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Introduction

The existing theory of fundamental sub-atomic particle interactions (the Standard Model)

accounts for a difference in the interactions between matter and anti-matter through

a phenomenon known as “CP violation”. From this model we can derive how such a

difference leads to the dominance of matter in the Universe. From experiments of the

past and, with larger accuracy from modern experiments, such as the B-factories, this

difference has been found to be smaller, by orders of magnitude, than the observed matter

asymmetry in the Universe. This is one of the most evident inconsistencies of the Standard

Model in describing the fundamental laws that lead to the actual Universe.

Though most of the experimental measurements of the properties of the sub-atomic

particles has precisely agreed with Standard Model predictions, a limitation of this model’s

construction is that it is not the fundamental theory, but is rather what is known as an “ef-

fective” theory describing phenomena to certain distance (or, equivalently, energy) scale.

The physics of smaller distance (or higher energy) processes are obscured in parameters

which must be measured. What’s more, we know that not only the Standard Model is

incomplete, but that more importantly, there is physics beyond it which necessarily must

explain not understood phenomena.

The main road to go beyond the Standard Model is observing an inconsistency within

it. Since the matter/anti-matter difference incorporated in the Standard Model is mani-

fested in merely one parameter, it is an excellent candidate for revealing such an incon-

sistency. Furthermore our most likely predictions of the physics beyond the Standard

Model generally provide more sources of CP violation (for example in Supersymmetric

extensions of it). Therefore investigations of the matter/anti-matter asymmetries hold

great prospect for providing hints of what lies beyond the Standard Model.

In the previous decade, two particle accelerators were specifically built to study CP

violation in the properties of a particle which is an excellent probe of such phenomena:

the B meson. These colliders, known as asymmetric “B-factories”, provide abundant
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samples of this particle in a clean environment to perform detailed measurements of its

decays.

One of the primary goals of these experiments is to look for inconsistencies in the

Standard Model picture of CP violation. Already, they have established that the CP

violation in B meson decays is non-zero measuring with high precision the angle β of

a triangle whose area is related to the amount of CP violation: sin 2β = 0.674 ± 0.026

[89, 90].

With the current precision, the Standard Model appears to correctly predict the value

of β. In this decade, as the B-factories accumulated hundred of millions of B decays,

rare B decays can also be investigated, and their CP violation measured. This work focus

on a set of rare B decays involving the elementary transition of the b quark to s quark.

In the Standard Model they are sensitive to β, but, if this model is only a low energy

manifestation of a more general theory where more CP violation sources are present,

significant deviations from the predicted asymmetry could arise.

The analysis of the most relevant of these decays is presented in this thesis and it is

based on data collected at the Stanford Linear Accelerator Center’s asymmetric B-factory,

which is composed of the PEP-II electron/positron storage ring and the BABAR detector.

This thesis attempts to give a comprehensive picture of BABAR’s analysis of the B0

decays to the K+K−K0 final state, through the intermediate resonances φK0, f0K
0,

and the non-resonant K+K−K0, and of the B0 decays to K0
SK0

SK0
S final state. Chapter

1 focuses on the theoretical importance of the CP violation in these decays, and how

relate it to Standard Model parameters. Chapter 2 describes the general experimental

approach for a measurement of time-dependent CP asymmetry in B decays. Chapter 3

gives the basis of the Dalitz plot technique used to measure the different contributions to

the CP asymmetry in the K+K−K0 final state. Chapters 4 and 5 present an overview

of the BABAR detector and of the reconstruction of charged and neutral kaons, which

plays a fundamental role in the decays described in this thesis. Chapter 6 and 7 present

the analyses of B0 → K+K−K0 and B0 → K0
S
K0

S
K0

S
decays, respectively, discussing

the details of the experimental technique used. Chapter 8 presents a measurement of

branching fraction of B → φπ (both charged and neutral), which can be used in estimating

the Standard Model sub-leading amplitudes of B0 → φK0 and also to set limits on

Supersymmetric models. Finally Chapter 9 evaluates the impact of the measurements

presented in this thesis on the knowledge of possible non Standard Model physics.



Chapter 1

CP Violation in B Decays

The actual understanding of the sub-atomic phenomena observed in high energy accelera-

tors and detectors is expressed by the Standard Model (SM) theory of the electromagnetic,

weak, and strong interactions. This theory of fundamental interactions provide an expla-

nation of the origins of the CP violation, by means of a unique irreducible complex phase

in the CKM matrix of quark flavour mixing.

We will describe how the CP violation can be measured in the neutral B meson

system in the framework of the Standard Model. The validity of this model in the flavour

sector can be tested by over-constraining its parameters both in CP -violating and in CP -

conserving processes, by means of the analysis of the Unitarity Triangle. Through such

an analysis of a large number of processes, the Standard Model seems to be the leading

rule for the flavour of fundamental particles.

However, problems arise when the Standard Model is extended to the Planck scale.

One of the fundamental elements of this theory, the Higgs boson, receives sizable quantum

corrections from virtual particles which pull its renormalized mass to the Planck scale,

unless a fine tuned cancellation of these corrections is invoked. To avoid this undesir-

able fine tuning, extensions of the Standard Model has been proposed, one of the most

convincing being the Supersymmetry. These theories beyond the Standard Model could

provide new sources of CP violation in addition to the CKM one.

These New Physics theories should reproduce the flavour structure with the measured

amount of CP violation in the processes which to a good approximation are governed by

the Standard Model only, and can produce sizable effects in less constrained processes.

One of the most promising fields in the B decays to exploit such indirect effects of a

physics beyond the Standard Model is the measurement of CP violation in b → s loop
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processes.

We will focus on the specifics of the CP violation in B0 decays to three kaons, and we

will interpret the results in the Standard Model framework and possible extensions of it.

1.1 Discrete Symmetries

The discrete space-time operations of parity (P : x → −x) and time-reversal (T : t →
−t) have classical interpretations. Testing the parity conservation of a classical theory

corresponds to validating the invariance of its laws of motion under a mirror reflection

about a coordinate plane followed by π rotation about the axes perpendicular to that

plane. Similarly, time-reversal symmetry of a classical theory indicates no time direc-

tion preference. These operations were recognized long before the advent of quantum

mechanics and quantum field theory as symmetries of classical theories of gravity and

electromagnetism. Charge-conjugation (C) operation, however, was first brought to light

by relativistic quantum theory prediction of anti-particles. This operation, which corre-

sponds to reversing all quantum numbers of a particle while keeping the mass unchanged,

has no classical analogue.

Experiment by Wu et al. [1] demonstrated parity violation in β decay of 60Co, and

the one by Goldhaber et al. [2] discovered C violation observing that neutrinos emitted

in electron capture by 157Eu were left-handed.

While C and P are maximally violated in weak interactions, there is no evidence

that they are also violated in strong and electromagnetic interactions. In all the inter-

actions, CP is conserved to a good approximation, and it was supposed to be an exact

symmetry until CP violation was firstly observed by Christenson et al. [3] in 1964 with

the discovery of the decay K0
L → ππ. CP violation was then suggested as one of the

indispensable ingredients of any mechanism leading to matter/anti-matter asymmetry in

our universe [4].

In the next few decades, the SM, which encapsulates the Cabibbo-Kobayashi-Maskawa [5]

mechanism of CPV through flavor-changing charge currents between three generations of

quarks, became established as the fundamental theory of particles and interactions. There

was no indication of CPV outside the kaon system until recently (2001), when the B fac-

tories met their first major milestone and observed the phenomena in B meson decays to

CP eigenstates containing charmonium, B0 → [cc̄]K0 [6, 7].
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1.2 CP Violation in Standard Model

The Standard Model of particle physics [8] is based on three fundamental properties:

1. three families of particles, each consisting of two quarks and two leptons, are the

building blocks for all matter: (
u
d

)(
c
s

)(
t
b

)
(1.1)(

νe

e−

)(
νμ

μ−

)(
ντ

τ−

)
(1.2)

2. the interactions of these particles are the expression of three local gauge symmetries

of nature: SU(3)C ⊗SU(2)L ⊗U(1)Y , where SU(3)C is the symmetry related to the

quantum number of strong interaction (Color), SU(2)L is the weak isospin symmetry

and U(1) is hypercharge Y symmetry;

3. interactions with a heavy scalar with a non-zero vacuum expectation value produces

mass on all of the particles and breaks the electro-weak gauge symmetry.

1.2.1 The CKM Picture of CP Violation

In the Standard Model (SM) [8] of SU(3)C ⊗SU(2)L ⊗U(1)Y gauge symmetry with three

fermion generations, CP violation arises from a single phase in the mixing matrix for

quarks [5]. Each quark generation consists of three multiplets:

QI
L =

(
U I

L

DI
L

)
= (3, 2)+1/6, uI

R = (3, 1)+2/3, dI
R = (3, 1)−1/3, (1.3)

where (3, 2)+1/6 denotes a triplet of SU(3)C , doublet of SU(2)L with hypercharge Y =

Q − T3 = +1/6, and similarly for the other representations. The interactions of quarks

with the SU(2)L gauge bosons are given by

LW = −1

2
gQI

Liγ
μτa1ijQ

I
LjW

a
μ , (1.4)

where γμ operates in Lorentz space, τa operates in SU(2)L space and 1 is the unit matrix

operating in generation (flavor) space. This unit matrix is written explicitly to make

the transformation to mass eigenbasis clearer. The interactions of quarks with the single

Higgs scalar doublet φ(1, 2)+1/2 of the Standard Model are given by

LY = −GijQI
LiφdI

Rj − FijQI
Liφ̃uI

Rj + hermitian conjugate, (1.5)
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where G and F are general complex 3 × 3 matrices. Their complex nature is the source

of CP violation in the Standard Model. With the spontaneous symmetry breaking,

SU(2)L ⊗ U(1)Y → U(1)EM due to 〈φ〉 �= 0, the two components of the quark dou-

blet become distinguishable, as are the three members of the W μ triplet. The charged

current interaction in (1.4) is given by

LW = −
√

1

2
guI

Liγ
μ1ijd

I
LjW

+
μ + h.c.. (1.6)

The mass terms that arise from the replacement �(φ0) →
√

1
2
(v + H0) in (1.5) are given

by

LM = −
√

1

2
vGijdI

Lid
I
Rj −

√
1

2
vFijuI

Liu
I
Rj + hermitian conjugate, (1.7)

namely

Md = Gv/
√

2, Mu = Fv/
√

2. (1.8)

The phase information is now contained in these mass matrices. To transform to the mass

eigenbasis, one defines four unitary matrices such that

VdLMdV
†
dR = Mdiag

d , VuLMuV
†
uR = Mdiag

u , (1.9)

where Mdiag
q are diagonal and real, while VqL and VqR are complex. The charged current

interactions (1.6) are given in the mass eigenbasis by

LW = −
√

1

2
guLiγ

μV̄ijdLjW
+
μ + h.c.. (1.10)

(Quark fields with no superscript denote mass eigenbasis.) The matrix V̄ = VuLV †
dL is the

(unitary) mixing matrix for three quark generations. As such, it generally depends on

nine parameters: three can be chosen as real angles (like the Cabibbo angle) and six are

phases. However, one may reduce the number of phases in V̄ by a transformation

V̄ =⇒ V = PuV̄ P ∗
d , (1.11)

where Pu and Pd are diagonal phase matrices. This is a legitimate transformation because

it amounts to redefining the phases of the quark-mass-eigenstate fields, as was discussed

earlier:

qLi → (Pq)iiqLi, qRi → (Pq)iiqRi, (1.12)
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which does not change the real diagonal mass matrix Mdiag
q . The five phase differences

among the elements of Pu and Pd can be chosen so that the transformation (1.11) elimi-

nates five of the six independent phases from V̄ ; thus V has one irremovable phase. This

phase is called the Kobayashi-Maskawa phase δKM, and the mixing matrix is called the

Cabibbo-Kobayashi-Maskawa (CKM) matrix [5]. It is interesting to note that the same

procedure applied to a two-generation Standard Model Lagrangian with a single Higgs

field would remove all CP -violating phases—that theory could not accommodate CP vi-

olation without the addition of extra fields. It was this observation that led Kobayashi

and Maskawa to suggest a third quark generation long before there was any experimental

evidence for it.

The irremovable phase in the CKM matrix allows possible CP violation. To see this,

we write the CP transformation laws on a Dirac spinor:

ψ̄iψj → ψ̄jψi, ψ̄iγ
μWμ(1 − γ5)ψj → ψ̄jγ

μWμ(1 − γ5)ψi. (1.13)

Thus the mass terms and gauge interactions are obviously CP -invariant if all the masses

and couplings are all real. In particular, consider the coupling of W± to quarks. It has

the form

gVijūiγμW
+μ(1 − γ5)dj + gV ∗

ijd̄jγμW−μ(1 − γ5)ui. (1.14)

The CP operation interchanges the two terms except that Vij and V ∗
ij are not interchanged.

Thus, CP is a good symmetry only if there is a mass basis and choice of phase convention

where all couplings and masses are real.

CP is not necessarily violated in the three generation Standard Model. If two quarks

of the same charge had equal masses, one mixing angle and the phase could be removed

from V . This can be written as a condition on quark mass differences: CP violation

requires

(m2
t − m2

c)(m
2
c − m2

u)(m
2
t − m2

u)(m
2
b − m2

s)(m
2
s − m2

d)(m
2
b − m2

d) �= 0. (1.15)

(The squared masses appear here because the sign of a fermion mass term is not physical.)

Likewise, if the value of any of the three mixing angles were 0 or π/2, then the phase

could be removed. Finally, CP would not be violated if the value of the single phase were

0 or π. These last eight conditions are elegantly incorporated into one, parameterization

independent, condition [9]. To find this condition, note that unitarity of the CKM matrix,
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V V † = 1, requires that for any choice of i, j, k, l = 1, 2, 3


[VijVklV
∗
il V

∗
kj] = J

3∑
m,n=1

εikmεjln. (1.16)

Then, the conditions on the mixing parameters are summarized by

J �= 0. (1.17)

The fourteen conditions incorporated in (1.15) and (1.17) can all be written as a single

requirement of the mass matrices in the interaction basis [9]:


{det[MdM
†
d , MuM

†
u]} �= 0 ⇔ CP violation. (1.18)

This is a convention independent condition. The quantity J is of much interest in the

study of CP violation from the CKM matrix. The maximum value that J could in

principle assume is 1/(6
√

3) ≈ 0.1, but it is found to be <∼ 4× 10−5, providing a concrete

meaning to the notion that CP violation in the Standard Model is small.

The fact that the three generation Standard Model with a single Higgs multiplet

contains only a single independent CP -violating phase makes the possible CP -violating

effects in this theory all very closely related. It is this that makes the pattern of CP

violations in B decays strongly constrained in this model. The goal of the B-factory is to

test whether this pattern occurs.

1.2.2 Unitarity of the CKM Matrix

The unitarity of the CKM matrix is manifest using an explicit parameterization. There

are various useful ways to parameterize it, but the standard choice is the following [10]:

V =

⎛
⎝ c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

⎞
⎠ (1.19)

where cij ≡ cos θij and sij ≡ sin θij . In this parameterization

J = c12c23c
2
13s12s23s13 sin δ. (1.20)

This shows explicitly the requirement that all mixing angles are different from 0, π/2 and

δ �= 0, π.
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The unitarity of the CKM matrix implies various relations among its elements. A full

list of these relations can be found in [11]. Three of them are very useful for understanding

the Standard Model predictions for CP violation:

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0, (1.21)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0, (1.22)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (1.23)

Each of these three relations requires the sum of three complex quantities to vanish and

so can be geometrically represented in the complex plane as a triangle. These are “the

unitarity triangles”; note that the term “Unitarity Triangle” is reserved for the relation

(1.23) only (for reasons soon to be understood).

Equation (1.16) has striking implications for the unitarity triangles:

1. All unitarity triangles are equal in area.

2. The area of each unitarity triangle equals |J |/2.

3. The sign of J gives the direction of the complex vectors.

The rescaled Unitarity Triangle (Fig. 1.1) is derived from (1.23) by (a) choosing a

phase convention such that (VcdV
∗
cb) is real, and (b) dividing the lengths of all sides by

|VcdV
∗
cb|; (a) aligns one side of the triangle with the real axis, and (b) makes the length of

this side 1. The form of the triangle is unchanged. Two vertices of the rescaled Unitarity

Triangle are thus fixed at (0,0) and (1,0). The coordinates of the remaining vertex are

denoted by (ρ, η). It is customary to express the CKM-matrix in terms of four Wolfenstein

parameters (λ, A, ρ, η) with λ = |Vus| = 0.22 playing the role of an expansion parameter

and η representing the CP -violating phase [12]:

V =

⎛
⎝ 1 − λ2

2
λ Aλ3(ρ − iη)

−λ 1 − λ2

2
Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

⎞
⎠+ O(λ4). (1.24)

λ is small, and for each element in V , the expansion parameter is actually λ2. Hence it

is sufficient to keep only the first few terms in this expansion. The relation between the

parameters of (1.19) and (1.24) is given by

s12 ≡ λ, s23 ≡ Aλ2, s13e
−iδ ≡ Aλ3(ρ − iη). (1.25)
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ρ
γ β

α

Aη

(b) 7204A5
7–92

1

VtdVtb
∗

|VcdVcb|∗
VudVub

∗

|VcdVcb|∗

VudVub
∗

VtdVtb
∗

VcdVcb
∗

α

β

γ

0
0

(a)

Figure 1.1: The Unitarity Triangle (a) and the rescaled Unitarity Triangle, all sides divided
by V ∗

cbVcd (b)

This specifies the higher order terms in (1.24).

The definition of (λ, A, ρ, η) given in (1.25) is useful because it allows an elegant

improvement of the accuracy of the original Wolfenstein parameterization. In particular,

defining

Vus = λ, Vcb = Aλ2, Vub = Aλ3(ρ − iη), (1.26)

one can then write

Vtd = Aλ3(1 − ρ̄ − iη̄), (1.27)


Vcd = −A2λ5η, 
Vts = −Aλ4η, (1.28)

where

ρ̄ = ρ(1 − λ2/2), η̄ = η(1 − λ2/2), (1.29)
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turn out to be excellent approximations to the exact expressions [13]. Depicting the

rescaled Unitarity Triangle in the (ρ̄, η̄) plane, the lengths of the two complex sides are

Rb ≡
√

ρ̄2 + η̄2 =
1 − λ2/2

λ

∣∣∣∣Vub

Vcb

∣∣∣∣ , Rt ≡
√

(1 − ρ̄)2 + η̄2 =
1

λ

∣∣∣∣Vtd

Vcb

∣∣∣∣ . (1.30)

The three angles of the Unitarity Triangle are denoted by α, β and γ [14]:

α ≡ arg

[
− VtdV

∗
tb

VudV ∗
ub

]
, β ≡ arg

[
−VcdV

∗
cb

VtdV ∗
tb

]
, (1.31)

The third angle is then

γ ≡ arg

[
−VudV

∗
ub

VcdV
∗
cb

]
≡ π − α − β. (1.32)

These are physical quantities and, as discussed below, can be measured by CP asymmetries

in various B decays. The consistency of the various measurements provide tests of the

Standard model.

The angle β gives, to a good approximation, the Standard Model phase between the

neutral B mixing amplitude and its leading decay amplitudes.

1.3 CP Violation Phenomenology

We have described how CP violation is produced in the Standard Model; in the following

we describe how CP violation phenomena can be observed in decays of mesons.

1.3.1 Direct CP Violation

Consider the transition from the states i and ī to final states f and f̄ with only one

amplitude contributing:

〈f |T |i〉 = Aei(δ+φ),

〈f̄ |T |̄i〉 = Aei(δ−φ),

where T is the transition operator and A is a positive real number. The CP -even phase

that is common to both decays, δ, is referred to as a strong phase, and the CP -odd phase

that changes signs, φ, is referred to as a weak phase. The CP operator relates the CP

conjugate states by inducing arbitrary phases:

CP |i〉 = eiηi |̄i〉 , CP |̄i〉 = e−iηi |i〉

CP |f〉 = eiηf |f̄〉 , CP |f̄〉 = e−iηf |f〉. (1.33)
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If CP is conserved by T ,

〈f |T |i〉 = 〈f |(CP )T (CP )†|i〉 = ei(ηi−ηf )〈f̄ |T |̄i〉

Choosing ηi−ηf = 2φ−θ, we see that despite the presence of the CP violating phase φ in

this transition, the observable amplitudes are incapable of indicating any CP violation in

T . CP violation is observable in transitions with two strong and weak phase contributions.

Consider

〈f |T |i〉 = A1e
i(δ1+φ1) + A2e

i(δ2+φ2),

〈f̄ |T |̄i〉 = A1e
i(δ1−φ1+θ) + A2e

i(δ2−φ2+θ).

Here the presence of interference between the two amplitudes allows the construction of

the CP violating observable

|〈f |T |i〉|2 − |〈f̄ |T |̄i〉|2 = −4A1A2 sin(δ1 − δ2) sin(φ1 − φ2). (1.34)

Note however, that in order to obtain CP violation, at least two differing strong and weak

phases are necessary. Such expression of CP violation is known as direct CP violation.

It is possible to obtain CP violating observables without strong phases when considering

decays to two different final states, or when i and ī decay to the same final state f = f̄ .

We will consider this latter case in the discussions that follow.

1.3.2 Neutral B Mesons

In the absence of the weak interaction, a P 0 meson such as K0, D0, or B0 would be

stable and have a common mass with P̄ 0 . Weak transitions, however, permit P 0 ↔ P̄ 0

mixing, forming mass/lifetime eigenstates which are a mixture of the flavor eigenstates.

Under the Wigner-Weisskopf approximation [15], the Schroedinger equation for the time

evolution and decay of the meson system:

|ψ(t)〉 = ψ1(t)|P 0〉 + ψ2(t)|P̄ 0〉

may be written in the |P 0〉/|P̄ 0〉 basis as

i
d

dt

(
ψ1

ψ2

)
= H

(
ψ1

ψ2

)
= (M− i

2
Γ)

(
ψ1

ψ2

)
. (1.35)
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where M and Γ are 2×2 Hermitian matrices. CPT invariance guarantees H11 = H22.

The light PL and heavy PH mass eigenstates are given by

|PL〉 = p|P 0〉 + q|P̄ 0〉,

|PH〉 = p|P 0〉 − q|P̄ 0〉. (1.36)

The complex coefficients p and q obey the normalization condition

|q|2 + |p|2 = 1. (1.37)

Note that arg(q/p∗) is just an overall common phase for |PL〉 and |PH〉 and has no physical

significance.

The mass difference ΔmP and width difference ΔΓP between the neutral P 0 mesons

are defined as follows:

ΔmP ≡ MH − ML, ΔΓP ≡ ΓH − ΓL, (1.38)

so that ΔmP is positive by definition. Finding the eigenvalues of Eq. 1.35, one gets

(ΔmP )2 − 1

4
(ΔΓP )2 = 4(|M12|2 −

1

4
|Γ12|2), (1.39)

ΔmP ΔΓP = 4�(M12Γ
∗
12). (1.40)

The ratio q/p is given by

q

p
= −

ΔmP − i
2
ΔΓP

2(M12 − i
2
Γ12)

= −
2(M∗

12 − i
2
Γ∗

12)

ΔmP − i
2
ΔΓP

, (1.41)

Using

CP |P 0〉 = eiη|P̄ 0〉,

CP |P̄ 0〉 = e−iη|P 0〉,

we find that CP is conserved when

p

q
= ±eiη ⇒

∣∣∣∣pq
∣∣∣∣ = 1. (1.42)

As expected, this condition shows that CP invariance implies that |PL〉 and |PH〉 are

CP eigenstates. Failure of this condition indicates CP violation in mixing or indirect CP

violation.
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1.3.3 CP Violating Observables

Consider the decay of the P 0/P̄ 0 meson to final states f/f̄ :

Af ≡ 〈f |T |P 0〉 , Āf ≡ 〈f |T |P̄ 0〉,

Af̄ ≡ 〈f̄ |T |P 0〉 , Āf̄ ≡ 〈f̄ |T |P̄ 0〉,

Applying 1.33 and 1.42 to these amplitudes leads to the CP -invariance conditions:

Āf̄ = ei(ηf−η)Af ⇒ |Af | = |Āf̄ |, (1.43)

Af̄ = ei(ηf +η)Āf ⇒ |Af̄ | = |Āf |. (1.44)

As expected, the decay probabilities for P 0 to f and P̄ 0 to f̄ must be the same to conserve

CP . Deviation from these conditions signifies CP violation in decay. We may construct

a more concise CP conservation requirement by combining the individual conditions for

mixing and decay. Taking the ratio of the conditions 1.43 and 1.44 we find

AfAf̄

Āf Āf̄

= e2iη =
q2

p2
. (1.45)

Defining

λf ≡ q

p

Āf

Af

, λf̄ ≡ q

p

Āf̄

Af̄

, (1.46)

allows Eq. 1.45 to be written more simply as

λ =
1

λf̄

(1.47)

This condition encapsulates another possible expression of CP violation. In order to

illustrate, let us consider the simplified case when P 0 and P̄ 0 decay to a CP eigenstate

(i.e. CP |f〉 = ηfCP
|f〉, ηfCP

= ±1), and there is no CP violation in mixing or decay:

Af = Aei(δ+φD), Āf = ηfCP
Aei(δ−φD) ⇒ |Af | = |Āf |, (1.48)

q/p = e2iφM ⇒ |q/p| = 1. (1.49)

we have introduced a strong phase but we have used different mixing and decay weak

phases φM and φD . In this case, λf = ηfCP
e2i(φM−φD). However, since f = f̄ , λf = λf̄ ,

and Eq. 1.47 becomes

λf = ±1 = ηfCP
e2i(φM−φD), (1.50)
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and a less apparent expression of CP violation is revealed: CP violation in interference

between mixing and decay. In the case of meson decays to CP eigenstates, λ �= ±1 for

any of the three types of CP violation: CP violation in mixing, |q/p| �= 1; CP violation

in decay, |Āf/Af | �= 1; and CP violation in interference between mixing and decay, non-

vanishing relative phase between q/p and Āf/Af . In the next section we will see how λf

appears in the time-evolution of neutral mesons, specifically focusing on the B0. We will

also see how λf is directly related to CKM parameters for specific B decays.

1.4 Time Evolution of Neutral Bd Mesons

BABAR at PEP-II is a B-factory, i.e. an experiment where a large number of B mesons pairs

are produced through the process e+e− → Υ (4S) → BB. To a very good approximation

half of these pairs are the neutral B0/B0 [23]. Studies of the decay of these mesons to

CP eigenstates provides a mean of measuring angles of the unitarity triangle.

After production, a solitary B0 (or B0) will evolve according to the Schroedinger

equation 1.35. Before decaying, the meson may change its flavor several times through

the box diagrams in Fig. 1.2. The time-dependent mass eigenstates

Figure 1.2: The leading diagrams contributing to B0 − B0 mixing.
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|BL(t)〉 = e−mLte−ΓLt/2|BL〉

|BH(t)〉 = e−mH te−ΓH t/2|BH〉

are related to flavour eigenstates through Eq. 1.36. Therefore

|B0(t)〉 =
(
e−(imH+ΓH/2)t + e−(imL+ΓL/2)t

)
|B0〉 +

q

p

(
e−(imH+ΓH/2)t − e−(imL+ΓL/2)t

)
|B0〉, (1.51)

|B0(t)〉 =
q

p

(
e−(imH+ΓH/2)t − e−(imL+ΓL/2)t

)
|B0〉 +(

e−(imH+ΓH/2)t + e−(imL+ΓL/2)t
)
|B0〉. (1.52)

Υ (4S) [55] decay, however, produces two neutral B mesons in a coherent anti-symmetric

state. This two meson system will consist of one B of each flavor until one particle decays.

From that time on, the remaining B will obey Eq. 1.51 until its decay. If one meson decays

to a CP eigenstate, there is no means of identifying its flavor. We will refer to this meson

as BCP with decay time tCP . However, since at time of the first decay only one meson

of each flavor was present, the flavor of BCP may be inferred from the other meson. We

will refer to this meson as Btag with decay time ttag . Identifying Δt = tCP − ttag = 0 as

t = 0 in Eq. 1.51, the probabilities of the two observable anti-symmetric states (i.e. when

Btag is a B0 or B0) are

ΓB0(Δt) =
1

2
|〈f |T |B0(t = tCP )〉〈B0(t = ttag)|B0(t = ttag)〉 −

〈f |T |B0(t = tCP )〉〈B0(t = ttag)|B0(t = ttag)〉|2

=
e−

|Δt|
τ

4τ
(1 + Sf sin(ΔmdΔt) − Cf cos(ΔmdΔt)), (1.53)

ΓB0(Δt) =
1

2
|〈f |T |B0(t = tCP )〉〈B0(t = ttag)|B0(t = ttag)〉 −

〈f |T |B0(t = tCP )〉〈B0(t = ttag)|B0(t = ttag)〉|2

=
e−

|Δt|
τ

4τ
(1 − Sf sin(ΔmdΔt) + Cf cos(ΔmdΔt)), (1.54)

where Δmd is the mass difference between BL and BH and the lifetime difference is

assumed to be negligible. Here

Sf =
2
λf

1 + |λf |2
, (1.55)

Cf =
1 − |λf |2
1 + |λf |2

. (1.56)
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where

λf = ηCP
p

q

Āf

Af
(1.57)

and A = |〈f |T |B0〉|, Ā = |〈f |T |B0〉|, and ηCP is the CP eigenvalue of the final state.

1.4.1 Relating CP Violation to CKM Matrix

In general, the SM amplitudes for B decays may carry contributions from multiple Feyn-

man diagrams, each carrying different CKM matrix elements. Therefore the amplitude

ratio in λf is of the form:

Ā

Af

=
Aα

f eiα + Aβ
feiβ + Aγ

fe
iγ + . . .

Aα
f e−iα + Aβ

fe−iβ + Aγ
fe

−iγ + . . .
. (1.58)

If all of the amplitudes contributing to A and Ā could be calculated for a given decay, λf

relation to CKM matrix elements and unitary triangle angles would be easy to identify.

Unfortunately calculating amplitudes for hadronic B decays is rather complex. Though

the short distance processes governed by the weak interaction and hard QCD can be

cleanly calculated, long distance processes like hadronization and rescattering are difficult.

Decays dominated by one phase require no hadronic calculation. As an example, consider

the leading diagrams for the decay B → J/ψK0 presented in Fig. 1.3. To highest order

Figure 1.3: The leading diagrams contributing to B0 → J/ψK0 decays. Left: “tree”
diagram; right: “penguin” diagram.

in the Wolfenstein parameter λ, the so-called “tree” level diagram containing the factors

VcbV
∗
cs ≈ λ2 and the leading loop diagram, known as “penguin” diagram, containing the
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factor VtbV
∗
ts ≈ λ2 + O(λ4)e−iγ carry the same CKM phase [16]. Therefore

λJ/ψK0 = −VtdV
∗
tb

VtbV ∗
td

VcbV
∗
cs

VcsV ∗
cb

VcsV
∗
cd

VcdV ∗
cs

⇒ 
λJ/ψK0 = sin 2β, (1.59)

where the first term is q/p (from diagrams in Fig. 1.3), the last term comes from K0−K0

mixing, and the middle term is Ā/A. Since λJ/ψK0 is so cleanly related to the angle β,

this decay of the B meson is often referred to as “the gold-plated mode”.

1.4.2 CP Violation in Two-body B0 → φK0 in Standard Model

Due to the absence of the Flavour Changing Neutral Currents (FCNC) at tree level in

the Standard Model, the decay B0 → φK0 proceeds entirely through b → s gluonic

penguin diagrams (Fig. 1.4). Consequently, they are Cabibbo suppressed with respect to

B0 → J/ψK0.

(a) (b)

u,d

b s
_ _

s

s
_

W+

u,c,t
_ _ _

B
K

φ

u,d

b d,s
_ __

s

s
_

W+

u,c,t
_ _ _

B π,K

φ

Figure 1.4: Examples of quark level diagrams for B → φK and B → φπ. (a) Internal
penguin diagram; (b) flavor singlet penguin diagram.

The interest in these decays stays in the fact that, while in the tree diagrams only

real particles can enter, in the loop of a penguin amplitude all the virtual particles which

can couple to b and s quarks may enter. In the Standard Model, this happens through

weak interactions with quark u, c and t. In extensions of such a model other particles

can couple with them, these contributions entering the amplitude at the leading order.

We will discuss these effects beyond Standard Model in Chapter 9.

In the Standard Model, assuming φ = (ss̄), the decay amplitude is given by:

A(B0
d → φK0) = VcsV

∗
cb(Pc − Pt) + VusV

∗
ub(Pu − Pt) , (1.60)
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where Pi with i = u, c, t denotes penguin diagram contributions with internal u, c and t

quarks. With ∣∣∣∣VusV
∗
ub

VcsV ∗
cb

∣∣∣∣ ≤ 0.02,
Pu − Pt

Pc − Pt

= O(1) (1.61)

also in this decay a single CKM phase dominates and as the decay phase φD and the

mixing phase φM are the same as in B0 → J/ψK0 we find

CφKS
= 0, SφKS

= SψKS
= sin 2β . (1.62)

The equality of these two asymmetries need not be perfect as the φ meson is not entirely

a ss̄ state and the approximation of neglecting the second amplitude in (1.60) could be

only true within a few percent. However, a detailed analysis shows [17] that these two

asymmetries should be very close to each other within the SM: |SφK0 − SJ/ψK0 | ≤ 0.04 .

Any strong violation of this bound would be a signal for new physics.

In view of this prediction, the first results on this asymmetry from BABAR [18] and

Belle [19] were truly exciting:

(sin 2β)φKS
=

{
−0.19 ± 0.51 (stat) ± 0.09 (syst) (BaBar)
−0.73 ± 0.64 (stat) ± 0.18 (syst) (Belle),

implying

SφKs = −0.39 ± 0.41, CφKs = 0.56 ± 0.43, (1.63)

|SφKS
− SJ/ψKS

| = 1.12 ± 0.41 (1.64)

and the violation of the bound |SφKS
− SJ/ψKS

| ≤ 0.04 by 2.7σ. These results invited a

number of theorists to speculate what kind of new physics could be responsible for this

difference. Some references are given in [20]. Enhanced QCD penguins, enhanced Z0 pen-

guins, rather involved supersymmetric scenarios have been suggested as possible origins

of the departure from the SM prediction. Unfortunately the new data presented at the

2004 summer conferences by both collaborations look much closer to the SM predictions

(sin 2β)φKS
=

{
0.50 ± 0.25 (stat) ± 0.06 (syst) (BaBar)
0.06 ± 0.33 (stat) ± 0.09 (syst) (Belle),

implying

SφKs = 0.34 ± 0.20, CφKs = −0.04 ± 0.17. (1.65)

As can be seen, the fact that this is a rare decay implies that the statistical uncertainty

is very large. For these reasons the interest moves to the decays of the B meson in three
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body final states, which usually have a larger branching fraction with respect two-body

B decays.

In particular, we will concentrate on the decays of the B0 into three kaons: B0 →
K+K−K0 and B0 → K0

S
K0

S
K0

S
. The first one includes the mentioned B0 → φK0, because

the φ meson decays instantaneously in a pair K+K− inside the detector. It will be studied

with a completely new approach with respect to the past: a Dalitz plot technique of the

whole three kaon phase-space.

The second one has become feasible thanks an experimental technique of the decay

vertex reconstruction only recently developed.

1.5 CP Eigenvalues for KKK Final States

In the case of three-body B decays, the CP eigenstate cannot be always determined.

There are two main scenarios in which this is feasible, thus allowing a clean interpretation

of measured CP violation parameters:

1. B → QQ̄P , where Q = (K+, π+) and P = (π0, K0
S , K0

L);

2. B → PPX, where P, X = (π0, K0
S , K0

L).

In this work, we will consider B0 → K+K−K0 for the Type 1 decays and on B0 →
K0

S
K0

S
K0

S
for the Type 2 decays.

Let us consider as example of Type 1 B0 → K+K−K0 decays. We can write the final

state as

|K+(p1)K
−(p2)K

0(p3)〉 (1.66)

where p1, p2 and p3 are the momenta of the three kaons. In the rest frame of the K+K−

mesons pair, p1 = p = −p2. The final state can be characterized by means of the angular

momentum between the K+ and the K− (l) and the angular momentum of the K+K−

system and the K0
S

(l′). The conservation of angular momentum in the decay implies

JB0 = l ⊕ l′ ⊕ SK+ ⊕ SK− ⊕ SK0 (1.67)

and, since the B0,K+,K− and K0 are pseudoscalar mesons (JP = 0−), the intrinsic

angular momentum is zero, then the Eq. 1.67 becomes simply

0 = l ⊕ l′. (1.68)
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Therefore, the angular momentum between the K+K− system and K0 (l′) must be equal

to l. Applying the parity operation P to the final state

P |K+(p)K−(−p)K0
S
(p′) = −1|K+(p)K−(−p)K0

S
(p′)〉 (1.69)

because the intrinsic parity of a pseudoscalar meson is -1. Applying the charge conjugation

C

C|K+(p)K−(−p)K0
S(p′)〉 = ηc(K

0
S)|K−(p)K+(−p)K0

S(p′)〉 =

ηc(K
0
S)(−1)l|K+(p)K−(−p)K0

S(p′)〉 = (−1)l+1|K+(p)K−(−p)K0
S(p′)〉 (1.70)

where ηc(K
0
S
) is the C eigenvalue of the K0

S
.

Finally applying the combination of C and P on the final state

CP|K+(p)K−(−p)K0
S
(p′)〉 = (−1)l|K+(p)K−(−p)K0

S
(p′)〉 (1.71)

then this is a CP eigenstate which has an eigenvalue which depends on the relative angular

momentum between the K+ and K−. This makes necessary a complete angular analysis

to interpret the CP violation parameters in terms of CKM parameters (β and direct CP

violation). We will achieve this purpose through a full Dalitz plot analysis performed

simultaneously to the CP violation measurement.

A more fortunate case is the one of Type 2 decays. We will consider the case of

B0 → K0
S
K0

S
K0

S
which we will measure in Chapter 7. In this case in fact the final state

we consider is

|K0
S
(p)K0

S
(−p)K0

S
(p′)〉 (1.72)

where the K0
S

are spin zero mesons, then they follow the Bose-Einstein statistics, thus the

K0
S
K0

S
wave-function must be symmetric, and hence the angular momentum l between

the two K0
S

must be even. This implies that Eq. 1.71 in this case reads:

CP|K0
S
(p)K0

S
(−p)K0

S
(p′)〉 = +|K0

S
(p)K0

S
(−p)K0

S
(p′)〉. (1.73)

Then K0
SK0

SK0
S is a CP eigenstate with a definite eigenvalue (CP even). In this case, an

angular analysis is not needed, and the measurement can be performed like in the case of

two body decays (as in B0 → J/ψK0
S). However, measurement of CP violation for such

decays is challenging for experimental reasons which will be explained in Sec. 2.3.



22 CP Violation in B Decays

1.6 Formalism for Charmless Three-body B Decays

A complete understanding of B physics requires the evaluation of the matrix elements

of the amplitude. In the case of charmless B decays, the quarks in the final states are

light, so the calculation techniques using the Heavy Quark Expansion Theory (HQET) [24]

cannot be used. In this case a more appropriate approach to estimate decay amplitudes is

QCD factorization, even if it is really a good approximation in the limit of mb → ∞. Said

this, the factorization approach results a suitable approximation in the case of charmless

three-body B decays, even with the caveat that some non factorizable effect due to the

validity of the limit can make possible deviations from its prediction.

In this approach, the matrix element of the B̄ → K̄K̄K decay amplitude is given by

〈K KK|Heff |B〉 =
GF√

2

∑
p=u,c

λp〈K KK|Tp|B〉, (1.74)

where λp ≡ VpbV
∗
ps and [25]

Tp = a1δpu(ūb)V −A ⊗ (s̄u)V −A + a2δpu(s̄b)V −A ⊗ (ūu)V −A + a3(s̄b)V −A ⊗
∑

q

(q̄q)V −A

+ap
4

∑
q

(q̄b)V −A ⊗ (s̄q)V −A + a5(s̄b)V −A ⊗
∑

q

(q̄q)V +A

−2ap
6

∑
q

(q̄b)S−P ⊗ (s̄q)S+P + a7(s̄b)V −A ⊗
∑

q

3

2
eq(q̄q)V +A

−2ap
8

∑
q

(q̄b)S−P ⊗ 3

2
eq(s̄q)S+P + a9(s̄b)V −A ⊗

∑
q

3

2
eq(q̄q)V −A

+ap
10

∑
q

(q̄b)V −A ⊗ 3

2
eq(s̄q)V −A, (1.75)

with (q̄q′)V ±A ≡ q̄γμ(1 ± γ5)q
′, (q̄q′)S±P ≡ q̄(1 ± γ5)q

′ and a summation over q = u, d, s

being implied. The factorization approach consists in the fact that the matrix element

〈K KK|j ⊗ j′|B〉 corresponds to 〈KK|j|B〉〈K|j′|0〉 (i.e. the product of the transition of

B → KK and the -independent- creation of a K by the vacuum), 〈K|j|B〉〈KK|j′|0〉 (i.e.

the product of the transition of B → K and the creation of the KK by the vacuum) or

〈0|j|B〉〈K KK|j′|0〉 (i.e. the creation of KKK by the vacuum), as appropriate, and ai are

the next-to-leading order effective Wilson coefficients. The Wilson coefficients depends on

the renormalization scale μ and are calculable perturbatively (while the non-perturbative

effects are inside the operators). The normalization scale used is μ = mb/2 = 2.1 GeV/c2.
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1.6.1 B0 → K+K−K0 Decay Amplitude

Applying Eqs. (1.74), (1.75) and the equation of motion, one can evaluate the B0 →
K+K−K0 decay amplitude [26].

In the factorization terms, the KK pair can be produced through a transition from

the B meson or can be created from vacuum through V and S operators. There exist

two weak annihilation contributions, where the B meson is annihilated and a final state

with three kaons is created. The Okubo-Zweig-Iizuka rule suppressed matrix element

〈K+K−|(d̄d)V −A|0〉 is included in the factorization amplitude since it could be enhanced

through the long-distance pole contributions via the intermediate vector mesons.

To evaluate the amplitude, one needs to consider the B → KK, 0 → KK and

0 → K KK matrix elements, the so-called two-meson transition, two-meson and three-

meson creation matrix elements in addition to the usual one-meson transition and creation

ones.

Two-kaon Transition

The two-kaon transition matrix element 〈K0K+|(ūb)V −A|B0〉 has the general expres-

sion [27]

〈K0(p1)K
+(p2)|(ūb)V −A|B0〉 = ir(pB − p1 − p2)μ + iω+(p2 + p1)μ + iω−(p2 − p1)μ

+h εμναβpν
B(p2 + p1)

α(p2 − p1)
β. (1.76)

where r, ω± and h are form factors which can receive both resonant and non-resonant

contributions, which can be evaluated using the Heavy Meson Chiral Perturbation Theory

(HMChPT) [27]. This leads to

〈K−(p3)|(s̄u)V −A|0〉〈K0(p1)K
+(p2)|(ūb)V −A|B0〉

= −fK

2

[
2m2

3r + (m2
B − s12 − m2

3)ω+ + (s23 − s13 − m2
2 + m2

1)ω−
]
, (1.77)

where sij ≡ (pi + pj)
2, and fk is the kaon decay constant.

Three-kaon Creation

The matrix elements involving 3-kaon creation are given by [28]

〈K0(p1)K
+(p2)K

−(p3)|(s̄d)V −A|0〉〈0|(d̄b)V −A|B0〉 ≈ 0, (1.78)

〈K0(p1)K
+(p2)K

−(p3)|s̄γ5d|0〉〈0|d̄γ5b|B0〉 = v
fBm2

B

fπmb

(
1 − s13 − m2

1 − m2
3

m2
B − m2

K

)
F KKK(m2

B),
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where

v =
m2

K+

mu + ms
=

m2
K − m2

π

ms − md
, (1.79)

characterizes the quark-order parameter 〈q̄q〉 which spontaneously breaks the chiral sym-

metry. Both relations in Eq. (1.78) are originally derived in the chiral limit [28] and hence

the quark masses appearing in Eq. (1.79) are referred to the scale ∼ 1 GeV . The first

relation reflects helicity suppression which is expected to be even more effective for ener-

getic kaons. For the second relation, the form factor F KKK is introduced to extrapolate

the chiral result to the physical region.

Two-kaon Creation

We now turn to the 2-kaon creation matrix element which can be expressed in terms of

time-like kaon current form factors as

〈K+(pK+)K−(pK−)|q̄γμq|0〉 = (pK+ − pK−)μF K+K−
q ,

〈K0(pK0)K
0
(pK̄0)|q̄γμq|0〉 = (pK0 − pK̄0)μF

K0K̄0

q . (1.80)

The weak vector form factors F K+K−
q and F K0K̄0

q can be related to the kaon electro-

magnetic (e.m.) form factors F K+K−
em and F K0K̄0

em for the charged and neutral kaons, re-

spectively. Phenomenologically, the e.m. form factors receive resonant and non-resonant

contributions and can be expressed by

F K+K−
em = Fρ + Fω + Fφ + FNR, F K0K̄0

em = −Fρ + Fω + Fφ + F ′
NR. (1.81)

It follows from Eqs. (1.80) and (1.81) that

F K+K−
u = F K0K̄0

d = Fρ + 3Fω +
1

3
(3FNR − F ′

NR),

F K+K−
d = F K0K̄0

u = −Fρ + 3Fω,

F K+K−
s = F K0K̄0

s = −3Fφ − 1

3
(3FNR + 2F ′

NR), (1.82)

where use of isospin symmetry has been made.

The form factors Fρ,ω,φ in Eqs. (1.81) and (1.82) include the contributions from the

vector mesons ρ(770), ρ(1450), ρ(1700), ω(782), ω(1420), ω(1650), φ(1020) and φ(1680).
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Two-kaon Scalar Contribution

We also need to specify the 2-body matrix element 〈K+K−|s̄s|0〉 induced from the scalar

density. It receives resonant and non-resonant contributions:

〈K+(p2)K
−(p3)|s̄s|0〉 ≡ fK+K−

s (s23) =
∑

i

mif̄ig
i→KK

m2
i − s23 − imiΓi

+ fNR
s ,

fNR
s =

v

3
(3FNR + 2F ′

NR) + v
σ

s2
23

[
ln

(
s23

Λ̃2

)]−1

, (1.83)

where the scalar decay constant f̃i is defined in 〈i|s̄s|0〉 = mif̄i, gi→KK is the i → KK

strong coupling, and the non-resonant terms are related to those in F K+K−
s through

the equation of motion. The main scalar meson pole contributions are those that have

dominant ss̄ content and large coupling to KK. It is found in [29] that among the f0

mesons, only f0(980) and f0(1530) have the largest couplings with the KK pair. Note

that f0(1530) is a very broad state with the width of order 1 GeV/c2 [29].

Amplitude for B0 → K+K−K0

Collecting all the relevant matrix elements evaluated above, we are ready to compute

the amplitude A(B0 → KS(L)K
+K−) = ±A(B0 → K0K+K−)/

√
2. Since under CP -

conjugation we have KS(�p1) → KS(−�p1), K+(�p2) → K−(−�p2) and K−(�p3) → K+(−�p3),

the B0 → KSK+K− amplitude can be decomposed into CP -odd and CP -even components

A[B0 → KS(p1)K
+(p2)K

−(p3)] = A(s12, s13, s23) = ACP− + ACP+,

ACP± =
1

2
[A(s12, s13, s23) ± A(s13, s12, s23)]. (1.84)

Correspondingly, we have

Γ = ΓCP+ + ΓCP−,

ΓCP± =
1

(2π)3

1

32m3
B

∫
|ACP±|2ds12ds13 =

1

(2π)3

1

32m3
B

∫
|ACP±|2ds12ds23.(1.85)

The vanishing cross terms due to the interference between CP -odd and CP -even compo-

nents can be easily seen from the (anti)symmetric properties of the amplitude and the

integration variables under the interchange of s12 ↔ s13. Similar relations hold for the

conjugated B0 decay rate Γ̄. The CP -even fraction f+ is defined by

f+ ≡ ΓCP+ + ΓCP+

Γ + Γ

∣∣∣∣
φKS excluded.

(1.86)
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Note that results for the K+K−KL mode are identical to the K+K−KS ones with the CP

eigenstates interchanged. For example, results for (K+K−KL)CP+ are the same as those

for (K+K−KS)CP− and hence f+ in K+K−KS corresponds to f− in K+K−KL.

1.6.2 B0 → K0
S
K0

S
K0

S
Decay Amplitude

In an analogous way, the decay amplitudes of B0 → K0
S
K0

S
K0

S
decays can be evaluated:

A[B0 → KS(p1)KS(p2)KS,L(p3)] =

(
1

2

)3/2{
± A[B0 → K0(p1)K

0(p2)K
0(p3)]

±A[B0 → K0(p2)K
0(p3)K

0(p1)]

+A[B0 → K0(p3)K
0(p1)K

0(p2)]

}
, (1.87)

with

A[B0 → K0(p1)K
0(p2)K

0(p3)] =
GF√

2

∑
p=u,c

λp

{[
〈K0(p1)K

0(p2)|(d̄b)V −A|B0〉〈K0(p3)|(s̄d)V −A|0〉

+〈K0(p1)K
0(p3)|(d̄b)V −A|B0〉〈K0(p2)|(s̄d)V −A|0〉

]
×
(
ap

4 +
1

2
ap

10 − (ap
6 −

1

2
ap

8)rχ

)
+
[
〈K0(p2)|s̄b|B0〉〈K0(p1)K

0(p3)|s̄s|0〉

+〈K0(p3)|s̄b|B0〉〈K0(p1)K
0(p2)|s̄s|0〉

]
(−2ap

6 + ap
8)

+〈K0(p1)K
0(p2)K

0(p3)|s̄γ5d|0〉〈0|d̄γ5b|B0〉(−2ap
6 + ap

8)

+
[
〈K0(p2)|(s̄b)V −A|B0〉〈K0(p1)K

0(p3)|(s̄s)V −A|0〉

+〈K0(p3)|(s̄b)V −A|B0〉〈K0(p1)K
0(p2)|(s̄s)V −A|0〉

]

×
[
a3 + ap

4 + a5 −
1

2
(a7 + a9 + a10)

]}
, (1.88)

where the last term will not contribute to the purely CP -even decay B0 → KSKSKS.

Decay rates for the KSKSKS and KSKSKL modes can be obtained from Eq. (1.85) with

an additional factor of 1/3! and 1/2!, respectively, for identical particles in the final state.



1.6 Formalism for Charmless Three-body B Decays 27

1.6.3 CP Asymmetries

We now consider the CP asymmetries for B0 → K+K−KS(L), KSKSKS(L) decays. The

direct CP asymmetry and the mixing induced CP violation are defined by

AKKK =
Γ − Γ

Γ + Γ

=

∫
|A|2ds12ds23 −

∫
|Ā|2ds12ds23∫

|A|2ds12ds23 +
∫
|Ā|2ds12ds23

,

SKKK,CP± =
2
∫

Im(e−2iβACP±Ā∗
CP±)ds12ds23∫

|ACP±|2ds12ds23 +
∫
|ĀCP±|2ds12ds23

,

SKKK =
2
∫

Im(e−2iβAĀ∗)ds12ds23∫
|A|2ds12ds23 +

∫
|Ā|2ds12ds23

= f+ SKKK,CP+ + (1 − f+) SKKK,CP−, (1.89)

where Ā is the decay amplitude of B0 → K+K−KS(L) or KSKSKS(L). For the K+K−KS

mode, it is understood that the contribution from φKS is excluded. It is expected in

the SM that SKKK,CP+ ≡ sin 2βeff ≈ sin 2β, SKKK,CP− ≈ − sin 2β and hence SKKK ≈
−(2f+ − 1) sin 2β.1

The numerical expectation values for the CP asymmetries are shown in Table 1.1 [26].

Final State sin 2βeff

(K+K−KS)φKS excluded 0.749+0.080+0.024+0.004
−0.013−0.011−0.015

(K+K−KS)CP+ 0.770+0.113+0.040+0.002
−0.031−0.023−0.013

(K+K−KL)φKL excluded 0.749+0.080+0.024+0.004
−0.013−0.011−0.015

KSKSKS 0.748+0.000+0.000+0.007
−0.000−0.000−0.018

KSKSKL 0.748+0.001+0.000+0.007
−0.001−0.000−0.018

Af(%)
(K+K−KS)φKS excluded 0.16+0.95+0.29+0.01

−0.11−0.32−0.02

(K+K−KS)CP+ −0.09+0.73+0.16+0.01
−0.00−0.27−0.01

(K+K−KL)φKL excluded 0.16+0.95+0.29+0.01
−0.11−0.32−0.02

KSKSKS 0.74+0.02+0.00+0.05
−0.06−0.01−0.06

KSKSKL 0.77+0.12+0.08+0.06
−0.28−0.11−0.07

Table 1.1: Mixing-induced and direct CP asymmetries sin 2βeff (top) and Af (in %, bot-
tom), respectively, in B0 → K+K−KS and KSKSKS decays. Results for (K+K−KL)CP±
are identical to those for (K+K−KS)CP∓.

The K+K− mass spectra of the B0 → K+K−KS decay from CP -even and CP -odd

contributions are shown in Fig. 1.5. In the spectra, there are peaks at the threshold and a

1Writing the CP -conjugated decay amplitude as Ā = ĀCP+ + ĀCP−, we have ĀCP± = ±ACP± with
λp → λ∗

p. This leads to SKKK,CP− ≈ −SKKK,CP+.
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Figure 1.5: The K+K− mass spectra for B0 → K+K−KS decay from (a) CP -even and (b)
CP -odd contributions. The insert in (b) is for the φ region. Results for (K+K−KL)CP± are
identical to those for (K+K−KS)CP∓.

milder one in the large mK+K− region. For the CP -even part, the threshold enhancement

arises from the f0(980)KS and the non-resonant contributions, while the peak at large

mK+K− comes from the non-resonant two-meson transition B0 → K+KS followed by a

current produced K−. For the CP -odd spectrum the bump at the large mK+K− end

originates from the same two-meson transition term, while the peak on the lower end

corresponds to the φKs contribution, which is also shown in the insert. The full K+K−KS

spectrum is basically the sum of the CP -even and the CP -odd parts.

The deviation of the mixing-induced CP asymmetry in B0 → K+K−KS and KSKSKS

from that measured in B → J/ψKS (or the fitted CKM’s sin 2β [30]), namely, Δ sin 2βeff ≡
sin 2βeff − sin 2βJ/ψKS (CKM), is calculated from Table 1.1 to be

Δ sin 2βK+K−KS
= 0.06+0.08

−0.02 (0.02+0.08
−0.02), (1.90)

Δ sin 2βKSKSKS
= 0.06+0.00

−0.00 (0.02+0.00
−0.00). (1.91)

Note that part of the deviation comes from that between the measured sin 2βJ/ψKS
and the

fitted CKM’s sin 2β. The K+K−KS has a potentially sizable Δ sin 2β, as this penguin-

dominated mode is subject to a tree pollution due to the presence of color-allowed tree

contributions. For the KSKSKS mode, the central value and the error on Δ sin 2β are

small.

It is also useful to exploit the dependence of sin 2βeff on the K+K− invariant mass,

mK+K− ≡ m23 =
√

s23. For the phase space integration in Eq. (1.89), for a given s23,

the upper and lower bounds of s12 are fixed. The invariant mass m23 is integrated from
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Figure 1.6: Mixing-induced CP asymmetry sin 2βeff (mmax
K+K−) (see the text for the definition)

versus the invariant mass mmax
K+K− for K+K−KS with φKS excluded (solid line) and for CP -even

K+K−KS (dashed line). When mmax
K+K− approaches the upper limit mB−mKS

, the whole phase
space is saturated and sin 2βeff (mmax

K+K−) is reduced to the usual sin 2βeff . This result also applies
to the K+K−KL mode.

m−
23 = m2 + m3 to m+

23 = mB − m1. When the variable s23 or m23 is integrated from

m−
23 to a fixed mmax

23 (of course, m−
23 < mmax

23 ≤ m+
23), the effective sin 2β thus obtained is

designated as sin 2βeff(mmax
23 ). Fig. 1.6 shows the plot of sin 2βeff(mmax

K+K−) versus mmax
K+K−

for K+K−KS. Since there are two different methods for the determination of sin 2βeff , the

results are depicted in two different curves. It is interesting that sin 2β(mmax
23 ) is slightly

below sin 2βCKM at the bulk of the mK+K− region and gradually increases and becomes

slightly larger than sin 2βCKM when the phase space is getting saturated. The deviation

Δ sin 2βK+K−KS
arises mainly from the large mK+K− region.

Direct CP violation is found to be very small in both K+K−KS and KSKSKS modes.

It is interesting to notice that direct CP asymmetry in the CP -even K+K−KS mode is

only of order 10−3, but it becomes 0.2 × 10−2 in K+K−KS with φKS excluded. Since

these direct CP asymmetries are so small they can be used as approximate null tests of

the SM.
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Chapter 2

Time Dependent CP Asymmetry for
Neutral B Decays

The CP violation in BB system can be measured determining the asymmetry in the

number of decays of the B0 and B0 mesons in the final state f and its CP conjugate f̄ :

ACP =
Γ(B̄0 → f̄) − Γ(B0 → f)

Γ(B̄0 → f̄) + Γ(B0 → f)
. (2.1)

Once the B candidate is reconstructed in a certain final state, the measurement of ACP

requires the knowledge of the flavour of the other B (called tag B: Btag). The asymmetry

defined in Eq. 2.1, also called direct CP asymmetry, can be measured simply by counting

the number of B and B̄ mesons decaying in self tagging final states (as B0 → K+π−

and B0 → K−π+). In the case of time-dependent CP asymmetry, it corresponds to the

parameter C of the time evolution of the B0B0 quantum system, when one of the B’s

decays into a CP eigenstate:

ΓB0

B0(Δt) =
e−

Δt
τ

4τ
(1 ± S sin(ΔmdΔt) ∓ C cos(ΔmdΔt)) (2.2)

where ΓB0

B0 corresponds to the flavour of the tag B0 (B0). The most powerful strategy for

measuring CP violation, is to measure the parameter S of Eq. 2.2, which is connected

with the weak phase that produces the CP violation.

The main two ingredients to measure the time-dependent CP asymmetry parameters

in Eq. 2.2 are:

1. the knowledge of the flavour of the other B meson (flavour tagging procedure);

2. the measurement of time distance between the two B decays Δt. This is the one

of the main goals of an asymmetric B-factory, as the BABAR experiment. In such
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an experimental framework, Δt information can be accessed measuring the spatial

distance Δz between the decay vertex of the signal B and the decay vertex of the

Btag, through the relation

Δz = βγΔt (2.3)

In the following we will discuss the B flavour tagging and the methods to determine the

decay vertex of a B meson. For this purpose, we will present two techniques to reconstruct

the decay vertex. The standard one is used for the decay B0 → K+K−K0, for which

there are two charged tracks originating directly from the B vertex. A different vertexing

technique has to be used for B0 → K0
SK0

SK0
S decays, for which there are no charged

tracks from the primary vertex. In this case the information on the vertex position is

extrapolated using the K0
S flight direction and the knowledge of the beam spot position.

This technique is called Beam Spot Constrained vertexing.

Both the tagging and the vertexing techniques avoid the inefficiencies of the exclusive

reconstruction of the other meson by inclusively inferring its flavour and decay vertex

from its final decay products. In order to estimate their performance, the flavour mistag

probabilities and vertexing resolution are measured on a sample of fully reconstructed B

decays to self-tagging final states, where the physics of the flavour and time structure of

the events are known.

2.1 b-Flavour Tagging

Neutral B mesons often decay to final states, which are only accessible to either a b or a

b̄ quark, therefore revealing the meson’s flavour. For example, a positively charged lepton

from B0 → D∗−l+ν identifies the presence of a b̄ quark and allows the meson to be tagged

as a B0. Despite the impressively large number of B decays recorded by BABAR detector,

the reconstruction efficiency of such self-tagging modes, along with the small branching

fraction of CP final states, produces insufficient yields to exclusively reconstruct also the

tagging B. However an inclusive method, which allows b flavour tagging on a probability

basis, provides adequate information for CP measurements.

The BABAR flavour tagging algorithm is designed to exploit correlations between the

b flavour and the charges of the final products of six distinct b quark decay modes. It is

tuned and tested on Monte Carlo events where the flavour of the B mesons are known.

However, since the Monte Carlo does not perfectly reproduces the data, the performances
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Decay mode Branching fraction (%)
B0 → D∗−π+ 0.28 ± 0.02
B0 → D∗−ρ+ 0.73 ± 0.15
B0 → D∗−a+

1 1.30 ± 0.27
B0 → D−π+ 0.30 ± 0.04
B0 → D−ρ+ 0.78 ± 0.14
B0 → D−a+

1 0.60 ± 0.33

Table 2.1: The measured branching fraction of the fully reconstructed self tagging B
decays in the BReco sample

of the tagging algorithm are tested on samples of fully reconstructed B decays (the so-

called BReco sample). Table 2.1 lists the seven self-tagging B0 decays which are fully

reconstructed to compose the fully BReco sample.

The performances of the tagging algorithm are quantified by the parameter

Q = εt(1 − 2ω)2 = εtD2 (2.4)

where εt is the tagging efficiency, defined as the fraction of events to which a b flavour tag

can be assigned and the mistag fraction ω, defined as the fraction of events for which the

tagging algorithm mis-identifies the flavour of the B meson; D ≡ (1 − 2ω) is defined as

the dilution factor associated to the tagging algorithm.

Large values of the quantity Q indicate good tagging performance, since they come

from a large fraction of tagged events and/or a large probability to get the right answer

from the algorithm. In particular, we will show (Sec.2.1.7) that the error on S = sin 2β

in the time-dependent CP asymmetry is proportional to
√

1/Q.

In the following we present the different decays which are used by the tagging algo-

rithm.

2.1.1 Leptons from Semi-leptonic Decays

Semi-leptonic B → Xlν decays (Fig. 2.1a), which constitute roughly 20% of the B branch-

ing fraction, produce electrons or muons whose charge has same sign as the b quark. Since

these leptons are the primary product of the virtual W boson emitted by the b quark, they

carry large momenta p∗l in the center of mass of the B and may therefore be distinguished

from softer secondary leptons from b̄ → c̄ → s̄ transitions (Fig. 2.1b) which exhibit the

opposite lepton/b quark correlation. The primary leptons are also faster than most pi-
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Figure 2.1: Leading lepton producing neutral B meson decays. The b quark and lepton
charges are correlated in (a) B → Xlν and anti-correlated in the (b) b̄ → c̄ → s̄.

ons and kaons produced by B decays, allowing additional discrimination of misidentified

leptons and also permitting purely kinematic selection of the B → Xlν lepton when no

particle identification is available.

Three separate neural networks (NN) recognize primary leptons. Two of them exam-

ine identified electrons or muons, while the other considers only kinematic informations.

In addition to p∗l , these NN also moderately benefit from two other kinematic variables:

the total energy in the hemisphere defined by the W direction, which is generally smaller

for B → Xlν than its inclusive backgrounds, and the CM angle between missing momen-

tum (i.e. the ν direction) and the primary lepton, which is also small for real semi-leptonic

decays. Ultimately kinematics and strict lepton identification make the semi-leptonic B

decays the cleanest and hence most reliable flavour tagging signature. Though tagging

using leptons is not very efficient (εt ≈ 9%), it is very accurate (ω ≈ 3%), resulting in

Q ≈ 0.08.

2.1.2 Kaons from b → c → s Transitions

The correlation of final state kaons and the b quark charge comes from the hierarchy

among elements of CKM matrix involved in B and D decays. The average number

of positively charged kaons in the B0 decay products is 0.58 ± 0.01 ± 0.08, while the

negatively charged kaon multiplicity is 0.13± 0.01± 0.05 [32]. Fig. 2.2 shows an example

a of b̄ → c̄ → s̄ transition which produces each of the three kaon sources which are relevant

in this case. The s̄ quark in the b̄ → c̄ → s̄ transition is the primary source of the positive

(or right-sign) correlation between the b quark and kaon charge. However, the decay

chain of the c̄ quark also generates a W boson, which occasionally produces kaons. In the

specific process diagrammed in Fig. 2.2, the W+ boson produces a Cabbibo suppressed
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Figure 2.2: An example of a b̄ → c̄ → s̄ transition which produces kaons whose charge
has both the same and opposite sign as the b quark.

us̄ quark pair, which results in another right-sign kaon. The W− boson from the c̄ decay

results in a wrong-sign kaon. Unlike the case of leptonic tagging, no kinematic separation

between the right and wrong sign kaons is available, since kaon identification is left as the

only signature, resulting in a less clean tagging. The tagger identifies kaons using one NN

which examines the three best kaon candidates and determines the b flavour from the sum

of the product of each kaon charge and likelihood to be a kaon, which is calculated using

the DCH dE/dx and DIRC θc measurements. Flavour tags from kaons are generally more

efficient than lepton tags, but less accurate. The best kaon tagged events have εt ≈ 17%

and D ≈ 0.8 resulting in Q ≈ 0.11.

2.1.3 Soft Pions from D∗± Decays

In the decay D∗+ → D0π+, the D∗+ and D0 masses are so close (≈ 142 MeV/c2) that

the additional pion carries very little momentum and flies in the same direction as the

D0. This pion is usually described as slow or soft. When the D∗ originates from a B

meson decay, as in Fig. 2.3, the D∗ charge and hence its slow-pion charge are opposite

to that of the original b quark. The slow-pion NN is a neural network which examines

pions with CM momentum p∗πs
less than 250 MeV and identifies a slow-pion from its

momentum p∗πs
, the angle between its flight direction and the thrust axis of the rest of

the B meson products, and particle identification information. Another NN attempts

to exploit correlations between the kaon and slow-pion from the D∗ to produce a more

reliable tag. This neural network-based algorithm examines all oppositely charged slow

pion and kaon combinations along with the kaon likelihood, the slow-pion NN output,
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Figure 2.3: Diagram of B0 → D∗−π+, ρ+, a+
1 decays, producing a soft pion (π−

s ) whose
charge has the opposite sign as the b quark. In contrast the π+, ρ+, or a+

1 emitted from
the W+ carry the same charge as the b quark.

and the angle between the kaon and slow-pion. The resulting performance is εt ≈ 14%

and D ≈ 0.35, resulting in a Q ≈ 1.8%.

2.1.4 Hard Pions from B0 → D∗−π+, ρ+, a+
1 Decays

The charge of the virtual W+ boson in Fig. 2.3 carries the same sign as the b quark charge.

When this boson hadronizes into a pion (or into a ρ+, or a+
1 ), the b quark flavour may be

identified from the characteristically fast momentum of this prompt B meson product. A

maximum p∗ NN attempts to capture the b flavour from these particles by selecting the

track with the highest CM momentum which originates from less than 1 mm far from the

beams in the x−y plane. This procedure also captures prompt leptons which were missed

by the lepton NN and which fortunately have the same charge/b flavour correlation.

2.1.5 Fast-slow Correlations and Λ Baryon Decays

Two additional kinds of information can be used to increase the efficiency of the tagging

process. This information is usually based on a weak correlation among a physics process

and the b quark charge, resulting in a higher mistag rate probability.

Fast-slow Correlations

The b flavour can be inferred in events where in the B rest frame the soft pion coming

from the decay of a D∗± is found together with a opposite charge track which comes from
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εt (%) Δεt (%) ω (%) Δω (%) Q (%) ΔQ (%)
Lepton 8.67 ± 0.08 0.1 ± 0.2 3.0 ± 0.3 -0.2 ± 0.6 7.67 ± 0.13 0.14 ± 0.42
kaon I 10.96 ± 0.09 0.1 ± 0.2 5.3 ± 0.4 -0.6 ± 0.7 8.74 ± 0.16 0.27 ± 0.53
kaon II 17.21 ± 0.10 0.1 ± 0.3 15.5 ± 0.4 -0.4 ± 0.7 8.21 ± 0.19 0.25 ± 0.57
kaon-pion 13.77 ± 0.10 -0.5 ± 0.3 23.5 ± 0.5 -2.4 ± 0.8 3.87 ± 0.14 0.56 ± 0.40
pion 14.38 ± 0.10 -0.8 ± 0.3 33.0 ± 0.5 5.2 ± 0.8 1.67 ± 0.10 -1.12 ± 0.27
other 9.61 ± 0.08 0.5 ± 0.2 41.9 ± 0.6 4.6 ± 0.9 0.25 ± 0.04 -0.27 ± 0.10

Total 74.60 ± 0.12 -0.6 ± 0.7 30.4 ± 0.3 -0.2 ± 1.0

Table 2.2: Summary of tagging performances: tagging efficiency (εt), mistag probability
(ω) and Q factor.

the W boson exchange. The angular correlation allows to determine if the two particles

are back-to-back, as expected.

Λ Decays

The presence of a Λ baryon is a good signature of a b̄ → c̄ → s̄. A Λ baryon, reconstructed

in the final state pπ−, is a signature of a B0 decay, while a Λ̄, reconstructed in the final

state p̄π+ is a signature of a B0 decay.

2.1.6 Combining the Tag Signatures

A given set of particles belonging to a B meson may exhibit the signature of any number

of the described six flavour-tagging physics processes, and therefore may be identified by

several of the seven NN . In general, each NN i may provide an output ri
1 whose sign

and magnitude reflect the B flavour and the confidence in the result. A higher level NN

attempts to optimally combine these outputs in order to produce an output r2 which

captures the most reliable tag of the meson flavour considering all available information.

The low-level NN and the high-level NN outputs, ri
1 and r2 , are fed to a decision

algorithm which assigns the tag to one of six hierarchical and mutually exclusive physics-

signature categories (in descending order of reliability): lepton, kaon I, kaon II, kaon-

(slow)pion, (slow)pion and other (mostly hard pions). Events which do not satisfy the

requirements of any of these categories are marked as untagged.

In this way, the overall tagging performance is Q = 31%, as shown in Table 2.2. The

remaining 25% of untagged events has ω = 0.5 and Q = 0.
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2.1.7 Tagging Imperfections

The Monte Carlo event generator incomplete knowledge of B branching fractions and the

not perfect simulation of the detector response makes necessary to extract from data the

values of these quantities that define the tagger performance. This is made possible since

B0 mixing may be exploited to measure tagging parameters. In fact, applying Eq. 1.51 to

B decays to a flavor eigenstate, one obtains the time-dependent probability distributions

for four different possible flavour combinations:

ΓB0,B0(Δt) = ΓB0,B0(Δt) =
e−

|Δt|
τ

4τ
(1 + cos(ΔmdΔt)),

ΓB0,B0(Δt) = ΓB0,B0(Δt) =
e−

|Δt|
τ

4τ
(1 − cos(ΔmdΔt)), (2.5)

where the cos(ΔmdΔt) terms are due to B0-B0 mixing. These two decay distributions are

usually referred to as the unmixed and mixed probabilities, respectively. For the extraction

of the tagging performance, one B meson (Brec) is fully reconstructed, so its flavour is

known. Then the tagger is supplied to the particles which are not daughter of Brec, in

order to determine the flavour of the other B. Several imperfections in this procedure

modify Eq. 2.5. In particular for a tagging category i:

1. The tagging algorithm may produce a wrong-tag. We will denote this mis-tag

probability as ω̄i.

2. There may be different mis-tag probabilities, ωi+ and ωi− for B0 and B0 tags. So

ω̄i = (ωi+ + ωi−)/2

3. The tagging process costs on efficiency εt
i, which depends on tag signature

4. There may be different efficiencies, εt
i+ and εt

i− for tagging a B0 and B0

5. There may be different efficiencies, εr
i+ and εr

i− for fully reconstructed B0 and B0

6. There is an experimental resolution associated to the measurement of Δt. We will

address this issue in Sec. 2.2.4.

Using these definitions and Eq. 2.5, the probability distribution for observing an event

with a tagged flavour T = ± (+ = B0, − = B0) for one meson and reconstructed flavour

R = ± for the other is:

Pi(Δt, T, R) =
εr

i(R)

εr
i(R) + εr

i(−R)

[
εt

i(T )(1 − ωi(T ))Γ(R),(T ) + εt
i(T )ωi(−T )Γ(−R),(T )

]
, (2.6)
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where the first term in the sum is for the correct (T, R) tags and the second term ac-

counts for mis-tags which are actually (−T, R). Rearranging this expression and properly

normalizing in each category 1, one obtains

P (Δt, T, T, R; q̂i) =
ε̄t

i

8τ

1 + Rνi

1 − μiνiξ
e−

|Δt|
τ ×

([μiTDi + Bi] − [TDi + μiBi]R cos(ΔmdΔt)) (2.7)

where ξ ≡ 1
1+(τΔmd)2

, Bi =
(
1 + T ΔDi

2

)
and the parameters q̂i are

• Di ≡ 1 − 2ω̄i, which is called dilution,

• the dilution difference ΔDi ≡ 2(ωi− − ωi+),

• the reconstruction efficiency asymmetries νi ≡
εr
i+−εr

i−
εr
i++εr

i−
,

• tagging efficiency asymmetries μi ≡
εt
i+−εt

i−
εt
i++εt

i−
, and

• the average tagging efficiency εt
i ≡ 1

2
(εt

i+ + εt
i−).

Then, if the Δt resolution and flavour tagging were perfect, the asymmetry as a

function of Δt

Amixing(Δt) =
Nunmix(Δt) − Nmix(Δt)

Nunmix(Δt) + Nmix(Δt)
(2.8)

would describe a cosine function with unit amplitude (Eq. 2.5). The effect of the tagging

imperfections on the Δt distributions for mixed and unmixed events is shown in Fig. 2.4.

The asymmetry goes through zero near 2.1 B0 proper lifetimes and the sensitivity to

Δmd, which is proportional to Δt2e−Γ|Δt| sin2 ΔmdΔt, reaches a maximum in this region.

The mistag fraction, and the resolution parameters can be extracted from this mixing

asymmetry simultaneously to Δmd.

The effect of tagging on time-dependent CP measurements, where the flavour of the

fully reconstructed B meson is unknown, is similar. Incorporating the tagging flaws into

Eq. 2.1 leads to the probability distributions

P (Δt, T ; q̂i) =
ε̄t

i

4τ

1

1 − μiξC
e−

|Δt|
τ × (2.9)([

μiTDi + (1 + T
ΔDi

2
)

]
+

[
TDi + μi(1 + T

ΔDi

2
)

])
A(Δt)

1The normalization requires that the probabilities of observing each of the four flavor combinations
in each category add to the probability of tagging in that category, i.e.

∑
T,R Pi(Δt, T, R) = εt

i.
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Figure 2.4: Expected Δt distribution for mixed and unmixed events a) with perfect tagging
and Δt resolution, and b) with typical mistag rates and Δt resolution.

where A(Δt) ≡ S sin(ΔmdΔt) ∓ C cos(ΔmdΔt). Setting νi = μi = ΔDi = 0 in this

equation illustrates the result of mistakes by the tagging algorithm. In this case

P (Δt, T ) =
ε̄t

i

4τ
e−

|Δt|
τ [1 + TDi(S sin(ΔmdΔt) ∓ C cos(ΔmdΔt))] (2.10)

and the only change in the functional form of Eq. 2.1 is the suppression of the amplitude

of the sine and cosine by Di. This effect, which is the dominant product of the tagging

algorithm, dilutes the difference between B0 and B0 tags. To a good approximation, the

error on the determination of S and C in category i is inversely proportional to Qi ≡ εt
iD

2
i .
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2.2 The B Vertexing and Measurement of Δt

We now describe the procedure to extract the Δt information. We start from the stan-

dard vertexing algorithm (GeoKin), where hadronic B decays are reconstructed using a

geometric constraint to the charged tracks of the event. This technique is applied to the

measurement of the CP asymmetry of B0 → K+K−K0 decays. We then describe the

Beam Spot Constrained vertexing algorithm, which is used for B0 → K0
S
K0

S
K0

S
decays.

In the first case, Δt is calculated in three steps which successively add information: the

determination of the Brec vertex, the fit for the Δz, and the conversion to Δt. In the

second, a fit of the full Υ (4S) decay tree, with a constraint on sum of the two B lifetimes,

is also applied.

2.2.1 Determination of the Brec Vertex

Reconstructing a B candidate begins with the search for possible intermediate decay

products such as D mesons or neutral pions and kaons in decays to charged tracks and

neutral clusters combinations. The vertices of the composite particles are then simultane-

ously identified through a geometric fit which alters the momentum vector of the tracks

and neutrals with appropriate constraints on the masses and directions of the composite

particles. Neutral particles reconstructed in the EMC do not contribute to the vertex

determination due to the lack of spatial information near their production. The proce-

dure for finding the best vertex for B0 → K+K−K0 candidates which will be described

in Sec. 6.3 is an application of this technique.

2.2.2 Fit for the Btag Vertex

The Btag vertexing algorithm examines the tracks which were not used in the reconstruc-

tion of Brec. Though these particles are generally the final products of the Btag decay,

those from intermediate states with long lifetimes do not originate from the B decay ver-

tex and must be eliminated. Therefore, oppositely charged track pair combinations are

removed when they are consistent with K0
S
→ π+π− or Λ+ → p+π− decays or γ → e+e−

conversions. Due to the large number of possible final states for D mesons, their decay

products are more difficult to eliminate directly. This would introduce a bias in the deter-

mination of the decay point of the Btag (charm bias). Instead, particles from secondary

D meson vertices are removed in an iterative fit for the Btag vertex, where each successive
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fit only considers tracks which contributed less than 6 units to the χ2 of the previous

iteration. This process stops when either all tracks satisfy the χ2 requirement or only two

tracks remain. Since the beam energies, beam spot, and the momentum and decay vertex

of Brec are well determined, the kinematic and geometric constraints that Btag originates

at the beam spot with the momentum vector pBtag = pΥ (4S) −pBrec improves the precision

of the vertex fit. Also, in order to correctly account for the correlations between the Btag

and Brec vertices induced by these constraints, σΔz is directly measured in the fit, so it

reflects the errors on each track parameters, the beam energies, and the beam spot. Tests

of this algorithm on Monte Carlo events indicate that the difference between the true and

measured values of Δz are well described by a triple Gaussian with less than 1% in the

widest component (see Sec. 2.2.4). The events which do not lie in this Gaussian (9.7 ±
1.0% of the events) have an RMS of 190 μm and the events in the narrowest Gaussian

(89.9 ± 1.0% of the events) have an RMS of 100 μm.

2.2.3 Conversion to Δt

The naive conversion Δz = βγcΔt provides a good estimate of the time difference between

the decays of the two B mesons. However, the relation

Δz = βγγ∗
reccΔt + γβ∗

recγ
∗
rec cos θ∗recc 〈trec + ttag〉 (2.11)

which takes into account the B momenta in the Υ (4S) rest frame and the 20 mrad rotation

of the beams with respect to the z-axis improves Δt resolution by ≈ 5%. Here β∗
rec, γ∗

rec ,

and θ∗rec respectively describe the velocity, boost, and polar angle of Brec with respect to

the beam axis. 〈trec + ttag〉, which is the expected value of the sum of the decay times, is

estimated by τB + |Δt|.

2.2.4 The Δt Resolution Function

Since the Δt resolution is dominated by the Btag vertex, it is generally insensitive to the

final state of the fully reconstructed Brec. Nonetheless, if the error on Δt is properly calcu-

lated, it must provide a measurement of the resolution of Δt in every event, consequently

reflecting any differences between decays. We may then expect to be able to describe

the Δt resolution for all Brec final states which have common vertexing technique (as the

different sub-modes for B0 → K+K−K0) with single function of Δt and σΔt. As illus-

trated in Fig. 2.5a, studies of simulated events indicate that the measured σΔt is directly
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Figure 2.5: (a) The RMS spread and (b) the mean of the residual δt = Δtmeas − Δttrue

versus the measured σΔt in simulated B decays.

proportional to the RMS of Δt in simulated events. Therefore σΔt is indeed a measure of

the Δt resolution. In fact, the difference δt = Δtmeas − Δttrue between the measured and

true Δt is well described by the sum of three Gaussians:

R(δt, σΔt; v̂i) =

core,tail∑
k

fk

SkσΔt

√
2π

exp

(
−(δt − bi

kσΔt)
2

2(SkσΔt)2

)
+

foutl

σoutl

√
2π

exp

(
− δ2

t

2σ2
outl

)
(2.12)

with descending fractions of events fcore, ftail, and foutlier, and outlier width σoutl = 8 ps.

The parameters v̂i are:

1. the fractions fk;

2. the scale factors Sk;

3. the scaled biases bi
k.

Note that the widths of the core and tail Gaussians are scaled by the measured σΔt for

each event, taking advantage of this error estimate of the Δt resolution. Under ideal

conditions Sk, which corresponds to the slope in Fig. 2.5a, would be 1. This resolution

function also provides a shift in the means of the core and tail Gaussians to account for

any bias from secondary vertices of charm decays (i.e. D mesons) due to residual tracks

which are not removed by the iterative procedure (charm bias). The size of this bias is

different depending on the direction of the D meson. A D meson traveling parallel (as

opposed to perpendicular) to the beam axis pulls harder on the z coordinate of the Btag

vertex. As Fig. 2.5b illustrates, this bias is proportional to the Δt resolution. Therefore
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in order to better estimate the bias for each Δt measurement, the resolution function of

Eq. 2.12 exploits this correlation and scales the mean of the core and tail Gaussians by

σΔt. Finally, since b flavor tagging separates events based on the signatures of a specific

set of B decays, the charm content of the final state depends on the tagging category.

Therefore, a different bias is used for each tagging category.

Once this function is convoluted with the resolution function of Eq. 2.12, the time-

dependent CP asymmetry is given by

ACP = D (S sin(ΔmdΔt) − C cos(ΔmdΔt)) ⊗R(δt, σΔt; v̂i) (2.13)

The combined effect of the mistag and of the resolution effects on Δt distribution are

illustrated in Fig. 2.6.
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Figure 2.6: Δt distribution for B0 and B0-tagged CP events a) with perfect tagging and
Δt resolution, and b) with typical mistag rates and Δt resolution.

2.3 The Beam Spot Constrained Vertexing

While for the B0 → K+K−K0 decays the B vertex can be exploited with the technique

described in the previous section, for the B0 → K0
S
K0

S
K0

S
decays the tracks from the

K0
S
→ π+π− decay cannot be used in this way to determine the vertex of the Brec because

of the non-zero lifetime of the K0
S

meson.
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A new vertexing technique has been developed by BABAR firstly for the measurement

of CP asymmetry in B0 → K0
Sπ0 decays [31], which uses only the K0

S flight direction.

The basic point is that at an asymmetric B-factory, because of the Lorentz boost, the

momentum of the B is projected in the forward direction (pB0

⊥ � pB0

‖ ). Because of that,

the B0 transverse motion (which is ≈ 30 μm) can be neglected, and the B0 decay vertex

position can be inferred by intersecting the K0
S
→ π+π− flight direction with the beam

trajectory.

The intersection is realized by constraining the B decay point to the beam spot on the

(x, y) plane and inflating the beam spot uncertainty by 30 μm to take into account the

neglected flight length of the B meson on the transverse plane. This is justified by the

fact that the intrinsic beam spot size is ≈ 4 μm in y direction, ≈ 200 μm in x direction,

i.e. about one order of magnitude less than the decay length of the B meson. This

introduces a bias in Δt measurement, because of the B meson lifetime is forced to be

zero, as illustrated by Fig. 2.7. This problem is then avoided applying the constraint on

Figure 2.7: Residuals Δtmeas − Δttrue as a function of Δtmeas, for signal Monte Carlo
events of B0 → K0

S
π0, with old vertexing reconstruction, with the Beam Spot constraint

applied on the decay vertex of the B0.

the production point, rather than to the decay point of the B. For this purpose, a new

vertexing algorithm was developed, TreeFitter, which is designed to fit an entire decay
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tree simultaneously, using the Kalman filter technique [33]. TreeFitter can be applied

simultaneously on the entire Υ (4S) decay tree, including both reconstructed and tagged

side. This feature offers the opportunity to apply the constraint on the production point

of the two B mesons, avoiding the bias, but paying in terms of resolution on Δt, which is

in part improved by the implicit lifetime constraint. The worsening in the Δt resolution

is less evident in B0 → K0
S
K0

S
K0

S
than in B0 → K0

S
π0, because of the presence of multiple

K0
S
’s adds vertexing information. This can be seen in part in the sub-mode with only two

K0
S
→ π+π−. However, the bias can be removed (Fig. 2.8a) and the original resolution,

≈ 1.4 ps, retained (Fig. 2.8b) by applying a constraint on the sum of the lifetimes of

the two B mesons on the Υ (4S) decay tree. From Fig. 2.8a, it is evident that after this
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Figure 2.8: (a) Mean and (b) width of the residuals Δtmeas−Δttrue as a function of Δtmeas,
for signal Monte Carlo events of B0 → K0

SK0
SK0

S , in the sub-mode with one K0
S → π0π0.

The resolution in Δt is also better for the sub-mode with all three K0
S

decaying into
π+π−. This distributions are obtained after the Beam Spot Constraint vertexing on the
production vertex of the B and the Brec and Btag lifetime sum constraint.

constraint is applied, only the constant offset of ≈ -0.2 ps on the Δt residuals is left,

coming from the charm bias. This bias is present also in the nominal vertexing, and

is already taken into account by the scaled bias parameters of the resolution function

(Eq. 2.12).

Since the described vertexing algorithm does not include the b flavour tagging, the full
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procedure is made by three steps:

1. the B0 candidate is fitted with TreeFitter with a 3D Beam Spot constraint on the

B production vertex;

2. the fitted candidate is passed to the default BABAR tagging and vertexing algorithm;

3. the resulting Υ (4S) → BB candidate is refitted with TreeFitter applying the B

lifetime constraint. A Gaussian uncertainty of
√

2σ(τB) is associated to the sum of

the two B lifetimes.

The standard tagging and vertexing algorithm of step (2) applies a beam spot constraint

to the B candidate, which is incorrect since that constraint is already applied before the

tag vertexing is called. However, the final Υ (4S) fit takes care that all constraints are

applied only once.

Since TreeFitter uses a Kalman filter with a high number of degrees of freedom, in

the case of B0 → K0
SK0

SK0
S with one K0

S decaying into π0π0 sub-mode we do not include

the poor vertexing informations which come from K0
S → π0π0 decays. This reduces the

number of failed fits to the B vertex to a negligible level.

2.3.1 SVT Classes Definition

The B vertex determined with beam Spot constraint relies on the determination of the

K0
S

flight direction, then the resolution in the vertex strongly depends upon the point in

the inner tracking system (SVT) in which the K0
S

is decayed. This is shown in Fig. 2.9,

where the average resolution is shown as a function of K0
S

decay length, superimposed to

the events distribution for B0 → K0
S
K0

S
K0

S
. It is clear that the K0

S
mesons decaying in

the outer part of the SVT (the step near 12 cm in the (x − y) plane correspond to the

fourth layer of the SVT) are useless for a determination of B vertex.

We define four different and mutually exclusive classes of K0
S

which describe the ver-

texing quality:

• Class I – decays, having both pions with at least 1 φ and 1 z hit in any of the first

three inner SVT layers.

• Class II – decays, having both pions with at least 1 φ and 1 z hit in the SVT (not

belonging to class I). These events mostly correspond to K0
S

decays beyond the inner

3 SVT layers.
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cay length. The steps in the distribution indicate the position of the SVT layers. The
superimposed histogram shows the decay length distribution (with arbitrary scale) for
B0 → K0

SK0
SK0

S signal Monte Carlo events.
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• Class III – decays where either of the two pions has at least one SVT hit, but that

do not satisfy the requirements of class I or II.

• Class IV – decays where neither pion has any SVT hits.

Since only one K0
S
→ π+π− is necessary in determining the B0 vertex, when more than

one K0
S
→ π+π− is present in the final state, we define the B0 class as the best class

associated to the K0
S
’s. For this reason the presence of the three or two K0

S
useful for

the vertexing procedure makes the fraction of best B classes high (See 7.5). We show in

Fig. 2.10 we show the σΔt distribution for the four classes. The most of event belongs to

(z)  [cm]σ
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Figure 2.10: Distribution for the estimated uncertainty in Δt for signal Monte Carlo
events of B0 → K0

S
K0

S
K0

S
(π0π0).

the first two classes. The Class IV events are rejected since the resolution in Δt is worse

than 2.5 ps (events which we reject also in the standard vertexing). We do not use also

Class III events because of poor vertexing informations. We define as Good candidates

for the time-dependent fit those events belonging to Class I or Class II and satisfying the

requirements |Δt| < 20 ps and σΔt < 2.5 ps. The fraction of Good events is about 98% for

submode with all three K0
S
’s decaying into π+π− (we will denote it with K0

S
K0

S
K0

S
(π+π−))

and 93% for K0
S
K0

S
K0

S
(π0π0) submode (we will denote it with K0

S
K0

S
K0

S
(π0π0)). The not

Good events (Bad events) are not rejected in the analysis, since they are useful for the

signal yield extraction and for the determination of direct CP asymmetry C for which

only the tag information is needed.

The largest contributions are the uncertainty on the K0
S

trajectory and on the position
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of the beam spot. The beam spot contributions can be expressed as:

σ2
z,beam =

[(
py

σypz

)2

+

(
pz

σxpz

)2
]−1

=

=
1

tan2 θ

[
sin2 φ

σ2
y

+
cos2 φ

σ2
z

]−1

. (2.14)

Fig. 2.11a shows the estimated σz uncertainty as a function of the polar angle of the K0
S

flight direction (for Good events). The best vertex determination is achieved when the

K0
S flights in the orthogonal direction to the beam axis. Fig. 2.11b shows σz distribution

as a function of the azimuthal angle of the K0
S . The expected not flat contribution of the

beam spot as a function of the azimuthal angle comes from the asymmetry introduced by

the beam spot constraint, since the beam spot position is known with different precision

on the x and y directions. The real distribution becomes again flat thanks to the third

step of the B vertexing, which, applying a further constraint on the Υ (4S), decreases the

dependency from the beam spot introduced by the first step.

2.3.2 Validation of Vertexing Procedure

The vertexing procedure has been validated for the B0 → K0
Sπ0 decays, which uses the

same vertexing technique. The validation makes use of the more abundant and more clean

decay B0 → J/ψK0
S , ignoring the informations coming from the charged tracks which are

the decay products of the J/ψ , and applying the same beam spot constrained vertexing

procedure (determination of “mangled” Δt).

Assuming as the true value the Δt value obtained with the standard technique, one

can evaluate the agreement of the two results. In these tests, the mangled B0 → J/ψK0
S

candidates and the B0 → K0
Sπ0 show the same properties in both the Δt resolution

function and the determination of the B0 decay position. This feature is related to the

fact that the total resolution, in both cases, is dominated by the tag side. As a consequence

of this, even if the two vertexing techniques are different, we do not expect differences in

the description of the Δt resolution function, thanks to the smearing effect of the Btag

vertex reconstruction.

In order to prove that the validation done for B0 → K0
S
π0 is valid also for B0 →

K0
S
K0

S
K0

S
we compare the properties of the Δt residuals and of the Δz resolution, using

signal Monte Carlo samples of the two decay modes. We observe an optimal agreement
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between the two samples, so that any conclusion of the B0 → K0
Sπ0 validation study can

be used even in this case.

We use the Δt resolution function defined by the Eq. 2.12, and we will use the data-

Monte Carlo (dis)agreement in mangled B0 → J/ψK0
S

events to evaluate a systematic

uncertainty associated to the vertexing technique (Sec. 7.5).



Chapter 3

Measurement of CP Violation for
Three-body B Decays with Dalitz
Plot Analysis

In general, the decay of the neutral B meson into three kaons is not a CP eigenstate,

due to the presence of CP -even and CP -odd contributions. This mixture of two opposite

CP contributions can dilute the measurement of the time-dependent CP asymmetry. The

best way to take into account this feature of the three body B decays is to measure CP

violation simultaneously to the CP contributions, with a time-dependent analysis of the

B Dalitz plot [34].

This approach will be used for the decays of the neutral B meson into K+K−K0.

Moreover, a Dalitz plot analysis of neutral B decays that includes time-evolution

of the B0B0 pair was proposed as a way to remove ambiguities in the measurement of

angle α in B0 → π+π−π0 decays [35]. A similar method was proposed for ambiguity-free

measurement of β in B → DPP decays, where P is a pseudoscalar meson [36].

In our case, the interference between CP -odd and CP -even amplitudes can be used

to measure the CKM angle β in a penguin dominated decay mode of the B meson. The

comparison of the angle β measured in this decay with the value measured in tree-level

dominated modes like B0 → [cc̄]K0 [37, 38] constitute the most powerful way to search

for physics beyond the Standard Model in b → s transitions [100, 101, 102]

3.1 Time-dependent Decay Rate of B0 → K+K−K0

The decay rate for the B0 → K+K−K0 decay can be written as a function of the flavour of

the initial state q, the time difference between B0 and B0 decay time Δt and the position
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in the three body phase space as:

dΓ(Δt, q, m12, m13)

dΔtdm2
13dm2

23

=
1

(2π)3

1

32M3
B0

e−|Δt|/τ

4τ
×

[|A|2 +
∣∣Ā∣∣2 (3.1)

+ηCP q 2Im
(
ĀA∗e−2iβ

)
sin ΔmdΔt

−q
(
|A|2 −

∣∣Ā∣∣2) cos ΔmdΔt]

where we have assumed q/p = e−2iβ in the B0−B0 mixing. The invariant masses of the B

daughter pairs mij = (pi +pj)
2, where p1, p2 and p3 are the four-momenta of the K+, K−,

K0, respectively, are called Dalitz plot coordinates. They represent a way of describing

the position in the K+K−K0 phase space (decay kinematics). The sign q = +1 (−1) is

for decays of B0 into K+K−K0
S

(K+K−K0
L
), when the other B meson is identified as a

B0 (B0) using the tagging technique. The A (Ā) is the complex amplitude for the decay

B0 → K+K−K0 (B0 → K+K−K0). It contains the three-body decay dynamics (See

Sec. 1.6.1). We will discuss in the following sections the phenomenological model used to

describe this amplitude.

Using the four-momentum conservation in a three-body decay one can write the rela-

tion

M2
B0 + m2

1 + m2
2 + m2

3 = m2
12 + m2

13 + m2
23 (3.2)

which allows a choice of only two independent invariant masses of daughter pairs to

describe the decay dynamics of a spin 0 particle. In the following, we will use this

convention for the indices: m12 = mK+K−, m13 = mK+K0, m23 = mK−K0.

3.2 Dalitz Plot Model and K-matrix Formalism

The K-matrix formalism provides an elegant way of dealing with strongly overlapping

resonances and multi-channel dynamics (resonances). It allows to generalize two-body

channel amplitudes to resonance production with final-state interaction. It was originally

introduced by Wigner and Eisbud [39, 40] for the study of resonances in nuclear reactions.

The first use in particle physics goes back to an analysis of resonance production in Kπ

scattering by Dalitz and Tuan [41]. Figure 3.1 displays a typical two-body scattering

process for which unitarity is a strong requirement. Such a reaction can be parameterized

in terms of the K-matrix and it can be extended to describe the decay process of a B

meson into three daughters, as presented in Fig. 3.2.
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Figure 3.1: Top: Local interaction. (a) Single channel resonance of mass m0 with cou-
plings Γ1 and Γ2 to the initial and final state, respectively. (b) Two channel rescattering
during the lifetime of the resonance.

3.2.1 Two-body Scattering

S-matrix formalism was developed by Heisenberg in 1942 [42]. In general, the amplitude

for an initial state |i > to be found in the final state |f > is written as:

Sfi =< f |S|i > , (3.3)

where S is called the scattering operator. One may remove the probability that the initial

and final states do not interact at all, by defining the transition operator T through:

S = I + 2i
√

ρT
√

ρ , (3.4)

where I is the identity operator. The factors 2 and i are introduced for convenience. ρ

represents the phase-space matrix and it is diagonal by definition.

From conservation of probability, the scattering operator S is unitary:

SS† = S†S = I . (3.5)

From the unitarity of S follows that:

(T−1 + iρ)† = (T−1 + iρ) (3.6)

which leads to the definition of the K-matrix:

K−1 = (T−1 + iρ) . (3.7)
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Figure 3.2: (a): Single resonance production. (b): Single resonance and non-resonant.
(c): Single resonance and rescattering.

From Eq. 3.6 one finds that the K operator is Hermitian:

K = K† . (3.8)

From time reversal invariance of S and T it follows that the K operator must be sym-

metric, i.e. the corresponding K-matrix is real and symmetric.

It is possible to eliminate the inverse operators in Eq. 3.7 by multiplying by K and T

from left and right and vice versa, to obtain:

T = K + iKρT = K + iTρK , (3.9)

obtaining for T :

T = K(I − iρK)−1 = (I + iKρ)−1K . (3.10)

Then, the T matrix is complex only through the i which appears in this formula, i.e. T−1

has been explicitly broken up into real and imaginary parts.

3.2.2 Resonances in the K-matrix formalism

There are two possibilities for parameterizing resonances in the K-matrix formalism:
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1. Resonances can arise from constant K-matrix elements with the energy variation

supplied by phase space

2. from strongly varying pole terms corresponding to a phase motion [43].

They differ in their dynamical character. In case (1) they are assumed to arise from

exchange forces in the corresponding hadronic channels (molecular resonances), so that

dominant effects are expected near corresponding thresholds. The latter (2) (normal reso-

nances) correspond to dynamical sources at the constituent level, coupling to the observed

hadrons through decay [43]. The dynamical origin of resonances has to be determined

experimentally. In the approximation that the transition amplitude is dominated by res-

onance production (scattering) one form for the K-matrix is the following:

Kij =
∑

α

gαi(m)gαj(m)

(m2
α − m2)

√
ρiρj

+ cij , (3.11)

where i and j are referred to the initial and final states, the sum on α runs over the

number of poles with masses mα and the coupling (or residual functions, expressed in

units of energy; s = m2) are given by:

g2
αi(m) = mαΓαi , (3.12)

where gαi(m) is real (but could be negative) above the threshold channel i. The

constant K-matrix elements have to be real and unit-less to preserve unitarity. The

corresponding width Γα(m) is

Γα(m) =
∑

i

Γαi(m) (3.13)

for each pole α. In the simplest case of an isolated resonance and one single channel open

it reproduces the Lorentz-invariant Breit-Wigner resonance formula.

Let us consider a single, well isolated resonance α coupling to n open two-body chan-

nels, where the mass mα far above the thresholds of all two-body channels. The partial

widths may be given by the expression:

Γαi(m) =
g2

αi(m)

mα

= γ2
αiΓ

0
αB2

l;αi(qi, qαi)ρi (3.14)

and the residual function by:

gαi(m) = γαi

√
mαΓ0

αBl;αi(qi, qαi)
√

ρi . (3.15)
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where qαi = qi(mα) is the breakup momentum [44] in channel i at the K-matrix pole

m = mα.

The Bl;αi(m) are ratios of centrifugal barrier factors in terms of the momentum in

channel i and the resonance breakup momentum for the orbital angular momentum l.

Some of the parameterizations where some will be discussed in Sec. 3.2.3.

The γ’s are real constants (but they can be negative) and fulfill the normalization:∑
i

γ2
αi = 1 (3.16)

which is motivated by unitarity. In practice, not all possible open channels are available

so that this normalization condition is difficult to implement. As fit variable is preferred:

g0
αi = γαi

√
mαΓ0

α (3.17)

The residual function is then given by:

gαi(m) = g0
αiBl;αi(qi, qαi)

√
ρi . (3.18)

The K-matrix total width Γ̃α and the K-matrix partial widths Γ̃αi are defined by:

Γ̃α =
∑

Γ̃αi = Γ0
α

∑
i

γ2
αiρi(mα) . (3.19)

From these relations it follows that:

g0
αi =

√
mαΓ̃αi

ρi(mα)
,

Γ0
α =

∑
Γ̃αiρi(mα) , (3.20)

γ2
αi =

Γ̃αi

Γ0
αρi(mα)

.

It is important to notice, that the K-matrix total width Γ̃α does not need to be

identical to the width which is observed in an experimental mass distribution nor with

the width of the T -matrix pole in the complex energy plane.

We will discuss the simple case of a Breit-Wigner resonance far above the threshold

for one possible open channel, in which the different definitions of widths coincide. If the

masses of the decay particles can be neglected compared to mα, it is possible to write

Γ(mα) � Γ0
α. In terms of g0

αi, the invariant K-matrix assumes the simple form:

Kij =
∑

α

g0
αig

0
αjBl;αi(qi, qαi)Bl;αj(qj, qαj)

m2
α − m2

+ cij . (3.21)

In particular the possibility that the g0’s can be negative is allowed.
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Figure 3.3: Ratios Bl(m, mα) = Fl(m)/Fl(mα) of Blatt-Weisskopf factors using a reso-
nance mass mα = 765 MeV/c2 (marked by the line) for l = 0, 1, 2.

3.2.3 Penetration factors

The threshold behavior of low energy scattering of hadrons may be studied in terms of a

non-relativistic potential V of range R, where V (r > R) = 0 in the typical behavior of

strong interaction. Assuming purely elastic scattering of spin zero particles the potential

in its radial form is given as:

V = V (r) +
l(l + 1)

r2
(3.22)

the second term being the centrifugal potential. Assuming qR � l near threshold, the

solutions of the Schrodinger equation approximately can be written in terms of the phase

shift δl of the partial wave l

tan (δl)(qR � l) = 2q · al · (q)2l . (3.23)

The factor (q)2l arises here due to the presence of the centrifugal potential and is ac-

cordingly called “penetration factor”. The factor al is constant and is the “scattering

length”.

The pion creation of nuclear resonances is inadequately described by only q2l. Hence,

Blatt and Weisskopf [45] proposed the more general form of the penetration factor which

is obtained by solving the radial equation for all qR. With these factors, the fits to

the (low-energy) cross sections become more realistic. Widely used are Blatt-Weisskopf

barrier factors according to Ref. [47]. They are given in terms of the ratio z = (q/qR)2,
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where qR corresponds to the range of the interaction. The factors Fl(z), normalized to

Fl(1) = 1, up to angular momenta l = 2 are:

F0(z) = 1 ,

F1(z) =

√
2z

z + 1
, (3.24)

F2(z) =

√
13z2

(z − 3)2 + 9z
.

In general, the penetration factors are part of a more complex form factor. The

form factors parameterize the underlying interaction (vertexes)1. Hence, they introduce

a model dependence in the analysis. In many formulations, phenomenological corrections

are added to the penetration factors, which in practice are indistinguishable on data due

to their small in influence on the lineshape of resonances .

Fig. 3.3 shows the ratios Bl(m, mα) = Fl(m)
Fl(mα)

of Blatt-Weisskopf factors using a reso-

nance mass mα = 765 MeV/c2 for l = 0, 1, 2.

3.3 Resonance Lineshapes

The decay dynamics of the B0 → K+K−K0 involve both single channel resonances, like

the φ(1020) → K+K−, and double channel resonances. This situation occurs in the ππ

S-wave, where the f0(980) is just at the KK̄ threshold. There are further complications

due to strongly overlapping resonances for the ππ S-wave. They will be discussed in

Sec. 3.3.2.

3.3.1 One Channel Resonances

In the case of a single resonance with one single channel opened, the K-matrix assumes

the form:

K =
m0Γ(m)

(m2
0 − m2)ρ

(3.25)

where m0 if the mass of the resonance. The mass dependent width is given by:

Γ(m) = Γ0

(
ρ(m)

ρ0

)
B(q(m), q(m0))

2 , (3.26)

where Γ0 is the K-matrix width and q(m0) is the breakup momentum for the mass m(m0).

Neglecting the angular momentum dependence of the amplitude, the invariant scattering

1as before, here a strong potential is assumed
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Figure 3.4: (a): Breit-Wigner amplitude squared (|ρT |2) as function of invariant ππ mass.
The invariant amplitude |T |2 is superimposed as dotted line. (b): ππ phase shift δ which
reaches 90◦ at the resonance mass.

amplitude is:

T =
m0Γ0

m2
0 − m2 − im0Γ(m)

B(q(m), q0)
2 1

ρ0

. (3.27)

Eq. 3.27 contains the usual Breit-Wigner form. In this simple case observed width and K-

matrix width are identical. The Breit-Wigner lineshape and the phase shift for the ρ(770)

( ππ elastic scattering) (m0 = 765 MeV/c2, Γ0 = 110 MeV/c2) are shown in Fig. 3.4 (a)

and (b), respectively. The phase in degree is calculated from the complex amplitude T ,

using the following relation:

δ =
180

π
· tan−1

(
Im(T )

Re(T )

)
. (3.28)

In the elastic case unitarity implies that the amplitude ρT can be identified with a

unitarity circle in the complex plane (Re(ρT ); Im(ρT )) centered at (0; 0.5), which reaches

the maximum i at the resonance position. This is the so called Argand diagram displayed

in Fig. 3.5. One can define the inelasticity as the deviation from the unitary circle inwards,

corresponding to intensity vanishing in the other channels the amplitude couples to. It

can be calculated from T as:

η = 2 ·
√

(Re(ρT ))2 + (Im(ρT ) − 0.5)2 . (3.29)
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Figure 3.5: Argand diagram of the Breit-Wigner amplitude ρT : (Re(ρT ); Im(ρT )). Since
the process is completely elastic unitarity demands that the amplitude follows the unity
circle. The dots are plotted at equidistant ππ masses. The circle starts at (0,0). The
phase shift δ and the inelasticity are marked.

3.3.2 Overlapping Resonances

In the case of two resonances of masses mA and mB in ππ scattering at mass m 2 the

formulation of the K-matrix is:

K =
mAΓA(m)

m2
A − m2

+
mBΓB(m)

m2
B − m2

. (3.30)

The mass dependent widths are given by:

Γα(m) = Γα0

(mα

m

)( q

qα

)
B(q, qα)2 . (3.31)

In the case |mB − mA| � |ΓB + ΓA| the K-matrix is dominated by either the first or

the second resonance, depending whether m is near mA or mB. The transition amplitude

T is then reducible to the näıve approximation:

T ≈ TA + TB =

[
mAΓA(m)

m2
A − m2 − imAΓA(m)

]
+

[
mBΓB(m)

m2
B − m2 − imBΓB(m)

]
(3.32)

that is the sum of two Breit-Wigner form factors. This approximation is not always valid:

in the case of m0 = mA = mB one can write:

T =
m0(ΓA(m) + ΓB(m))

m2
0 − m2 − im0(ΓA(m) + ΓB(m))

(3.33)

2This can occur in reality for the resonances A = f2(1270) and B = f2(1560) which are both broad
and close enough to each other to overlap in their tails: ΓA = 180 MeV/c2 and ΓB = 160 MeV/c2.
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Figure 3.6: Two overlapping resonances with the parameters: mA = 1270 MeV/c2,
ΓA = 180 MeV/c2, mB = 1560 MeV/c2, ΓB = 160 MeV/c2. The plot (a) shows the
amplitude squared, |T |2, for the two individual Breit-Wigner resonances. Plot (b) shows
the result of adding the resonance poles in the K-matrix (solid line). The dashed line cor-
responds to the naive sum of the two Breit-Wigner amplitudes |TA + TB|2, which exceeds
1 close to the resonance positions. Also the intensity does not drop to zero between the
resonance peaks. Plot (c) shows the corresponding Argand diagrams for the naive summa-
tion (open circles) and the K-matrix parameterization (black squares). While the latter
follows the unitarity circle the Breit-Wigner summation clearly is outside the unity circle
in contradiction to the unitarity requirement. Plot (d) shows the phase motion for the
K-matrix parameterization, where dashed lines mark the 900 and 2700 steps which cross
the phase shift at the masses mA and mB.
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that is a single Breit-Wigner form, with the total width being the sum of the individuals

widths.

Fig. 3.6 shows that the unitarity is violated when two Breit-Wigner amplitudes are

added (TA + TB instead of T from KA + KB).

3.3.3 Two-channel Resonances

Here we discuss the case of the f0(980) which is coupled both to ππ and KK̄ channel, the

latter being just over the threshold.

We consider a single resonance. The elements of the invariant K-matrix for the cou-

pling to two channels can be written:

K11 =
γ2

1m0Γ0

m2
0 − m2

(3.34)

K12 = K̂21 =
γ1γ2m0Γ0

m2
0 − m2

(3.35)

K22 =
γ2

2m0Γ0

m2
0 − m2

(3.36)

The normalized couplings fulfill the condition: γ2
1 + γ2

2 = 1. Then the T -matrix is given

as:

T =
m0Γ0

m2
0 − m2 − im0Γ0(ρ1γ2

1 + ρ2γ2
2)

(
γ2

1 γ1γ2

γ1γ2 γ2
2

)
(3.37)

We redefine the couplings according to Eqn. 3.20, so that:

gi = γi

√
m0Γ0 (3.38)

g2
1 + g2

2 = m0Γ0 (3.39)

and obtain:

T =

(
γ2

1 γ1γ2

γ1γ2 γ2
2

)
m2

0 − m2 − i(ρ1g2
1 + ρ2g2

2)
(3.40)

This formula was firstly proposed by Flatté in 1976 [48].

The f0(980) appears as a regular resonance in the ππ system. The comparable Breit-

Wigner denominator for m near mr is:

m2
r − m2 − imrΓr (3.41)
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in the resonance approximation. We can identify:

m2
0 = m2

r +

(
γ2

γ1

)2 [ |ρ2(mr)|
|ρ1(mr)|

]
mrΓr

Γ0 =
mrΓr

m0ρ1(mr)γ2
1

(3.42)

in terms of the mass mr and width Γr. The ρi is evaluated at m = mr, where T is

expected to reach its maximum value. But the formulas Eqn. 3.42 actually are not very

helpful to find starting points for fits to data. In practice the parameters m0 and Γ0 need

to be varied. The ratio r = (γ2/γ1)
2 is a priori correlated with the width. Only if the

lineshape is strongly distorted due to strong couplings to the second channel this can be

resolved.

3.4 The Production or Decay Amplitude

So far “formation” of resonances, observed in two-body scattering ab → cd has been con-

sidered. The K-matrix formalism can be generalized to describe the case of “production”

of resonances in more complex reactions. The key assumption is that the two-body system

in the final state does not simultaneously interact with the rest of the final state. This

model is called “isobar model” (See Fig. 3.2).

To preserve the two-body unitarity an approach was proposed by Aitchison [49]. The

Lorentz invariant amplitude, F , is given as:

F = (I − iKρ)−1P = TK−1P . (3.43)

This introduces the production vector P parameterizing the resonance production in the

open channels. For n contributing channels P and F are n-dimensional column vectors.

If the K-matrix is given as a sum of poles (Eq. 3.11), then the corresponding P -vector

is:

Pi =
∑

α

βαBL;αi(pi, pαi)g
0
αiBl;αi(qi, qαi)

m2
α − m2

, (3.44)

where βα (expressed in units of energy) carries the coupling of the resonance α to the initial

state. The centrifugal barrier factor, BL;αi(pi, pαi), is introduced ad hoc and depends on

the angular momentum in production, L. It is a function of the recoil momentum pi of

the resonance against the spectator. The constant βα is in general complex ( βα = bαeiφ,
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φ is a phase due to the initial production process). For convenience βα is formulated in

terms of the dimensionless β0
α

βα = β0
α

√∑
i

(g0
αi)

2 . (3.45)

In the case of an isolated resonance in a single channel, the P-vector is parameterized

as:

P = β0 · BL(p, p0) ·
g2

0Bl(q, q0)

m2
0 − m2

(3.46)

and Eq. 3.11 is written as:

K =
g2

0B
2
l (q, q0)

m2
0 − m2

. (3.47)

The Lorentz invariant amplitude, F , is given as:

F (m) = β0 · BL(p, p0) ·
m0Γ0

m2
0 − m2 − im0Γ(m)

Bl(q, q0)

ρ0
. (3.48)

This is the relativistic Breit-Wigner form multiplied by an arbitrary complex constant

(production strength) β0 and the centrifugal factor BL(p, p0). This form, obtained with

the K-matrix model, is equivalent to the one obtained with the Breit-Wigner model.

3.5 Non-resonant Amplitudes

Beside decays that proceed through intermediate resonances, there are also the so called

non-resonant decays that are not associated with any known resonant structure, but lead

to the same final state. It was found experimentally that B decays to three-body final

states could contain a large fraction of such decays. The origin of these decays is not fully

understood: they can come from kinematic tails of higher-B mass states, contact terms

or decays of wide scalar resonances.

None of the proposed theoretical parameterizations of the non-resonant decays repro-

duces well the features in data [26, 28, 50, 51]. For this reason, and because the large

fraction of non-resonant events in three-body B decays, a phenomenological parameteri-

zation is needed. This will be discussed in Sec. 6.6.1.

3.6 CP Violation in the Isobar Model

In Sec. 3.4 we described in general the production of resonances in the approximation

that the two-body system is the final state does not simultaneously interact with the rest
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of the final state. In practice, in this so-called “isobar model”, we describe the complex

transition amplitude A of a B meson decaying into three kaons as a sum of individual

amplitudes, associated to the various resonances:

A ≡ A(B0 → K+K−K0
S
; m12, m13) =

∑
r

cr · fr (3.49)

where cr are complex coefficients describing the strength and phase of each resonance

relative to other resonances (isobar coefficients). The Dalitz-plot distribution of each

resonance is described with a complex amplitude fr, and the index r runs over all resonant

states.

When the initial state is B0 meson, we have similar description

Ā ≡ A(B0 → K+K−K0
S
; m12, m13) =

∑
r

c̄r · f̄r (3.50)

where complex coefficients c̄r and cr are in general different.

3.6.1 Transition Amplitudes

In Equations (3.49) and (3.50), isobar coefficients cr give strengths and relative phases of

each resonance. Each resonant state can be reached through tree and penguin topology

with different weak and strong phases. Applying unitarity of the CKM matrix, we can

write

cr = VcbV
∗
csa

c
r + VubV

∗
usa

u
r (3.51)

where the au
r is often called Standard Model pollution. Defining a weak phase difference

γ and a strong phase difference δ, we can re-write this for B0 decays as

cr = Pre
iφr
(
1 + ξre

iγeiδr
)

(3.52)

where Pr is strength of Cabibbo allowed “penguin” part and ξ is fraction of Cabibbo

suppressed (“SM pollution”) amplitudes. Similarly for B0 decays, we can write

c̄r = Pre
iφr
(
1 + ξre

−iγeiδr
)

(3.53)

where we made assumptions of equal strong phases, strengths for identical decay topology

and a resonant state r. Parameters Pr, φr, ξr, δr need to be determined from a fit.
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Figure 3.7: Illustrates the mapping of dominant penguin and SM pollution amplitudes
and phases (Sec. 3.6.1) to the polar isobar parameters (Eqn. 3.55).

Fit Coefficients: Polar Coordinates

We choose the following parameterization of complex isobar coefficients in Eq.(3.49) in

terms of real fit coefficients

cr → cr(1 + br) ei(φr+δr) · e+iβ (3.54)

c̄r → cr(1 − br) ei(φr−δr) · e−iβ · ηr (3.55)

where c, φ are the average amplitude and phase in B0 and B0 decays, respectively, and b, δ

account for the asymmetry in the amplitude and phase. These parameters are determined

from a fit. The eiβ factor comes from mixing, and it is absorbed into the definition of

isobar amplitude for simplicity. Note that β is correlated with the δ’s, or in other words,

we can define

βeff(r) ≡ β + δr (3.56)

where we choose a constant offset β = βSM = 0.379 so the δr’s are expected to be the

deviation from SM expectations.

The parameters Pr, φr, ξr, and δr from 3.6.1 do not map in a simple way to the

parameters cr, φr, br, and δr in this section (e.g. The phases in this section are both

non-trivial combinations of strong and weak phases). A graphical representation of this

mapping is shown in Fig. 3.7. The η’s are CP -eigenvalues of the final states.



Chapter 4

The BABAR Detector

4.1 Introduction

The primary goal of the BABAR experiment is the study of CP -violating asymmetries in

the decay of the B meson. Secondary goals are precision measurement of decays of bottom

and charm mesons and of τ leptons, searches for rare processes accessible because of the

high luminosity of PEP-II B-factory.

The PEP-II B-factory is an e+e− asymmetric collider running at a center of mass

energy of 10.58 GeV corresponding to the mass of the Υ (4S) resonance. The small Q-

value of the Υ (4S) → BB̄ decay results in B mesons almost at rest in the center of mass

frame. The electron beam in the High Energy Ring (HER) has 9.0 GeV and the positron

beam in the Low Energy Ring (LER) has 3.1 GeV. The Υ (4S) is therefore produced with

a Lorentz boost of βγ = 0.56. This boost makes it possible to reconstruct the decay

vertexes of the two B mesons, to determine their relative decay times Δt, and thus to

measure the time dependence of their decay rates, since, without boost, this distance

would be too small (∼ 30 μ) to be measured by any vertex tracker.

The BABAR detector [52] has been optimized to reach the primary goal of the CP

asymmetry measurement. This measurement needs the complete reconstruction of a B

decay in a CP eigenstate, the flavor identification (tagging) of the non-CP B and a

measure of the distance of the two decay vertexes. To fulfill these needs, a very good vertex

resolution, both transverse and parallel to the beam direction, excellent reconstruction

efficiency for charged particles and a very good momentum resolution, efficient electron

and muon identification, with low misidentification probabilities for hadrons, are required.

A longitudinal section of the BABAR detector is shown in Fig. 4.1. The detector inner
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Figure 4.1: BABAR detector longitudinal section.

most part is reserved for the silicon vertex tracker (SVT), then there is the drift chamber

(DCH), the Čerenkov light detector (DIRC) and the CsI electromagnetic calorimeter

(EMC). All those detector sub-systems are surrounded by a solenoidal superconductor

magnetic field. The iron used for the return flux has been instrumented (IFR) for muons

and neutral hadrons, like KL and neutrons, detection.

The detector geometry is cylindrical in the inner zone and hexagonal in the outermost

zone: the central part of the structure is called barrel and it’s closed forward and backward

by end caps. The covered polar angle ranges from 350 mrad, in the forward, to 400 mrad

in the backward directions (defined with respect to the high energy beam direction). The

BABAR coordinate system has the z axis along the boost direction (or the beam direction):

the y axis is vertical and the x axis is horizontal and goes toward the external part of

the ring. In order to maximize the geometrical acceptance for Υ (4S) decays the whole
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detector is offset, with respect to the beam-beam interaction point (IP), by 0.37 m in the

direction of the lower energy beam.

A trigger system is used to separate collisions producing interesting events from those

that constitutes the noise, or the background, for instance, beam interactions with residual

gas. The trigger system is divided in two consequent levels: the level one trigger (L1) is

hardware based and is designed to have a maximum output rate of 2 kHz and a maximum

time delay of 12 μs, while the other level (L3), software based, has a throughput rate

limited to 120Hz in order to permit an easy storage and processing of collected data.

4.2 PEP-II B-factory

PEP-II is a system consisting of two accumulating asymmetric rings designed in order to

operate at a center of mass energy of the Υ (4S) resonance mass, 10.58 GeV. Tab. 4.1 shows

the various sub-systems parameters: a comparison between typical and design values is

presented. As can be easily seen from the table, PEP-II parameters have exceeded the

project ones in terms of instant luminosity and daily integrated luminosity achieving

recently the peak value of 1×1034 cm−2 s−1 with a daily integrated luminosity of 700 pb−1.

Parameters Design Typical
Energy HER/LER (GeV) 9.0/3.1 9.0/3.1
Current HER/LER (A) 0.75/2.15 1.48/2.5

# of bunch 1658 553-829
bunch time separation (ns) 4.2 6.3-10.5

σLx (μm) 110 120
σLy (μm) 3.3 5.6
σLz (μm) 9000 9000

Luminosity (1033 cm−2s−1) 3 9
Daily average integrated luminosity (pb−1/d) 135 700

Table 4.1: PEP-II beam parameters. Design and typical values are quoted.

Data is mostly collected at Υ (4S) peak energy. Tab. 4.2 shows the active processes

cross sections breakdown at peak energy. From now on the production of light quark pairs

(u, d, s) and charm quark pairs will be referred to as “continuum production”. In order

to study this non-resonant production ∼ 12% of data is collected with a center of mass

energy 40 MeV below the Υ (4S) mass value.

PEP-II measures radiative Bhabha scattering to provide a luminosity fast monitor
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e+e− → Cross section (nb)
bb̄ 1.05
cc̄ 1.30
ss̄ 0.35
uū 1.39
dd̄ 0.35

τ+τ− 0.94
μ+μ− 1.16
e+e− ∼ 40

Table 4.2: Various processes cross sections at
√

s = MΥ (4S). Bhabha cross section is an
effective cross section, within the experimental acceptance.

useful for operations. BABAR derives the absolute luminosity offline from other QED

processes, mainly e+e− and μ+μ− pairs: the systematic uncertainty on the absolute value

of the luminosity is estimated to be about 1.5%. This error is dominated by uncertainties

in the Monte Carlo generator and the simulation of the detector.

The beam energies of the two beams are calculated from the total magnetic bending

strength and the average deviations of the accelerating frequencies from their central

values. The systematic error on the PEP-II calculation of the absolute beam energies is

estimated to be 5 − 10 MeV, while the relative energy setting for each beam is accurate

and stable to about 1 MeV.

The interaction region design, with the two beams crossing in a single interaction point

with particles trajectories modified in order to have head on collisions, is realized with a

magnetic field, produced by a dipole magnetic system, acting near the interaction point.

The collision axis is off-set from the z-axis of the BABAR detector by about 20 mrad in

the horizontal plane to minimize the perturbation of the beams by the solenoidal field. In

this configuration the particles and the beams are kept far apart in the horizontal plane

outside the interaction region and parasite collisions are minimized. Magnetic quadrupoles

included inside the detector’s magnetic field, and hence realized in Samarium-Cobalt, are

strongly focusing the beams inside the interaction region.

In order to keep track of PEP-II beams displacement with respect to the BABAR

detector, the interaction point position is computed on periodic intervals, using two-track

events. Interaction region dimensions (beam-spot) computed in that way are ∼ 150 μm

along x, ∼ 50 μm along y and 1 cm along z axis. The y dimension estimate is completely
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Figure 4.2: Integrated luminosity and obtained by PEP-II and collected by BABAR from
November 1999 to September 2006.

dominated by tracking resolution and can be improved by looking at luminosity variations

as a function of relative beams position. In particular, knowing the beam currents and

the x beam-spot dimension, it is possible to get a resolution on y (σy) ∼ 5 μm, value

that remain stable within 10% in a one hour time scale. Those measurements can be also

verified offline by measuring the primary vertex of multi-hadron events 1.

Fig. 4.2 shows the integrated luminosity obtained by PEP-II and collected by BABAR

from the beginning of data taking (November 1999) to the end of August 2006. This

work will make use only of data collected in Run 1-5 data taking periods (before August

2006). This data sample corresponds to an integrated luminosity of 353 fb−1 recorded at

the Υ (4S) resonance, corresponding to about 374 · 106 BB̄ pairs.

1By reconstructing all the tracks in one event it is possible to have an estimate of primary vertex
position: Υ (4S) decay point in transverse plane. Given that the boost along the z axis produces a
relative displacement of the two B mesons this method has a relative poor resolution that get worse in
presence of long-lived particles.
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4.3 Tracking system

The charged particle tracking system consists of two different components: the silicon

vertex tracker (SVT) and the drift chamber (DCH). The main purpose of this tracking

system is the efficient detection of charged particles and the measurement of their mo-

mentum and angles with high precision. These track measurements are important for

the extrapolation to the DIRC, the EMC and the IFR. At lower momenta, the SVT

measurements are more important while at higher momenta the DCH dominates.

4.3.1 The Silicon Vertex Tracker: SVT

The vertex detector has a radius of 20 cm from the primary interaction region: it is placed

inside the support tube of the beam magnets and consists of five layers of double-sided

silicon strip sensors detectors to provide five measurements of the positions of all charged

particles with polar angles in the region 20.1◦ < θ < 150◦. Because of the presence of

a 1.5 T magnetic field, the charged particle tracks with transverse momenta lower than

∼ 100 MeV/c cannot reach the drift chamber active volume. So the SVT has to provide

stand-alone tracking for particles with transverse momentum less than 120 MeV/c, the

minimum that can be measured reliably in the DCH alone. This feature is essential for

the identification of slow pions from D∗− meson decays. Because of these, the SVT has

to provide redundant measurements.

Beyond the stand-alone tracking capability, the SVT provides the best measurement

of track angles which is required to achieve design resolution for the Čerenkov angle for

high momentum tracks. The SVT is very close to the production vertex in order to

provide a very precise measure of points on the charged particles trajectories on both

longitudinal (z) and transverse directions. The longitudinal coordinate information is

necessary to measure the decay vertex distance, while the transverse information allows

a better separation between secondary vertices coming from decay cascades.

More precisely, the design of the SVT was carried out according to some important

guidelines:

• The number of impact points of a single charged particle has to be greater than 3

to make a stand-alone tracking possible, and to provide an independent momentum

measure.
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Figure 4.3: SVT schematic view: longitudinal section.

• The first three layers are placed as close as possible to the impact point to achieve

the best resolution on the z position of the B meson decay vertices.

• The two outer layers are close to each other, but comparatively far from the inner

layers, to allow a good measurement of the track angles.

• The SVT must withstand 2 MRad of ionizing radiation: the expected radiation dose

is 1 Rad/day in the horizontal plane immediately outside the beam pipe and 0.1

Rad/day on average.

• Since the vertex detector is inaccessible during normal detector operations, it has

to be reliable and robust.

These guidelines have led to the choice of a SVT made of five layers of double-sided

silicon strip sensors. The spatial resolution, for perpendicular tracks must be 10− 15 μm

in the three inner layers and about 40 μm in the two outer layers. The three inner lay-

ers perform the impact parameter measurement, while the outer layers are necessary for

pattern recognition and low pt tracking. The silicon detectors are double-sided (contain

active strips on both sides) because this technology reduces the thickness of the materials

the particles have to cross, thus reducing the energy loss and multiple scattering probabil-

ity compared to single-sided detectors. The sensors are organized in modules (Fig. 4.3).

The SVT five layers contain 340 silicon strip detectors with AC-coupled silicon strips.

Each detector is 300 μm-thick but sides range from 41 mm to 71 mm and there are

6 different detector types. Each of the three inner layers has a hexagonal transverse
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Figure 4.4: Cross-sectional view of the SVT in a plane perpendicular to the beam axis.

cross-section and it is made up of 6 detector modules, arrayed azimuthally around the

beam pipe, while the outer two layers consist of 16 and 18 detector modules, respectively.

The inner detector modules are barrel-style structures, while the outer detector modules

employ the novel arch structure in which the detectors are electrically connected across

an angle. This arch design was chosen to minimize the amount of silicon required to cover

the solid angle while increasing the solid angle for particles near the edges of acceptance:

having incidence angles on the detector closer to 90 degrees at small dip angles insures

a better resolution on impact points. One of the main features of the SVT design is the

mounting of the readout electronics entirely outside the active detector volume.

The strips on the two sides of the rectangular detectors in the barrel regions are

oriented parallel (φ strips) or perpendicular (z strips) to the beam line: in other words,

the inner sides of the detectors have strips oriented perpendicular to the beam direction

to measure the z coordinate (z-size), whereas the outer sides, with longitudinal strips,

allow the φ-coordinate measurement (φ-side). In the forward and backward regions of the

two outer layers, the angle between the strips on the two sides of the trapezoidal detectors

is approximately 90◦ and the φ strips are tapered.

The inner modules are tilted in φ by 5◦, allowing an overlap region between adjacent

modules: this provide full azimuthal coverage and is convenient for alignment. The outer

modules are not tilted, but are divided into sub-layers and placed at slightly different
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radii (see Fig. 4.4).

The total silicon area in the SVT is 0.94 m2 and the number of readout channels is

about 150 000. The geometrical acceptance of SVT is 90% of the solid angle in the c.m.

system and typically 80% are used in charged particle tracking.

The z-side strips are connected to the read-out electronics with flexible Upilex fanout

circuits glued to the inner faces of half-modules: as a matter of fact, each module is

divided into two electrically separated forward and backward half-modules. The fanout

circuits consist of conductive traces on a thin flexible insulator (copper traces on Kapton):

the traces are wire-bonded to the end of the strips.

In the two outer layers, in each module the number of z strips exceeds the number

of read-out channels, so that a fraction of the strips is “ganged”, i.e., two strips are

connected to the same read-out channel. The “ganging” is performed by the fanout

circuits. The length of a z strip is about 50 μm (case of no ganging) or 100 μm (case of two

strip connected): the ganging introduces an ambiguity on the z coordinate measurement,

which must be resolved by the pattern recognition algorithms. The φ strips are daisy-

chained between detectors, resulting in a total strip length of up to 26 cm. Also, for the

φ-side, a short fanout extension is needed to connect the ends of the strips to the read-out

electronics.

1st 2nd 3rd 4th 5th
layer layer layer layer layer

radius (mm) 32 40 54 91-127 114-144
modules/layer 6 6 6 16 18
wafers/module 4 4 6 7 8

read-out pitch (μm)
φ 50-100 55-110 55-110 100 100
z 100 100 100 210 210

Table 4.3: Parameters of the SVT layout: these characteristics are shown for each layer.

The signals from the read-out strips are processed using a new technique, bringing

in several advantages. After amplification and shaping, the signals are compared to a

preset threshold and the time they exceed this threshold (time over threshold, or ToT) is

measured. This time interval is related to the charge induced in the strip by the charged

particle crossing it. Unlike the traditional peak-amplitude measurement in the shaper
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output, the ToT has the advantage of an approximately logarithmic relation of the time

interval to the charge signal. This compresses the active dynamic range of the signal,

ensuring a good sensitivity in the lower range. When a particle crosses a silicon detector

a cluster of adjoining strips producing a signal is formed. The good signal resolution in

the lower range ensures a good determination of the tails of the cluster thus improving

the resolution on the impact point measurement.

The electronic noise measured is found to vary between 700 and 1500 electrons ENC

(equivalent noise charge), depending on the layer and the readout view: this can be

compared to the typical energy deposition for a minimum ionizing particle at normal

incidence, which is equivalent to ∼ 24000 electrons.

During normal running conditions, the average occupancy of the SVT in a time window

of 1 μs is about 2% for the inner layers, where it is dominated by machine backgrounds,

and less than 1% for the outer layers, where noise hits dominate.

The cluster reconstruction is based on a cluster finding algorithm: first the charge

pulse height of a single pulse is calculated from the ToT value and clusters are formed

grouping adjacent strips with consistent times. The position x of a cluster formed by n

strips is evaluated with an algorithm called “head-to-tail” algorithm:

x =
(x1 + xn)

2
+

p

2

(Qn − Q1)

(Qn + Q1)
(4.1)

where xi and Qi are the position and the collected charge of i-th strip and p is the read-out

pitch. This formula always gives a cluster position within p/2 of the geometrical center

of the cluster. The cluster pulse height is simply the sum of the strip charges, while the

cluster time is the average of the signal times.

The SVT efficiency can be calculated for each half-module by comparing the number

of associated hits to the number of tracks crossing the active area of the half-module.

Excluding defective readout sections (2 over 208), the combined hardware and software

efficiency is 97%.

The spatial resolution of SVT hits is calculated by measuring the distance (in the plane

of the sensor) between the track trajectory and the hit, using high-momentum tracks in

two prong events: the uncertainty due to the track trajectory is subtracted from the

width of the residual distribution to obtain the hit resolution. The track hit residuals are

defined as the distance between track and hit, projected onto the wafer plane and along

either the φ or z direction. The width of this residual distribution is then the SVT hit
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Figure 4.5: SVT hit resolution in the z and φ coordinate in microns, plotted as functions
of the track incident angle in degrees.

resolution. Fig. 4.5 shows the SVT hit resolution for z and φ side hits as a function of

the track incident angle: the measured resolutions are in very good agreement with the

Monte Carlo expected ones. Over the whole SVT, resolutions are raging from 10− 15 μm

(inner layers) to 30 − 40 μm (outer layers) for normal tracks.

For low-momentum tracks (pt < 120 MeV/c), the SVT provides the only particle

identification information. The measure of the ToT value enables to obtain the pulse

height and hence the ionization dE/dx: the value of ToT are converted to pulse height

using a look-up table computed from the pulse shapes. The double-sided sensors provide

up to ten measurements of dE/dx per track: with signals from at least four sensors, a 60%

truncated mean dE/dx is calculated. For MIPs, the resolution on the truncated mean

dE/dx is approximately 14%: a 2σ separation between kaons and pions can be achieved

up to momentum of 500 MeV/c and between kaons and protons beyond 1 GeV/c.

4.3.2 The drift chamber: DCH

The drift chamber is the second part of BABAR tracking system. Its principal purpose is

the efficient detection of charged particles and the measurement of their momenta and

angles with high precision. The DCH complements the measurements of the impact pa-
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Figure 4.6: Side view of the BABAR drift chamber (the dimensions are in mm) and
isochrones (i.e. contours of equal drift time of ions) in cells of layer 3 and 4 of an axial
super-layer. The isochrones are spaced by 100 ns.

rameter and the directions of charged tracks provided by the SVT near the impact point

(IP). At lower momenta, the DCH measurements dominate the errors on the extrapo-

lation of charged tracks to the DIRC, EMC and IFR. The reconstruction of decay and

interaction vertices outside of the SVT volume, for instance the K0
S decays, relies only on

the DCH. For these reasons, the chamber should provide maximal solid angle coverage,

good measurement of the transverse momenta and positions but also of the longitudi-

nal positions of tracks with a resolution of ∼ 1 mm, efficient reconstruction of tracks at

momenta as low as 100 MeV/c and it has to minimally degrade the performance of the

calorimeter and particle identification devices (the most external detectors). The DCH

also needs to supply information for the charged particle trigger. For low momentum par-

ticles, the DCH is required to provide particle identification by measuring the ionization

loss (dE/dx). A resolution of about 7% allows π/K separation up to 700 MeV/c. This

particle identification (PID) measurement is complementary to that of the DIRC in the

barrel region, while in the extreme backward and forward region, the DCH is the only

device providing some discrimination of particles of different mass. The DCH should also

be able to operate in presence of large beam-generated backgrounds having expected rates

of about 5 kHz/cell in the innermost layers.

To meet the above requirements, the DCH is a 280 cm-long cylinder (see left plot in

Fig. 4.6), with an inner radius of 23.6 cm and an outer radius of 80.9 cm. It is bounded

by the support tube at its inner radius and the particle identification device at its outer



4.3 Tracking system 81

radius. The flat end-plates are made of aluminum. Since the BABAR events will be boosted

in the forward direction, the design of the detector is optimized to reduce the material

in the forward end. The forward end-plate is made thinner (12 mm) in the acceptance

region of the detector compared to the rear end-plate (24mm), and all the electronics is

mounted on the rear end-plate. The device is asymmetrically located with respect to the

IP: the forward length of 174.9 cm is chosen so that particles emitted at polar angles of

17.2◦ traverse at least half of the layers of the chamber before exiting through the front

end-plate. In the backward direction, the length of 101.5 cm means that particles with

polar angles down to 152.6◦ traverse at least half of the layers.

The inner cylinder is made of 1 mm beryllium and the outer cylinder consists of two

layers of carbon fiber glued on a Nomex core: the inner cylindrical wall is kept thin

to facilitate the matching of SVT and DCH tracks, to improve the track resolution for

high momentum tracks and to minimize the background from photon conversions and

interactions. Material in the outer wall and in the forward direction is also minimized in

order not to degrade the performance of the DIRC and the EMC.

The region between the two cylinders is filled up by a gas mixture consisting of Helium-

isobutane (80% : 20%): the chosen mixture has a radiation length that is five times larger

than commonly used argon-based gases. 40 layers of wires fill the DCH volume and form

7104 hexagonal cells with typical dimensions of 1.2×1.9 cm2 along the radial and azimuthal

directions, respectively (see right plot in Fig. 4.6). The hexagonal cell configuration has

been chosen because approximate circular symmetry can be achieved over a large portion

of the cell. Each cell consist of one sense wire surrounded by six field wires: the sense

wires are 20 μm gold-plated tungsten-rhenium, the field wires are 120 μm and 80 μm gold-

plated aluminum. By using the low-mass aluminum field wires and the helium-based gas

mixture, the multiple scattering inside the DCH is reduced to a minimum, representing

less than 0.2%X0 of material. The total thickness of the DCH at normal incidence is

1.08%X0.

The drift cells are arranged in 10 super-layers of 4 cylindrical layers each: the super-

layers contain wires oriented in the same direction: to measure the z coordinate, axial

wire super-layers and super-layers with slightly rotated wires (stereo) are alternated. In

the stereo super-layers a single wire corresponds to different φ angles and the z coordinate

is determined by comparing the φ measurements from axial wires and the measurements

from rotated wires. The stereo angles vary between ±45mrad and ±76mrad.
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Figure 4.7: DCH position resolution as a function of the drift chamber in layer 18, for
tracks on the left and right side of the sense wire. The data are averaged over all cells in
the layer.

While the field wires are at ground potential, a positive high voltage is applied to the

sense wires: an avalanche gain of approximately 5×104 is obtained at a typical operating

voltage of 1960 V and a 80:20 helium:isobutane gas mixture.

In each cell, the track reconstruction is obtained by the electron time of flight: the

precise relation between the measured drift time and drift distance is determined from

sample of e+e− and μ+μ− events. For each signal, the drift distance is estimated by

computing the distance of closest approach between the track and the wire. To avoid

bias, the fit does not include the hit of the wire under consideration. The estimated drift

distances and the measured drift times are averaged over all wires in a layer.

The DCH expected position resolution is lower than 100 μm in the transverse plane,

while it is about 1 mm in the z direction. The minimum reconstruction and momentum

measure threshold is about 100 MeV/c and it is limited by the DCH inner radius. The

design resolution on the single hit is about 140μm while the achieved weighted average

resolution is about 125 μm. Fig. 4.7 shows the position resolution as a function of the

drift distance, separately for the left and the right side of the sense wire. The resolution

is taken from Gaussian fits to the distributions of residuals obtained from unbiased track

fits. The results are based on multi-hadron events for data averaged over all cells in layer
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18.

The specific energy loss (dE/dx) for charged particles through the DCH is derived from

the measurement of the total charge collected in each drift cell. The specific energy loss

per track is computed as a truncated mean from the lowest 80% of the individual dE/dx

measurements. Various corrections are applied to remove sources of bias: these corrections

include changes in gas pressure and temperature (±9% in dE/dx), differences in cell

geometry and charge collection (±8%), signal saturation due to space charge buildup

(±11%), non-linearities in the most probable energy loss at large dip angles (±2.5%) and

variation of cell charge collection as a function of the entrance angle (±2.5%).

4.4 Čerenkov Light Detector: DIRC

The particle identification system is crucial for BABAR since the CP violation analysis

requires the ability to fully reconstruct one of the B meson and to tag the flavor of the

other B decay: the momenta of the kaons used for flavor tagging extend up to about 2

GeV/c with most of them below 1 GeV/c. On the other hand, pions and kaons from the

rare two-body decays B0 → π+π− and B0 → K+π− must be well separated: they have

momenta between 1.7 and 4.2 GeV/c with a strong momentum-polar angle correlation

of the tracks (higher momenta occur at more forward angles because of the c.m. system

boost).

The particle identification of charged kaons is a crucial point of most of the measure-

ments presented in this work.

So the particle identification system should be:

• thin and uniform in term of radiation lengths to minimize degradation of the

calorimeter energy resolution

• small in the radial dimension to reduce the volume (cost) of the calorimeter

• with fast signal response

• able to tolerate high background

DIRC stands for Detection of Internally Reflected Čerenkov light and it refers to a

new kind of ring-imaging Čerenkov detector which meets the above requirements. The

particle identification in the DIRC is based on the Čerenkov radiation produced by charged
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Figure 4.8: Mechanical elements of the DIRC and schematic view of bars assembled into
a mechanical and optical sector.

particles crossing a material with a speed higher than light speed in that material. The

angular opening of the Čerenkov radiation cone depends on the particle speed:

cos θc =
1

nβ
(4.2)

where θc is the Čerenkov cone opening angle, n is the refractive index of the material and

β is the particle velocity over c. The principle of the detection is based on the fact that

the magnitudes of angles are maintained upon reflection from a flat surface.

Since particles are produced mainly forward in the detector because of the boost, the

DIRC photon detector is placed at the backward end: the principal components of the

DIRC are shown in Fig. 4.8. The DIRC is placed in the barrel region and consists of 144

long, straight bars arranged in a 12-sided polygonal barrel. The bars are 1.7 cm-thick,

3.5 cm-wide and 4.90 m-long: they are placed into 12 hermetically sealed containers, called

bar boxes, made of very thin aluminum-hexcel panels. Within a single bar box, 12 bars are

optically isolated by a ∼ 150 μm air gap enforced by custom shims made from aluminum

foil.

The radiator material used for the bars is synthetic fused silica: the bars serve both

as radiators and as light pipes for the portion of the light trapped in the radiator by total

internal reflection. Synthetic silica has been chosen because of its resistance to ionizing

radiation, its long attenuation length, its large index of refraction, its low chromatic

dispersion within its wavelength acceptance.

The Čerenkov radiation is produced within these bars and is brought, through succes-
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Figure 4.9: Schematics of the DIRC fused silica radiator bar and imaging region. Not
shown is a 6 mrad angle on the bottom surface of the wedge.

sive total internal reflections, in the backward direction outside the tracking and magnetic

volumes: only the backward end of the bars is instrumented. A mirror placed at the other

end on each bar reflects forward-going photons to the instrumented end. The Čerenkov

angle at which a photon was produced is preserved in the propagation, modulo some

discrete ambiguities (the forward-backward ambiguity can be resolved by the photon

arrival-time measurement, for example). The DIRC efficiency grows together with the

particle incidence angle because more light is produced and a larger fraction of this light

is totally reflected. To maximize the total reflection, the material must have a refractive

index (fused silica index is n = 1.473) higher than the surrounding environment (the

DIRC is surrounded by air with index n = 1.0002).

Once photons arrive at the instrumented end, most of them emerge into a water-

filled expansion region (see Fig. 4.9), called the Standoff Box: the purified water, whose

refractive index matches reasonably well that of the bars (nH2O = 1.346), is used to

minimize the total internal reflection at the bar-water interface.

The standoff box is made of stainless steel and consists of a cone, cylinder and 12

sectors of PMTs: it contains about 6000 liters of purified water. Each of the 12 PMTs

sectors contains 896 PMTs in a close-packed array inside the water volume: the PMTs are

linear focused 2.9 cm diameter photo-multiplier tubes, lying on an approximately toroidal
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Figure 4.10: From di-muon data events, (a) single photon Čerenkov angle resolution.
The distribution is fitted with a double-Gaussian and the width of the narrow Gaussian
is 9.6 mrad. (b) Reconstructed Čerenkov angle for single muons. The difference between
the measured and expected Čerenkov angle is plotted and the curve represents a Gaussian
distribution fit to the data with a width of 2.4 mrad.

surface.

The DIRC occupies only 8 cm of radial space, which allows for a relatively large radius

for the drift chamber while keeping the volume of the CsI Calorimeter reasonably low: it

corresponds to about 17%X0 at normal incidence. The angular coverage is the 94% of

the φ azimuthal angle and the 83% of cos θCM .

Čerenkov photons are detected in the visible and near-UV range by the PMT array.

A small piece of fused silica with a trapezoidal profile glued at the back end of each bar

allows for significant reduction in the area requiring instrumentation because it folds one

half of the image onto the other half. The PMTs are operated directly in water and are

equipped with light concentrators: the photo-multiplier tubes are about 1.2 m away from

the end of the bars. This distance from the bar end to the PMTs, together with the

size of the bars and PMTs, gives a geometric contribution to the single photon Čerenkov

angle resolution of about 7 mrad. This is a bit larger than the resolution contribution

from Čerenkov light production (mostly a 5.4 mrad chromatic term) and transmission

dispersions. The overall single photon resolution expected is about 9 mrad.

The image from the Čerenkov photons on the sensitive part of the detector is a cone

cross-section whose opening angle is the Čerenkov angle modulo the refraction effects on
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the fused silica-water surface. In the most general case, the image consists of two cone

cross-sections out of phase one from the other by a value related to an angle which is

twice the particle incidence angle. In order to associate the photon signals with a track

traversing a bar, the vector pointing from the center of the bar end to the center of each

PMT is taken as a measure of the photon propagation angles αx, αy and αz. Since the

track position and angles are known from the tracking system, the three α angles can be

used to determine the two Čerenkov angles θC and φC . In addition, the arrival time of

the signal provides an independent measurement of the propagation of the photon and

can be related to the propagation angles α. This over-constraint on the angles and the

signal timing are useful in dealing with ambiguities in the signal association and high

background rates.

The expected number of photo-electrons (Npe) is ∼ 28 for a β = 1 particle entering

normal to the surface at the center of a bar and increases by over a factor of two in the

forward and backward directions.

The time distribution of real Čerenkov photons from a single event is of the order of

50 ns wide and during normal data taking they are accompanied by hundreds of random

photons in a flat background distribution within the trigger acceptance window. The

Čerenkov angle has to be determined in an ambiguity that can be up to 16-fold: the goal

of the reconstruction program is to associate the correct track with the candidate PMT

signal with the requirement that the transit time of the photon from its creation in the

bar to its detection at the PMT be consistent with the measurement error of about 1.5 ns.

4.5 Electromagnetic calorimeter: EMC

The understanding of CP violation in the B meson system requires the reconstruction

of final state containing a direct π0 or that can be reconstructed through a decay chain

containing one or more daughter π0s. The electromagnetic calorimeter is designed to

measure electromagnetic showers with excellent efficiency and energy and angular reso-

lution over the energy range from 20 MeV to 9 GeV. This capability should allow the

detection of photons from π0 and η decays as well as from electromagnetic and radiative

processes. By identifying electrons, the EMC contributes to the flavor tagging of neutral

B mesons via semi-leptonic decays. The upper bound of the energy range is given by

the need to measure QED processes like e+e− → e+e−(γ) and e+e− → γγ for calibration
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Figure 4.11: The electromagnetic calorimeter layout in a longitudinal cross section and
a schematic view of the wrapped CsI(Tl) crystal with the front-end readout package
mounted on the rear face (not to scale).

and luminosity determination. The lower bound is set by the need for highly efficient

reconstruction of B-meson decays containing multiple π0s and η0s. The measurement of

very rare decays containing π0s in the final state (for example, B0 → π0π0) puts the most

stringent requirements on energy resolution, expected to be of the order of 1−2%. Below

2 GeV energy, the π0 mass resolution is dominated by the energy resolution, while at

higher energies, the angular resolution becomes dominant and it is required to be of the

order of few mrad. The EMC is also used for electron identification and for completing

the IFR output on μ and K0
L identification. It also has to operate in a 1.5 T magnetic

field.

The EMC has been chosen to be composed of a finely segmented array of thallium-

doped cesium iodide (CsI(Tl)) crystals. The crystals are read out with silicon photo-

diodes that are matched to the spectrum of scintillation light. The energy resolution of

a homogeneous crystal calorimeter can be described empirically in terms of a sum of two

terms added in quadrature:
σE

E
=

a
4
√

E(GeV )
⊕ b (4.3)

where E and σE refer to the energy of a photon and its rms error, measured in GeV.

The energy dependent term a(∼ 2%) arises basically from the fluctuations in photon

statistics, but also from the electronic noise of the photon detector and electronics and

from the beam-generated background that leads to large numbers of additional photons.

This first term dominates at low energy, while the constant term b(∼ 1.8%) is dominant

at higher energies (> 1 GeV). It derives from non-uniformity in light collection, leakage
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or absorption in the material in front of the crystals and uncertainties in the calibration.

The angular resolution is determined by the transverse crystal size and the distance

from the interaction point: it can be empirically parameterized as a sum of an energy

dependent and a constant term

σθ = σφ =
c√

E(GeV )
+ d (4.4)

where E is measured in GeV and with c ∼ 4 mrad and d ∼ 0 mrad.

In CsI(Tl), the intrinsic efficiency for the detection of photons is close to 100% down

to a few MeV, but the minimum measurable energy in colliding beam data is about 20

MeV for the EMC: this limit is determined by beam and event-related background and

the amount of material in front of the calorimeter. Because of the sensitivity of the π0

efficiency to the minimum detectable photon energy, it is extremely important to keep

the amount of material in front of the EMC to the lowest possible level.

Thallium-doped CsI has high light yield and small Molière radius in order to allow

for excellent energy and angular resolution. It is also characterized by a short radiation

length for shower containment at BABAR energies. The transverse size of the crystals is

chosen to be comparable to the Molière radius achieving the required angular resolution

at low energies while limiting the total number of crystals and readout channels.

The BABAR EMC (left plot in Fig. 4.11) consists of a cylindrical barrel and a conical

forward end-cap: it has a full angle coverage in azimuth while in polar angle it extends from

15.8◦ to 141.8◦ corresponding to a solid angle coverage of 90% in the CM frame. Radially

the barrel is located outside the particle ID system and within the magnet cryostat:

the barrel has an inner radius of 92 cm and an outer radius of 137.5 cm and it’s located

asymmetrically about the interaction point, extending 112.7 cm in the backward direction

and 180.1 cm in the forward direction. The barrel contains 5760 crystals arranged in 48

rings with 120 identical crystals each: the end-cap holds 820 crystals arranged in eight

rings, adding up to a total of 6580 crystals. They are truncated-pyramid CsI(Tl) crystals

(right plot in Fig. 4.11): they are tapered along their length with trapezoidal cross-sections

with typical transverse dimensions of 4.7×4.7 cm2 at the front face, flaring out toward the

back to about 6.1 · 6.1 cm2. All crystals in the backward half of the barrel have a length

of 29.6 cm: toward the forward end of the barrel, crystal lengths increase up to 32.4 cm

in order to limit the effects of shower leakage from increasingly higher energy particles.

All end-cap crystals are of 32.4 cm length. The barrel and end-cap have total crystal
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Figure 4.12: EMC resolution as a function of the energy.

volumes of 5.2 m3 and 0.7 m3, respectively. The CsI(Tl) scintillation light spectrum has a

peak emission at 560 nm: two independent photodiodes collect this scintillation light from

each crystal. The readout package consists of two silicon PIN diodes, closely coupled to

the crystal and to two low-noise, charge-sensitive preamplifiers, all enclosed in a metallic

housing.

A typical electromagnetic shower spreads over many adjacent crystals, forming a clus-

ter of energy deposit: pattern recognition algorithms have been developed to identify

these clusters and to discriminate single clusters with one energy maximum from merged

clusters with more than one local energy maximum, referred to as bumps. The algorithms

also determine whether a bump is generated by a charged or a neutral particle. Clusters

are required to contain at least one seed crystal with an energy above 10 MeV: surround-

ing crystals are considered as part of the cluster if their energy exceeds a threshold of 1

MeV or if they are contiguous neighbors of a crystal with at least 3 MeV signal. The level

of these thresholds depends on the current level of electronic noise and beam-generated

background.

A bump is associated with a charged particle by projecting a track to the inner face

of the calorimeter: the distance between the track impact point and the bump centroid is

calculated and if it is consistent with the angle and momentum of the track, the bump is
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associated with this charged particle. Otherwise it is assumed to originate from a neutral

particle.

On average, 15.8 clusters are detected per hadronic event: 10.2 are not associated to

any charged particle. Currently, the beam-induced background contributes on average

with 1.4 neutral clusters with energy above 20 MeV.

At low energy, the energy resolution of the EMC is measured directly with a 6.13

MeV radioactive photon source (a neutron-activated fluorocarbon fluid) yielding σE/E =

5.0 ± 0.8%. At high energy, the resolution is derived from Bhabha scattering where the

energy of the detected shower can be predicted from the polar angle of the electrons and

positrons. The measured resolution is σE/E = 1.9±0.1% at 7.5 GeV. Fig. 4.12 shows the

energy resolution on data compared with expectations from Monte Carlo. From a fit to

the experimental results to eq. 4.3, a = 2.32 ± 0.30% and b = 1.85 ± 0.12% are obtained.

The constant term comes out to be greater than expected: this is mainly caused by a

cross talk effect, still not corrected, in the front-end electronics.

The measurement of the angular resolution is based on Bhabha events and ranges

between 12 mrad and 3 mrad going from low to high energies. A fit to eq. 4.4 results in

c = (3.87 ± 0.07) mrad and d = (0.00 ± 0.04) mrad.

4.6 Instrumented Flux Return: IFR

IFR (Instrumented F lux Return) detector is dedicated to muon identification and neu-

tral hadrons detection (mainly K0
L) in a wide range of momentum and angles.

The IFR, as all the other BABAR subsystems, has an asymmetric structure with a

polar angle coverage that is 17◦ ≤ θlab ≤ 150◦. The IFR (Fig. 4.13) is made of 19 layers

of Resistive Plate Chambers (RPC) in the barrel region and 18 layers in forward and

backward regions, that are placed inside the iron layers used for the solenoidal magnetic

field return joke. The iron structure is subdivided in three main parts: the barrel one

surrounding the solenoid, made of 6 sextants covering the radial distance between 1.820 m

and 3.045 m with a length of 3.750 m (along the z axis); the forward end-cap and back-

ward end-cap covering the forward (positive z axis) and backward regions. Moreover,

two cylindrical RPC layers have been installed between the calorimeter and the magnet

cryostat in order to reveal particles exiting from the EMC. Those layers should cover the

φ regions not covered by the barrel. Cylindrical layers are subdivided in four sections,
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Figure 4.13: IFR view;

# di readout # # strip strip len. strip larg. total #
section sectors coor. layer layer/sector (cm) (mm) channel

barrel 6 φ 19 96 350 19.7-32.8 ≈ 11k
z 19 96 190-318 38.5 ≈ 11k

end-cap 4 y 18 6x32 124-262 28.3 13,824
x 18 3x64 10-180 38.0 ≈ 15k

cyl. 4 φ 1 128 370 16.0 512
z 1 128 211 29.0 512
u 1 128 10-422 29.0 512
v 1 128 10-423 29.0 512

Table 4.4: IFR readout segmentation. Total number of channels is ∼ 53k.

each of them covering one fourth of the circumference: each of them has four RPC groups

with orthogonal readout strips. u − v helicoidal strips are placed inside along module’s

diagonals while φ and z parallel strips are placed outside. The summary of IFR readout

segmentation is given in Tab. 4.4.

Each end-cap has an hexagonal shape and is vertically subdivided in two halves in

order to allow internal subsystems access, if necessary. Vacuum tube and PEP-II focusing

elements are placed in the middle. Iron plates have a thickness ranging from 2 cm, for

the inner ones placed nearest to the interaction region, to 10 cm for the outer ones; this

means a total thickness of steel at normal incidence of ∼ 65 cm (nearly corresponding to
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Figure 4.14: Planar RPC section with HV connection scheme.

∼ 4 interaction lengths) in the barrel and ∼ 60 cm in the end-caps. Nominal distance

between iron layers in the inner barrel region is 3.5 cm while is 3.2 cm everywhere else.

The increased granularity of inner layers with respect to the outer ones is due to the

fact that the largest part of particles detected inside the IFR are interacting in the very

first material layers. Chosen segmentation is also the result of a compromise between the

subsystem cost (proportional to the volume) and the need of a good efficiency for low

momentum (> 700 MeV/c) muon detection, minimizing, at the same time, fraction of

K0
L’s that are not interacting inside the IFR. Result of this optimization is a not uniform

segmentation with iron plates that have thickness increasing with distance from beam

line. RPC section is shown in Fig. 4.14.

In each barrel sextant layers are kept together by a structure that reduces the coverage

of solid angle with active detectors of ∼ 7%. Active coverage of IFR detector is ≈ 2000 m2,

for a total RPC modules number that is ∼ 900. Signals produced by particles crossing the

gas gap inside the RPCs are collected on both sides of the chamber by using thin strips

(thickness ∼ 40 μm) with width of the order of a centimeter. Strips are applied in two

orthogonal directions on insulating planes 200 μm thick, in order to have a bi-dimensional

view. In each barrel sextant each gap is hosting a chamber. This consist of a set of 3

RPC modules of rectangular shape. Each module is ∼ 125 cm long along beams direction

with variable width in order to completely fill the gap. Each chamber is equipped with

96 φ − strip placed along z axis that are measuring the φ angle inside the barrel and 96
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z − strip orthogonal to beams direction that are measuring z coordinate. z − strips are

subdivided into 3 panels of 32 strips with largeness, function of chamber radial position,

ranging between 1.78 and 3.37 cm. This projective geometry allows a constant number of

strips for all the various layers without decreasing detector resolution (each strip covers

the same azimuthal angle). The used gas mixture is made of 56.7% Argon, 38.8% Freon-

134a and 4.5% Isobutane. Working voltage for RPCs is ∼ 7.5 kV . Iron layers keeping

apart RPC planes are chilled by a water system that keeps the temperature ∼ 20oC.

RPC efficiencies have been measured by using cosmics taken on a weekly base. Mean

efficiency during 2000 run has been ∼ 78% for the barrel and ∼ 87% for the forward

end-cap, less than that one measured in June 1999 (∼ 92%). During the Summer 1999

the ambient temperature increased very much reaching about 32◦ to 38◦ inside the iron.

During such period the IFR had problems to run the full detector because the dark current

drawn by the chambers exceeded the total current limit provided by the power supply.

All the chambers drawing more than 200μA were disconnected. In October the chambers

were re-connected but they didn’t recover the full efficiency. The forward end-cap has

been completely reconstructed and installed in the Summer 2002: 5 intermediate RPC

layers were replaced by 2.54 cm of brass, 10 cm of steel were added after the last RPC

layer, an RPC (layer 19) was added in front of the forward end-cap, an RPC belt was

added in the barrel–end-cap overlap region. Barrel efficiencies are still decreasing and are

at ∼ 40% level while in the new forward end-cap, they are greater than 90%.

Muons are identified by measuring the number of traversed interaction lengths in the

entire detector and comparing it with the number of expected interaction lengths for a

muon of a given momentum. Moreover, the projected intersections of a track with the

RPC planes are computed and, for each readout plane, all strips clusters detected within

a predefined distance from the predicted intersection are associated with the track: the

average number and the r.m.s. of the distribution of RPC strips per layer gives additional

μ/π discriminating power. It is expected in fact the average number of strips per layer

to be larger for pions producing an hadronic interaction than for muons. Other variables

exploiting clusters distribution shapes are constructed. Selection criteria based on all

these variables are applied to select muons. The performance of the muon selection has

been tested on samples of kinematically identified muons from μμee and μμγ final states

and pions from three-prong τ decays and KS → π+π− decays.

At the end of the summer 2004 RPC from Top and Bottom Barrel sextant have been
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substituted with limited streamer tube (LST). Data recording Run-5 has been started

only in the second half of April 2005. In these days (summer 2006) all the remaining

sextants of the barrel are going to be replaced with LST’s.

The efficiency of the LST is monitored daily using μμ pairs from colliding beams and

monthly from cosmic rays. The calculated efficiency results to be constant around 90%.

The geometric efficiency is 92.5%. The fluctuation of the efficiency are mostly related to

the fluctuation on the number of silent channels, but no loss of efficiency for each single

LST is detected.

Fig. 4.15 shows the efficiency map for the layer 10 of the IFR barrel, comparing the

bottom and top sextants with LST and remaining RPC’s which are going to be replaced

during Summer 2006.
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Figure 4.15: Efficiency map for layer 10 of IFR barrel for a run 62018 (middle of Run5).
Left and right columns represent RPC-instrumented sextants, central column represent
LST-instrumented layers (top and bottom layers). The remaining RPC’s in the IFR barrel
are going to be replaced with LST’s in Summer 2006.

For the π/μ discrimination the LST appear to work better than RPC ever did.

Since the forward RPC’s began to show degradation of efficiency in the inner regions

closest to the beam axis, where the machine background is higher, half of the central RPC

chambers for layer one and three have been switched to avalanche mode. This had as

effect an expected higher strip occupancy, but led to the full recovery of efficiency in the
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inner radii of the chambers. This effect is shown in Fig. 4.16
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Figure 4.16: Efficiency map for the first layer of forward endcap IFR. (a) Run 58700
(end of Run4) with all RPC in streamer mode; (b) Run 62018 (middle of Run5) with the
central RPC chamber (x > 0 cm and |y| < 100 cm) in avalanche mode. The two runs
have been chosen having approximately the same luminosity. (b) shows a full recovery of
the efficiency at small radii which was degraded with the chamber in streamer mode.

This is mostly important for the future run periods, where the plan is to raise signif-

icantly the luminosity, with a consequent increase in the beam backgrounds. Due to the

good results of the test on these two layers, during this summer the central RPC chambers

of the forward endcap will be all converted to avalanche regime.



Chapter 5

Charged and Neutral Kaon
Reconstruction

All the measurements we will present in this work involve neutral or charged kaons. We

will describe the selection of charged tracks and kaon/pion particle identification (PID)

through the informations coming from the inner tracking system and, above all, the DIRC

θc measurements.

We then will describe the quite standard reconstruction of K0
S

decaying in π+π− or

π0π0, even if some of the details may differ in B0 → K+K−K0
S

or in B0 → K0
S
K0

S
K0

S

decays, because of different signal to background ratios.

Finally, an original work on the K0
L identification, using the informations on both the

EMC and the IFR detectors, which made possible the measurement of the CP asymmetry

in B0 → K+K−K0
L decays, is presented.

5.1 Track Reconstruction

The reconstruction of charged particle is based on the SVT and the DCH detectors.

Charged particle tracking has been studied with large samples of cosmic ray muons, e+e−,

μ+μ− and τ+τ− events, as well as multi-hadrons.

Charged tracks are defined by five parameters (d0, φ0, ω, z0, tanλ) and their associated

error matrix. These parameters are measured at the point of closest approach to the

z-axis; d0 and z0 are the distances of this point from the origin of the coordinate system

in the x–y plane and along the z-axis, respectively. The angle φ0 is the azimuth of the

track, λ the dip angle relative to the transverse plane, and ω is the curvature. d0 and ω

are signed variables; their sign depends on the charge of the track.
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Figure 5.1: Track reconstruction efficiency in the DCH at operating voltages of 1960 V
and 1900 V as a function of transverse momentum (left plot) and of polar angle (right
plot). The efficiency is measured in multi-hadron events.

The track finding and the fitting procedures make use of Kalman filter algorithm [33] [53]

that takes into account the detailed distribution of material in the detector and the full

map of the magnetic field. First of all, tracks are reconstructed with DCH hits through

a stand-alone DCH algorithm, the resulting tracks are then extrapolated into the SVT

and SVT track segments are added and a Kalman fit is performed to the full set of DCH

and SVT hits. Any remaining SVT are passed to the SVT stand-alone track finding algo-

rithms. Finally, an attempt is made to use in the Kalman filter tracks that are only found

by one of the two tracking systems and thus recover tracks scattered in the material of

the support tube.

The efficiency for track reconstruction in the DCH has been measured as a function of

transverse momentum, polar and azimuthal angles in multi-track events. These measure-

ment rely on specific final states and exploit the fact that the track reconstruction can be

performed independently in the SVT and the DCH. The absolute DCH tracking efficiency

is determined as the ratio of the number of reconstructed DCH tracks to the number of

tracks detected in the SVT with the requirement that they fall within the acceptance of

the DCH. Left plot in Fig. 5.1 shows the efficiency in the DCH as a function of transverse

momentum in multi-hadron events.

At design voltage of 1960 V , the efficiency averages 98±1% per track above 200 MeV/c:

the data recorded at 1900 V show a reduction in efficiency by about 5% for tracks almost
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Figure 5.2: Left: Monte Carlo studies of low momentum tracks in the SVT on D∗+ →
D0π+ events. (a) comparison with data in BB events and (b) efficiency for slow pion
detection derived from simulated events. Right: resolution in the parameters d0 and z0

for tracks in multi-hadron events as a function of the transverse momentum.

at normal incidence, indicating that the cells are not fully efficient at this voltage (see

right plot in Fig. 5.1).

The stand-alone SVT tracking algorithms have a high efficiency for tracks with low

transverse momentum: to estimate the tracking efficiency for these low momentum tracks,

a detailed Monte Carlo study was performed. The pion spectrum was derived from simu-

lation of the inclusive D∗ production in BB̄ events and Monte Carlo events were selected

in the same way as the data: since the agreement with Monte Carlo is very good, the

detection efficiency has been derived from Monte Carlo simulation. The SVT extends

the capability of the charge particle reconstruction down to transverse momenta of ∼ 50

MeV/c (see left plot in Fig. 5.2).

The resolution in the five track parameters is monitored using e+e− and μ+μ− pair

events: the resolution is derived from the difference of the measured parameters for the

upper and lower halves of the cosmic ray tracks traversing the DCH and the SVT. On this

sample with transverse momenta above 3 GeV/c, the resolution for single tracks is 23 μm

in d0 and 29 μm in z0. To study the dependence of resolution from transverse momentum,

a sample of multi-hadron events is used: the resolution is determined from the width of

the distribution of the difference between the measured parameters (d0 and z0) and the
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coordinates of the vertex reconstructed from the remaining tracks in the event: right plot

in Fig. 5.2 shows the dependence of the resolution in d0 and z0 as a function of pt. The

measured resolutions are about 25 μm in d0 and 40 μm in z0 for pt of 3 GeV/c: these

values are in good agreement with the Monte Carlo studies and in reasonable agreement

also with the results from cosmic rays.

Besides the criteria described above the tracks selected for this analysis are requested

to satisfy additional requests:

• A cut on the distance of closest approach to the beam spot in the x − y plane

(|dxy| < 1.5 cm) and along the z axis (|dz| < 10 cm) is applied. This reduces fake

tracks and background tracks not originating from the vicinity of the interaction

point. This cut is not applied to the tracks coming from the KS decay since the KS

decay vertex is distant from the interaction point.

• For tracks with p⊥ > 0.2 GeV/c at least one DCH hit is required. This cut is not

used for low momentum tracks to retain slow pions (for instance the ones produced

in the D∗ → D0π decays).

• tracks momentum must satisfy plab < 10 GeV/c (where plab is the laboratory mo-

mentum of the track) is applied. This removes tracks not compatible with the beam

energies.

• Tracks are required to be within the polar angle acceptance of the detector: 0.410 <

θlab < 2.54 rad. This ensures a well-understood tracking efficiency.

• Tracks with transverse momentum p⊥ < 0.18 GeV/c do not reach the EMC and

therefore they will spiral inside the drift chamber (“loopers”). The tracking algo-

rithms of BABAR will not combine the different fragments of these tracks into a single

track. Therefore dedicated cuts have been developed to reject track fragments com-

patible with originating from a looper based on their distance from the beam spot.

In order to identify looper candidates, the minimal difference in p⊥, φ and θ to all

other tracks in the event is determined. Tracks passing selection criteria (see Tab.

5.1), different for same-sign and opposite-sign track pairs, are flagged as loopers and

only the track fragment with |dz| closest to the beam spot is retained.

These criteria remove roughly 13% of all low-momentum tracks in the central part
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of the detector. On average, they lower the mean charged multiplicity per B meson

by less than 1%.

• If two tracks are very closely aligned to each other, one of the two is called “ghost”.

These cases arise when the tracking algorithms splits the DCH hits in two track

fragments. If two tracks are very close in phase space (as defined in Tab. 5.1), only

the track with the largest number of DCH hits is retained. This ensures that the

fragment with the better momentum measurement is kept in the analysis.

Select tracks with Selection criteria

distance in x − y plane |dxy| < 1.5 cm
distance in z axis |dz| < 10 cm

minimum number of DCH hits NDCH > 0 if p⊥ > 0.2 GeV/c
maximum momentum plab < 10 GeV/c
geometrical acceptance 0.410 < θlab < 2.54 rad

Reject tracks if Δpt = 100 MeV/c to other tracks and
loopers (p⊥ < 0.18 GeV/c) Same sign: |Δφ| < 220 & |Δθ| < 215 mrad

Opposite sign: |Δφ| < 190 & |Δθ| < 300 mrad
ghosts (p⊥ < 0.35 GeV/c) |Δφ| < 220 & |Δθ| < 215 mrad

Table 5.1: Summary of track selection criteria.

5.1.1 Particle Identification

In order to identify the charged particles, informations from SVT, DCH and DIRC infor-

mations are used. Below the Čerenkov threshold of the DIRC, the DCH dE/dx measure-

ments dominate BABAR’s particle identification of tracks. The DCH algorithms extract

the charge collected per single cell. For each track, a 80% truncated mean of ≈ 40 such

measurements, corrected for gas pressure and temperature variations, cell geometry, sig-

nal saturation, non-linearity’s at large dip angles, and cell entrance angle, provides a 7.5%

precision on dE/dx. Fig. 5.3 displays the momentum dependence of this measurement in

a sample consisting of particles with various masses.

The DIRC measurement of the Čerenkov cone angle θc is BABAR primary tool for

identifying high momentum tracks. The reconstruction algorithm associates PMT signals

with tracks, extracting a θc measurement when sufficient photons are available for a fit.

Starting from the entrance angle of a track into a particular fused silica bar, the emission
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Figure 5.3: Measurement of dE/dx in the DCH as a function of the track momenta. The
data include large samples of beam background triggers as evident from the high rate
of protons. The curves show the Bethe-Bloch predictions derived from selected control
samples of particles of different masses.

angle and arrival time of possible Čerenkov photons is reconstructed from the space-time

coordinates of candidate PMT signals, providing a measurement of each photon θc and

φc (the azimuth angle of the Čerenkov photon around the track direction) with a 16-

fold ambiguity. Timing and geometrical considerations typically reduce the number of

ambiguous solutions to 3 and the background by a factor of 40. Finally, a maximum

likelihood fit to the photons associated to each track extracts its θc and number of signal

(Nγ) and background photons. The resulting θc resolution scales as 1/
√

Nγ, where Nγ

is around 20 for short track path lengths in the radiator, typically at small polar angles,

and 65 for the longer path lengths at the extreme polar angles. Sec. 8.1.2 discusses a

technique to estimate the θc resolution, applied to B+ → φh+ decays, where h+ is π+ or

K+. The average θc resolution is ≈ 3 mrad, which provides pion/kaon separation of >2.2σ

at 4 GeV/c. Fig. 5.4 plots the θc versus momentum profile and the measured standard

deviations of separation between pions and kaons over the momentum range covered by

tracks of B decays involved in this work.

Eventually, the informations associated to the expected value of the Čerenkov angle,

given by the relation cos θc = 1/βn, where β is the Lorentz factor, β = p/E and n is the

refraction index for the material crossed by the particle (n=1.473 for the silica bars), the
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Figure 5.4: (a) The θc of kaons and pions versus the track momenta, and (b) the separation
in standard deviations between pions and kaons as a function of momentum, from the
control sample described in Sec. 8.1.2.

measured Čerenkov angle, and the dE/dx informations from SVT and DCH are combined

in a global likelihood. The ratio of the two considered hypotheses h1 and h2 is compared

to a given threshold (lh1/lh2 > τh2) in order to decide if the track is in agreement with

the h1 hypothesis more than h2 one. One of these selectors, likelihood-based, provides

five different selection criteria, based on the different likelihood threshold. The goodness

of the selection criteria is fixed by the fraction of tracks identified as kaons, out of a pure

sample, and the pion misidentification, i.e. the fraction of tracks identified as kaons, out

of a pure pion sample.

The charged kaon efficiency is compared to the charged pion misidentification in Fig-

ures 5.5 and 5.6 as a function of momentum and polar angle, respectively. In the recon-

struction of the invariant mass of the hadronic system, given the difference in the kaon

momentum spectrum, a charged track is identified as kaon if pK > 300 MeV/c.

A requirement based on these selectors is used for all tracks in this work, with the ex-

ception of the primary track in B+ → φh+ decays, where h+ mass hypothesis is estimated

with a likelihood fit which combines the kinematics of the decay and a parameterization

of θc information.
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Figure 5.5: Charged kaon identification (top) and charged pion fake rate (bottom) for the
loose kaon “likelihood” selector as a function of momentum. Left: efficiency for positive
particles; middle: efficiency for negative particles; right: ratio of the efficiency between
data and Monte Carlo for positive and negative particles.

5.2 K0
S

Reconstruction

In B0 → K+K−K0
S

and B0 → K0
S
K0

S
K0

S
decay analysis, we reconstruct K0

S
mesons in

both π+π− and π0π0 decay modes.

5.2.1 K0
S

→ π+π− Reconstruction

In this case K0
S

mesons are reconstructed from a pair of opposite charged tracks, geomet-

rically constrained to come from a common vertex. The vertex is identified using different

techniques in the different analyses:

1. for B0 → K+K−K0
S
, we used the standard BABAR K0

S
vertexing, which is based

on a geometric constraint on the two tracks: starting from the point of closest

approach in the 3D space, the vertexing algorithm minimizes the χ2, expressed in

the position-momentum representation;

2. for B0 → K0
S
K0

S
K0

S
, because of the fact that no charged tracks originates di-
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Figure 5.6: Charged kaon identification (top) and charged pion fake rate (bottom) for
the loose kaon “likelihood” selector as a function of the polar angle in different bins of
momentum. Left: 0.25 ≤ p < 0.75 GeV/c; middle: 0.75 ≤ p < 2.00 GeV/c; right:
2.00 ≤ p < 5.00 GeV/c.

rectly from th B meson, the B vertexing is achieved with the special algorithm

TreeFitter, which fits simultaneously all the B decay tree (see Sec. 2.3) using a

Kalman filter technique [33]. In this way we get the K0
S

vertex together with the

primary vertex.

We only reject candidates for which the vertexing algorithm has failed. We start from a

common standard selection of these candidates, and then eventually we refine the selection

for the different analyses depending on the specific signal-to-background ratio. We require

for B0 → K+K−K0
S
(π+π−) and B0 → K0

S
K0

S
K0

S
(π+π−) decays (B0 → K0

S
K0

S
K0

S
(π0π0)

decays):

1. |mπ+π− − mPDG
K0

S
| < 12(11) MeV/c2;

2. 2D decay distance: 0.2(0.15) < rdec < 40(60) cm;

3. K0
S → π+π− pointing angle α < 200 mrad;
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Figure 5.7: The mπ+π− distributions of signal B0 → K0
SK0

SK0
S(π+π−) Monte Carlo (left),

and events in the on-resonance data sample (right).

4. K0
S vertex probability P (χ2) > 10−6;

5. (K0
S

decay time significance, τK0
S
/σ(τK0

S
) > 5),

where mπ+π− is the invariant mass of the two tracks in the pion mass hypothesis after

the vertexing, and mPDG
K0

S
is the nominal K0

S
mass [21]. rdec is defined as the 2D decay

distance from the beam-spot,

rdec =
√

(xvtx − xbs)2 + (yvtx − ybs)2. (5.1)

The pointing angle α is the two-dimensional angle between the vector from the beam-spot

to the decay vertex of the K0
S

and the momentum vector (in xy plane), cosα = r̂dec · P̂xy

when r̂dec and P̂xy are unit vectors.

Figs. 5.7, 5.8, 5.9, and 5.10 show the K0
S

mass, momentum, decay length, and α

distributions respectively for data and Monte Carlo for B0 → K0
S
K0

S
K0

S
(π+π−). The plot

of the K0
S

mass shows that the level of background is quite low and most K0
S
s in the plot

are likely to be real K0
S
.

Fig. 5.11 shows the decay time significance for K0
S
→ π+π− candidates in signal Monte

Carlo and background events for B0 → K0
S
K0

S
K0

S
(π0π0) mode.

The selections are chosen with an optimization which maximizes the statistical signif-

icance of the signal, defined as:

Nσ = NS/
√

NS + NB (5.2)

where NS and NB are the expected numbers of signal and background events in the final

dataset.
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Figure 5.8: The K0
S momentum distributions of signal B0 → K0

SK0
SK0

S(π+π−) Monte
Carlo (left), and events in the on-resonance data sample (right).
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Figure 5.9: The K0
S

flight length distributions of signal B0 → K0
S
K0

S
K0

S
(π+π−) Monte

Carlo (left), and events in the on-resonance data sample (right). There’s a cut at 2 mm.
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Figure 5.10: The K0
S

α distributions of signal B0 → K0
S
K0

S
K0

S
(π+π−) Monte Carlo (left),

and events in the on-resonance data sample (right).
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Figure 5.11: The K0
S

τK0
S
/σ(τK0

S
) distributions of signal B0 → K0

S
K0

S
K0

S
(π0π0) Monte

Carlo (crosses), and background events in the on-resonance data sample (solid histogram).

5.2.2 K0
S

→ π0π0 Reconstruction

In order to reconstruct K0
S
→ π0π0 decays we form π0 → γγ candidates from pairs of

photon candidates in the EMC, which are not matched to any track of the event.

The electromagnetic shower produced by a charged or neutral particle in the EMC

forms a cluster of energy deposits spread over many adjacent crystals. Meanwhile, photons

from high momentum π0 → γγ decays often illuminate adjacent crystals, producing two

energy maxima (known as bumps) within one cluster. The EMC reconstruction algorithm

searches for seed crystals which register an energy deposit of E > 10 MeV, and then builds

a cluster by adding crystals with E > 1 MeV which are either adjacent to another E >

3 MeV crystal in the cluster or the seed. Crystals with energy E satisfying E ′/E <

0.5(N −2.5), where E ′ is the highest energy of the neighboring N crystals with > 2 MeV,

are identified as constituting a local maxima. Bumps are built from these crystals with

an energy determined by an algorithm which iterates the fraction of energy contributed

by each crystal in the cluster until the bump centroid is stable up to a tolerance of 1 mm.

Another center-of-gravity algorithm locates the bump position using logarithmic crystal

weights. A cluster association with a charged particle is made if the projection from the

bump centroid to the inner face of the calorimeter is consistent with a track trajectory.

Otherwise, the bump is considered as a neutral particle with a trajectory originating at

the interaction point. Good clusters are defined as possessing energy E > 30 MeV/c, lab
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Figure 5.12: θ−φ representation of a region of the calorimeter. All the variables entering
the definition of EMC-related quantities are shown.

frame polar angle 0.41 < θLAB < 2.409 (i.e. within the fiducial volume of the EMC), and

lateral shape parameter LAT < 1.1 [54]:∑
i=2,n Ei · r2

i(∑
i=2,n Ei · r2

i

)
+ 25(E0 + E1)

(5.3)

with the crystals in descending energy (Ei) order, N the number of crystals composing

the reconstructed cluster, and ri and φi are the polar coordinates of the same crystal on

the plane perpendicular to the line going from the B vertex to the center of the shower. r0

is the typical average distance between two crystals (5 cm in BABAR EMC). The variables

entering LAT definition are illustrated by Fig. 5.12. This variable is used to distinguish

energy clusters coming from electrons and photons from those generated by hadrons.

Using the fact that hadronic showers typically have a more irregular shape with respect

to those generated by electromagnetic interactions, this variable is defined to maximize

the separation between the distributions of these two classes of clusters. Since the two

most energetic clusters of an electromagnetic shower bring in average a large fraction

of the total energy, LAT values for photons and electrons are typically smaller than for
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Figure 5.13: Distributions of LAT variable for photons coming from B0 → K0
SK0

SK0
S(π0π0)

signal Monte Carlo events (crosses) and background events in on-resonance data (solid
histogram). The two distributions are normalized to the same area.

hadrons and a loose upper cut removes a large fraction of the hadronic contamination.

We found this variable useful also to discriminate true π0’s from random combinations

of two photons, since LAT depends on photon energy and γ’s coming from signal and

background have different spectrum. This is shown in Fig. 5.13.

The photon energy resolution is measured from a radioactive source (at the low end),

e+e− Bhabha scattering events (at the high end), and decays of χc1, π0, η, and other

particles (in between). A fit over this data provides the energy dependence of the resolu-

tion [55]:
σE

E
=

(2.32 ± 0.30)%
4
√

E( GeV)
+ (1.85 ± 0.12)%. (5.4)

Similarly, studies of π0 and η decays to two photons of approximately equal energy provide

an empirical parameterization of energy dependence of the angular resolution [55]:

σθ = σφ =
3.87 ± 0.07√

E( GeV)
+ (0.00 ± 0.04)mrad. (5.5)

Typical π0 mass resolution in hadronic events is 6.9 MeV/c2 (Fig. 5.14a). Fig. 5.14b

displays the measured over expected energy ratio for radiative Bhabha events.

In order to reject spurious π0 candidates, we require (100 < mγγ < 141) MeV/c2 for

B0 → K0
S
K0

S
K0

S
analysis and (100 < mγγ < 0.155) MeV/c2 for B0 → K+K−K0

S
(π0π0).

Finally we form K0
S

candidates from selected π0’s pairs, requiring they have an in-

variant mass (477.6 < mπ0π0 < 527.6) MeV/c2 for B0 → K+K−K0
S
(π0π0) decays and an



5.3 K0
L Reconstruction 111

Figure 5.14: (a) The π0 mass distribution reconstructed from two photon candidates in
hadronic events overlaid with a fit to the data. (b) The ratio of measured to expected
energy for electrons in radiative Bhabha events overlaid with a Gaussian fit. The expected
value is calculated from the production angle. The resolution is 1.9%.

invariant mass (480 < mπ0π0 < 520) MeV/c2 for B0 → K0
S
K0

S
K0

S
(π0π0) decays. We show

in Fig. 5.15a the distribution of K0
S

invariant mass for signal and background events of

B0 → K+K−K0
S
(π0π0), compared with the K0

S
→ π+π− invariant mass. In Fig. 5.15b

the distribution for π0π0 invariant mass is shown for signal and background events of

B0 → K0
S
K0

S
K0

S
(π0π0) decays.

5.3 K0
L

Reconstruction

Due to their long lifetime, K0
L mesons decay outside the BABAR tracking volume, and they

can be reconstructed only via their inelastic nuclear interactions in the crystals of the

EMC or in the iron-absorber layers of the IFR [52, 55]. Since BABAR has not a hadronic

calorimeter, the momentum of the K0
L

candidate is not measured and only the flight

direction can be reconstructed.

In the analyses, a mass constraint of the K0
L

mother candidate has to be applied to

calculate the K0
L

momentum.

The K0
L

reconstruction starts by selecting neutral clusters, from the available 3D IFR

clusters in each event, by checking that no reconstructed track extrapolates (using a
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Figure 5.15: (a) Distributions of K0
S

invariant masses in B0 → K+K−K0
S

events for (green)
K0

S
→ π+π− signal Monte Carlo and (black) background candidates; (blue) K0

S
→ π0π0

signal Monte Carlo and (red) background candidates. (b) Distributions of K0
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invariant masses in B0 → K0
S
K0

S
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(π0π0) events for (black) signal Monte Carlo events

and (red) background events.

swimmer algorithm) to the IFR cluster position. An algorithm attempts to combine

such neutral clusters, as being associated to the same hadronic shower on the basis of a

vicinity criterion. The final object output by this process is a neutral cluster aggregate

which combines both IFR and Inner RPC response to the particle. Such an object can

have components found in different geometric sectors of the IFR and can provide a first

estimate of the neutral hadron flight direction.

An association is formed between the above IFR aggregate and calorimeter clusters,

assuming that the position of the EMC cluster provides the position of the first interaction,

that the shower develops into a cone of tuned opening angle, and taking into account the

covariance matrix of the IFR aggregate. Each created association has a significance level

based on the χ2 of the match, which can be used to select different match qualities. The

IFR-EMC association is used to create an object representing the neutral hadron. This

object provides the implementation of different algorithms for the computation of the

flight direction and is available for the physics analysis.

A good resolution for the K0
L

flight direction helps provide a clean reconstruction of

the signal channel B0 → K+K−K0
L
. We will discuss in Sec. 5.3.1 the basics of the K0

L

reconstruction in the IFR and in Sec. 5.3.2 the reconstruction in the EMC.
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5.3.1 K0
L

Reconstruction in the IFR

The preliminary selection of K0
L

candidates in the IFR makes use of the following cuts:

1. At least 2 planar layers;

2. the cluster center-of-gravity must have −0.75 < cos θ < 0.93. This cut is aimed to

reject beam background in the very forward regions;

3. rejection of clusters starting in layer 14 and beyond. Also this cut reduces beam

background contributions;

4. The relative position between the cluster centroid and the EMC position of any track

with momentum greater than 0.75 GeV/c must satisfy |θKL
− θtrk| > 350 mrad, as

well as to be out of the interval -750 < φKL
−φtrk < 350 mrad for positively charged

tracks, and -300 < φKL
− φtrk < 750 mrad for negatively charged tracks.

5.3.2 K0
L

Reconstruction in the EMC

The preliminary selection of K0
L

candidates in the EMC makes use of the following cuts:

1. The centroid of the cluster must have cos θ < 0.935. This requirement is aimed

to reject residual non-matched charged hadrons. In fact, the tracking efficiency is

very high, but at some point fails in the very forward region. This is illustrated in

Fig. 5.16, where the distribution of bad neutral clusters is shown for photons from

π0 → γγ decays.

2. The cluster energy range is 200 MeV < E < 2 GeV.

3. Probability of the cluster to match any track < 1%.

4. The KL candidate can not form a γγ invariant mass between 100 to 150 MeV/c2

with any neutral candidate in the event having at least 30 MeV. This requirement

is not applied if Zernike moment Z20 < 0.8 (see Eq. 5.6).

5. Reject two-bumps clusters with a cluster energy larger than 1 GeV that are consis-

tent with a merged π0 (m(2 bump) > 110 MeV).
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Figure 5.16: Fraction of bad clusters as a function of cosθ in the very forward region in a
sample of neutral clusters from photons coming from π0 → γγ events. Bad clusters are
defined as the ones which does not belong to the π0 peak in Fig. 5.14a.

where the Zernike moments are an expansion of the shape of the shower in terms of

Zernike polynomials [56]:

Znm =
n∑

ri<R0

Ei

E
· fnm

(
ri

R0

)
· e−imφi (5.6)

where ri and Ei have the same meaning of Eq. 5.3, R0 is the Molière radius (∼ 3.8 cm for

the BABAR EMC crystals) and fnm is the Zernike polynomial of order n, m. The spacial

energy distribution of a cluster can be developed as a series of Zernike polynomials (which

form a complete basis):

E(xE, y) →
∑
n,m

Zn,m · ζn,m(r, φ) (5.7)

Moments with indices m > 0 are φ-dependent.

5.3.3 K0
L

Calibration with e+e− → φ(K0
S
K0

L
)γ Decays

The K0
L

detection efficiency can be evaluated using the detailed Monte Carlo simulation;

the lack of available experimental data makes the hadron shower simulation not entirely

reliable at low momenta, and the results depend somewhat on the hadronic shower gen-

erator used. Hence, it is important to find a calibration channel so that identification and

detection efficiency can be tested directly with data.

The ideal calibration channel would have a branching ratio much larger than ∼
1 × 10−5, which is the branching ratio of the decay channel B0 → K+K−K0

L
, and should
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be as pure as possible, to enable the identification of K0
L on an event-by-event basis. Un-

fortunately there is no single B decay mode with a K0
L in the final state, with a branching

ratio much larger than the reference channel which can be kinematically selected. The

number of K0
L

from this calibration channel is ≈ 3000 times more than the golden channel

B0 → J/ψK0
L
.

A copious source of K0
L
’s, however, is the decay φ → K0

S
K0

L
, which is produced abun-

dantly, both in the continuum and in Υ (4S) events with an emission of an hard ISR

photon. The inclusive φ production rate is very high, ∼8% per event, and roughly the

same for Υ (4S) events as for continuum events. The continuum cross section is ∼3.5 times

the peak cross section of Υ (4S) → BB, so that the number of K0
L

from this calibration

channel is ∼5000 times more than the our signal channel.

The expected distribution of the opening angle between the two kaons in the laboratory

frame, has a peak at small angles, due to the average φ velocity and to the very small K0
L

momentum in φ centre of mass frame. The inclusive angular distribution between any

K0
S

and any K0
L

from hadronic e+e− interactions (both Υ (4S) and continuum events), is

shown in Fig. 5.17a.
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Figure 5.17: (a). Opening angle between K0
S

and K0
L

for Υ (4S) events (grey histogram)
and continuum events (white histogram); (b). Momentum spectrum of K0

L
from φ decays.

In any such event where a K0
S

is selected, there is a good probability to find a K0
L

within a cone of ∼10◦, enabling K0
L

to be selected and their direction to be estimated

using observed K0
S
. The corresponding K0

L
momentum spectrum is shown in Fig. 5.17b.

It can be seen that it covers most of the critical range where the detection efficiency needs
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to be tested. The K0
Ls from B0 → K+K−K0

L decay typically have momenta of 1–3 GeV/c.

In the higher momentum range, the detection efficiency is expected to flatten out anyway.

Further selection criteria can be found to enhance the signal from φ decays with respect

to the background. From the study of K0
L

from φ decay, it is also possible to determine

the K0
L

momentum (or the missing momentum of the event) PK0
L
≡ pmiss, with reasonable

resolution, from the measurement of the momentum PK0
S

of the K0
S

and the opening angle

α, with the relationship:

M2
φ = 2m2

K0 + 2[EK0
L
EK0

S
− PK0

L
PK0

S
cos α]. (5.8)

This equation has two solutions for PK0
L
, and thus introduces a two-fold ambiguity. The

ambiguous cases can be reduced strongly as follows. First of all, only those events are

selected where the solution corresponding to the lower momentum gives a value too small

for detection, (PL ≤ 500 MeV). Furthermore the correct solution is fairly flat in the

φ center-of-mass reference frame (the φ being mostly unpolarized and the detection ef-

ficiency affecting mostly very forward angles). On the contrary the wrong solution is

strongly backward-peaked. In cases where only one of the two solutions is in the back-

ward hemisphere, the solution in the forward hemisphere is likely to be correct. This

criterion also drastically reduces the combinatorial background, since for these events,

both solutions are likely to correspond to backward emission. An additional cut on PK0
S

may halve this background without affecting very much the events from φ decay.

We reconstruct a K0
S
→ π+π− with the standard selection described in Sec. 5.2.1.

Instead of using the pK0
L
≡ pmiss evaluated in 5.8 we use the missing mass of the event

Δm:

Δm2 = |pK0
L
|2 (5.9)

In order to further clean the sample we require a very hard ISR photon and apply

a loose cut on the reconstructed missing mass. We also apply an “isolation cut” on the

missing momentum requiring that in the EMC the signal K0
L does not overlap with the

shower produced by pions coming from the signal K0
S decay (see Fig. 5.18):

1. 4.0 < the energy of highest energy photon < 10.0 GeV (CM frame)

2. Δm > 0.4 GeV/c2

3. angle(pmiss, π
+/−) > 100 mrad in the EMC
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Figure 5.18: Opening angle between missing momentum and π+ coming from signal K0
S

decay before the “isolation cut”. The distribution for π− is similar. Signal e+e− →
φ(K0

S
K0

L
)γ events (red), continuum uū/dd̄/ss̄ (grey), continuum cc̄ (brown) and the sum

of all these components (white histogram) are normalized to 225 fb−1.

When multiple candidates are present, we look for the minimum χ2 of the K0
S mass to

select the best candidate. In Fig. 5.19 the distribution of the missing mass for the different

contributions is shown, normalized to 225 fb−1, which is approximately the luminosity of

the data used for this analysis (Runs I-IV). This plot shows that the main background

comes from light quark continuum production, while the contribution due to cc̄ is negli-

gible.

We extract the signal performing a fit to the Δm distribution. We parameterize the

signal probability density function (PDF) with a so-called Crystal Ball function [57]:

fCrystal Ball(x, x0, σ, α, n) =
1

N
·

⎧⎨
⎩ e−

(x−x0)2

2σ2 , x < x0 + ασ
(n/α)ne−α2/2

((x−x0)/σ+nα−α)n , x ≥ x0 + ασ
(5.10)

where x0 and σ represent the mean and the resolution of the core Gaussian, α is the

value of x at which the distribution becomes not Gaussian and n is the exponential of the

non-Gaussian tail. The signal Monte Carlo events with the PDF are shown in Fig. 5.20.

The continuum background distribution is parameterized with a phase space function,

introduced by the ARGUS collaboration [74]:

fARGUS(x) = x
√

1 − x2 exp
[
−ξ(1 − x2)

]
(5.11)

where ξ is a floating parameter describing the slope of the distribution.
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Figure 5.19: Missing mass (Δm) distribution for signal e+e− → φ(K0
S
K0

L
)γ events (red),

continuum uū/dd̄/ss̄ (grey), continuum cc̄ (brown) and the sum of all these components
(white histogram) are normalized to 225 fb−1.
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Figure 5.20: Missing mass (Δm) distribution for signal e+e− → φ(K0
S
K0

L
)γ events, with

the signal PDF superimposed. The parameterization is obtained from a maximum likeli-
hood fit to signal Monte Carlo sample with a Crystal Ball function.



5.3 K0
L Reconstruction 119

We perform the maximum likelihood fit to an on-resonance sample equivalent to 230

fb−1. Since the signal statistics and the signal-to-background ratio are good enough, we

fit the mean and the resolution of the signal peak, together with the background slope

ξ. The result is shown in Table 5.2. The number of signal events is found to be 11712

± 176. The mean of Δm distribution is consistent with the nominal K0 mass [21]. The

Parameter value
Nsig 11712 ± 176
Nbkg 27840 ± 226
x0 (496.7 ± 0.1) MeV/c2

σ (6.9 ± 0.1) MeV/c2

ARGUS ξ -0.10 ± 0.02

Table 5.2: Fitted yields in a luminosity of 230 fb−1 of on-resonance data sample for
e+e− → φ(K0

SK0
L)γ events, together with the main signal and background parameters.

Δm distribution on the on-resonance dataset, together with the fit result, is shown in

Fig. 5.21.
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Figure 5.21: Missing mass (Δm) distribution for e+e− → φ(K0
S
K0

L
)γ events in the final

RunI-IV dataset, with the fit PDF superimposed. Continuum line: total PDF, dashed
line: continuum background only PDF.

The events extracted by this fit represent the normalization sample for our study.
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Reconstruction of K0
L

Clusters

The distribution of this opening angle for EMC (IFR) clusters in the different components

is shown in Fig. 5.22 (5.23). We look for EMC and IFR candidates inside a cone of 200

mrad from the missing momentum direction.
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Figure 5.22: Left: distribution of the opening angle between missing momentum direction
and EMC cluster one. Middle: difference in the polar angle; right: difference in azimuthal
angle. Signal e+e− → φ(K0

SK0
L)γ events (red), continuum uū/dd̄/ss̄ (grey), continuum cc̄

(brown) and the sum of all these components (white histogram) are normalized to 225
fb−1.
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Figure 5.23: Left: distribution of the opening angle between missing momentum direction
and IFR cluster one. Middle: difference in the polar angle; right: difference in azimuthal
angle. Signal e+e− → φ(K0

S
K0

L
)γ events (red), continuum uū/dd̄/ss̄ (grey), continuum cc̄

(brown) and the sum of all these components (white histogram) are normalized to 225
fb−1.

Since our main goal is to study K0
L

signals in the EMC and IFR, we accept only

events which have an EMC or IFR cluster inside 200 mrad from the missing momentum.

In Fig. 5.24 we show the Δm distributions with a reconstructed K0
L
. Since the signal-to-

background ratio (and also the nature of the background) is different in the EMC and in

the IFR, we divide the sample in one made by events with at least one EMC cluster (and

which can have also some IFR interaction) and events without EMC clusters (“IFR-only”
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events), consistently with what is done in B0 → K+K−K0
L analysis. In Table 5.3 we

report the yields for events with reconstructed K0
L.

Parameter EMC IFR-only
Nsig 5175 ± 201 1225 ± 76
Nbkg 11686 ± 210 1134 ± 76

Table 5.3: Fitted yields in a luminosity of 230 fb−1 of on-resonance data sample for
e+e− → φ(K0

S
K0

L
)γ events, with a K0

L
cluster reconstructed in the EMC or IFR in a cone

of 200 mrad around the missing momentum.
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Figure 5.24: Missing mass spectrum for the full RunI-IV φγ dataset with the fit PDF
superimposed. Continuum line: total PDF, dashed line: continuum background only
PDF. Left plot: events with at least one reconstructed EMC cluster. Right plot: events
with at least one IFR reconstructed cluster without any EMC cluster (“IFR-only” events).

Studies on Monte Carlo samples show that the hadronic cascade development depend

somewhat on the hadronic shower simulation used. Unfortunately, existing simulations

do not all describe consistently the interactions of K0
L, above all at low momenta. All

the hadronic interaction models accessible through GEANT should, however, agree on the

general characteristics of the response to penetrating hadrons, namely that:

1. there is a high multiplicity of hadronic shower topologies, distributed over a wide

part of the IFR detector;
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2. shower longitudinal development depends on momentum and particle direction;

3. shower transverse development depends on the particular pattern of showering

physics processes;

4. there is a significant fraction of early hadronic showers in the inner calorimeter.

The dependence on the simulation model of a hadronic shower inside the detector make

necessary a reliable study on a K0
L

control sample. The sample of e+e− → φ(K0
S
K0

L
)γ

events have enough statistics and good purity to test the shower development inside the

detector. Since the main background in the analysis of B0 → K+K−K0
L

decays, which we

will present in this work in Chapter 6, comes from badly identified K0
L’s in the EMC, while

the IFR-only sample has a better purity, we will study the data-Monte Carlo agreement of

the variables which describe the response of the EMC to the passage of neutral hadrons.

Finally, we will develop an algorithm for the particle identification of the K0
L’s in the

calorimeter and we will validate it on this control sample.

K0
L

Shower Development in the EMC

In order to study the development of the EMC response at passage of K0
L’s, we exploit a

set of topological variables which characterize the shower shape. The most important are

the lateral moment (LAT), defined by Eq. 5.3, which describes the spread of the shower

in the transverse plane with respect the K0
L flight direction. We also use the Zernike

moments Znm, defined in Eq. 5.6. In particular, we will study the two moments Z20 and

Z42:

• Z20 = 2r2 − 1

• Z42 = (4r4 − 3r2) sin 2φ

while Z20 is correlated with the cluster width, Z42 gives additional discrimination power,

since it is also sensitive to cluster asymmetries.

The set of other variables we use is defined by:

• Number of crystals

• Second moment: ∑
Ei · r2

i

Ei
(5.12)
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where Ei is the energy of crystal i and ri is the distance of crystal i to the cluster

center.

• E1/E9: The energy of the most energetic crystal (E1) divided by the energy sum

of the 3×3 crystal block (E9) with the most energetic crystal in its center.

• E9/E25: The energy sum of the 3×3 crystal block (E9) with the most energetic

crystal in its center, divided by the energy sum of the 5×5 crystal block (E25) with

the most energetic crystal in its center.

To extract the signal shape from data we use the sPlots weighting technique [80]. The

sWeight for each event is calculated using the likelihood function (which is made by the

only Δm). The resulting distribution is like a background-subtracted plot, which takes

into account the likelihood covariance matrix.

In order to disentangle the dependency of the shape variables from the momentum

of the K0
L

we compare the distributions in bins of the EMC calibrated energy Ecal. We

divide the kinematic phase space in bins of Ecal instead of its momentum pK0
L

because

this is a measured quantity for K0
L, while the momentum is evaluated from a kinematic

constraint. In the same plots we compare signal e+e− → φ(K0
SK0

L)γ Monte Carlo, signal

e+e− → φ(K0
SK0

L)γ sPlots and a sample of almost pure K± data. From Fig. 5.25 to Fig.

5.31 we show the comparison for the shape variables.

From this study it is evident that the shape of the hadronic shower in the calorimeter

depends highly by the K0
L kinematics (above all by its momentum, less by its direction).

Also, it is evident that we cannot use the K± as a K0
L control sample because of different

energy loss mechanism in the calorimeter: above all the presence of energy loss by ioniza-

tion at low energies contributes for a higher e.m. component than for neutral kaons (this

can be seen in all the shape variables for the first two energy bins).

In figures from 5.32 to 5.38 the same variables divided in the same energy bins are

shown for signal and background sPlots in e+e− → φ(K0
S
K0

L
)γ data.

This study shows that the separation power grows with the energy. In the first two

bins there is no separation at all. In fact, the candidates with Ecal < 0.2 GeV are not

included in the B0 → K+K−K0
L

at all.

The overall conclusion of this study is that the Monte Carlo simulation with its most

recent implementation of the hadronic shower (Bertini cascade [58]) captures the global
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Figure 5.25: Shape of Lateral Moment in bins of calorimetric energy. Blue his-
tograms: e+e− → φ(K0

SK0
L)γ Monte Carlo. Hatched histogram: K± data. Dots:

e+e− → φ(K0
S
K0

L
)γ sPlots.
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Figure 5.26: Shape of Number of Crystals in bins of calorimetric energy. Blue his-
tograms: e+e− → φ(K0

SK0
L)γ Monte Carlo. Hatched histogram: K± data. Dots:

e+e− → φ(K0
S
K0

L
)γ sPlots.
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Figure 5.27: Shape of Energy ratio E1/E9 in bins of calorimetric energy. Blue his-
tograms: e+e− → φ(K0

SK0
L)γ Monte Carlo. Hatched histogram: K± data. Dots:

e+e− → φ(K0
S
K0

L
)γ sPlots.
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Figure 5.28: Shape of Energy ratio E9/E25 in bins of calorimetric energy. Blue
histograms: e+e− → φ(K0

SK0
L)γ Monte Carlo. Hatched histogram: K± data. Dots:

e+e− → φ(K0
S
K0

L
)γ sPlots.
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Figure 5.29: Shape of Zernike moment Z20 in bins of calorimetric energy. Blue
histograms: e+e− → φ(K0

SK0
L)γ Monte Carlo. Hatched histogram: K± data. Dots:

e+e− → φ(K0
S
K0

L
)γ sPlots.
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Figure 5.30: Shape of Zernike moment Z42 in bins of calorimetric energy. Blue
histograms: e+e− → φ(K0

SK0
L)γ Monte Carlo. Hatched histogram: K± data. Dots:
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S
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Figure 5.31: Shape of Second moment in bins of calorimetric energy. Blue his-
tograms: e+e− → φ(K0

SK0
L)γ Monte Carlo. Hatched histogram: K± data. Dots:

e+e− → φ(K0
S
K0

L
)γ sPlots.
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Figure 5.32: Shape of Lateral Moment in bins of calorimetric energy. Black dots:
signal, red dots: background. Signal and background distributions are obtained with

sPlots weighting technique on e+e− → φ(K0
S
K0

L
)γ data sample.
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Figure 5.33: Shape of Number of Crystals in bins of calorimetric energy. Black dots:
signal, red dots: background. Signal and background distributions are obtained with

sPlots weighting technique on e+e− → φ(K0
S
K0

L
)γ data sample.
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Figure 5.34: Shape of Energy ratio E1/E9 in bins of calorimetric energy. Black dots:
signal, red dots: background. Signal and background distributions are obtained with

sPlots weighting technique on e+e− → φ(K0
S
K0

L
)γ data sample.
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Figure 5.35: Shape of Energy ratio E9/E25 in bins of calorimetric energy. Black dots:
signal, red dots: background. Signal and background distributions are obtained with

sPlots weighting technique on e+e− → φ(K0
S
K0

L
)γ data sample.
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Figure 5.36: Shape of Zernike moment Z20 in bins of calorimetric energy. Black dots:
signal, red dots: background. Signal and background distributions are obtained with

sPlots weighting technique on e+e− → φ(K0
S
K0

L
)γ data sample.
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Figure 5.37: Shape of Zernike moment Z42 in bins of calorimetric energy. Black dots:
signal, red dots: background. Signal and background distributions are obtained with

sPlots weighting technique on e+e− → φ(K0
S
K0

L
)γ data sample.
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Figure 5.38: Shape of Second moment in bins of calorimetric energy. Black dots:
signal, red dots: background. Signal and background distributions are obtained with

sPlots weighting technique on e+e− → φ(K0
S
K0

L
)γ data sample.
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behaviour of the shape variables, also if some discrepancies are present. However, the

dependency on the kinematics is well reproduced by the simulation.

In order to establish if energy is the only kinematic dependency for the shape variables,

we divide the φγ sample in four bins of the polar angle. In Fig. 5.39 we show the

distribution of the lateral moment in these bins. Also the other variables show a similar

behavior: the shape for cos θLAB < 0 (we will call it Bwd) is slightly different for the one

in cos θLAB > 0 (Fwd).
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Figure 5.39: Shape of Lateral moment in bins of cos θLAB. Blue histograms: φγ MC.
Dots: φγ sPlots.

We propose a kinematic binning in the Ecal−θLAB space for a K0
L particle identification

algorithm which should in the same time maintain the main dependency on the kinematics

and do a grouping which reduce the finer discrepancies between data and Monte Carlo.

We divide the space in two hemispheres, Fwd and Bwd. Then we divide the momentum

space in three regions:

• Low E: Ecal < 0.2 GeV

• Medium E: 0.2 < Ecal < 0.6 GeV
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• High E: Ecal > 0.6 GeV

These requirements define six K0
L

kinematic regions. In each of them the PID criteria will

be optimized and validated on data control samples.

5.4 K0
L

Particle Identification

Genetic Algorithms [61] are search algorithms based on the mechanics of Darwinian evo-

lution: survival of the fittest. Each possible solution to a given problem (e.g. a set of

cuts on some discriminating variables) is considered an individual: each cut may be re-

garded as one gene, the set of cuts comprising the individual. The genetic algorithm is

designed to find the best solution to the problem from a population of possible solutions.

The algorithm calculates a fitness value for each individual (set of cuts). This is specified

by the user with his/her problem in mind, and could be, for example, a measure of the

signal to background ratio for each set of cuts (individual). Then the worst candidate

solutions (the least fit) are removed from the population. The algorithm then acts on the

surviving solutions using three fundamental (genetic) operators: reproduction, crossover

and mutation: more individuals are “spawned” from combinations of the surviving ones

in order to form a new (descendant) population, which retains the best characteristics of

the previous one. The individuals comprising the population improve, on average, after

each iteration, i.e. they gain better and better fitness values.

In experimental Particle Physics it has been shown [62, 63] that genetic algorithms can

help in physics analysis when statistical significance optimization is needed. Applications

of genetic algorithms [62] include distinguishing signal from background (in rare decays)

and flavour tagging.

In order to tune (i.e. train) a particle identification algorithm that is aimed to dis-

criminate K0
L
’s from background, we need a sample representing the K0

L
signal and one

representing the background. In our study, we use a simulated sample of D0 → K0
L
π+π−

decays as signal1, with K0
L candidates matched with true K0

L at generation level, and as

background non truth matched candidates in the continuum events reconstructed with

the same selection algorithm.

Each genetic algorithm needs a validation sample for the training procedure. In prin-

1The D0s are copiously produced in the e+e− → cc̄ continuum production. We will describe this other
K0

L
control sample in Sec. 5.5.
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ciple, it is sufficient to divide the same sample used for the training in two independent

sub-samples. We prefer to use a completely independent sample: K0
L’s coming from

B0 → K+K−K0
L decays, which also have a wide momentum spectrum. This allows to

test also if the binning is sufficient to represent the characteristics of another decay. Fi-

nally, we validate each selector with the data control samples.

We compare the performances of two algorithms: a selector based on a Neural Network

and another on a Boosted Decision Trees.

5.4.1 Neural Network Algorithm

One of the most used genetic algorithms is a non-linear multidimensional method, also

called neural networks [64].

We train a neural network using 7 input variables: lateral moment, Zernike moments

Z20 and Z42, energy ratios E1/E9 and E9/E25, second moment and the number of

crystals. We have shown in the previous section that the general behaviour and their

dependency on the neutral momentum of these variables are reproduced by the Monte

Carlo simulation.

The training procedure is repeated in all the defined 6 kinematic bins. In each bin,

different configurations of learning parameter, number of hidden layers and number of

nodes in each hidden layer has been tried, in order to obtain the best separation between

signal and background.

As discussed previously, we rejected all the reconstructed clusters with Ecal < 0.2 GeV.

We also cut the clusters with ≤ 2 crystals, because of in this case the lateral moment is

zero by definition (Eq. 5.3) and this can introduce instabilities in the training procedure.

The output of the Neural Network in the previously defined six kinematic regions is shown

in Fig. 5.40, while Fig. 5.41 shows the signal efficiencies versus the background rejection

(i.e. the figure of merit) for the 6 selectors.

The output of the Neural Network reflects the fact that the discrimination power grows

with the energy.

5.4.2 Boosted Decision Trees Algorithm

The algorithm based on Decision Trees has been successfully developed and used in the

event definition of the MiniBooNE experiment [59, 60]. The basis of this algorithm is
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Figure 5.40: Output of the Neural Network algorithm in six kinematic bins. Brown dots:
signal. Blue dots: background.
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shown in Fig. 5.42. For the variable one (let’s say LAT) choose the value which has the
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LAT?
< 0.5 ≥ 0.5 

Zernike Z42?
< 0.2 ≥ 0.2 

E1/E9?
< 0.9 ≥ 0.9 

Figure 5.42: Schematic of a decision tree. S for signal, B for background. Terminal nodes
(called leaves) are shown in boxes. If signal events are dominant in one leave, then this
leave is signal leave; otherwise, background leave.

best separation and split the sample in two, one side having mostly signal (S) and the other

having mostly background (B). Then repeat the splitting of these sub-samples according

the other variables. The splitting is done until a given number of final branches, called

leaves, are obtained, or until each leaf is pure signal or pure background, or has too few

events to continue. This process produces the “decision tree”. An iterative optimization

of the binary splittings is then performed, called “boosting”.

MiniBooNE collaboration has shown that this algorithm has better performances than

Neural Network algorithm, especially when the input variables are highly correlated (as

in our case).

MiniBooNE collaboration have also shown that the output is also more stable than

the one of the Neural Networks. We use as a training sample the one used for the Neural

Network, with the same input variables.

For each bin we optimize the minimal leaf size minimizing the Gini index:

Gini =
S1B1

S1 + B1
+

S2B2

S2 + B2
(5.13)
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where if the initial sample is composed by S signal events and B background events, Si

and Bi are the number of signal and background events of each of the two splitted samples

(called leaves). The output of the boosting technique has a probabilistic interpretation:

if x is a given point in the space (which has N dimension if N is the number of variables

used) and f(x) is the output, this can be written as

P (y = +1|x)

P (y = −1|x)
= e2f(x) (5.14)

that is, the ratio of probability of signal over the probability of background for that point

is a simple function of the output f(x). In Fig. 5.43 we show the output of this algorithm

in the six previously defined kinematic bins, while in Fig. 5.44 the relative figure of merit

is displayed.
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Figure 5.43: Output of the Boosted Decision Trees algorithm. Black dots: signal. Red
dots: background.

Also in this case, the best separation is achieved in the high energy region, while for

Ecal < 0.3 GeV the distribution of signal and background are almost the same.

We also note that both for Neural Network and Boosted Decision Trees, in the same

energy bin, there is a better separation in the cos θ < 0 region than in cos θ > 0. This
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Figure 5.44: Figure of merit of the Boosted Decision Trees algorithm. The curves represent
the different kinematic bins.

reflects the more photon-like shape of the variables in the Bwd bin (see for example

lateral moment in Fig. 5.39). In Fig. 5.45 we compare the two selectors in the two spatial

hemispheres.
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Figure 5.45: Comparison of the figures of merit of the Neural Network and Boosted
Decision Trees algorithms in the two hemispheres Bwd (left plot) and Fwd (right plot).

From the comparison we conclude that there is not a large difference in the perfor-
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mances between the two algorithms, but Boosted Decision Trees seems to be better in

the regions of most interest for the analyses (Ecal > 0.3 GeV). Also, Boosted Decision

Trees seems to be more stable in the sense that if the input shapes have a small change,

the output shows only small changes, while Neural Network can change a lot. Also,

the Boosted Decision Trees have a shape which is more easily parameterizable than the

irregular output of the Neural Network.

We will denote the group of the 6 selectors obtained with Boosted Decision Trees as

Totti selector 2.

5.4.3 Validation of K0
L

Selector on Data

We validate the output of the Totti selector using e+e− → φ(K0
SK0

L)γ data control sample.

We evaluate the algorithm output for each event using the trained configuration. At each

event the sWeight is assigned using the likelihood function. The output in the 6 bins for

signal and background events is shown in Fig. 5.46. Comparing the shapes of the selector

with the one obtained on Monte Carlo and sideband data in Fig. 5.43, it is evident that

the selector has a similar discrimination power in the two cases. The test is also significant

because the kinematics of the K0
L

in e+e− → φ(K0
S
K0

L
)γ is very different to the one of the

training sample (D0 → K0
L
π+π−). In fact, since the φ recoils against the hard ISR photon,

the K0
L

direction accumulates in the Bwd region. Concluding, this is a successfully test

of the generality of the selector. In order to give a more quantitative estimation of the

data-Monte Carlo agreement, we superimpose the distributions for e+e− → φ(K0
S
K0

L
)γ

signal Monte Carlo and sPlot weighted data, and evaluated a χ2 for each kinematic bin.

The comparison is given in Fig. 5.47.

Even if the uncertainties on data events are high, due to the low statistics (above

all in the low energy bins), the behaviors are very well reproduced in 5/6 bins. In

[Fwd, HighEcal] there is a shift and the presence of a tail for lower values (even if the dis-

crimination power with respect to background is similar to the one obtained with Monte

Carlo). The final shape can be taken from Monte Carlo in the 5/6 bins where the agree-

ment is very good, and from φγ signal sPlots for the bin where there is disagreement,

since in that bin there is enough statistics on data.

2After the name of the famous Italian football player and world champion, Francesco Totti
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Figure 5.46: Output of Totti selector on e+e− → φ(K0
S
K0

L
)γ control sample. The sig-

nal (black dots) and background (red dots) distributions are obtained with the sPlots
weighting technique.
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Figure 5.47: Data - Monte Carlo comparison of the output of the Totti selector on
the e+e− → φ(K0

SK0
L)γ sample. Histogram is signal Monte Carlo, while dots are data,

weighted with the sPlots technique.
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5.5 K0
L

Efficiency Calibration with D0 → K0
L
π+π−

Decays

One of the measurements presented in this work is the CP asymmetry in the B0 →
K+K−K0 decays with Dalitz plot technique (Chapter 6). We both consider K0 → K0

S

and K0 → K0
L sub-modes. In order to modulate correctly the Dalitz plot model for

B0 → K+K−K0
L

decays, we need a correct efficiency map in the Dalitz plot, which means

that we need the K0
L

efficiency as a function of the neutral hadron momentum. With

this purpose, we need to calibrate it with a data control sample. The e+e− → φ(K0
S
K0

L
)γ

sample has not a sufficient number of events to be divided into enough bins in the position-

momentum space. Because of that, we decided to use the more copious source of K0
L
’s

from D0 → K0
L
π+π− decays, where the D0 are produced by D∗+ → D0π+ decays, and

the D∗+ come from inclusive production e+e− → D∗+X. We use both on-resonance and

off-resonance events. The high statistics of this samples is determined by the high cross

section of the process: σ(e+e− → D∗X) = 580 ± 70 pb [65] and from the branching

fractions of D∗ → D0π and D0 → K0
L
π+π−, which are 0.68 and 0.7 × 10−3 [21].

Since the K0
L

momentum is not reconstructed, it is evaluated assuming that it comes

from a D0 decay, using the relation

m2
D0 = (EK0

L
+ Eπ+π−)2 − (pK0

L
+ pπ+π−)2 (5.15)

where mD0 is the nominal D0 mass [21], and (EK0
L
,pK0

L
) and (Eπ+π−,pπ+π−) are the four

momenta of the K0
L and the π+π− pair, respectively. To reconstruct the D∗ candidate,

we look for a slow pion among the pions of the event which are not associated to the D0

decay. The event is then kinematically characterized by the variable Δm, which is the

mass difference between the D∗ and the D0. The signal is expected to peak at the mass

of the π+, while the background, made of random combination of particles, shows a more

phase-space distribution.

In order to extract the signal we perform a maximum likelihood fit to the data. The

signal is parameterized on signal Monte Carlo sample with a double Gaussian, while the

background is parameterized with a threshold function:

f(x)bkg = (x − x0)
a · e−b(x−x0)2−c(x−x0) (5.16)

where x0 is the lower physical limit of the distribution and a, b and c are slope parameters.

The result of the fit on data is shown in Fig. 5.48, where the contribution of the background
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and of the wide Gaussian component of the signal are also shown. The fit results are

shown in Tab. 5.5. The purity of the signal in the interval around one standard deviation

(considered as the resolution of the wider Gaussian) from the mean, is ≈ 40%. The
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Figure 5.48: Δm distribution on 230 fb−1 of data. Green is background, dashed curve
corresponds to background plus wide Gaussian component for the signal.

Parameter Final Value

Δm mean value (signal) 145.48 ± 0.01 MeV/c2

σΔm(narrow Gaussian) 0.72 ± 0.03 MeV/c2

σΔm(wide Gaussian) 1.71 ± 0.10 MeV/c2

Nsig 55220 ± 3438
Nbkg 226980 ± 21398

a 0.59 ± 0.01
b 99 ± 79
c 43.7 ± 2.1

Table 5.4: Results of the Δm fit: a, b and c refer to shape variables in Eq. 5.16.

signal is one order of magnitude higher than the one for e+e− → φ(K0
S
K0

L
)γ sample, even

if with lower purity.

Once the K0
L

is identified, we want to use it to obtain a correction of the reconstruction

efficiency to apply to the Monte Carlo simulation in the EMC. In order to obtain an
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estimation of the correction, let’s consider the ratio(
εK0

L DATA

εK0
L MC

)
EMC

=
N(K0

L DATA)

fL × N(K0
L MC)

(5.17)

where N(K0
L DATA) and N(K0

L MC) are the signal K0
L

yields respectively obtained from the

data and MC D0 → K0
L
π+π− samples, and fL is the scale factor which scales the expected

yields to the actual luminosity. This ratio would give us something that depends primarily

on the K0
L

EMC interactions if N(K0
L MC) was properly scaled to the data luminosity L.

However, there are inescapable and relatively large uncertainties on the Monte Carlo fL

that do not depend on the K0
L

EMC interactions, but on the D∗ production rate, D0

branching fraction, D0 → K0
L
π+π− kinematic in the Dalitz plane and other generator-

level quantities.

To isolate data-Monte Carlo discrepancies of K0
L

interactions in the EMC potentially

(affecting analyses of other decays involving a K0
L
) from other potential data-Monte Carlo

discrepancies (that are specific to the D0 → K0
L
π+π− sample), it is better to use the

double-ratio of Eq. 5.18:

(
εK0

L DATA

εK0
L MC

)
EMC

=

(
N(K0

L)

N(K0
S)

)
DATA(

N(K0
L)

N(K0
S)

)
MC

=

(
N(K0

L DATA)

N(K0
L MC)

)
(

N(K0
S DATA)

N(K0
S MC)

) (5.18)

where N(K0
L) and N(K0

S) are the K0
L and K0

S yields (data or Monte Carlo) respectively

obtained from the D0 → K0
Lπ+π− and D0 → K0

Sπ+π− samples. The latter is obtained

reconstructing the decay treating the K0
S as a K0

L, which means that the information of

the K0
S daughters is not used to know the K0

S momentum, which is computed with the

D0 mass constraint as in Eq. 5.15.

The signal is extracted with a similar maximum likelihood fit to data (like for the

D0 → K0
L
π+π−). The result of the fit on Δm variable is shown in Fig. 5.49. The signal

yield is 37516 ± 258 events in this case.

In Eq. 5.18, there is no more the luminosity scale factor fL because that factor is

the same for the D0 → K0
L
π+π− and D0 → K0

S
π+π− samples and hence cancels out. All

generator-level effects (i.e. production rates) being cancelled out in the double-ratio of

Eq. 5.18, this quantity thus remains sensitive to reconstruction effects only. Since we can

safely assume that the K0
S

reconstruction is much better simulated than the K0
L

one, we

conclude that deviations of the double-ratio from 1.0 is a good estimator of data/MC
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Figure 5.49: Δm distribution fit for the D0 → K0
S
π+π− sample in data (230 fb−1).

discrepancies in the reconstruction of K0
L
’s in the EMC. To be valid, Eq. 5.18 needs

the D0 → K0
L
π+π− and D0 → K0

S
π+π− samples integrated luminosities to be equal,

which is guaranteed by our reconstruction strategy (we reconstruct D0 → K0
Lπ+π− and

D0 → K0
Sπ+π− samples simultaneously).

We extract the efficiency corrections of Eq. 5.18 from fits in bins of momentum and

θLAB. We use the computed momentum of the K0
L and not the value of Ecal, because

the latter variable is not defined for D0 → K0
Sπ+π− sample (the K0

S does not reach the

calorimeter). In Fig. 5.50 we show the correlation between the computed K0
L momentum

and Ecal for D0 → K0
Lπ+π− events, after the sPlot weighting technique has been applied.

EMC efficiency corrections vs pK0 are shown on Fig. 5.51. These corrections are inde-

pendent of the kinematic of our D0 → K0
Lπ+π− sample and can safely be used in other

decays. EMC efficiency corrections vs θK0 are shown on Fig. 5.52. No sharp dependency

is observed, and the θK0 dependency of efficiency can be also neglected.

We also compute an average correction of the efficiency for K0
L

candidates with Ecal >

50 MeV in different run periods: we evaluate it to be 0.956±0.021±0.007 for the RunI-IV

periods and 0.989 ± 0.043 ± 0.007 for RunV period. The first error is statistic and the

the second systematic, where the main source of systematic uncertainty comes from the

PDFs parameterizations and from possible bias in the fit and in the pK0
L

evaluation.

We will use these results to correct the Monte Carlo efficiency across the Dalitz plot
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Figure 5.50: 2D sPlot of pK0
L

vs Ecal for data and Monte Carlo.
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Figure 5.51: Efficiency corrections vs pK0, independently of Ecal, for K0
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’s reconstructed

in the EMC.
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Figure 5.52: Efficiency corrections vs θK0 for K0
L
’s reconstructed in the EMC.

for B0 → K+K−K0
L

decays (Sec. 6.3.4).



Chapter 6

Measurement of CP Asymmetry in
B0 → K+K−K0 Decays

In Chapter 3 we described the dynamics of a decay of a B meson in three kaons. In this

Chapter we will focus on the particular decay of the neutral B meson into K+K−K0,

where the K0 can be both a K0
S

or a K0
L
.

As discussed in the theoretical introduction of Sec. 1.6, the decay B0 → K+K−K0 is

one of the most promising processes to search for physics beyond the Standard Model.

A full Dalitz plot analysis of these decays is necessary to measure CP asymmetry

because this final state has not a definite CP eigenvalue, but it depends on the relative

angular momentum of the K+K− system (Sec. 1.5). The Dalitz plot analysis allows to

take into account the variation of the CP -odd and CP -even mixtures across the three-body

phase space. Moreover, the contributions from b → uq̄q tree amplitudes, proportional to

the Cabibbo-Kobayashi-Maskawa (CKM) matrix element Vub with a CP -violating weak

phase γ [21], although small, may depend on the position in the Dalitz plot. In fact, in

B0 → φ(K+K−)K0 decays the modification of the CP asymmetry due to the presence

of suppressed tree amplitudes is estimated to be O(0.01) [66, 67], while at higher K+K−

masses a larger contribution of the order of O(0.1) is possible [26].

Furthermore the simultaneous presence of CP -odd and CP -even amplitudes contribut-

ing to the decay rate gives the opportunity to measure the CP -violating parameter β,

removing with a direct measurement the four-fold ambiguity arising in the case of the

time-dependent CP asymmetry with only one CP contribution, like in B0 → [cc̄]K0. In

this case, one accesses only the trigonometric function sin 2β of the CKM angle β.

For this measurement we use 347× 106 BB̄ pairs recorded at the Υ (4S) resonance by

the BABAR detector.
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6.1 Removing the Ambiguity in β Using Interference

Terms

In this section we show how, using the interference between CP -even and CP -odd contribu-

tions to the decay amplitude in B0 → K+K−K0 decays one can measure the CP -violating

parameter β without the four-fold ambiguity.

Let’s consider a Dalitz plot with only two resonances. Assuming no CP violation, we

set the isobar coefficients b = δ = 0 for the asymmetry in the amplitude and in the phase,

respectively, as we defined in Sec. 3.6.1. Therefore the average amplitude and the average

phase, respectively, are c = c̄ and φ = φ̄, such that for CP -even decays A = Ā and for

CP -odd decays A = −Ā.

In the case of the presence of a single partial wave (for example S + S-wave in the

K+K− system), the cosine term disappears

|A|2 −
∣∣Ā∣∣2 = 0

and the total rate is

|A|2 +
∣∣Ā∣∣2 = 2

(
c2
1|f1|2 + c2

2|f2|2
)

+ 4c1c2Re
(
ei(φ1−φ2)f1f

∗
2

)
which contains a “standard” Dalitz plot information on resonance fractions and interfer-

ence pattern. Additional informations exist in the “sine term”. When both resonances

are S(P )-waves in the K+K− mass system, this terms gives:

2Im
(
ĀA∗e−2iβ

)
= ∓ sin 2β

[
2
(
c2
1|f1|2 + c2

2|f2|2
)
∓ 4c1c2Re

(
ei(φ1−φ2)f1f

∗
2

)]
.

In this approximation (no CP violation) the magnitude of the time-dependent asymmetry

gives additional information on fractions and phases. In the simplified notation of the

“sine” and “cosine” terms of the time-dependent CP asymmetry S and C, respectively,

which we introduced in Eq. 1.55 for the B0 → [cc̄]K0 decays become:

S ≡ 2Im(ĀA∗e−2iβ)

|A|2 + |Ā|2 = ∓ sin 2β

and

C ≡ |A|2 − |Ā|2
|A|2 + |Ā|2 = 0.

This means that for a single pure partial wave, we measure sin 2β that gives 4-fold ambi-

guity on β.
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When waves with opposite parity are present (for example S + P -wave in the K+K−

system), the “sine term” becomes

2Im
(
ĀA∗e−2iβ

)
= sin 2β

[
2
(
c2
1|f1|2 − c2

2|f2|2
)]

+ cos 2β
[
4c1c2Im

(
ei(φ1−φ2)f1f

∗
2

)]
and hence |S| �= sin 2β and a cos 2β term appears in the equation. This is why interference

terms of opposite CP eigenstates allow direct determination of β, instead of just sin 2β.

6.2 The Squared Dalitz Plot

The description of the three-body phase space relies onto a set of two independent kine-

matic variables. The standard Dalitz plot variables are a set of two squared invariant

masses of the B daughters. In order to simplify the relation describing the boundary of

the Dalitz plot we choose the observables m12, which is the invariant mass of the K+K−

system, and cos θH , where θH is the helicity angle of the K+K− system. It is defined as

the angle between K+ and K0 in the K+K− center of mass frame. The Jacobian of the

transformation from ’standard’ Dalitz-plot variables, Eq.(3.1), to our PDF variables

dm2
12 dm2

13 = |J |(dm12)(d cos θH) (6.1)

is given as

|J | = (2m12) × (2pq) (6.2)

where p is the momentum of K0
S

and q is the momentum of K+, both computed in K+K−

center of mass frame. The Jacobian of the transformation is shown in Figure 6.1.

In this way the infinitesimal element of the phase space is

dPS = dm · d cos θH · |J | · dΔt

where Δt is the difference in the decay times of the B0 and B0. The fraction of an

individual resonance r is computed as

FF (r) =
2c2

r (1 + b2
r)
∫

dPS · |fr|2∫
dPS · Γ (6.3)

and the asymmetry in the B0-B0 rates (direct CP asymmetry) is given as

ACP (r) = −|cr|2 − |c̄r|2
|cr|2 + |c̄r|2

= − 2br

1 + b2
r

(6.4)
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Figure 6.1: Jacobian of transformation (m2
12, m

2
13) ↔ (m12, cos θH). mK+K− is given in

GeV/c2.

6.3 The Event Selection

We reconstruct B0 → K+K−K0 decays by combining two oppositely charged tracks with

a K0
S
→ π+π−, K0

S
→ π0π0 or K0

L
candidate. The selection of the charged and neutral

kaons is described in Chapter 5. In particular for this analysis, we require that the K+

and K− tracks have at least 12 measured DCH hits, a minimum transverse momentum

of 0.1 GeV/c, and they must originate from the nominal beam spot. The tracks are then

identified as kaons using a likelihood ratio that combines dE/dx measured in the SVT

and DCH with the Čerenkov angle and number of photons in the DIRC, as described

in 5.1.1.

Charmless decays suffer the contamination of two main sources of background:

1. random combination of particles produced in events of the type e+e− → qq̄ (q =

u, d, s, c), when the set of mesons produced by the hadronization of the initial qq̄

pair mimics the signal final state

2. other B decays, having a final state similar to the one considered.

In particular, B decays with higher multiplicity can give this kind of background, if one

of the particles in the final state is lost in reconstruction. In this case, the energy of the
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misreconstructed event is typically lower than for the well reconstructed one, so that the

two components can be easily separated using the kinematic informations.

By far, the higher source of background for these decays is the first one. The branching

fractions for the charmless decays we are going to consider are within [10−6 ÷ 10−5], and

the cross section of light qq̄ pairs at the Υ (4S) is comparable to bb̄ cross section (about

1 nb). This means that background suppression has to be powerful enough to bring the

signal over background ratio from O(10−6) to (at least) O(1). The most powerful tool to

reject this background is to use the angular distribution of the particles in the final state.

6.3.1 Event Shape for Continuum Rejection

One can exploit different variables to suppress continuum production, all of them relying

on the common idea that qq̄ events show a typical jet-like structure in the Υ (4S) rest

frame. This behaviour can be distinguished from the isotropic distribution of BB̄ events.

We can build the following variables, using this feature:

1. The normalized second Fox-Wolfram moment [68]: R2 = H2/H0, where H2 (H0) is

the second order (order zero) Fox Wolfram moment, defined as

Hl =
∑
i,j

|pi| · |pj|
E2

vis

Pl(cos θi,j)

where Pl is the Legendre polynomial of order l, pi is the momentum of the particle

i, θij the opening angle between the particles i and j and Evis the measured energy

of the event. Ignoring the mass of the particles in the final state, H0 = 1 from

four-momentum conservation. Moreover, Hl ∼ 1 for even values of l in the case of

jet-like events. Because of that, we reject those events having R2 ∼ 1 to suppress

qq̄ background.

2. | cos θS |, which quantifies the agreement between the event shape distribution and

the jet-like structure. We define the sphericity tensor [69]

Tαβ =
∑

j

(
δαβ · p2

j − pjαpjβ

)

where pj is the momentum of the particles in the event and the indices α and β

run over the components of the momentum vector. Since the tensor is symmetric

for the exchange of α and β, it can be diagonalized. Calling λ1, λ2, λ3 the three
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eigenvalues, the eigenvector associated to the smallest eigenvalue is called sphericity

axis. The three eigenvectors identify the three axes of the ellipsoid representing the

orientation of the two back-to-back jets. The three eigenvalues give the axis sizes.

For a jet-like event, the ellipsoid collapse on the straight line given by the sphericity

axis. θS is the angle between the sphericity axis of the B candidate decay and that

one of the rest of the event (ROE). In the case of a jet-like event, cos θS ∼ 1 is

preferred, while BB̄ events show a flat distribution.

3. The sphericity axis is often interchanged with the thrust axis T̂ [70] which in prac-

tice provides nearly equivalent functionality. T̂ is defined as the direction which

maximizes the sum of their longitudinal momenta. Typical | cos θT | distributions,

very similar to | cos θS|, are shown in Fig. 6.2 for signal and background samples.

cos(Thrust Angle)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.02
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Figure 6.2: | cos θT | distribution for signal Monte Carlo events and for background data
(on-resonance events with mES < 5.26 GeV/c2). Green and blue circles represent signal
Monte Carlo events of B0 → K+K−K0

S
(π+π−) and B0 → K+K−K0

S
(π0π0), respectively,

while black and red dots represent background events of B0 → K+K−K0
S
(π+π−) and

B0 → K+K−K0
S(π0π0), respectively. | cos θS| shape is very similar to | cos θT |. The

distributions are normalized to the same area.
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4. Legendre monomials of order zero and two, defined as

L0 =
∑

i∈ROE

|pi|

L2 =
∑

i∈ROE

|pi| cos2(θi) (6.5)

where pi is the momentum of the particles of the ROE and θi is the angle between

the flight direction of the particles and the sphericity axis of the ROE.

5. cos θ∗B, the polar angle of the reconstructed B meson in the Υ (4S) center of mass

system. cos θ∗B follows a 1 − cos2 θ∗B distribution, while the continuum background

follows a flat distribution. The distributions for BB̄ and qq̄ events are shown in

Fig. 6.3.
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Figure 6.3: cos θ∗B distributions for BB̄ Monte Carlo events (left) and qq̄ Monte Carlo
events (right)

In the analyses we present in this work we use all or a subset of these variables or a

combination of them as input of a more complicated algorithm (a Fisher discriminant or

a Neural Network). The requirements are different for each sub-mode, due to the different

purities, and the best ones are chosen with an optimization together with other selection

variables, that we will show in the next sections.

6.3.2 Selection of B0 → K+K−K0
S

For decays B0 → K+K−K0
S

with K0
S
→ π+π−, K0

S
candidates are formed from oppositely

charged tracks with an invariant mass within 20 MeV/c2 of the K0
S

nominal mass [21],

which correspond to about 5σ window. The K0
S

vertexing follows the standard procedure
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described in 5.2.1. The lifetime significance of the K0
S τ/στ is required to be larger than

3. We also require that the angle α between the K0
S momentum vector and the vector

connecting the B0 and K0
S vertices must satisfy cos α > 0.999.

For decays B0 → K+K−K0
S

with K0
S
→ π0π0, K0

S
candidates are formed from two

π0 → γγ candidates. Each of the four photons must have Eγ > 0.05 GeV and have a

transverse shower shape loosely consistent with an electromagnetic shower1. Additionally,

we require each π0 candidate to satisfy 0.100 < mγγ < 0.155 GeV/c2. The resulting

K0
S
→ π0π0 mass is required to satisfy 0.4776 < mπ0π0 < 0.5276 GeV/c2. A K0

S
mass

constraint is then applied for the reconstruction of the B0 candidate.

In order to reduce the background coming from misidentified charged pions, we apply

PID requirements on the Likelihood-based selector, described in 5.1.1. We require both

charged kaons to satisfy a tight requirement, except in the region of the Dalitz plot with

mK+K− < 1.1 GeV/c2, which is the one dominated by the φ(1020) resonance, where we

apply a looser and asymmetric requirement on the kaons: one loose and the other not

a pion. We checked, using Monte Carlo samples of signal and qq̄ and BB̄ backgrounds,

that using this looser PID in the φ(1020) region increases the average signal efficiency by

about 13%, with a negligible change in background.

We then finally combine two selected charged kaons with the reconstructed K0
S can-

didate forming the B0 meson candidate. Using the fact that the two B mesons originate

from a well defined initial e+e− state, the kinematics of the event can be closed. Instead

of using the B mass, calculated from the reconstructed energy and momentum, as the

definition variable, we use the additional information of the energy of the initial e+e−

state (known with an uncertainty of the order 2-3 MeV) to define a set of two kinematic

variables. They are the beam energy-substituted mass (mES) and the energy difference

(ΔE).

The beam energy-substituted mass is defined as:

mES =
√

(s/2 + pi · pB)2/E2
i − p2

B (6.6)

where
√

s is the total e+e− CM energy, (Ei,pi) is the four-momentum of the initial e+e−

system and pB is the B candidate momentum, both measured in the laboratory frame.

The meaning of this variable becomes clearer if we express it in the Υ (4S) rest frame:

mES =
√

(
√

s/2)2 − p∗B
2

1The general requirements are described in Sec. 5.2.2
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where p∗ is the B candidate momentum in the Υ (4S) rest frame. Since the Υ (4S) mass

is near the BB̄ threshold, the center of mass momenta p∗B of the B mesons are very small

(≈ 340 MeV/c) when compared to the beam energy
√

s of more than 10.5 GeV. Therefore

|p∗B| �
√

s/2, and the beam substituted mass is dominated by the beam energy resulting

in a resolution of ≈ 2.6 MeV (which reflects the spread of the beam energy). Typical mES

distribution for signal events is show in Fig. 6.30a.

Making use of energy conservation, we can also define the energy difference ΔE as

ΔE = E∗
B −

√
s/2 (6.7)

where E∗
B is the energy of the B candidate in the Υ (4S) rest frame. While mES variable is

related to the measurement of the reconstructed momenta of the final state, ΔE depends

on the reconstructed energy, the resolution of the latter depending on the reconstructed

B mode. Typical ΔE distribution for signal events is show in Fig. 6.30b. This fact makes

these two variables particularly suitable for those analyses having only charged tracks

in the final state, as B0 → K+K−K0
S

with K0
S
→ π+π−. In this case, in fact, the two

variables show a negligible correlation and can be considered independent. In addition,

the resolution of this variable is affected by the detector momentum resolution and by

the particle identification in such a a way that a wrong mass assignment implies a shift

in ΔE. Because of this, ΔE is also useful to reject BB̄ background.

For decays involving photons in the final state, because of energy leakage effects in

the calorimeter, the reconstruction of the energy of the photon can be underestimated,

producing an asymmetric tail in ΔE distribution. The typical resolution for ΔE is larger

than the one of mES, being ≈ 20 MeV, and it is also larger (≈ 40 MeV) in the case of

K0
S → π0π0 with photons in the final state.

In the analyses we will present in this work, the selection on the kinematic variables

is loose, and a sideband region (defined as the region where the signal is almost absent)

is kept in the final dataset. This allows an higher efficiency for the signal and also a

background characterization using data.

For B0 → K+K−K0
S with K0

S → π+π− the requirements on the two kinematic variables

are:

• mES > 5.26 GeV/c2

• −0.06 < ΔE < 0.06 GeV
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For B0 → K+K−K0
S with K0

S → π0π0, we apply the same requirement on mES, while

we use a looser cut on ΔE because of the wide tail due to energy leakage in the calorimeter:

• mES > 5.26 GeV/c2

• −0.12 < ΔE < 0.06 GeV

In order to suppress the high qq background we apply a preliminary selection requiring

the | cos θT | < 0.9, which has an efficiency of about 90% on the signal events. The remain-

ing discrimination power, related to the different topology of a BB̄ event and qq event,

is then collected in an algorithm that uses the given inputs to maximize the separation

between signal and background. For B0 → K+K−K0
S

we use a linear combination of the

other event shape variables, called Fisher discriminant [71]:

F =
N∑

i=1

αixi (6.8)

The discrimination task consists of determining an axis in the RN space of the discrimi-

nating variables such that the two classes are maximally separated. In order to apply this

method, one needs to know just the mean values of each variable over the full sample, (μ̄),

the means over signal and background separately, (μ̄b, μ̄s), and the total covariance ma-

trix, U b,s
ij , that characterizes the dispersion of the events relative to the center of gravity of

their own sample. The distance between the projected points will naturally be maximum

along the direction defined by the line between μb and μs. Then the segment (μ̄b, μ̄s) is

the projection axis. The coefficients in Eq. 6.8 could be computed from the equation:

αi =

N∑
j=1

(U b + Us)−1
ij (μb

j − μs
j) . (6.9)

We use four variables as input of the Fisher discriminant: | cos θS| after the prelimi-

nary cut, the order zero and order two Legendre monomials L0 and L2 and cos θ∗B. The

distribution of the Fisher variable, for signal Monte Carlo events and for background

data (taken from on-resonance events in the region mES < 5.26 GeV/c2, where the signal

contribution is negligible) is displayed in Fig. 6.4. In this figure the shapes for signal

and background both for B0 → K+K−K0
S
(π+π−) and B0 → K+K−K0

S
(π0π0) are shown.

These distributions illustrate that they are very similar for the two decay modes. This

is a consequence of the fact that the inputs use the informations of the rest of the event
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Figure 6.4: Distribution of the Fisher variable, for signal Monte Carlo events and
for background data (on-resonance events with mES < 5.26 GeV/c2). Green and
blue dots represent signal Monte Carlo events of B0 → K+K−K0

S
(π+π−) and B0 →

K+K−K0
S
(π0π0), respectively, while black and red dots represent background events of

B0 → K+K−K0
S(π+π−) and B0 → K+K−K0

S(π0π0), respectively.

(Eqn. 6.5 for example), so that the output of the algorithm does not depend much on the

reconstructed decay mode.

We finally reject the events with poor Δt information, requiring |Δt| < 20 ps and

σΔt < 2.5 ps. The r.m.s. of Δt distribution is 1.1 ps for the events which satisfy these

requirements. This selection is quite standard and it is applied in almost all BABAR

analyses devoted to the measurement of a time-dependent CP asymmetry.

Correlation of the Event Shape Variables with the Dalitz Plot

Usually, the information on the event shape is fully used in the maximum likelihood fit,

together with the kinematic variables and the time information, as a probability density

function (PDF). The necessary condition to include a variable as a factorized PDF in the

likelihood function is that it is uncorrelated with the other ones.

While the event shape variables are almost uncorrelated with the kinematic variables,

a correlation can arise with the Dalitz plot variables. In signal events, which are all

spherical, there is not an evident correlation. As an example, we show in Fig. 6.5 the
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distribution of the mean of the ratio l2 = L2/L0, where L0 and L2 are the zeroth and

second order Legendre monomial, for signal Monte Carlo events in different regions of the

Dalitz plot. The main correlation usually arises for background events. We investigated
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Figure 6.5: l2 distribution variation in the Dalitz plot for signal Monte Carlo events. The
color represent the mean of the l2 distribution in each bin of the Dalitz plot.

if, after applying a tighter cut on | cos θS | < 0.7 (i.e. removing a large number of jet-

like events from the dataset), the correlation with the Dalitz plot position is reduced to

acceptable values.

In Fig. 6.6 we show the scatter plot of l2 vs. the Dalitz plot variables m(K+K−) and

cos θH . While there is no evidence of a correlation with the K+ K− invariant mass, a

pattern can be seen with respect to cos θH .

We further check this correlation looking at the variation of l2 shape across the Dalitz

plot. In Fig. 6.7 we show the relative variation of the mean and of the r.m.s. for the

l2 distribution in bins of the Dalitz plot for sideband events. These plots show that the

shape for the on-resonance events is more jet like along the contour of the Dalitz plot,

while it is more spherical in the central part (l2 < l2). Also the resolution of this variable

is not constant in the Dalitz plot. In order to have a more quantitative estimate of the

variation of l2 distribution we define the statistical significance of the compatibility of the

mean of the l2 in a given bin i, mi, with the average mean in the whole Dalitz plot, m̄,

with the quantity:

N(σ) =
mi − m̄

r.m.s.i
·
√

Ni , (6.10)

where Ni is the number of entries in the bin i. In Fig. 6.8 the distribution of this quantity

across the Dalitz plot for background events is shown. As this figure shows, even if the
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Figure 6.6: Scatter plot of l2 vs. m(K+K−) (top plots) and cos θH (bottom plots), for
signal Monte Carlo events (left) and continuum events from sidebands of on-resonance
data.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

]2)2) [(GeV/c-K+(K2m
0 5 10 15 20 25

]2 )2
) 

[(
G

eV
/c

L0
K+

(K2
m

0

5

10

15

20

25

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

]2)2) [(GeV/c-K+(K2m
0 5 10 15 20 25

]2 )2
) 

[(
G

eV
/c

L0
K+

(K2
m

0

5

10

15

20

25

Figure 6.7: Relative variation of l2 distribution in the Dalitz plot for on resonance events
in sideband region. Left: mean relative variation. Right: r.m.s. relative variation.

most of the events on the contour of the Dalitz plot are statistically consistent with the

average mean of l2, the central bins are up to 4 σ away from the mean. This force us not

to include this variable in the likelihood, but only apply a cut on it. We require F > −2.5

for both B0 → K+K−K0
S
(π+π−) and B0 → K+K−K0

S
(π0π0). This selection has been
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Figure 6.8: “Statistical significance” of the compatibility of the mean of l2 distribution
across the Dalitz plot with the average mean. The color represents the N(σ) compatibility,
as defined in Eq. 6.10, for on resonance events in the sideband region.

chosen in such a way to maximize the statistical significance of the signal, defined as in

Eq. 5.2.

Best Candidate Selection

After applying the full selection to K+K−K0
S sub-modes, we select 3091 events for B0 →

K+K−K0
S(π+π−) and 1599 events for B0 → K+K−K0

S(π0π0).

The event multiplicity for K+K−K0
S(π+π−) mode is 1.004 for signal events, while for

K+K−K0
S(π0π0) is 1.10. Where more than one B0 candidate passes the selection criteria

in a given event, the best candidate is taken to be that one with a ππ invariant mass

closest to the K0
S nominal mass [21]. If multiple candidates share the best K0

S candidate,

the B0 candidate with kaons passing the tightest PID selector is chosen. In case any

multiple candidate still remains, the B0 candidate with the best vertex probability from

the B kinematic fit is selected.

Study of Misreconstructed K+K−K0
S

Events

In a sample of simulated signal events, we associate reconstructed tracks with their Monte

Carlo partners. These candidates can be classified into radiative and signal-cross-feed

events:

• events that have all candidates properly matched, but with a not reconstructed

photon from QED final state radiation, so the total combination fails the truth

matching,
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• all daughters with correct PID, but at least one of them coming from the other B

meson,

• at least one daughter with incorrect PID taken from the other B meson.

The first group has very signal-like mES and ΔE distribution and it is evenly distributed

across the Dalitz plane. We merge these candidates with the properly matched signal

events. The other two groups (defined as Self Cross Feed or SXF) have continuum-like

distributions of mES and ΔE and pile up in the corners of the Dalitz plot. Hence, to

remove a possible bias on our measurement we apply the cuts on the kinematic variables

introduced in Sec. 6.3.2, which significantly reduce the number of these events (to ∼ 11%)

while retaining almost all truth-matched signal events (∼ 97%). The final breakdown of

the non-truth matched events in the K+K−K0
S
(π+π−) sub-mode is given in Table 6.1.

Since the fraction of cross feed events in signal decays is smaller than 0.4%, we do not

fraction of fraction of
non-truth matched events all events

all non-truth matched 100% 4.6%
radiative 92% 4.3%
SXF (correct PID) 7% 0.3%
SXF (wrong PID) 1% 0.02%

Table 6.1: Breakdown of the non-truth matched events in the K+K−K0
S
(π+π−) mode.

include these events in the nominal fit.

Misreconstructed signal is much more common in the K+K−K0
S
(π0π0) mode, due to

large number of fake K0
S

candidates coming from a wrong combination of photons. The

breakdown of misreconstructed events is given in Table 6.2. At high values of mK+K−,

fraction of fraction of
non-truth matched events all events

all non-truth matched 100% 29%
radiative 11% 3.2%
SXF (correct PID) 89% 26%
SXF (wrong PID) 0.1% 0.03%

Table 6.2: Breakdown of the non-truth matched events in the K+K−K0
S
(π0π0) mode.

the K0
S

is soft, leading to a high fraction of misreconstructed events. The SXF fraction in

bins on the square Dalitz Plot is shown in Fig. 6.9.
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Figure 6.9: Self cross feed fraction in the K+K−K0
S
(π0π0) mode: the number of misre-

constructed events divided by the total number of reconstructed events in signal MC. The
fraction is fairly constant except at high values of mK+K−, where they are the majority.
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6.3.3 Selection of B0 → K+K−K0
L

In order to reconstruct a B0 → K+K−K0
L

candidate, we select a pair of charged tracks of

the event and apply to them the same PID requirements to suppress the pion contribution.

We then combine this pair of tracks to a K0
L

candidate to form the B0. We identify a K0
L

candidate either as a cluster of energy deposited in EMC or a cluster of hits in two or

more layers of the IFR, not associable with any charged track in the event (as described

in Sec. 5.3).

Because of the presence of a K0
L

in the final state, the kinematic of the B meson cannot

be closed: only K0
L

flight direction is measured in the IFR, while the energy measured in

the EMC is not calibrated for a hadron. The procedure in this case is to impose a mass

constraint to the B mass, in order to calculate the K0
L momentum from the momentum

of the other B daughters (the K+K− pair). This is achieved using the relation

M2
B =
(
EK+K− +

√
p2

K0
L

+ m2
K0

L

)2

− |pK+K− + pK0
L
|2. (6.11)

Applying this B mass constraint, we lose one of the two kinematic variables (mES), but

we calculate the other one using the computed K0
L

momentum (ΔE). Since the ΔE

variable is evaluated after the B mass constraint, its shape is mES-like. In addition,

it exhibits a very good resolution (about 3 MeV (4 MeV) for EMC (IFR) candidates).

The difference between EMC and IFR is produced by the different angular resolution of

the two cases. ΔE is peaked at zero for signal events, while it exhibits a phase space

distribution ranging to larger values for events coming from continuum production. ΔE

distribution for K+K−K0
L signal events is shown in Fig. 6.32.

The fact that B0 → K+K−K0
L decays have only one kinematic variable reduces the

discrimination power against qq background. For this reason, the selection of the events

for B0 → K+K−K0
L has been optimized independently from B0 → K+K−K0

S . We require

ΔE < 30 MeV, which is a good compromise between a tight cut (to remove the large

background pollution) and the need of a sufficiently wide sideband region (to characterize

the background).

As it has been described in Sec. 5.4, the separation between photons and K0
L

candidates

in the EMC become worse at low momenta of the neutral cluster. K+K−K0
L

candidates

with slow K0
L

daughters correspond to events with higher K+K− invariant mass. For this

reason we choose to optimize the selection separately in the lower and higher invariant

m(K+K−) regions. For consistency with B0 → K+K−K0
S

selection we divide the sample
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in m(K+K−) < (>)1.1 GeV/c2, the lower being dominated by the φ(1020) resonance.

In order to suppress the qq background we use only the | cos θS| variable in the lower

mass region, while we use both | cos θS| and the ratio l2 = L2/L0 of the Legendre mono-

mials elsewhere.

We also require, as it was done for B0 → K+K−K0
S
, |Δt| < 20 ps and σΔt < 2.5 ps.

Finally, we maximize the purity of the K0
L

sample optimizing the selection of the K0
L
.

This consists of two main issues: the missing momentum requirement (valid for both

EMC and IFR candidates) and the PID of the K0
L

based on the cluster shape (only for

EMC events), whose implementation has been described in 5.4.2. We will discuss them

in the following sections.

Missing Momentum of the Event

In order to clean the sample, one can tune the selection in such a way that the transverse

missing momentum of the entire event is consistent with the K0
L

momentum calculated

for the candidate. The missing momentum is calculated from all charged tracks and EMC

clusters (not including the K0
L

candidate) of the event and projected onto the axis of the

K0
L candidate in the transverse plane. The expected transverse momentum of the K0

L is

then subtracted from the projection. We will refer to this variable as pT
miss. The reason we

use only the transverse component of the missing momentum is to minimize the influence

of the EMC endcap leakage. The pollution coming from semi-leptonic B decays is reduced

by using the projection onto the direction of the K0
L candidate: since missing momentum

originating from semi-leptonic decays is uncorrelated to the direction of the K0
L candidate,

it will not bias the projected missing momentum (it can just decrease its resolution). Fig.

6.10 shows the distribution of this projected missing momentum for signal MC events and

on-resonance sideband data for background. The discriminating power of the variable

is less for the IFR because there is already significantly less background in this sample

than for the EMC. Also, incorrectly identifying an EMC cluster as a K0
L

will alter the

calculation of the missing momentum in the event, thus accentuating the effect. Since

IFR clusters are not used in the missing momentum calculation, the distribution for signal

events peaks at 0 for IFR-only candidates, while it is shifted for EMC candidates.

Another useful variable, correlated to the missing momentum, is the missing energy

of the event. We define the variable ΔEvis as the difference between the sum of the

measured energy of all charged tracks and all neutrals of the event (not including the
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Figure 6.10: The projected missing transverse momentum minus the expected value for
a K0

L from signal MC events (solid histogram) and sideband data (dots). (a) EMC can-
didates. (b) IFR candidates.

K0
L

candidate) (Evis) and the sum of the energies of the two charged kaons which come

from the reconstructed B decay. Since for a photon the energy of the cluster is correctly

calibrated, while for a K0
L

it is not, the mean value of the distribution for signal is shifted

with respect to the background one. This can be seen in Fig. 6.11a.

Last, we use the opening angle between the missing momentum and the K0
L

direction

in the laboratory frame. This variable is expected to peak at small values for true K0
L
’s,

while it presents a tail at higher angles for fake K0
L
’s (Fig. 6.11b).
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Figure 6.11: (a) Difference between the total measured energy of the event and the sum
of the reconstructed kaons from the B decay (referred as ΔEvis). (b) Opening angle
between the missing momentum and the K0

L direction in the laboratory frame. (Since for
this variable the shape of EMC and IFR candidates is quite similar, the plot show the
sum of the two categories).
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Since these three variables have a large correlation (see Fig. 6.12), we define a Fisher

discriminant [71] based on these three variables to account for the correlations. We train

two separate Fisher discriminants for EMC and IFR-only candidates. We use signal and

continuum Monte Carlo events as training samples for signal and background, respectively.

The functional relation defining the Fisher discriminant is given by

F = a0 + a1p
T
miss + a2ΔEvis + a3angle(pmiss − K0

L) (6.12)

where the coefficients for EMC and IFR discriminant are given in Table 6.3.

Coeff EMC IFR
a0 4.2326 3.48184
a1 1.03421 1.45664
a2 -0.341054 -0.222554
a3 -0.712522 0.0797307

Table 6.3: Coefficient of the linear Fisher discriminant of K0
L

missing momentum defined
in Eq. 6.12.

We validate the output using an independent sample of signal Monte Carlo events

and sideband data as background. In Fig. 6.13 we show the distribution of the output
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Figure 6.12: Correlation between the missing momentum variables entering the Fisher
discriminant. Left: ΔEmiss vs. pT

miss. Center: ΔEmiss vs. opening angle between missing
momentum and K0

L
direction. Right: opening angle between missing momentum and K0

L

direction vs. pT
miss.

of the trained linear Fisher discriminant for EMC and IFR-only events for both signal

MC and sideband data events. As a final concern, we observe that a cut on a variable

related to the missing momentum of the event could in principle introduce a bias in the
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Figure 6.13: Distribution of the output of the Fisher discriminant for EMC candidates
(left) and IFR-only candidates (right). Histogram represent signal MC events, while dots
represent background (sideband data).

lepton based flavour tagging: if we require a large missing momentum in the event, the

probability that this event contains a semi-leptonic decay would increase. Fig. 6.14 shows

the leptonic tagging fraction as a function of the cut on these variables: there is a wide

range for the variable where the fraction does not change. We will check that the final cut

on the Fisher does not bias the leptonic tagging fraction (Section 2.1). We optimize the
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Figure 6.14: Fraction of the leptonic tagging category as a function of (a) the cut on pT
miss,

(b) ΔEvis, (c) opening angle between missing momentum of the event and K0
L

direction.

lower cut on the Fisher maximizing the statistical significance, (as defined in Eqn. 5.2).

In Fig. 6.15 we show the statistical significance as a function of the lower cut on the

Fisher for EMC or IFR candidates. For both EMC and IFR samples we choose a cut of

Fisher>1, having an efficiency of about 86% on signal events, while rejects 65% of the

continuum.
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Figure 6.15: Statistical significance as a function of the lower cut on the output of missing
momentum Fisher. Left: EMC Fisher. Right: IFR Fisher.

PID Selection for EMC K0
L

In order to increase the purity of the selected sample, we also apply the developed PID al-

gorithm for the EMC K0
L

candidates based on the shower cluster shape (Totti selector,

Sec. 5.4.2). This selector is very useful to reject the main background in the EMC, due

to misreconstructed photons (because it has been trained in different kinematic bins), in

particular for K0
L
’s coming from B0 → K+K−K0

L
decays, which cover a wide momentum

spectrum.

After the rest of the selection for K+K−K0
L

candidates has been fixed, the requirement

on this variable is chosen maximizing the sensitivity to β, separately in the lower and

higher K+K− invariant mass, using a toy Monte Carlo technique. With this procedure,

we take into account both the statistical uncertainty and the main systematic one, which

is the poor knowledge on the CP asymmetry of the main BB̄ backgrounds (see Sec. 6.4.2).

The total uncertainty on β, evaluated adding in quadrature the statistical and systematic

contributions, is shown in Fig. 6.16 as a function of the lower cut on the Totti selector

for m(K+K−) < 1.1 GeV/c2.

The optimal cut on the output of Totti selector, T , is found to be:

• m(K+K−) < 1.1 GeV/c2: T > 0.465

• m(K+K−) > 1.1 GeV/c2: T > 0.500

After the whole selection, the average efficiency is about 25% for events in the lower

mass region, while it is about 10% in the higher mass region. The main difference in
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Figure 6.16: Statistical error on β as a function of the lower cut on the output of Totti
selector T (red), systematic uncertainty due to the poor knowledge of the CP asymmetry
of the BB̄ background (green). Black is the total uncertainty evaluated by summing up
in quadrature the statistical and the systematic uncertainty (black). This optimization is
for events with m(K+K−) < 1.1 GeV/c2.

the two selections comes from the quite different PID purity for the charged and neutral

kaons and the different requirements on the event shape, as can be seen in Table 6.4.

Best Candidate Selection

After the described selection, 22341 K+K−K0
L

events survive. The final multiplicity is

higher than in the K+K−K0
S modes. In fact we find about 2.3 B0 candidates reconstructed

per event in a sample of signal Monte Carlo decays. This large combinatorial requires an

accurate best-candidate selection. First, the best K0
L is chosen using the criteria based

on EMC and IFR quality:

1. if multiple EMC candidates are present, select the one with the highest cluster

energy;

2. if multiple IFR candidates are present, select the one with the largest number of

layers;

3. if both an EMC and IFR candidate pass the relative filters, the EMC candidate is

selected, as the EMC has a better K0
L

direction resolution than the IFR.

A small fraction (4.8%) of the events has multiple candidates after the best K0
L

selection,

due to different combinations of K+K−. Then, the best B candidate is chosen as the one
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Selection mK+K− < 1.1 GeV/c2: ε (%) mK+K− > 1.1 GeV/c2: ε (%)
reco 62.4 ± 0.2 66.5 ± 0.2

Ecal > 200 MeV 89.2 ± 0.1 88.1 ± 0.1
| cos θSPH| < 0.8 80.1 ± 0.1 -
| cos θSPH| < 0.7 - 69.2 ± 0.1

l2 < 0.35 - 80.0 ± 0.1
PID: Tight × Tight 94.7 ± 0.1 -

PID: NotAPion × Loose - 63.6 ± 0.1
|Δt| < 20 ps 96.8 ± 0.1 98.1 ± 0.1

σ(Δt) < 2.5 ps 95.1 ± 0.1 97.9 ± 0.1
T > 0.465 83.0 ± 0.1 -
T > 0.50 - 68.1 ± 0.1

Fisher (EMC,IFR) > 1 85.9 ± 0.1 85.6 ± 0.1
-0.01 < ΔE < 0.03 GeV 88.0 ± 0.1 87.8 ± 0.1

Total efficiency 24.9 ± 0.1 9.5 ± 0.1

Table 6.4: Average selection efficiency for B0 → K+K−K0
L

signal Monte Carlo events.
Left: efficiency for lower mass region (m(K+K−) < 1.1 GeV/c2). Right: efficiency for
higher mass region. The efficiency of each cut is evaluated with respect to the previous
cut.

with the best vertex probability, associated with the B kinematic fit.

We describe the sources of remaining misreconstructed events in the next section.

Study of misreconstructed K+K−K0
L

Events

As we have shown in Sec. 6.3.2, we study the breakdown of misreconstructed events in

the Dalitz plot. While for the tracks the Monte Carlo truth association is done in the

usual way, this is not possible for K0
L, because the associator algorithm is based on the

kinematics and the reconstructed K0
L has not a defined momentum before the B mass

constraint. So we use a criterion based only on the direction of the reconstructed K0
L.

We define a reconstructed K0
L truth-matched if its direction lies inside a cone which has

its axis along the direction of the Monte Carlo generated K0
L, with an opening angle of

5σ, where σ is the angular resolution of the EMC. The angular resolution of the EMC is

a quantity which varies as a function of the K0
L

momentum (Eq. 5.5). Since this is the

nominal angular resolution for a photon at a polar angle of 90◦, this criterion could be

very inefficient for K0
L

candidates. We check that requiring 5 σ or 7 σ does not change the

fraction of “truth-matched” K0
L

significantly. We distinguish four categories of events:

• truth-matched events
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• non truth-matched events with one of the charged kaons taken from the decay

products of the other B meson. This happens for 0.5% of the events, mostly in the

corners of the Dalitz plot (where the kaons have lower momentum).

• non truth-matched events with a wrong K0
L
. This constitutes the most of self cross

feed: 4.5% of the events. This happens mostly in the corner of high K+K− invariant

mass. Even in the case of the neutral K0
L
’s, the separation from background get

worse when the kaon is slow.

• non truth-matched events excluding the previous cases. This includes the case

where one or two charged kaons have the wrong PID. This accounts for a very small

fraction of self cross feed (0.5%).

The distribution of these different categories of self cross feed over the Dalitz plot are

shown in Fig. 6.17. In Fig. 6.18 the ΔE distributions for truth-matched events and for

mis-reconstructed events of the three different categories is shown.

6.3.4 Efficiency Over the Dalitz Plot and Related Systematics

In Sec. 6.3.2 and 6.3.3 we have reported the selection criteria for reconstructing B0 →
K+K−K0

S and B0 → K+K−K0
L candidates, respectively. These criteria are chosen in

order to maximize the sensitivity to the CP asymmetry parameters, reducing the main

backgrounds. The efficiency of the final selection is studied across the squared Dalitz plot

(mK+K− and cos θH) using a signal Monte Carlo sample with a flat Dalitz distribution,

in order to equally populate all the regions of the phase space. The squared Dalitz plot

is binned in 20 bins in mK+K− and 20 bins in cos θH .

For the systematics evaluation due to tracking and K0
S and K0

L reconstruction, the

efficiency over the Dalitz plot has to be weighted according to the tracking efficiency and

K0
S

and K0
L

reconstruction.

In particular, we have studied possible differences between data and Monte Carlo effi-

ciencies for K0
L

reconstruction using data control samples (see Sec. 5.5). The corrections,

computed as a function of the momentum and the direction of the K0
L
, are translated as a

function of the position in the Dalitz plot. The result is the distribution of the corrections

in Fig. 6.19. We then apply the corrections to the efficiency distribution over squared

Dalitz plot obtained from Monte Carlo.
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Figure 6.17: Distribution of signal Monte Carlo events for truth-matched events (top left),
for self cross feed events with a mis-ID K0

L
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L
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K0
L

as a function of Dalitz plot position, as
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L
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The distributions of corrected efficiencies in bins of the squared Dalitz plot are shown

in Fig. 6.20 together with the distribution of errors due to finite Monte Carlo statistics

and PID efficiency corrections, for B0 → K+K−K0
S(π+π−), B0 → K+K−K0

S(π0π0) and

B0 → K+K−K0
L.

6.4 Background in the Dalitz Plot

In order to perform the maximum likelihood fit, which is described in Sec.6.5, we param-

eterize the shape of the Dalitz plot for the different categories of background events. We

model the probability density function of Dalitz plot for continuum and BB̄ background

as a variable-binning 2D histogram PDF. The non uniform binning is made in order to

have higher granularity around the main expected resonances: values of mK+K− where

the φ(1020) and the D0 peak, and the region around | cos θH | ≈ 1.

6.4.1 Continuum Background

We fill the 2D histogram with events taken from mES, ΔE sidebands for B0 → K+K−K0
S

and from ΔE sidebands for B0 → K+K−K0
L
.

The binning of the histogram and the PDF for continuum B0 → K+K−K0
L
, which

has the highest background, is shown in Fig. 6.21. In Fig. 6.22 we show the projection of

the 2D histogram on mK+K− and cos θH .
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Figure 6.22: Projections of the continuum background 2D histogram PDF shown in
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6.4.2 BB̄ Background

Another source of background comes from other decays of B mesons, which can mimic a

B0 → K+K−K0 decay, if they contain the same three particles of the signal in the final

state, and at least another particle, having low momentum, which is lost in reconstruction.

In order to identify the complete list of these decays, we apply our reconstruction criteria

on a sample of generic BB̄ decays, simulated using Monte Carlo technique. With the

knowledge or a reasonable assumption of the branching fraction of these decay modes, we

can estimate the breakdown of the different decays different from signal one into our final

dataset.

Charmless B Decays

Background from other charmless B decays for B0 → K+K−K0 consist of B0 → K+K−K0h,

where h is a charged or neutral pion omitted from reconstruction (the most frequent is the

decay B0 → K+K−K∗, with K∗ → K0π). The efficiency for this kind of BB̄ background

is very sensitive to the allowed window for the ΔE variable. In fact, when a particle is

not reconstructed, its energy is lost, and as a consequence ΔE is shifted to lower values.

The main source of problems related to the inclusion of these events comes from the

fact that their topological behaviour is identical to the case of the signal events (because

they also come from a decay of a B meson), but their CP asymmetry is different (and

in most of cases unknown). This means that a BB̄ component in the fit introduces a

dilution in the determination of the signal CP asymmetry. So this would introduce a

large systematic uncertainty.

For B0 → K+K−K0
S this background is completely removed with the tight ΔE cut

described in Sec. 6.3.2, which, at cost of a small increase in the statistical error, avoids a

larger systematic error due to the unknown BB̄ CP content.

For B0 → K+K−K0
L
, an analogous cut is not possible, since ΔE is the only kine-

matic variable defining the B meson. This background cannot be removed from the

fit and the unknown CP asymmetry of the BB̄ background will constitute one of the

principal systematic uncertainties. This uncertainty has been taken into account in the

optimization of the selection described in Sec. 6.3.3. In particular, we identify neutral

B decays: B0 → K+K−K∗0(K0
L
π0), B0 → K∗+(K+π0)K−K0

L
and charged B decays:

B+ → K+K−K∗+(K0
L
π+), B+ → K∗−(K−π0)K+K0

L
. BABAR Collaboration has recently
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measured the branching fraction: B(B+ → K∗+K−K+) = (36.8±3.4±3.5)×10−6, while

only an upper limit exists on the neutral B decay: B(B0 → K∗0K+K−) < 6.1×10−4 [21].

Since this upper limit does not give a reliable estimation of the real contribution, we

assume also for the neutral modes a branching fraction equal to the one measured for

charged mode, assuming SU(3) symmetry. In Fig. 6.23 the distribution of these events in

the Dalitz plot is shown. These events have been generated assuming a flat distribution

in the Dalitz plot. The observed loss of the edge at high K+K− invariant mass can be

attributed to the effect of the requirement on the minimum of the calibrated energy asso-

ciated to the K0
L

candidate and the cut on T , which removes the very slow K0
L
’s of these

four body final states.
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Figure 6.23: Dalitz plot distribution (left) and squared Dalitz plot distribution (right) of
peaking BB̄ Monte Carlo events.

A purely phase space model for B → K+K−K∗ is not a realistic model for this three

body decay. A significant contribution is expected to come also from resonant φK∗. The

φ(1020) region of the K+ K− invariant mass is also the one with the highest K0
L

efficiency

(hard K0
L
’s). The branching fraction of B0 → φK∗(892) has been measured in the quasi-

two-body approximation2, together with the fraction of longitudinal and transverse polar-

ization. The measured branching fraction [72] is B(B0 → φK∗(892)) = (9.5± 0.9)× 10−6

and the polarization fractions are f‖ = 0.52 ± 0.05 and f⊥ = 0.22 ± 0.05.

2The quasi-two-body approximation consists in considering the K+K− pair as a quasi-particle (the φ),
if its invariant mass lies in the region which includes the φ spectrum in three standard deviations. The
same can be done for the Kπ system forming the K∗. Then the B can be considered as decaying in two
particles, the φ and the K∗.
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Another possible source of B background is B0 → φK∗(1430). This decay has been

observed by BABAR, and the branching fraction is [72]: B(B0 → φK∗(1430)) ≈ 8.2 ×
10−6. We mix the φK∗ Monte Carlo events weighting them by the measured polarization

fractions in order to have the correct helicity distribution.

Additional contribution comes from the B+ → φK∗+ decays, having [73] B(B+ →
φK∗+) = (8.30 ± 0.65) × 10−6.

Other sources of resonant K+K−K∗ modes which contribute to the peaking B back-

ground are f0(980)K∗, f0(1500)K∗ and χc0K
∗. Since these single modes have not been

measured, we use the branching fraction of B+ → K+K−K∗+ and the fit fractions of the

single resonances entering the Dalitz plot of B+ → K+K−K+ [76].

The reconstruction efficiency of these decays is evaluated using high statistics Monte

Carlo samples for these specific decay modes. The reconstruction efficiencies, the
∏

i Bi

and the expected number of events in an integrated luminosity of about 350 fb−1 are

summarized in Table 6.5. We build a Monte Carlo cocktail weighted according to the

Mode # events
∏

i Bi (10−6) ε (%) N

B0 → φ(1020)K∗0(892)‖ 12000 1.23 6.8 28
B0 → φ(1020)K∗0(892)⊥ 12000 0.33 4.2 4.8
B0 → φ(1020)K∗0(1430) 10000 1.35 5.0 24
B0 → f0(980)K∗0 12000 0.34 3.4 4.0
B0 → f0(1500)K∗0 12000 0.31 3.8 4.2
B0 → χc0K

∗0 12000 0.15 2.5 1.3
B0 → K+K−K∗0(K0

Lπ0) NR 57000 5.9 2.3 48
B0 → K∗+(K+π0)K−K0

L NR 57000 9.0 2.2 69
B+ → φ(1020)K∗+ 12000 2.07 6.0 44
B+ → f0(980)K∗+ 12000 0.51 4.5 8.0
B+ → f0(1500)K∗+ 12000 0.47 4.9 8.1
B+ → χc0K

∗+ 12000 0.23 3.0 2.4
B+ → K+K−K∗+(K0

Lπ+) NR 57000 9.0 2.5 79
B+ → K∗0(K−π+)K0

LK+ NR 57000 12.0 2.5 105

Tot 430

Table 6.5: Branching fractions, reconstruction efficiencies and expected number of events
from charmless B decays expected in 350 fb−1 for B0 → K+K−K0

L. These events form the
peaking component of the B background for K+K−K0

L
.
∏

i Bi is the branching fraction
of the decay multiplied by the sub-B, which for φK∗0(892) contains the fraction of ‖ or
⊥ polarization. The f0(980)K∗, f0(1500)K∗ and χc0K

∗ sub-B contain the fit fractions
measured in the K+K−K+ Dalitz plot [76].

yields reported in Table 6.5 to parameterize the charmless peaking component of the B
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background for B0 → K+K−K0
L. This constitute an approximation because this sum of

events is made incoherently, thus neglecting the existing interference phases. Anyhow,

since this background is smaller than the signal and it has different kinematics, this

approximation is acceptable.

As for the continuum background (see Sec. 6.4.1), we describe the Dalitz plot PDF

using a 2D histogram. We use the same binning structure as the continuum one, since

the main structures (like the φ(1020)) are present also in this case. The 2D PDF is shown

in Fig. 6.24, with the projections onto the mK+K− and cos θH shown in Fig. 6.25.
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Figure 6.24: Peaking B background square Dalitz plot PDF for B0 → K+K−K0
L. The

model is a 2D histogram PDF with the same binning used for the continuum background.
The weights come from the histogram filling with the weighted Monte Carlo cocktail
whose components are listed in Table 6.5, shown with a log10 scale.

Charm B Decays

The remaining B background is dominated by the signal-like and combinatorial b →
c decays. A breakdown of dominant decay modes is shown in Table 6.6. The main

contributions comes from signal-like D+, D+
s and χc0 decays. We include these b → c

decays in our Dalitz plot model as non-interfering Gaussians (D’s) and an interfering

Breit-Wigner (χc0). While the kinematic variables are identical to signal events, B → DK

decays can have slightly different Δt distribution from the true signal, due to the displaced

D-meson decay vertex. We fit the lifetime of 1.5 thousand exclusive B0 → D+K− decays

assuming the signal Δt model and obtain τDK = 1.61 ± 0.05 ps (Figure 6.26) which is
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Figure 6.25: Projections of the peaking B background 2D histogram PDF for B0 →
K+K−K0

L shown in Fig. 6.24. The dots are the Monte Carlo cocktail events, while the
line is the PDF projection. Top: K+K− invariant mass, bottom: cos θH projection. Left:
events for m(K+K−) < 1.1 GeV/c2, right: events for m(K+K−) > 1.1 GeV/c2.
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consistent with the B0 lifetime. We expect 10 times less of combined B0 → D+K− and

B0 → D+
s K− events so any difference in lifetimes between these decays and the charmless

signal decays cannot be resolved in data; we use the nominal nominal B0 lifetime for all

decays into K+K−K0 final states.
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Figure 6.26: B0 → K+K−K0
S
(π+π−) mode: Δt distribution for B0 → D+K− decays.

Combinatorial BB̄ Background

Distributions of the kinematic variables mES and ΔE for the remaining, combinatorial

b → c background are very similar to those for continuum events as shown in Fig. 6.27

for B0 → K+K−K0
S(π+π−), while the distribution of the Fisher discriminant (not used

in this fit) is closer to signal events (since it depends from the rest of the event, not

by the reconstructed B). The Δt distribution has only a nonzero-lifetime component

with the resolution similar to signal events. Based on generic BB Monte Carlo studies,

we expect this combinatorial background to make 3-4% of the all background events,

both for B0 → K+K−K0
S and for B0 → K+K−K0

L. However, due to similarities in the

kinematic PDF’s, we are not able to clearly separate the combinatorial b → c background

from the continuum events with events being exchanged between these two combinatorial

categories. We perform a fit with 193 combinatorial BB events and observe that 11.4 ±
3.4% of these events leaked into the signal category for B0 → K+K−K0

S
(π+π−) channel.

This means that O(1%) of the signal yield in data comes from B background. In order

to completely minimize potential cross feed, we include a combinatorial BB background

component in the likelihood. Due to the low number of expected events (0.29/ fb−1) and

the low statistics of the MC sample, we use the same PDF parameters for all tagging

categories.
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Figure 6.27: B0 → K+K−K0
S
(π+π−) mode, events in generic BB MC which pass all

selection cuts, with signal events removed: (a-c) mES and ΔE, (d) Δt and (e-g) m(K+K−)
mass and cos θH .
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For the K+K−K0
S(π0π0) sub-mode, combinatorial backgrounds from B decays are

mostly from events with multiple π0’s which are reconstructed into a fake K0
S . De-

spite the cut on ΔE being wider, there is only a negligible possibility of cross feed from

B → K+K−K0h (peaking) modes. In the final dataset, we expect about 50 events of

combinatorial B background. So, such a component will be included in the fit. In this

case, a correlation arise between the kinematic variables, so we model them with a 2D

histogram PDF filled with the selected events in the Monte Carlo of generic B decays. We

show this PDF in Fig. 6.28, together with the usual 2D histogram modeling the Dalitz

plot for this component.

For the K+K−K0
L

sub-mode, combinatorial background arise from misreconstructed

K0
L
’s, having a distribution of ΔE which is continuum-like. From the study of Monte

Carlo for generic B decays, we estimate a number of about 800 events in the final dataset.

In Fig. 6.29 we show the projections of the Dalitz plot for these events. This compo-

nent is included in the fit also for K+K−K0
L
. Similar considerations to the ones on

K+K−K0
S
(π+π−) sub-mode can be made about the interchange between continuum and

combinatorial BB̄ events. Since the amount of background is larger, to simplify the fit

we fix the yield for this component to the expected number of events. We checked with

toy Monte Carlo technique, described in Sec. 6.7.1, that this does not introduce any bias

in the signal parameters.

6.5 Maximum Likelihood Fit

The signal parameters, both the yields for all the B0 → K+K−K0 sub-modes, and the

isobar coefficients which represent the fit fractions of each resonance and the associated

CP asymmetry, are extracted using a maximum likelihood fit technique. This strategy

has the advantage to extract signal parameters simultaneously to the background ones,

thanks to the loose selection which keep wide sidebands, in this way avoiding biases in

the signal. Furthermore, having a loose selection, this technique allows to keep a higher

efficiency with respect a simple cut-and-count analysis, where the signal is extracted in a

tight signal window. The price to pay is computational, since, having typically more than

one order of magnitude of background events, the fit procedure, above all the one of the

Dalitz plot with complicate normalizations involved, it’s much slower.

The main ingredients of a maximum likelihood fit are the following:
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Decay mode B · 10−6 Ref. Relative B · ε (%) Comment
K+K−K0 8.4 [21] 100 Sig. model

D−(K0
S
K−)K+ 0.39 [21] 3.8 Sig. model

D−(K0
S
π−)K+ 1.9 [21] < 0.4 Sidebands/generic B

D−(K0
SK−)π+ 5.7 [21] < 1.3 Sidebands/generic B

D−(K0
S
π−)π+ 28.0 [21] < 0.1 Sidebands/generic B

D̄0(K+K−)K0
S

0.067 [21] 0.8 Sidebands/generic B
D̄0(K+π−)K0

S
0.66 [21] < 0.2 Sidebands/generic B

D̄0(π+π−)K0
S

0.024 [21] < 0.1 Sidebands/generic B

D−
s (K0

S
K−)K+ 0.47 [21] 4.5 Sig. model

D−
s (K0

S
K−)π+ 0.35 [21] < 0.1 Sidebands/generic B

D−
s (K0

Sπ−)K+ < 0.013 [21] < 0.1 Sidebands/generic B
D−

s (K0
S
π−)π+ < 0.009 [21] < 0.1 Sidebands/generic B

J/ψ(K+K−)K0
S 0.007 [21] < 0.1 Sidebands/generic B

ψ(2S)(K+K−)K0
S

0.051 [21] 0.6 Sidebands/generic B
χc0(K

+K−)K0
S

< 1.0 [21] < 12 Sig. model

Table 6.6: B meson decays into charm and charmonium final states under consideration
in the background study. The B includes all sub-decay branching fractions.
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Figure 6.28: B0 → K+K−K0
S(π0π0) mode, events in generic BB MC which pass all

selection cuts, with signal events removed: (left) mES and ΔE plane, (right) m(K+K−)
mass and cos θH plane.
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Figure 6.29: B0 → K+K−K0
L

mode: projections of the Dalitz plot distribution of com-
binatorial B background. Left: mK+K−. Right: cos θH . The dots are the Monte Carlo
events, while the line is the PDF projection.

1. All the variables entering the likelihood function are assumed to be uncorrelated.

Under this hypothesis, the likelihood can be written as a product of the PDF’s of the

different variables. Otherwise, a more complicated multi-dimensional PDF is needed

(as an example the Dalitz plot PDF and the mES-ΔE 2D PDF for K+K−K0
S
(π0π0)

combinatorial BB̄ background);

2. the most of background parameters are extracted from the fit simultaneously to

the signal ones. This is possible because of the presence of the wide sidebands,

which allow the extrapolation of the background shape in the signal region. This

avoid systematic uncertainties on the background shape, typically with a negligible

increase of the statistical error;

3. the CP asymmetry is extracted as a function of the time distance between the decays

of the two B mesons in the event. This information is used in the likelihood using

Δt/σ(Δt), namely the pull of the Δt variable;

4. the maximum likelihood is extended. This means that the likelihood function in-

cludes a Poisson factor in order to conserve the total number of selected events and

to take into account the fact that the number of events produced comes from a

Poisson process;

5. the fit is performed unbinned. This allows not to lose any information in binning the
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variables entering the likelihood function, in case of small yields (which is typical

for charmless B decays).

With these considerations, the general form of the likelihood is

L = e−N ′
(N ′)N

N∏
i=1

Nspec∑
j=1

Nj

N ′P
j
i (6.13)

where Ni is the number of events for one of the Nspec species of events (signal, qq̄ back-

ground or BB̄ backgrounds -peaking and combinatorial-) and N ′ =

Nspec∑
j=1

Nj , N is the

total number of selected events and P j
i is the product of the PDF’s of the discriminating

variables used in the likelihood for the event i under the hypothesis to belong to the specie

j.

In the case of B0 → K+K−K0 analysis, the PDF is formed from these observables:

P ≡ P(mES) · P(ΔE) · PDP (mK+K−, cos θH , Δt, qtag) ⊗R(Δt, σΔt). (6.14)

where qtag is the flavour of the initial state. We will describe our model for the selec-

tion variables and the one for the time-dependent Dalitz plot, PDP , in the Sections 6.5.1

and 6.6, respectively. The PDP PDF is convoluted with R, which is the standard Δt

resolution function whose parameters are evaluated in exclusive B0 decays into final

states with a charm meson as in CP -asymmetry measurements in J/ψK0
S

decays [37],

(see Sec. 2.2.4). For the B0 → K+K−K0
L sub-mode, the mES variable does not enter the

likelihood function defined in Eq. (6.14).

We checked the correlation between the likelihood variables and found all of them

to be small for signal component (pure phase-space Monte Carlo sample), the largest

one being between mES and ΔE (13%). We report them in Tables 6.7, 6.8 and 6.9 for

K+K−K0
S(π+π−), K+K−K0

S(π0π0) and K+K−K0
L, respectively. The correlations in the

background events data are even smaller.

6.5.1 Parameterization of Selection Variables

We parameterize signal PDF’s using unbinned maximum likelihood fit on the signal Monte

Carlo samples of the three sub-modes. The kinematic variables mES and ΔE for all the

sub-modes are parameterized using the same function (labelled as Cruijff function in
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Variable mES ΔE mK+K− cos θH Δt

mES 1 -0.13 0.001 -0.002 0.03
ΔE 1 -0.03 0.001 -0.0001
mK+K− 1 -0.0005 -0.0003
cos θH 1 -0.0005

Table 6.7: K+K−K0
S
(π+π−) mode: Correlations between ML fit observables in phase-

space signal MC with selection cuts applied

Variable mES ΔE mK+K− cos θH Δt

mES 1 0.03 -0.05 0.0008 0.008
ΔE 1 -0.009 0.001 -0.004
mK+K− 1 -0.01 -0.001
cos θH 1 -0.002

Table 6.8: K+K−K0
S
(π0π0) mode: Correlations between ML fit observables in phase-space

signal MC with selection cuts applied

Variable ΔE mK+K− cos θH Δt
ΔE 1 -0.016 0.001 -0.006
mK+K− 1 0.029 0.003
cos θH 1 0.004

Table 6.9: K+K−K0
L mode: Correlations between ML fit observables in phase-space signal

MC with selection cuts applied
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the following), which is a modified Gaussian including an exponential tail:

fCruijff = exp

[
− (x − m)2

2σ2
± + α±(x − m)2

]
(6.15)

where the + (−) sign corresponds to x > m (x < m) region. The mES and ΔE dis-

tributions for K+K−K0
S
(π+π−) and K+K−K0

S
(π0π0) are shown in Fig. 6.30 and 6.31,

respectively.

 (GeV)ESm

5.26 5.265 5.27 5.275 5.28 5.285 5.29 5.295

E
ve

nt
s 

/ (
 0

.0
00

87
5 

G
eV

 )

0

100

200

300

400

500

600

700

800

 (GeV)ESm

5.26 5.265 5.27 5.275 5.28 5.285 5.29 5.295

E
ve

nt
s 

/ (
 0

.0
00

87
5 

G
eV

 )

0

100

200

300

400

500

600

700

800

E (GeV)Δ

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

E
ve

nt
s 

/ (
 0

.0
03

 G
eV

 )

50

100

150

200

250

300

350

400

E (GeV)Δ

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

E
ve

nt
s 

/ (
 0

.0
03

 G
eV

 )

50

100

150

200

250

300

350

400

Figure 6.30: K+K−K0
S
(π+π−) mode: (left) mES distribution from signal MC, (right) ΔE

distribution from signal MC. All distributions are described with the Cruijff function.

mES (GeV/c^2)
5.26 5.265 5.27 5.275 5.28 5.285 5.29 5.295

E
ve

n
ts

 / 
( 

0.
00

07
 G

eV
/c

^2
 )

0

1000

2000

3000

4000

5000

6000

7000

mES (GeV/c^2)
5.26 5.265 5.27 5.275 5.28 5.285 5.29 5.295

E
ve

n
ts

 / 
( 

0.
00

07
 G

eV
/c

^2
 )

0

1000

2000

3000

4000

5000

6000

7000

A RooPlot of "mES"

DeltaE (GeV)
-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06

E
ve

n
ts

 / 
( 

0.
00

36
 G

eV
 )

0

500

1000

1500

2000

2500

DeltaE (GeV)
-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06

E
ve

n
ts

 / 
( 

0.
00

36
 G

eV
 )

0

500

1000

1500

2000

2500

A RooPlot of "DeltaE"

Figure 6.31: K+K−K0
S(π0π0) mode: (left) mES distribution from signal MC, (right) ΔE

distribution from signal MC. All distributions are described with the Cruijff function.

Since, as we have discussed in Sec. 6.3.3, the ΔE distribution for K+K−K0
L

candidates

has different resolution for IFR or an EMC K0
L

samples, we keep the two components

separate, associating them to different PDF’s, but forcing the CP parameters to be the

same. We show the distribution of Monte Carlo events with the PDF in Fig. 6.32.

The decay B0 → J/ψK0
L
, which proceeds through b → c transition, has a considerably

higher branching ratio [21] than our charmless decay, then it can be used as a control
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Figure 6.32: Distribution of ΔE for signal Monte Carlo K+K−K0
L events with the Cruijff

PDF superimposed. Left: EMC B candidates. Right: IFR B candidates.

sample for the determination of ΔE. In order to check that we can use this decay as a

control sample, we checked on signal Monte Carlo samples that K+K−K0
L

and J/ψK0
L

events have consistent ΔE distributions. Even if the number of signal events is con-

siderably high, the purity is not sufficient to determine all the parameters of the signal

Cruijff PDF. We take the α± parameters of the Cruijff function of Eq. 6.15 from a fit

to signal Monte Carlo events, and fit the mean m and the resolution parameters σ± on

B0 → J/ψK0
L events.

We reconstruct J/ψ candidates both from μ+μ− and e+e− pairs, requiring tight PID

selectors on the leptons in order to reduce the combinatorial background. We also require

the dilepton mass to be within [3.0;3.175] GeV/c2. The most of background in this way is

made by J/ψX (inclusive J/ψ) coming from B-mesons decays, which we parameterize in

a similar way than our continuum. We show in Fig. 6.33 the fit to the B0 → J/ψK0
L

EMC

and IFR-only events, and we report in Table 6.10 the parameters of the Cruijff function

extracted by this fit and which we use for B0 → K+K−K0
L

signal PDF.

Parameter EMC IFR-only

m −1.0449 ± 6.46 MeV 0.40 ± 1.17 MeV
σ− 3.53 ± 3.11 MeV 3.73 ± 0.70 MeV
σ+ 2.93 ± 0.95 MeV 3.96 ± 1.38 MeV
α− fixed fixed
α+ fixed fixed

Table 6.10: Parameters of the Cruijff function of Eq. 6.15 used to parameterize signal ΔE
extracted to a fit to B0 → J/ψK0

L
events reconstructed on-resonance dataset.
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Figure 6.33: ΔE distribution for B0 → J/ψK0
L

in on-resonance events with the result
of the fit superimposed. Left: EMC events. Right: IFR-only events. Continuous curve
represent the total fitted PDF, the dashed line the total background and the dotted line
the non-J/ψ background.

All the parameters of the background PDF’s are fitted on data together with the signal

ones we want to extract. We parameterize mES for K+K−K0
S and ΔE for K+K−K0

L with

a phase space ARGUS function (Eqn. 5.11).

The ARGUS function for K+K−K0
L has the phase space reflected with respect to the

K+K−K0
S one (as for B0 → J/ψK0

L events). Since the purity of the sample depends on

the tagging category (being larger for leptonic category and worse for untagged events)

we allow the slope parameter ξ of the phase space function to be different for the different

tagging categories. We parameterize the continuum ΔE for K+K−K0
S with a linear shape.

The combinatorial B background for K+K−K0
S(π+π−) mode is parameterized with

an ARGUS function for mES and with a linear shape for ΔE with the parameters taken

from selected generic BB Monte Carlo and with Their distributions look very similar to

those of the continuum (see top plots in Fig. 6.27).

Because of the correlation between mES and ΔE in combinatorial B background events

for K+K−K0
S
(π0π0) mode, we use a 2D histogram PDF in this case (see left plot of

Fig. 6.28).

For K+K−K0
L

mode, we use an ARGUS function to describe both combinatorial and

charmless B background ΔE. Since we found that the shape for the latter is different in
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EMC and IFR events, we separate the two PDF in the fit, while we use a common ARGUS

shape for the combinatorial background. The distributions are shown in Fig. 6.34.
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Figure 6.34: Top: ΔE distribution of charmless B background for K+K−K0
L

mode. EMC
candidates (left) and IFR candidates (right). Bottom: ΔE distribution for combinatorial
B background (common for EMC and IFR events). All distributions are parameterized
with an ARGUS function.

6.5.2 Parameterization of Background Δt

The parameterization of signal Δt has been already described in Sec. 2.2.4.

We use an effective parameterization of Δt for the continuum background. We allow

the presence of a zero-lifetime (prompt) term with fraction of fτ=0, and a term with a

finite lifetime, τBG. The total PDF is given by

f flav
BG = fτ=0 δ(Δt)

1

2
[1 + m(1 − 2wτ=0)] + (6.16)

(1 − fτ=0)
e−|Δt|/τBG

4τ
[1 + m(1 − 2wτ>0)]

where fτ=0 is the prompt fraction, wτ=0 and wτ>0 are “effective mistag rates” for prompt

and lifetime fraction, respectively; m is ±1 for unmixed/mixed events. In the nominal
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fit, we float the prompt fraction, mistag rates in each of the tagging categories, and the

lifetime for all events. The resolution function for the continuum background is composed

of three Gaussians, but we fix the mean and width of outlier Gaussian to 0 and 8 ps,

respectively.

The B-background component (both peaking and non peaking) has in principle CP

asymmetry for the fraction of events which come from neutral B decays and which have

a defined tag. We parameterize the lifetime part of Δt resolution of the B background

as for the signal events, but we also include a prompt part as for continuum background.

The prompt part should account for tracks associated to reconstructed B coming from

both the B-meson decays. The time evolution is explicitly given with

fCP
peak = fτ=0 + (1 − fτ=0)

e−|Δt|/τB0

4τB0

(6.17)

× (1 + qSpeak sin(ΔmdΔt) + Cpeak cos(ΔmdΔt)) .

The prompt fraction depends on the tagging category, being smaller for leptonic one and

increasing for less pure categories. The lifetime and mixing frequency of the peaking

background is fixed to B0 nominal values. Tagging dilution and Δt resolution function

are taken from signal BReco events. The CP content of the peaking and non peaking

background is unknown, because they are a mixture of both charged and neutral modes.

The charged modes can show only direct CP asymmetry, while the neutral ones can also

produce CP violation in the interference between mixing and in the decay. Because of

that, in the nominal fit we fix S and C parameters of the B background to be both 0,

and we vary them uniformly from -1 to +1 and take the largest difference in signal β as

the systematic error.

6.5.3 Summary of the Maximum Likelihood Function

In Table 6.11 we report the complete list of the parameterizations of the PDF’s which

define the likelihood function. We also summarize the splitting rules and the samples

used to determine each parameter.

6.6 B0 → K+K−K0 Dalitz Plot Model

We describe signal B0 → K+K−K0 decays in the time-dependent Dalitz plot using the

isobar model, described in Sec. 3.6. Amplitudes are parameterized using polar coordinates,
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as defined in Eq. 3.55. With these ingredients, the amplitude A (Ā) for the decay B0 →
K+K−K0 (B0 → K−K+K0) can be written as a sum of decays through intermediate

resonances:

A =
∑

r

cr(1 + br)e
i(φr+δr+β) · fr, and (6.18)

Ā =
∑

r

cr(1 − br)e
i(φr−δr−β) · f̄r. (6.19)

The parameters cr and φr are the magnitude and phase of the amplitude of component

r. We allow for different isobar coefficients for B0 and B0 decays through the asymmetry

parameters br and δr. The parameter β is the CKM angle β, coming from B0-B0 mixing.

The function fr = Fr × Tr ×Zr describes the dynamic properties of a resonance r, where

Fr is the form-factor for the resonance decay vertex, Tr is the resonant mass-lineshape

(Sec. 3.3), and Zr describes the angular distribution in the decay (Sec. 3.2.3 and [45, 46]).

Our model includes the φ(1020). For the scalar decays included in our model (f0(980),

X0(1550), and χc0), we use a constant form-factor. In this case we use the Blatt-

Weisskopf centrifugal barrier factor Fr = 1/
√

1 + (Rq)2 [45], where q is the daughter

momentum in the resonance frame, and R is the effective meson radius, taken to be

R = 1.5 GeV (0.3 fm). We omit a similar centrifugal factor for the B0 decay vertex

into the φK0 intermediate state since its effect is negligible due to the small width of the

φ(1020) resonance.

The angular distribution is constant for scalar decays, whereas for vector decays Z =

−4�q · �p, where �q is the momentum of the resonant daughter, and �p is the momentum of

the third particle in the resonance frame. We describe the line-shape for the φ(1020),

X0(1550), and χc0 using the relativistic Breit-Wigner function (Eq. 3.27). The mass-

dependent width is given as Γ(mK+K−) = Γr (q/qr)
2L+1 (mr/mK+K−) (Fr(q)/Fr(qr))

2 ,

where L is the resonance spin and q = qr when mK+K− = mr. For the φ(1020) and χc0

parameters, we use average measurements [21].

The f0(980) resonance is described with the coupled-channel (Flatté) function (Eq. 3.40),

where the coupling strengths for the KK and ππ channels are taken as gπ = 0.165 ±
0.018 GeV/c2, gK/gπ = 4.21± 0.33, and mr = 0.965± 0.010 GeV/c2 (from a BES experi-

ment measurement [79]).

The X0(1550) is less well-established. Previous Dalitz plot analyses of B+ → K+K+K− [75,

76] report observations of a scalar resonance at around 1.5 GeV/c2. The scalar nature has
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been confirmed by partial-wave analyses [77, 76]. However, previous measurements report

inconsistent resonant widths: 0.145 ± 0.029 GeV/c2 [75] and 0.257 ± 0.033 GeV/c2 [76].

Branching fractions also disagree, so the nature of this component is still unclear [78]. In

our reference fit, we take the resonance parameters from Ref. [76], which is based on a

larger sample of BB decays than Ref. [75], and consider the narrower width given in the

latter in the systematic error studies.

The summary of used components is given in Table 6.12.

Resonance Amplitude Parameters Reference

φ(1020) RBW m = 1.019456 GeV/c2 PDG
Γ = 0.00426 GeV/c2 [21]
RBlattWeiss = 1.5 GeV −1

f0(980) Flatté m = 0.965 GeV/c2 BES
gπ = 0.165 GeV/c2 [79]
gK = 0.695 GeV/c2

X0(1550) RBW m = 1.539 GeV/c2 B+ → K+K+K−

Γ = 0.257 GeV/c2 [76]
(K+K−K0

S
)NR EXP α = 0.14 floated

χc0 RBW m = 3.41519 GeV/c2 PDG
Γ = 0.0101 GeV/c2 [21]

D± NIG m = 1.8694 GeV/c2 MC
σ = 0.0067 GeV/c2

D±
s NIG m = 1.9683 GeV/c2 MC

σ = 0.0067 GeV/c2

Table 6.12: List of Dalitz plot components: relativistic Breit-Wigner (RBW), non-
interfering Gaussian (NIG), single-pole coupled-channel (Flatté) and exponential (EXP).

6.6.1 Non-resonant Amplitude

As we briefly discussed in general in Sec. 3.5, in addition to resonant decays, we include

non-resonant amplitudes. Since the existing theoretical models do not reproduce well the

experimental features on data, we rely on a phenomenological parameterization [75] and

describe the non-resonant terms as

ANR =
(
c12e

iφ12e−αm2
12 + c13e

iφ13e−αm2
13 + c23e

iφ23e−αm2
23

)
· (1 + bNR) · ei(β+δNR) (6.20)

and similarly for ĀNR. The slope of the exponential function is consistent among existing

measurements in charged B decays into three kaons [75, 76], and we use α = 0.14 ±
0.02 GeV−2 · c4.
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For the systematic studies associated to the non-resonant modeling, we adopt the

theoretical model suggested in [26]:

fnr ∝
[

x1

s12
+

x2

s2
12

]
·
[
s12 log

(s12

Λ2

)]−1

(6.21)

where Λ ≈ 0.3 GeV.
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6.7 Full Dalitz Plot Fit

The fit strategy is based on three steps:

1. determine the parameters of the Dalitz plot model fitting the B0 → K+K−K0
S(π+π−)

dataset, which has the highest statistics and the best purity;

2. add the other two modes, B0 → K+K−K0
S
(π0π0) and B0 → K+K−K0

L
, to determine

the CP asymmetry. In this step, we assume that all amplitudes have the same CP

asymmetry parameters;

3. measure CP asymmetry parameters for components with low K+K− invariant mass

with a reduced model-dependence from the rest of the Dalitz plot (in fact, this region

is dominated by only two resonances, φ(1020) and f0(980), while the contribution

of X0(1500) and non resonant can be considered negligible). In this case, we fit for

separate CP asymmetry associated to the most significant resonances. This fit will

be described in Sec. 6.8.

6.7.1 Validation Studies

In order to validate fit performances and to check for the absence of any bias in the fit,

we perform a toy Monte Carlo validation, which consists in generating and fitting events

according to the likelihood function we want to use in the nominal fit. For the values of

CP asymmetry parameters, we assumed Standard Model values (which means no direct

CP asymmetry ACP and βeff = βSM). This is equivalent to set to zero the asymmetry in

amplitude (b) and in phase (δ) (see Eq. 3.55).

Signal and background yields are generated experiment by experiment using Poisson

distributions with yields and background parameters centered at the values we expect to

find in data.

We define the pull for the parameter Pi as the quantity

pull(Pi) =
P fit

i − P gen
i

σi
(6.22)

where P fit
i is the fitted value, σi is the associated error, and P gen

i is the value used in

generation. In case of unbiased fit and with sufficient statistics, the pull variable should

follow a Gaussian distribution with mean consistent with zero and a standard deviation

consistent with one.
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Name Fitted Value
nSigTot_CPKKKs 878.9 ± 35.7
nBkg_{KaonII} 302.9 ± 19.2
nBkg_{KaonI} 137.3 ± 12.8
nBkg_{KaonPion} 265.9 ± 17.7
nBkg_{Lepton} 7.09 ± 4.63
nBkg_{Notag} 837.3 ± 31.1
nBkg_{Other} 257.4 ± 17.2
nBkg_{Pion} 334.6 ± 19.9
nBBkgTot_np 69.7 ± 23.3

Table 6.13: K+K−K0
S mode: Results for the signal and background yields. nBkg stands

for number of continuum background events, while nBBkgTot stands for the number of
combinatorial (non-peaking) BB background events.

In Fig. 6.35 we show the pulls on the signal and background yields (the latter split by

tagging category), while in Fig. 6.36 we show the pulls on isobar amplitudes and phases.

All these toy Monte Carlo tests show that the likelihood fit is able to extract the signal

parameters from data without any significant biases.

6.7.2 Fit Results for Isobar Amplitudes and Phases

We perform multiple maximum-likelihood fits to data sample. In each fit we randomize

initial parameters in order to look for local minima of likelihood in the entire parameter

space.

The complete list of the fitted yields is shown in Table 6.13. We find a signal yield

of 879 ± 36 events for B0 → K+K−K0
S . These results have only a small dependence on

the choice of Dalitz plot model and the set of initial parameters. We treat differences as

a systematic error.

In Fig. 6.37 we show the fit results on the selection variables mES and ΔE on the

on-resonance dataset. For each component of the likelihood (signal, continuum and BB

background) we apply the sPlot event-weighting technique [80].

The fraction for each resonance r is computed by the isobar amplitudes:

Fr =

∫
d cos θH dmK+K− · |J | · (|Ar|2 + |Ār|2)∫
d cos θH dmK+K− · |J | · (|A|2 + |Ā|2) . (6.23)

The sum of the fractions can differ from unity due to interference between the resonances.

The isobar amplitudes, phases, and fractions for each resonance are listed in Table 6.14.
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Figure 6.35: Pull distributions of B0 → K+K−K0
S(π+π−) yields.
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Figure 6.36: Pull distributions of B0 → K+K−K0
S
(π+π−) isobar amplitudes and phases.



6.7 Full Dalitz Plot Fit 201

a) b)

 (GeV)ESm

5.26 5.265 5.27 5.275 5.28 5.285 5.29 5.295 5.3

E
ve

nt
s 

/ (
 0

.0
02

 G
eV

 )

0

50

100

150

200

250

300

 (GeV)ESm

5.26 5.265 5.27 5.275 5.28 5.285 5.29 5.295 5.3

E
ve

nt
s 

/ (
 0

.0
02

 G
eV

 )

0

50

100

150

200

250

300

E (GeV)Δ

-0.06 -0.04 -0.02 0 0.02 0.04 0.06
E

ve
nt

s 
/ (

 0
.0

03
 G

eV
 )

0

20

40

60

80

E (GeV)Δ

-0.06 -0.04 -0.02 0 0.02 0.04 0.06
E

ve
nt

s 
/ (

 0
.0

03
 G

eV
 )

0

20

40

60

80

c) d)

 (GeV)ESm

5.26 5.265 5.27 5.275 5.28 5.285 5.29 5.295 5.3

E
ve

nt
s 

/ (
 0

.0
02

 G
eV

 )

0

20
40
60

80
100
120
140
160

180
200

 (GeV)ESm

5.26 5.265 5.27 5.275 5.28 5.285 5.29 5.295 5.3

E
ve

nt
s 

/ (
 0

.0
02

 G
eV

 )

0

20
40
60

80
100
120
140
160

180
200

E (GeV)Δ

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

E
ve

nt
s 

/ (
 0

.0
03

 G
eV

 )

0

10

20

30

40

50

60

70

80

E (GeV)Δ

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

E
ve

nt
s 

/ (
 0

.0
03

 G
eV

 )

0

10

20

30

40

50

60

70

80

e) f)

 (GeV)ESm

5.26 5.265 5.27 5.275 5.28 5.285 5.29 5.295 5.3

E
ve

nt
s 

/ (
 0

.0
04

 G
eV

 )

-40

-20

0

20

40

60

 (GeV)ESm

5.26 5.265 5.27 5.275 5.28 5.285 5.29 5.295 5.3

E
ve

nt
s 

/ (
 0

.0
04

 G
eV

 )

-40

-20

0

20

40

60

E (GeV)Δ

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

E
ve

nt
s 

/ (
 0

.0
12

 G
eV

 )

-30

-20

-10

0

10

20

30

40

E (GeV)Δ

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

E
ve

nt
s 

/ (
 0

.0
12

 G
eV

 )

-30

-20

-10

0

10

20

30

40

Figure 6.37: K+K−K0
S
(π+π−) mode: sPlot’s of selection variables overlaid with PDF for

(a-b) signal, (c-d) continuum, and (e-f) combinatorial B background.
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Decay Amplitude cr Phase φr Fraction Fr (%)
φ(1020)K0 0.0098 ± 0.0016 −0.11 ± 0.31 12.9 ± 1.3
f0(980)K0 0.528 ± 0.063 −0.33 ± 0.26 22.3 ± 8.9
X0(1550)K0 0.130 ± 0.025 −0.54 ± 0.24 4.1 ± 1.8
NR (K+K−) 1 (fixed) 0 (fixed)

(K+K0) 0.38 ± 0.11 2.01 ± 0.28 91 ± 19
(K−K0) 0.38 ± 0.16 −1.19 ± 0.37

χc0K
0 0.0343 ± 0.0067 1.29 ± 0.41 2.84 ± 0.77

D+K− 1.18 ± 0.24 – 3.18 ± 0.89
D+

s K− 0.85 ± 0.20 – 1.72 ± 0.65

Table 6.14: Isobar amplitudes, phases, and fractions from the fit to the B0 →
K+K−K0

S
(π+π−) sample. Three rows for non-resonant contribution correspond to coeffi-

cients of exponential functions in Eq. (6.20), while the fraction is given for the combined
amplitude. Errors are statistical only.

In Fig. 6.38 we show the sPlot-weighted distributions of the Dalitz plot variables for

B0 → K+K−K0
S
(π+π−).

We compare our fractions with other Dalitz plot analyses using flavor symmetry [81].

We find consistent fractions for decays through the φ(1020) resonances with the B+ →
K+K+K− decay [75, 76]. The fraction of f0(980)K0 decays is consistent with the study

of B+ → K+K+K− decays by BABAR Collaboration, and all B+ → K+π+π− Dalitz

plot analyses [75, 76, 82]. The fraction of non-resonant decays, which is predicted to

be half of the contribution in B+ → K+K+K− [81], is harder to compare since existing

measurements in the charged mode are inconsistent. Our result agrees well with BABAR’s

result [76], and is within two standard deviations of Belle’s result [75]. Determination

of the wide scalar resonance at 1.5 GeV/c2, labeled as X0(1550), is even more uncertain.

Using the same resonant parameters as in the analysis of the charged mode, we find a

much smaller fraction than in BABAR’s analysis [76], but our solution is more consistent

with Belle’s B+ → K+K+K− analysis [75].

6.7.3 Fit to the CP Asymmetry in B0 → K+K−K0

While the other two sub-modes have not sufficient purity to extract the isobar parameters

from data, they can be added in the fit for the time-dependent CP asymmetry. In-fact,

above all B0 → K+K−K0
L

provide a significant contribution in terms of signal statistics,

even if with low purity.

We then fix the isobar amplitudes and phases to the ones fitted in the K+K−K0
S
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Figure 6.38: K+K−K0
S(π+π−) mode: sPlot’s of Dalitz plot variables overlaid with PDF

for signal events. (a) K+K− invariant mass in the whole region; (b) K+K− invariant mass
for the low mass region (mK+K− < 1.1 GeV/c2); (c) K+K0

S
invariant mass; (d) K−K0

S

invariant mass; The higher peaks in K+K0
S and K−K0

S are reflections of the φ(1020),
while the bump near 1.8 GeV/c2 is the D+ contribution. (e) cos θH for the whole Dalitz
plot (f) cos θH for the low mass region mK+K− < 1.1 GeV/c2.
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sample and reported in Table 6.14 and fit the asymmetries in amplitude (b in the polar

coordinates) and in the phase (δ in the polar coordinates) simultaneously on the combined

K+K−K0 data sample. In order to take into account the opposite CP eigenvalue of

K+K−K0
L

decay with respect to K+K−K0
S
, we have to produce a sign flip in the “sine

term” of Eqn. 3.1:

+q2Im
(
ĀA∗e−2iβ

)
.

This is achieved in the fit with the substitution β → β + π/2 in the K+K−K0
L

time-

dependent Dalitz PDF.

The isobar parameters b and δ can be translated in terms of direct CP asymmetry

and mixing-induced CP asymmetry, respectively:

ACP = −|c|2 − |c̄|2
|c|2 + |c̄|2 = − 2b

1 + b2
(6.24)

βeff = βSM + δ (6.25)

where βSM = 0.379 is a constant offset set to the Standard Model value of the CKM angle

β.

Validation of the CP Fit

We validate the combined fit with a set of toy Monte Carlo experiments. We fit simul-

taneously the signal and background yields for the three sub-modes, together with the

CP asymmetry parameters. In the same time, most of background parameters are left

varying in the fit.

In Fig. 6.39 we show the pulls for the signal and background yields for all the modes,

while in Fig. 6.40 are the fitted values. In Fig. 6.41 we show the pulls for the background

tagging fractions, which are kept varying in the fit.

In Fig. 6.42 we show the pulls, the fitted central values and the distribution of errors

on the CP parameters b and δ.

From these toy experiments it is evident that the likelihood is able to fit all the signal

yields, together with the CP asymmetry parameters, without significant bias. Then we

perform this fit on the combined B0 → K+K−K0 dataset.

Results on the CP Asymmetry for the Full B0 → K+K−K0 Dalitz Plot

The results on the K+K−K0
S
(π+π−) yields are consistent with the ones obtained with the

single mode fit and reported in Table 6.13.
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Figure 6.39: Toy results for the combined fit to the whole Dalitz plot for all three sub-
modes: K+K−K0

S
(π+π−) (top), K+K−K0

S
(π0π0) (middle), and K+K−K0

L
(bottom): dis-

tributions of pulls for the event yields.
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Figure 6.40: Toy results for the combined fit to the whole Dalitz plot for all three sub-
modes: K+K−K0

S
(π+π−) (top), K+K−K0

S
(π0π0) (middle), and K+K−K0

L
(bottom): dis-

tributions of central values for the event yields.
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Figure 6.41: Toy results for the combined fit to the whole Dalitz plot. Pulls distributions
for the background yield fractions for: (a) K+K−K0

S(π+π−), (b) K+K−K0
S(π0π0), and

(c) K+K−K0
L
.
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Figure 6.42: Toy results for the combined fit to the whole Dalitz plot for all three sub-
modes: K+K−K0

S
(π+π−), K+K−K0

S
(π0π0), and K+K−K0

L
: Distributions of (a) pulls,

(b) values, and (c) errors for the DP-averaged CP parameters. Blue arrowheads in (b)
indicate the generated value for the toys.
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Name Fitted Value
nSigTot 138.3 ± 16.9
nBkgTot 1415.1 ± 40.6
nBBkgTot_np 45.6 ± 16.6
fBkg00_KaonI 0.058 ± 0.006
fBkg00_KaonII 0.107 ± 0.009
fBkg00_KaonPion 0.105 ± 0.008
fBkg00_Lepton 0.0036 ± 0.0019
fBkg00_Other 0.137 ± 0.009
fBkg00_Pion 0.160 ± 0.010

Table 6.15: K+K−K0
S(π0π0) mode: Results for the signal and background yields. nBkg

stands for number of continuum background events, while nBBkgTot stands for the
number of combinatorial (non-peaking) BB background events.

Name Fitted Value
nSigTot 583.1 ± 59.7
nBkgTot 20578 ± 172
nBBkgTot_np 422.2 ± 98.3
fBkgKL_KaonI 0.059 ± 0.001
fBkgKL_KaonII 0.140 ± 0.003
fBkgKL_KaonPion 0.140 ± 0.003
fBkgKL_Lepton 0.0011 ± 0.0009
fBkgKL_Other 0.123 ± 0.002
fBkgKL_Pion 0.167 ± 0.003

Table 6.16: K+K−K0
S
(π0π0) mode: Results for the signal and background yields. nBkg

stands for number of continuum background events, while nBBkgTot stands for the
number of combinatorial (non-peaking) BB background events.

The signal and background yields for the K+K−K0
S(π0π0) sub-mode are consistent

with what expected (see Table 6.15). We show the signal and background sPlot-weighted

distributions for the selection variables mES and ΔE in Fig. 6.43, while we show in Fig. 6.44

the signal sPlot distributions for the Dalitz variables.

The results for the yields of B0 → K+K−K0
L

are reported in Table 6.16.

We show the ΔE distribution in Fig. 6.45, where we apply harder cuts on event shape

variables (with 30% efficiency on signal) to enhance the signal in the plot. We show in

Fig. 6.46 the signal sPlot distributions for the Dalitz variables for K+K−K0
L

sub-mode.

Note that for all the three sub-modes we use the same Dalitz plot model (which is

the one fitted in K+K−K0
S

by alone), but the model in the projection plots of Figs. 6.38,
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Figure 6.43: K+K−K0
S
(π0π0) mode: sPlot-weighted distributions of selection variables

overlaid with PDF.
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Figure 6.44: Distributions of the Dalitz plot variables (left) mK+K− and (right) cos θH for
signal events (points) compared with the fit PDF in the K+K−K0

S
(π0π0) sub-sample.
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Figure 6.45: Distribution of the kinematic variable ΔE for the K+K−K0
L sub-sample.

The solid line represents the total likelihood, while the dashed line represents the sum
of continuum and BB background. A tight requirement on the event shape variables is
applied to enhance the signal, with an efficiency of about 30% for signal.
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Figure 6.46: Distributions of the Dalitz plot variables (left) mK+K− and (right) cos θH for
signal events (points) compared with the fit PDF in the K+K−K0

L
sub-sample.
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Figure 6.47: (top) Δt distributions and (bottom) asymmetries in the (left)
K+K−K0

S(π+π−) and (right) K+K−K0
L. For the Δt distributions, B0- (B0-) tagged

signal-weighted events are shown as filled (open) circles, with the PDF projection in solid
blue (dashed red). We do not show the single K+K−K0

S(π0π0) sub-mode because of the
poor statistics.

6.44, 6.46 can be different because the efficiency across the Dalitz plot is different.

In Table 6.17 we report the results on the CP asymmetry parameters, expressed in

terms of direct CP asymmetry ACP and weak phase βeff . The expected values in the

Standard Model are ACP =0 and βeff =0.379 [30].

Parameter K+K−K0
S(π+π−) K+K−K0

S(π0π0) K+K−K0
L Combined

ACP -0.10 ± 0.09 -0.10 ± 0.28 0.28 ± 0.20 -0.034 ± 0.079 ± 0.025
βeff 0.37 ± 0.08 0.24 ± 0.22 0.29 ± 0.21 0.361 ± 0.079 ± 0.037

Table 6.17: Results for direct CP asymmetry ACP and mixing induced CP asymmetry
parameter βeff in the three different sub-modes studied for the decay B0 → K+K−K0.

The fitted value for βeff which has the minimum log(L) is consistent with one standard

deviation with the preferred solution by the Unitarity Triangle fit.

We show in Fig. 6.47 the sPlot-weighted time difference distribution Δt for B0 and

B0 tags for B0 → K+K−K0
S

and B0 → K+K−K0
L
, showing a large CP asymmetry effect

with opposite eigenvalue between K0
S

and K0
L
.

We also remove an ambiguity in the solution for the mixing angle βeff → π/2 −
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Figure 6.48: Change in the Δ log(L) value as a function of βeff . SM expectation value is
βeff =0.379.

βeff (present in previous measurements of sin(2βeff ) in penguin decays). We estimate

the significance of the nominal result for βeff compared to the trigonometric reflection

where βeff → π/2 − βeff . In a collection of fits with both isobar coefficients and CP -

asymmetry parameters allowed to vary, we randomize the initial parameter values and

evaluate the likelihood separation between these two solutions. We find Δ log(L) = 10.4,

which excludes the reflection at a significance of 4.6 standard deviations. Note that the

ambiguity βeff → βeff +π still remains since we measure the total phase difference between

B0 and B0 decays (2βeff ). A scan of the change in likelihood as a function of βeff is shown

in Figure 6.48.

Fig. 6.49 shows the allowed 4-fold ambiguity on β by the sin 2β measurement in B0 →
[cc̄]K0 decays. Our measurement rejects the band at higher β at 4.6 σs, which is already

disfavoured by other measurements of the Unitarity Triangle [30].
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Figure 6.49: Allowed 4-fold bands for β angle of the Unitarity Triangle from measurement
of sin 2β in B0 → [cc̄]K0 decays. Our measurement removes the higher β band.
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6.8 CP Asymmetry in the Low K+K− Mass Region

The region of low K+K− invariant mass is the one where the interference between CP -even

and CP -odd decays is the largest, due to the presence of the strong P -wave contribution

of the φ(1020). The B0 → φK0 is also the one with the lowest theoretical uncertainties

on βeff .

We select events in the low K+K− mass region using a cut of mK+K− < 1.1 GeV/c2.

After this selection, we retain 836 K+K−K0
S
(π+π−) candidates, 202 K+K−K0

S
(π0π0)

candidates, and 4923 K+K−K0
L candidates. The most significant contribution in this

region comes from φ(1020)K0 and f0(980)K0 decays, with a smaller contribution from a

low-K+K− tail of non-resonant decays. We vary the isobar parameters for the φ(1020)

and fix all other components to the results of the full Dalitz plot fit. We also vary the CP

amplitude and phase asymmetries for the φ(1020) and f0(980). The asymmetry for the

other components is fixed to the SM expectation. This is one of the main difference with

respect to the full Dalitz plot fit, i.e. allowing for different resonances to have different

CP asymmetries, which in practice means allowing B0 → φK0 to receive different New

Physics contributions with respect to B0 → f0K
0 decays.

6.8.1 Validation Studies

We validate also the fitting procedure for the low mass region because of the higher number

of floating parameters with respect to the full Dalitz plot fit (different CP asymmetry

for f0K
0 and isobar amplitude cr and phase φr for φK0). We perform toy Monte Carlo

experiments using the Standard Model values as generation values for the CP asymmetries

for B0 → φK0 and B0 → f0K
0. In Fig. 6.50 we show the pull distributions for the isobar

parameters and the CP asymmetries; in Fig. 6.51 and 6.52 the fitted central values and

errors on them, respectively.

These fitter test show that the likelihood is able to fit the isobar parameters and the

CP asymmetries in the low mass region separately for φ(1020) and f0(980) resonances.

6.8.2 Fit Results

We perform a fit to all sub-modes, then perform an additional fit to the entire K+K−K0

sample. We find signal yields of 252±19, 35±9, and 195±33 events for K+K−K0
S
(π+π−),

K+K−K0
S
(π0π0), and K+K−K0

L
respectively. Fig. 6.53 shows projections of the Dalitz
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Figure 6.50: Toy results for low-mass fit to all K+K−K0 events: pull distributions for
the isobar parameters and CP asymmetries.
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Figure 6.51: Toy results for low-mass fit to all K+K−K0 events: distributions of fit values
for the isobar parameters and CP asymmetries
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plot distributions of events in this region. The CP -asymmetry results are listed in Ta-

ble 6.18. The plots in Fig. 6.54 show distributions of Δt for B0-tagged and B0-tagged

events, and the asymmetry, obtained with the sPlot event-weighting technique, for the

K+K−K0
S
(π+π−) and K+K−K0

L
sub-samples.

The decay B0 → φK0, with highly suppressed tree amplitudes, is, in terms of theoret-

ical uncertainty, the cleanest channel to interpret possible deviations of the CP -violation

parameters from the SM expectations (ACP =0 and βeff =0.379). Values of βeff are

consistent with the value found in B0 → [cc̄]K0 decays [37, 38].

Parameter K+K−K0
S
(π+π−) K+K−K0

S
(π0π0) K+K−K0

L
Combined

ACP (φK0) -0.10 ± 0.23 -0.83 ± 0.43 0.56 ± 0.26 -0.18 ± 0.20 ± 0.10
βeff 0.02 ± 0.16 0.32 ± 0.69 0.90 ± 0.30 0.06 ± 0.16 ± 0.05
ACP (f0(980)K0) 0.36 ± 0.33 0.37 ± 1.25 0.0 (fixed) 0.45 ± 0.28 ± 0.10
βeff(f0(980)K0) 0.04 ± 0.18 0.50 ± 1.26 0.379 (fixed) 0.18 ± 0.19 ± 0.04

Table 6.18: Results for direct CP asymmetry ACP and mixing induced CP asymmetry
parameter βeff in the three different sub-modes studied for the decay B0 → K+K−K0.
The fits in the B0 → K+K−K0

S
sub-modes, differently from B0 → K+K−K0

L
allow the

two CP asymmetries for f0(980) to vary, together with the two isobar parameters for the
φ(1020). In B0 → K+K−K0

L
only fit only the CP asymmetries, together with the yields

are fitted.

6.8.3 Fit Fractions in Low K+K− Mass Region

From the low mK+K− fit to the K+K−K0
S(π+π−) mode only we also measure the isobar

amplitudes and phases. We report the results on Table 6.19. When isobar parameters are

Name Fitted Value
φ(1020) cr 0.009120 ± 0.000944
φ(1020) φr −0.0304 ± 0.252

Table 6.19: Fitted isobar amplitude (cr) and phase (φr) of the φ(1020) in the region
mK+K− < 1.1 GeV/c2.

converted to fractions (Eq. 6.23) we get values listed in the second column of Table 6.20.

We convert resonant fractions into branching fractions for the K+K−K0 final state (full

Dalitz plot):

Bi =
Fi · Nsig

NBB · εi
(6.26)
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and list them in the Table 6.20. We also list branching fractions measured in B+ →
K+K+K− decays [76]. Both charged and neutral channels have the same decay rates

within flavor-symmetry assumption [81]. Both our branching fractions are within one

sigma from previous measurements, although with large errors.
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Figure 6.52: Toy results for low-mass fit to all K+K−K0 events: distributions of fit errors
for the isobar parameters and CP asymmetries

Name Fi [%] B(B0 → K+K−K0) B(B+ → K+K+K−) × τB0

τB+

φK0
S 56.5 ± 4.6 3.3 ± 0.3(stat) 3.8 ± 0.4

f0K
0
S

23.4 ± 2.5 4.8 ± 0.5(stat) 6.0 ± 2.7
(K+K−K0

S
)NR 10.7 ± 1.1 - -

Table 6.20: K+K−K0
S(π+π−) mode: Fit to low K+K− mass data sample using time-

dependent Dalitz plot fit. All branching fractions are in units 10−6.
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Figure 6.53: For the low-K+K− mass Dalitz plot fit, distributions of the Dalitz plot vari-
ables (left) mK+K− and (right) cos θH for signal events (points) compared with the fit PDF
in the following sub-samples: a) K+K−K0

S
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Figure 6.54: (top) Δt distributions and (bottom) asymmetries in the (left)
K+K−K0

S
(π+π−) and (right) K+K−K0

L
in the low mass region mK+K− < 1.1 GeV/c2. For

the Δt distributions, B0- (B0-) tagged signal-weighted events are shown as filled (open)
circles, with the PDF projection in solid blue (dashed red). We do not show the single
K+K−K0

S
(π0π0) sub-mode because of the poor statistics.
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6.9 Systematic Uncertainties

We evaluate systematic uncertainties separately for the full Dalitz plot fit and the low

mass fit. In the following we describe the sources of systematic uncertainties, and in

Table 6.21 we show the summary of them for both the full Dalitz plot fit and the low

mass fit.

Event Selection

We assign systematic uncertainties on the CP asymmetries due to parameters which are

fixed in the fit. In a large set of toy samples, we perform two fits: first we make the

nominal fit, then we vary the parameters by one standard deviation assuming that they

follow a Gaussian distribution (“smearing procedure”) and we repeat the fit. We take the

average observed change from the nominal fit as the systematic error.

Fit Bias

We account for a potential fit bias using values observed in studies with toy MC events

and full MC sample generated with a Dalitz plot model. We take the largest values of

the bias observed in toy studies as the systematic error.

Vertexing Method and Tagging

We account for fixed Δt resolution parameters, B0 lifetime, and mixing in the same way

we evaluated the fixed parameters of the selection variables.

We also account for possible misalignment in the vertexing detector. We fit a Monte

Carlo sample with five possible misalignment scenarios. We then take the largest difference

with the nominal fit to the same Monte Carlo sample as the associated systematic.

Beam Spot Position and Calibration

To assign a systematic uncertainty on the beam spot position, we shift the beam spot

position in the simulation by ±20μm in the y direction. The sensitivity due to eventual

calibration problems or time-dependent effects is evaluated by smearing the beam spot

position by an additional ±20μm in the y direction.

The effect on the position and smearing of the beam spot Δt is very small. We take

the largest change in the CP asymmetry parameters from the two shifts and add this in
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quadrature with the effect of smearing to obtain the total systematic uncertainty.

Tag Side Interference From Doubly CKM Suppressed Decays

The tagging parameters used for asymmetries measurement come from the fit to the

fully reconstructed B decays sample, where the charge of decay products are used to

determine the flavour of the two B mesons. These decays are dominated by b → cūd

transition. However, in a fraction of events, b̄ → ūcd̄ amplitudes can contribute to the

final states used for tagging. The interference effects between CKM-favored and doubly-

CKM-suppressed decays (DCSD) are not absorbed into the mistag rates, and so a bias in

Δt distribution can be induced by neglecting them [83].

The uncertainty on the CP parameters due to this effect is evaluated with the proce-

dure described in [83], with the most recent values of CKM parameters.

CP Content of the BB Background

The K+K−K0
S sub-modes have not charmless BB background, but only combinatorial BB

background. For this background, is reasonable to assume no CP asymmetry as for the

continuum. The K+K−K0
L has a remaining contribution from the charmless (“peaking”)

BB background, which is a mixture of channels whose CP content is unknown. In the

nominal fit we assumed no CP asymmetry. We account for this uncertainty varying the

direct and mixing-induced CP asymmetry in the whole allowed region, repeating the fit,

and taking the largest difference with the nominal fit as the systematic uncertainty.

Dalitz Plot Resolution

The nominal Dalitz model assumes perfect mass resolution since it is small compared to

the resonant width for all Dalitz plot components. The mass resolution function of signal

events in the Dalitz plot is studied by comparing true and reconstructed values of Dalitz

plot observables in a sample of Monte Carlo events.

We study only the resolution effects in mK+K−, since the main resonances decay into

K+K−. The mass resolution and bias in mK+K− for mass constrained B candidates is

shown in Fig. 6.55, which show how it is negligible with respect to the resonances width.

We convolve the Dalitz plot PDF with the resolution function shown in Fig. 6.55 and

repeating the nominal fit. The difference in CP asymmetry parameters between this fit

and the nominal one is taken as the systematic error.
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Figure 6.55: Mass resolution for K+K− pairs in the K+K−K0
S
(π+π−) sub-mode.

Dalitz Plot Model

The systematic uncertainty related to the phenomenological parameterization of the B0

decay amplitude represents the main systematic error of the analysis. We use a set of toy

Monte Carlo experiments to estimate it: we generate toy samples using central values for

the Dalitz parameters smeared by their error, and fit with the nominal ones. Then we

take the difference as systematic error.

For the low mass fit, where isobar coefficients are fixed for all components except for

the φ(1020), we use errors from full Dalitz plot fit to estimate impact on CP parameters

for φ(1020) and f0(980).

We also assign an error due to uncertainty in the resonant and non-resonant line-shape

parameters. For resonant components this includes uncertainty in the mass and width of

X0(1550). To evaluate the effect on the nominal fit we replace the nominal parameters

with those found in B+ → K+K−K+ measurement [75]: m = 1.491 GeV/c2, Γ = 0.145.

We also test a hypothesis that X0 is the f0(1500) (i.e. we use m = 1.507 GeV/c2,

Γ = 0.109 GeV [21]). We take the largest observed difference from the nominal fit as the

systematic error.

Non-resonant distributions are not motivated by theory so we try three alternative non-

resonant models that depend on K+K0
S

and K−K0
S

masses: eα12s12 , eα12s12 +c23e
iδ23 eα23s23

and eα12s12 + c13e
iδ13 eα13s13 . The dominant error comes from non resonant events when

K+K0
S

and K−K0
S

dependence is switched off since they account for P -wave contribution.

We find a negligible change in b, and a large change in δ (0.11). However, inclusion

of these non resonant components (which assuming SU(2) symmetry are symmetric in

momentum to K+K− component) was suggested by theorists [81] so we believe it would
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be over-conservative to include this change as a model error. We determine effect of the

uncertainty of the shape parameter α to CP parameters and include it into error.

For the low-mass fit we evaluate the systematic uncertainties using the same strategy.

The gain in this fit is a highly reduced contribution from the Dalitz plot model because

the mass region mK+K− < 1.1 GeV/c2 receives negligible contributions by the X0(1500)

and the non-resonant. The list of the systematic uncertainties on the CP parameters in

the full Dalitz plot fit and in the low-mass fit is reported in Table 6.21.

Parameter φK0 f0K
0 K+K−K0

ACP βeff ACP βeff ACP βeff

Event selection 0.00 0.01 0.00 0.00 0.003 0.002
Fit Bias 0.04 0.01 0.04 0.02 0.004 0.010
Δt, vertexing, DCSD 0.02 0.03 0.01 0.01 0.010 0.010
Tagging 0.01 0.00 0.01 0.00 0.021 0.002
BB CP 0.01 0.01 0.01 0.02 0.006 0.007
Dalitz model 0.09 0.03 0.09 0.03 0.011 0.035

Total 0.10 0.05 0.10 0.04 0.025 0.037

Table 6.21: Summary of systematic errors on CP -asymmetry parameters. Errors for
φK0 and f0K

0 CP -parameters are based on the low-K+K−-mass sample. The K+K−K0

column refers to errors on average CP parameters across the Dalitz plot.

6.10 Summary of Results

In the fit to B0 → K+K−K0
S(π+π−) decays, we have analyzed the Dalitz plot distribution

and measured the fractions of the intermediate states. They are given in Table 6.14.

Subsequently, we have extracted the CP asymmetry parameters from simultaneous fits

to a combined sample of B0 → K+K−K0 decays with three possible final states of the

neutral kaon: K0
S → π+π−, K0

S → π0π0 and K0
L. The average CP asymmetry in the Dalitz

plot is reported in Table 6.17, and it is found to be βeff = 0.361±0.079±0.037, where the

first error is statistic and the second is systematic. This result is fully compatible with the

Standard Model expectation (β = 0.379). We also measured the direct CP asymmetry to

be consistent with zero.

From a fit to events at low K+K− invariant masses, we measured the CP asymmetry of

the decay B0 → φK0 which is, in the number of the decays mediated by b → s transitions,

the one with the smallest theoretically uncertainties. For this decay we measured βeff =

0.06±0.16±0.05, which is not significantly different from the Standard Model expectation.
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From this fit we measured also the CP asymmetry of the decay B0 → f0K
0, and found

βeff = 0.18± 0.19± 0.04. These results are reported in Table 6.18. We also measured the

direct CP asymmetry for B0 → φK0 and B0 → f0K
0, and found them consistent with

zero, which is the Standard Model expectation.



Chapter 7

Measurement of CP Asymmetry in
B0 → K0

SK0
SK0

S Decays

As discussed in Sec. 1.5, the B0 → K0
S
K0

S
K0

S
decay, although it is a three-body decay,

has a well defined CP eigenvalue (CP -even). For this reason a Dalitz plot analysis as

in B0 → K+K−K0 is not necessary for a time-dependent measurement of S and C

parameters [84]. For this reason a standard time-dependent measurement of the CP

asymmetry, like in B0 → [cc̄]K0 decays, is feasible.

In order to maximize the statistical significance of the measured CP asymmetry, we

reconstruct two sub-modes: one with candidates formed by three K0
S → π+π−, the other

with candidates formed by two K0
S → π+π− and a third K0

S → π0π0. In fact, since

B(K0
S → π+π−) ≈ 2B(K0

S → π0π0), we expect

Ntrue =
(
B0 → 2K0

Sπ+π−K0
Sπ0π0

)
≈ 3

2
Ntrue

(
B0 → 3K0

Sπ+π−
)
, (7.1)

where Ntrue indicates the number of B mesons decaying in the specified manner, i.e.

without considering the efficiency reconstruction, which is lower for K0
S
→ π0π0 with

respect K0
S
→ π+π−.

For this measurement we use 374× 106 BB̄ pairs recorded at the Υ (4S) resonance by

the BABAR detector.

7.1 The Event Selection

In this section we describe the selection of events for B0 → K0
S
K0

S
K0

S
decays. Because of

the different purities of the two sub-modes, we apply different selection criteria on them.
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7.1.1 Selection of B0 → K0
S
K0

S
K0

S
(π+π−)

For this sub-sample we reconstruct K0
S

→ π+π− candidates from pairs of oppositely

charged tracks originating from a common vertex, with the procedure described in Sec. 5.2.1.

We then combine the three selected K0
S

in the event to form the B0 candidate. We use the

kinematic variables described in Sec. 6.3.2 to define the B meson candidate: mES and ΔE.

Since in this decay there are only charged tracks in the final state (six charged pions),

the resolutions for these two variables are similar to ones reported in Sec. 6.3.2 for the

K+K−K0
S

final state: 2.5 MeV/c2 and 14 MeV/c2, respectively. We select B0 candidates

satisfying the following requirements:

• 5.22 < mES < 5.30 GeV/c2

• −120 < ΔE < 120 MeV

These requirements are quite loose in order to keep enough sideband events to characterize

backgrounds.

The main background comes from the e+e− → qq fragmentation. We apply a re-

quirement on | cos θT | < 0.9 and the shape of a Fisher discriminant F , calculated from

the order zero and order two Legendre monomials L0 and L2. Contrary to the case of

B0 → K+K−K0 analysis, the Fisher discriminant is uncorrelated from the other vari-

ables, so that we can use all the discriminating power including it in the likelihood. This

allows to gain in efficiency on signal and in separation power with respect continuum

background. We define the wide Fisher allowed region in −3 < F < 4.

We also apply requirements on the K0
S
K0

S
invariant mass in order to veto decays

through intermediate charm resonances χc0 and χc2, which we will discuss in Sec. 7.2.

The event selection efficiency is about 6%, and the details on the efficiency of the single

requirement are reported in Table 7.1.

7.1.2 Selection of B0 → K0
S
K0

S
K0

S
(π0π0)

In order to reconstruct the sub-mode B0 → K0
S
K0

S
K0

S
(π0π0), we select two K0

S
→ π+π−

with the same procedure described for the K0
S
K0

S
K0

S
(π+π−) sub-mode. Then we form a

K0
S
→ π0π0 using the criteria described in Sec. 5.2.2. We combine the two K0

S
→ π+π−

and the K0
S
→ π0π0 candidates to form a B meson.

We also impose these very loose requirements:
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Cut Signal MC
Total Events Before cuts 48956

5.22 < mES < 5.3 GeV 84.6 84.6
|ΔE| < 120 MeV 90.6 76.7
K0

S
flight length 0.2 < rDEC < 40 cm 86.5 66.3

K0
S mass 12 Mev 86.6 57.4

K0
S

angle cut α < 200 mrad 94.6 54.3
| cos θT | < 0.9 88.3 47.9
K0

S
vertex prob P (χ2) > 1.25−3 92.8 44.5

Vetoes on χc0 and χc2 82.1 36.5

Luminosity/#Generated Signal MC 315 K
# of Events (ε) after cuts 21775 (6.91%)
# of Events (ε) after vetoes 17876 (5.67%)

Table 7.1: Selection efficiencies for analysis cuts with B0 → K0
S
K0

S
K0

S
(π+π−) signal Monte

Carlo. We report in the first (second) column the relative (cumulative) efficiency.

1. the total energy of the event has to be less than 20 GeV;

2. at least one track has to be present in the rest of the event.

These requirements, within the presence of the three selected K0
S
, are referred as “pre-

selection” in the following.

In order to define the B meson, we use a set of two kinematic variables. While for

the sub-mode K0
S
K0

S
K0

S
(π+π−) the usual variables mES and ΔE are almost uncorrelated

(because the final state includes only charged tracks in the final state), this is no longer

true when one or more photons are present in the final state. In this case, because of leak-

age effects in the EMC, the reconstructed energy of the photons can be underestimated,

affecting both the reconstructed momentum and energy. This produces a non Gaussian

left tail in both mES and ΔE variables, which increases the correlation between the two

variables. A study has been done for the first time for decays B0 → K0
S
π0 by the BABAR

Collaboration [31] introducing a set of two new kinematic variables, mB and mmiss, which

have less correlation than mES and ΔE. They are defined as:

mB ≡ |qrec|

mmiss ≡ |qe+e− − qrec(mB ≡ 0)| (7.2)

where qe+e− is the four-momentum of the e+e− system and qrec(mB ≡ 0) is the four-

momentum of the fully reconstructed B meson after a mass constraint is applied. There-
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fore, they represent the mass of the fully reconstructed B (mB), and the mass of the

tagging (“missing”) B meson with mass constraint on the other one.

To a good approximation, (mES,ΔE) and (mmiss,mB) are related by

mES ≈ (mmiss + mPDG
B )/2,

ΔE ≈ mB − (mmiss + mPDG
B )/2 ≈ mB − mPDG

B (7.3)

where mPDG
B is the nominal B mass [21]. Therefore, the shape of mmiss is mES-like, while

mB is ΔE-like.

By construction, the linear correlation coefficient between mmiss and mB vanishes.

This is valid in the limit of perfect reconstruction, but a small correlation can still arise

due to energy loss in photon reconstruction, but it is significantly smaller than mES and

ΔE. From a signal Monte Carlo sample, we estimate it to be about 3% for the former

pair with respect about 15% of the latter. We then decided to use this set of kinematic

variables. We apply the following requirements on these two variables:

• 5.11 < mmiss < 5.31 GeV/c2

• −150 < mB − mPDG
B < 150 MeV/c2

which keep a wide sideband region for background characterization.

It comes from their definition that the two Legendre monomials L0 and L2 are corre-

lated to the missing energy in the event, as shown in Fig. 7.1. This correlation is reduced

in the Fisher discriminant, which linearly combines the two Legendre monomials, but it

is almost canceled in the ratio l2 = L2/L0. Since the discrimination power of l2 is sim-

ilar to the one of the Fisher discriminant, we choose to use this simple variable for the

sub-mode K0
SK0

SK0
S(π0π0). A preliminary selection on | cos θT | < 0.95 is applied for com-

putational issues (it is included in “pre-selection”) then we use the whole l2 distribution

in the likelihood, without making a selection on it.

In the case of one or more badly reconstructed K0
S
→ π+π− in the B0 → K0

S
K0

S
K0

S

decay, the χ2 of the B vertex fit presents a tail corresponding to non converged fits, as

shown in Fig. 7.2. Since the number of wrongly reconstructed K0
S

is lower in signal decays

than in background, the vertexing χ2 has background rejection power. In particular, a

requirement χ2 < 20, equivalent to P (χ2) > 1.25 · 10−3, we are able to reject (33.6 ±
0.6)% of qq events and (48.9 ± 1.9)% of BB background events, whose composition is

described in 7.2. This requirement has a signal efficiency of (92.0 ± 0.2)%.
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Figure 7.1: Average values for the two Legendre monomials L0 (top), L2 (middle top),
Fisher discriminant (middle bottom) and l2 = L2/L0 (bottom) as a function of the mea-
sured missing energy in the event for signal Monte Carlo events. The error bars correspond
to the r.m.s. of the distribution.

Figure 7.2: Distribution of vertex χ2 in B0 → K0
SK0

SK0
S(π0π0) decays for signal Monte

Carlo events (dots) and data sidebands (solid histogram). In the B vertex fit the infor-
mations coming from K0

S
→ π0π0 are neglected. The distributions are normalized to the

same area.
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We also apply the veto on charm intermediate resonances χc0 and χc2, which will be

described in Sec. 7.2.

The summary of the selection efficiencies is reported in Table 7.2. The total re-

construction efficiency of this sub-mode is about 3% (This includes the B of the decay

K0 → K0
S
→ π0π0).

Selection ε (%)
pre-selection 9.3 ± 0.2

|mB − mPDG
B0 | < 150 MeV/c2 86.3 ± 0.2

(5.11 < mMISS < 5.31) GeV/c2 99.7 ± 0.2
LAT < 0.55 92.0 ± 0.2

(480 < mK0
S00

< 520) MeV/c2 83.7 ± 0.2

massπ0 < 141 MeV/c2 91.1 ± 0.2
Eγ > 50 MeV 87.2 ± 0.2

|mK0
S+− − mK0

SPDG
| < 11 MeV/c2 88.6 ± 0.2

K0
S life time significance > 5 90.7 ± 0.2

(0.15< K0
S transverse decay length < 60) cm 99.2 ± 0.2

χ2(B0) < 20 92.0 ± 0.2
veto on χc0 and χc2 83.3 ± 0.2
Total efficiency 3.0 ± 0.2

Table 7.2: B0 → K0
SK0

SK0
S(π0π0) mode: reconstruction efficiency, as estimated from signal

Monte Carlo events. The efficiency of the single cut is evaluated with respect the previous
one.

7.1.3 Best Candidate Selection

The largest part of the selected B0 → K0
SK0

SK0
S(π+π−) events has only one reconstructed

candidate. For the 1.4% of the events having more than one B0 candidate, we evaluate a

χ2 based on the three K0
S invariant masses:

χ2 =
∑

i

(
mK0

S ,i − mPDG
K0

S

σm
K0

S

)2

, (7.4)

where mK0
S

is the mass of the reconstructed meson, σm
K0

S

is the measured error, and mPDG
K0

S

is the nominal K0
S

mass [21]. The candidate with the smallest value of χ2 is chosen.

The K0
S
K0

S
K0

S
(π0π0) sub-mode has a higher B0 multiplicity: about 1.7 candidates per

events are reconstructed, because of multiple K0
S
→ π0π0 combinations. We use the same

variable of Eq. 7.4 to choose the best B0 candidate. Based on a study on Monte Carlo,



7.1 The Event Selection 233

we estimate that this criterion matches the right candidate the 81.5% of the times. This

value has been evaluated normalizing the number of correctly chosen best candidates to

the number of events for which one of the candidates is fully matched by the Monte Carlo

truth (i.e. the generated particles). 1

1When no reconstructed candidates matches the true decay, the best candidate selection algorithm
necessarily fails. Because of that, we ignore these events in order to evaluate the performance of the
chosen criteria.
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7.2 BB Background

We study the contribution to the background due to other B decays using a high statistics

Monte Carlo sample of generic B decays. For this analysis we use 559 M B0B0 decays

and 530 M B+B− decays, which are approximately equivalent to two times the actual

BABAR data sample. In this section we describe the contributions to both the sub-modes.

The most relevant background is made by decays which proceed through intermediate

charm resonances, which then decay into K0
S
K0

S
. This constitute in principle a signal

component, because they produce the same final state of the signal decays. They have

to be vetoed because they proceed through a b → cc̄s transition having a pure Standard

Model value for the time-dependent CP asymmetry (S � sin 2β), then they would dilute

the sensibility to New Physics effects in signal b → s events.

Decays of the charmonium resonances χc1 → K0
S
K0

S
and ηc → K0

S
K0

S
are forbidden

by angular momentum conservation. In fact, the two pseudoscalar K0
S

have even angular

momentum (because of Bose-Einstein statistics), and so they cannot be produced by a

vector resonance, like the χc1. Since the K0
S

K0
S

pairs are in S-wave, parity conservation

in decays mediated by strong interactions forbids them to come from an ηc, which is a

scalar with P = −1. Decays of J/ψ → K0
S
K0

S
or ψ(2S) → K0

S
K0

S
are strongly suppressed

by the twist leading accuracy (which is an exact cancellation in the limit mb → ∞, where

mb is the mass of the b quark [85]). Then, the only remaining allowed decays through

charm resonances are χc0 → K0
SK0

S and χc2 → K0
SK0

S . To avoid the contamination from

these decays, we apply vetoes on the K0
S K0

S invariant mass.

We tune the mass veto on a Monte Carlo sample of exclusive B0 → χc0K
0
S decays,

with χc0 → K0
SK0

S . Since resolution in energy and momentum is worse for the K0
S →

π0π0, the resulting mass resolution for K0
S(π+π−)K0

S(π+π−) is different than the one for

K0
S(π+π−)K0

S(π0π0) (Fig. 7.3), and we apply different selections to them. We estimate

the mass resolutions using a Gaussian fit.

For B0 → K0
S
K0

S
K0

S
(π+π−) sub-mode we apply three standard deviations vetoes to

both χc0 and χc2:

1. mK0
SK0

S
/∈ (3.3715, 3.4708) GeV/c2, and mK0

SK0
S

/∈ (3.5224, 3.6016) GeV/c2.

For B0 → K0
S
K0

S
K0

S
(π0π0) sub-mode, the contribution from χc2 resonance is negligible

also without applying any veto. We estimate it to be less than 1% of the signal. We then
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Figure 7.3: K0
S
K0

S
invariant mass for Monte Carlo events of exclusive B0 → χc0K

0
S

decays
(top) and B0 → χc2K

0
S

decays (bottom). (a) K0
S
(π+π−)K0

S
(π+π−) combinations and (b)

K0
S(π+π−)K0

S(π0π0) combinations. Superimposed is a Gaussian fit to estimate the mass
resolution.
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Decay mode # Events B Exclusive MC Eff. N expected

B0 → K0
S
K0

S
K0

L
5 (2.4 ± 2.6) × 10−6 143K 0.1% 0.4

B+ → K+K0
S
K0

S
7 (11.5 ± 1.3) × 10−6 5756K 0.1% 1.9

Table 7.3: Number of background events passing the selection in generic B Monte Carlo
samples (559M B0B0, 530M B+B−). The assumed branching fraction, the number of
generated events of exclusive Monte Carlo, the reconstruction efficiency and the expected
number of events in the on-resonance dataset are given.

apply a veto only to χc0 resonance. We define this selection to reject χc0 at two standard

deviations:

1. m(K0
S(π+π−)K0

S(π0π0)) /∈ (3.300, 3.496) GeV/c2

2. m(K0
S(π+π−)K0

S(π+π−)) /∈ (3.385, 3.457) GeV/c2.

This reduces this background to a negligible level.

After vetoing the charm resonances, the contribution to background due to other

B decays is found to be negligible for the K0
S
K0

S
K0

S
(π+π−) sub-mode. We show the

distributions of mES and ΔE for events passing the selection in the Monte Carlo of

generic B decays in Fig. 7.4. We studied the two principal sources of B background for

this mode, B0 → K0
SK0

SK0
L and B+ → K+K0

SK0
S , using exclusive Monte Carlo samples

for these decays. In Table 7.3 we show the reconstruction efficiency and the number of

expected events in the final dataset for these decays. In Fig. 7.5 we show the mES, ΔE

and F distributions for them. In the case of B0 → K0
SK0

SK0
L, the missing K0

S has to

be taken from the rest of event, and the uncorrelation of its momentum with the other

two (coming from the reconstructed B candidates) produces a phase-space distribution in

mES similar to continuum one. In the case of B0 → K+K0
SK0

S only charged track has to

be taken from the other B, together with a mis-identification of the K+. This brings to a

partially peaking shape in mES (due to the mass constraint used in the variable definition),

while the ΔE variable is completely phase-space like. We tested with a sample of toy

Monte Carlo experiments that the effect due to this background on signal yield and CP

asymmetry parameters is negligible. The toy Monte Carlo are performed adding such a

component in generation and fitting without it, and verifying the absence of any bias in

the signal parameters. Hence, this component is not included in the maximum likelihood

fit.

For the B0 → K0
S
K0

S
K0

S
(π0π0) sub-mode the background from generic B decays is
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Decay mode BF Events in fit region Events in signal region

K0
SK0

SK0
S (6.9+0.9

−0.8 ± 0.6) × 10−6 166.7 +/- 21.7 159.8 +/- 1.1

χc2K
0
S unknown 0 ± 1 0 ± 1

χc0K
0
S < 2.5 × 10−4 2 ± 1 0 ± 1

a0(1450)K0
S unknown 1 ± 1 1 ± 1

D+ρ− (7.7 ± 1.3) × 10−3 24 ± 4.7 1 ± 1
D+K∗− (3.8 ± 1.5) × 10−5 7 ± 1.4 0 ± 1
D0K∗0 < 1.8 × 10−5 1 ± 3 0 ± 1.4
D∗ρ (6.8 ± 0.9) × 10−5 7 ± 4.7 2 ± 1.4
f0(980)K0

SK0
S unknown 1 ± 1 0 ± 1

K∗+K0
SK0

S unknown 1 ± 1.4 1 ± 1
K∗0K0

SK0
S unknown 17 ± 3.7 4 ± 1

D0ρ+ (1.34 ± 0.18)% 17 ± 4.2 1 ± 1.7
J/ψK∗ (1.31 ± 0.07) × 10−3 0 ± 1.4 0 ± 1
Other 127 ± 11 17 ± 3.1

Table 7.4: B0 → K0
S
K0

S
K0

S
(π0π0) sub-mode: events selected in the whole B0B̄0 and B+B−

Monte Carlo samples, for an equivalent luminosity of ∼ 906fb−1. Charm veto on χc0 is
applied. For the modes with unknown branching fraction it has been assumed B = 10−6.
The number of expected signal events are evaluated using the most recent measurement
of B → K0

S
K0

S
K0

S
branching fraction.

larger, even if it is still by far negligible with respect to the qq one. From the study

of the same Monte Carlo samples used for the K0
SK0

SK0
S(π+π−) sub-mode, we identify

the main sources of BB̄ background. The most dangerous background events are those

which accumulate in the signal box, i.e. the region in the 2D kinematic plane where the

signal events peak. We define this smaller signal box as 5.26 < mmiss < 5.30 GeV/c2 and

5.20 < mrec < 5.35 GeV/c2.

The results are reported in Table 7.4. From this study on generic Monte Carlo we find

in summary that 205 events pass the final selection on the sample of neutral and charged

B decays of about three times the luminosity of the final dataset. Of these events, only

27 events lie in the signal box, as defined before. Assuming an integrated luminosity of

350 fb−1, this corresponds to 79 events in the whole fit region and about 10 events in the

signal box. This number is in agreement with the fraction of combinatorial background,

under the peak of the signal distribution (i.e. no peaking structures are observed). For

comparison, we expect ∼ 60 signal events, almost entirely included in the signal box. In

Fig. 7.6 and 7.7 we show the distribution of mmiss and mB for the selected events in

B0B0 and B+B− generic Monte Carlo sample, respectively.
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Even if there is not a significant peaking component in the kinematic variables mmiss

and mB for these events, they cannot be included in the continuum component because

the event shape variable l2 has a signal like distribution (since these are B decays and the

Legendre monomials are sensible to the rest of the event). In part, the same happens to

the time evolution, since the fraction of these events which are well reconstructed B has

non-zero lifetime, while the rest are prompt (like qq events). For these reasons we will

include a BB component in the fit for K0
S
K0

S
K0

S
(π0π0) sub-mode.
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Figure 7.4: B background distributions of mES (left) and ΔE (right) for B0 →
K0

S
K0

S
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S
(π+π−) mode with events passing pre-selections cuts in samples of 559M B0B0

(top) and 530M B+B− (bottom) Monte Carlo.
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Figure 7.5: B background distributions of ΔE (top), mES (middle) and F (bottom)
for B0 → K0

S
K0

S
K0

S
(π+π−), with the PDF’s superimposed. Plots on the left are from

B0 → K0
S
K0

S
K0

L
Monte Carlo, and those on the right are from B+ → K+K0

S
K0

S
Monte

Carlo. Green curve for K0
SK0

SK0
L ΔE and pink curve for K+K0

SK0
L represent the “peaking”

component of this background, while the rest is phase-space like.
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Figure 7.6: Distribution of (a) mmiss and (b) mB for selected events in the Monte Carlo
sample of generic B0 B0 decays equivalent to about 906 fb−1.
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Figure 7.7: Distribution of (a) mmiss and (b) mB for selected events in the Monte Carlo
sample of generic B+ B− decays equivalent to about 906 fb−1.
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7.3 Fit to CP Asymmetry

As we have described in Sec. 2.3, even if the vertex of the B0 for these decays is recon-

structed using the K0
S → π+π− decay vertex, the unusual Δt resolution function can be

used, but only if at least one of the K0
S → π+π− decays within the innermost layers of

the vertex tracker.

The classification of the goodness of the B vertexing for the CP fit has been done

in terms of the SVT classes described in Sec. 2.3.1. Since one K0
S → π+π− is sufficient

to reconstruct the B vertex, we assign the B to the class of the best K0
S . Clearly, the

probability to have a B with all the K0
S unusable for the CP fit is very small (it is about

3.5% for K0
SK0

SK0
S(π0π0), and negligible for K0

SK0
SK0

S(π+π−)). This leads to a better

signal yield. In Table 7.5 we report the fraction of events for the two K0
SK0

SK0
S sub-modes

belonging to the different SVT classes. Then we consider as good candidates for the

K0
S

Class K0
S
K0

S
K0

S
(π+π−) (%) K0

S
K0

S
K0

S
(π0π0) (%)

Class I 89.5 79.0
Class II 9.1 14.5
Class III 1.0 3.0
Class IV 0.4 3.5

Table 7.5: Fractions of events which belong to the different SVT classes for signal Monte
Carlo events of B0 → K0

S
K0

S
K0

S
.

measurement of S those B0 which:

1. satisfy |Δt| < 20 ps

2. satisfy σ(Δt) < 2.5 ps

3. belong to Class I or Class II.

The rest of the sample, called bad, is used for the determination of the signal yield and

the direct CP parameter C. This can be measured from tagging when no Δt information

is available by determining the flavour of the Btag. In this case the measured asymmetry

is

Ameas = C/(1 + x2
d) (7.5)

where the dilution factor 1/(1 + x2
d), with xd ≡ ΔmB0/ΓB0 = 0.776 ± 0.08 [21], is due to

the effect of B0-B0 mixing.
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Despite the different vertexing technique, the same resolution function of BReco decays

can be used, as displayed in Fig. 7.8. This figure shows the good agreement between Δt

distribution for signal Monte Carlo events and the PDF obtained on BReco data.
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Figure 7.8: Distribution of (a) σ(Δt) and (b) Δt for good candidates in signal Monte Carlo
events, with BReco PDF superimposed (top: linear scale, bottom: log10 scale).

7.3.1 Likelihood Structure

The signal and background yields, together with the CP parameters, are extracted using

an unbinned extended maximum likelihood fit, as for the analysis of B0 → K+K−K0.

The likelihood function for B0 → K0
S
K0

S
K0

S
is a bit complicated by the split in good

and bad events for the measurement of S and C. We checked that the correlation between

the variables is small (Sec. 7.6), so that the likelihood of the K0
S
K0

S
K0

S
(π+π−) sub-mode
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Variable MMiss MB Δt σΔt l2 mK→π0π0

MMiss 1 −0.03 −0.005 −0.02 −0.03 0.01

MB 1 −0.02 0.01 0.004 0.06

Δt 1 −0.03 −0.004 −0.001

σΔt 1 −0.03 0.0004

l2 1 0.002

mK→π0π0 1

Table 7.6: K0
S
K0

S
K0

S
(π0π0) mode: linear correlation for the likelihood variables entering

the likelihood function, evaluated in signal Monte Carlo events. The correlations for the
background events are smaller.

can be written as a product of independent PDF’s as follows:

L =
e−(NS+NB+NBB)/N

N
√

(NS + NB + NBB)!
(7.6)

Ngood∑
i∈good

{NSfS
goodε

S
ci

· PS(mES,i)PS(ΔEi)PS(Fi)P
c
S(Δti, T |σΔti) +

NBfB
goodε

B
ci

· PB(mES,i)PB(ΔEi)PB(Fi)P
c
B(Δti, T |σΔti)

NBBfBB
goodε

BB
ci

· PBB(mES,i)PBB(ΔEi)PBB(Fi)P
c
BB(Δti, T |σΔti)} +

Nbad∑
i∈bad

{NS(1 − fS
good)ε

S
ci

· PS(mES,i)PS(ΔEi)PS(Fi)P
c
S(T ) +

NB(1 − fB
good)ε

B
ci

· PB(mES,i)PB(ΔEi)PB(Fi)P
c
B(T ) +

NBB(1 − fBB
good)ε

BB
ci

· PBB(mES,i)PBB(ΔEi)PBB(Fi)P
c
BB(T )}.

where NS, NB and NBB are the signal, continuum and BB̄ background yields, fgood is the

fraction of good events, εci
is the tagging efficiency in the category ci and T is the flavour

tag. The same function is used for the K0
S
K0

S
K0

S
(π0π0) mode, substituting mES → mmiss,

ΔE → mB and F → l2.

We parameterize the signal and background PDF’s with unbinned maximum likelihood

fits to signal Monte Carlo samples and to data sidebands. As usual, the parameters of

the PDF’s for the continuum background are extracted simultaneously to the signal event

yields and CP parameters, since our selection retains sufficient sidebands to allow their

determination.
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B0 → K0
S
K0

S
K0

S
(π+π−) Parameterization

We model ΔE distributions of signal events with a double Gaussian shape. For continuum

background we use the on-resonance data selected in the low mES sideband (mES < 5.27

GeV/c2) and we parameterize the slope using a second degree polynomial.

We fit the mES distributions of signal events using double Gaussian functions. For

continuum background we use the on-resonance data in ΔE sidebands (|ΔE| > 40 MeV)

to obtain the parameters of an ARGUS function, defined by Eq. 5.11.

We use signal Monte Carlo and sideband of on-resonance data (mES < 5.27 GeV/c2)

events to determine the shapes of F for signal and continuum background, respectively.

For signal, we fit with an asymmetric Gaussian plus a Gaussian, and a double Gaussian

for continuum background.

We show the distributions for the event selection variables, together with their PDF’s,

in Fig. 7.9.

We have discussed on Δt parameterization for signal events, while for continuum

background we use an effective parameterization which follows the same functional form

of the one used for B0 → K+K−K0 decays, and described in Sec. 6.5.2.

In the final fit, we float as many background parameters as we can so that uncertainties

in the values of these parameters contribute to the statistical error on S and C and these

parameters can be determined by taking advantage of the larger statistics in the full

on-resonance sample.

Since the statistics and purity of the B0 → K0
SK0

SK0
S(π+π−) sample are very good, we

want to float some of the core parameters of signal component so that the uncertainties of

signal PDF parameterization can be transferred into yield uncertainties. From toy Monte

Carlo studies we find we can leave varying the mean and sigma of the core Gaussian of ΔE

and mES for signal without introducing any bias in the fit and with a negligible increase

of the statistical error on the CP asymmetry parameters.

B0 → K0
S
K0

S
K0

S
(π0π0) Parameterization

We use a Cruijff function (see Eq. 6.15) to parameterize mB and mmiss, and the sum of two

Gaussians for l2. From a comparison of the distributions of likelihood variables for different

tagging categories, we observe a non-negligible effect on the shape variable l2 (above all,

the lepton category with respect the other ones), while mB and mmiss shape does not
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Figure 7.9: ΔE (top), mES (middle) and F (bottom) PDF’s for B0 → K0
S
K0

S
K0

S
(π+π−).

Plots on the left are from signal Monte Carlo events. Those on the right are from on-
resonance sidebands for continuum background. The F background plot is drawn on a
narrower range to remove zero content bins so that χ2/ndf is more realistic, but the fit is
done on the full range with unbinned maximum likelihood fit. Dashed lines represent the
single components when the PDF used is composite.
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look correlated to the output of the tagging algorithm (see Fig. 7.10). Because of this, we

decided to use the same mB and mmiss parameterizations for different tagging categories,

while we split the parameters of l2 PDF. We parametrize the continuum background on
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Figure 7.10: B0 → K0
S
K0

S
K0

S
(π0π0) sub-mode: distribution of (a) mB, (b) mmiss, and (c)

l2 for different tagging categories, from a sample of signal Monte Carlo events.

qq̄ Monte Carlo sample. The fitted parameters are not used in the final fit (since all the

parameters except the ARGUS end-point are floated in the nominal fit), but are used in

toy Monte Carlo studies and as starting point for the nominal fit. We use an ARGUS

function (Eq. 5.11) for mmiss, a second order polynomial for mB and a double Gaussian

for l2.

We parameterize the B-background using the selected events on full generic B0B0

and B+B− Monte Carlo sample after removing the signal events. We use an ARGUS

function for mmiss, a second order polynomial for mB and a double Gaussian for l2. Since

we have few events surviving the selection on this Monte Carlo sample, and the l2 shape
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is determined by the rest of the event, which is the same for signal and B-background

events, we use the same PDF adopted for the signal, of which we have a large statistic

sample. We will use an alternative parameterization for l2 to evaluate the systematic

effects. The fraction of B-background events made by neutral B decays have the same

time-evolution structure as signal, while the charged decays have not a time-evolution

at all, and mis-reconstructed neutral B decays can have an intermediate structure. We

assume the same PDF of the signal for Δt, and we will account for possible differences in

the systematic uncertainties. The distribution is shown in Fig. 7.11.
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Figure 7.11: B0 → K0
S
K0

S
K0

S
(π0π0) sub-mode: distribution of Δt pull for B B̄ Monte

Carlo events, with BReco parameterization superimposed. Top: linear scale, bottom:
log10 scale.

All the other parameterizations are shown in Fig. 7.12.

7.3.2 Validation Studies

We first validate independently the fits to the single sub-modes, then the simultaneous fit

to the combined K0
S
K0

S
K0

S
sample. For briefness, and since the physics result of this work

is the CP asymmetry of all K0
S
K0

S
K0

S
events, we present here only the validation studies

of the combined fit.
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Figure 7.12: mB (top), mmiss (middle), l2 (bottom) PDF’s for B0 → K0
SK0

SK0
S(π0π0).

(a) Signal Monte Carlo events; (b) continuum Monte Carlo; (c) generic BB Monte Carlo
with signal events removed.
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As we have described for B0 → K+K−K0 analysis in Sec. 6.7.1, we perform a number

of toy Monte Carlo experiments to verify that the fit determines the signal parameters

without biases and to compare the expected uncertainties with the results. We generate

signal and background yields according to Poisson distributions around the expected

values for 350 fb−1: N+−
sig = 150, N00

sig = 65, N+−
bkg = 734, N00

bkg = 4796, and N00
bb = 49

with S = −0.7 and C = 0.0, as expected in the Standard Model. The results are shown

in Table 7.7. We expect an error on S (C) of σ(S) = 0.28 (σ(C) = 0.18) and we find

σ(N+−
sig ) = 13 and σ(N00

sig) = 12.

μPull σPull Average error

N+−
sig 0.003 ± 0.041 1.05 ± 0.03 13.3

N+−
qq̄ 0.007 ± 0.037 0.96 ± 0.03 27.5

N00
sig 0.040 ± 0.038 1.00 ± 0.03 11.7

N00
qq̄ 0.023 ± 0.038 0.97 ± 0.03 69.9

N00
BB̄

−0.05 ± 0.04 1.05 ± 0.03 15.4
C −0.032 ± 0.016 1.04 ± 0.01 0.19
S −0.06 ± 0.04 1.00 ± 0.03 0.29

Table 7.7: Results on the yield and S and C of the toy Monte Carlo experiments for the
combined fit (when we generate S=-0.7 and C=0.0)

These toy Monte Carlo experiments show the fact that the likelihood is able to extract

the signal informations (both yields and CP asymmetries) from data without significant

biases. On the other side, they cannot find problems associated to wrong parameteriza-

tion of the PDF’s or effects due neglected correlation between variables, since the events

generated in toy Monte Carlo experiments according the PDF’s are, by definition, un-

correlated. For this purpose, only fits to control samples can give a reliable answer on

the performances of the fit. We achieve this validation with embedded toy Monte Carlo

experiments, where we mix signal Monte Carlo events to background events generated ac-

cording PDF’s. The signal Monte Carlo events we embed in the toy datasets is produced

with CP asymmetry parameters S = C = 0. We show the results in Table 7.8. The plots

for pulls and average errors are shown in Fig. 7.13 and 7.14 for the yields and in Fig. 7.15

for the CP violating parameters S and C.

These tests show that possible correlations in the event variables are not a problem

for this fit. A possible problem which can arise in cases when the CP parameters are

near the physical boundary (C2 + S2 ≈ 1), where the fit show non linear effects. This
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Figure 7.13: Results of toy Monte Carlo experiments with signal Monte Carlo events
embedded for the combined fit on the yields of the K0

S
K0

S
K0

S
(π+π−) sub-mode. Pulls

(top) and errors (bottom) for Signal (left) and continuum background (right).
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μPull σPull Average error

N+−
sig 0.042 ± 0.040 1.03 ± 0.03 13.3

N+−
qq̄ −0.006 ± 0.041 1.08 ± 0.03 27.5

N00
sig 0.109 ± 0.037 0.96 ± 0.03 11.7

N00
qq̄ −0.016 ± 0.040 1.02 ± 0.03 69.8

N00
BB̄

−0.17 ± 0.04 1.04 ± 0.03 15.1
C −0.012 ± 0.041 1.06 ± 0.03 0.18
S −0.05 ± 0.04 1.10 ± 0.03 0.28

Table 7.8: Results on the yield and S and C of the toy Monte Carlo experiments with
signal Monte Carlo events embedded for the combined fit.
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Figure 7.14: Results of toy Monte Carlo experiments with signal Monte Carlo events
for the combined fit on the yields of the K0

S
K0

S
K0

S
(π0π0) sub-mode. Pulls (top) and

errors (bottom) for Signal (left), and continuum background (middle) and BB background
(right).
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Figure 7.15: Results of toy Monte Carlo experiments with signal Monte Carlo events
embedded for the combined fit on the CP asymmetry parameters.
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effect is mostly evident in the fits to the single mode B0 → K0
SK0

SK0
S(π0π0), where the

uncertainties on the CP parameters are so high that the fitted values can easily hit the

physical boundary.

This is reduced to a negligible effect when the two samples are combined, with a

consequent sizable decrease in the statistical uncertainty. We study this behaviour with a

linearity test. This test consists in knowing by toy experiments the relation between the

true and the fitted value of S and C, and eventually correct the results of the unblinded

fit as a function of the value we get. In order to do this, one has to scan the entire

parameter space of S and C and obtain the averaged value (with an associated error) on

Sfit and Cfit for different values of Strue and Ctrue. Since S and C can be considered as

uncorrelated, one can get the corrections separately. In particular (see below), a linear fit

on the two Xfit vs Xtrue planes (X = S, C) gives a good representation of such relation.

The largest the non liner effect of the fit is, the largest will be the deviation of the two

parameters p0 and p1 of the fit from the expectation values (0 and 1 respectively).

In order to quantify the slope, we performed a set of toy Monte Carlo experiments

with different generated values for S and C, scanning the allowed parameter space. In

top Fig. 7.16 the fitted vs. generated values of S and C vs. generated values are shown

for B0 → K0
SK0

SK0
S(π0π0) sub-mode only. The deviation from the expected slope (Xfit =

Xtrue) is clear for those points near the physical boundary. When we repeat the test for

the combined sample of K0
SK0

SK0
S , this effect disappears. However, we can use the relation

Xtrue = {(Xfit) as a calibration curve to correct for the (negligible) fit bias once we know

the central value from the fit to on-resonance sample. We will account in this way for the

“fit bias” systematic uncertainty.

7.4 Fit Results for Yields and CP Asymmetries

The selected sample on the on-resonance dataset is made by 786 K0
S
K0

S
K0

S
(π+π−) candi-

dates and 4550 K0
S
K0

S
K0

S
(π0π0) candidates. First we perform the maximum likelihood fit

on the separate datasets to extract the event yields and the CP asymmetries. Then we

perform the fit on the combined sample.

The results of these fits are reported in Table 7.9.

The event yields are consistent with the expected ones with the previous measurements

of the B0 → K0
S
K0

S
K0

S
branching fractions [21].
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Figure 7.16: Profile plots of fitted vs. generated values for S (left) and C (right), when
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SK0
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S
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S
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S
sample. The solid line represents the relation Xfit = Xgen,

where X = S, C.
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K0
SK0

SK0
S(π+π−) K0

SK0
SK0

S(π0π0) Combined
NS 125 ± 13 64 ± 12 −
Nqq 732 ± 28 4942 ± 77 −
NBB̄ − -14 ± 32 −
S -1.06 +0.25

−0.16 0.36 ± 0.54 -0.71 ± 0.24
C -0.08 +0.23

−0.22 0.23 ± 0.38 -0.02 ± 0.21

Table 7.9: Events yields and CP asymmetry parameters obtained in the fit to 374 × 106

BB̄ pairs. Statistical errors only are shown.

In Fig. 7.17 we show the distribution of the selection variables mES, ΔE and F af-

ter applying the sPlot-weighting technique[80], for the signal and continuum background

components. In Fig. 7.18 we show the distribution of the selection variables mmiss, ΔE,

l2 after applying the sPlot-weighting technique for the signal, continuum and BB back-

ground components.

We evaluate the statistical significance of CP violation to be 2.6σ by calculating the

2Δ logL variation when fitting data with S and C fixed to zero. We also estimate the

consistency of the two sub-samples. In order to do this, we generate a number of toy Monte

Carlo experiments in which we assume that the measured values for the CP parameters

on the combined data sample are the true values (generation values). We find that the

two sub-samples agree within 1.6 σ.

We show in Fig. 7.19 distributions of Δt for B0-tagged and B0-tagged events, and the

time-dependent CP asymmetry, after signal sPlot weighting technique, for the combined

data sample.
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Figure 7.17: mES (top), ΔE (middle), and F (bottom) sPlots for B0 → K0
S
K0

S
K0

S
(π+π−)

with on-resonance datasets. The left column is signal and the right column is continuum
background.
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Figure 7.18: mmiss (top), mB (middle), and l2 (bottom) sPlots for B0 → K0
SK0

SK0
S(π0π0)

with on-resonance datasets. The left column is signal, the middle column is continuum
background and the right column is BB background.
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Figure 7.19: Distributions of Δt for events weighted with the sPlot technique for Btag

tagged as B0 (top) or B0 (center), and the asymmetry A(Δt) (bottom). The points are
weighted data and the curves are the corresponding PDF projections.
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7.5 Systematic Uncertainties

We evaluate systematic uncertainty on the CP asymmetry parameters S and C only on the

combined fit. In the following we describe the main sources of systematic uncertainties,

and in Table 7.12 we report the summary of them.

Event Selection and Data-Monte Carlo Agreement

We evaluate the uncertainty associated to the knowledge of fixed parameters entering the

likelihood, related to the size of the available control samples with which we determine

the PDF parameters. We evaluate this systematic uncertainty smearing the PDF’s by

one standard deviation and repeating the fit.

We account for possible disagreement between data and Monte Carlo in the description

of the distribution of the variables defining the signal component of the likelihood fit. For

the K0
S
K0

S
K0

S
(π+π−) sub-mode the purity allows to fit the the means of mES and ΔE

for the core Gaussians directly on data, so they do not contribute to the systematic

uncertainties.

For the K0
SK0

SK0
S(π0π0) sub-mode we use, as data control sample, B0 → J/ψK0

S de-

cays, reconstructing K0
S → π0π0 in order to have the same topology of the signal in the

kinematic variables. We check that the two decays have consistent distributions of mmiss

and mB comparing the shapes for the two signal Monte Carlo samples In Table 7.10

we show the comparison between signal parameters extracted by signal B0 → K0
SK0

SK0
S

Monte Carlo and data B0 → J/ψK0
S(π0π0). They are in quite good agreement and in

the nominal fit we use the values from the control sample, and we use the shape from the

signal Monte Carlo as an alternative parameterization to evaluate the systematic uncer-

tainty associated to mmiss PDF. In Fig. 7.20 we show the mmiss distributions for signal

B0 → K0
S
K0

S
K0

S
(π0π0) Monte Carlo events and B0 → J/ψK0

S
(π0π0) on-resonance data.

In the case of mB, there is a sizable difference between the shape on signal Monte

Carlo and data. In particular, as expected, the simulation fails in reproducing the central

value of the distribution. Concerning the other parameters, a simple fit with the four of

them (2σ and 2α of the Cruijff function) simultaneously floating might overestimate the

disagreement, because of the correlations between them. Because of that, we perform the

fit on data fixing the two α’s to the output of the fit on Monte Carlo and we use the

variation on the σ’s as an estimation of the (dis)agreement.



7.5 Systematic Uncertainties 261

mMiss K0
SK0

SK0
S Monte Carlo J/ψK0

S data
m ( GeV/c2) 5.2803 ± 0.0001 5.2793 +/- 0.0008
σ− ( GeV/c2) 0.0049 ± 0.0001 0.0045 +/- 0.0007
σ+ ( GeV/c2) 0.0050 ± 0.0007 0.0062 +/- 0.0006

α− 0.2683 ± 0.0217 0.1816 +/- 0.0324
α+ 0.2281 ± 0.0069 0.2111 +/- 0.0113

Table 7.10: Comparison of mmiss parameterizations from signal Monte Carlo and B0 →
J/ψK0

S
(π0π0) data control sample. Parameters are for the Cruijff function (Eqn. 6.15) we

use as the mmiss PDF.

)
2

 (GeV/cMissm
5.12 5.14 5.16 5.18 5.2 5.22 5.24 5.26 5.28 5.3

2
E

ve
nt

s/
10

 M
eV

/c

0

2000

4000

6000

8000

10000

12000

)
2

 (GeV/cMissm
5.12 5.14 5.16 5.18 5.2 5.22 5.24 5.26 5.28 5.3

2
E

ve
nt

s/
10

 M
eV

/c

0

2000

4000

6000

8000

10000

12000 BABAR

)
2

 (GeV/cMissm
5.12 5.14 5.16 5.18 5.2 5.22 5.24 5.26 5.28 5.3

 )2
E

ve
n

ts
 / 

( 
0.

00
8 

G
eV

/c

0

20

40

60

80

100

120

140

160

180

)
2

 (GeV/cMissm
5.12 5.14 5.16 5.18 5.2 5.22 5.24 5.26 5.28 5.3

 )2
E

ve
n

ts
 / 

( 
0.

00
8 

G
eV

/c

0

20

40

60

80

100

120

140

160

180

Figure 7.20: Comparison between mmiss distributions for signal Monte Carlo events for
B0 → K0

S
K0

S
K0

S
(π0π0) decays and B0 → J/ψK0

S
(π0π0) data control sample.
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mB B0 → K0
SK0

SK0
S(π0π0) Monte Carlo B0 → J/ψK0

S(π0π0) data
m ( GeV/c2) 5.2700 ± 0.0002 5.2843 ± 0.0053
σ− ( GeV/c2) 0.0474 ± 0.0018 0.0777 ± 0.0099
σ+ ( GeV/c2) 0.0244 ± 0.0007 0.0243 ± 0.0053

α− 0.2683 ± 0.0217 0.2683 (fixed)
α+ 0.2279 ± 0.0069 0.2279 (fixed)

Table 7.11: Comparison of mB parameterizations from signal Monte Carlo and B0 →
J/ψK0

S
(π0π0) data control sample.

In Table 7.11 we show the parameters found on signal Monte Carlo and B0 → J/ψK0
S

on resonance data, and in Fig. 7.21 we show the mB distributions for the two samples

and the fitted PDF’s. We model the background for B0 → J/ψK0
S
(π0π0) data with a

second order polynomial, as done for our nominal fit model. Considering the fact that
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Figure 7.21: Comparison between mB distributions for signal Monte Carlo events for
B0 → K0

S
K0

S
K0

S
(π0π0) decays and B0 → J/ψK0

S
(π0π0) data control sample.

the mean value in the case of Monte Carlo is not reliable, we think that it can be taken

as it comes from J/ψK0
S data even when performing K0

S
K0

S
K0

S
nominal fit. From Monte

Carlo study we see that J/ψK0
S
(π0π0) Monte Carlo does not reproduce well the signal

K0
S
K0

S
K0

S
(π0π0) Monte Carlo, so we cannot use the central values of the σs from the data

control sample. Because of that, considering that the difference between data and J/ψK0
S

Monte Carlo for σ− and σ+ is not statistically different than zero and that the error on

that is dominated by the fit on data, we conclude that we can use for the nominal fit the

values on α and σ parameters as they come from K0
S
K0

S
K0

S
(π0π0) Monte Carlo. For the

systematics, we associate as an error to each parameter the maximum between the errors
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of the two fits in Tab. 7.11.

CP Asymmetry of the BB background

Only the K0
S
K0

S
K0

S
(π0π0) sub-mode has a non-zero BB background contribution. In the

nominal fit we assume that the CP parameters of the BB background events are both

zero, since we have a poor knowledge on CP content of the modes which constitute this

component. The fraction of events which comes from charged B decays can only show

direct CP asymmetry, while the part of the neutral B decays which is well reconstructed

has a non-null lifetime and can then show both direct CP asymmetry and mixing-induced

CP asymmetry. We estimate from BB studies that about half of the contribution comes

from neutral B decays, and we assume that half of them have a prompt decay (we achieve

this in the fit dividing by half the B0 lifetime for the BB component). We assume

complete ignorance on the CP parameters and vary SBB and CBB uniformly from -1 to 1,

and take the largest deviation on signal S and C as systematic uncertainty. We find that

signal S depends only from BB̄ S and it is almost uncorrelated with the value of BB̄ C

(and vice versa for signal C).

Vertexing Method

We have shown in Sec. 2.3 and in Fig. 7.8 that the standard Δt resolution function

taken from the BReco sample describes quite well also our signal events for which the

vertex has been defined with the Beam Spot Constraint (BC) technique. To quantify the

agreement between Δt evaluated with the standard vertexing technique and the one with

BC vertexing, we make use of the mangled B0 → J/ψK0
S sample. We define the quantity:

χ2(Δt) =
ΔtBC − Δtnom√
σ2

ΔtBC
− σ2

Δtnom

. (7.7)

Assuming the nominal reconstruction (Δtnom) as an estimation of the true value, χ2(Δt)

is a variable which follows a Gaussian distribution with mean value zero and unitary width

(pull of Δt). Fig. 7.22 show the distribution of χ2(Δt) in Monte Carlo and data events

for Class I and Class II for B0 → J/ψK0
S

decays. The distributions on data are about

10% wider than in Monte Carlo. From this distributions we can extract the scale factors

necessary for the Δt error of the mangled events to make the pull width agree with Monte

Carlo. They are 1.0375 for Class I events and 1.129 for Class II events. Taking the relative
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Figure 7.22: Distribution of Δt pulls (BC-minus-nominal) for B0 → J/ψK0
S events in data

(top) and Monte Carlo (bottom) events for Class I (left) and Class II (right).

fraction of Class I and II events in the combined B0 → K0
S
K0

S
K0

S
sample into account

we can obtain an overall scale factor. The final signal sample, as fitted in on-resonance

dataset, is made by 65.3% of K0
SK0

SK0
S(π+π−) events and 34.7% of K0

SK0
SK0

S(π0π0) events.

The K0
SK0

SK0
S(π+π−) mode has 89.5% of Class I events and 9.1% of Class II events, while

K0
SK0

SK0
S(π0π0) mode has 79.0% of Class I events and 14.5% of Class II events. This

brings to a fraction of 85.9% of the K0
SK0

SK0
S signal events in Class I and 14.1% in Class

II. Then we can apply an average scale factor of 1.050 to our signal Δt PDF. We repeat

the fit on the on-resonance dataset with the scaled Δt PDF and take the difference in CP

parameters as the systematic error.

Resolution Function and Flavour Tagging

In addition to possible disagreement between the BReco resolution function and the true

one for signal decays, we also account for the finite statistics with which the parameters

of that PDF is evaluated. As has been done for the other PDF’s, we smear its parameters

by one standard deviation and take the deviation on the CP parameters as the systematic
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errors.

With the same procedure we account for systematic uncertainties associated to flavour

tagging parameters.

We account for the uncertainties on B0 lifetime and mixing frequency Δmd varying

them by one σ, where σ is the uncertainty on the world average on their measurements [21].

SVT Alignment and Beam Spot Position

We evaluate the systematic uncertainties associated to possible misalignment’s in the

layers of the vertex tracker and on the knowledge of the beam spot position following the

same procedure described for B0 → K+K−K0 in Sec. 6.9.

Fit Bias

We account for possible neglected correlations in the fit and eventual bias with toy Monte

Carlo experiments in which signal full Monte Carlo events are embedded in the fit, together

with BB background events for the K0
SK0

SK0
S(π0π0) sub-mode. We correct the central

value obtained from the fit with the curve S(C)fit vs. S(C)true shown in Fig. 7.16, using

the central value extracted from the fit to data.

Tag Side Interference From Doubly CKM Suppressed Decays

Since the size of systematic effect due to possible interference in the tag side does not

depends on the details of the fit, but just from the expectation values of the CP asymme-

tries, which are the same than for B0 → K+K−K0 decays, we take the uncertainty from

that analysis.

7.6 Summary of Results

In the fit of B0 → K0
S
K0

S
K0

S
decays, reconstructed in the two sub-modes K0

S
K0

S
K0

S
(π+π−)

with all the three K0
S

decaying into π+π− and K0
S
K0

S
K0

S
(π0π0) with one K0

S
decaying into

π0π0, we have measured the time dependent CP asymmetries.

We found the mixing-induced CP asymmetry parameter S = −0.71 ± 0.24 ± 0.04

and direct CP asymmetry parameter C = −0.02 ± 0.21 ± 0.05, where the first error is

statistical and the second one is systematic. Both are in agreement with the Standard

Model expectations, which predicts, for this pure b → s transition, S = − sin 2β =
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σ(S) σ(C)
Vertex reconstruction 0.016 0.003
Resolution function 0.005 0.007
flavour tagging 0.009 0.015
SVT alignment 0.016 0.008
IP position 0.004 0.001
Fit correlation 0.004 0.025
BB̄ CP 0.007 0.005
Δmd and τB0 0.004 0.007
Tag-side interference 0.001 0.011
BCP (+−) PDF’s 0.009 0.019
BCP (00) PDF’s 0.024 0.024
Total 0.037 0.046

Table 7.12: Summary of systematic uncertainties on S and C.

−0.685± 0.032 and C = 0, where β is the CKM parameter measured with high precision

in B0 → [cc̄]K0 decays [22].



Chapter 8

Measurement of Decay Rate of
B0/+ → φπ0/+ Decays

B → φπ transitions take place through b → d penguin dominated amplitudes, which can

be written in the Standard Model as [86]:

A(φπ+) = −VudV
∗
ub

(
P GIM

2 − EA1

)
− VtdV

∗
tbP2 (8.1)

A(φπ0) = −VudV
∗
ub

(
P GIM

2 − EA2

)
− VtdV

∗
tbP2 (8.2)

where P
(GIM)
2 labels the Renormalization Group Invariant (RGI) quantity corresponding

to charming (GIM) penguin emission topologies and EA1(2) to (OZI suppressed) emission-

annihilation topologies. In Fig. 8.1 we show the main Feynman diagram for this process.

All these contributions are expected to be smaller than the usual penguin and annihilation

u,d

b d,s
_ __

s

s
_

W+

u,c,t
_ _ _

B π,K

φ

Figure 8.1: Main Feynmam quark level diagram responsible for B → φπ and B → φK:
the flavor-singlet penguin.

contributions that enter, for instance, into B → φK decays, because of the additional

factor λ (the sine of the Cabibbo angle) with respect to the leading term of b → s

channels.
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This strong suppression in the Standard Model and the fact that the main contribu-

tion proceed through a penguin amplitude, make B → φπ decays particularly sensitive to

new physics contributions. In particular, a measurement of B(B → φπ) � 10−7 would be

evidence for non Standard Model contributions to the amplitude, for example supersym-

metric ones [87]. Upper limit can also be useful to set new bounds on R-parity violating

models in Supersymmetry (see Sec. 9.3). The actual BABAR integrated luminosity makes

such a branching ratio possible to be measured.

The study of the processes B+ → φπ+ and B0 → φπ0 is also important to under-

stand the theoretical uncertainties associated with measurements of CP asymmetries in

B0 → φK0 decays. The B → φπ decay amplitudes are related to the sub-leading terms

of the B0 → φK0 decay amplitude and can therefore provide stringent bounds on pos-

sible contributions to the time-dependent CP asymmetry in B0 → φK0 [88], which we

have described in Chapter 6. In particular, the measurement of the decay rate of these

modes can limit the contribution of the electroweak penguins in the B0 → φK0 decay

amplitude [86].

Since the expected yield of this decay is very small, and we are studying only a narrow

region in the K+K− invariant mass around the φ(1020) resonance, we do not perform a

Dalitz plot analysis of this decay. Instead we adopt a so-called quasi-two-body approach,

which means we treat the φ(1020) as a standard particle, neglecting the interference effects

within the three-body K+K−π final state. This is to some extent justified by the very

narrow width of the φ(1020) resonance. We will treat the neglected interference effects as

a systematic uncertainty.

For this analysis we use the data collected by BABAR detector during RunI-IV periods,

corresponding to 232 ×106 BB̄ pairs.

8.1 The Event Selection

In this section we describe the selection of the neutral and charged B decays. Since

the B0 → φπ0 decays involves a π0 in the final state, we decided to use mmiss and mB

kinematic variables, which we have shown to be better than mES and ΔE (see Sec. 7.1.2)

in presence of photons in final state. Since this set is not worse than mES-ΔE in the

case of all-charged final state, as in the case of B → φπ decays, for consistency with the

neutral mode we also use mmiss and mB.
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The reconstruction of both neutral and charged mode starts from the selection of a

pair of oppositely-charged kaon candidates in the event. In the quasi-two-body approach

they are considered as a φ(1020) candidate if the invariant mass mK+K− is within 15

MeV/c2 of the nominal φ(1020) mass value [21]. This requirement corresponds to about

three times the observed width in the K+K− invariant mass spectrum (see Table 6.12).

In order to have a better purity, we apply the same particle identification criteria on the

kaon candidates we have optimized for B0 → K+K−K0 analysis in the narrow region of

the mK+K− dominated by the φ(1020) (see Sec. 6.3.2). These PID requirements are quite

loose due to the good signal-to-background ratio in this region. We have shown in the

B0 → K+K−K0 analysis that this mK+K− region has two main contributions: the φ(1020)

and the f0(980) (see Table 6.20). The φ(1020) is a vector resonance (P-wave), which has a

typical distribution of the helicity angle proportional to cos2 θH . f0(980), which is a scalar

resonance (S-wave), has a flat distribution, as the continuum background, which is made

by random combination of particles. The distributions of cos θH for signal and continuum

events are displayed in Fig. 8.2. We do not apply selection on cos θH , but we use this

information in the fit.
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Figure 8.2: Distribution of | cos θH | for (a) signal Monte Carlo B0 → φπ0 and (b) contin-
uum background events.

Then we form a B0 (B+) candidate combining the formed φ(1020) candidate with a

π0 candidate (charged track). We describe these selections in the Sec. 8.1.1 (Sec. 8.1.2).
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8.1.1 Selection of B0 → φπ0

We reconstruct a π0 candidate from a pair of energy deposits in the EMC identified as

described in Sec. 5.2.2. We then require the invariant mass of the photon pair to be within

110 MeV/c2 and 160 MeV/c2, which means about three times the observed width in the

γγ invariant mass spectrum [21].

We combine the π0 candidate with the φ candidate to form a B0 if the composite

satisfies loose requirements on the consistency with the B0 mass:

• |mB − mPDG
B0 | < 150 MeV/c2;

• 5.11 < mmiss < 5.31 GeV/c2;

as usual, these requirements retains, together with the most of the signal events, also wide

sideband regions for the background characterization.

Also these decays suffer mostly from background coming from qq fragmentation, then

we use the event shape variables to reject it. We use the ratio of Legendre monomials

l2 = L2/L0, described in Sec. 7.1.2. In this case we do not apply a selection on | cos θS|,
but we make a cut directly on l2 < 0.55 which is approximately 90% efficient on signal

decays. We use the shape of the surviving events in the maximum likelihood fit. Due to

the presence of a π0 in the final state, which can produce energy leakage at the borders

of the geometrical acceptance, the kinematic variable mB shows a small difference when

the B0 decays in that region. Also σΔt shows a small dependency on the polar angle,

while l2 is uncorrelated. This correlation can be removed with a very loose cut on the the

polar angle of the B0 meson: | cos θ∗B| < 0.9 (typical distributions for B and qq events are

shown in Fig. 6.3). This is illustrated in Fig. 8.3.

We also apply the two typical requirements which are applied in a time-dependent

analysis: |Δt| <20 ps and σΔt <2.5 ps. These requirements have some rejection power

against the continuum events because they typically have a badly formed B vertex.

π0 Efficiency Corrections

Since in this analysis the target is to measure the rate of the decay, we pay also attention

to possible disagreement between data and Monte Carlo reconstruction efficiency. Small

contributions come from the tracking efficiency, which will be treated as systematic uncer-

tainties, while a large contribution comes from the π0 reconstruction efficiency. We apply
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Figure 8.3: Average values for mmiss, mB, l2, σ(Δt) for selected B0 → φπ0 signal Monte
Carlo events.
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a correction to it, which has been studied by other analyses in BABAR. The correction, η,

depends on the π0 momentum:

η = 0.9735 + 0.006236 · pπ0 ± 0.03(syst) (8.3)

where η is the ratio ε(data)/ε(MC). Fig. 8.4 shows the π0 momentum in the laboratory

frame in the signal MC. The average momentum for π0 coming from B0 → φπ0 is 2.84

GeV/c, leading to an efficiency correction of η = 0.991 ± 0.03 (syst).
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Figure 8.4: Distribution of π0 momentum for signal Monte Carlo events

Resolution and Scale Corrections

The resolution of mB variable, which is the variable mostly sensitive to energy leakage

in the EMC by neutral particles, varied sensibly during the BABAR’s Run periods. In

particular, there is a considerably large difference between the early Run I and the rest of

Run periods, as it is illustrated in Fig. 8.5. We take into account these differences using

a Monte Carlo sample which is weighted with the different Run periods luminosity.

These resolution effects have been studied using large data control samples. These

studies provide corrections to apply to simulated events in order to have a better agree-

ment with data. These corrections produce a significant effect only in mB (Fig. 8.6a),

while do not change mmiss, whose resolution is forced to be similar to the the beam one

because of the B0 mass constraint (Fig. 8.6b).

Summary of Reconstruction Efficiency and Best B Selection

In Table 8.1 we show the summary of the reconstruction efficiencies for the different

requirements and the final one, after having applied the π0 corrections. The final efficiency

is approximately 30%.
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Figure 8.5: Distribution for mB for B → φπ signal Monte Carlo events in the different
Run periods.

(a) (b)

E
ve

n
ts

 / 
3 

M
eV

/c
2

)
2

 (GeV/cBm
5.15 5.2 5.25 5.3 5.35 5.4

0

200

400

600

800

1000

1200

1400

1600

1800

2000 Not Corrected

EMC correction applied

E
ve

n
ts

 / 
6.

7 
M

eV
/c

2

)
2

 (GeV/cMISSm
5.12 5.14 5.16 5.18 5.2 5.22 5.24 5.26 5.28 5.3

1

10

210

310

410
Not Corrected

EMC correction applied

Figure 8.6: Distribution of (a) mB and (b) mmiss for B0 → φπ0 signal Monte Carlo events
before and after the neutral corrections.

Most of the selected events have only one candidate. The average multiplicity, both

on Monte Carlo and data, is 1.003. In events where more than one B0 is present, we

choose the one which has the best χ2 on the γγ invariant mass with respect to the π0

nominal mass [21].

8.1.2 Selection of B+ → φπ+

In order to form B+ → φπ+ candidates we combine the formed φ(1020) composites

with a charged track. In this way, the main background arise from another charmless
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Selection ε(B0 → φπ0)
pre-selection 0.451 ± 0.001

Kaon PID 0.976 ± 0.001
|mK+K− − mPDG

φ | < 15 MeV/c2 0.909 ± 0.001
| cos θ∗B | < 0.9 0.980 ± 0.001

l2 < 0.55 0.886 ± 0.001
|Δt| < 20 ps 0.973 ± 0.001
σΔt < 2.5 ps 0.941 ± 0.001

|mB − mPDG
B0 | < 150 MeV/c2 0.937 ± 0.001

5.11 < mmiss < 5.31 GeV/c2 0.999 ± 0.001

Total efficiency 0.298 ± 0.001
π0 correction 0.991 ± 0.03

Total efficiency (corrected) 0.295 ± 0.008

Table 8.1: Reconstruction efficiency, as estimated from B0 → φπ0 signal Monte Carlo
events. Efficiency correction related to π0 reconstruction is applied.

decay, which, although being a rare process itself, has a branching fraction which is

one order of magnitude larger than the one of the signal we want to explore: B+ →
φK+. This branching ratio has been measured in the full Dalitz plot analysis of B+ →
K+K−K+ [75, 76] to be (world average) B(B+ → φK+) = (9.3 ± 1.0) × 10−6.

The kinematic difference between the φπ and φK combinations provide a handle to

separate the particle content of the candidate B decay. We reconstruct the B+ → φh+,

where h = π, K, assigning to the h+ track the pion mass. Then the mB distribution

peaks at the correct B+ mass for B+ → φπ+ events, while it is shifted by ≈ 42 MeV/c2

for B+ → φK+ events. This is shown in Fig. 8.7. Also, the incorrect mass hypothesis

causes this shift in mB to exhibit a momentum dependence, which produces a smearing

of the distribution for the incorrect mass hypothesis which have to be evaluated event by

event. If we call mreco
B the reconstructed mB value with the pion mass hypothesis, with

h+ the true mass hypothesis on the track, the true mB value would be:

mtrue
B = mreco

B + mh+

B − mπ+

B (8.4)

The dependency of the mB shift from the momentum of the h+ tracks can be expressed

analytically by:

mh+

B − mπ+

B =
√

E2
φ + m2

h+ + 2EφEh+ − | �pφ|2 − 2 �pφ · �ph+ (8.5)

which will be used for event by event shift of the mB PDF mean in the maximum likelihood
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Figure 8.7: Distributions of mB variable for (a) B → φπ decays and (b) B+ → φK+

decays, reconstructed assuming that the track from B decay is a pion.

fit.

In order to separate φπ and φK final states we cannot rely only on the difference

in mB, but we have also to exploit the particle identification of the charged tracks (see

Sec. 5.1.1). The high momenta of the tracks in these decays limit the viability of the

SVT and DCH dE/dx measurements as pion/kaon discriminators for these signal decays.

Therefore DIRC θc measurement will serve as our particle identification tool, dominating

the separation of the two decay modes. In order to have the best sensitivity to the tiny

B+ → φπ+ signal, we do not apply a requirement on the kaon PID selectors, as we do

for the φ daughters, but we parameterize the DIRC information in the likelihood and we

will fit simultaneously φπ+ and φK+ signals.

Parameterizations of measured θc, obtained from highly pure data control samples of

charged pions and kaons, are used to calculate π and K likelihoods of each track. These

control samples are made by reconstructed decay chain D∗+ → D0π+ → (K−π+)π+ using

only kinematic information and no particle identification. The D∗± candidates are built

through four-momentum addition of tracks with appropriate mass assignment defined by

the charge of the slow pion from the D∗ decay. A two standard deviation cut on the mass

difference of the D∗ and D0 (σΔM = 0.9 MeV/c2, see Fig. 8.8), which is measured well

due to the small momentum of the slow pion, removes most of mis-reconstructed D0’s.

Requiring that the D0 momentum in the CM frame is > 2.5 GeV/c isolates the contin-

uum D∗ candidates and eliminates BB events which typically have higher combinatorial

backgrounds. Removing events where the kaon track is in line with the D0 flight direction
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in the D0 rest frame provides further suppression of the combinatorial background. The

cosine of this angle cos θ∗K is required to be < 0.8. These selections produce a D0 sample

which has a purity of ≈ 96% (see Fig. 8.8b). The most recent study of this control sample

Figure 8.8: The (a) ΔM = M(D∗) − M(D0) mass difference and (b) D0 mass in the
control sample used for studying DIRC θc measurements.

calibrates the DIRC response by separately parameterizing the θc resolution, systematic

bias, and charge dependence of the measured θc of kaons and pions. We only consider

tracks which have sufficient signal Cherenkov photons (Nγ > 5) and θc > 0.1 rad for

a good θc measurement. The π+,π−,K+ and K− distributions of the θc pulls, defined

as
(
θc − θExp

c − μ±
π,K(cos θ)

)
/σ±

π,K , where θc and θExp
c are the measured and expected θc,

respectively, are studied separately in bins of track polar angle cos θ. μ±
π,K and σ±

π,K repre-

sent the mean and the measured bias and resolution of the θc pulls, whose only observed

dependence is on cos θ, while they are not correlated with momentum. They are measured

by a fit with double Gaussian functions.

Pull distributions for the whole sample, which provide likelihoods for discriminating

pions and kaons, are shown in Fig. 8.9.

We retain only events which are within 4 standard deviations (σ±
π,K) of these pulls.

In order to reject the continuum background, we apply the requirements on l2 < 0.55

and | cos θ∗B| < 0.9, like in the case of B0 → φπ0. The final efficiency for reconstructing

B+ → φπ+ and B+ → φK+ events are approximately 37% and 36%, respectively. The
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(a) (b)

Figure 8.9: The corrected θc pull distributions for (a) positively and (b) negatively charged
pions (top) and kaons (bottom). The fits are to double Gaussian functions.

breakdown of the efficiencies is reported in Table 8.2.

The slight difference in the efficiency between B+ → φπ+ and B+ → φK+ is due to

different combinatorial. The main difference is in the PID - mK+K− requirements efficien-

cies, whose efficiencies are different if compared separately, but their product is about the

same. After the pre-selection the candidate multiplicity is similar: 1.36 for B+ → φπ+

and 1.40 for B+ → φK+. Also, the K+K− invariant mass resolution in the φ(1020) region

is the same in the two cases. The difference comes from the fake combinations at high

values of invariant mass (we accept only events within 15 MeV/c2 from nominal φ(1020)

mass), which are more for B+ → φπ+ than for B+ → φK+. In Fig. 8.10 the distribution

of K+K− invariant mass in the whole region after the pre-selection and after the PID

requirement is shown for the two Monte Carlo samples. The PID removes a fraction of

the fake combinations at high invariant mass of B+ → φπ+, while it has no effect on

B+ → φK+.

The event multiplicity after this selection is applied is 1.004 B+ candidate/event.

When more than one candidate is present in an event, we choose the one with the smallest

χ2 of the φ(1020) → K+K− mass. Since we want to use the lineshape of the φ(1020)

resonance in the maximum likelihood fit, we have checked that this selection of the best
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Selection ε(B+ → φK+) ε(B+ → φK+)
pre-selection 0.748 ± 0.001 0.721 ± 0.001

Kaon PID on φ(1020) tracks 0.932 ± 0.001 0.847 ± 0.001
|mK+K− − mPDG

φ | < 15 MeV/c2 0.774 ± 0.001 0.887 ± 0.001
| cos θB | < 0.9 0.983 ± 0.001 0.983 ± 0.001

l2 < 0.55 0.876 ± 0.001 0.876 ± 0.001
|mB − mPDG

B0 | < 150 MeV/c2 0.973 ± 0.001 0.980 ± 0.001
5.11 < mmiss < 5.31 GeV/c2 0.999 ± 0.001 0.999 ± 0.001

θc > 0.1 rad 0.853 ± 0.001 0.857 ± 0.001
Nγ > 5 0.966 ± 0.001 0.976 ± 0.001

θc outlier 0.986 ± 0.001 0.987 ± 0.001
Total efficiency 0.362 ± 0.001 0.371 ± 0.001

Table 8.2: Reconstruction efficiency, as estimated from B+ → φK+ and B+ → φπ+

Monte Carlo events.
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Figure 8.10: K+K− invariant mass in the whole kinematically allowed region for (a)
B+ → φK+ and (b) B+ → φπ+ Monte Carlo events. Dots: the distribution after the
pre-selection. Histogram: distribution after the PID requirements.
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candidate, which choose systematically the one with the mK+K− nearest to the nominal

φ(1020) mass, does not introduce a narrowing of the lineshape. Because of the very low

multiplicity this does not constitute a problem. We verify this assumption with a fit to

the K+K− mass for signal Monte Carlo events with and without the best B+ selection

which return a consistent width.
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8.2 BB Background

We study the contributions to the background due to mis-identified other B decays from a

sample of generic B0B0 and B+B− decays equivalent approximately to five times the used

data sample. We study separately the contributions to the charged and neutral mode.

8.2.1 BB Background for B+ → φh+

We study the background contributions removing from the sample the signal events.

According to the adopted strategy, we consider as signal both B+ → φπ+ and B+ → φK+

decays.

Since the efficiency for the B background modes is very sensitive to the definition of

the signal region, we take particularly care of those modes which present a concentration

of events near the B invariant mass in the mmiss and mB variables. According to this

criterion, starting from the whole fit region (FR)

• 5.11 < mmiss < 5.31 GeV/c2

• |mB − mPDG
B0 | < 150 MeV/c2

we define a reduced signal region (SR)

• 5.26 < mmiss < 5.30 GeV/c2

• 5.20 < mB < 5.35 GeV/c2

where the peaking background events clusters. The events which are selected outside the

signal region come usually from random combination of particles from the two different

B mesons, so they have a distribution in mB which is like a qq̄ event. We define as

combinatorial all these events.

The composition of the selected sample is shown in Table 8.3, where the contributions

have been rescaled at the luminosity of the used data set (212 fb−1). Since the generic

Monte Carlo sample gives too few events to study in detail the reconstruction efficiencies

of these modes and the shape of their discriminating variables, we generate a large number

of Monte Carlo events for the “peaking” modes B+ → f0π
+, B+ → a0π

+, B+ → φK+,

B+ → f0K
+ and apply the selection on them. The f0h

+ samples are generated assuming

the f0 mass and width values taken from BES experiment data (Table 6.12 and [79]).
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Decay mode Fit Region Signal Region BF used (10−6)

φπ+ 40.1 38.9 1 [MC]

φK+ 349.6 346.3 9.3 ± 1.0 [PDG]
f0(980)π+ 2.9 2.5 (3.9) 1 [MC] ([MC with BES shape])
a0(980)π+ 2.7 2.5 1 [MC]
f0(980)K+ 25.7 24.9 (45.8) 10 [MC]
D0π+ 10.7 0.6 5300 [MC]
D∗0π+ 9.3 0.6 4600 [MC]
D0ρ+ 4.7 0.4 13400 [MC]
D∗+ρ0 0.4 0 13400 [MC]
combinatoric 2.7 0 15500 [MC]

Total 59.1 31.5

Table 8.3: Events selected by B+ → φh+ selection in the whole B+B̄− generic Monte
Carlo samples, scaled to an equivalent luminosity of ∼ 210fb−1. In the total number of
B+B− background events is not included the number of B+ → φK+ events, because in
this case they are considered as signal. The numbers in parenthesis for B+ → f0(980)h+

are evaluated using the f0(K
+K−)/φ(K+K−) ratio reported in [76] and the efficiency

correction due to the difference in the f0 lineshape between Monte Carlo and BES experi-
ment data [79], which will be used as nominal shape. The rest of the numbers comes from
branching fractions used in the generic Monte Carlo, denoted as [MC] (usually values
from [21] or reasonable assumptions from theoretical estimations).

Decay mode generated ε

φπ+ 121000 0.371 ± 0.001
φK+ 163000 0.362 ± 0.001
f0π

+ 17000 0.118 ± 0.002 (0.024 ± 0.002)
a0π

+ 23000 0.117 ± 0.002
f0K

+ 148000 0.117 ± 0.001 (0.024 ± 0.001)

Table 8.4: Exclusive B+ decay modes contributing to BB background, generated events
and reconstruction efficiencies. The values in parenthesis are the final efficiencies using
the BES lineshape for the f0 → K+K−.

We report the efficiencies for these modes in Table 8.4. The scalar modes f0π
+ and

a0π
+ are generated forcing the decay of f(a)0 → K+K−. In order to estimate the contri-

bution of scalars mesons in the signal region we have to know the branching fractions of

f(a)0 → K+K−. Measurements exist that give the relative amount of BF(f0→K+K−)
BF(f0→π+π−)

, but

some of them are not consistent with other ones. For example, regarding the f0 branch-

ing fractions, PDG gives a result for these ratios which come from a combined K-matrix
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analysis of Crystal Barrel, GAMS and BNL [29]

Γ(ππ)/
[
Γ(ππ) + Γ(KK̄)

]
= 0.84 ± 0.02 (8.6)

Considering that the K belongs to an isospin doublet, we estimate that B(f0 → K+K−) ∼
0.08. This result is similar to the assumption used in the BABAR generic Monte Carlo

(BMC(f0 → K+K−) = 0.11). The f0 contribution which can be estimated from Monte

Carlo is so reported in Table 8.3 and is negligible with respect to the signal. With the

same assumption the estimated number of f0K
+ in the final data sample is 25.7 events.

From our Dalitz plot analysis of B0 → K+K−K0, we get an higher fraction of f0(980)

in the φ(1020) mass region: the branching fractions are reported in Table 6.20. They agree

with the measurements of the B+ → K+K−K+ Dalitz plot [76]. With these branching

fractions the expected yields of f0π
+ and f0K

+ change drastically. They are also reported

in Table 8.3. We will use this estimation for the validation studies.

Similar considerations can be made for the a0 contribution, where from [21] we have

that:

Γ(KK̄)/Γ(ηπ) = 0.183 ± 0.024 (8.7)

This leads to a BF ∼ 0.075 and so the real contribution from a0π
+ seems to be negligible.

Because of these uncertainties on K+K− S-wave contamination in the φ region, we

include a generic S-wave component in the fit and we fit its yield. We will verify with toy

Monte Carlo experiments the capability of the fit of doing this and to estimate possible bi-

ases on their determination. Figure 8.11 (Figure 8.12) shows the mmiss and mB (K+K−

mass and cos θH) distributions for signal Monte Carlo events and the three different “peak-

ing” B background components. The pollution coming from B0B0 decays is negligible.

In the whole generic Monte Carlo sample we find only 1 event, (B0 → φK0
S
(π+π−)). So

we do not further consider this component.
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Figure 8.11: mmiss (left) and mB (right) for B+ → φπ+ signal Monte Carlo and the
main BB̄ background modes. mB is calculated with pion mass hypothesis. 1st row:
signal B+ → φπ+. 2nd row: B+ → f0(980)π+. 3rd row: B+ → a0(980)π+. 4th row:
B+ → φK+.
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Figure 8.12: K+K− invariant mass (left) and cos θH (right) for B+ → φπ+ signal Monte
Carlo and the main BB̄ background modes. 1st row: signal B+ → φπ+. 2nd row:
B+ → f0(980)π+. 3rd row: B+ → a0(980)π+. 4th row: B+ → φK+.
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Decay mode Fit Region Signal Region BF used (10−6) [source]

φπ0 52 50 1 [MC]

f0π
0 2.0 2. 1 [MC]

a0π
0 2.0 1.6 1 [MC]

K∗(K+π−)π0 1.2 0.8 15 [MC]
φK0

S(π0π0) 1.0 1.4 8.6+1.3
−1.1 × 1/3 [PDG]

D∗+
s K− 0.2 0 20 [MC]

D∗+ρ− 0.2 0 46 [MC]
D∗0ρ0 0.2 0 250 [MC]
ρ0π0 0.2 0 22 [MC]
combinatorial 1.2 0
Total 8.2 5.2

Table 8.5: Expected events per 210 fb−1 of B0B0 generic decays. The φK0
S and K∗π0

yields have been normalized using the measured Bs. Branching fractions denoted with
[MC] are taken from the simulation, which usually is [21] or reasonable assumption from
theoretical estimations.

8.2.2 BB Background for B0 → φπ0

We repeated the study of the B background composition for the neutral mode. The FR

and SR are defined in the same way of the charged mode.

In Table 8.5 we show all the events which satisfy the selection on the whole generic

B0B0 and B+B− samples, scaled to the luminosity of 212 fb−1. Fig. 8.13 shows the

distribution of mmiss and mB for these events. Of these modes, B0 → φK0
S and B0 →

K∗π0 has a well established branching fraction: (B (B0 → φK0) = 8.6+1.3
−1.1 × 10−6 and B

(K∗π0) = 1.7±0.8×10−6 [21]), so for these modes the estimated contribution in Table 8.5

has been evaluated using the measured decay rates. The branching fractions for the scalar

mesons decaying in two kaons are not well known, as described in the previous section.

Like for the charged mode, we include an S-wave component in the fit and fit its yield.

All the other peaking modes in the Monte Carlo are produced with the B ≡ 1×10−6,

and we have no measured upper limits, so we can only give a rough estimation of the

signal to background yield ratio. With this warning, we estimate that in the “narrower”

signal region the B background pollution to the signal is less than 10%.

The pollution from charged B decays is even smaller. We apply the selection on the

whole B+B− Monte Carlo sample. The selected events are shown in table 8.6. When we

re-scale these events to actual data sample we have ∼ 3.7 events in the FR, but they are

all purely combinatorial-like: in the whole B+ B− Monte Carlo dataset we find no events
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Figure 8.13: Distribution of (a) mmiss and (b) mB for selected events in generic B0B0

Monte Carlo sample.

Decay mode fit region signal region
D0ρ+ 5 0
f0π

0π+ 1 0
ρ0π0π+K+K− 1 0
a0ρ+ 1 0
f0ρ

+ 1 0
D+K0

S
1 0

D∗0ρ+ 1 0
combinatorial 7 0

Total 18 0

Table 8.6: Events selected in the whole B+B− generic Monte Carlo sample, for an equiv-
alent luminosity of ∼ 1020fb−1 (approximately five times the used data sample).

in the SR. So we will not include this component in the ML fit.

In Table 8.7 the reconstruction efficiencies of the most dangerous decay modes, eval-

uated with a large number of simulated events of these exclusive B0 decays, are listed.

We find that the efficiency for K∗π0 is very small, the invariant mass cut rejecting 98%

of the events and the particle identification about 11% of the events. On the contrary,

φK0
S

events are reconstructed missing a π0 coming from K0
S

decay, and this produces

systematically small values of mB: in the fit region only 18% of the events are selected.

Fig. 8.14 shows the distributions of mmiss and mB for signal Monte Carlo and the

different exclusive modes, while in Fig. 8.15 are the distribution of K+K− invariant mass

and cos θH . Since the expected number of B background events, excluding the discussed



8.2 BB Background 287

)0π φ) (2 (GeV/cMISSm
5.24 5.25 5.26 5.27 5.28 5.29 5.3 5.310

200

400

600

800

1000

1200

1400

1600

1800

2000
E

ve
n

ts
 / 

1.
4 

M
eV

/c
2

)0π φ) (2 (GeV/cBm
5.15 5.2 5.25 5.3 5.35 5.4

0

500

1000

1500

2000

2500

E
ve

n
ts

 / 
5 

M
eV

/c
2

)0π 
0

) (f2 (GeV/cMISSm
5.24 5.25 5.26 5.27 5.28 5.29 5.3 5.310

20

40

60

80

100

120

140

160

180

200

220

E
ve

n
ts

 / 
1.

4 
M

eV
/c

2

)0π0) (f
2

 (GeV/cBm
5.15 5.2 5.25 5.3 5.35 5.4

0

50

100

150

200

250

300

E
ve

n
ts

 / 
5 

M
eV

/c
2

)0π 
0

) (a2 (GeV/cMISSm
5.24 5.25 5.26 5.27 5.28 5.29 5.3 5.310

20

40

60

80

100

120

140

160

180

E
ve

n
ts

 / 
1.

4 
M

eV
/c

2

)0π0) (a
2

 (GeV/cBm
5.15 5.2 5.25 5.3 5.35 5.4

0

50

100

150

200

250

E
ve

n
ts

 / 
5 

M
eV

/c
2

)0π0*) (K2 (GeV/cMISSm
5.12 5.14 5.16 5.18 5.2 5.22 5.24 5.26 5.28 5.3

0

1

2

3

4

5

E
ve

n
ts

 / 
1.

4 
M

eV
/c

2

)0π0*
) (K

2
 (GeV/cBm

5.15 5.2 5.25 5.3 5.35 5.4
0

1

2

3

4

5

E
ve

n
ts

 / 
5 

M
eV

/c
2

)S
0 Kφ) (

2
 (GeV/cMISSm

5.12 5.14 5.16 5.18 5.2 5.22 5.24 5.26 5.28 5.3
0

10

20

30

40

50

60

E
ve

n
ts

 / 
1.

4 
M

eV
/c

2

)S
0 Kφ) (

2
 (GeV/cBm

5.15 5.2 5.25 5.3 5.35 5.4
0

10

20

30

40

50

E
ve

n
ts

 / 
5 

M
eV

/c
2

Figure 8.14: mmiss (left) and mB (right) for B0 → φπ0 signal Monte Carlo and the main
BB̄ background modes. 1st row: signal B0 → φπ0. 2nd row: B0 → f0(980)π0. 3rd row:
B0 → a0(980)π0. 4th row: B0 → K∗(K+π−)π0. 5th row: B0 → φK0
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Figure 8.15: K+K− invariant mass (left) and | cos θH | (right) for B0 → φπ0 signal Monte
Carlo and the main BB background modes. 1st row: signal B0 → φπ0. 2nd row:
B0 → f0(980)π0. 3rd row: B0 → a0(980)π0. 4th row: B0 → K∗(K+π−)π0. 5th row:
B0 → φK0

S
.
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Decay mode generated efficiency

f0π
0 49000 0.074 ± 0.001 (0.015 ± 0.001)

a0π
0 46000 0.076 ± 0.001

K∗(K+π−)π0 58000 0.0007 ± 0.0001
φK0

S(π0π0) 165000 0.0032 ± 0.0001

Table 8.7: Exclusive B0 decay modes contributing to B background for B0 → φπ0 mode,
generated events and reconstruction efficiencies. The value in parenthesis is the efficiency
when the BES lineshape is adopted for the f0 → K+K− [79].

mmiss mB l2 | cos θH | mK+K−

mmiss 1 0.61(-0.62)% -0.64(3.96)% -0.39(-1.78)% 0.25(-1.71)%
mB - 1 0.29(-0.78)% -0.43(1.92)% 1.61(1.27)%
l2 - - 1 0.41(-1.17)% -0.34(3.47)%
| cos θH | - - - 1 1.49(-1.80)%

Table 8.8: Linear correlation coefficients between Likelihood variables as computed on
the B0 → φπ0 Monte Carlo signal sample (data sideband with mmiss < 5.26 GeV/c2).

S-wave component, is small, we neglect this component in the nominal fit.

8.3 The Maximum Likelihood Fit

We extract the signal yields for B0 → φπ0 and B+ → φh+ with an unbinned maximum

likelihood fit (Eq. 6.13). For both decay modes, the likelihood function has Nspec = 3,

which are the signal, qq background and BB background, where for BB background

we consider the S-wave K+K− contribution in the φ(1020) region (mainly f0(980)), as

discussed in the previous section. We simultaneously extract the event yield of each

component, but, in this quasi-two-body approach, we neglect interference effects.

8.3.1 Likelihood Function for B0 → φπ0

Since correlation between the likelihood variables are negligible both in signal and back-

ground events (Table 8.8), we can factorize the PDF in the product of the PDF’s for each

variable:

P ≡ P(mmiss) · P(mB) · P(l2) · P(| cos θH |) · P(mK+K−) (8.8)

We parameterize signal PDF’s using unbinned maximum likelihood fit on a signal Monte

Carlo sample. We use the Cruijff function (Eq. 6.15) to parameterize mmiss and mB
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(Fig. 8.16a,b). We use a second order polynomial for | cos θH | and a relativistic Breit-

Wigner as the φ(1020) lineshape (Fig. 8.17a,b). Since the distribution of l2 interrupts

at 0.55 because of the selection, we use a step function, i.e. a parametric histogram, to

parameterize it. We use a not uniform binning of the step function, with an increased

granularity where the most of discrimination between signal and continuum background

is needed (Fig. 8.18).
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Figure 8.16: Signal PDF’s used in the B0 → φπ0 likelihood for (a) mmiss and (b) mB.
Both parameterizations are obtained from a maximum likelihood fit to signal Monte Carlo
sample with a Cruijff function.
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Figure 8.17: Signal PDF’s used in the B0 → φπ0 likelihood for (a) mK+K− and (b)
| cos θH |. Parameterizations are obtained from a maximum likelihood fit to signal Monte
Carlo sample with a (a) relativistic Breit Wigner and (b) second order polynomial.



8.3 The Maximum Likelihood Fit 291

0/l2l
0 0.1 0.2 0.3 0.4 0.5

E
ve

nt
s 

/ (
 0

.0
18

33
33

 )

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0/l2l
0 0.1 0.2 0.3 0.4 0.5

E
ve

nt
s 

/ (
 0

.0
18

33
33

 )

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Figure 8.18: Signal PDF used in the B0 → φπ0 likelihood for l2. The parameterization is
obtained from a maximum likelihood fit to signal Monte Carlo sample with a parametric
step function.

The mmiss continuum background is parameterized with an ARGUS function (Eq. 5.11),

while a second order polynomial is used for mB (Fig. 8.19a,b). The φ lineshape is pa-

rameterized with a relativistic Breit Wigner, because of the presence of true φ’s in the

continuum events, plus an exponential background (Fig. 8.20a), describing the non reso-

nant two-tracks combinations. In the fit we fix the mean value and the width of the Breit

Wigner to the values obtained from the fit on the signal Monte Carlo events, while we

float the fraction and the parameter of the exponential distribution. The | cos θH | distri-

bution is parameterized with a second order polynomial (Fig. 8.20b), The l2 distribution

is parameterized with a step function with the same binning of the signal (Fig. 8.21).

As usual, we determine these parameters from a unbinned maximum likelihood fit to

the qq̄ Monte Carlo sample, to find the best shapes for the PDF’s, but since we have

sufficient continuum events in the final data sample, we fit their parameters directly on

data.

The BB contributions (K+K− S-wave) can be distinguished from signal only by their

Dalitz plot variables mK+K− and cos θH . We parameterize variables on the merged sample

of exclusive B0 → f0(980)π0 and B0 → a0(980)π0 decays. We use the same PDF’s as

for signal for mmiss, mB and l2. For mK+K− we use a Flatté function (Eq. 3.40) with

parameters reported on Table 6.12. The PDF is displayed in Fig. 8.22a, where only the

tail of the function over the KK̄ threshold is shown. We parameterize the | cos θH | with

a second order polynomial.

We summarize the parameterization of the PDF’s for B0 → φπ0 in Table 8.9.



292 Measurement of Decay Rate of B0/+ → φπ0/+ Decays

(a) (b)

)
2

 (GeV/cMissm
5.12 5.14 5.16 5.18 5.2 5.22 5.24 5.26 5.28 5.3

E
ve

nt
s 

/ (
 0

.0
06

66
66

7 
)

0

20

40

60

80

100

120

140

160

)
2

 (GeV/cMissm
5.12 5.14 5.16 5.18 5.2 5.22 5.24 5.26 5.28 5.3

E
ve

nt
s 

/ (
 0

.0
06

66
66

7 
)

0

20

40

60

80

100

120

140

160

)
2

 (GeV/cRecm
5.15 5.2 5.25 5.3 5.35 5.4

E
ve

nt
s 

/ (
 0

.0
1 

)

0

20

40

60

80

100

120

140

160

180

)
2

 (GeV/cRecm
5.15 5.2 5.25 5.3 5.35 5.4

E
ve

nt
s 

/ (
 0

.0
1 

)

0

20

40

60

80

100

120

140

160

180

Figure 8.19: qq background PDF’s used in the B0 → φπ0 likelihood for (a) mmiss and
(b) mB. Parameterizations are obtained from a maximum likelihood fit to the qq Monte
Carlo with (a) ARGUS function and (b) 2-nd order polynomial.
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Figure 8.20: qq background PDF’s used in the B0 → φπ0 likelihood for (a) mK+K− and
(b) | cos θH |. Parameterizations are obtained from a maximum likelihood fit to qq Monte
Carlo sample with a (a) relativistic Breit Wigner plus exponential and (b) second order
polynomial.
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Figure 8.21: qq background PDF used in the B0 → φπ0 likelihood for l2. The param-
eterization is obtained from a maximum likelihood fit to qq Monte Carlo sample with a
parametric step function.
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Figure 8.22: BB background PDF’s used in the B0 → φπ0 likelihood for (a) mK+K− and
(b) | cos θH |. Parameterizations are obtained from a maximum likelihood fit to qq Monte
Carlo sample with a (a) Flatté function and (b) second order polynomial. For the final
fit the parameters of the Flatté function are taken from BES data and not from Monte
Carlo, as they are in this figure.
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Signal BB bkg qq bkg

mmiss Cruijff Cruijff Argus
mB Cruijff Cruijff 2-nd order polynomial
l2 Step Function Step Function Step Function
| cos θH | 2-nd order polynomial 2-nd order polynomial 2-nd order polynomial
mK+K− rel. BW Flatté rel. BW + exponential

Table 8.9: Summary of PDF shapes used in the maximum Likelihood parameterization
for B0 → φπ0. rel. BW stands for relativistic Breit Wigner function.

8.3.2 Likelihood Function for B+ → φh+

The likelihood function for B+ → φh+ decays is very similar to the one for B0 → φπ0.

The main difference is that all the PDF’s are duplicated for the two mass hypotheses

h = π, K. Then Nspec = 6. We also add the PDF’s for θc to discriminate the track mass

hypotheses.

Also for this mode we find negligible correlation between likelihood variables (Ta-

ble 8.10), so we can factorize the likelihood in the product of the different PDF’s:

P ≡ P(mmiss) · P(mB) · P(l2) · P(| cos θH |) · P(mK+K−) · P(θcpull) (8.9)

mmiss mB l2 | cos θH | mK+K− θc pull

mmiss 1 1.42(0.80)% 0.52(1.97)% 0.15(-1.35)% -0.17(-0.93)% 0.34(-0.12)%
mB - 1 0.10(-0.37)% 1.46(0.56)% 3.19(1.56)% 0.45(0.53)%
l2 - - 1 0.24(-1.48)% 0.15(0.84)% 1.02(-0.78)%
| cos θH | - - - 1 -0.42(-1.26)% 1.21(-0.98)%
mK+K− - - - - 1 -0.12 (-0.56)%

Table 8.10: Correlation coefficients between Likelihood variables as computed on the B →
φπ Monte Carlo signal sample (on-resonance sideband data with mmiss < 5.26 GeV/c2).

We parameterize the PDF’s with the same functions used in the case of the neutral

decay. They are the forced to be the same for B+ → φπ+ and B+ → φK+, except for the

θc pulls and mB.

For θc pulls we use the double Gaussians PDF’s evaluated on data control samples

shown in Fig. 8.9. For mB we use a Cruijff function parameterized on signal Monte Carlo

events of B+ → φπ+. The equivalent PDF for the K mass hypothesis is evaluated from

this one by means of the event-by-event shift of Eq. 8.5, which depends by the momentum
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of the track. Resulting parameterizations are shown in Fig. 8.23. The same method is

used for BB background mB (between f0(980)π+ and f0(980)K+).
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Figure 8.23: Signal PDF’s used for mB parameterization of (a) B+ → φπ+ and (b) B+ →
φK+ events. The parameterization is obtained with a Cruijff function for B+ → φπ+ and
the one for B+ → φK+ is obtained with a momentum scaling of the one for the π mass
hypothesis.

We summarize the parameterization of the PDF’s entering the likelihood function in

Table 8.11.

Signal BB bkg qq bkg

mmiss Gaussian Gaussian Argus
mB Cruijff Cruijff 2-nd order polynomial
l2 Step Function Step Function Step Function
| cos θH | 2-nd order polynomial 2-nd order polynomial 2-nd order polynomial
mK+K− rel. BW Flatté rel. BW + exponential
θc pulls mom. dep. Gaussians mom. dep. Gaussians mom. dep. Gaussians

Table 8.11: Summary of PDF shapes used in the likelihood parameterization for B+ →
φh+. rel BW stands for relativistic Breit Wigner function.

8.3.3 Data - Monte Carlo Comparison for B+ → φh+

While for B0 → φπ0 accurate studies on neutral particles using data control samples in

BABAR provide corrections to apply to simulated events to achieve the best data/Monte

Carlo agreement, for B+ → φh+ decays with three tracks in the final state we need a

specific control sample. In order to do this we reconstruct B+ → J/ψK+ events both on
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mmiss J/ψK+ data J/ψK+ Monte Carlo φπ+ Monte Carlo φK+ data
m 5.28030 ± 0.00006 5.27870 ± 0.00005 5.27930 ± 0.00008 5.28010 ± 0.00037
σ 0.00523 ± 0.00008 0.00530 ± 0.00004 0.00529 ± 0.00006 0.00583 ± 0.00029

Table 8.12: Comparison of mmiss parameterizations from signal Monte Carlo samples and
data. Signal parameterization is obtained with a Gaussian.

Monte Carlo and data. This sample provides a large statistics sample with high purity

with can be used to validate the kinematic variables mmiss and mB.

We parameterize the distributions assuming the same functional forms as for B+ →
φh+ signal. We determine the associated parameters through a maximum likelihood fit.

In the case of data, we also add a background component to be fitted simultaneously to

signal events. In this case, we assume an ARGUS shape for mmiss and a second order

polynomial for mB.

The mmiss distributions on B+ → J/ψK+ signal Monte Carlo and data are shown in

Fig. 8.24. The distributions differ for a larger value of the width on Monte Carlo and a

small shift in the mean. This is summarized in Table 8.12.
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Figure 8.24: Distribution of mmiss, as obtained from a sample of (a) signal B+ → J/ψK+

Monte Carlo or (b) on-resonance data. The superimposed curve is obtained fitting the
sample with (a) a single Gaussian or (b) a single Gaussian plus ARGUS function which
parameterizes the background.

Also for mB we find a good agreement between data and Monte Carlo (Fig. 8.26).
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In order to have a qualitative estimation of the agreement between data and Monte

Carlo (in J/ψK+ events) we compare the Monte Carlo events with data after a back-

ground subtraction is applied (Fig. 8.25). From the distribution is evident the very good

agreement on mmiss and mB distribution.
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Figure 8.25: Distribution for (a) mmiss and (b) mB for B+ → J/ψK+ Monte Carlo events
(histogram) and reconstructed events on RunI-IV data after a background subtraction
(dots). The distribution are normalized to the same area.

The conclusion of this study is that the Monte Carlo reproduces quite well the shape of

the kinematic variables, even if a small correction is needed to achieve the best agreement

with data. In the case of our signal, since we expect more than 300 signal B+ → φK+

events, we can fit the mmiss and mB signal parameters directly on data (mmiss PDF’s

for K and π hypotheses are the same, and mB PDF’s are correlated between them by

the event-by-event shift of Eq. 8.5). This strategy avoids to add a undesirable systematic

uncertainty due to mmiss and mB parameterization, and it is also better than taking the

shape from B+ → J/ψ (μ+μ−)K+ events. In fact radiative emission by leptons produces a

small tail in mB shape which is not present in B+ → K+K−h+ events (see Table 8.13).

8.4 Validation Studies

We validate the fit procedure with a number of pure toy Monte Carlo and with embedded

toys. We report here only the results of embedded toys, because they give the additional
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Figure 8.26: Distribution of mB, as obtained from (a) a sample of signal B+ → J/ψK+

Monte Carlo or (b) data. The superimposed curve is obtained fitting the sample with (a)
a single Gaussian or (b) a single Gaussian plus a second order polynomial parameterizing
the background.

mmiss J/ψK+ data J/ψK+ Monte Carlo φπ+ Monte Carlo φK+ data

m 5.2776 ± 0.0009 5.2795 ± 0.0006 5.2818 ± 0.0008 5.2253 ± 0.0038
σL 0.0171 ± 0.0007 0.0163 ± 0.0005 0.0222 ± 0.0006 0.0181 ± 0.0040
σR 0.0158 ± 0.0007 0.0146 ± 0.0005 0.0162 ± 0.0006 0.0259 ± 0.0040
αL 0.1472 ± 0.0086 0.1149 ± 0.0049 0.0999 ± 0.0061 0.1752 ± 0.0813
αR 0.1202 ± 0.0096 0.1423 ± 0.0051 0.1381 ± 0.0072 0.1182 ± 0.0486

Table 8.13: Comparison of mB parameterizations from signal Monte Carlo samples and
data. Signal parameterization is obtained with a Cruijff function (Eq. 6.15).
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information on the effect of the neglected correlations in the fit. Since only upper limits

exist on the branching fraction of B → φπ, we use in generation a small number of events

for the nominal toys (N = 5), and we also perform a scan in the range N ∈ [0 ÷ 10].

For B → φK, whose branching fraction is well established, we use the actual world

average [22].

8.4.1 Validation Studies for B0 → φπ0

We perform toy Monte Carlo experiments embedding Nsig = 5 events from selected Monte

Carlo events and NBB = 3, and generating according PDF’s Nqq = 2700 continuum events.

We show the pulls on the three fitted yields and the expected uncertainties on them in

Fig. 8.27.
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Figure 8.27: Embedded toy Monte Carlo experiments results for B0 → φπ0. Pulls (top)
and uncertainties on yields (bottom) for (a) signal, (b) BB background and (c) qq back-
ground.

The pulls for signal and BB background do not follow Gaussian distributions with

mean zero and unitary standard deviation. This behaviour cannot be attributed to an
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effective bias in the fit procedure, but to the fact that we are generating 5 and 3 events

for signal and BB components, respectively. Then these components follow a Poisson

distribution, producing the long tail in the pull, with a consequent shift of the mean to

lower values. The qq background, for which thousand of events are generated, shows a

distribution of the pull which is perfectly compatible with a Gaussian regime.

In order to study in detail this effect we perform a toy Monte Carlo scan of the signal

and BB yields. We then generate experiments varying the number of generated events in

the range N ∈ [0 ÷ 10]. In Fig. 8.28 we show the distribution of the fitted yield vs. the

generated value, Xfit vs. X true, where X = Nsig, NBB. For both components, the size of

the bias depends on the true value of the yield and tends to be negligible as the number

of generated events increase. When the true yield is � 6, the Gaussian assumption begins

to be valid, the maximum of the likelihood becoming a good estimator of the true value.
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Figure 8.28: Distribution of fitted (maximum of the likelihood) vs. generated values for
(a) Nsig and (b) NBB when ∼ 50 103 toy experiments for B0 → φπ0 are generated with
Nsig and NBB uniformly distributed in the range [0 ÷ 10]. The red line represents the
relation Xfit = X true, where X = Nsig, NBB. The black lines represent three linear fits
to the distribution in three different sub-ranges.

We then have to define a procedure to interpret the results if a signal yield in the

problematic range [0 ÷ 6] is returned by the fit:

• setting an Upper Limit: to set an eventual upper limit we decide to use a

Bayesian approach where the likelihood function is integrated defining a 90% prob-



8.4 Validation Studies 301

ability interval. In this case, the maximum of the likelihood is not used then the

“fit bias” is not a problem;

• quoting a Central Value: in this case, the maximum of the likelihood is not

an unbiased estimator of the true value of the yield. We find that the median of

the likelihood, defined as the value lying at the midpoint of the likelihood function,

such that there is an equal probability of falling above or below it, is a less biased

estimator of the true yield. This is shown in Fig. 8.29. Even if the median of the
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Figure 8.29: Distribution of fitted (median of the likelihood) vs. generated values for (a)
Nsig and (b) NBB when ∼ 10 103 toy experiments for B0 → φπ0 are generated with Nsig

and NBB uniformly distributed in the range [0÷ 10]. The red line represents the relation
Xfit = X true, where X = Nsig, NBB. The black line represents a fit with a third order
polynomial to the distribution.

likelihood is a less biased estimator, still some deviation from the true value can be

seen. We parameterize the distribution in Fig. 8.29 with a third order polynomial f3

which we can use as correction function X true = f3(X
fit) once we have the unblinded

value Xfit.

8.4.2 Validation Studies for B+ → φh+

We validate the fit to B+ → φh+ with embedded toy Monte Carlo experiments. We use

as generation yields Nφπ = 5, NφK+ = 350, NBB(π+) = 3 and NBB(K+) = 46. We generate

separately qq backgrounds for φπ+ and φK+ species, estimating the relative fractions
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from a fit to sideband data. According to these fractions we use Nqq(π+) = 6500 and

Nqq(K+) = 4500.

We generate according to the PDF’s the qq events, while we embed both signal and BB

events from full Monte Carlo samples. Together with accounting for correlation among

the different likelihood variables, the full Monte Carlo is particularly necessary for this fit

involving θc because it fully reproduces two important features of the data:

1. the track momentum/polar angle dependence induced by the boost, because it is

essential to model the DIRC resolution sensitivity to cos θ;

2. the correlations between the h+ track and the recoiling φ in the decay, because the

separation between kaon and pion depends on the track momentum.

The pulls for the fitted yields of signal and BB background are shown in Fig. 8.30,

while the pulls for the qq background are shown in Fig. 8.31.
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Figure 8.30: Embedded toy Monte Carlo experiments results for B+ → φh+. Pulls (top)
and uncertainties on yields (bottom) for (a) signal B+ → φπ+, (b) signal B+ → φK+,
(c) B+ → φπ+ BB background (d) B+ → φK+ BB background.

The same features due to the limited statistics in generation are visible on the signal

and BB background for B+ → φπ+ component. The yields of signal and BB background

for B+ → φK+ show no presence of bias, like for the qq background yields.
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Figure 8.31: Embedded toy Monte Carlo experiments results for B+ → φh+. Pulls
(top) and uncertainties on yields (bottom) for (a) qq background for B+ → φπ+, (b) qq
background for B+ → φK+

We repeat the scan of the yields in the range [0 ÷ 10] in order to study the “fit bias”

as a function of the generated number of events. We obtain the curve of the median of

the likelihood versus the generated number of the events which we will use to correct the

central value of the branching fraction. The curves are reported in Fig. 8.32.

8.5 Fit Results and Branching Fraction Measurement

The selection retains a sample of 2732 φπ0 candidates and 10990 φh+ candidates. Ap-

plying the maximum likelihood fit to these two samples we do not observe evidence of

these decays. Table 8.14 reports the results for the B0 → φπ0 yields, while in Table 8.15

we report the results for the B+ → φh+ yields. The reported yields correspond to the

maximum of the likelihood.

In Fig. 8.33 we show the distributions of the likelihood variables for B0 → φπ0 can-

didates, with the result of the fit superimposed, after a requirement on the signal-to-

background likelihood ratio has been applied to enhance the signal.

In Fig. 8.34 we show similarly likelihood-enhanced plots for the B+ → φh+ candidates.

The requirement on the likelihood ratio considers both B+ → φπ+ and B+ → φK+

as signal: (Lφπ+ + LφK+)/ (Ltot), where Ltot is the sum of the likelihoods for all the
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Figure 8.32: Distribution of fitted (median of the likelihood) vs. generated values for (a)
Nsig and (b) NBB when ∼ 10 103 toy experiments for B+ → φπ+ are generated with Nsig

and NBB uniformly distributed in the range [0÷ 10]. The red line represents the relation
Xfit = X true, where X = Nsig, NBB. The black line represents a fit with a third order
polynomial to the distribution.

Yield Fitted Value Glb. Correlation

NS 3.47+3.97
−2.56 0.21

NBB −1.32+4.23
−2.96 0.52

Nqq 2732+53
−52 0.15

Table 8.14: Fitted yields on the on-resonance data sample (232 M of BB pairs) for
signal (NS), BB background (NBB) and continuum background (Nqq). These numbers
correspond to the maximum of the likelihood.

components. For clearness, we display also the plots where we enhance only the B+ →
φπ+ component in Fig. 8.35, for the mmiss and mB variables.

The fitted yield for B+ → φK+ is consistent with the measured branching fraction

measured with the Dalitz plot analysis of B+ → K+K−K+ [76], performed on the same

dataset (the number of expected events is 346 using the world average branching ratio).

Also, the number of event fitted for the BB background, which with good approximation

is made only by f0(980)K+, is consistent with the P-wave/S-wave ratio, in the narrow

K+K− mass region considered in this analysis, of our measurement in B0 → K+K−K0

Dalitz plot (see Table 6.20).
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Figure 8.33: Distribution of mmiss (top left), mB (top right) l2 (middle left), | cos θH |
(middle right), mK+K− (bottom) for B0 → φπ0 candidates on on-resonance data, together
with the result of the maximum likelihood fit after applying a requirement on the ratio
of signal likelihood to signal-plus-background likelihood (computed without the displayed
variable). The curves are projections from the likelihood fit for total yield (continuum line)
and for the continuum background (dashed line). The efficiencies on signal (continuum
background) [s-wave background] of the likelihood-ratio cut are: 66% (9%) [17%] for
mmiss, 91% (6%) [38%] for mB, 70% (3%) [16%] for l2, 81% (5%) [36%] for | cos θH |, 76%
(3%) [40%] for mK+K−. We didn’t display the BB component for clearness of the plot.
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Figure 8.34: Distribution of mmiss (top left), mB (top right) l2 (middle left), | cos θH |
(middle right), mK+K− (bottom) for B+ → φh+ candidates on on-resonance data, together
with the result of the maximum likelihood fit after applying a requirement on the ratio
of signal (φh+) likelihood to signal(φh+)-plus-background likelihood (computed without
the displayed variable). The curves are projections from the likelihood fit for total yield
(continuum line), for the continuum background (fine dashed line) and for continuum plus
BB component (dashed line). The red dashed line represents the φπ+ component. The
efficiencies on signal (continuum background) [s-wave background] of the likelihood-ratio
cut are (each one is the sum of φπ+ and φK+): 63% (5%) [13%] for mmiss, 79% (4%)
[22%] for mB, 72% (2%) [16%] for l2, 83% (3%) [36%] for | cos θH |, 78% (2%) [41%] for
mK+K−.
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Yield Fitted Value Glb. Correlation

NS(φπ+) −2.88+6.01
−4.56 0.37

NBB(π+) 2.77+7.13
−5.65 0.36

Nqq(π
+) 6254+82

−81 0.11

NS(φK+) 312.2+23.0
−22.3 0.37

NBB(K+) 41.7+14.7
−13.4 0.36

Nqq(K
+) 4386 ± 70 0.11

Table 8.15: Fitted yields on the on-resonance data sample (232 M BB pairs) for
signal (NS(φπ+, K+)), BB background (NS−waveπ

+, K+) and continuum background
(Nqqπ

+, K+). These numbers correspond to the maximum of the likelihood.
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Figure 8.35: Distribution of mmiss (left), mB (right) for B+ → φπ+-only candidates on
on-resonance data, together with the result of the maximum likelihood fit after applying
a requirement on the ratio of signal (φπ+) likelihood to signal(φπ+)-plus-background
likelihood (computed without the displayed variable). The curves are projections from
the likelihood fit for total yield (continuum line), for the continuum background (fine
dashed line) and for continuum plus BB component (dashed line).

8.5.1 Upper Limits on Branching Fractions

Since we do not observe any signal in both neutral and charged B → φπ decay, we set

upper limits on the branching fractions.

We adopt a Bayesian approach to do it. From the multi-dimensional likelihood defined

by Eq. 8.8 or Eq. 8.9 we obtain a modified likelihood function L(NS):

L(NS) = N0

∫ ∞

0

dNS−waveL(NS, NS−wave), (8.10)

where the normalization N0 is such that
∫∞

0
dNSL(NS) = 1. The two dimensional like-
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lihood L(NS, NS−wave) is given at each point on the NS-NS−wave plane by the function

defined in Eq. 6.13, maximized with respect to all of the other fit variables. For calculat-

ing upper limits, we impose the a priori constraints NS > 0 and NS−wave > 0. We show

the experimental likelihood on NS for both neutral and charged mode in Fig. 8.36
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Figure 8.36: Experimental likelihood for the signal yields for (a) B0 → φπ0 decays (b)
B+ → φπ+ decays. The darker region is the 68% probability interval, the other is 90%
interval. NS > 0 a priori assumption has been assumed.

The branching fraction B is calculated from the observed number of signal events as

B =
NS

ε · NBB̄ · B(φ → K+K−)
(8.11)

where NBB̄ is the number of BB̄ pairs produced (232 ×106) and ε is the reconstruction

efficiency for the B candidates. In Eq. 8.11 we assume equal branching fractions for Υ (4S)

decays to charged and neutral B-meson pairs [23].

Under the assumption that NBB̄ and ε are distributed as Gaussians, we obtain a

likelihood function, LB, for the branching fraction, B, based on Eq. 8.11, by convolving

the likelihood (L in Eq. 8.10) with the distributions of NBB̄ and ε. We also include the

additional uncertainty coming from the systematic error on the signal yield (which we

will discuss in Sec. 8.6). The resulting likelihood is shown in Fig. 8.37 for each of the two

decay modes. In the plots, the upper boundary of the dark region represents the 90%
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Figure 8.37: Likelihood distribution, LB(B), for (a) B(B+ → φπ+) and (b) B(B0 → φπ0)
in arbitrary units. The upper boundary of the dark region represents the 90% probability
upper limit.

probability Bayesian upper limit BUL, defined as:

∫ BUL

0

LB(B)dB =
9

10

∫ +∞

0

LB(B)dB (8.12)

We determine

B(B+ → φπ+) < 2.4 × 10−7,

B(B0 → φπ0) < 2.8 × 10−7.

These limits are consistent with Standard Model predictions [86].

Central Value of Branching Fraction

Even if the result of this measurement is given by given upper limits on B, or, better, by

the experimental likelihoods in Fig. 8.37, we also compute a central value for B in order

to allow world averaging with other experiments which provide only it.

Since the fitted yields lie in the problematic region where the maximum of the likeli-

hood is not a good estimator of the true value (Fig. 8.28), we do not use the yields reported
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in Tables 8.14 and 8.15, but instead the median of the likelihood for NS (Eq. 8.10 and

Fig. 8.36). We correct for the residual bias which affects this estimator, using as calibra-

tion curve the third order polynomial shown in Fig. 8.29a and Fig. 8.32a for B0 → φπ0 and

B+ → φπ+, respectively. With this method we find the yields reported in Table 8.16. We

then evaluate the values for branching fractions with Eq. 8.11 without assuming a priori

that NS > 0 as for the upper limit evaluation. The results are reported in Table 8.16.

B+ → φπ+ B0 → φπ0

Yield −1.5 ± 5.9 4.0 ± 3.5
ε(%) 37.1 ± 0.1 29.5 ± 0.8
B(10−6) −0.04 ± 0.17 0.12 ± 0.13
UL(B)(10−7) 2.4 2.8

Table 8.16: Signal yield (evaluated as the median of the likelihood), detection efficiency
ε (the uncertainty includes both statistical and systematic effects), measured branching
fraction B with statistical error, after the correction for the fit bias has been applied, for
the two decay modes considered and upper limit at 90% probability.

8.6 Systematic Uncertainties

Sources of systematic uncertainties on the measurement of the branching fraction are

the quasi-two-body approach which neglects interference effects, the error associated to

the counting of produced BB̄ couples in our data set, the knowledge of reconstruction

efficiency, estimated from signal Monte Carlo and the performances of the particle iden-

tification, the knowledge of the shape parameters of the variables used in the fit and the

fit biases.

The Quasi-two-body Approximation: Interference Effects

The quasi-two-body approximation consists of reducing the kinematically allowed region

in the Dalitz plot to a band which is dominated by a single resonance. In the case of the

φ this assumption is justified by the small width of the resonance, which allow to take

a small portion of the Dalitz region where contribution from the scalar meson f0(980) is

highly reduced.

The total K+K+π amplitude can be written as the coherent sum of the amplitudes of

the single resonances, weighted by the form factors Fi which depend from the Dalitz plot
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position and the spin of the resonance:

AK+K−π =0 KFf0πAf0π +1 KFφπAφπ +0 KFNRANR (8.13)

where JK are the kinematic factors:

0K = 1, (8.14)

1K = −4|�pK+||�pπ| cos θK+̂π = sK+π − sK−π

where θK+̂π is what we called the helicity angle and sij is the invariant mass squared of the

particles i and j and the three momenta |�pi| are given in the rest frame of the resonance.

The form factors Fi are represented in the Dalitz plot by Breit Wigner (Eq. 3.27) or Flatté

(Eq. ??) functions.

In the rest of discussion we will assume that the Af0π amplitude is real and that

the relative phase between Aφπ and Af0π is φ. Since we want to evaluate the system-

atic uncertainty to the yield of B → φπ, we have also to make an assumption on the

ratio |Af0π|/|Aφπ|: we take it equal to the measured ratio |Af0K+|/|AφK+|. With these

assumptions the total rate is given by:

|AK+K−π|2 = |Aφπ|2
[
|Ff0π|2

|Af0K+|2
|AφK+|2 +1 K|Fφπ|2 + 2

|Af0K+|
|AφK+| Ff0πFφπ

1K cos φ

]
(8.15)

Allowing the interference between P-wave and S-wave, and using the measured ratio

of |Af0K+|2/|AφK+|2 [76], we obtain the mass and helicity angle distributions shown in

Fig. 8.38. We used three different relative phases between S- and P-wave: φ = {0, π/2, π},
but the final lineshape doesn’t depend very much by this phase. We assume the non

resonant (NR) component contribution measured by Belle collaboration in the Dalitz

analysis of B+ → K+K−K+[75]:

B =
(
24.0 ± 1.5 ± 1.8+1.9

−5.7

)
× 10−6 (8.16)

where the first quoted error is statistical, the second is systematic and the third is the

model error. We parameterize this component with a flat PDF in mK+K− multiplied by

the phase space and a flat PDF in the helicity. We also assume the measured phase:

NR phase(◦) = −68 ± 2. (8.17)

We run a lot of toy Monte Carlo experiments generating with the interference on and

fitting with the nominal fit, where it is neglected. We define the systematic uncertainty on



312 Measurement of Decay Rate of B0/+ → φπ0/+ Decays

(a) (b)

)2) (GeV/c-K+m(K
1.005 1.01 1.015 1.02 1.025 1.03 1.035
0

500

1000

1500

2000

2500

3000

3500

 lineshapes-K+K

/2π = φ
π = φ

 = 0φ
S-P wave interference off

 lineshapes-K+K

E
ve

n
ts

 / 
0.

6 
M

eV
/c

2

)|Hθ|cos(
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

500

1000

1500

2000

2500

Helicity angle linshapes

/2π = φ
π = φ

 = 0φ
S-P wave interference off

Helicity angle linshapes

E
ve

n
ts

 / 
0.

01
7

Figure 8.38: Generated distribution of (a) mK+K− and (b) | cos θH | for 31980 B+ →
φK+ events, 4800 B+ → f0K

+ events, once allowing the interference between the two
amplitudes with different relative phases (φ = {0, π/2, π}) and once not allowing the
interference (blue histogram).

the yield as the difference between the fitted φπ yield and the generated one, divided by

the generated yield:
Nfit(nominal)−Ngen(interference on)

Ngen(interference on)
. We find the effect of neglecting the

residual interference to be 4.4% on the φπ yield and 1.1% on φK+ yield. The distributions

of the residuals for φπ+ and φK+ are shown in Figure 8.39, the effect on φπ0 is the same

of the one for φπ+.

B Counting

The B-counting method described in [23] is used to determine the number of Υ (4S) in the

on-resonance data. We assume equal branching fractions for Υ (4S) decays to charged and

neutral B-meson pairs. The uncertainty quoted for RunI-IV dataset we use (equivalent

to 231.8 × 106 BB̄ pairs) is 1.30 × 106.

Reconstruction of π0

The signal efficiency correction for B0 → φπ0 due to discrepancies between Monte Carlo

and data is evaluated with neutral particles data control samples. The final correction to

the efficiency is 0.991 ± 0.03 (syst) (see Sec. 8.1.1).

Tracking Efficiency

Using data control samples of charged tracks a flat systematic error of 0.8% per track is

assigned.
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Figure 8.39: Residuals for (a) φπ+ and (b) φK+ (right) yield when in generation the
interference between S, P wave and non resonant is allowed.

Particle Identification

Applying the standard PID selectors to Monte Carlo tracks, doesn’t fully reproduce the

PID efficiencies and purities on data. The efficiencies related to PID cuts in Monte Carlo

by using PID selectors are corrected using studies with very pure π± and K± data control

samples from D∗± decays (see Sec. 8.1.2).

PID corrections contain efficiencies and errors on efficiencies, measured for each com-

bination of selector and true particle type in bins of momentum (p, θ and φ) in the

laboratory frame. PID corrections are generated for both data and Monte Carlo using

a number of control samples, so efficiency ratios of data to Monte Carlo using the same

momentum binning can be derived from them in a PID ratio table along with the corre-

sponding statistical errors. For each signal track that is required to pass a PID criterion,

a correction factor is read off from the ratio table. The true track identity (obtained from

Monte Carlo truth-matching) and charge tell us which correction is to be used for that

track.

The correction factor for an event is the product of corrections of individual tracks

that pass certain PID criteria in that event. The overall error is statistically calculated

and assigned as the systematic error on signal efficiency due to PID. We find a correction

of 0.5% both for charged and neutral mode, since we apply the same selection on kaons
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originating from φ(1020).

Sub Branching Fractions

The uncertainty on the branching fraction B(φ → K+K−) also contribute as systematic

error in the determination of the absolute value of the branching fraction of B → φπ

decays. We use the PDG 2004 value: B(φ → K+K−) = 0.491 ± 0.006.

PDF’s Parameterization of B0 → φπ0

We evaluate the uncertainty due to the knowledge of parameters entering the likelihood

moving each parameter by ±1σ, where σ is the error associated to each parameter. For

mB, whose shape is sensible to the calorimeter energy scale and resolution, we use as

control sample B+ → h+π0, taking the shape from the fit on the Run I-IV dataset (the

same dataset we are using). Since in this measurement the usual ΔE variable is used

instead of mB, and the parameterization is done with another functional form, a Crystal

Ball shape (Eq. 5.10), we cannot simply use those parameters.

Then we generated about 50 × 103 toy Monte Carlo events with ΔE shape fitted on

h+π0 data, and then we compare that shape with ΔmB = mB − mPDG
B . Figure 8.40

shows that there is not significant difference between our corrected MC and data. We

then fit this mB distribution for h+π0 with a Crujiff function, and use these parameters

in the nominal fit. In order to evaluate the systematics, we vary the parameters by ±1σ,

where σ is the standard deviation obtained on a fit on a sample rescaled to the actual

luminosity, and taking the difference in the yield as the systematic error. For the φ mass

and | cos θH | we vary Monte Carlo parameters by 1σ.

The l2 variable has been used for the first time by B0 → K0
Sπ0 analysis. In that analysis

the agreement between data and Monte Carlo has been checked using data control samples.

Since we are using the same selection on it (l2 < 0.55) and the same parameterization,

and since the shape of this variable does not depend by the reconstructed signal, but only

by the rest of the event, we can assign the same systematic uncertainty estimated by their

analysis (1.8%).

We consider here only the parameters associated to the signal component, since the

background parameters are floated in the nominal fit1.

1with the exception of mmiss ARGUS endpoint. The position of the ARGUS endpoint is related to
the beam energies, and it is 100% correlated with the mmiss mean for the signal, then this systematic
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Figure 8.40: (a) Comparison of mB distribution between B0 → φπ0 shape generated
according Monte Carlo simulated events and a B+ → h+π0 generated with the fitted

parameters on on-resonance data. (b) Normalized difference (mφπ0

B − mh+π0

B )/mφπ0

B vs.

Δmφπ0

B = mB − mPDG
B .

In Table 8.17 we summarize the systematic uncertainties on the yield of B0 → φπ0.

The total uncertainty is obtained summing up in quadrature all the contributions.

Syst. contribution Δ N+(φπ0) Δ N−(φπ0) Δ N+(f0π
0) Δ N−(f0π

0)

Sig. mmiss 0.401 0.382 2.899 3.081
Sig. mB 0.400 0.377 2.845 3.127
Sig. l2 0.374 0.475 3.36 3.229

Sig. φ(1020) lineshape 0.260 0.241 1.880 1.912
Sig. | cos θH | 0.241 0.242 1.888 1.888

f0(980) modeling 0.675 0.403 2.881 3.803

Tot. 0.891 1.029 6.06 6.69

Table 8.17: Summary of B0 → φπ0 systematic uncertainties related to the PDF parame-
terization.

PDF’s Parameterization of B+ → φπ+

As for the neutral channel, the main source of contribution to the systematic error comes

from the uncertainty on the parameters of the likelihood. In this case the control sample

is B+ → φK+ itself, which has sufficient statistics to allow some PDF’s to be determined

on data. In the final fit we float the shape parameters of the two kinematic variables,

mmiss and mB, and the mass of the φ, so they will not contribute to the total systematic

uncertainty is already taken into account.
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uncertainty. In this case we evaluate systematic error for the four yields we are floating:

B+ → φπ+, B+ → φK+, B+ → f0π
+, B+ → f0K

+. Also in this case the background

parameters, with the exception of ARGUS endpoint are floated in the fit and do not

contribute to the systematic error. The total contribution is summarized in Table 8.18

Syst. contribution Δ N+
φπ+ Δ N−

φπ+ Δ N+
φK+ Δ N−

φK+ Δ N+
f0π+ Δ N−

f0π+ Δ N+
f0K+ Δ N−

f0K+

Sig. l2 0.360 0.350 0.550 1.177 0.506 0.508 1.153 1.323
Sig. | cos θH | 0.193 0.201 0.353 0.683 0.284 0.291 0.892 0.614

Sig. θc 0.389 0.413 1.011 0.958 0.570 0.580 1.434 1.426
f0(980) modeling 0.479 0.263 2.958 2.422 0.894 0.509 3.961 1.452

Tot. 0.693 1.264 3.225 2.988 1.216 0.999 4.461 2.513

Table 8.18: Summary of B+ → φh+ systematic uncertainties due to the PDF parameter-
ization.

Fit Bias

Only in the central value of the branching fraction, we include a systematic uncertainty

due to the fit bias. We decide to assign 1/2 of the deviation of the median from the

expected value, as determined by the relation shown in Fig. 8.29 for B0 → φπ0 and in

Fig. 8.32 for B+ → φπ+.

Summary of Systematic Uncertainties

In Table 8.19 we give the summary of the systematic uncertainties on the branching

fraction for B+ → φπ+ and for B0 → φπ0.
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Table 8.19: Summary of systematic uncertainties contributing to the total error for the
upper limit on the branching fraction. They are given in units of 10−8.

B+ → φπ+ B0 → φπ0

PDF Uncertainty +1.9
−2.8

+3.6
−4.2

PID Efficiency 0.1 0.1
Tracking Efficiency 0.1 0.2
π0 Efficiency - 0.1
L2/L0 Cut 0.1 0.3
BB̄ Pair Counting 0.1 0.2
Interference Effects 0.3 0.6

B(φ → K+K−), B(π0 → γγ) 0.1 0.1

Total +2.8
−3.6

+3.7
−4.3
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Chapter 9

Interpretation of the Results and
Constraints on New Physics
Parameters

CP violation in the Bd decays has been well established through the measurements of

time-dependent asymmetries in the B0 → [cc̄]K0 decays at the B-factories [89, 90]. The

world average of the “sine term” in the CP asymmetry of Eq. 1.55 is S[cc̄]K0 = sin 2β =

0.674 ± 0.026, in good agreement with the Standard Model (SM) prediction.

In the limit of one dominant decay amplitude, the CP violating asymmetries measured

in the time dependent decays of neutral B mesons to CP eigenstates depend only on the

sum of the phase of the B0 − B̄0 mixing amplitude and the phase of the decay amplitude.

The only two large phases in the CKM matrix belong to the elements Vub (γ) and Vtd (β).

In principle, one can determine β and γ from the available data on K and B decays.

However, given the large theoretical uncertainties in the input parameters (e.g. BK , fB)

the size of these phases remains uncertain [91, 92]. Based on these fact the Standard

Model predicts that the CP asymmetries in all Bd decays that do not involve direct

b → u (or b → d) transitions have to be the same.

In Sec. 1.4.1 we have described the decay amplitudes of B0 → φK0 and the one of

B to three kaons, and we have shown that the expected deviation of the time-dependent

CP asymmetry in the Standard Model, due to suppressed b → u tree amplitudes, are

negligible for B0 → φK0 and B0 → K0
S
K0

S
K0

S
, while can be larger in B0 → K+K−K0

(excluding φK0).

Then, a measurement of the time-dependent CP asymmetry in these decay modes

Sf �= sin 2β would be a signature of new physics.
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New physics could in principle contribute to both the B0-B0 mixing and to the decay

amplitudes. It is plausible that the new contributions to the mixing could be of the same

size as the Standard Model contribution since it is already a one-loop effect. This is why

most of the existing studies on the effects of new physics on CP violating B meson decays

have concentrated on effects in the B0-B0 mixing, and assume the decay amplitudes are

those in the Standard Model [93, 94, 95]. The distinguishing feature of new physics

in mixing is that its effect is universal, i.e. although it changes the magnitude of the

asymmetries it does not change the patterns predicted by the Standard Model. Thus, the

best way to search for these effects would be to compare the observed CP asymmetry in

a particular b → s decay mode with the asymmetry predicted in the Standard Model.

In contrast, the effects of new physics in decay amplitudes are manifestly non-universal,

i.e. they depend on the specific process and decay channel under consideration. Experi-

ments on different decay modes that would measure the same CP violating quantity in

the absence of new contributions to decay amplitudes, in this scenario measure different

CP violating quantities.

9.1 New Physics Signatures with Supersymmetry

Supersymmetry (SUSY) is an extension of the Standard Model that was introduced to

cancel out the quantum corrections from virtual particles coupled with the Higgs field

which make the Higgs mass running up to the Plank scale. This is achieved in SUSY

introducing a bosonic partner of the standard fermions and vice versa, with the condi-

tion that these new particles have the same properties under the Standard Model gauge

transformations.

In looking for new physics beyond the electroweak SM it is useful to regard the SM itself

as an effective low energy theory valid up to some energy scale Λ at which the new physics

sets in. One is then led to write all possible operators invariant under SU(3)⊗SU(2)⊗U(1)

using the fields of the SM. They can be organized according to their dependence on Λ. It

is well known that as long as one writes operators not exceeding dimension four there are

crucial conservations which automatically show up: baryon (B) and lepton (L) numbers

and the absence of tree-level flavour changing neutral currents (FCNC). However, as soon

as one proceeds beyond dimension four (i.e., one considers non-renormalizable operators

which are suppressed by powers of Λ), these conservations are no longer automatically
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guaranteed. Either one has to choose large values for Λ (for instance, the grand unification

or the Planck scale), or, if Λ is assumed to be not so far from the Fermi scale, additional

constraints have to be imposed to play on the safe side in relation to B, L and FCNC

violating processes.

Low energy Supersymmetry (SUSY) [97] enters this latter class of models with new

physics close enough to the Fermi scale. The problem of too violent B and L violations is

more elegantly solved by the imposition of an additional discrete symmetry, the R-parity.

We discuss experimental constraints on validity of this assumption based on some of the

measurements presented in this work in Sec. 9.3.

As for the FCNC issue, given that now we are in the presence of new particles, the

scalar partners of the fermions (sfermions) carrying flavour number, new constraints will

have to be imposed to suppress operators of dimension greater than four, leading to

potentially large FCNC rates. They amount to very severe limitations on the pattern of

the sfermion mass matrices: they must be either very close to the unit matrix in flavour

space (flavour universality) or almost proportional to the corresponding fermion mass

matrices (alignment).

The Minimal Supersymmetric Standard Model is the extension of the Standard Model

which only introduces the partners of the standard particles without additional interaction

or field.

9.1.1 Mass Insertion Approximation

A way to parameterize the FCNC and CP quantities in SUSY which is model-independent

is the so-called mass insertion approximation [98]. It concerns the most peculiar source

of FCNC SUSY contributions that do not arise from the mere supersymmetrization of

the FCNC in the SM. They originate from the FC couplings of gluinos and neutralinos

to fermions and sfermions [99]. One chooses a basis for the fermion and sfermion states

where all the couplings of these particles to neutral gauginos are flavour diagonal, while

the FC is exhibited by the non-diagonality of the sfermion propagators. Denoting by

Δ the off-diagonal terms in the sfermion mass matrices (i.e. the mass terms relating

sfermion of the same electric charge, but different flavour), the sfermion propagators can

be expanded as a series in terms of the dimensionless quantity δ = Δ/m̃2 where m̃ is an

average sfermion mass. As long as Δ is significantly smaller than m̃2, we can just take the

first term of this expansion and, then, the experimental information concerning FCNC
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and CP violating phenomena translates into upper bounds on these δ’s.

The above mass insertion method presents the major advantage that one does not

need the full diagonalization of the sfermion mass matrices to perform a test of the SUSY

model under consideration in the FCNC sector. It is enough to compute ratios of the off-

diagonal over the diagonal entries of the sfermion mass matrices and compare the results

with the general bounds on the δ’s that we provide here from all available experimental

information.

There exist four different Δ mass insertions connecting flavours i and j along a sfermion

propagator: (Δij)LL, (Δij)RR, (Δij)LR and (Δij)RL. The indices L and R refer to the

helicity of the fermion partners. The size of these Δ’s can be quite different. For instance,

in the MSSM case, only the LL mass insertion can change flavour, while all the other three

above mass insertions are flavour conserving, i.e. they have i = j. In this case to realize

a LR or RL flavour change one needs a double mass insertion with the flavour changed

only in a LL mass insertion and a subsequent flavour-conserving LR mass insertion. Even

worse is the case of a FC RR transition: in the MSSM this can be accomplished only

through a laborious set of three mass insertions, two flavour-conserving LR transitions

and an LL FC insertion. Generally the ΔLR quantity does not necessarily coincide with

ΔRL. For instance, in the MSSM and in several other cases, one flavour-conserving mass

insertion is proportional to the mass of the corresponding right-handed fermion. Hence ,

(Δij)LR and (Δij)RL are proportional to the mass of the i-th and j-th fermion, respectively.

The measurements of b → s transitions determine the allowed regions in the SUSY

parameter space providing constraints on the δ’s. The Standard Model and SUSY con-

tributions are evaluated making use of the method of effective Hamiltonian in ΔB = 1

processes.

9.2 Effective Hamiltonian for ΔB = 1 Transitions

To evaluate the Effective Hamiltonian for a given process one has to go through the

following steps:

1. calculate the amplitude between quark and gluon states of definite momenta in the

full theory;

2. choose a basis of local operators for the effective theory and calculate their matrix
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elements between the same states used in point 1;

3. determine the coefficients of the operators in the Effective Hamiltonian by matching

the full theory with the effective one.

The matching is given by the following relation:

〈f |S|i〉 = −i
∑

j

Cj〈f |Oj|i〉 , (9.1)

where Ci are the Wilson coefficients and Oi the operators of the Effective Hamiltonian:

Heff =
∑

i

CiOi (9.2)

In the case of ΔB = 1 processes it can be written as:

HΔB=1

eff = −GF√
2
VtbV

∗
ts

[
6∑

i=3

CiOi + CgOg

6∑
i=3

C̃iÕi + C̃gÕg

]
, (9.3)

where

O3 = s̄αγμLbαs̄βγμLsβ , (9.4)

O4 = s̄αγμLbβ s̄βγμLsα, (9.5)

O5 = s̄αγμLbαs̄βγμLsβ , (9.6)

O6 = s̄αγμLbβ s̄βγμRsα, (9.7)

Og =
gs

8π2
mbs̄ασμνR

λA
αβ

2
bβGA

μν . (9.8)

where L = 1 − γ5 and R = 1 + γ5. The terms with tilde are obtained from Ci,g and

Oi,g by exchanging L ↔ R. The Wilson coefficient Ci(g) includes both SM and SUSY

contributions. In this case, the effect of the operator Oγ = e
8π2 mbs̄ασμνRbαFμν and the

electroweak penguin operators, which give very small contributions, has been neglected.

The amplitude in the full theory is given by the calculation in the diagrams in Fig. 9.1,

for example in the QCD factorization approach [96]. The general form of the amplitude

can be written as:

A(φK) = A
SM

(φK) + A
g̃
(φK) + A

χ̃±
(φK), (9.9)

where A
SM

, A
g̃
, and A

χ̃±
refer to the SM, gluino, and chargino contributions, respec-

tively. Performing the matching with the effective Hamiltonian one obtains the Wilson
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Figure 9.1: The Standard Model contribution (a) and the gluino–down squark contribu-
tions (b)–(f) to the b → s transitions.

coefficients, which contain the (δij)AB.

The calculation has been done for the golden mode B0 → φK0 [100, 101]. In the

following, we consider only the gluino exchanges through ΔB = 1 penguin diagrams

which give the dominant contribution to the amplitude A
SUSY

(φK0).

9.2.1 Supersymmetric Contributions to B0 → φK0 Decay

From the matching of the full theory with the effective Hamiltonian, at the first order

in the mass insertion approximation, the gluino contributions to the Wilson coefficients

Ci,g at SUSY scale MS can be evaluated (full expression is given in [102]) in terms of the

parameters (δd
23)AB.

The absolute value of the mass insertions (δd
23)AB, is constrained by the experimental

results for:

1. The BR(B → Xsγ)

2. The CP asymmetry ACP (B → Xsγ)

3. The BR(B → Xs�
+�−)
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4. The recent measurement of the Bs − B̄s mass difference ΔMBs = 17.77 ± 0.10 ±
0.07 ps−1 [103]

With a Monte Carlo analysis, weighted random configurations of input parameters are

generated (see ref. [105] for details of this procedure) and computing for each configuration

the processes listed above. The constraints induce a clustering on various observables

and parameters, assuming that each unconstrained δd
23 fills uniformly a square (−1 . . . 1,

−1 . . . 1) in the complex plane. The ranges of CKM parameters have been taken from the

Unitarity Triangle fit [30], and hadronic parameter ranges are as given in refs. [104, 106,

107].

Concerning SUSY parameters, the masses are fixed to mq̃ = mg̃ = 350 GeV/c2 and

different possibilities for the mass insertions are considered.

In Fig. 9.2 the clustering of events in the Re(δd
23)AB–Im(δd

23)AB plane in the single

insertion case is shown [108].

In Figs. 9.3 and 9.4, we study the correlations between SφK and CφK , Im(δd
23)AB for

the various SUSY insertions considered in the present analysis.

In the case of LR and RL mass insertions small positive values of SφK , as the ones

obtained in our measurement, can be more easily obtained than the other cases.

The LR mass insertion contributes to bR → sLγ, much like the SM. The interference

with the Standard Model amplitude produces the “semi-hole” in Fig. 9.2, lower left. On

the contrary, the RL mass insertion contributes to bL → sRγ and thus it does not interfere.

Consequently, the B0 → φK0 CP asymmetry is as small as in the Standard Model and

the RL mass insertion is less constrained than the LR one by B → Xsγ, allowing for

small values (and also negative values) of SφK to be produced more easily.

As a conclusion, these results shown for the golden mode B0 → φK0, but represen-

tative in general of b → s decays, say that this sector of the flavour physics still offers

opportunities to disentangle effects genuinely due to New Physics. In the MSSM dis-

crepancy in the observed CP asymmetries in b → s transitions with the one measured in

B0 → [cc̄]K0 can be accounted even respecting the existing constraints in B physics, first

of all B(B → Xsγ). With an increased statistical significance of the discrepancy between

the b → s and sin 2β, these processes would become decisive in discriminating among

different Supersymmetric realizations.
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Figure 9.2: Allowed regions in the Re(δd
23)AB–Im(δd

23)AB space for mq̃ = mg̃ = 350
GeV and AB = (LL, RR, LR, RL). Constraints from BR(B → Xsγ), ACP (B → Xsγ),
BR(B → Xsl

+l−) and ΔMs have been used.
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Figure 9.3: Correlations between the sine (SφK) and cosine (CφK) coefficients of the time-
dependent CP asymmetry of B → φKs for mq̃ = mg̃ = 350 GeV and various SUSY
mass insertions (δd

23)AB with AB = (LL, RR, LR, RL). Constraints from BR(B → Xsγ),
ACP (B → Xsγ), BR(B → Xsl

+l−) and the lower bound on ΔMs have been used.
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Figure 9.4: Correlations between SφK and Im(δd
23)AB for mq̃ = mg̃ = 350 GeV and AB =

(LL, RR, LR, RL). Constraints from BR(B → Xsγ), ACP (B → Xsγ), BR(B → Xsl
+l−)

and the lower bound on ΔMs have been used.
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9.3 Bounds on R-Parity Violation with B → φπ De-

cays

In principle one can include in the supersymmetric Lagrangian general terms which are

gauge-invariant and renormalizable which violate the total lepton number (L) by one unit

or the barion number (B) by one unit. The existence of such terms is allowed in general

by the Supersymmetric theories, but it is disturbing, since it corresponds to B− and

L−violating processes that have not seen experimentally. The most stringent experimen-

tal constraint comes from the non-observation of proton decay, which would violate both

B and L by one unit. Feynman diagrams like the ones in Fig. 9.5 would lead to p+ → e+π0

(shown) or e+K0 or μ+π0 or μ+K0 or νπ+ or νK+ etc. As a rough estimate based on

Figure 9.5: Squarks would mediate
disastrously rapid proton decay if R-
parity were violated by both ΔB = 1
and ΔL = 1 interactions. This ex-
ample shows p → e+π0 mediated by
a strange (or bottom) squark.

u

u

d s̃∗R

p+
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}
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u

u∗

e+

λ′′∗
112 λ′

112

dimensional analysis, for example, the lifetime would be a tiny fraction of a second if the

couplings were of order unity and the squarks have masses of order 1 TeV. In contrast, the

decay time of the proton into lepton+meson final states is known experimentally to be in

excess of 1032 years. Many other processes also give strong constraints on the violation of

lepton and baryon numbers [109, 110]. Instead of postulating the conservation of B and

L numbers, in Supersymmetry usually a new symmetry is introduced, called R-parity or

equivalently matter parity [111]. Matter parity is a multiplicatively conserved quantum

number defined as

PM = (−1)3(B−L) (9.10)

for each particle of the theory. The R-parity assignment is very useful for phenomenology

because all of the Standard Model particles and the Higgs bosons have even R-parity

(PR = +1), while all of the squarks, sleptons, gauginos, and higgsinos have odd R-parity

(PR = −1). The conservation of R-parity has the consequence of reduce B and L violation

to tiny amount.

The measured limits on the decay rate of B → φπ decays (Chapt. 8) can be used to

put constraints on R-parity violating couplings λ′ and λ′′.
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In the Standard Model, the effective Hamiltonian for a b → dss̄ transition is:

Heff = −4GF√
2

VtbV
∗
td

10∑
i=3

CiOi . (9.11)

where the operators relevant here are given in [86]. The QCD factorization approach

allows to calculate the amplitude for B → φπ in Eq. 8.1 accounting also for possible

non-factorizable contributions. In this framework, the non-factorizable contributions to

B− → φπ− can be obtained by calculating the diagrams in Fig. 9.6. The computation

OjB− π−

φ

b

(a)

s̄ s

d

OjB− π−

φ

b

s̄ s

d

(b)

OjB− π−
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d

(f)

Figure 9.6: Non-factorizable diagrams for B− → φπ−.

of the amplitudes, including the non-factorizable terms, can be found in [87]. The ex-

pected branching fractions are B(B± → φπ±) = 2B(B0 → φπ0) = 2.0+0.3
−0.1 × 10−8. The

non-factorizable contributions dominate these decays and there is no isospin symmetry

breaking because annihilation contributions are absent.

The supersymmetric contributions which can violate R-parity are expressed by tri-

linear terms in the superpotential W . The superpotential is the analytic function of the

superfields of the theory1, which describe the model [97].

The amount of R-parity violation depends on the magnitude of the trilinear coupling

constants λ′
ijk and λ′′

ijk, where i, j, k are generation indices. Allowing these terms in the

1A superfield is a single object that contains as components all of the bosonic, fermionic and auxiliary
fields within the corresponding super-multiplet.
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effective Hamiltonian the amplitude of B− → φπ− is

A�R (B− → φπ−) = − 1

8m2
ν̃i

(λ′
i21λ

′∗
i23 + λ′∗

i12λ
′
i32) η−8/β0fφF B→π(m2

φ)M2
B

[
1

Nc

+
αs

4π

CF

Nc

(−Fφ − 12)

]

− 1

2m2
ũi

λ′′
i23λ

′′∗
i12η

−4/β0fφF
B→π(m2

φ)M2
B

(
2

3
− αs

4π

CF

Nc
Fφ

)
, (9.12)

where η =
αs(mf̃i

)

αs(mb)
and β0 = 11 − 2

3
nf , fB and fφ are the B and φ decay constant,

respectively, Nc = 3 (SU(3) colors) and F B→π(m2
φ) is the B the form factor (F B→π(0) =

0.28). Fφ is the term describing the long-distance QCD dynamics of the matrix elements

of quarks for the φ meson [87].

Assuming that only one sfermion contributes at a time and they have a mass of 100

GeV/c2, the limits on the R-parity violating trilinear coupling constants (in terms of

products of λ’s) are shown in Fig. 9.7.

Figure 9.7: The branching ratio of B− → φπ− as a function of the RPV couplings
|λ′′

i23λ
′′∗
i12|(upper curve), |λ′

i23λ
′
i21| and |λ′

i32λ
′
i12| (lower curve) respectively. The thickness

of curves represent theoretical uncertainties. The horizontal lines are the upper limits and
the SM prediction as labeled respectively. The B− → φπ− upper limit we set on BABAR’s
210 fb−1 dataset is smaller than the one displayed: B(B− → φπ−) < 2.4 × 10−7 (Table
8.16).
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Conclusions

In this work we presented measurements of CP violation and decay rates of B decays

in final states not involving a charm quark in the final state. In particular, the time-

dependent CP asymmetries of decays which proceed through b → s elementary transition

is a particularly sensitive probe of physics beyond the Standard Model. In fact, even if

the precise measurements of CP conserving and CP violating processes show the success

of the CKM picture of the flavour physics, the sector of b → s transitions is still not

strongly constrained and leaves room for new physics contributions.

In particular, we considered the decays which have the cleanest theoretical prediction

within the Standard Model: B0 → φK0 and B0 → K0
S
K0

S
K0

S
(βSM

eff = 0.379). We exam-

ined the former with a completely new approach with respect to the past: the study of

CP violation in the whole K+K−K0 phase space through a time-dependent Dalitz plot

analysis. With this approach, we simultaneously measured the CP -violating asymmetries

of the φK0, f0(980)K0 resonant and K+K−K0 non-resonant contributions, avoiding one

of the largest uncertainties which affected the previous measurements of B0 → φK0. We

find βeff (B0 → φK0) = 0.06 ± 0.16 ± 0.05, which is lower than the Standard Model

expectation, but it is consistent with it within two standard deviations.

Moreover, only a recently developed experimental technique, which allows the de-

termination of the position of B decay vertex when no charged tracks are originating

from it, has made possible the measurement of the time-dependent CP asymmetry in

B0 → K0
S
K0

S
K0

S
decays.

The mixing-induced CP parameter S in the Standard Model should be equal to sin 2β

parameter, which is measured with high precision in B → [cc̄]K0 decays by the B-factories.

This statement is true, in the Standard Model, with excellent approximation for the decays

studied in this work. The summary of the measurements in the b → s sector is shown in

Fig. 9.8

A naive average of the b → s penguins, which does not account for the correlations
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sin(2βeff) ≡ sin(2φe
1
ff)
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Figure 9.8: Summary of results, updated at the time of ICHEP 06 conference, of −ηCP ×
S ≈ sin 2βeff from b → s penguin B decays.

existing among φK0, f0(980)K0 and K+K−K0, and that includes also modes with larger

theoretical uncertainties, shows that −ηCP ×S is lower than sin 2β. This is not an evidence

of physics beyond the Standard Model, but the systematic deviation from the expected

value is an hint that there is room for it.

More compelling evidence for new physics could be obtained measuring significant

deviation in each decay channel from Standard Model prediction. Currently all the mea-

surement are statistically limited and therefore an increase in accumulated statistics will

shed more light into this quest for New Physics.



Bibliography

[1] Wu, C.S.,Ambler, E., Haywood, R. W., Hoppes, D. D., and Hudson, R. P. (1957).

Phys. Rev. 105, 1413.

[2] Goldhaber, M., Grodzins, L., and Sunyar, A. W. (1958). Phys. Rev. 109, 1015.

[3] J.H. Christenson, J.W. Cronin, V.L. Fitch, and R. Turlay, Phys. Rev. Lett. 13 (1964).

[4] Sakharov, A. D. (197). JETP Letters 5, 24.

[5] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog.

Th. Phys. 49, 652 (1973).

[6] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 87, 091801 (2001).

[7] BELLE Collaboration, K. Abe et al., Phys. Rev. Lett. 87, 091802 (2001).

[8] S.L. Glashow, Nucl. Phys. 22, 579 (1961);

S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967);

A. Salam, in Procceedings of the 8th Nobel Symposium, ed. N. Swartholm, Almquist

and Wiksells, Stockholm (1968).

[9] C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985);

[10] L. L. Chau and W. Y. Keung, Phys. Rev. Lett. 53, 1802 (1984).

[11] A. J. Buras and R. Fleischer, (1997) hep-ph/9704376, to appear in Heavy Flavours

II, World Scientific, eds. A. J. Buras and M. Linder.

[12] L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).

[13] A. J. Buras, M. E. Lautenbacher and G. Ostermaier, Phys. Rev. D 50, 3433 (1994).

[14] C. O. Dib et al., Phys. Rev. D 41, 1522 (1990).



336 BIBLIOGRAPHY

[15] V. F. Weisskopf, E. P. Wigner, Zeitschrift für Physik 63, 54. V. F. Weisskopf, E. P.

Wigner, Zeitschrift für Physik 65, 18.

[16] A. B. Carter and A. I. Sanda, Phys. Rev. D 45 (1980)

[17] Y. Grossman, G. Isidori and M.P. Worah, Phys. Rev. D58, (1998) 057504.

[18] B. Aubert et al., hep-ex/020770

[19] K. Abe et al., hep-ex/0207098

[20] R. Fleischer and T. Mannel, Phys. Lett. B511, (2001) 240; G. Hiller, Phys. Rev.

D66, (2002) 071502; A. Datta, Phys. Rev. D66, (2002) 071702; M. Ciuchini and

L. Silvestrini, Phys. Rev. Lett. 89, (2002) 231802; M. Raidal, Phys. Rev. Lett. 89,

(2002) 231803;. Y. Grossman, Z. Ligeti, Y. Nir and H. Quinn, hep-ph/0303171; S.

Khalil and E. Kou, hep-ph/0307024

[21] S. Eidelman et al. [Particle Data Group], Phys. Lett. B 592, 1 (2004).

[22] [Heavy Flavor Averaging Group (HFAG)], arXiv:hep-ex/0603003.

[23] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 69, 071101 (2004).

[24] M Neubert, arXiv:hep-ph/9801269

[25] M. Beneke, G. Buchalla, M. Neubert, and C.T. Sachrajda, Phys. Rev. Lett. 83, 1914

(1999); Nucl. Phys. B 591, 313 (2000); ibid. B 606, 245 (2001).

[26] H. Y. Cheng, C. K. Chua and A. Soni, Phys. Rev. D 72, 094003 (2005) [arXiv:hep-

ph/0506268].

[27] C. L. Y. Lee, M. Lu, and M. B. Wise, Phys. Rev. D 46, 5040 (1992).

[28] H. Y. Cheng and K. C. Yang, Phys. Rev. D 66, 054015 (2002).

[29] V. V. Anisovich, V. A. Nikonov and A. V. Sarantsev, Phys. Atom. Nucl. 65, 1545

(2002) [Yad. Fiz. 65, 1583 (2002)] [arXiv:hep-ph/0102338].

[30] UTfit Collaboration, M. Bona et al., [hep-ph/0501199].

CKMfitter Group, J. Charles et al., Eur. Phys. J. C 41, 1 (2005)



BIBLIOGRAPHY 337

[31] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 93, 131805 (2004)

[arXiv:hep-ex/0403001].

[32] ARGUS Collaboration, Z. Phys. C48, 543 (1990)

[33] R. E. Kalman, “Transactions of the ASME-Journal of Basic Engineering”, Vol. 82,

Series D, 35-45, 1960.

P. Billoir, Nucl. Instr. and Meth. A 225 (1984) 225.

W. D. Hulsbergen, “Decay Chain Fitting with a Kalman Filter”, Nucl. Instrum.

Meth. A 552, 566-575 (2005) [arXiv:physics/0503191].

[34] Dalitz R.H., Phil. Mag. 44, 1068 (1953).

[35] A. E. Snyder and H. R. Quinn, Phys. Rev. D 48, 2139 (1993).

[36] J. Charles, A. Le Yaouanc, L. Oliver, O. Pene and J. C. Raynal, Phys. Lett. B 425,

375 (1998) [Erratum-ibid. B 433, 441 (1998)] [arXiv:hep-ph/9801363].

[37] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 94, 161803 (2005)

[arXiv:hep-ex/0408127].

[38] K. Abe et al. [Belle Collaboration], [arXiv:hep-ex/0507037].

[39] E.P. Wigner, Phys. Rew. 70 (1946) 15.

[40] E.P. Wigner and L.Eisenbud, Phys. Rew. 72 (1947) 29.

[41] R.H. Dalitz and S. Tuan, Ann. Phys. 10 1960 307.

[42] W.Heisenberg, Z.Phy. 120 (1943) 513

[43] K.L. Au, D. Morgan, M.R. Penningtom, Phys. Rew. D35 (1987) 1633

[44] JP Cummings, DP Weygand - Brookhaven Report BNL-64637, unpublished (1997)

- phy.bnl.gov

[45] J. Blatt and V.E. Weisskopf, Theoretical Nuclear Physics, Willey (N.Y.) (1952),p.361

[46] C. Zemach, Phys. Rev. 133, B1201 (1964).

[47] F.v. Hippel and C. Quigg, Phys. Rev 5 (1972) 624



338 BIBLIOGRAPHY
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