2
0

q2
0

)
, (5.15)

since it is the square of the Blatt-Weisskopf factor which appears in the width. The

results of fits to the Dalitz plot using the (L, l) combinations (1, 0), (1, 1) and (0, 1)

equation for l > 0,(
1

2mr2
d

dr

(
r2
d

dr

)
+

[
1

2m
− l(l + 1)

2mr2
− U(r)

])
ψ(r) = 0,

contains an l-dependent centrifugal barrier term:

Vl =
l(l + 1)
2mr2

.

As the value of l increases, so does the centrifugal barrier, and therefore, the transition
amplitude decreases. These centrifugal barrier factors (Blatt-Weisskopf damping functions)
over an interaction of radius R are function of R, of the quasi-two-body momentum in the
rest-frame of the decaying particle, and of the orbital angular momentum of the two-particle
system (in the outgoing channel).



147

are then used to assign net systematic uncertainties of 0.2 MeV/c2 and 0.1 MeV to

the mass and width parameter values, respectively.

The uncertainties due to the coupling constants incorporated in the Flatté

parametrization are studied by first fixing the square of their ratio (r2) to the value

obtained by the Crystal Barrel experiment. The fit results are quite consistent with

those of Table 5.2, and the fit χ2/NDF changes from 188.4/192 to 191.1/193, corre-

sponding to a reduction in C.L. of ∼ 3.5%. The mass and width parameter values

change by only +0.1 MeV/c2 and +0.3 MeV, respectively.

Next, the value of the mass of the a0(980) is varied by the uncertainty deter-

mined by the Crystal Barrel experiment. Variations in this parameter by ±1σ yield

no change in the mass and width values, and so net uncertainties of 0.1 MeV/c2 and

0.3 MeV are attributed to the choice of a0(980)+ parameter values.

Uncertainties due to detector effects are estimated from the study of systematic

uncertainties in the mass measurement of the Λ+
c using Λ+

c → ΛKSK
+ and Λ+

c →

Σ0KSK
+ decays [50]. This study found that the dominant systematic uncertainty

in mass arose from the amount of material in the tracking volume and from the

magnetic field strength, but that this effect was small for Λ+
c → ΛK̄0K+ because of

the limited phase space available in the decay. Because systematic uncertainties scale

with Q-value, a reliable and conservative estimate of the uncertainty in the mass of

the Ξ(1690)0 (Q-value ∼ 70 MeV/c2) is obtained from the uncertainty due to detector

effects in Λ+
c mass estimated for Λ+

c → ΛK̄0K+ (Q-value ∼ 180 MeV/c2). This yields

a systematic uncertainty estimate of ±0.1 MeV/c2 on the Ξ(1690)0 mass. Since the
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Ξ(1690)0 has a small width, and the preceding is a mass scale effect, any impact on

the width measurement can be ignored.

5.6.9 Summary of Systematic Uncertainties

Incorporating the systematic uncertainties summarized in Table 5.4, and ig-

noring, for the moment, spin assumptions other than 1/2, the following measured

values for the mass and width parameters of the Ξ(1690)0 resonance are obtained:

m(Ξ(1690)0) = 1682.9±0.9 (stat.)±0.3 (syst.) MeV/c2,

Γ(Ξ(1690)0) = 9.3+2.0
−1.7 (stat.)±0.4 (syst.) MeV.

These results represent a significant improvement in the precision to which these

quantities are presently known [22].

Table 5.4: Summary of systematic uncertainty contributions.

Source Estimated Systematic Uncertainty

Background Normalization and Ξ(1690)0 Mass [MeV/c2] 0.0

Parametrization Ξ(1690)0 Width [MeV] ±0.2

Resolution Function Ξ(1690)0 Mass [MeV/c2] 0.0

Lineshape Ξ(1690)0 Width [MeV] ±0.1

Efficiency Ξ(1690)0 Mass [MeV/c2] ±0.1

Parametrization Ξ(1690)0 Width [MeV] ±0.1

Orbital Ang. Momentum Ξ(1690)0 Mass [MeV/c2] ±0.2

Variation Ξ(1690)0 Width [MeV] ±0.1

a0(980)+ Parameter Ξ(1690)0 Mass [MeV/c2] ±0.1

Values Ξ(1690)0 Width [MeV] ±0.3

Detector Ξ(1690)0 Mass [MeV/c2] ±0.1

Effects Ξ(1690)0 Width [MeV] 0.0

Total Systematic Ξ(1690)0 Mass [MeV/c2] ±0.3

Uncertainty Ξ(1690)0 Width [MeV] ±0.4
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The change in mass value (−2.1 MeV/c2) in going from the incoherent to the

coherent amplitude superposition procedure in fitting the rectangular Dalitz plot, dis-

cussed in section 5.6.7, is much larger than the net systematic uncertainty resulting

from the studies described in section 5.6.8. This is not treated as a source of sys-

tematic uncertainty, since the coherent treatment is considered to be the correct one,

both from the standpoint of Quantum Mechanics, and on the basis of experimentally

observed structures in many other Dalitz plots. For example, the BABAR Dalitz plots

for D0 → KSK
+K+ decay [51] and for D0 → KSπ

+π− decay [52] exhibit quite dra-

matic interference effects, and even in chapter 6 of this thesis there is clear evidence

of interference between the S- and P -wave amplitudes describing the Ξ−π+ system

in the vicinity of the Ξ(1530)0 resonance. The corresponding change in width (-0.4

MeV) is also not considered to be a source of systematic uncertainty for the same

reasons.

5.7 Dalitz Plot Analyses for Ξ(1690)

Spin 3/2 and 5/2

For Ξ(1690) spin J , and a corresponding definition of the helicity angle of the

Λ in the ΛKS rest-frame, the expected distributions in cosθΛ for J =3/2, and 5/2 are

described by Eqs. 5.16 and 5.17, respectively.

I = pq C

[
p2

0I1

(
3cos2θΛ + 1

4

)
+
g2

K̄K
I2

2
(5.16)

+
k√
2

(cosθΛ) p0gK̄KI1I2 [(M1M2 +G1G2)cosδ + (G1M2 − G2M1)sinδ]

]
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I = pq C

[
p2

0I1 3

(
5cos4θΛ − 2cos2θΛ + 1

8

)
+
g2

K̄K
I2

2
(5.17)

+

√
3k

4

(
3cos2θΛ − 1

)
p0gK̄KI1I2 [(M1M2 +G1G2)cosδ + (G1M2 − G2M1)sinδ]

]

The details of the derivations are given in Appendix C, section C.3, where it is

pointed out that the effective scale parameter, k, and the effective phase parameter, δ,

incorporate any Lorentz boost effects, as discussed previously with regard to Eq. 5.13.

For J = 3/2, the orbital angular momenta L and l discussed in section 5.6.8,

lead to P - orD-wave [49] centrifugal barrier contributions to the Ξ(1690)0 amplitudes,

while for J = 5/2, D- or F -wave contributions need to be incorporated. For the fits

described in the present section (L, l) = (1, 1) barrier factors were used for J = 3/2,

and (L, l) = (2, 2) for J = 5/2. The other possible combinations were not tried

since the fit results differed only slightly from those with (L, l) = (0, 0), and since

the corresponding studies of J = 1/2 systematic uncertainty indicate that only small

changes would be expected.

The fit procedures used in testing the J = 1/2 hypothesis for the spin of the

Ξ(1690) were repeated for J = 3/2 using the intensity distribution representation

of Eq. 5.16. The results are shown in Fig. 5.30 and summarized in Table 5.5. The

fit has χ2/NDF = 234.3/192, which corresponds to a C.L. of 1.9%. The mass of

the Ξ(1690)0 increases by 2 MeV/c2, while the width decreases by 0.5 MeV, mainly

because of the inclusion of the P -wave barrier factors. The quadratic nature of the

Ξ(1690)0 intensity contribution to the cosθΛ distribution (Fig. 5.30 (b)) seems to
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result in the fit being systematically above the data for cosθΛ < −0.4, and the small-

ness of the Ξ(1690)K+ −Λa0(980)+ interference contribution results in a systematic

failure to reproduce the skewing toward high mass of the Ξ(1690) signal in Fig. 5.30

(a). This is shown explicitly in Fig. 5.31, which shows behavior very similar to that

of Fig. 5.18, corresponding to the incoherent amplitude superposition discussed in

section 5.6.4.

Table 5.5: The MIGRAD fit parameter values corresponding to Fig. 5.30 for J = 3/2.

Fit Parameter Value

Ξ(1690) Ampl. Rel. Strength [MeV] (p0) 425 ± 91

Ξ(1690) Mass [MeV/c2] 1684.9 ± 0.8

Ξ(1690) Width [MeV] 8.8 ± 2.1

Effective Phase δ [rad.] -2.7 ± 1.1

Effective Scale k 0.2 ± 0.2

Overall Normalization Factor 4871 ± 1094

gK̄K [MeV] 234 ± 30

Coupling Ratio Squared (r2) 0.2 ± 0.1

Note: The likelihood value (Eq. 5.14) for this fit is 1592.0, and the corresponding
χ2/NDF obtained as described in the text is 234.3/192.

The low C.L. for the fit, and the observed systematic deviations in the cosθΛ

and m(ΛKS) distributions, indicate that the spin 3/2 hypothesis for the Ξ(1690) is

clearly disfavored.

In a similar way, the intensity distribution of Eq. 5.17 is used to test the

hypothesis that the Ξ(1690) has spin 5/2. The results are shown in Fig. 5.32 and

summarized in Table 5.6. This fit has χ2/NDF = 210.3/192 and a C.L. of 17.4%,
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Figure 5.30: The projections of the efficiency-corrected, background-subtracted rect-
angular plot in data. The solid histogram corresponds to the fit function (smeared by
resolution) corresponding to J = 3/2. The superimposed curves are as for J = 1/2
(see text).

which represents a significant improvement over that obtained for J = 3/2, but is

significantly poorer than for J = 1/2 (56.4%). The cosθΛ distribution is well-described

(Fig. 5.32 (b)), but the systematic failure to describe the skewing of the Ξ(1690)0

signal toward high mass is still present (Figs. 5.32 (a) and 5.33), and this is the

primary cause of the rather low C.L. value. The results of the fits to the rectangular

Dalitz plot for Ξ(1690) spin hypotheses 1/2, 3/2 and 5/2 are summarized in Table 5.7.
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Figure 5.31: The difference between the data points and the fit function smeared by
mass resolution (solid histogram) of Fig. 5.30.

Table 5.6: The MIGRAD fit parameter values corresponding to Fig. 5.32 for J = 5/2.

Fit Parameter Value

Ξ(1690) Ampl. Rel. Strength [MeV] (p0) 2981 ± 612

Ξ(1690) Mass [MeV/c2] 1684.9 ± 0.8

Ξ(1690) Width [MeV] 9.0 ± 2.0

Effective Phase δ [rad.] 2.4 ± 0.2

Effective Scale k 0.9 ± 0.2

Overall Normalization Factor 5198 ± 1210

gK̄K [MeV] 219 ± 29

Coupling Ratio Squared (r2) 0.2 ± 0.1

Note: The likelihood value (Eq. 5.14) for this fit is 1570.8, and the corresponding
χ2/NDF obtained as described in the text is 210.3/192.

It is concluded that the data are consistent with spin J = 1/2 and that J = 3/2

is clearly disfavored. The quadratic nature of the helicity angular distribution of the
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interference term for J = 5/2 is such that the cosθΛ distribution is well-reproduced.

However, the fit fails to reproduce the skewing of the Ξ(1690) signal (Figs. 5.32 (a)

and 5.33).
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Figure 5.32: The projections of the efficiency-corrected, background-subtracted rect-
angular plot in data. The solid histogram corresponds to the fit function (smeared by
resolution) corresponding to J = 5/2. The superimposed curves are as for J = 1/2
(see text).

It follows that, although the J = 5/2 C.L. is acceptable, the latter systematic

failure makes it appear that this hypothesis is unlikely to be correct. This point
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of view is reinforced by the analysis to be described in chapter 6, which, although

model-dependent, provides additional evidence in favor of spin 1/2 (and even negative

parity) for the Ξ(1690). Finally, theoretical models [25, 26] typically do not predict

the existence of J = 5/2 Cascade resonances at mass values below 1.7 GeV/c2.
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Figure 5.33: The difference between the data points and the fit function smeared by
mass resolution (solid histogram) of Fig. 5.32.

Table 5.7: A summary of the fits to the rectangular Dalitz plot for Ξ(1690) spin
values 1/2, 3/2 and 5/2 (MIGRAD errors).

Ξ(1690) m[Ξ(1690)] Γ[Ξ(1690)] k δ χ2/NDF C.L. (%)
Spin [MeV/c2] [MeV] [rad]
1/2 1682.9 ± 0.9 9.3 ± 1.9 0.4 ± 0.2 0.3 ± 0.5 188.4/192 56.4 [52.9]

3/2 1684.9 ± 0.8 8.8 ± 2.1 0.2 ± 0.2 −2.7 ± 1.1 234.3/192 1.9 [1.0]

5/2 1684.9 ± 0.8 9.0 ± 2.0 0.9 ± 0.2 2.4 ± 0.2 210.3/192 17.4 [12.2]

Note: If the parameter r2 is fixed at the Crystal Barrel central value (1.03), the C.L.
values indicated in parentheses are obtained.
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5.8 Comments Concerning Lorentz Boost Effects

As discussed in Appendix C, section C.3, the interference term between the

amplitudes describing Λ+
c decay to Ξ(1690)0K+ and Λa0(980)+ is affected, in princi-

ple, by the transformation of the latter from the rest-frame of the Λ+
c to the rest-frame

of the ΛK̄0 system, This involves an initial rotation to a new spin quantization axis,

shown as the z-axis in Fig. 5.34. As a result of the boost, the new direction if the Λ

is rotated by the angle ω (the Wigner rotation angle) relative to its direction in the

Λ+
c rest-frame, as shown in the figure.

If the Λ had momentum q∗ and helicity λ in the Λ+
c rest-frame, the boost

Figure 5.34: Illustration of the angle ω.
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operator U(L) would modify the amplitude describing the Λ as follows:

U(L)ϕq∗,λ =

+s∑
λ′=−s

ϕq,λ′ds
λ′ λ(ω),

where q is the Λ momentum in the ΛKS rest-frame, s is the spin of the Λ, and λ′ can

take the values ±1/2. Explicitly, e.g. for λ = 1/2

ϕq∗,1/2 → ϕq,1/2cos(ω/2) + ϕq,−1/2sin(ω/2), (5.18)

so that in general the boost transforms a Λ helicity state in the Λ+
c rest-frame into a

linear superposition of the two possible helicity states in the ΛKS rest-frame according

to Eq. 5.18.

Figure 5.35: Representation of the behavior of β∗ (red curve) and β (black curve)
with ΛKS mass (see text).

To illustrate what this implies for the analysis of Λ+
c → K+KSΛ decay, con-
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sider the particular case in which the final state particles are collinear in the Λ+
c

rest-frame [i.e. cosθΛ = ±1 using the Dalitz plot variable].

For cosθΛ = +1

q∗ = γ∗(q + β∗E) = γ∗E(β + β∗) (5.19)

And for cosθΛ = −1

q∗ = γ∗(−q + β∗E) = γ∗E(−β + β∗) (5.20)

in an obvious notation.

If q∗ and the Λ spin projection in the Λ+
c rest-frame are both in the +z direction

(Fig. 5.34), then the helicity in this frame is +1/2 for cosθΛ = +1 and for cosθΛ = −1.

From Eq. 5.20, the latter requires β∗ > β, i.e. low ΛKS mass. The boost to the ΛKS

rest-frame reverses the direction of the Λ but not of its spin, so that for β∗ > β

the Λ has helicity -1/2 in the ΛKS frame. This behavior is represented correctly by

Eq. 5.18; for cosθΛ = +1, ω = 0 and the Λ helicity is unaltered by the transformation;

for cosθΛ = −1, ω = π and the Λ helicity is flipped to -1/2. The ΛKS mass value

below which the helicity flips for cosθΛ = −1 can be read off from Fig. 5.35. The red

curve represents the behavior of β∗ with ΛKS mass, and the black curve similarly

represents β. For m(ΛKS) < 1.673 GeV/c2, β∗ > β and the Λ helicity will be flipped

according to Eq. 5.18. For higher mass values, and for all masses at cosθΛ = +1,

the Λ helicity will not change as a result of the boost. From Fig. 5.35, the velocity

values involved for the present analysis are small. Clearly, the angle ω depends on the

Dalitz plot position. The distribution of cosω for the efficiency-corrected Dalitz plot

population is shown in Fig. 5.36, and the strong peaking at cosω ∼ 1 indicates that
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Wigner rotation effects should be small. This can be seen more clearly in Fig. 5.37,

where the distribution of cosω/2 values is shown in three regions of ΛKS mass [Note

that the y-axis scale is the same on each plot]. In appendix C, section C.3, it is

asserted that small effects due to Wigner rotation will be absorbed in the effective

parameters k and δ, whose values are treated as constants over the Dalitz plot. The

rotation angle ω depends on position in the plot, and so it would be expected that

the differential χ2 distribution (Fig. 5.24) might show evidence of bias if this assertion

were wrong. There is no such indication.

To investigate this further, the normalized residuals of Fig. 5.23 are plotted

separately in Fig. 5.38 for the Dalitz plot regions indicated in the caption. Each distri-

bution is consistent with a Gaussian centered at zero, and with unit r.m.s. deviation

value, so that again there is no evidence of bias. On this basis, it is concluded that

the treatment of Lorentz boost effects discussed in Appendix C is entirely consistent

with the observed Dalitz plot distribution at the present statistical level.
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Figure 5.36: The Λ+
c mass-sideband-subtracted, efficiency-corrected cosω distribution

in data, corresponding to the mass region 1.615 < m(ΛKS) < 1.765 GeV/c2.



160

/2)ωcos(
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
n

tr
ie

s/
0.

02
5

0

1000

2000

3000

4000

5000

6000

2
) < 1.67 GeV/cS KΛ1.62 < m(

2
) < 1.67 GeV/cS KΛ1.62 < m(

/2)ωcos(
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
n

tr
ie

s/
0.

02
5

0

1000

2000

3000

4000

5000

6000

2
) < 1.705 GeV/cS KΛ1.67 < m(

2
) < 1.705 GeV/cS KΛ1.67 < m(

/2)ωcos(
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
n

tr
ie

s/
0.

02
5

0

1000

2000

3000

4000

5000

6000

2
) < 1.765 GeV/cS KΛ1.705 < m(

2
) < 1.765 GeV/cS KΛ1.705 < m(

(a)

(b)

(c)

Figure 5.37: The Λ+
c mass-sideband-subtracted, efficiency-corrected cos(ω/2) distri-

bution in data, corresponding to the mass regions (a) 1.62 < m(ΛKS) < 1.67 GeV/c2

(low mass region), (b) 1.67 < m(ΛKS) < 1.705 GeV/c2 (Ξ(1690)0 signal region), (c)
1.705 < m(ΛKS) < 1.765 GeV/c2 (high mass region).
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Figure 5.38: The normalized residual distribution Δ =

[
μcombined
j −Nobs

j√
μcombined
j

]
, corresponding

to (a) 1.625 < m(ΛKS) < 1.7 GeV/c2 and cosθΛ > 0.2, (b) m(ΛKS) > 1.7 GeV/c2

and cosθΛ > 0.2, (c) 1.625 < m(ΛKS) < 1.7 GeV/c2 and cosθΛ < 0.2. (d) m(ΛKS) >
1.7 GeV/c2 and cosθΛ < 0.2, Superimposed on each distribution is a single Gaussian
function centered at zero with an r.m.s. deviation value of 1.0.
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5.9 Conclusions

A simple isobar model treatment of theK+KSΛ Dalitz plot has shown clear ev-

idence for the existence of the decay modes Λ+
c → Ξ(1690)0K+ and Λ+

c → Λa0(980)+,

the latter for the first time.

Information on the spin of the Ξ(1690)0, and values of its mass and width

parameters have been extracted from fits to the observed rectangular Dalitz plot

using a model based on the coherent superposition of amplitudes describing the Λ+
c

isobar decay modes.

For Ξ(1690) spin 1/2, the fit is excellent (C.L.=56.4%), and the following mass

and width parameter values have been obtained:

m(Ξ(1690)0) = 1682.9±0.9 (stat.)±0.3 (syst.) MeV/c2,

Γ(Ξ(1690)0) = 9.3+2.0
−1.7 (stat.)±0.4 (syst.) MeV.

For spin 3/2, the fit is poor (C.L.=1.9%) and there are systematic failures in

the description of the resulting cosθΛ and m(ΛKS) projections.

For spin 5/2, the fit is acceptable (C.L.=17.4%), but again there are systematic

deviations from the observed Ξ(1690)0 lineshape in the region of high mass, where

interference with the Λa0(980)+ amplitude seems important.

For spin 3/2 and 5/2, the fitted mass value is found to be higher by 2 MeV/c2

than that for spin 1/2, and that for the width, 0.3-0.5 MeV lower. The mass shift is

much larger than the systematic uncertainty estimated for the spin 1/2 hypothesis,

but since spin 3/2 is clearly disfavored, and spin 5/2 also yields an inferior description

of the data, this difference is not considered to provide a convincing measure of
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systematic uncertainty.
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CHAPTER 6
THE PROPERTIES OF THE Ξ(1530)0 FROM Λ+

c → Ξ−π+K+ DECAY

The Ξ(1530) is the only Cascade resonance whose properties are reasonably

well understood. It decays ∼ 100% toΞπ and< 4% toΞγ [22], and its mass and width

have been measured and are well known [22]. A spin-parity analysis of data produced

in a bubble chamber by means of the reactions K−p→ Ξ(1530)0,−K0,+ carried out by

Schlein et al. [53] showed that JP = 3/2+ (i.e. P -wave) or JP = 5/2− (i.e. D-wave)

was favored, and that the data were consistent with J ≥ 3/2; however, they state

that spin > 3/2 is not required, and on this basis conclude that JP = 3/2+. Similar

conclusions were drawn by Button-Schafer et al. [54] in their spin-parity analysis of

K−p → Ξ(1530)0,−K0,+ and K−p → Ξ(1530)0,−K+,0π0,+ events. Both experiments

rule out J = 1/2 but their claim that J > 3/2 is not required is the basis for the

conclusion that JP = 3/2+. The present analysis establishes spin 3/2 and hence

establishes positive parity, based on the analyses of refces. [53, 54]. As in chapter 5,

the Ω− spin analysis procedures are extended to the context of Λ+
c quasi-two-body

decay, in the present instance to the process Λ+
c → (Ξ−π+)K+, for which the Ξ−π+

invariant mass distribution exhibits a dominant Ξ(1530)0 signal.

6.1 Two-body Invariant Mass Projections

The uncorrected Ξ−π+ invariant mass projections for the data sample se-

lected as described in section 3.4 are shown in Fig. 6.1 (a). The distribution for

Λ+
c → Ξ−π+K+ signal events corresponds to the black points, while the high and low
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Ξ−π+K+ mass-sidebands are shown in red and blue, respectively, where the Λ+
c signal

and sideband regions used in this analysis are those indicated in Fig. 3.10. The uncor-

rected Λ+
c mass-sideband-subtracted Ξ−π+ invariant mass projection (Fig. 6.1 (b))

shows a strong signal due to the Ξ(1530)0 resonance. The size of the peak clearly

indicates that the decay Λ+
c → Ξ−π+K+ is dominated by Λ+

c → Ξ(1530)0K+.
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Figure 6.1: The uncorrected Ξ−π+ invariant mass projection in data. (a) The distri-
bution for Λ+

c → Ξ−π+K+ signal events corresponds to the black points. The high
and low Ξ−π+K+ mass-sidebands are shown in red and blue, respectively. (b) The
uncorrected Λ+

c mass-sideband subtracted Ξ−π+ invariant mass projection.
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The uncorrected Λ+
c mass-sideband subtracted Ξ−K+ invariant mass projec-

tion shown in Fig. 6.2 (b) has a double-peak structure which is due to the reflection

of the structure in the Ξ(1530)0 region, as can be seen from Figs. 6.3 and 6.4(a) in

the next section.
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Figure 6.2: The uncorrected Ξ−K+ invariant mass projection in data. (a) The dis-
tribution for Λ+

c → Ξ−π+K+ signal events corresponds to the black points. The high
and low Ξ−π+K+ mass-sidebands are shown in red and blue, respectively. (b) The
uncorrected Λ+

c mass-sideband subtracted Ξ−K+ invariant mass projection.
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6.2 The Dalitz Plot for Λ+
c → Ξ−π+K+

The Dalitz plot (Fig. 6.3 (a)) shows evidence for only one resonant structure.

A clear band can be seen at the nominal mass squared of the Ξ(1530)0, indicating

dominance of the contribution from Λ+
c → Ξ(1530)0K+, where Ξ(1530)0 → Ξ−π+

by strong decay.
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Figure 6.3: The Dalitz Plot for Λ+
c → Ξ−π+K+. (a) The Dalitz plot of the Ξ−K+

versus the Ξ−π+ invariant mass-squared distribution corresponding to the Λ+
c signal

region. (b) The corresponding rectangular Dalitz plot for the Ξ(1530)0 mass region.
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Figure 6.4: Rectangular Dalitz plots corresponding to the Λ+
c signal region. (a) The

rectangular plot of Ξ− helicity angle cosine versus Ξ−K+ invariant mass distribution.
(b) The rectangular plot of π− helicity angle cosine versus the K+π+ system invariant
mass distribution.

Figures 6.3 (b) and 6.4 (a) show the rectangular plots of Ξ− helicity angle

cosine as a function of the invariant mass of the Ξ−π+ and Ξ−K+ systems, while

Fig. 6.4 (b) is the corresponding plot of the π− helicity angle cosine as a function of

the invariant mass of the π+K+ system. These scatter-plots correspond the the Λ+
c

signal region.

Figure 6.5 shows Fig. 6.4 (a) with the maximum of the color scale set to
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Figure 6.5: The rectangular plot of Ξ− helicity angle cosine versus the Ξ−K+ system
invariant mass distribution corresponding to the Λ+

c signal region (Fig. 6.4 (a)) with
the maximum of the color scale set to 10 counts in order to enhance any structure in
low-occupancy regions of the plot.

10 in order to enhance possible patterns in low occupancy regions by reducing the

intensity scale. A resonant contribution in Ξ−K+ would be observed as a band at a

particular mass on this plot. The absence of any such structure is consistent with the

fact that the only resonant contribution to the Dalitz plot appears to be associated

with the Ξ−π+ system (but see section 6.6). Fig. 6.4 (a) shows quite clearly that

the peaks in Ξ−π+ invariant mass near 2.0 and 2.1 GeV/c2 are associated with the

regions cosθΞ− ∼ ±1 in the Ξ(1530)0 region of Fig. 6.3 (b). Finally, as expected for an

I = 3/2 system, the K+π+ invariant mass distribution shows no evidence of structure

other than that resulting from reflection of the Ξ(1530) region (Fig. 6.4 (b)).
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6.3 Ξ(1530) Spin Determination

It follows from the previous section that the decay Λ+
c → Ξ−π+K+ seems to

proceed predominantly through the quasi-two-body decay Λ+
c → Ξ(1530)0K+, and

as such it is analogous to the decay Ξ0
c → Ω−K+ analyzed in chapter 4. For Ξ(1530)0

spin J , and a corresponding definition of the helicity angle of the Ξ− in the Ξ−π+

rest-frame, Eqs. 4.3, 4.4, and 4.5 describe the expected distributions in cosθΞ− for

J =1/2, 3/2, and 5/2, respectively. However, since Ξ(1530)0 → Ξ−π+ is a strong

decay, parity is conserved, with the consequence that

∣∣AJ
1/2

∣∣ =
∣∣AJ

−1/2

∣∣ ,
in the notation of chapter 4, with the result that β = 0, i.e. the asymmetric terms in

Eqs. 4.3-4.6 are absent in the case of Ξ(1530)0 decay.

Following the event weighting procedure of section 4.5, spin information for

the Ξ(1530) is obtained using Legendre polynomial moments. After the efficiency-

correction procedure described in Appendix D, the
√

10P2(cosθΞ−) moment of the

Ξ−π+ system invariant mass distribution for the Λ+
c signal region shown in Fig. 6.6 (a)

indicates that spin 3/2 is clearly favored, as almost all of the Ξ(1530) signal is re-

tained, while the 7/
√

2P4(cosθΞ−) moment (Fig. 6.7 (a)) is consistent with being flat

implying that spin 5/2 is completely ruled out.

As can be observed from Figs. 6.6 (b),(c) and 6.7 (b),(c), the corresponding

Λ+
c mass-sideband distributions are consistent with zero and can therefore be ignored

in the weighting procedure.

Figure 6.8 shows a comparison on the same y-axis scale of the
√

10P2(cosθΞ−)
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and 7/
√

2P4(cosθΞ−) moments for the Ξ−π+ system invariant mass distribution corre-

sponding to the Λ+
c signal region. As previously stated, the multiplicative coefficient is

necessary in order to project the total number of signal events. As seen in Fig. 6.8 (a),

the
√

10P2(cosθΞ−) moment projects the Ξ(1530) signal, whereas the 7/
√

2P4(cosθΞ−)

moment has no structure whatsoever. The moments for L > 4 also show no struc-

ture, so that it can be concluded that the Ξ(1530)0 does indeed have spin 3/2. This

establishes positive parity, as discussed above, so that the Ξ(1530)0 corresponds to a

resonant P -wave amplitude in the Ξ−π+ system.

If the Dalitz plot were dominated solely by the resonant channel Λ+
c →

Ξ(1530)0K+, then the
√

10P2(cosθΞ−) moment would project the entire Ξ(1530)

signal extracted by sideband subtraction from Fig. 6.9. Fig. 6.10 shows the differ-

ence between the
√

2P0(cosθΞ−) and
√

10P2(cosθΞ−) moments after mass-sideband-

subtraction (since the Λ+
c mass-sidebands of the

√
2P0(cosθΞ−) have structure) and

efficiency-correction.

Instead of the expected smooth behavior, the distribution of Fig. 6.10 shows a

dip in the vicinity of the Ξ(1530) mass; this extends even to negative intensity values,

which indicates that the
√

10P2(cosθΞ−) projection of Ξ(1530) events generates an

overestimate of the signal by ∼15-20%. This challenges the assumption that a single

wave may be used to characterize the Ξ−π+ system, and suggests the presence of

other amplitudes contributing to the Ξ(1530) region of the Dalitz plot.

Further evidence of results from an examination of the cosθΞ− distribution cor-

responding to the Ξ(1530)0 signal region. The Λ+
c mass-sideband-subtracted cosθΞ−
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distribution corresponding to the Ξ(1530)0 signal region (Fig. 6.11) exhibits an ob-

vious quadratic behavior, clearly indicating that the spin of the Ξ(1530) is not 1/2.

The function α (1 + 3cos2θ) corresponding to J = 3/2 for the Ξ(1530)0 fits the data

best, although the deviations of the data from the curve are obvious, and the fit C.L.

is only 0.0003 (Table 6.1). The fit with the parametrization corresponding to J = 5/2

is extremely poor, with C.L. 6 × 10−44 (Table 6.1), as would be expected from the

projection of Fig. 6.8 (b). In addition, the distribution of Fig. 6.11 exhibits clear signs

of forward-backward asymmetry.

The above symptoms suggest that a description of the Ξ(1530)0 region in

terms of a single Ξ−π+ amplitude corresponding to a resonant structure is something

of an over-simplification. Small additional Ξ−π+ amplitudes need to be incorporated

if a quantitative understanding is to be achieved, since their contributions may be am-

plified through interference with the large Breit-Wigner (BW) amplitude describing

the Ξ(1530). A first attempt at a more general amplitude representation is described

in the following sections of this chapter.

Table 6.1: The fit probabilities corresponding to Ξ(1530) spin hypotheses 3/2 and
5/2, assuming JΛc = 1/2.

JΞ(1530) Fit χ2/NDF Fit probability Comment

3/2 47.7/19 0.0003 Fig. 6.11, solid curve

5/2 258.3/19 6 × 10−44 Fig. 6.11, dashed curve



173

2)  GeV/c+π -Ξm(
1.5 1.55 1.6 1.65 1.7 1.75

2
E

n
tr

ie
s/

4 
M

eV
/c

0

1000

2000

3000

4000

5000

2)  GeV/c+π -Ξm(
1.5 1.55 1.6 1.65 1.7 1.75

2
E

n
tr

ie
s/

4 
M

eV
/c

0

1000

2000

3000

4000

5000

2)  GeV/c+π -Ξm(
1.5 1.55 1.6 1.65 1.7 1.75

2
E

n
tr

ie
s/

4 
M

eV
/c

0

1000

2000

3000

4000

5000

(a)

(b) (c)

Figure 6.6: The efficiency-corrected
√

10P2(cosθΞ−) moments of the Ξ−π+ system
invariant mass distribution corresponding to (a) the Λ+

c signal region, (b) and (c) the
high and low Λ+

c mass-sideband regions, respectively.
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Figure 6.7: The efficiency-corrected 7/
√

2P4(cosθΞ−) moments of the Ξ−π+ system
invariant mass distribution corresponding to (a) the Λ+

c signal region, (b) and (c) the
high and low Λ+

c mass-sideband regions, respectively.
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Figure 6.8: The efficiency-corrected moments of the Ξ−π+ system invariant mass
distribution corresponding to the Λ+

c signal region: (a)
√

10P2(cosθΞ−) and (b)
7/
√
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Figure 6.9: The efficiency-corrected
√

2P0(cosθΞ−) moments of the Ξ−π+ system
invariant mass distribution corresponding to (a) the Λ+

c signal region, (b) and (c) the
high and low Λ+

c mass-sideband regions, respectively.
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√
2P0(cosθΞ−) −√

10P2(cosθΞ−) mo-
ment of the Ξ−π+ system invariant mass distribution, after efficiency-correction.
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Figure 6.11: The efficiency-corrected cosθΞ− distribution for Λ+
c → Ξ−π+K+ data.

The black dots correspond to the Ξ(1530)0 → Ξ−π+ mass signal region. The red
(blue) curve corresponds to the parametrization of the Ξ(1530) angular distribution
for the assumption of pure spin 3/2 (5/2).



178

6.4 Legendre Polynomial Moment Analysis

6.4.1 Evidence for Ξ(1530) Phase Motion

Strong interactions in the (Ξ−π+) system may give rise to interference between

the resonant P -wave Ξ(1530) amplitude and other (Ξ−π+) amplitudes. Evidence for

interference is seen in the behavior of the P1(cosθΞ−) moment of the Ξ−π+ system as

a function of invariant mass. The distribution shown in Fig. 6.12 is consistent with

the interference pattern resulting from the rapid oscillation due to Ξ(1530) P -wave

Breit-Wigner (BW) phase motion in the presence of an amplitude with slowly varying

phase.

The oscillatory pattern seen in Fig. 6.12 (a) corresponding to the Λ+
c signal

region distribution is not observed in the spectra corresponding to the high and low

Λ+
c mass-sideband regions (Fig. 6.12 (b),(c)), which demonstrates clearly that the

pattern observed is indeed due to Ξ(1530) phase-motion in events produced from

signal Λ+
c candidates and not simply an artifact of combinatorial background.

The P1(cosθΞ−) moment for m(Ξ−π+) < 1.58 GeV/c2 behaves very much like

the real part of the Ξ(1530) BW amplitude (see Fig. 6.13 (b)), which suggests that the

phase of the amplitude yielding the interference effect is close to zero. The proximity

of the Ξ−π+ threshold, and the fact that the interference is seen in the P1(cosθΞ−)

moment suggest very strongly that the effect is due primarily to an S-wave Ξ−π+

amplitude (see Eq. 6.2 below).
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6.4.2 Interpretation of the Observed Ξ(1530)

Phase Motion

Based on the discussion of section 6.4.1, a simple model incorporating only S-

and P - wave Ξ−π+ amplitudes is considered, and the following intensity distribution

is obtained (see Appendix E):

I(cosθ) =

∣∣S1/2
∣∣2 +

∣∣P1/2
∣∣2

2
+

∣∣P3/2
∣∣2 (3cos2θ + 1

4

)
+ Re

(
S1/2P3/2 ∗)√2cosθ (6.1)

− (
ρ1/2 1/2 − ρ−1/2−1/2

) [
Re

(
S1/2P 1/2 ∗) cosθ + Re

(
P1/2P3/2 ∗)(3cos2θ − 1√

2

)]
,
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Figure 6.12: The efficiency-corrected P1(cosθΞ−) moments of the Ξ−π+ system in-
variant mass distribution corresponding to (a) the Λ+

c signal region, (b) and (c) the
high and low Λ+

c mass-sideband regions, respectively.
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where θ = θΞ− for convenience. If, it is assumed that the density matrix elements are

equal,

I(cosθ) =
[∣∣S1/2

∣∣2 +
∣∣P 1/2

∣∣2 +
∣∣P 3/2

∣∣2] 1√
2
P0(cosθ)

+
∣∣P 3/2

∣∣2 1√
10
P2(cosθ)

+Re
(
S1/2P 3/2 ∗)√2

3
P1(cosθ), (6.2)

so that the presence of a P1(cosθ) term results from interference between the S1/2 and

P 3/2 amplitudes. The orthogonality of the Legendre polynomial functions implies

I =
dN

dcosθ
= 〈P0〉P0(cosθ) + ... + 〈P2〉P2(cosθ)

where,

〈Pi〉 =

∫ 1

−1

Pi(cosθ)dN/dcosθdcosθ ∼
∑

j

Pi(cosθj)

are the background (i.e. Λ+
c mass-sidebands)-subtracted, efficiency-corrected Legen-

dre polynomial averages, and the summation is over the events in the mass interval

considered.

It follows that the relationship between the Legendre polynomial moments and

the underlying Ξ−π+ amplitudes is given by the system of equations:

〈P0〉 =
1√
2

(∣∣S1/2
∣∣2 +

∣∣P 1/2
∣∣2 +

∣∣P 3/2
∣∣2) (6.3)

〈P1〉 =

√
2

3
Re

(
S1/2P 3/2 ∗) (6.4)

〈P2〉 =
1√
10

∣∣P 3/2
∣∣2 . (6.5)

In this simple model, Eq. 6.4 demonstrates explicitly that the structure in

the P1(cosθ) moment results from interference between the S1/2 amplitude and the
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dominant P 3/2 amplitude. This qualitatively describes the observed behavior in the

vicinity of the Ξ(1530)0 resonance, where the P 3/2 amplitude is undergoing a rapid

BW phase motion, provided the phase of the S1/2 amplitude is moving slowly.

If this amplitude behavior continued to higher Ξ−π+ mass, the P1(cosθ) mo-

ment would asymptotically approach zero from negative values as the Ξ(1530)0 phase

approached π. Instead, the P1(cosθ) moment passes through zero at m(Ξ−π+) ∼ 1.6

GeV/c2, and remains positive thereafter. This indicates that the S1/2 phase is in-

creasing substantially with increasing mass, reaching ∼ 90◦ at ∼ 1.6 GeV/c2 (hence

Re
(
S1/2P 3/2 ∗) ∼ 0), and continues to increase beyond this point, hence the positive

values of the P1(cosθ) moment (i.e. the S1/2 phase is “catching up” on the P 3/2

phase). At the same time the S1/2 amplitude must be increasing in magnitude in

order to yield a significant P1(cosθ) moment, since
∣∣P 3/2

∣∣2 is consistent with zero for

mass values greater than ∼ 1.56 GeV/c2 (Fig. 6.8 (a) and Eq. 6.5). This suggests

that the broad, non-Ξ(1530)0 component of the Ξ−π+ invariant mass distribution of

Fig. 6.9 (a) results primarily from the
∣∣S1/2

∣∣2 contribution to Eq. 6.3, although here

it must be assumed that the
∣∣P 1/2

∣∣2 makes no large contribution to the intensity.

The latter assumption cannot be tested in the context of the model, since the three

equations, Eqs.6.3-6.5, are insufficient to define the four unknowns involved (
∣∣S1/2

∣∣2,
∣∣P 1/2

∣∣2, ∣∣P 3/2
∣∣2, and the cosine of the S1/2 − P 3/2 relative phase angle).

In this model of an increasingly significant S1/2 amplitude at higher Ξ−π+

mass, the detailed behavior of the intensity distribution in the vicinity if the Ξ(1690)0

is of interest. This is shown in Fig. 6.13 (a), where the lower plot provides a closer
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(a)

(b)

Figure 6.13: The efficiency-corrected Λ+
c mass-sideband-subtracted moments of the

Ξ−π+ system invariant mass distribution corresponding to the Λ+
c signal region, with

the nominal Ξ(1530)0 and Ξ(1690)0 mass values indicated by the red dot-dashed
vertical lines: (a) P0(cosθΞ−) and (b) P1(cosθΞ−).
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look at the high mass region. There is a sharp decrease in intensity by a factor of

∼ 2 just at the Ξ(1690)0 mass position. A hyperon beam experiment at CERN [45]

has in fact observed a small Ξ(1690)0 signal in the inclusive Ξ−π+ invariant mass

distribution; this is accompanied by a much larger Ξ(1530)0 signal (Fig. 6.14). The

ratio of production cross sections (with decay to Ξ−π+) is ∼ 2%, so that in the

present analysis it is reasonable to expect a small Ξ(1690)0 contribution to the Ξ−π+

invariant mass distribution in the presence of a large Ξ(1530)0 signal. It might be

expected that such a contribution would appear as a peak rather than a dip. However,

Figure 6.14: Evidence for the decay Ξ(1690)0 → Ξ−π+ obtained in the inclusive
Ξ−π+ invariant mass distribution from a hyperon beam experiment at CERN [45].
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the presence of a dip leads to an intriguing possibility as to the parity of the Ξ(1690)0.

If, as discussed above, the non-Ξ(1530)0 part of the Ξ−π+ invariant mass distribution

results from a slowly-increasing S1/2 amplitude whose phase passes through 90◦ at

∼ 1.6 GeV/c2, then the subsequent coherent addition of an S1/2 Ξ(1690) resonant

amplitude can yield the observed dip structure. This is illustrated schematically by

the Argand diagram cartoon in Fig. 6.15. The steady counter-clockwise rotation of

the S1/2 wave vector would result in small amplitude and phase values in the Ξ(1530)0

region, and the region near the top of the circle would correspond to m(Ξ−π+) ∼ 1.6

GeV/c2 since the relative S1/2 − P 3/2 phase would then be ∼ 90◦, i.e. such that

Re
(
S1/2P 3/2 ∗) ∼ 0 as observed (Fig. 6.12 (a)).

The coherent addition of a narrow inelastic BW amplitude, represented by

the circle, would cause the magnitude of the net S1/2 amplitude to be reduced, and

thus generate the observed dip in the intensity distribution. The mass dependence of

Figure 6.15: Cartoon of an Argand diagram illustrating a possible cause for the dip in
the Ξ−π+ invariant mass distribution due to the presence of the Ξ(1690)0 → Ξ−π+.
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the P1(cosθ) moment shown in Fig. 6.13 (b), and that of the non-Ξ(1530) intensity

distribution of Fig. 6.13 (a) show striking similarities to the corresponding behavior

observed in the analysis of the K−π+ elastic scattering from the LASS spectrometer

experiment at SLAC [55]. This is illustrated by means of Fig. 6.16 and 6.17 [56].

In Fig. 6.16, the quantity plotted is proportional to the interference between the

I = 1/2 K−π+ S- and P - wave amplitudes resulting from the LASS analysis. As

such it exactly parallels Eq. 6.4 and the P1(cosθ) moment of Fig. 6.13 (b). For the

latter, the oscillation in the Ξ(1530) region is very similar to that in the K∗(892)

resonance region of Fig. 6.16, and the subsequent mass dependence up to ∼ 1.63

GeV/c2 behaves just like that obtained for K−π+ up to m(K−π+) ∼ 1.3 GeV/c2.

The K−π+ S-wave amplitude and phase results from LASS are shown in Figs. 6.17 (a)

Figure 6.16: The K−π+ mass dependence of the forward-backward asymmetry re-
sulting from the I = 1/2 S−P wave interference obtained using the results from the
LASS analysis of K−π+ elastic scattering [55].
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and (b), respectively. To a very good approximation, the S-wave amplitude is purely

elastic up to Kη′(958) threshold, and the fitted curves shown satisfy this behavior.

There is a slow but steady increase in amplitude and phase up to m(Ξ−π+) ∼ 1.3

(a)

(b)

Figure 6.17: The K−π+ mass dependence of the forward-backward asymmetry re-
sulting from the I = 1/2 S-wave K−π+ (a) scattering amplitude, and (b) phase, from
the LASS experiment [55]; the curves result from a fit to the coherent superposition
of elastic effective range and K∗

0(1430) BW resonance amplitudes.
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GeV/c2, which is represented by an effective range parametrization1.

At this point the phase relative to the P -wave is ∼ 90◦, so that the interference

term plotted in Fig. 6.16 passes through 0 and the amplitude is near the top of the

associated Argand diagram. A similar interpretation of the observed Ξ−π+ behavior

below ∼ 1.63 GeV/c2 leads to a representation of the S1/2 amplitude in this region by

the large circle in Fig. 6.15. The rapid increase in K−π+ S-wave phase thereafter is

due to the coherent addition of an elastic BW amplitude representing the K∗
0 (1430)

resonance. Since the net K−π+ S-wave amplitude was at the top of the Argand

plot, the onset of resonance causes the net amplitude to decrease rapidly, as shown

in Fig. 6.16 (a), so that the resonance reveals itself via a rapid decrease in intensity

rather than the normal BW peak. This known behavior of the K−π+ system prompts

the suggestion that the dip in the Ξ−π+ mass distribution in the Ξ(1690) region may

be of similar origin. If so, the effect should be less dramatic, because the Ξ(1690)

1The following expression for the scattering S-wave amplitude was originally due to
Bethe:

f(q) =
1

−a−1 + 1
2r0q

2 − iq
,

where a is the scattering length, and r0 the effective range. From

f(q) =
eiδsinδ

q
=

1
qcotδ − iq

,

the phase shift formula

qcotδ = −1
a

+
1
2
r0q

2

is obtained. Applying the Optical Theorem on the effective range parametrization yields
the total cross section expression σt = 4πa2, at threshold, as expected from the Black Disk
approximation.
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resonance is inelastic, hence the schematic representation of its BW amplitude by a

small circle in the cartoon of Fig. 6.15.

If the dip observed in Fig. 6.13 (a) does in fact result from the coherent addition

of a Ξ(1690)0 resonant amplitude to a slowly-varying S1/2 Ξ−π+ amplitude, it may

be inferred that the Ξ(1690) has negative parity, and in addition that the conclusion

of chapter 5 to the effect that the spin of the Ξ(1690) is 1/2 is correct.

The behavior of the P1(cosθ) moment for m(Ξ−π+) above ∼ 1.63 GeV/c2 is

rather puzzling in light of the interpretation of the dip in the mass spectrum at ∼ 1.68

GeV/c2. The cartoon of Fig. 6.15 would indicate that the net S1/2 amplitude and

phase should not change dramatically in this region, and yet the moment seems to

decrease almost to zero near the Ξ(1690), before increasing again at higher mass. It

does not seem possible to explain such behavior in a model requiring only S1/2 and

P 3/2 amplitudes. However, in section 6.5 where the inclusion of D-wave amplitudes

is discussed, a correction to the P1(cosθ) moment which removes a P −D interference

contribution results in a moment contribution from S1/2 − P 3/2 interference which

behaves smoothly with mass (Fig. 6.20), so that the problem is resolved.

6.4.3 Amplitude Analysis Assuming S and P Waves

It was pointed out in section 6.4.2 that Eqs. 6.3-6.5 cannot be solved in

general. Nevertheless, Eq. 6.4 does provide a direct measure of S1/2 − P 3/2 inter-

ference, and similarly, Eq. 6.5 measures
∣∣P 3/2

∣∣2. Substituting the latter into Eq.

6.3 then measures
∣∣S1/2

∣∣2 +
∣∣P 1/2

∣∣2. The results obtained by following such a pro-
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Figure 6.18: The results of an amplitude analysis assuming S and P waves. (a)-(d)
The efficiency-corrected Λ+

c mass-sideband-subtracted Ξ−π+ mass spectrum and mo-
ment distributions; (e) the efficiency-corrected mass-sideband subtracted magnitude

squared of the P 3/2-wave; (f) the corresponding
∣∣S1/2

∣∣2 +
∣∣P 1/2

∣∣2 distribution.

cedure are summarized in Fig. 6.16. The mass spectrum is shown in Fig. 6.18 (a),

while the moment distributions corresponding to Eqs. 6.3, 6.4 and 6.5 are shown in

Figs. 6.18 (b),(c) and (d), respectively. The resulting behavior of the P 3/2 intensity is

shown in Fig. 6.18 (e), and that for the sum
∣∣S1/2

∣∣2 +
∣∣P 1/2

∣∣2 is in Fig. 6.18 (f). The

latter distribution would be expected to behave smoothly with mass in the Ξ(1530)0

region. Not only is this not the case, but the observed dip extends to negative (i.e.

unphysical) intensity values. This is the same behavior discussed previously regarding
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Fig. 6.10, and demonstrates quite explicitly that a simple S − P wave model cannot

describe the data in the Ξ(1530)0 region. As a consequence, any attempt at extract-

ing quantitative information concerning S1/2 − P 3/2 relative phase behavior in this

region is pointless.

6.5 Legendre Polynomial Moment Analysis

Incorporating D Wave

The results of the previous sections suggest that Ξ−π+ amplitudes of orbital

angular momentum beyond P -wave are necessary to a description of the observed

moments. In turn, this would imply the existence of structure in at least one PL(cosθ)

moment with L > 2.

The formalism is therefore extended to include D-wave amplitude contribu-

tions, and this is described in detail in Appendix E. The presence of a D5/2 amplitude

might reveal itself through a P3(cosθ) moment resulting from P 3/2−D5/2 interference,

or even through a P4(cosθ) moment if its intensity is sufficiently strong. The mass

dependence of the P3(cosθ) moment is shown in Fig. 6.19, and, within the statisti-

cal uncertainties, it seems to be systematically positive in the Ξ(1530)0 region and

negative between 1.6 and 1.7 GeV/c2. However, the P4(cosθ) moment, shown earlier

in Fig. 6.7, shows no clear systematic deviations from zero, indicating that any D5/2

amplitude must be quite small.

The Pi(cosθ) moment (i = 5, ..., 9) mass dependences show no clear systematic

deviations from zero, indicating that amplitudes beyond D-wave are absent.
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Assuming S, P , and D wave contributions to the Ξ−π+ system, the following

intensity distribution is calculated (Appendix E):

I =

∣∣S1/2
∣∣2 +

∣∣P 1/2
∣∣2

2
+

[∣∣P 3/2
∣∣2 +

∣∣D3/2
∣∣2](3cos2θ + 1

4

)

+
∣∣D5/2

∣∣2 3

(
5cos4θ − 2cos2θ + 1

8

)

+
[
Re

(
S1/2P 3/2 ∗) +Re

(
P 1/2D3/2 ∗)]√2cosθ

+Re
(
S1/2D5/2 ∗)√3

(
3cos2θ − 1

2

)

+Re
(
P 3/2D5/2 ∗)√6cos3θ (6.6)
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Figure 6.19: The efficiency-corrected P3(cosθΞ−) moments as a function of (Ξ−π+)
invariant mass distribution for (a) the Λ+

c signal region, (b) and (c) the high and low
Λ+

c mass-sideband regions, respectively.
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− (
ρ1/2 1/2 − ρ−1/2−1/2

) [(
Re

(
S1/2P 1/2 ∗) +Re

(
P 3/2D3/2 ∗)(9cos2θ − 5

2

)

+Re
(
P 1/2D5/2 ∗)√3

(
5cos2θ − 3

2

))
cosθ

+
(
Re

(
S1/2D3/2 ∗) +Re

(
P 1/2P 3/2 ∗))(3cos2θ − 1√

2

)

+Re
(
D3/2D5/2 ∗)√3

(
15cos4θ − 12cos2θ + 1

2
√

2

)]
,

so that,

N =

∫ 1

−1

Idcosθ =
∣∣S1/2

∣∣2 +
∣∣P1/2

∣∣2 +
∣∣P3/2

∣∣2 +
∣∣D3/2

∣∣2 +
∣∣D5/2

∣∣2 ,
as expected. In terms of normalized Legendre polynomials, and assuming that the

density matrix elements are equal, this becomes (Appendix E):

I =
P0(cosθ)√

2

(∣∣S1/2
∣∣2 +

∣∣P 1/2
∣∣2 +

∣∣P 3/2
∣∣2 +

∣∣D3/2
∣∣2 +

∣∣D5/2
∣∣2)

+P1(cosθ)

(
2√
3

[
Re

(
S1/2P3/2 ∗) + Re

(
P1/2D3/2 ∗)] +

6

5
Re

(
P3/2D5/2 ∗))

+
P2(cosθ)√

10

(∣∣P 3/2
∣∣2 +

∣∣D3/2
∣∣2 +

8

7

∣∣D5/2
∣∣2 +

√
20Re

(
S1/2D5/2 ∗)) (6.7)

+
4

5

√
3

7
P3(cosθ)Re

(
P3/2D5/2 ∗) +

√
2

7
P4(cosθ)

∣∣D5/2
∣∣2 .

The orthogonality of the Legendre polynomial functions implies

I =
dN

dcosθ
= 〈P0〉P0(cosθ) + ...+ 〈P4〉P4(cosθ),

and the relationship between the Legendre polynomial moments and the magnitudes

of the contributing waves is given by the system of equations:
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〈P0〉 =
1√
2

(∣∣S1/2
∣∣2 +

∣∣P 1/2
∣∣2 +

∣∣P 3/2
∣∣2 +

∣∣D3/2
∣∣2 +

∣∣D5/2
∣∣2) (6.8)

〈P1〉 =

(
2√
3

[
Re

(
S1/2P 3/2 ∗) +Re

(
P 1/2D3/2 ∗)] +

6

5
Re

(
P 3/2D5/2 ∗)) (6.9)

〈P2〉 =
√

10

(∣∣P 3/2
∣∣2 +

∣∣D3/2
∣∣2 +

8

7

∣∣D5/2
∣∣2 +

√
20Re

(
S1/2D5/2 ∗)) (6.10)

〈P3〉 =
4

5

√
3

7
Re

(
P 3/2D5/2 ∗) (6.11)

〈P4〉 =

√
2

7

∣∣D5/2
∣∣2 (6.12)

In general, this set of equations cannot be solved, since there are more un-

knowns than measureables. Additional measured quantities might be obtained by

incorporating polarization measurements from the decay of the Ξ− to Λπ−, but no

attempt has been made to develop the necessary formalism, and so a complete anal-

ysis is beyond the scope of the present study. Any such analysis would require the

full statistics of the final BABAR data set, anticipated to correspond to an integrated

luminosity of ∼ 800 fb−1, and so is set aside for the time being.

In spite of this, some useful observations can be made concerning the potential

effects of extending the analysis of the Ξ−π+ system to include D-wave contributions.

Clearly, the interference term between the P 3/2 and D5/2 amplitudes can account for

the structure observed in the mass dependence of the P3(cosθ) moment (Eq. 6.11),

while the absence of any clear P4(cosθ) moment indicates that
∣∣D5/2

∣∣ must be rather

small (Eq. 6.12). The P 3/2 −D5/2 interference term also contributes to the P1(cosθ)

moment, and so Eq. 6.9 may be used in conjunction with Eq. 6.9 to obtain

[
Re

(
S1/2P 3/2 ∗) +Re

(
P 1/2D3/2 ∗)] =

√
3

2
〈P1〉 − 3

√
7

4
〈P3〉. (6.13)
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If the contribution from P 3/2 −D5/2 interference is small, the quantity on the right-

hand side of Eq. 6.13 should provide an improved estimate of the behavior resulting

from the S1/2 −P 3/2 interference. This quantity is plotted in Fig. 6.20. The interfer-

ence pattern in the Ξ(1530)0 region is preserved, and the behavior in the Ξ(1690)0

region seems more compatible with the idea of a Ξ(1690)0 BW amplitude adding

coherently to a broad non-resonant S1/2 amplitude, as discussed previously in section

6.4.2 with regard to Fig. 6.13 (b).

Finally the contributions to Eq. 6.10 beyond the
∣∣P 3/2

∣∣2 may explain why the

P2(cosθΞ−) moment in the Ξ(1530)0 region yields a larger signal than that observed in

the mass distribution (of Fig. 6.10). Any contributions from
∣∣D3/2

∣∣2 and
∣∣D5/2

∣∣2 will

tend to cancel in the distribution of Fig. 6.10, but the S1/2 −D5/2 interference term

has no counterpart in Eq. 6.8, and if positive will yield a P2(cosθΞ−) moment larger
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the Ξ−π+ system invariant mass distribution, corresponding to the Λ+

c signal region.
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than for a pure P 3/2 amplitude. In addition, a careful examination of the P2(cosθΞ−)

moment distribution (Fig. 6.6) indicates a lineshape which seems skewed toward low

mass instead of toward high mass, as expected for a P -wave BW amplitude. This

skewing might be the result of S1/2 − D5/2 interference, and it is primarily for this

reason that no attempt has been made so far to fit Fig. 6.6 in order to extract mass

and width parameter values for the Ξ(1530)0.

However, if this reasoning were correct, integration over cosθ should remove

the interference contribution and yield an invariant mass distribution described by

Eq. 6.8, such that the Ξ(1530)0 signal should be well-described by a Breit-Wigner

lineshape with known mass and width parameter values [22].

Quantitative comparisons between the Ξ(1530) P2(cosθΞ−) moment projection

and the expected lineshape, and between the Ξ(1530) signal in the invariant mass dis-

tribution and the expected lineshape are presented, and their implications discussed,

in section 6.6.

6.6 Implications of Fits to the Ξ(1530)0 Lineshape

The mass and width parameter values for the Ξ(1530)0 are 1531.80 ± 0.32

MeV/c2 and 9.1 ± 0.5 MeV, respectively [22]. As discussed previously, it would be

expected that the P2(cosθΞ) moment distribution might project the pure P -wave

Breit-Wigner lineshape of the Ξ(1530)0, although close inspection of Fig. 6.8 (a)

suggests otherwise. In order to quantify this observation, the P2(cosθΞ) moment

shown by the black dots in Fig. 6.21 (a), is fit with a P -wave relativistic BW amplitude
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squared multiplied by the usual p · q phase space factor. A P -wave Blatt-Weisskopt

Barrier Factor (BF) [49] with radius R = 3 GeV−1 is used to describe production and

decay, and initially mass and width are fixed to the PDG values [22]. Mass smearing

is carried out as for the Ξ(1690)0 fits in chapter 5, and the fit yields the red histogram

of Fig. 6.21 (a); Fig. 6.21 (b) shows the behavior of the difference between data and

histogram in Fig. 6.21 (a). The discrepancies are large, and χ2/NDF = 172.7/48

(C.L. = 6 × 10−16). The effect of fitting for the mass and width parameter values is

shown in Fig. 6.22. The fit values are 1533.5± 0.3 MeV/c2 and 10.2± 0.6 MeV, and

χ2/NDF = 127.9/46 (C.L. = 1 × 10−9). Clearly, both fits are very poor.

In section 6.5 it was speculated that the deviation from the expected lineshape

might be due to S1/2 −D5/2 wave interference within the Ξ−π+ system. If this were

the case, the effect should integrate away in the invariant mass distribution, so that

much better fits to the lineshape should be obtained there. The results of such fits

corresponding to Fig. 6.21 (mass and width fixed) and Fig. 6.22 (mass and width

free) are shown in Fig. 6.23 and 6.24, respectively. In each case, the background is

represented by a third-order polynomial multiplied by the p·q phase space factor. The

fit in Fig. 33 (χ2/NDF = 447.5/44; C.L. = 0.0) is much worse than that in Fig. 31,

while that in Fig. 34 is only slightly better χ2/NDF = 70.0/42; C.L. = 4 × 10−3)

than that of Fig. 32. For the fit of Fig. 34 (a), the mass and width parameter values

obtained are 1534.4 ± 0.1 MeV/c2 and 13.2 ± 0.5 MeV, respectively, in significant

disagreement with the PDG values [22]. Quite clearly, the expected improvement in

fit quality is not realized. The conclusion to be drawn would seem to be that this is
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the result of overlap with some structure in the K+π+ and/or Ξ−K+ systems just as

described in chapter 5 for the ΛK̄0K+ final state, and that the distorted lineshape is

not due to interference effects within the Ξ−π+ system itself.

As commented previously, Fig. 6.4 shows no indication of structure in either

system, and certainly nothing would be expected in K+π+ since this system has
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Figure 6.21: The result of the fit described in the text to the P2(cosθΞ) moment. (a)
The efficiency-corrected, Λ+

c mass-sideband-subtracted P2(cosθΞ−) moment distribu-
tion for the Ξ−π+ system, corresponding to the Λ+

c signal region (solid dots). The
red histogram corresponds to the fit described in the text with Ξ(1530)0 mass and
width fixed at the PDG values [22]. (b) The difference between the data points and
the histogram of (a).
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I = 3/2. The Ξ−K+ system might have contributions from Λ or Σ resonant states,

and indeed branching fractions of a few percent are quoted for the Λ(2100) and

Σ(2030) [22]. These overlap with the Ξ(1530)0 region (cf. Fig. 6.4 (a)), but both

have J = 7/2, and so would be expected to yield sharp peaks for cosθΞ ∼ 1 in

Fig. 6.4 (a). There is no indication of such behavior.
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Figure 6.22: The result of the fit described in the text to the P2(cosθΞ) moment. (a)
The efficiency-corrected, Λ+

c mass-sideband-subtracted P2(cosθΞ−) moment distribu-
tion for the Ξ−π+ system, corresponding to the Λ+

c signal region (solid dots). The
red histogram corresponds to the fit described in the text with Ξ(1530)0 mass and
width parameters free. (b) The difference between the data points and the histogram
of (a).
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In order to make a more quantitative search for structure in the Ξ−K+ system,

the P1(cosθΞ−) - P4(cosθΞ−) moment distributions are shown in Fig. 6.25 (a)-(d),

respectively. The onset of dramatic structure at ∼ 2 GeV/c2 is due to overlap with

the Ξ(1530)0 (cf. Fig. 6.4 (a)), and it is very difficult to understand the extent

to which this might be influenced by the presence of interfering Ξ−K+ amplitude
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Figure 6.23: The result of the fit described in the text to the P0(cosθΞ) moment. (a)
The efficiency-corrected, Λ+

c mass-sideband-subtracted P0(cosθΞ−) moment distribu-
tion for the Ξ−π+ system, corresponding to the Λ+

c signal region (solid dots). The red
histogram corresponds to the fit described in the text with Ξ(1530)0 mass and width
fixed at the PDG values [22]; the green curve represents the polynomial background.
(b) The difference between the data points and the histogram of (a).



200

contributions. For mass values less than 2 GeV/c2, the P2(cosθΞ−) moment indicates

the possibility of a signal peaking at ∼ 1.88 GeV/c2. Taken at face value, this together

with the absence of structure in the P4(cosθΞ−) moment distribution, would suggest

the presence of a J = 3/2 state in this region, and in fact the PDG lists the Λ(1890)

as a four-star state with mass ∼ 1.89 GeV/c2, width ∼ 100 MeV and JP = 3/2+ [22].
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Figure 6.24: The result of the fit described in the text to the P0(cosθΞ) moment. (a)
The efficiency-corrected, Λ+

c mass-sideband-subtracted P0(cosθΞ−) moment distribu-
tion for the Ξ−π+ system, corresponding to the Λ+

c signal region (solid dots). The
red histogram corresponds to the fit described in the text with Ξ(1530)0 mass and
width parameters free; the green curve represents the polynomial background. (b)
The difference between the data points and the histogram of (a).
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No branching fraction to Ξ−K+ is listed.

At the present level of statistics, no definite conclusion can be drawn as to

the presence of a Λ(1890) contribution to the Dalitz plot intensity. However, the

observed P2(cosθΞ−) moment distribution does support the possibility that there may

be small Ξ−K+ amplitudes present in the region of overlap with the Ξ(1530)0 whose

impact on the decay angular distribution and lineshape of the latter may be greatly

enhanced as a result of interference with the much stronger Ξ(1530)0 amplitude. It

seems very difficult to understand the observed characteristics of the Ξ(1530) signal

without appeal to such a possibility.

The underlying quark diagrams involved are very similar to those describing
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Figure 6.25: The efficiency-corrected Pi(cosθΞ−) moments of the (Ξ−K−) system
invariant mass distribution corresponding to the Λ+

c signal region: (a) i = 1, (b)
i = 2, (c) i = 3, (d) i = 4.
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Λ+
c → ΛK̄0K+. The Ξ(1530) mode would be characterized by a W-exchange diagram

corresponding to Fig. 1.9 (a), while decay to an excited Λ or Σ0 state would be

described by an external spectator quark diagram corresponding to Fig. 1.9 (b). As

for Λ+
c → ΛK̄0K+, there are no obvious suppression mechanisms, other than the

rather high threshold mass of the Ξ−K+ system, which as a result involves a mass

region within which very little is known about Λ of Σ states which couple to Ξ−K+.

6.7 Conclusions

A moments analysis of the Ξ−π+ system resulting from data on the decay

Λ+
c → Ξ−π+K+ has established quite clearly that the Ξ(1530) hyperon resonance

has spin 3/2. In conjunction with previous analyses [53, 54], this also definitively

establishes positive parity, and hence that the Ξ(1530) is a P 3/2-wave resonance.

However, comparison of the P2(cosθΞ−) moment to the Ξ−π+ mass distribution

and fits to the angular decay distribution in the Ξ(1530) region, indicate that it is

necessary to include other Ξ−π+ amplitudes in order to obtain a complete description

of the data.

The observation of a P1(cosθΞ−) moment exhibiting oscillatory behavior in

the Ξ(1530)0 region indicates the need for an S1/2 amplitude, and at the same time

provides first evidence for the expected rapid BW phase motion of the P 3/2 Ξ(1530)0

amplitude.

The behavior of the Ξ−π+ mass distribution in the vicinity of the Ξ(1690)0

suggests the possibility that the BW amplitude describing the Ξ(1690)0 may be
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adding coherently to a broad S1/2 amplitude describing the non-Ξ(1530)0 part of

the spectrum to yield a significant intensity decrease. If this interpretation is correct,

the implication is that the Ξ(1690)0 has negative parity, and the conclusion of chapter

5 to the effect that it has spin 1/2 is reinforced. It will be of great interest to revisit

this point when the full BABAR data set is in hand.

A description in terms of just S1/2 and P 3/2 amplitudes has been shown to

be inadequate. It appears that D-wave contributions are required, but an analysis

involving S-, P - and D- waves is beyond the reach of an angular-moment-based study,

and would require that polarization moments be incorporated. In such a model,

distortion of the Ξ(1530)0 lineshape obtained by means of the P2(cosθΞ−) moment

projection might result from S−D wave interference, and indeed attempts to fit this

distribution give very poor results. However, such interference effects should integrate

away in the Ξ−π+ invariant mass distribution, but the anticipated improvements in

fits to the resulting Ξ(1530)0 lineshape are not realized. This suggests that there may

be Ξ−K+ amplitude contributions which overlap with the Ξ(1530)0 region and distort

the expected mass and angular distributions through interference effects similar to

those found in the analysis of the ΛK̄0K+ final state. The presence of a possible

signal corresponding to the Λ(1890) lends some support to such a picture, but much

more data would be required in order to undertake a serious investigation of this

possibility.
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CHAPTER 7
CONCLUSIONS

The B-factory Experiment at SLAC was conceived as a means of investigating

CP-Violation in the decay of B mesons. As a by-product, large numbers of charm

particles are produced, and in particular charm baryons which decay to final states

containing hyperons and hyperon resonances are reconstructed at a reasonable sta-

tistical level. The goal of this thesis has been to make use of such two-body and

quasi-two-body charm baryon decay processes to investigate the properties of some

of the hyperon and hyperon resonances involved. Analyses of the Ω−, the Ξ(1690)0

and the Ξ(1530)0 have been presented in chapters 4, 5, and 6, respectively, and the

main results are summarized in section 7.1. It should be emphasized that in each

analysis, it has been assumed that the parent charm baryon has spin 1/2. In section

7.2, the possibilities for future analyses in the same vein are considered briefly.

7.1 Summary of Results

The angular distributions of the decay products of the Ω− baryon resulting

from Ξ0
c and Ω0

c decays are well-described by a function ∝ (1 + 3cos2θh). These

observations are consistent with spin assignments 1/2 for the Ξ0
c and the Ω0

c , and

3/2 for the Ω−. Values of 1/2 and greater than 3/2 for the spin of the Ω− yield

C.L. values significantly less than 1% when spin 1/2 is assumed for the parent charm

baryon.

The properties of the Ξ(1690)0 are extracted from a detailed isobar model
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analysis of the Λ+
c → ΛK̄0K+ Dalitz plot, and first evidence for the Λa0(980)+ decay

mode of the Λ+
c is presented. The hypothesis that the spin of the Ξ(1690) resonance

is 1/2 yields an excellent description of the data, and under this assumption the

following mass and width parameter values of the Ξ(1690)0 are obtained:

m(Ξ(1690)0) = 1682.9 ± 0.9 (stat.)±0.3 (syst.) MeV/c2,

Γ(Ξ(1690)0) = 9.3+2.0
−1.7 (stat.)±0.4 (syst.) MeV.

A spin value of 3/2 is clearly disfavored, and although spin 5/2 results in

an acceptable fit probability, the fit exhibits a systematic failure to reproduce the

observed Ξ(1690) lineshape.

The properties of the Ξ(1530)0 are studied using the decay Λ+
c → Ξ−π+K+.

The spin of the Ξ(1530) is established for the first time to be 3/2, and first evidence

of Ξ(1530) Breit-Wigner phase motion is demonstrated. Structure in the Ξ−π+ mass

distribution in the vicinity of the Ξ(1690)0 may be interpreted as indicating that

the Ξ(1690) has negative parity, but such a conclusion is highly model-dependent.

Attempts at obtaining mass and width parameter values for the Ξ(1530) by fitting

the Ξ−π+ mass distribution and the P2(cosθ) moment fail badly. This is interpreted

as indicating the presence of interference effects related to structure in the Ξ−K+

system, although no clear evidence for such effects can be seen in the data. For the

present the cause of these failures must remain something of a mystery.
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7.2 Future Possibilities

If all goes as planned, the final BABAR data set should represent an increase

by at least a factor of four over the data samples analyzed in this thesis.

Under the assumption that the ground state charm baryons have spin 1/2, the

analysis of chapter 4 would not benefit directly from this statistical increase, since

spin 3/2 is already well-established. However, the increase would benefit analyses

in progress now which are attempting to use B decay processes (e.g. B0 → p̄Λ+
c )

to establish charm baryon spin, since these analyses are statistically challenged at

present.

The statistical increase should be of considerable help to the analysis of chapter

5, since it would be hoped that the skewing of the Ξ(1690)0 lineshape toward high-

mass would be more clearly defined, and that as a result the preference for spin 1/2

would be more convincingly established, since it appears that the spin 3/2 and 5/2

hypotheses are unable to reproduce this feature.

It is not clear that a significant increase in statistics could resolve the problems

with the Ξ(1530)0 lineshape discussed in chapter 6, since it has not been possible to

define the source of the problem as yet, i.e. the problem is conceptual rather than

statistical at present. The small signal in the P2(cosθΞ) moment distribution for the

Ξ−K+ system would certainly benefit from a significant increase in statistics, and

if it could be established that this were indeed due to production of the Λ(1890),

it would strengthen the case that the difficulties in the Ξ(1530)0 region result from

structure in the 2-2.1 GeV/c2 region in Ξ−K+ mass.
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In the region of Ξ−π+ mass near the Ξ(1690)0, a large increase in the available

data sample would certainly help decide whether the observed dip structure can be

attributed to the coherent addition of the Ξ(1690)0 amplitude to a slowly-varying S-

wave amplitude, thereby confirming the favored spin 1/2 assignment and establishing

negative parity for the Ξ(1690).

The use of charm baryon decay Dalitz plot analysis to provide a window on

hyperon resonance spectroscopy, as developed in this thesis, can be extended to many

similar three-body final states.

The decay sequence Λ+
c → Λa0(980)+, a0(980)+ → ηπ+ would provide direct

evidence for the existence of this decay mode, and studies of the Λη system, and of

the Λπ0 system in Λ+
c → Λπ0π+, would be highly relevant to the interpretation (and

confirmation) of the possible Λ(1890) signal in Λ+
c → (Ξ−K+)π+, since Λη has I = 0

and Λπ0 has I = 1.

A preliminary look at the final state ΛKSπ
+ aimed at investigating Ξ+

c →

ΛK̄0π+ has revealed clear evidence of the Cabibbo-suppressed decay Λ+
c → ΛK∗(892)+,

and this constitutes the first evidence for this decay mode [22].

All of these final states can be investigated with the final state Λ replaced

by a Σ0. The threshold mass for the Σ0K̄0 system is 1690.3 MeV/c2, which is

above the central mass value of the Ξ(1690)0 reported in this thesis. However, for

Λ+
c → Σ0K̄0K+, the Q-value is only 102.5 MeV/c2, so that overlap between the

Ξ(1690)0K+ and Σ0a0(980)+ amplitudes would be greater, and hence could affect

the observed lineshape more. It would be very interesting to investigate the Σ0K̄0
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threshold region with the final BABAR statistics.

The only interesting Λ+
c three-body decay mode involving the Ξ− is that to

the Ξ−π+K+ final state, and that has been discussed at length in chapter 6 of this

thesis.

There are some interesting possibilities with regard to final states containing a

Σ+. It should be possible to reconstruct the Σ+ in its pπ0 decay mode [46], although

there are difficulties with the precision to which the decay point can be found. Decay

modes of the Λ+
c to final states such as Σ+K−K+, Σ+KSKS, Σ+π−π+, Σ+π0π0

(conceptually), Σ+π0η and even Σ+ηη could be explored (by some unsuspecting new

graduate student) for further information on the Ξ(1690) and on possible Λ and Σ

excited states recoiling against a π or η.

For the Ξ+
c , there is a prediction [57] that no decay to Ξ(1530) should be ob-

served. A preliminary investigation of Ξ+
c → Ξ−π+π+ seems to confirm this. There

is no corresponding prediction concerning the Ξ(1690)0, but interestingly enough the

data on Ξ+
c → ΛK̄0π+ show no evidence of Ξ(1690) production. Detailed investiga-

tion of these final states, and also of the final states Σ0K̄0π+, Σ+K−π+, Σ+K̄0π0

and Σ+K̄0η would be of interest.

For the Ξ0
c , there is no similar prediction, and indeed an initial look at the

Dalitz plot for Ξ0
c → ΛK−π+ has revealed a rich, but very complicated structure.

Resonance bands corresponding to K̄∗(892)0, Σ(1385)+, Ξ(1820)− and Ξ(1690)− are

quite clear, and there may be further activity in the K−π+ system near 1.4 GeV/c2.

The Dalitz plot is small, and so these bands overlap in general, resulting in fairly clear
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interference effects. This decay mode may provide information on the Ξ(1690)−, but

the Dalitz plot analysis required will be rather complicated. Other Ξ0
c decays which

may prove interesting involve the final states ΛK̄0π0, ΛK̄0η and the corresponding

states in which the Λ is replaced by a Σ0. Investigation of decay modes involving a

Σ+ (e.g. final states Σ+K−π0, Σ+K̄0π−, Σ+K−η) or a Ξ− (e.g. final states Ξ−π+π0,

Ξ−π+η) may also prove fruitful, but the relevant data have not yet been selected for

study.

After the successful two-body analysis of the Ω− presented in chapter 4 of

this thesis, it was at first thought to be a straight-forward matter to extend the

approach to quasi-two-body charm baryon decay in order to define the properties

of the relevant hyperon resonances. In the case of the Ξ(1690)0 analysis presented

in chapter 5, it soon became evident that this was not the case, and that it was

necessary to take account of other quasi-two-body amplitudes by means of an isobar-

model description of the entire Dalitz plot. Similarly, in the analysis of chapter 6, it

at first appeared that a simple quasi-two-body approach to the Ξ(1530)0 production

would be sufficient. However, even there it appears that a broader treatment of the

Dalitz plot is required. Such an approach is significantly more complicated, but does

provide the possibility that much more will be learned about the hyperon (and meson)

resonance structures involved. The use of charm baryon decay developed in this thesis

has opened a new window on this spectroscopy and, as discussed above, there will

be many more opportunities to extend such studies to the plethora of charm baryon

three-body decay modes accessible in the final BABAR data set.
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APPENDIX A
TWO-BODY DECAY HELICITY FORMALISM

Consider the decay chain of a spin 1/2 charm baryon to a hyperon and a

pseudo-scalar meson; where the primary hyperon decays to a secondary hyperon and

a pseudo-scalar meson. The analyzer for the angular analysis of the decay products is

well-defined: the quantization axis is chosen as the direction of the primary hyperon

in the charm baryon rest-frame.

A.1 Helicity Angular Distribution For Charm Baryon

Spin Assumption J = 1/2

If the spin of charm baryon is 1/2, (along the quantization axis) its spin projec-

tions are m = ±1/2. As there is no angular momentum projection with respect to the

quantization axis, the primary hyperon is produced with helicity λi ± 1/2 according

to the spin projection of the charm baryon:

m = +1/2 =⇒ λi = +1/2

m = −1/2 =⇒ λi = −1/2.

In this study the value of 1/2 for the spin of the secondary hyperon (i.e. the

Λ) is well-established, so that the the final helicity values in the decay sequence are

λf ± 1/2. Using the Jackson phase conventions, the probability for the secondary

hyperon to emerge with Euler angles (φ, θ, 0) with respect to the quantization axis, is

the square of the amplitude characterizing the decay of a particle with total angular

momentum J and helicity λi to a 2-body system with net final helicity λf in the
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primary hyperon rest-frame:

A = 〈φ, θ, λf , 0|U |J, λi〉

= 〈φ, θ, λf , 0|J, λi;λf , 0〉〈J, λi;λf , 0|U |J, λi〉

= Aλf
DJ∗

λiλf
(φ, θ, 0),

where Aλf
= 〈J, λi;λf , 0|U |J, λi〉 gives the coupling to the final helicity states (U

is the time-evolution operator that propagates the initial state through the interac-

tion); and DJ∗
λiλf

(φ, θ, 0) are the matrix elements of the rotation operator R(φ, θ, 0) =

e−iφJze−iθJye−i0Jz = e−iφJze−iθJy used to transform the two-particle basis states |φ, θ, λf , 0〉

into the the total angular momentum helicity basis.

Thus, the angular distribution for this decay chain is:

I ∝
∑

λi,k,λf

ρik

∣∣∣AJ
λf

∣∣∣2DJ∗
λiλf

(φ, θh, 0)DJ
λkλf

(φ, θh, 0)

∝
∑
λi,λf

ρi

∣∣∣AJ
λf
DJ∗

λiλf
(φ, θh, 0)

∣∣∣2 .
where ρi ≡ ρi i (i = ±1/2) are the diagonal density matrix elements inherited from

the charm baryon, and the sum is over all initial and final helicity states. Because the

charm baryon is produced inclusively, we assume that the off-diagonal terms, ρi k, of its

density matrix are zero. In order that the angular distribution be properly normalized

such that it integrates to 1, it needs to be multiplied by the factor 2/(2J+1), so that
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dN

dcosθ
= (2J + 1)

N

2

∑
λi,λf

ρi

∣∣∣Aλf
DJ∗

λiλf
(φ, θ, 0)

∣∣∣2

= (2J + 1)
N

2

(|A1/2|2(ρ1/2|DJ∗
1/2,1/2(φ, θ, 0)|2 + ρ−1/2|DJ∗

−1/2,1/2(φ, θ, 0)|2)

+ |A−1/2|2(ρ1/2|DJ∗
1/2,−1/2(φ, θ, 0)|2 + ρ−1/2|DJ∗

−1/2,−1/2(φ, θ, 0)|2)) .
With DJ∗

λi,λf
(φ, θ, 0) = eiφdJ

λi,λf
(θ), we obtain:

dN

dcosθ
= N

2J + 1

2

[|A1/2|2(ρ1/2|dJ
1/2,1/2(θ)|2 + ρ−1/2|dJ

−1/2,1/2(θ)|2)

+ |A−1/2|2(ρ1/2|dJ
1/2,−1/2(θ)|2 + ρ−1/2|dJ

−1/2,−1/2(θ)|2)
]
.

The calculation of the angular distributions corresponding to the hypotheses

spin J =1/2, 3/2, and 5/2, for the primary hyperon requiresb the Wigner d-functions

dJ
±1/2,±1/2; J = 1/2, ...5/2. The d-functions for J = 1/2, 3/2 are listed in the PDG

book (p 295):

d
1/2
1/2,1/2(θ) = cos

θ

2

d
1/2
1/2,−1/2(θ) = −sin

θ

2

d
3/2
1/2,1/2(θ) =

3cosθ − 1

2
cos

θ

2

d
3/2
1/2,−1/2(θ) = −3cosθ + 1

2
sin

θ

2

The d-functions for J = 5/2 can be easily computed using the recurrence
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relation:

dJ+1
M1,M2

(θ) =
(J + 1)(2J + 1)√

((J + 1)2 −M2
1 )((J + 1)2 −M2

2 )
×

[(
cosθ − M1M2

J(J + 1)

)
dJ

M1,M2
(θ) −

√
(J2 −M2

1 )(J2 −M2
2 )

J(2J + 1)
dJ−1

M1,M2
(θ)

]
.

Therefore,

dJ+1
1/2,1/2(θ) =

(J + 1)(2J + 1)

((J + 1)2 − 1/4)
×[(

cosθ − 1

4J(J + 1)

)
dJ

1/2,1/2(θ) −
(J2 − 1/4)

J(2J + 1)
dJ−1

1/2,1/2(θ)

]
;

dJ+1
1/2,−1/2(θ) =

(J + 1)(2J + 1)

((J + 1)2 − 1/4)
×[(

cosθ +
1

4J(J + 1)

)
dJ

1/2,−1/2(θ) −
(J2 − 1/4)

J(2J + 1)
dJ−1

1/2,−1/2(θ)

]
.

Thus for J + 1 = 5/2, substituting the expressions for d
3/2
1/2,±1/2(θ) and d

1/2
1/2,±1/2(θ) we

obtain:

d
5/2
1/2,1/2(θ) =

1

2
(5cos2θ − 2cosθ − 1)cos(θ/2)

d
5/2
1/2,−1/2(θ) = −1

2
(5cos2θ + 2cosθ − 1)sin(θ/2)

With dJ
λ′,λ(θ) = (−1)λ−λ′

dJ
λ,λ′(θ) = dJ

−λ,−λ′(θ),

dJ
−1/2,1/2(θ) = −dJ

1/2,−1/2(θ)

dJ
−1/2,−1/2(θ) = dJ

1/2,1/2(θ)



214

We now derive the angular distribution of the decay products by substituting

the d-functions for J = 1/2, 3/2, 5/2.

A.1.1 Helicity Angular Distribution for J=1/2

dN

dcosθ
= N

[|A1/2|2(ρ1/2cos2(θ/2) + ρ−1/2sin
2(θ/2))

+|A−1/2|2(ρ1/2sin
2(θ/2) + ρ−1/2cos2(θ/2))

]
= N

[
|A1/2|2

(
ρ1/2

1 + cosθ

2
+ ρ−1/2

1 − cosθ

2

)

+|A−1/2|2
(
ρ1/2

1 − cosθ

2
+ ρ−1/2

1 + cosθ

2

)]

=
N

2
|A1/2|2

[
(ρ1/2 + ρ−1/2) + (ρ1/2 − ρ−1/2)cosθ

]
+
N

2
|A−1/2|2

[
(ρ1/2 + ρ−1/2) − (ρ1/2 − ρ−1/2)cosθ

]
=

N

2

[(|A1/2|2 + |A−1/2|2
)
(ρ1/2 + ρ−1/2)×(

1 +

[
ρ1/2 − ρ−1/2

ρ1/2 + ρ−1/2

] [ |A1/2|2 − |A−1/2|2
|A1/2|2 + |A−1/2|2

]
cosθ

)]
.

The unitarity of density matrices implies:

ρ1/2 + ρ−1/2 = 1

|A1/2|2 + |A−1/2|2 = 1

Defining

β =

[
ρ1/2 − ρ−1/2

ρ1/2 + ρ−1/2

] [ |A1/2|2 − |A−1/2|2
|A1/2|2 + |A−1/2|2

]
,

yields:

dN

dcosθ
=
N

2
(1 + βcosθ).
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A.1.2 Helicity Angular Distribution for J=3/2

dN

dcosθ
=

N

2

[|A1/2|2
(
ρ1/2(3cosθ − 1)2cos2(θ/2) + ρ−1/2(3cosθ + 1)2sin2(θ/2)

)
+ |A−1/2|2

(
ρ1/2(3cosθ + 1)2sin2(θ/2) + ρ−1/2(3cosθ − 1)2cos2(θ/2)

)]
=

N

2

[
|A1/2|2

(
ρ1/2(3cosθ − 1)21 + cosθ

2
+ ρ−1/2(3cosθ + 1)21 − cosθ

2

)

+ |A−1/2|2
(
ρ1/2(3cosθ + 1)21 − cosθ

2
+ ρ−1/2(3cosθ − 1)21 + cosθ

2

)]

=
N

4

[|A1/2|2
(
ρ1/2(9cos3θ + 3cos2θ − 5cosθ + 1)

+ρ−1/2(−9cos3θ + 3cos2θ + 5cosθ + 1)
)

+|A−1/2|2
(
ρ1/2(−9cos3θ + 3cos2θ + 5cosθ + 1)

+ρ−1/2(9cos3θ + 3cos2θ − 5cosθ + 1)
)]

=
N

4
(|A1/2|2 + |A−1/2|2)(ρ1/2 + ρ−1/2)

[
(1 + 3cos2θ) + β(9cos3θ − 5cosθ)

]

=⇒ dN

dcosθ
=
N

4

(
(1 + 3cos2θ) + βcosθ(9cos2θ − 5)

)
.
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A.1.3 Helicity Angular Distribution for J=5/2

dN

dcosθ
=

3N

4

[|A1/2|2
(
ρ1/2(5cos2θ − 2cosθ − 1)2cos2(θ/2)

+ρ−1/2(5cos2θ + 2cosθ − 1)2sin2(θ/2)
)

+|A−1/2|2
(
ρ1/2(5cos2θ + 2cosθ − 1)2sin2(θ/2)

+ρ−1/2(5cos2θ − 2cosθ − 1)2cos2(θ/2)
)]

=
3N

4

[
|A1/2|2

(
ρ1/2(5cos2θ − 2cosθ − 1)2 cosθ + 1

2

+ρ−1/2(5cos2θ + 2cosθ − 1)2 cosθ

2

)

+|A−1/2|2
(
ρ1/2(5cos2θ + 2cosθ − 1)21 − cosθ

2

+ρ−1/2(5cos2θ − 2cosθ − 1)2 cosθ + 1

2

)]

=
3N

8

[|A1/2|2ρ1/2(25cos5θ + 5cos4θ − 26cos3θ − 2cos2θ + 5cosθ + 1)

+|A1/2|2ρ−1/2(−25cos5θ + 5cos4θ + 26cos3θ − 2cos2θ − 5cosθ + 1)

+|A−1/2|2ρ1/2(−25cos5θ + 5cos4θ + 26cos3θ − 2cos2θ − 5cosθ + 1)

+ |A−1/2|2ρ−1/2(25cos5θ + 5cos4θ − 26cos3θ − 2cos2θ + 5cosθ + 1)
]

=
3N

8

[|A1/2|2(ρ1/2 + ρ−1/2)(5cos4θ − 2cos2θ + 1)

+|A1/2|2(ρ1/2 − ρ−1/2)(25cos5θ − 26cos3θ + 5cosθ)

+|A−1/2|2(ρ1/2 + ρ−1/2)(5cos4θ − 2cos2θ + 1)

− |A−1/2|2(ρ1/2 − ρ−1/2)(25cos5θ − 26cos3θ + 5cosθ)
]

=
3N

8
(|A1/2|2 + |A−1/2|2)(ρ1/2 + ρ−1/2) ×

[
(5cos4θ − 2cos2θ + 1) + β(25cos5θ − 26cos3θ + 5cosθ)

]
.
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=⇒ dN

dcosθ
=

3N

8

[
(5cos4θ − 2cos2θ + 1) + β(25cos5θ − 26cos3θ + 5cosθ)

]
.

A.2 Helicity Angular Distributions For JΞc = 3/2

If the primary hyperon spin is equal to or less than the spin of its charm baryon

parent, and if the parent helicity states are equally populated, then the decay angular

distribution of the primary hyperon is flat.

In this section, the helicity formalism is used to study the implications of the

hypothesis JΞc = 3/2, on the decay angular distribution of the Ω− taking into account

that the spin states of the parent charm baryon may not be equally populated.

A.2.1 Helicity Angular Distribution For JΩ = 1/2

If JΩ = 1/2, the distribution is the same as for the spin 1/2 to 1/2 transition:

I ∝ 1 + β cosθh.

Assuming β ∼ 0, the distribution is flat.

A.2.2 Helicity Angular Distribution For JΩ = 3/2

For JΩ = 3/2, we obtain:

dN

dcosθ
=

N

2

[
|A3/2

1/2|2(ρ3/2|d3/2
3/2,1/2(θ)|2 + ρ1/2|d3/2

1/2,1/2(θ)|2

+ρ−3/2|d3/2
−3/2,1/2(θ)|2 + ρ−1/2|d3/2

−1/2,1/2(θ)|2)

+|A3/2
−1/2|2(ρ3/2|d3/2

3/2,−1/2(θ)|2 + ρ1/2|d3/2
1/2,−1/2(θ)|2

+ ρ−3/2|d3/2
−3/2,−1/2(θ)|2 + ρ−1/2|d3/2

−1/2,−1/2(θ)|2)
]
,
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where ρ±3/2, ρ±1/2 are the diagonal density matrix elements of the charm baryon and

ρ3/2 + ρ1/2 + ρ−1/2 + ρ−3/2 = 1. This yields:

dN

dcosθ
=

N

2

[
|A3/2

1/2|2
(
ρ3/2

3

4
(1 + cosθ)2sin2(θ/2) + ρ1/2

1

4
(3cosθ − 1)2cos2(θ/2)

+ρ−3/2
3

4
(1 − cosθ)2cos2(θ/2) + ρ−1/2

1

4
(3cosθ + 1)2sin2(θ/2)

)

+|A3/2
−1/2|2

(
ρ3/2

3

4
(1 − cosθ)2cos2(θ/2) + ρ1/2

1

4
(3cosθ + 1)2sin2(θ/2)

+ρ−3/2
3

4
(1 + cosθ)2sin2(θ/2) + ρ−1/2

1

4
(3cosθ + 1)2cos2(θ/2)

)]

=
N

2

[
|A3/2

1/2|2
(
ρ3/2

3

8
(1 + cosθ)2(1 − cosθ) + ρ1/2

1

8
(3cosθ − 1)2(1 + cosθ)

+ρ−3/2
3

8
(1 − cosθ)2(1 + cosθ) + ρ−1/2

1

8
(3cosθ + 1)2(1 − cosθ)

)

+|A3/2
−1/2|2

(
ρ3/2

3

8
(1 − cosθ)2(1 + cosθ) + ρ1/2

1

8
(3cosθ + 1)2(1 − cosθ)

+ρ−3/2
3

8
(1 + cosθ)2(1 − cosθ) + ρ−1/2

1

8
(3cosθ + 1)2(1 + cosθ

)]

=
N

2

[
|A3/2

1/2|2
(

(ρ3/2 + ρ−3/2)
3

8
(1 − cos2θ) + (ρ3/2 − ρ−3/2)

3

8
(1 − cos2θ)cosθ

+ (ρ1/2 + ρ−1/2)
1

8
(1 + 3cos2θ) + (ρ1/2 − ρ−1/2)

1

8
(9cos2θ − 5)cosθ

)

+|A3/2
−1/2|2

(
(ρ3/2 + ρ−3/2)

3

8
(1 − cos2θ) − (ρ3/2 − ρ−3/2)

3

8
(1 − cos2θ)cosθ

+ (ρ1/2 + ρ−1/2)
1

8
(1 + 3cos2θ) − (ρ1/2 − ρ−1/2)

1

8
(9cos2θ − 5)cosθ)

)]

=
N

2

(
|A3/2

1/2|2 + |A3/2
−1/2|2

)
(ρ1/2 + ρ−1/2) ×

[
3(ρ3/2 + ρ−3/2)(1 − cos2θ) + (ρ1/2 + ρ−1/2)(1 + 3cos2θ)

+β̃
(
3(ρ3/2 − ρ−3/2)(1 − cos2θ) + (ρ1/2 − ρ−1/2)(9cos2θ − 5)

)
cosθ

]
;

where,

β̃ =
|A3/2

1/2|2 − |A3/2
−1/2|2

|A3/2
1/2|2 + |A3/2

−1/2|2
.
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Let ρ3/2 + ρ−3/2 = x, so that ρ1/2 + ρ−1/2 = 1 − x; then,

dN

dcosθ
=

N

2

(
|A3/2

1/2|2 + |A3/2
−1/2|2

) [
(1 + 3cos2θ) + 2x (1 − 3cos2θ)

+β̃
(
3(ρ3/2 − ρ−3/2)(1 − cos2θ) + (ρ1/2 − ρ−1/2)(9cos2θ − 5)

)
cosθ

]

=⇒ dN

dcosθ
=
N

2

(
|A3/2

1/2|2 + |A3/2
−1/2|2

) [
(1 + 3cos2θ) + 2x (1 − 3cos2θ)

]
,

for β̃ = 0

Obviously, the distribution is flat only if x = 0.5. For x = 0, the helicity states

±3/2 are not populated at all, and the distribution is I ∝ 1 + 3cos2θ; i.e. identical

to JΞc = 1/2, JΩ = 3/2.

A.2.3 Helicity Angular Distribution For JΩ = 5/2

Using,

d
3/2
3/2,1/2(θ) = −

√
3
1 + cosθ

2
sin(θ/2)

d
3/2
3/2,−1/2(θ) =

√
3
1 − cosθ

2
cos(θ/2)

and the d-functions recurrence relations, we derive:

d
5/2
3/2,1/2(θ) = − 1

2
√

2
(5cos2θ + 4cosθ − 1)sin(θ/2)

d
5/2
3/2,−1/2(θ) = − 1

2
√

2
(5cos2θ − 4cosθ − 1)cos(θ/2)
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dN

dcosθ
= frac3N8|A3/2

1/2|2 ×[ρ3/2

2
(5cos2θ + 4cosθ − 1)2sin2(θ/2) +

ρ−3/2

2
(5cos2θ − 4cosθ − 1)2cos2(θ/2)

+ρ1/2(5cos2θ − 2cosθ − 1)2cos2(θ/2) + ρ−1/2(5cos2θ + 2cosθ − 1)2sin2(θ/2)
]

+
3N

8
|A3/2

−1/2|2 ×[ρ3/2

2
(5cos2θ − 4cosθ − 1)2cos2(θ/2) +

ρ−3/2

2
(5cos2θ + 4cosθ − 1)2sin2(θ/2)

+ρ1/2(5cos2θ + 2cosθ − 1)2sin2(θ/2) + ρ−1/2(5cos2θ − 2cosθ − 1)2cos2(θ/2)
]

=
3N

8
|A3/2

1/2|2 ×[
(ρ3/2

2
(5cos2θ + 4cosθ − 1)21 − cosθ

2
+
ρ−3/2

2
(5cos2θ − 4cosθ − 1)21 + cosθ

2

+ρ1/2(5cos2θ − 2cosθ − 1)21 + cosθ

2
+ ρ−1/2(5cos2θ + 2cosθ − 1)21 − cosθ

2

]

+
3N

8
|A3/2

−1/2|2 ×[
ρ3/2

2
(5cos2θ − 4cosθ − 1)21 + cosθ

2
+
ρ−3/2

2
(5cos2θ + 4cosθ − 1)21 − cosθ

2

+ρ1/2(5cos2θ + 2cosθ − 1)21 − cosθ

2
+ ρ−1/2(5cos2θ − 2cosθ − 1)21 + cosθ

2

]
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dN

dcosθ
=

3N

16
|A3/2

1/2|2 ×[
1

2

(
ρ3/2(−25cos5θ − 15cos4θ + 34cos3θ + 14cos2θ − 9cosθ + 1)

+ ρ−3/2(25cos5θ − 15cos4θ − 34cos3θ + 14cos2θ + 9cosθ + 1)
)

+
(
ρ1/2(25cos5θ + 5cos4θ − 26cos3θ − 2cos2θ + 5cosθ + 1)

+ ρ−1/2(−25cos5θ + 5cos4θ + 26cos3θ − 2cos2θ − 5cosθ + 1)
)]

+
3N

16
|A3/2

−1/2|2 ×[
1

2

(
ρ3/2(25cos5θ − 15cos4θ − 34cos3θ + 14cos2θ + 9cosθ + 1)

+ ρ−3/2(−25cos5θ − 15cos4θ + 34cos3θ + 14cos2θ − 9cosθ + 1)
)

+
(
ρ1/2(−25cos5θ + 5cos4θ + 26cos3θ − 2cos2θ − 5cosθ + 1)

+ ρ−1/2(25cos5θ + 5cos4θ − 26cos3θ − 2cos2θ + 5cosθ + 1)
)]

=
3N

32

[
|A3/2

1/2|2 + |A3/2
−1/2|2

]
×

{[
(ρ3/2 + ρ−3/2)(−15cos4θ + 14cos2θ + 1)

+(ρ1/2 + ρ−1/2)(10cos4θ − 4cos2θ + 2)
]

+

[ |A3/2
1/2|2 − |A3/2

−1/2|2
|A3/2

1/2|2 + |A3/2
−1/2|2

]
×

[
(ρ3/2 − ρ−3/2)(−25cos5θ + 34cos3θ − 9cosθ)

+2(ρ1/2 − ρ−1/2)(25cos5θ − 26cos3θ + 5cosθ)
]}
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dN

dcosθ
=

3N

32

[
|A3/2

1/2|2 + |A3/2
−1/2|2

]
×

{[
x (−15cos4θ + 14cos2θ + 1) + (1 − x )(10cos4θ − 4cos2θ + 2)

]
+β̃

[
(ρ3/2 − ρ−3/2)(−25cos5θ + 34cos3θ − 9cosθ)

+2(ρ1/2 − ρ−1/2)(25cos5θ − 26cos3θ + 5cosθ)
])

=
3N

32

[
|A3/2

1/2|2 + |A3/2
−1/2|2

]
×

{[
(10cos4θ − 4cos2θ + 2) − x (25cos4θ − 18cos2θ + 1)

]
+β̃

[
(ρ3/2 − ρ−3/2)(−25cos5θ + 34cos3θ − 9cosθ)

+2(ρ1/2 − ρ−1/2)(25cos5θ − 26cos3θ + 5cosθ)
]}
.

Thus, with β̃ = 0, the resulting distribution is,

dN

dcosθ
=

3N

32

[
|A3/2

1/2|2 + |A3/2
−1/2|2

] [
(10cos4θ − 4cos2θ + 2) − x (25cos4θ − 18cos2θ + 1)

]

=⇒ dN

dcosθ
=

3N

32

(−5cos4θ + 10cos2θ + 3
)
,

if the density matrix elements of the charm baryon are equally populated

(x = 0.5). In addition, if x = 0.4,

dN

dcosθ
=
N

4

(
2cos2θ + 1

)
,

so that the leading term of the polynomial is only of second order.
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APPENDIX B
POLARIZATION STUDY

If the Ξ0
c spin is 3/2, the decay angular distribution of the Ω− depends on the

Ξ0
c diagonal density matrix elements, as shown in section A.2. An unequal population

should lead to a preferred decay direction for the Ξ0
c . In this section, polarization

effects in Ξ0
c decay are investigated in order to determine whether there is evidence

of such a preferrence.

The polarization vector is defined with respect to the normal, n̂, to the pro-

duction plane of the Ξ0
c illustrated in Fig. B.1. If the Ξ0

c is produced polarized, the

cosine of the angle between the Ω−, boosted into the Ξ0
c rest-frame (Ω−∗), and the

production plane normal (n̂), cosθn(Ω) = n̂ · Ω̃−∗
|Ω̃−∗| , should show a linear dependence

with a slope proportional to the polarization. The uncorrected cosθn(Ω) distribution

is obtained using the mass side-band subtraction method previously described, and

is shown in Fig. B.2. Figure B.3 shows the efficiency as a function of cosθn computed

from signal MC. The uncorrected distribution shown of Fig. B.2 suffers event losses

in the cosθn(Ω) = 0 region, which corresponds to events for which the boosted Ω−

is perpendicular to the normal to the production plane, corresponding to small angle

decays. This reconstruction feature is apparent in the behavior of the efficiency cal-

culated from signal MC as a function of cosθn(Ω) shown in Fig. B.3. The efficiency

distribution is fitted with a fourth order polynomial. This efficiency parametrization

is then used to calculate the efficiency correction for each interval of cosθn(Ω) in data.

The efficiency-corrected distribution for data is shown in Fig. B.4, together
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Figure B.1: The coordinate system used for the Ξ0
c polarization study.
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Figure B.2: The uncorrected cosθn(Ω) distribution in data.

with the result of a straight line fit. This fit has a χ2 probability of 14% with

χ2/NDF = 25/19, and the slope is consistent with zero, so that the Ξ0
c sample shows

no overall polarization w.r.t. the production plane normal.

As previously explained, the angular distribution of the Ω in the Ξ0
c rest-frame

is expected to be flat. Therefore, dN
dφdcosθ

(Ω) = N√
4π
Y 0

0 . Where the polar and azimuthal

angles correspond the the longitudinal and transverse direction with respect to the



225

)Ω(nθcos
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

E
ff

ic
ie

n
cy

/0
.0

5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure B.3: The Signal MC efficiency as a function of cosθn(Ω).

Ξ0
c production plane. The constant N is a normalization factor.

If the decay is isotropic, all unnormalized Y M
L moments satisfy:

〈
Y M

L

〉
=

∫ (
dN

dφdcosθ

)
Y M

L (θ, φ)dφdcosθ ≈
∑(

dN

dφdcosθ

)
YM

L (θ, φ)dφdcosθ = 0.

Therefore, in order to establish that all the parent baryon helicity states are equally
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Figure B.4: The efficiency corrected cosθn(Ω) distribution in data; the dashed line
corresponds to a slope parameter of −6.9±16, while the solid line corresponds to the
slope of zero.
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populated, the sum of the weights of the real and imaginary parts of spherical har-

monics with L=0,..6 is computed; this tests parent baryon spin hypotheses ranging

from 1/2 to 7/2 in the sense that it involves up to 3 units of orbital angular momen-

tum in the Ω−K+ system. If any of the moments deviates significantly from zero,

this indicates that the parent helicity states are not equally populated, and hence

that there may exist a preferred direction in the Ξ0
c decay space.

The distributions corresponding to the Ξ0
c signal and mass sideband regions

are shown in Figs. B.5 and B.6, respectively. The negative peaks in the Y 1
1 bins are

consistent with the loss in efficiency observed in the cos θn(Ω) spectra seen in both

data and reconstructed MC events.
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Figure B.5: The unnormalized YLM moments for the Ξ0
c signal region.
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The mass-sideband subtracted sum of weights distribution in data is shown in

Fig. B.7. A similar plot is obtained for truth-matched signal MC events, as shown

in Fig. B.8 for the signal MC and the data, where the signal MC sample has been

normalized to the data. The open blue dots represent the distribution for MC events

and the red crosses the data, since the MC events were generated with isotropic Ξ0
c

decay; the excellent agreement indicates that the non-zero moments are the results

of acceptance effects and that it is reasonable to conclude that there is no preferred

direction in the Ξ0
c decay space for data.
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Figure B.6: The unnormalized YLM moments for the Ξ0
c mass sideband regions.
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Figure B.7: The mass-sideband-subtracted unnormalized YLM moments of the Ξ0
c

signal.
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Figure B.8: The mass-sideband-subtracted unnormalized YLM moments of the Ξ0
c

signal in data (red); superimposed are the corresponding moments for truth-matched
Signal MC (blue circles).
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APPENDIX C
EFFICIENCY CORRECTION FOR Λ+

c → ΛK̄0K+ EVENTS

The efficiency is calculated from a sample of 230817 Λ+
c → ΛK̄0K+ and Λ̄c

− →

Λ̄K0K− Signal Monte Carlo events, generated uniformly over the final state phase

space.

In general, the phase space volume element in the Dalitz plot corresponding

to the decay Λ+
c → ΛK̄0K+ is given by:

dρ ∼ d(m2(ΛK̄0)) · d(m2(ΛK+)). (C.1)

However, when the efficiency is studied in such rectilinear area elements over

the Dalitz plot, the elements at the plot boundary are partially outside the plot,

and this leads to a rather cumbersome efficiency treatment. The phase space volume

element of Eq. B.1 may be transformed to

dρ′ ∼ p · q

m(ΛK̄0))
·m(ΛK̄0))d(m(ΛK̄0))d(cosθΛ), (C.2)

i.e.

dρ′ ∼ p · qd(m(ΛK̄0))d(cosθΛ), (C.3)

where

p =

√
[m2(Λ+

c ) − (m(K+) +m(ΛK̄0))2] · [m2(Λ+
c ) − (m(K+) −m(ΛK̄0))2]

2m(Λ+
c )

is the momentum of the K+ daughter of the Λ+
c in the Λ+

c rest-frame, and

q =

√
[m2(ΛK̄0) − (m(Λ) +m(K̄0))2] · [m2(ΛK̄0) − (m(Λ) −m(K̄0))2]

2m(ΛK̄0)
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is the momentum of the Λ in the (ΛK̄0) system rest-frame. This expression is such

that the phase space density is uniform in cosθΛ given a particular value of m(ΛK̄0).

The range of cosθΛ is [- 1, 1], and that ofm(ΛK̄0) is from threshold to (m(Λ+
c )−

m(K+)), so that the resultant “Dalitz Plot” is rectangular in shape, with the factor

p · q representing the Jacobian of the variable transformation. A plot of this kind can

then be used readily to study efficiency behavior over the entire phase space region

without the problems incurred at the boundary of a conventional Dalitz plot.

With this in mind, the reconstruction efficiency calculated from Signal Monte

Carlo events is parametrized as a function of m(ΛK̄0) and cosθΛ in order to correct

the distribution in data by weighting each event by the inverse of its parametrized

efficiency value. For a given mass interval

I = [m(ΛK̄0), m(ΛK̄0) + dm(ΛK̄0)],

letN be the number of generated events withm(ΛK̄0) ⊆ I, and let nreco, represent the

number of such reconstructed truth-associated (i.e. correctly reconstructed) events.

The generated cosθΛ distribution is flat, but in general acceptance effects will cause

the reconstructed cosθΛ distribution to have some structure. Writing these angular

distributions in terms of appropriately normalized Legendre Polynomials,

dN

dcosθΛ
= N < P0 > P0(cosθΛ) (C.4)

and,

dnreco

dcosθΛ
= nreco (< P0 > P0(cosθΛ)+ < P1 > P1(cosθΛ) + ...+ < PL > PL(cosθΛ)) ,(C.5)
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where the normalizations are such that,
∫ 1

−1
Pi(cosθΛ)Pj (cosθΛ)dcosθΛ = δij. Using

this orthogonality condition, the coefficients in the expansion are obtained from

< Pj >=
1

nreco

∫ 1

−1

Pj (cosθΛ)
dnreco

dcosθΛ
dcosθΛ, (C.6)

where the integral is given, to a good approximation for a large enough MC sample,

by
nreco∑
i=1

Pj (cosθΛi
).

The index i runs over the reconstructed events in mass interval I, such that

nreco < Pj >∼
nreco∑
i=1

Pj (cosθΛi
),

and any effect of efficiency loss in the angular distribution is represented through these

coefficients. The absolute efficiency, calculated as a function of cosθΛ and m(ΛK̄0),

in mass interval I, is then given by

E(cosθΛ,m(ΛK̄0)) = (C.7)

nreco (< P0 > P0(cosθΛ)+ < P1 > P1(cosθΛ) + ...+ < PL > PL(cosθΛ))

N < P0 > P0(cosθΛ)

With

E0 =
nreco

N
(C.8)

and

Ej = 2
nreco < Pj >

N
= 2

∑nreco

i=1 Pj (cosθΛi
)

N
, (C.9)

for a large enough sample (note that the factor 2 enters since < P0 > P0(cosθΛ) =

1/2), Eq. C.8 becomes,

E(cosθΛ,m(ΛK̄0)) = E0 + E1P1(cosθΛ) + ...+ ELPL(cosθΛ). (C.10)
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The mean value of the Pj (cosθΛi
), with i = 1, ..., nreco, corresponding to mass interval

I, is written as < Pj >. The r.m.s. deviation of the Pj (cosθΛi
) w.r.t. < Pj >, σ, is

given by

σ2 =
nreco∑
i=1

(Pj (cosθΛi
)− < Pj >)2

nreco − 1
. (C.11)

The error on the mean is then

δ < Pj >=
σ√
nreco

and from Eq. C.11,

δ < Pj > =

√∑nreco

i=1 (Pj (cosθΛi
)− < Pj >)2

nreco(nreco − 1)
(C.12)

=

√√√√√
[∑nreco

i=1

(Pj (cosθΛi
))

2

nreco

]
− < Pj >2

nreco − 1
. (C.13)

The uncertainty on the parameter

E0 =
nreco

N

is given by the expression:

δ(E0) = E0

√
1

nreco
+

1

N
, (C.14)

and the uncertainty on the coefficients

Ej = 2

∑nreco

i=1 Pj (cosθΛi
)

N
(j ≥ 1)

is given by:

δ(Ej ) =
2

N

√√√√nreco∑
i=1

(Pj (cosθΛi
))2 +

(
∑nreco

i=1 (Pj (cosθΛi
)))

2

N
. (C.15)
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The efficiency analysis is carried out in six mass intervals of 30 MeV/c2 from

m(ΛK̄0) = 1.61 GeV/c2 to m(ΛK̄0) = 1.79 GeV/c2; the distributions for Signal

Monte Carlo generated events satisfy p∗(Λ+
c ) ≥ 1.5 GeV/c, as for truth-associated

Signal Monte Carlo reconstructed events.

Following the prescription of Eqs. C.8, C.14, C.9, and C.15 the coefficients Ei

are calculated using the truth-associated reconstructed Signal Monte Carlo events in

each mass interval, where N is the number of generated events in that mass interval

satisfying p∗(Λ+
c ) ≥ 1.5 GeV/c.

Because not all of the generated distributions are perfectly flat as a result

of statistical fluctuations, the angular dependence of the efficiency for each mass

interval differs slightly from the angular structure of the corresponding generated

event distributions. In order to correct for this slight discrepancy, the values of

the Ei coefficients for each mass interval are obtained by fitting the corresponding

efficiency distribution with the parametrization of Eq. C.10, with the values of the Ei

coefficients extracted from the fit. It is determined empirically that the largest order

Legendre Polynomial sufficient to describe the reconstructed events has L = 6.

Next, the dependence of the coefficients Ei on m(ΛK̄0), is obtained by fitting

each of the distributions for Ei (i = 0, ..., 6), with a second order polynomial function.

The procedure described above is applied for Λ+
c → ΛK̄0K+ and Λ̄−

c →

Λ̄K0K− events separately, in order to take into account slight charge asymmetries

in the reconstruction due the differences between the interactions of particles and

anti-particles with the detector material.
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C.1 Charge-dependent Efficiency Correction

for Λ+
c → ΛK̄0K+ and Λ̄−

c → Λ̄K0K− Events

Figures C.1 and C.5 show the distribution of the Signal Monte Carlo generated

events corresponding to each of the mass intervals from m(ΛKS) = 1.61 GeV/c2

to m(ΛKS) = 1.79 GeV/c2 used to obtain the mass dependence of the efficiency

parametrization for the mode and anti-mode, respectively, and Figs. C.2 and C.6

show the corresponding reconstructed, truth-associated distributions. As described

above, the efficiency for each mass interval is computed by taking the ratio of the

reconstructed to generated distribution. The resulting dependence of efficiency on

cosθΛ is shown in Figs. C.3 and C.7, together with the curves obtained from fits of

expression C.10 with L = 6 to these data. The mass dependence of each Ei coefficient

is shown in Figs. C.4 and C.8 for the mode and anti-mode, respectively. The curve on

each plot represents a fit to a second order polynomial, which enables separate mass

interpolation for each Ei coefficient. These interpolations used in conjunction with

expression C.10, permit the reconstruction efficiency to be calculated at any point on

the rectangular Dalitz plot.
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Table C.1: The χ2/NDF and fit probabilities corresponding to the distributions of
Fig. C.3.

Mass interval in GeV/c2 χ2/NDF Fit probability

|m(ΛKS) − 1.625| < 0.015 0.63/3 0.89

|m(ΛKS) − 1.655| < 0.015 3.04/3 0.39

|m(ΛKS) − 1.685| < 0.015 5.39/3 0.15

|m(ΛKS) − 1.715| < 0.015 2.51/3 0.47

|m(ΛKS) − 1.745| < 0.015 1.36/3 0.71

|m(ΛKS) − 1.775| < 0.015 2.92/3 0.40
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Figure C.1: The distribution of the Signal Monte Carlo generated events corre-
sponding to each of the six 30 MeV/c2 intervals from m(ΛKS) = 1.61 GeV/c2 to
m(ΛKS) = 1.79 GeV/c2.
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Figure C.2: The distribution of the Signal Monte Carlo truth-associated reconstructed
events corresponding to each of the six 30 MeV/c2 intervals from m(ΛKS) = 1.61
GeV/c2 to m(ΛKS) = 1.79 GeV/c2.
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Figure C.3: The efficiency distributions corresponding to each of the six 30 MeV/c2

intervals from m(ΛKS) = 1.61 GeV/c2 to m(ΛKS) = 1.79 GeV/c2. Superimposed are
fits with the parametrization of equation C.10. The values of the parameters Ei are
extracted from these fits, and the fit χ2/NDF and probability for each mass interval
are listed in Table C.1.
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Figure C.4: The distributions of the Ei coefficients obtained from fits of expres-
sion C.10 with L = 6 to the efficiency calculated from Signal Monte Carlo for each
mass interval. Superimposed is a fit with a second order polynomial function. The
corresponding χ2/NDF and fit probabilities are listed in Table C.2.

Table C.2: The χ2/NDF and fit probabilities corresponding to the distributions of
Fig. C.4.

Ei χ2/NDF Fit probability

E0 1.42/3 0.70

E1 2.31/3 0.51

E2 1.20/3 0.75

E3 1.54/3 0.67

E4 4.50/3 0.21

E5 1.25/3 0.74

E6 4.92/3 0.18
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Figure C.5: The distribution of the Signal Monte Carlo generated events corre-
sponding to each of the six 30 MeV/c2 intervals from m(Λ̄KS) = 1.61 GeV/c2 to
m(Λ̄KS) = 1.79 GeV/c2.
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Figure C.6: The distribution of the Signal Monte Carlo truth-associated reconstructed
events corresponding to each of the six 30 MeV/c2 intervals from m(Λ̄KS) = 1.61
GeV/c2 to m(Λ̄KS) = 1.79 GeV/c2.
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Figure C.7: The efficiency distributions corresponding to each of the six 30 MeV/c2

intervals from m(Λ̄KS) = 1.61 GeV/c2 to m(Λ̄KS) = 1.79 GeV/c2. Superimposed are
fits with the parametrization of equation C.10. The values of the parameters Ei are
extracted from these fits, and the fit χ2/NDF and probability for each mass interval
are listed in Table C.3.

Table C.3: The χ2/NDF and fit probabilities corresponding to the distributions of
Fig. C.7.

Mass interval in GeV/c2 χ2/NDF Fit probability

|m(Λ̄KS) − 1.625| < 0.015 1.97/3 0.58

|m(Λ̄KS) − 1.655| < 0.015 3.42/3 0.33

|m(Λ̄KS) − 1.685| < 0.015 1.13/3 0.77

|m(Λ̄KS) − 1.715| < 0.015 3.80/3 0.28

|m(Λ̄KS) − 1.745| < 0.015 4.94/3 0.18

|m(Λ̄KS) − 1.775| < 0.015 1.08/3 0.78
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Figure C.8: The distributions of the Ei coefficients obtained from a fit with expres-
sion C.10 with L = 6 to the efficiency calculated from Signal Monte Carlo for each
mass interval. Superimposed is a fit to a second order polynomial function. The
corresponding χ2/NDF and fit probabilities are listed in Table C.4.

Table C.4: The χ2/NDF and fit probabilities corresponding to the distributions of
Fig. C.8.

Ei χ2/NDF Fit probability

E0 3.04/3 0.38

E1 0.89/3 0.83

E2 2.37/3 0.50

E3 0.03/3 0.99

E4 4.26/3 0.23

E5 4.19/3 0.24

E6 4.77/3 0.19
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C.2 Alternative Efficiency Correction for the Purpose

of Studying Systematic Uncertainty

In order to study the systematic uncertainties in the measurement of the mass

and width of the Ξ(1690), a slightly different approach is adopted. The efficiency

parametrization procedure is repeated in order to obtain a smooth efficiency function

in 2 dimensions, by fitting the efficiency distribution obtained in each of the six

m(ΛKS) intervals, with a fourth order polynomial function of cosθΛ (Fig. C.9 and

Table C.5). The mass dependence of the fitted values of these polynomial coefficients

is shown in Fig. C.10, together with the results of third order polynomial fits which

enable mass interpolation. The quality of these fits is summarized in Table C.6,

and the fit results permit the calculation of efficiency at any point on the rectangular

Dalitz plot, as explained previously. In this procedure, mode and anti-mode have been

combined. The use of the resulting alternative weights in fits to the data provides

a measure of the sensitivity of the parameter values obtained to the details of the

efficiency-correction procedure used.

Table C.5: The χ2/NDF and fit probabilities corresponding to the distributions of
Fig. C.9.

Mass interval in GeV/c2 χ2/NDF Fit probability

|m(ΛKS) − 1.625| < 0.015 6.50/5 0.26

|m(ΛKS) − 1.655| < 0.015 5.67/5 0.34

|m(ΛKS) − 1.685| < 0.015 8.99/5 0.11

|m(ΛKS) − 1.715| < 0.015 6.28/5 0.28

|m(ΛKS) − 1.745| < 0.015 6.87/5 0.23

|m(ΛKS) − 1.775| < 0.015 4.14/5 0.53
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Figure C.9: The efficiency distributions corresponding to to each of the six 30 MeV/c2

intervals from m(ΛKS) = 1.61 GeV/c2 to m(ΛKS) = 1.79 GeV/c2. Superimposed
are fits with a fourth order polynomial function. The values of the coefficients of this
polynomial are extracted from these fits, and the fit χ2/NDF and probability for
each mass interval are listed in Table C.5.

Table C.6: The χ2/NDF and fit probabilities corresponding to the distributions of
Fig. C.10.

Ei χ2/NDF Fit probability

E0 2.49/2 0.29

E1 0.23/2 0.89

E2 2.62/2 0.27

E3 1.11/2 0.57

E4 0.46/2 0.80
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Figure C.10: The distributions of the coefficients Ei (i = 0, ..., 4) obtained from fourth
order polynomial fits to truth-associated reconstructed Signal Monte Carlo events for
each (ΛKS) invariant mass interval. Superimposed are the results of fits with a third
order polynomial function. The corresponding χ2/NDF and fit probabilities are
listed in Table C.6.
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APPENDIX D
ANALYSIS OF THE Λ+

c → ΛK̄0K+ DALITZ PLOT

The Dalitz plot is described using an isobar model consisting of the coherent

superposition of amplitudes characterizing Λ+
c → Λa0(980)+, a0(980)+ → K̄0K+ and

Λ+
c → Ξ(1690)0K+, Ξ(1690)0 → ΛK̄0 decays. The distribution, d2N

dcosθΛdm(ΛK̄0)
, of

Λ+
c → ΛK̄0K+ signal events is described by the sum in quadrature of these two

amplitudes multiplied by the phase-space density.

The amplitude for the decay Λ+
c → Ξ(1690)0K+ is written in the helicity

frame for the decay chain Λ+
c → Ξ(1690)0K+, Ξ(1690)0 → ΛK̄0 (Fig. D.1), where

the helicity angle is defined as the angle between the Λ in the Ξ(1690) rest-frame

and the direction of the Ξ(1690) in the Λ+
c rest-frame. Similarly, the amplitude of

the decay Λ+
c → Λa0(980)+ can be written in the Λ+

c rest-frame, but since the decay

of the a0(980)+ in its rest-frame is isotropic, the Λ+
c amplitude depends only on the

mass of the K̄0K+ system.

In order to add the Λ+
c decay amplitudes coherently, the amplitudes describ-

ing decay to Λa0(980)+ must be Lorentz-transformed to the ΛK̄0 rest-frame shown

schematically in Fig. D.1. This requires a rotation in the Λ+
c rest-frame from the frame

with spin quantization axis along the Λ direction to one with axis in the ΛK̄0 direc-

tion, and a subsequent boost to the ΛK̄0 rest-frame. The boost factor (i.e. βγ) values

are quite small, ranging from 0 at maximum ΛK̄0 mass to ∼ 0.15 at the Ξ(1690)0,

to 0.24 at ΛK̄0 threshold, and so initially the induced Wigner rotations are ignored

for simplicity. The corresponding distributions are discussed in section C.3, and the
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Figure D.1: Schematic definition of the helicity angle θ. Defining the primary hyperon
as the hyperon produced from the charm baryon, and the secondary hyperon as the
daughter of the primary hyperon, θ is the angle between the direction of the secondary
hyperon in the primary hyperon rest-frame and the direction of the primary hyperon
in the charm baryon rest-frame.

resulting expressions are used in the fits to the rectangular Dalitz plot described in

chapter 5, sections 5.6 and 5.7. The effect of Wigner rotations is discussed briefly in

section C.3, and also in chapter 5, section 5.8. It is argued that any relevant effects

should be absorbed by the interference term formulated as described in section C.3.

D.1 Amplitudes for the Decay Λ+
c → Ξ(1690)0K+

The amplitudes for the decay chain Λ+
c → Ξ(1690)0K+, Ξ(1690)0 → ΛK̄0

where J(Λ+
c ) = 1/2, J(Ξ(1690)) = J , J(Λ) = 1/2, J(K̄0) = J(K+) = 0, and the

quantization axis is the direction of the Ξ(1690)0 in the Λ+
c rest-frame may be written:

AΛc

λi λf
= HΛc

λΞ
D

J(Λc)∗
λi λΞ

(0, 0, 0)HΞ
λf
DJ ∗

λΞ λf
(0, θΛ, 0),

where

• λi = ±1/2 is the helicity of the Λ+
c ;

• λΞ is the helicity of the Ξ(1690)0;
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• λf = λΛ−λK̄0 = λΛ = ±1/2 is the (ΛK̄0) final state helicity in the ΛK̄0 rest-frame;

• the first argument of the DJ ∗
λΞ λf

, which represents the azimuthal orientation of the

final state decay plane, has been chosen to be 0 for convenience.

Since

D
J(Λc) ∗
λi λΞ

(0, 0, 0) = D
1/2 ∗
λi λΞ

(0, 0, 0) = δλi λΞ

this can be written

AΛc

λi λf
= HΛc

λΞ
HΞ

λf
DJ ∗

λi λf
(0, θΛ, 0).

The decay Ξ(1690)0 → ΛK̄0 is parity conserving, hence

HΞ
λf

= HΞ
−λf

(−1)J−1/2−0ηΞηΛηK̄0

= HΞ
−λf

(
ηΞ(−1)J+1/2

)
, (D.1)

where η denotes intrinsic parity. If the Λ+
c decay proceeded only through Ξ(1690)0K+

then the intensity at a point on the rectangular Dalitz plot would be

I = pq

(
ρ1/2 1/2

[∣∣∣AΛc

1/2 1/2

∣∣∣2 +
∣∣∣AΛc

1/2−1/2

∣∣∣2]

+ ρ−1/2−1/2

[∣∣∣AΛc

−1/2 1/2

∣∣∣2 +
∣∣∣AΛc

−1/2−1/2

∣∣∣2]) , (D.2)

where

AΛc

1/2 1/2 = HΛc

1/2H
Ξ
1/2D

J ∗
1/2 1/2(0, θΛ, 0),

AΛc

1/2−1/2 = HΛc

1/2H
Ξ
−1/2D

J ∗
1/2−1/2(0, θΛ, 0),

AΛc

−1/2 1/2 = HΛc

−1/2H
Ξ
1/2D

J ∗
−1/2 1/2(0, θΛ, 0),

AΛc

−1/2−1/2 = HΛc

−1/2H
Ξ
−1/2D

J ∗
−1/2−1/2(0, θΛ, 0),
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and pq is the phase-space factor.

Since from Eq. C.1,
∣∣∣HΞ

1/2

∣∣∣ =
∣∣∣HΞ

−1/2

∣∣∣, Eq. C.2 yields

I = pq

(
ρ1/2 1/2

∣∣∣HΛc

1/2

∣∣∣2 ∣∣HΞ
1/2

∣∣2 [(dJ
1/2 1/2(θΛ)

)2
+

(
dJ

1/2−1/2(θΛ)
)2
]

+ ρ−1/2−1/2

∣∣∣HΛc

−1/2

∣∣∣2 ∣∣HΞ
1/2

∣∣2 [(dJ
−1/2 1/2(θΛ)

)2
+

(
dJ
−1/2−1/2(θΛ)

)2
])

. (D.3)

For J = 1/2, Eq. C.3 becomes

I = pq
∣∣HΞ

1/2

∣∣2 (ρ1/2 1/2

∣∣∣HΛc

1/2

∣∣∣2 + ρ−1/2−1/2

∣∣∣HΛc

−1/2

∣∣∣2) ; (D.4)

so that the decay angular distribution of the Ξ(1690) is flat regardless of the values

of the HΛc

±1/2 and of the density matrix elements ρi i.

For J = 3/2,

I = pq
∣∣HΞ

1/2

∣∣2 (ρ1/2 1/2

∣∣∣HΛc

1/2

∣∣∣2 + ρ−1/2−1/2

∣∣∣HΛc

−1/2

∣∣∣2)[
1 + 3cos2θΛ

4

]
, (D.5)

and for J = 5/2,

I = pq
∣∣HΞ

1/2

∣∣2 (ρ1/2 1/2

∣∣∣HΛc

1/2

∣∣∣2 + ρ−1/2−1/2

∣∣∣HΛc

−1/2

∣∣∣2)[
1 − 2cos2θΛ + 5cos4θΛ

4

]
,(D.6)

in a similar way.

It follows that these angular distributions are the same as for Ω− decay, except that

there is no asymmetric term since the Ξ(1690) decays strongly and hence conserves

parity. Also, the angular dependence does not require the assumption ρ1/2 1/2 =

ρ−1/2−1/2.

D.2 Amplitudes for the Decay Λ+
c → Λa0(980)+

The amplitudes for the decay chain Λ+
c → Λa0(980)+, a0(980)+ → K̄0K+,

where J(Λ+
c ) = 1/2, J(Λ) = 1/2, J(a0) = 0, J(K̄0) = J(K+) = 0, and the quantiza-
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tion axis is the direction of the a0(980)+ in the Λ+
c rest-frame may be written:

AΛc
λi λf ′ = HΛc

λΛ
D

J(Λc) ∗
λi λΛ

(0, 0, 0)Ha0
λf ′D

J(a0) ∗
λa0 λf ′ (0, θK+, 0)

where

• λi = ±1/2 is the helicity of the Λ+
c w.r.t. the quantization axis;

• λΛ is the helicity of the Λ;

• λa0 = 0 is the helicity of the a0(980)+ (it is zero since J(a0) = 0);

• λΛ − λa0 = λΛ is the (Λa0(980)+) final state helicity in the Λ+
c rest-frame;

• λf ′ = λK+ − λK̄0 = 0 is the (K̄0K+) final state helicity in the a0(980)+ rest-frame.

Since

D
J(a0) ∗
λa0 λf ′ (0, θK+, 0) = D0

0 0(0, θK+, 0) = 1,

and

D
J(Λc) ∗
λi λΛ

(0, 0, 0) = 1

only if λΛ = λi this can be written

AΛc
λi λf ′ = HΛc

λΛ
Ha0

0 (λΛ = λi).

If the Λ+
c decay proceeded only through Λa0(980)+ then the intensity at a

point on the rectangular Dalitz plot would be given by

I = pq

(
ρ1/2 1/2

∣∣∣AΛc

1/2,0

∣∣∣2 + ρ−1/2−1/2

∣∣∣AΛc

−1/2,0

∣∣∣2) ,
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where

AΛc

1/2,0 = HΛc

1/2 H
a0
0 ,

AΛc

−1/2,0 = HΛc

−1/2 H
a0
0 , (D.7)

and pq is the corresponding phase-space factor.

This yields

I = pq

[
ρ1/2 1/2

∣∣∣HΛc

1/2

∣∣∣2 + ρ−1/2−1/2

∣∣∣HΛc

−1/2

∣∣∣2] |Ha0
0 |2 ,

where ρ1/2 1/2 + ρ−1/2−1/2 = 1.

The dependence of the HΛc

±1/2 on mK̄K is the same, and given by Eq. 5.7 of

chapter 5, and |Ha0
0 | = |gK̄K | = gK̄K in this same equation, where gK̄K is defined

to be real and positive. It follows that on the rectangular Dalitz plot, the intensity

distribution due solely to Λ+
c decay to Λa0(980)+ is proportional to the modulus

squared of the right side of Eq. 5.7 multiplied by the phase space factor, pq. The

dependence of mK̄K on cosθΛ and m(ΛK̄0) expressed in Eq. 5.12 then yields the

associated intensity variation over the rectangular plot.

D.3 Coherent Superposition of the Isobar Amplitudes

for the Decay Λ+
c → ΛK̄0K+

The coherent superposition of the isobar amplitudes contributing to the decay

Λ+
c → ΛK̄0K+, which have been described in sections C.1 and C.2, requires that

the Λa0(980)+ amplitudes of section C.2 defined in the Λ+
c rest-frame be transformed

to the ΛK̄0 rest-frame used in the formulation developed in section C.1. This is



250

accomplished in two steps. The first involves a rotation in the Λ+
c rest-frame from

the frame in which the quantization axis is along the Λ direction, to one in which the

quantization axis is along the K+ direction. In this frame the angle between the Λ

and the quantization axis is denoted by θ∗Λ.

The second step requires a Lorentz transformation along the K+ direction, to

the ΛK̄0 rest-frame. In this new frame, the Λ direction is then θΛ, the angle defined in

Fig. D.1. As discussed in chapter 5, section 5.8, the boost parameter values involved

are quite small, so that any effects due to Wigner rotation on the interference between

the resulting Λa0(980)+ amplitudes and the Ξ(1690)0K+ amplitudes should not be

very significant. Consequently, the discussion which follows initially ignores Wigner

rotation, and considers the resulting behavior of isobar interference. There is of course

no impact on the individual isobar intensity contributions described in sections C.1

and C.2.

The rotation in the Λ+
c rest-frame discussed above yields amplitudes as follows

in the ΛK̄0 rest-frame (ignoring Wigner rotation effects):

AΛc

1/2,1/2 = HΛc

1/2H
a0
0 d

1/2
1/2 1/2(θΛ),

AΛc

1/2,−1/2 = HΛc

1/2H
a0
0 d

1/2
1/2−1/2(θΛ),

AΛc

−1/2,1/2 = HΛc

−1/2H
a0
0 d

1/2
−1/2 1/2(θΛ), (D.8)

AΛc

−1/2,−1/2 = HΛc

−1/2H
a0
0 d

1/2
−1/2−1/2(θΛ).

Before combining the isobar amplitudes, their dependence on decay angle is

renormalized such as to give an intensity dependence which integrates to one. For the
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amplitudes of section C.1 this requires a factor
√

2J + 1/2, where J is the Ξ(1690)

spin, while for these of section C.2 it is just 1/
√

2.

The combined amplitudes in the ΛK̄0 rest-frame then take the form

AΛc

λi λf
= HΛc

λi
HΞ

λf

√
2J + 1

2
dJ

λi λf
(θΛ)

+HΛc
λi
Ha0

0

1√
2
d

J(Λc)
λi λf

(θΛ). (D.9)

It is assumed that relative strength and phase information beyond that of the BW

propagators is contained in the Ξ(1690)0 and a0(980)+ products of helicity amplitudes

(H).

The overall amplitude squared at a point on the Dalitz plot, |A|2, is then ob-

tained by squaring each amplitude and summing over initial and final state helicities,

as in Eq. C.2. In the notation of chapter 5, Eqs. 5.5, 5.6, 5.7 and 5.10 this may be

written

|A|2 = C
[
p2

0I1 + g2
KK̄I2 + 2p0gKK̄ · R]

,

where gKK̄ is real and positive, and R represents the sum of the four interference

terms which arise. Writing the RHS of Eqs. 5.5 and 5.7 as BW (Ξ) and gKK̄BW (a0),

I1 = |BW (Ξ)|2

I2 = |BW (a0)|2 ,

and for J = 1/2, each of the four interference terms takes the form

Ri = (ρ1/2 1/2 or ρ−1/2−1/2)gigKK̄ ×

(Re [BW (Ξ)∗BW (a0)] cosδi − Im [BW(Ξ)∗BW(a0)] sinδi) (1 ± cosθΛ) ,
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where the ± sign corresponds to that in
[
d

1/2
1/2±1/2(θΛ)

]
. The gi and δi are different for

each term in general because of the nature of the weak decay amplitudes describing

Λ+
c → Λa0(980)+ and Λ+

c → Ξ(1690)0K+, and because the parity of the Ξ(1690) is

not known (see Eq. C.1).

Summing the Ri, and extracting the factor 2p0gKK̄ for convenience, R may be

written

R = k1Re [BW (Ξ)∗BW (a0)] − k2Im [BW (Ξ)∗BW (a0)]

+ (k3Re [BW (Ξ)∗BW (a0)] − k4Im [BW (Ξ)∗BW (a0)]) cosθΛ

i.e.

R = C1 (Re [BW (Ξ)∗BW (a0)] cosδ1 − Im [BW(Ξ)∗BW(a0)] sinδ1) (D.10)

+C2 (Re [BW (Ξ)∗BW (a0)] cosδ2 − Im [BW(Ξ)∗BW(a0)] sinδ2) cosθΛ,

where the Ci and δi can be considered to be effective strength and phase parameters.

Similar structure results for J = 3/2 and J = 5/2 but with different cosθΛ dependence;

for J = 3/2 the first term is proportional to cosθΛ and the second to (3cos2θΛ − 1),

while for for J = 5/2 the first term is proportional to (3cos2θΛ − 1) and the second

to (5cos3θΛ − 3cosθΛ).

In each case, the second term is expected to be small since it involves differ-

ences in the Λ+
c density matrix elements, and for inclusive production these would be

expected to be approximately equal.

It is not possible to calculate the Ci and δi a priori, and so it was hoped that

their values could be extracted from fits to the rectangular Dalitz plot. This was



253

tested for J = 1/2, but it was found that the parameter values were very highly

correlated, and that the second term, which was expected to be small, was in fact of

the same size as the first term. The squared Ξ(1690) amplitude bacame extremely

large, and hence unphysical, and was reduced to the observed scale by similarly

unreasonable interference contributions from both terms in Eq. C.10. It was concluded

that meaningful results could not be obtained from such an approach at the present

statistical level.

Since the second term in Eq. C.10 is expected to be small, C2 was set to zero

and the net interference effect represented by

R = k (Re [BW (Ξ)∗BW (a0)] cosδ − Im [BW(Ξ)∗BW(a0)] sinδ) , (D.11)

for J = 1/2, where k and δ are considered to represent effective scale and phase

values, respectively.

This expression is then incorporated into Eq. 5.13, and the values of k and δ

obtained from the fit to the data described in chapter 5. The corresponding expres-

sions for J = 3/2 and J = 5/2 are shown explicitly in Eqs. 5.16 and 5.17, respectively.

The effects of Wigner rotation associated with the Lorentz transformation from

the Λ+
c to the ΛK̄0 rest-frame, which affect only the interference term, and which are

expected to be small anyway (see chapter 5, section 5.8), would modify the Λa0(980)+

contributions to the amplitude superposition of Eq. C.9. However, the net effect of

the summation over initial and final helicity states would be structurally the same

as represented in Eq. C.10 and subsequently, Eq. C.11. In this sense, the empirical

approach followed in the present analysis, which is such that effective values of the k
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and δ parameters are extracted from the data, already allows for the effects of Wigner

rotation, so that no benefit would result from any additional explicit attempt to take

this into account. A test of the validity of this point-of-view is presented in chapter

5, section 5.8.

If the Λ+
c weak decay amplitudes satisfied parity conservation, or if baryon

spin were ignored completely, the parameter k, which in the present fit procedure

modulates the strength of the isobar interference, would take the value 1. The fits to

the data indicate that this value does not yield the best representation of the observed

Dalitz plot distribution.
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APPENDIX E
EFFICIENCY-CORRECTION FOR Λ+

c → Ξ−π+K+ EVENTS

In this analysis, the measurement of detection efficiency is carried out in 16

mass intervals of 20 MeV/c2 from m(Ξ−π+) = 1.46 GeV/c2 to m(Ξ−π+) = 1.78

GeV/c2. The criterion p∗(Λ+
c ) ≥ 2.0 GeV/c is applied to Λ+

c → (Ξ−π+)K+ Signal

Monte Carlo generated events. Following the prescription of equations C.8, C.14, C.9,

and C.15 the coefficients Ei are calculated from the sum of the weights of the moments

of truth-associated reconstructed Signal Monte Carlo events, where N is the number

of generated events in a particular mass interval satisfying p∗(Λ+
c ) ≥ 2.0 GeV/c. It

is determined empirically that the largest order Legendre Polynomial value required

to describe the reconstructed events is L = 6. As explained earlier, in order to

incorporate the dependence of the coefficients Ei on m(Ξ−π+), the variation of the

Ei with m(Ξ−π+) is parametrized. Figure E.1 shows the distributions for Ei (i =

0, ..., 6), each fitted with a third order polynomial function. Table E.1 gives the

χ2/NDF and fit probabilities corresponding to the Ei=0,...,6 distributions of Fig. E.1.

Figure E.2 shows the efficiency calculated for each mass interval from Signal

Monte Carlo. The curves correspond to the efficiency parametrization described by

equation C.10, where the Ei mass dependence is parametrized by the fits shown in

Fig. E.1.
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Figure E.1: The distributions of the coefficients Ei (i = 0, ..., 6) calculated from the
sum of the weights of the moments of truth-associated reconstructed Signal Monte
Carlo events for each (Ξ−π+) invariant mass interval. Superimposed on each distri-
bution is a fit to a third order polynomial function. The corresponding χ2/NDF and
fit probabilities are listed in Table E.1.

Table E.1: The χ2/NDF and fit probabilities corresponding to the distributions of
Fig. E.1

Ei χ2/NDF Fit probability

E0 7.30 /12 0.84

E1 8.51 /12 0.74

E2 15.09 /12 0.24

E3 6.20 /12 0.91

E4 5.70 /12 0.93

E5 9.15 /12 0.69

E6 24.44 /12 0.02



257

)-Ξ(hθcos
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

E
ff

ic
ie

n
cy

/0
.2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

2
) -     1.47 | < 0.01 GeV/c+π -ΞInterval: | m(

)-Ξ(hθcos
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

E
ff

ic
ie

n
cy

/0
.2

0

0.05

0.1

0.15

0.2

0.25

0.3

2
) -     1.49 | < 0.01 GeV/c+π -ΞInterval: | m(

)-Ξ(hθcos
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

E
ff

ic
ie

n
cy

/0
.2

0

0.05

0.1

0.15

0.2

0.25

0.3

2
) -     1.51 | < 0.01 GeV/c+π -ΞInterval: | m(

)-Ξ(hθcos
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

E
ff

ic
ie

n
cy

/0
.2

0

0.05

0.1

0.15

0.2

0.25

0.3

2
) -     1.53 | < 0.01 GeV/c+π -ΞInterval: | m(

)-Ξ(hθcos
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

E
ff

ic
ie

n
cy

/0
.2

0

0.05

0.1

0.15

0.2

0.25

0.3

2
) -     1.55 | < 0.01 GeV/c+π -ΞInterval: | m(

)-Ξ(hθcos
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

E
ff

ic
ie

n
cy

/0
.2

0

0.05

0.1

0.15

0.2

0.25

0.3

2
) -     1.57 | < 0.01 GeV/c+π -ΞInterval: | m(

)-Ξ(hθcos
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

E
ff

ic
ie

n
cy

/0
.2

0

0.05

0.1

0.15

0.2

0.25

0.3

2
) -     1.59 | < 0.01 GeV/c+π -ΞInterval: | m(

)-Ξ(hθcos
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

E
ff

ic
ie

n
cy

/0
.2

0

0.05

0.1

0.15

0.2

0.25

0.3

2
) -     1.61 | < 0.01 GeV/c+π -ΞInterval: | m(

)-Ξ(hθcos
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

E
ff

ic
ie

n
cy

/0
.2

0

0.05

0.1

0.15

0.2

0.25

0.3

2
) -     1.63 | < 0.01 GeV/c+π -ΞInterval: | m(

)-Ξ(hθcos
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

E
ff

ic
ie

n
cy

/0
.2

0

0.05

0.1

0.15

0.2

0.25

0.3

2
) -     1.65 | < 0.01 GeV/c+π -ΞInterval: | m(

)-Ξ(hθcos
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

E
ff

ic
ie

n
cy

/0
.2

0

0.05

0.1

0.15

0.2

0.25

0.3

2
) -     1.67 | < 0.01 GeV/c+π -ΞInterval: | m(

)-Ξ(hθcos
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

E
ff

ic
ie

n
cy

/0
.2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

2
) -     1.69 | < 0.01 GeV/c+π -ΞInterval: | m(

)-Ξ(hθcos
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

E
ff

ic
ie

n
cy

/0
.2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

2
) -     1.71 | < 0.01 GeV/c+π -ΞInterval: | m(

)-Ξ(hθcos
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

E
ff

ic
ie

n
cy

/0
.2

0

0.05

0.1

0.15

0.2

0.25

0.3

2
) -     1.73 | < 0.01 GeV/c+π -ΞInterval: | m(

)-Ξ(hθcos
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

E
ff

ic
ie

n
cy

/0
.2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

2
) -     1.75 | < 0.01 GeV/c+π -ΞInterval: | m(

)-Ξ(hθcos
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

E
ff

ic
ie

n
cy

/0
.2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2
) -     1.77 | < 0.01 GeV/c+π -ΞInterval: | m(

2
) -     1.77 | < 0.01 GeV/c+π -ΞInterval: | m(

Figure E.2: The cosθΞ− efficiency distributions corresponding to to each of the 16
20 MeV/c2 intervals from m(Ξ−π+) = 1.46 GeV/c2 to m(Ξ−π+) = 1.78 GeV/c2.
Superimposed are fits with the parametrization of equation C.10, with the values
for the parameters Ei obtained from the calculated Signal Monte Carlo moments
(equations C.8, C.14, C.9, C.15).
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Because not all of the generated distributions are well-described by a zeroeth

order polynomial function, the angular dependence of the efficiency for each mass

interval differs slightly from the angular structure of the corresponding generated

event distribution. Thus, in order to correct for this slight discrepancy, values of

the Ei coefficients are obtained for each mass interval by fitting the corresponding

efficiency distribution with the parametrization of equation C.10, where this time the

values of Ei are extracted from a fit, with the input values equal to the values of Ei

calculated from Signal Monte Carlo. Figure E.3 shows these fits to the cosθΞ− effi-

ciency distribution for each mass interval. The χ2/NDF values and fit probabilities

obtained from this procedure are given in Table E.2. Figure E.4 shows the simulta-

neous distributions of the Ei coefficients obtained by the two methods described. The

open red circles correspond to the values of Ei extracted from the fit as a function

of the Legendre polynomials with L = 0, 1, ..., 6. The black solid dots represent the

values calculated from the Legendre polynomial moments. The mass dependence of

the Ei coefficients extracted from the fit as a function of the Legendre polynomials,

is obtained as before, from a fit with a third order polynomial function. The fit-

ted Ei coefficients are shown in Fig. E.5 and the corresponding χ2/NDF values and

probabilities are given in Table E.3.

Figure E.6 shows the simultaneous m(Ξ−π+) distributions in Signal Monte

Carlo of generated events (black solid points), and of the truth-associated efficiency-

corrected (with the parametrization of method 2) events (colored markers), where the

pink open circles and the blue crosses correspond to the invariant mass of the (Ξ−π+)
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Table E.2: The χ2/NDF and fit probabilities corresponding to the distributions of
Fig. E.3.

Mass interval in GeV/c2 χ2/NDF Fit probability

|m(Ξ−π+) − 1.47| < 0.01 2.89 /3 0.41

|m(Ξ−π+) − 1.49| < 0.01 2.24 /3 0.52

|m(Ξ−π+) − 1.51| < 0.01 3.21 /3 0.36

|m(Ξ−π+) − 1.53| < 0.01 5.65 /3 0.13

|m(Ξ−π+) − 1.55| < 0.01 5.93 /3 0.12

|m(Ξ−π+) − 1.57| < 0.01 1.14 /3 0.77

|m(Ξ−π+) − 1.59| < 0.01 2.41 /3 0.49

|m(Ξ−π+) − 1.61| < 0.01 1.36 /3 0.72

|m(Ξ−π+) − 1.63| < 0.01 3.52 /3 0.32

|m(Ξ−π+) − 1.65| < 0.01 1.21 /3 0.75

|m(Ξ−π+) − 1.67| < 0.01 1.71 /3 0.64

|m(Ξ−π+) − 1.69| < 0.01 2.72 /3 0.44

|m(Ξ−π+) − 1.71| < 0.01 3.87 /3 0.28

|m(Ξ−π+) − 1.73| < 0.01 0.27 /3 0.97

|m(Ξ−π+) − 1.75| < 0.01 3.03 /3 0.39

|m(Ξ−π+) − 1.77| < 0.01 6.49 /3 0.09

Table E.3: The χ2/NDF and fit probabilities corresponding to the distributions of
Fig. E.5

Ei χ2/NDF Fit probability

E0 10.71 /12 0.55

E1 10.34 /12 0.59

E2 15.33 /12 0.22

E3 8.67 /12 0.73

E4 9.74 /12 0.64

E5 9.91 /12 0.62

E6 11.47 /12 0.49
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system calculated using the true and reconstructed Monte Carlo values, respectively.

No systematic deviations are observed. Figure E.7 shows the differences between

the truth-associated efficiency-corrected m(Ξ−π+) distributions and the generated

distributions, with the invariant mass of the (Ξ−π+) system calculated using the true

and reconstructed Monte Carlo values, respectively.
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Figure E.3: The cosθΞ− efficiency distributions corresponding to to each of the 16
20 MeV/c2 intervals from m(Ξ−π+) = 1.46 GeV/c2 to m(Ξ−π+) = 1.78 GeV/c2.
Superimposed are fits with the parametrization of equation C.10. The values of the
parameters Ei are now extracted from this fit, and the fit parameter input values are
the calculated Ei Signal Monte Carlo moments (equations C.8, C.14, C.9, C.15).
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Figure E.4: The distributions of the Ei coefficients obtained from Signal Monte Carlo
events. The open red circles correspond to the values of Ei extracted from a fit with
a function of the Legendre polynomials with L = 0, 1, ..., 6. The black solid dots
represent the values calculated from the Legendre polynomial moments.
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Figure E.5: The distributions of the Ei coefficients obtained from a fit with a function
of the Legendre polynomials with L = 0, 1, ..., 6 to the efficiency calculated from
Signal Monte Carlo for each mass interval. Superimposed is a fit with a third order
polynomial function. The corresponding χ2/NDF values and fit probabilities are
listed in Table E.3.
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Figure E.6: The m(Ξ−π+) distribution in Signal Monte Carlo. The black solid points
correspond to the generated distribution. The colored data points represent the truth-
associated efficiency-corrected m(Ξ−π+) distributions, where the pink open circles
and the blue crosses correspond to the invariant mass of the (Ξ−π+) system calculated
using the true and reconstructed Monte Carlo values, respectively.
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Figure E.7: The differences between the truth-associated efficiency-corrected
m(Ξ−π+) distributions and the generated distributions, with the invariant mass of
the (Ξ−π+) system calculated using the true (open pink circles) and reconstructed
(blue stars) Monte Carlo values. No systematic deviations are apparent.
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E.1 Efficiency-corrected Data

The uncorrected and efficiency-corrected distributions are now compared for

data corresponding the Λ+
c mass-signal region. In Figs. E.8-E.10, the solid data points

represent the uncorrected distributions, and the open circles the efficiency-corrected

spectra scaled by the overall efficiency value of 26.6%. For Figs.. E.8 and E.10, the

efficiency-correction procedure has little effect on the distributions, by Fig. E.9 shows

that the P1(cosθΞ−) moment is systematically shifted toward positive values for Ξ−π+

mass between ∼1.52 and 1.55 GeV/c2, although the individual point uncertainties are

large.
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Figure E.8: The (Ξ−π+) system invariant mass distribution corresponding to the Λ+
c

mass-signal region; the solid data points represent the uncorrected distributions, and
the open circles the efficiency-corrected spectrum scaled by the overall efficiency value
of 26.6%.
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Figure E.9: The P1(cosθΞ−) moment of the (Ξ−π+) system invariant mass distri-
bution corresponding to the Λ+

c mass-signal region; the solid data points represent
the uncorrected distributions and the open circles, the efficiency-corrected spectrum
scaled by the overall efficiency value of 26.6%.
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Figure E.10: The P2(cosθΞ−) moment of the (Ξ−π+) system invariant mass distri-
bution corresponding to the Λ+

c mass-signal region; the solid data points represent
the uncorrected distributions, and the open circles the efficiency-corrected spectrum
scaled by the overall efficiency value of 26.6%.
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APPENDIX F
THE AMPLITUDES OF THE (Ξ−π+) SYSTEM

As before, the following assumptions are made in order to write down the

amplitudes describing the (Ξ−, π+) system:

• the spin of the Λ+
c is 1/2;

• since the Λ+
c are produced inclusively, it is assumed that the associated density

matrix is diagonal;

• it is not assumed that the diagonal elements, denoted by ρ1/2 1/2 and ρ−1/2−1/2 are

equal.

It follows that for a choice of quantization axis along the (Ξ−, π+) direction in the

Λ+
c rest-frame, the (Ξ−, π+) system can have helicity ±1/2, independently of its spin.

In the following derivation, we consider that at a particular m(Ξ−, π+), the

amplitude describing the decay to (Ξ−, π+) can be written as a superposition of

amplitudes corresponding to total spin J values 1/2, 3/2 and 5/2. For each value

of J , there can be two orbital angular momentum contributions, since J = L ± 1/2;

these contributions correspond to different parity values for the parent (Ξ−, π+) state,

since parity is conserved in strong decay. The possibilities are summarized below.
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Table F.1: The possible spin-parity values for the (Ξ−, π+) system (P = (−1)L+1).

Spin (J) Orbital Ang. Momt. (L) Parity (P ) JP

1/2 [L+ 1/2] 0 [S-wave] - 1/2−

1/2 [L− 1/2] 1 [P-wave] + 1/2+

3/2 [L+ 1/2] 1 [P-wave] + 3/2+

3/2 [L− 1/2] 2 [D-wave] - 3/2−

5/2 [L+ 1/2] 2 [D-wave] - 5/2−

5/2 [L− 1/2] 3 [F-wave] + 5/2+

The angular distribution can then be written:

I =
∑
λi,λf

ρi i

∣∣∣∣∣
∑

J

AJ
λf
DJ ∗

λi λf
(φ, θ, 0)

∣∣∣∣∣
2

=
∑
λi,

ρi i

⎡
⎣
∣∣∣∣∣
∑

J

AJ
1/2d

J
λi 1/2(θ)

∣∣∣∣∣
2

+

∣∣∣∣∣
∑

J

AJ
1/2d

J
λi −1/2(θ)

∣∣∣∣∣
2
⎤
⎦

Parity conservation relates the AJ
λf

amplitudes by

AJ
λf

= AJ
−λf

ηPηΞηπ+(−1)J−SΞ−Sπ

= AJ
−λf

ηP (−1)(−1)J−1/2

= AJ
−λf

ηP (−1)J+1/2.

Here ηP is the parity of the parent state; since two orbital states can contribute to the

spin J amplitude, this is not uniquely defined. It follows that the intensity needs to

be expressed in terms of the orbital contributions in order to take parity conservation
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into account. Writing the angular distribution explicitly:

I = ρ1/2 1/2

[∣∣∣A1/2
1/2d

1/2
1/2,1/2(θ) + A

3/2
1/2d

3/2
1/2,1/2(θ) + A

5/2
1/2d

5/2
1/2,1/2(θ)

∣∣∣2
+
∣∣∣A1/2

−1/2d
1/2
1/2,−1/2(θ) + A

3/2
−1/2d

3/2
1/2,−1/2(θ) + A

5/2
−1/2d

5/2
1/2,−1/2(θ)

∣∣∣2]

+ ρ−1/2−1/2

[∣∣∣A1/2
1/2d

1/2
−1/2,1/2(θ) + A

3/2
1/2d

3/2
−1/2,1/2(θ) + A

5/2
1/2d

5/2
−1/2,1/2(θ)

∣∣∣2
+
∣∣∣A1/2

−1/2d
1/2
−1/2,−1/2(θ) + A

3/2
−1/2d

3/2
−1/2,−1/2(θ) + A

5/2
−1/2d

5/2
−1/2,−1/2(θ)

∣∣∣2]

Substituting the appropriate d-functions into I, gives

I = ρ1/2 1/2

[∣∣∣∣A1/2
1/2 + A

3/2
1/2

3cosθ − 1

2
+ A

5/2
1/2

5cos2θ − 2cosθ − 1

2

∣∣∣∣
2

cos2θ/2

+

∣∣∣∣A1/2
−1/2 + A

3/2
−1/2

3cosθ + 1

2
+ A

5/2
−1/2

5cos2θ + 2cosθ − 1

2

∣∣∣∣
2

sin2θ/2

]

+ ρ−1/2−1/2

[∣∣∣∣A1/2
1/2 + A

3/2
1/2

3cosθ + 1

2
+ A

5/2
1/2

5cos2θ + 2cosθ − 1

2
+ A

5/2
1/2

∣∣∣∣
2

sin2θ/2

+

∣∣∣∣A1/2
−1/2 + A

3/2
−1/2

3cosθ − 1

2
+ A

5/2
−1/2

5cos2θ − 2cosθ − 1

2

∣∣∣∣
2
]

In order to simplify this expression taking into account parity conservation, the am-

plitudes AJ
λf

must be expressed in terms of the orbital angular momentum amplitudes

for L = J ± 1/2 which contribute.

In order to do this, use is made of the relationship between (L, S) states and

helicity states. Following the prescription of Jacob and Wick [36],

| JM λ1λ2〉 =
∑
L,S

βLS | JM LS〉,

where

βLS = 〈JM LS | JM λ1λ2〉

=
2L+ 1

2J + 1
C(LSJ ; 0λ)C(S1S2S;λ1,−λ2).
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Where λ = λ1 − λ2, and the C’s are the Clebsch-Gordan coefficients:

C(LSJ ; 0λ) = 〈L, 0;S, λ | J, λ〉

C(S1S2S;λ1,−λ2) = 〈S1, λ1;S2, λ2 | S, λ1 − λ2〉

Expressing A
1/2
1/2 and A

1/2
−1/2 in terms of S and P waves,

A
1/2
1/2 ≡| J = 1/2M = 1/2, λ1 = 1/2λ2 = 0〉

= βL=0 S=1/2 | J = 1/2M = 1/2;L = 0S = 1/2〉

+βL=1 S=1/2 | J = 1/2M = 1/2;L = 1S = 1/2〉,

where

βL=0 S=1/2 =

√
1

2
C(0 1/2 1/2; 0 1/2)C(1/2 0 1/2; 1/2 0),

with

C(0 1/2 1/2; 0 1/2) ≡ 〈0, 0; 1/2, 1/2 | 1/2, 1/2〉 = 1,

C(1/2 0 1/2; 1/2 0) ≡ 〈1/2, 1/2; 0, 0 | 1/2, 1/2〉 = 1,

βL=0 S=1/2 =

√
1

2
;

and

βL=1 S=1/2 =

√
3

2
C(1 1/2 1/2; 0 1/2)C(1/2 0 1/2; 1/2 0)

with

C(1 1/2 1/2; 0 1/2) ≡ 〈1, 0; 1/2, 1/2 | 1/2, 1/2〉 = − 1√
3
,
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βL=1 S=1/2 = − 1√
2
;

so that

A
1/2
1/2 =

1√
2

[
S1/2 − P 1/2

]
.

Similarly,

A
−1/2
1/2 ≡| J = 1/2M = −1/2, λ1 = −1/2λ2 = 0〉

= βL=0 S=1/2 | J = 1/2M = −1/2;L = 0S = 1/2〉

+βL=1S=1/2 | J = 1/2M = −1/2;L = 1S = 1/2〉,

where

βL=0 S=1/2 =

√
1

2
C(0 1/2 1/2; 0 − 1/2)C(1/2 0 1/2;−1/2 0)

with

C(0 1/2 1/2; 0 − 1/2) ≡ 〈0, 0; 1/2,−1/2 | 1/2,−1/2〉 = 1,

C(1/2 0 1/2;−1/2 0) ≡ 〈1/2,−1/2; 0, 0 | 1/2,−1/2〉 = 1,

βL=0 S=1/2 =

√
1

2
;

and

βL=1 S=1/2 =

√
3

2
C(1 1/2 1/2; 0 − 1/2)C(1/2 0 1/2;−1/2 0)

with

C(1 1/2 1/2; 0 − 1/2) ≡ 〈1, 0; 1/2,−1/2 | 1/2,−1/2〉 =
1√
3
,
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βL=1 S=1/2 =
1√
2
;

so that

A
1/2
−1/2 =

1√
2

[
S1/2 + P 1/2

]
.

A
3/2
1/2 and A

3/2
−1/2 are expressed in terms of P and D waves.

A
3/2
1/2 ≡| J = 3/2M = 1/2, λ1 = 1/2λ2 = 0〉

= βL=1 S=1/2 | J = 3/2M = 1/2;L = 1S = 1/2〉

+βL=2 S=1/2 | J = 3/2M = 1/2;L = 2S = 1/2〉,

with

βL=1 S=1/2 =

√
3

4
C(1 1/2 3/2; 0 1/2)C(1/2 0 1/2; 1/2 0),

with

C(1 1/2 3/2; 0 1/2) ≡ 〈1, 0; 1/2, 1/2 | 3/2, 1/2〉 =

√
2

3
,

so that

βL=1 S=1/2 =

√
1

2
;

and

βL=2 S=1/2 =

√
5

4
C(2 1/2 3/2; 0 1/2)C(1/2 0 1/2; 1/2 0),

where

C(2 1/2 3/2; 0 1/2) ≡ 〈2, 0; 1/2, 1/2 | 3/2, 1/2〉 = −
√

2

5
,
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βL=2 S=1/2 = − 1√
2
;

so that

A
3/2
1/2 =

1√
2

[
P 3/2 −D3/2

]
.

A
3/2
−1/2 ≡| J = 3/2M = −1/2, λ1 = −1/2λ2 = 0〉

= βL=1 S=1/2 | J = 3/2M = −1/2;L = 1S = 1/2〉

+βL=2S=1/2 | J = 3/2M = −1/2;L = 2S = 1/2〉,

with

βL=1 S=1/2 =

√
3

4
C(1 1/2 3/2; 0 − 1/2)C(1/2 0 1/2;−1/2 0)

with

C(1 1/2 3/2; 0 − 1/2) ≡ 〈1, 0; 1/2,−1/2 | 3/2,−1/2〉 =

√
2

3
,

so that

βL=1 S=1/2 =

√
1

2
;

and

βL=2 S=1/2 =

√
5

4
C(2 1/2 3/2; 0 − 1/2)C(1/2 0 1/2;−1/2 0)

where

C(2 1/2 3/2; 0 − 1/2) ≡ 〈2, 0; 1/2,−1/2 | 3/2,−1/2〉 =

√
2

5
,
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βL=2 S=1/2 =
1√
2
;

so that

A
3/2
−1/2 =

1√
2

[
P 3/2 +D3/2

]
.

A
5/2
1/2 and A

5/2
−1/2 are expressed in terms of D and F waves.

A
5/2
1/2 ≡| J = 5/2M = 1/2, λ1 = 1/2λ2 = 0〉

= βL=2 S=1/2 | J = 5/2M = 1/2;L = 2S = 1/2〉

+βL=2 S=1/2 | J = 5/2M = 1/2;L = 3S = 1/2〉,

with

βL=2 S=1/2 =

√
5

6
C(2 1/2 5/2; 0 1/2)C(1/2 0 1/2; 1/2 0)

with

C(2 1/2 5/2; 0 1/2) ≡ 〈2, 0; 1/2, 1/2 | 5/2, 1/2〉 =

√
3

5
,

so that

βL=2 S=1/2 =

√
1

2
;

and

βL=3 S=1/2 =

√
7

6
C(3 1/2 5/2; 0 1/2)C(1/2 0 1/2; 1/2 0)

where

C(3 1/2 5/2; 0 1/2) ≡ 〈3, 0; 1/2, 1/2 | 5/2, 1/2〉 = −
√

3

7
,



274

βL=3 S=1/2 = − 1√
2
;

so that

A
5/2
1/2 =

1√
2

[
D5/2 − F 5/2

]
.

A
5/2
−1/2 ≡| J = 5/2M = −1/2, λ1 = −1/2λ2 = 0〉

= βL=2 S=1/2 | J = 5/2M = −1/2;L = 2S = 1/2〉

+βL=3S=1/2 | J = 5/2M = −1/2;L = 3S = 1/2〉,

with

βL=2 S=1/2 =

√
5

6
C(2 1/2 5/2; 0 − 1/2)C(1/2 0 1/2;−1/2 0)

with

C(2 1/2 5/2; 0 − 1/2) ≡ 〈2, 0; 1/2,−1/2 | 5/2,−1/2〉 =

√
3

5
,

so that

βL=2 S=1/2 =

√
1

2
;

and

βL=3 S=1/2 =

√
7

6
C(3 1/2 5/2; 0 − 1/2)C(1/2 0 1/2;−1/2 0)

where

C(3 1/2 5/2; 0 − 1/2) ≡ 〈3, 0; 1/2,−1/2 | 5/2,−1/2〉 =

√
3

7
,
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βL=3 S=1/2 =
1√
2
;

so that

A
5/2
−1/2 =

1√
2

[
D5/2 + F 5/2

]
.

The expressions for AJ
λf

in terms of S, P , D, and F waves are consistent with

the parity conservation condition

AJ
λf

= AJ
−λf

ηP (−1)J+1/2,

with ηP , the intrinsic parent parity.

Substituting these amplitude expressions into I, where the F 5/2 amplitude is

disregarded for simplicity,

2I = ρ1/2 1/2 ×[∣∣∣∣S1/2 − P 1/2 +
(
P 3/2 −D3/2

) 3cosθ − 1

2
+D5/2 5cos2θ − 2cosθ − 1

2

∣∣∣∣
2

cos2θ/2

+

∣∣∣∣S1/2 + P 1/2 +
(
P 3/2 +D3/2

) 3cosθ + 1

2
+D5/25cos2θ + 2cosθ − 1

2

∣∣∣∣
2

sin2θ/2

]

+ρ−1/2−1/2 ×[∣∣∣∣S1/2 − P 1/2 +
(
P 3/2 −D3/2

) 3cosθ + 1

2
+D5/2 5cos2θ + 2cosθ − 1

2

∣∣∣∣
2

sin2θ/2

+

∣∣∣∣S1/2 + P 1/2 +
(
P 3/2 +D3/2

) 3cosθ − 1

2
+D5/2 5cos2θ − 2cosθ − 1

2

∣∣∣∣
2

cos2θ/2

]

Using ρ1/2 1/2 + ρ−1/2−1/2 = 1,
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2I =
∣∣S1/2

∣∣2 +
∣∣P 1/2

∣∣2 +
[∣∣P 3/2

∣∣2 +
∣∣D3/2

∣∣2](3cos2θ + 1

4

)

+
∣∣D5/2

∣∣2 (5cos4θ − 2cos2θ + 1

4

)

+2
[
Re

(
S1/2P 3/2 ∗) +Re

(
P 1/2D3/2 ∗)] cosθ

+2Re
(
S1/2D5/2 ∗)(3cos2θ − 1

2

)
+ 2Re

(
P 3/2D5/2 ∗) cos3θ

−2
(
ρ1/2 1/2 − ρ−1/2−1/2

) [(
Re

(
S1/2P 1/2 ∗) +Re

(
P 3/2D3/2 ∗)(9cos2θ − 5

4

)

+Re
(
P 1/2D5/2 ∗)(5cos2θ − 3

2

))
cosθ

+
(
Re

(
S1/2D3/2 ∗) +Re

(
P 1/2P 3/2 ∗))(3cos2θ − 1

2

)

+Re
(
D3/2D5/2 ∗)(15cos4θ − 12cos2θ + 1

4

)]

Integrating I over cosθ,

N =

∫ 1

−1

Idcosθ =
∣∣S1/2

∣∣2 +
∣∣P1/2

∣∣2 +

∣∣P3/2
∣∣2 +

∣∣D3/2
∣∣2

2
+

∣∣D5/2
∣∣2

3
,

so that the intensity contribution for spin J has a multiplicative factor 2/(2J + 1)

before the square of the amplitudes. It follows that in order to have the integral over

cosθ to be 1 for each J value the amplitude LJ should be multiplied by the factor√
2J+1

2
.
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Then,

I =

∣∣S1/2
∣∣2 +

∣∣P 1/2
∣∣2

2
+

[∣∣P 3/2
∣∣2 +

∣∣D3/2
∣∣2](3cos2θ + 1

4

)

+
∣∣D5/2

∣∣2 3

(
5cos4θ − 2cos2θ + 1

8

)

+
[
Re

(
S1/2P 3/2 ∗) +Re

(
P 1/2D3/2 ∗)]√2cosθ

+Re
(
S1/2D5/2 ∗)√3

(
3cos2θ − 1

2

)

+Re
(
P 3/2D5/2 ∗)√6cos3θ

− (
ρ1/2 1/2 − ρ−1/2−1/2

) [(
Re

(
S1/2P 1/2 ∗) +Re

(
P 3/2D3/2 ∗)(9cos2θ − 5

2

)

+Re
(
P 1/2D5/2 ∗)√3

(
5cos2θ − 3

2

))
cosθ

+
(
Re

(
S1/2D3/2 ∗) +Re

(
P 1/2P 3/2 ∗))(3cos2θ − 1√

2

)

+Re
(
D3/2D5/2 ∗)√3

(
15cos4θ − 12cos2θ + 1

2
√

2

)]
,

and,

N =

∫ 1

−1

Idcosθ =
∣∣S1/2

∣∣2 +
∣∣P1/2

∣∣2 +
∣∣P3/2

∣∣2 +
∣∣D3/2

∣∣2 +
∣∣D5/2

∣∣2 ,
as expected. With

P0(cosθ) =
1√
2

P1(cosθ) =

√
3

2
cosθ

P2(cosθ) =

√
5

2

(
3cos2θ − 1

2

)

P3(cosθ) =

√
7

2

(
5cos3θ − 3cosθ

2

)

P4(cosθ) =
3√
2

(
35cos4θ − 30cos2θ + 3

8

)
,
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and assuming that the density matrix elements are equal,

I =
P0(cosθ)√

2

[∣∣S1/2
∣∣2 +

∣∣P 1/2
∣∣2]

+

(
P2(cosθ)√

10
+
P0(cosθ)√

2

)[∣∣P 3/2
∣∣2 +

∣∣D3/2
∣∣2]

+

(√
7

4
P4(cosθ) +

8

7

1√
10

P2(cosθ) +
P0(cosθ)√

2

)∣∣D5/2
∣∣2

+
2√
3
P1(cosθ)

[
Re

(
S1/2P3/2 ∗) + Re

(
P1/2D3/2 ∗)]

+
√

2P2(cosθ)Re
(
S1/2D5/2 ∗)√3

+

(
4

5

√
3

7
P3(cosθ) +

6

5
P1(cosθ)

)
Re

(
P 3/2D5/2 ∗)

=
P0(cosθ)√

2

(∣∣S1/2
∣∣2 +

∣∣P 1/2
∣∣2 +

∣∣P 3/2
∣∣2 +

∣∣D3/2
∣∣2 +

∣∣D5/2
∣∣2)

+P1(cosθ)

(
2√
3

[
Re

(
S1/2P3/2 ∗) + Re

(
P1/2D3/2 ∗)] +

6

5
Re

(
P3/2D5/2 ∗))

+
P2(cosθ)√

10

(∣∣P 3/2
∣∣2 +

∣∣D3/2
∣∣2 +

8

7

∣∣D5/2
∣∣2 +

√
20Re

(
S1/2D5/2 ∗))

+
4

5

√
3

7
P3(cosθ)Re

(
P3/2D5/2 ∗) +

√
2

7
P4(cosθ)

∣∣D5/2
∣∣2

The orthogonality of Legendre polynomial functions implies

I = dN/dcosθ = 〈P0〉P0(cosθ) + ...+ 〈P4〉P4(cosθ)

where,

〈Pi〉 =

∫ 1

−1

Pi(cosθ)dN/dcosθdcosθ ∼
∑

j

Pi(cosθj)

are the background- (i.e. Λ+
c mass-sidebands) subtracted, efficiency-corrected Legen-

dre polynomial averages.

Therefore the following relationship between the Legendre polynomial mo-

ments and the magnitudes of the contributing waves is given by the system of equa-
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tions:

〈P0〉 =
1√
2

(∣∣S1/2
∣∣2 +

∣∣P 1/2
∣∣2 +

∣∣P 3/2
∣∣2 +

∣∣D3/2
∣∣2 +

∣∣D5/2
∣∣2)

〈P1〉 =

(
2√
3

[
Re

(
S1/2P 3/2 ∗) +Re

(
P 1/2D3/2 ∗)] +

6

5
Re

(
P 3/2D5/2 ∗))

〈P2〉 =
√

10

(∣∣P 3/2
∣∣2 +

∣∣D3/2
∣∣2 +

8

7

∣∣D5/2
∣∣2 +

√
20Re

(
S1/2D5/2 ∗))

〈P3〉 =
4

5

√
3

7
Re

(
P 3/2D5/2 ∗)

〈P4〉 =

√
2

7

∣∣D5/2
∣∣2
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