APPENDIX B

SUMMARY OF SOIL STUDIES TO DATE

In the summer of 1973, when engineering studies for a large, collidingbeam storage ring started in earnest, soil studies were begun to determine the nature of earth materials where tunneling might be undertaken. The initial ring concept, a 2100-m oval, was investigated by drilling seventeen test holes with a truck-mounted 15-cm auger drill rig. These holes were roughly logged to determine the general nature of the site's materials, but no laboratory testing was undertaken to determine engineering characteristics. The drilling indicated a heterogeneous, unsystematic arrangement of gravels, sand, clay, claystone and shale in the upper levels, with sandstone occurring at depths 6 to 20 m below the surface.

In an effort to determine systematic arrangement of the site's sedimentary deposits, the 1973 drilling program was followed by seismic refraction geophysical surveys. ⁴⁰ Such surveys, by measuring velocities of seismic waves at varying depths, can indicate densities and competence of subterranean formations and can provide some indication of the speed of tunnel advances. The survey indicated that upper levels have relatively low compressional wave velocities between 360 and 540 m per second. These are in desiccated adobe and sandy clay. Underneath these surface materials, wave velocities varied from 700 to 1000 m per second in fine-grained sandstone, shale and clay with gravel. These velocities, comparable to earlier refraction studies of SLAC materials, indicate materials having bearing values of at least 20,000 kilograms per sq. m. Structures below these materials showed wave velocities in excess of 1500 m per second. Thus, the refraction surveys, as might be expected, indicated increasing competence of materials with depth.

- 240 -

In 1974, five more deep holes were drilled in order to determine the nature of materials at key points where the ring (by now conceived as hexagonally shaped) was anticipated to be located. No unusual differences from those of the earlier samplings were disclosed by these borings.

The geologic composition of the SLAC site consists of materials of three geologic ages: Eocene, Miocene and Pliocene-Pleistocene. SLAC's original construction had disclosed that Eocene formations could be troublesome, sometimes being composed of expansive clays, shales and siltstones. Miocene formations, although younger than the Eocene, are more dependable, being composed generally of fine-grained, loosely-consolidated sandstones having excellent engineering characteristics. Little contact with Pliocene-Pleistocene formations occurred in the original construction. $^{41, 42, 43}$

Subdivision developments immediately north of the PEP site in Menlo Park have experienced serious construction problems caused by highly-expansive Eocene clays. In that area, such clays are generally overlain by adobe soils. Areas of Regions 12, 1 and 2 of PEP's ring (Fig. 1 of the design report) are likewise overlain with expansive adobes. In that same PEP area, a 1967 geological report⁴³ postulated a Pliocene-Pleistocene formation which could create engineering problems for construction. Because of this, a detailed geologic, soils-mechanics study of Regions 12, 1 and 2 was undertaken in the summer of 1975.⁴⁴ Trenching, drilling and materials testing was done in order to ascertain accurately the geologic structure and engineering characteristics of soils and rock. It was found that the Eocene formations so troublesome to the north do not extend into PEP's construction area, and that expansion characteristics of the claystones found should not create serious difficulties. That same summer, an interim report of the general geological structure of the entire PEP site was made.⁴⁵

- 241 -

A test-drilling program continues, with extensive materials testing along the perimeter of the PEP ring. This program should provide the information necessary to determine methods and design of tunnels as well as basic design of the interaction area research halls.

APPENDIX C

COOPERATIVE BASIC AGREEMENT

BETWEEN

THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY

AND

THE REGENTS OF THE UNIVERSITY OF CALIFORNIA

This Cooperative Basic Agreement is entered into effective this <u>as</u>⁴⁴ day of February, 1974, by and between the BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY (hereinafter called "Stanford") and THE REGENTS OF THE UNIVERSITY OF CALIFORNIA (hereinafter called "UC").

RECITALS

I. INTRODUCTION

- A. The Ernest Orlando Lawrence Berkeley Laboratory (LBL) is a National Laboratory operated by UC under contract W 7405-ENG-49 with the U.S. Atomic Energy Commission (AEC). The Director of LBL reports to the President of UC. The Stanford Linear Accelerator Center (SLAC) is a National Facility for High Energy Physics Research operated by Stanford under contract AT(04-3)-515 with the AEC. The Director of SLAC reports to the President of Stanford.
- B. For several years LBL and SLAC have been collaborating in the study of a novel high-energy particle accelerator system consisting of a ring containing counter-rotating persistent beams of electrons and positrons, and a second intersecting ring containing a persistent rotating beam of protons. Collision between these beams will permit studies of elementary particles at higher energy, and therefore in finer detail than ever before.

- 243 -

Cooperative Basic Agreement Stanford/UC

- C. The concept of the system, called PEP for "proton-electron-positron," has been developed to the point where design and construction of an accelerator can take place. It appears desirable to accomplish the realization of this concept in stages. The first stage will consist of a single ring of approximately 300 meter radius able to contain counter-rotating beams of electrons and positrons with energies up to 15 GeV at full interaction rate. These particles will be injected into the ring by the existing linear accelerator at SLAC, Provision will be made in the construction of PEP to maintain full compatibility with the later addition of a superconducting proton ring for protons of energies up to about 200 GeV and/or a second electron ring to provide for collision of electrons with electrons and positrons with positrons. Provision will also be made for the future installation of experimental facilities for the full PEP Project. Meanwhile, the single ring will comprise a unique tool for conducting experiments involving electron-positron collisions, and by itself will be the basis for a front line experimental program for many years. For ease of reference, the term "PEP Project" as used hereafter in this Agreement means the design, construction and operation of the PEP accelerator system as finally funded, built, and operated.
- D. In consideration of the foregoing facts, and being keenly aware of the potentialities of the PEP Project for advancing mankind's knowledge of the constitution and nature of matter, and in appreciation that the task is of such challenge as to warrant the marshalling of the combined

- 244 -

Cooperative Basic Agreement Stanford/UC

resources and talents of Stanford and UC, with a consequent sense of the historical importance of this act the parties hereto enter into this Cooperative Basic Agreement.

AGREEMENTS

II. CONSTRUCTION PROPOSAL

- A. It is agreed that LBL and SLAC will collaborate in the preparation of a construction proposal to be submitted to the Atomic Energy Commission for commencement of construction in Federal fiscal year 1976 of a high energy electron-positron ring to be constructed at SLAC and to be operated jointly by SLAC and LBL as a national physics facility as described in Articles III. and IV. of this agreement. Provision will be made in the construction of PEP to maintain full compatibility with the later addition of a superconducting proton ring for protons of energies up to about 200 GeV and/or a second electron ring to provide for collision of electrons with electrons and positrons with positrons. Provision will also be made for the future installation of experimental facilities for the full PEF Project.
- B. The technical and scientific justification for this construction proposal will be based specifically on the electron-positron colliding beam device. The parties agree that both scientific interest and current technical knowledge are such as to justify the construction of an electron-positron storage ring in its own right; they also emphasize that the scientific goals of the full PEP Project provide good reasons to include in the design those features essential to permit realization` of the full PEP Project in the future:

- 245 -

Cooperative Basic Agreement Stanford/UC

C. As contained in the "5-year Budget Assumption" for 1976-1980 which was submitted by LBL and SLAC on November 13, 1973 to the AEC, the construction cost of the first stage of the PEP Project is estimated to be between \$50 and \$60 million.

III. MANAGEMENT PLAN

- A. It is agreed that the goal of the project management is a true collaboration between LBL and SLAC. the PEP Project will have a senior scientific and technical staff drawn in a balanced way from the two Laboratories. These persons, while working on the PEP Project, will remain employees of their respective Laboratories. In particular the Project Director and Deputy Director will be appointed by the Directors of LBL and SLAC so that one comes from each Laboratory. The Project Director will report to the Directors of LBL and SLAC.
- B. The two Laboratory Directors will be advised in relation to the project by a single PEP Program Committee (PPC) having a majority of non-SLAC, non-LBL members. This Committee will be appointed jointly by the Directors of the Laboratories. This Committee shall advise the Directors on all major phases of the PEP Project such as experimental facilities construction, and storage ring modification projects. Such projects shall go forward only after authorization by both Laboratory Directors, irrespective of the source of funding. The Committee shall meet as often as required but not less frequently than twice each year.

- 246 -

Cooperative Basic Agreement Stanford/UC

- C. It is intended that the PEP Project will be operated as a National Physics Facility. Steps are in progress to involve the national high-energy-physics community in planning for the physics utilization as well as in setting up appropriate advisory mechanisms. In particular, it is agreed that an Experimental Program Committee (EPC) will be constituted to review experimental proposals under procedures designed to assure equitable access to the entire high-energy physics community. Jetailed scheduling decisions and coordination of PEP Project experiments with SLAC operations shall be made under SLAC procedures.
- D. The Presidents of Stanford and UC will be advised of the status of the PEP Project through, respectively, the Directors of SLAC and LBL. In addition, the Scientific Policy Committee (SPC) of SLAC, advisory to the President of Stanford University, and the Scientific Educational Advisory Committee (SEAC), advisory to the President of the University of California, will schedule joint meetings when deemed advisable if it is believed that further advice on scientific policy governing the conduct of the PEP Project should be made available to the Presidents of the collaborating universities and, through them, as appropriate, to the Atomic Energy Commission.
- E. Stanford and UC may enter into modifications of this agreement or into agreements implementing this agreement as may be necessary to carry out the PEP Project.

- 247 -

ooperative Basic Agreement Stanford/UC

IV. MANPOWER AND FISCAL ARRANGEMENTS

- A. Preconstruction research and development work is now under way at both Laboratories, supported by the operating funds of each institution under the financial plans of their contracts with AEC.
- B. The construction proposal described in Article II. A. will set forth the scope and estimated costs of major elements and components of the design and construction phase of the first stage of the PEP Project.
- C. It is agreed that Stanford and UC shall seek to have the construction of the first stage of the PEP Project performed by Stanford under a contract between Stanford and the Atomic Energy Commission. Requests to the Atomic Energy Commission for construction directives to proceed with stages of the construction of the PEP Project shall be approved by both Laboratory Directors. It is agreed that the health and strength of the technical high-energy support efforts as well as of the research programs of the two Laboratories must be maintained, and this goal will be used as a guide in determining how the personnel and facilities of each Laboratory are to support the design, preparation of specifications, and construction of the PEP Project.
- D. After completion of construction to the satisfaction of both Laboratory Directors, SLAC and LBL will participate in the operation of the PEP Facility as follows:

- 248 -

Cooperative Basic Agreement Stanford/UC

- SLAC will be responsible under the terms of Article III. for managing and coordinating accelerator operations. Funding support for accelerator operations will be through the SLAC operating contract with AEC.
- 2. The operation of each experimental facility built with SLAC and/or LBL funds shall be the responsibility of SLAC or LBL and shall be supported with their operating funds in the manner most advantageous to the conduct of the national high-energy physics program.
- 3. During the operational phase of PEP, accelerator research and development and facilities research and development pertaining to PEP, as well as preconstruction work for the full PEP, will be supported by the two Laboratories, using their operation funds.
- Experimental facilities construction and PEP storage ring modification projects may be supported separately or jointly in accordance with funding provided to LBL and SLAC.
- 5. The Laboratories will participate in the physics research program of the PEP Project using operating funds from their separate contracts in a manner similar to that of other laboratories or universities performing research at the PEP National Physics Facility.

- 249 -

Cooperative Basic Agreement Stanford/UC

V. SETTLEMENT OF DISAGREEMENTS

Should the two Laboratory Directors be unable to agree on a substantive issue relating to this Agreement, it shall be referred to the Presidents of Stanford and UC for resolution.

VI. TERM AND TERMINATION

This Agreement shall continue in force from year to year from date of execution; provided, however:

- A. Should Federal or other funding not be obligated for the construction of the PEP Project by June 30, 1980, this Agreement shall terminate.
- B. This Agreement shall continue so long as Federal or other funding is provided for the operation of SLAC and LBL and for the construction and operation of the PEP Project.

IN WITNESS WHEREOF, the parties hereto have executed this Agreement as of the date first above written.

THE REGENTS OF THE UNIVERSITY OF CALIFORNIA

By:

Charles J. Hitch President, University of California

By: trucin Marjorie J. Hoolman

Secretáry

By: Dean A. Watkins

Chairman

THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY

Richard W. Lyman V President, Stanford University

APPROVED AS TO FORM.

ALENIA R. HILUS 2. 2. 2. 74 ASSISTANT CULTULE OF THE REGENTS OF THE UNIVERSITY OF CALIFORNIA

- 250 -

APPENDIX D

PEP Reports

PEP Note #	Title	Author(s)
1	A High-Energy Proton-Electron-Positron Colliding Beam System	C. Pellegrini, J. Rees, B. Richter, M. Schwartz, D. Möhl and A. Sessler
2	A Model for a High Energy Proton- Electron-Positron Colliding Beam System: SPEAR plus a Proton Ring	D. Möhl and A. Sessler
3	Inelastic Electron-Proton Scattering with SPEAR plus a Proton Ring	M. L. Stevenson
4	(PEP Note #4 was a piece of the Isabelle report)	
5	Feasibility Study for a 15-GeV Electron-Positron Storage Ring	S. Berman, S. Drell, J. Rees, B. Richter
6	Electromagnetic Backgrounds and Photon Tagging	M. Davier and A. Odian
7	How Much Free Space Can We Provide for Experimental Apparatus?	P. Morton and J. Rees
8	On the Use of Isabelle in a PEP System and Other Related Topics	D. Möhl and A. Sessler
9	Proposed NAL Photoproduction Experiments and Some Comparisons with PEP Capabilities	S. M. Flatté
10	A Question of Duty Cycle	S. M. Flatté
11	Angular Distributions for Hadrons Produced in PEP Electroproduction Experiments	F. J. Gilman
12	PEP Kinematics - Deep Inelastic Scattering Two Exclusive Reactions as Examples	G. Goldhaber
13	Brookhaven HEDG Meeting of December 10, 1971	J. Rees
14	Check on the Equivalent Radiator for PEP	A. Odian
15	Radiative Processes in Electron- Proton Collisions at PEP	S. J. Brodsky

- 251 -

PEP Note #	Title	Author(s)
16	The Kinematics and Possible Dynamics of Inelastic Lepton Scattering in PEP (15 GeV electrons on 70 GeV protons)	M. L. Stevenson
17	PEP Kinematics Additional Remarks on the Reaction of the Type $ep \rightarrow e' \rho N$	G. Goldhaber
18	PEP Parameters	D. Möhl
19	Limitation of the Transition Energy in Large e-p Colliding Beam Facilities	H. Wiedemann
20	On the Calculation of Luminosity for Electron-Proton Colliding Beam	L. Smith
21	High Voltage Rf Systems for the PEP Rings	M. Allen and J. Rees
22	The Self-Destructive Behavior of Stored Electron Beams: The Disease Patterns, Symptoms and Cures	A. Sessler
23	PEP Model One A Machine Design Example	A. Garren
24	Conceptual Design of a Hybrid Detector for Electron Physics at Isabelle and PEP: Solenoid + Quantameter + Hadrometer (Calorimeter)	M. L. Stevenson
25	Further Consideration of the Rf System for PEP	M. A. Allen
26	Multiple Coulomb Scattering and Multiple Gas Bremsstrahlung at SPEAR	J. E. Augustin
27	A Correction to Formulas Computing the Touschek Lifetime in Storage Rings	H. Wiedemann
28	Strongly Turbulent Collective Motion and the Anomalous Size of Stored Particle Beams	A. Sessler
29	Variable Proton Momentum at PEP	R. O. Bangerter
30	Noise in Proton Accelerators	E. Hartwig, V. K. Neil, R. K. Cooper
31	PEP Lattice Design	R. Bangerter, A. Garren P. Morton and J. Rees

- 252 -

PEP Note #	Title	Author(s)
32	Use of the Electron Ring for Protons in the PEP System	A. Garren and T. Elioff
33	Proton-Electron-Positron Design Study	The LBL/SLAC Storage Ring Study Group
34	PEP Model Five: An Update of PEP Parameters	A. Garren
35		
36	Notes on PEP "Bull Session" of March ' 1-2, 1973	
37	Beam Loading in High-Energy Storage Rings	P. B. Wilson
38	PEP Model Six	A. Garren
39	Scaling of FODO-CELL Parameters	H. Wiedemann
40	Closed Orbit Beam-Beam Effect for Crossing Beams	M. Month and A. G. Ruggiero
41	Space-Charge Effects at Transition Energy: An Attempt to Scale from the CPS to PEP-6 and Other Machines	D. Möhl
42	The Excitation of Non-linear Resonances by a Displaced Elliptical Beam	E. Keil
43	Bunch Lengthening and Widening Effects Due to the Combination of Rf Noise and the Presence of Inductive Wall Elements	G. H. Rees
44	The Beam-Beam Limit in SPEAR as a Single Resonance Effect	A. G. Ruggiero
45	Bunch Lengthening	F. J. Sacherer
46	Proton Beam Enlargement by Gas Scattering	H. Wiedemann
47	Synchrotron Radiation Integrals for PEP-6	R. H. Helm
48	Enlargement of the Electron Beam Cross- Section in a Storage Ring Due to an Oscillating Synchrotron Radiation Damping Time Constant	H. Wiedemann

PEP	Note #	Title	Author(s)
	49	Transverse Bunch-Bunch Instability in PEP (Resistive Wall)	A. G. Ruggiero
	50		
	51	Aspects of PEP as Compared to EPIC	G. H. Rees
	52	Calculation of Resonance Effects Due to a Localized Gaussian Charge Distribution	A. G. Ruggiero and L. Smith
	53	Equilibrium Energy Distribution in a Non-linear Potential Well in the Presence of Quantum Fluctuations	H. G. Hereward
	54	The Head-Tail Effect in PEP	A. G. Ruggiero
	55	Interaction of a Coasting Beam and a Bunched Beam with Frequency Slip	M. Month and A. G. Ruggiero
	56	Some Possible Causes of Bunch Shape Distortion in SPEAR	H. G. Hereward
	57	Possibility of Observing Turbulence in SPEAR	H. G. Hereward
	58	e-p Luminosity for Different Energies in PEP	H. Wiedemann
	59	Diffusion-like Blow-up in Asynchronous Bunched Beam Collisions	E. Keil
	60	A Negative Momentum-Compaction Lattice	R. H. Helm
	61	Magnet Insertion Code (MAGIC)	W. W. Lee, L. C. Teng, M. J. Lee
	62	PEP with Crossing Angle	R. Chasman, A. Garren, and M. Month
	63	Longitudinal Beam-Beam Effect in Head-on Collisions	J. E. Augustin
	64	Behaviour of a Stochastic Non-linear System Excited by an External Harmonic Force	J. R. LeDuff
	65	Diffusion on a Single Non-linear Resonance in the Case of e-p Collisions	J. R. LeDuff

- 254 -

PEP	Note	<i>#</i>	Title		Author(s)
	66		Storage Ring Experiments	Т. Ј. Н.	Elioff, H. Hereward, M. Paterson, Wiedemann
	67		Influence of the Touschek Effect on Life-time Measurements in SPEAR	H.	G. Hereward
	68		The Use of Rf-knockout to Measure Synchrotron Oscillation Frequencies and Energy Spread	D.	Möhl, P. L. Morton
	69		Preliminary Design of a 15-GeV Electron-Positron Variable-Tune Storage Ring	J.	Rees, B. Richter
	70		Superconducting Dipoles and Quadrupoles for the PEP Accelerating-Storage Ring	Μ.	A. Green
	71		Properties of Bunch Lengthening Effect Observed on Existing e ⁺ -e ⁻ Storage Rings	J.	LeDuff
	72		Incoherent Beam-Beam Effect: A Computer Simulation	Α.	Renieri
	73		*		
	74				
	75		Comments on Obtaining Longitudinally Polarized Beams in e ⁺ -e ⁻ Storage Rings	R.	F. Schwitters
	76		Neutron Shielding for PEP	J. R.	B. McCaslin and H. Thomas
	77		Detection of Proton Beam Jet in 15 x 200 GeV PEP	Α.	Garren,,J. Kadyk
	78		Double Thin-lens Approximation for Preliminary PEPSI8 Lattice Design	R.	Helm and M. J. Lee
	79		PEP Parameters	в.	Richter
	80		Typical PEP Condigurations and the Resulting Beam-Stav-Clear Requirements	R.	Helm, M. Lee, Lisin P. Morton

PEP Not	te #	Title	Author(s)
81		Transverse Diffusion of Proton Beams Due to Noise	P. Channell
82		Proton Losses from PEP	R. H. Thomas
83		Muon Shielding for PEP	T. M. Jenkins, R. H. Thomas
84		PEP Inflection	G. E. Fischer
85		A Few Thoughts Regarding Beam Cavity Mode Excitation in PEP	G. Loew <u>et al</u> .
86		Proton-Electron-Positron: PEP	Lloyd Smith
87		A Method for Producing Long Beam Polarization at PEP	R. Schwitters, B. Richter
88		Synchrotron Radiation Absorbing Surfaces	J. Jurow and N. Dean
89		Higher-Order Modes in SPEAR II Cavities	M. Allen
90		Energy Loss to Parasitic Modes of the Accelerating Cavities	M. Sands
91		Concerning the Density Distribution and Associated Fields	J. Laslett
92		Parasitic Cavity Losses in SPEAR-2	M. Sands
93		Examples of Weak-Beam/Strong-Beam Computation Formed by Use of the Program "WEAK 8" with Graphic Output	J. Laslett
94		An Example of the Use of Program "WEAK 9"	J. Laslett
95		A Bench Measurement of the Energy Loss of a Stored Beam to a Cavity	M. Sands and J. Rees
96		The PEP Electron-Positron Ring PEP Stage I	J. Rees
97		Rf Systems for High-Energy e ⁻ e ⁺ Storage Rings	M. A. Allen and P. B. Wilson
98		Preliminary Design Considerations for the Stage I PEP Lattice	R. H. Helm and M. J. Lee
99		Beam Enlargement by Mismatching the Energy-Dispersion Function	R. H. Helm, M. J. Lee and J. M. Paterson

PEP	Note	#	Title	Author(s)
	100		Beam Loading in High-Energy Storage Rings	P. B. Wilson
	101		Stored Current Capability of the PEP Rf System	P. B. Wilson
	102		Comparison of Two Configurations for Intersection Regions	W. A. Wenzel
	103		Measurement of Higher-Order Mode Losses in SPEAR II by Shift in Synchrotron Phase and Increase in Net Cavity Power	M. A. Allen, J. M. Paterson, P. B. Wilson
	104		Alternative Theories of the Non-Linear Negative Mass Instability	Paul J. Channell
	105		Physical Picture of the Electromagnetic Fields between Two Infinite Conducting Plates Produced by a Point Charge Moving at the Speed of Light	A. W. Chao, P. L. Morton
	106		Shielding Requirements for Radiation Produced by 15-GeV Stored Electrons	T. M. Jenkins, J. B. McCaslin, R. H. Thomas
	107		PEP Experimental Areas Winter 1975	W. A. Wenzel
	108		The PEP Electron-Positron Ring an Update	LBL-SLAC Joint Study Group
	109		The Radiation Dose to the Tunnel Lin- ings and the Production of Nitric Acid and Ozone from PEP Synchrotron Radiation	W. R. Nelson
	110		Higher Order Multipole Magnet Tolerances	A. W. Chao, P. L. Morton, M. J. Lee
	111		Control of Closed Orbit Deviation Due to Synchrotron Radiation	M. J. Lee, P. L. Morton, J. R. Rees and B. Richter
	112			K. Bane and P. Wilson
	113		The PEP Injection System	K. L. Brown, R. T. Avery J. M. Peterson
	114		Vacuum System for the Stanford-LBL Storage Ring (PEP)	D. Bostic, U. Cummings, N. Dean, D. Jeong, J. Jurow
	115		Beam Energy Loss to Parasitic Modes in SPEAR II	M. A. Allen, J. M. Paterson J. R. Rees, P. B. Wilson

PEP	Note	#	Title	Author(s)
	116		Background Estimates for PEP	F. Martin
	117		Implications of Shorter Cells in PEP	H. Wiedemann
	118		Parasitic Loss of a Gaussian Bunch in a Closed Cavity	A. W. Chao
	119		Differential Energy Loss for a Particle in a Square Pulse of Charge Traveling between Infinite Conducting Plates	A. W. Chao, P. L. Morton
	120		Design of an Electrode System for Beam Tranverse Excitation	JL. Pellegrin
	121		The Behavior of Betatron Oscillation in the Vicinity of Half Integral Structure Resonances	E. Keil
	122		Beam Induced Transit Time Signals at SPEAR	R. McConnell
	123		Stored Current in PEP at 125, 200 and 358 MHz	P. B. Wilson
	124		High Performance Magnet Power Supply Optimization	T. Jackson
	125		Control of Beam-Size and Polarization Time in PEP	J. M. Paterson, J. R. Rees, H. Wiedemann
	126		Bunch Lengthening and Bucket Distortion Due to Cavities	E. Keil
	127	×2 (PEP Initial Design Injection Transfer Line Coordinates	R. T. Avery
	128		PEP Ring Coordinates Configuration E	R. Avery, T. Chan
	129		On the Horizontal Shape of an Electron Bunch	A. Chao
	130		Stationary Solution of the Fokker-Planck Equation for Linearly Coupled Motion in an Electron Storage Ring	A.W. Chao, M.J. Lee
	131		Transient Particle Distribution for Linearly Coupled Motion in an Electron Storage Ring	A.W. Chao, M.J. Lee

PEP NOTE #	Title	Author(s)
132	Evaluation of the Field Quality of the Prototype PEP Cell Quadrupole Magnet	A.W. Chao, M.J. Lee, P.L. Morton
133	PEP Cooling Water Systems and Underground Piped Utilities Design Criteria Report	F. Hall, D. Robbins
134	Some Up-to-date Additions to MAGIC for PEP Deisgn Studies	M. Lee, A. King
135	Closed Orbit Distortions due to Survey and Alignment Errors in PEP I	Dick Sah
136	Particle Distribution and Beam Lifetime with Vacuum Chamber Walls	A. W. Chao
127	107/ Summer St. 1	
137	1974 Summer Study	
138	Introductory Remarks	K. Strauch
139	The PEP Electron-Positron Ring	J. Rees
140	Event Rates to be Expected at PEP	B. Richter
141	Report of the Study Group for the Measurement of the Total Cross Section for e ⁺ e ⁻ Hadrons	G. Abrams, G. Feldman, D. Hitlin, H. Lynch, D. Nygren, R. Schwitters, B. Shen
142	Non-magnetic Detector for Measuring $\sigma_{ m T}$ and Charged Multiplicities in e ⁺ e ⁻ T Annihilation	H. Lynch, R. Schwitters
143	Precise Measurement of the Total Cross Section	G. Feldman, D. Hitlin
144	The Time-projection Chamber A New 4π Detector for Charged Particles	D. Nygren
145	Contribution of the Two-photon Annihilation Process in the Measurement of $\sigma_{\rm T}$ at PEP	B. Shen
146	Detection of High-momentum Hadrons	G. Buschhorn, D. Coyne, J. Cronin, J. Klems, C. Morehouse, M. Strovink
147	Heavy Hadrons Group Report	G. Barbiellini, C. Buchanan B. Cork, J. Dakin, H. Lynch J. Marx, J. Perez-y-Jorba, P. Yamin

PEP NOTE #	Title	Author(s)
148	Large-solid-angle Detector for Charged and Neutral Particles Group Report	A. Barbaro-Galtieri, J. Kadyk, T. Mast, J. Nelson, A. Odian, D. Yount
149	The Detection of Low-energy Charged Particles with Particle Identification Up to 3.5 GeV/c	J. Perez-y-Jorba
150	Study of a Multi-hadron Facility for PEP Based on Toroidal Field Magnets	P. Spillantini
151	A Streamer Chamber Detector for PEP	G. Buschhorn, H. Meyer, A. Odian, D. Yount
152	Comments on the Simultaneous Measurement of Charged and Neutral Components of Multihadron Events	P. Yamin
153	Some Design Considerations for a Large Solid Angle Charged Plus Neutrals Detector for e ⁺ e ⁻ Storage Ring	T. Mast, J. Nelson
154	Report on Neutral Particle Detectors and Q.E.D Group Report	E. Bloom, F. Bulos, G. Buschhorn, J. Dakin, E. B. Hughes, T. Mast, J. Nelson, A. Odian, C. Prescott, S. Yellin, D. Yount
155	Properties of Some Photon Detectors	E. Bloom, F. Bulos, G. Buschhorn, D. Cheng, J. Dakin, E. B. Hughes, T. Mast, J. Nelson, A. Odian, C. Prescott, S. Yellin, D. Yount
156	Liquid Argon Gamma Ray Detector Variations of the Willis Chamber	A. Odian
157	Report of the Weak Interactions/EM Final States Group	D. Buchholtz, D. Cline, P. Limon, A. Litke, C. Prescott, L. Resvanis, L. Stevenson, K. Strauch, L. Sulak, P. Wanderer, W. Wenzel, S. Yellin
158	Tests of µ-e Universality for Weak Neutral Currents at PEP	D. Cline, L. Resvanis

PEP	NOTE #	Title	Author(s)
	159	A Compact Magnetic Detector for $\mu^+-\mu^-$ Asymmetry Measurements and Longitudinal Polarization Utilization at PEP	U. Camerini, D. Cline J. Learned, P. Wanderer, L. Resvanis
	160	A Suggested Detector	S. Yellin
	161	Study of the Reaction $e^+e^- \rightarrow \mu^+\mu^-$ with an Iron Solenoid Spectrometer	K. Strauch
	162	Solenoid Spectrometers for $e^+e^- \rightarrow \mu^+\mu^-$ and Other Final States	W. Wenzel
	163	Direct Measurement of Muon Polarization in $e^+e^- \rightarrow \mu^+\mu^-$	P. Limon, M. L. Stevenson W. Wenzel
	164	Strange Particle Experiments at PEP	D. Hitlin, J. Marx, P. Yamin
	165	Parity Violating Momentum Correlations as a Means of Observing Weak Interactions in e ⁺ e ⁻ → Hadrons	J. Klems
	166	Polarization Group Coordinators' Summary	D. Buchholz, G. Manning, F. Martin, C. Morehouse, C. Prescott, L. Resvanis, G. Shapiro, H. Steiner,
			R. Schwitters, K. Strauch W. Taner, P. Wanderer, W. Wenzel
	167	Control of Direction of Beam Polarization	R. Schwitters
	168	Note on Longitudinal Beam Polarization	W. Wenzel
	169	Resonance Method to Produce a Polarization Asymmetry in Electron-Positron Storage Rings	W. Toner
	170	Two Methods to Measure the e^{\pm} Polarization at PEP	U. Camarini, D. Cline, J. Learned, A. Mann, L. Resvanis, P. Wanderer
	171	A Pulsed Polarization Monitor for PEP	C. Prescott
	172	A First Look at a Polarimeter for EPIC or PEP	W. Toner
	173	An Alternate Way of Measuring Beam Polari- zation at an e+e- Colliding Beam Facility	D. Buchholz, G. Manning, C. Prescott
	174	New Particle Searches at PEP	D. Berley, F. Bulos, D. Cheng, B. Cork, P. Limon, A. Litke, U. Nauenberg, J. Rosen,

- 261 -

B. Shen, L. Sulak, J. Trefil, F. Winkelmann

PEP	NOTE	#	Title	Author(s)
	175		Colliding Y Beams: Two-photon Processes and Tagging	G. Barbiellini, G. Ringland B. Shen, W. Toner, W. Vernon
	176		Background Sources at PEP	H. Lynch, R. Schwitters, W. Toner
	177		Report of the Experimental Areas Group	D. Berley, D. Coyne, J. Cronin, G. Feldman,
				D. Hitlin, P. Innocenti, J. Kadyk, G. Manning,
				F. Martin, U. Nauenberg,
				B. Richter, R. Schwitters,
				M. Strovink, R. Taylor.
				P. Wanderer, W. Wenzel
	178		1975 PEP Summer Study	
	179		An Experimenter's View of PEP	J. M. Paterson
	180		Comparison of Jet and Phase Space Models at $E_{cm} = 30 \text{ GeV}$	G. Hanson, P. Oddone
	181		Report of the Polarization Group	W. Ford, K. Kondo,
				F. Martin, G. Manning,
				D. Miller, C. Prescott
	182		Measurement of Weak Interaction Contribu- tions to $e^+e^- \rightarrow \mu^+\mu^-$ Using Longitudinal Polarization of the e^+ and e^- Beams	G. Manning
	183		A Beam Pipe for Polarization Experiments	F. Martin
	184		A System for Obtaining Longitudinal Beam Polarization at PEP with Vertical Dipoles Located Outside of the Interaction Region	A. Garren, J. Kadyk
	185		Summary of the Weak Interactions Group	A. Benvenuti, W. Ford, D. Hitlin, K. Kondo,
				G. Manning, R. Morse,
				T. Rhoades, A. Sessoms,
				A. Zallo
	186		Iron Ball Mark II	W. T. Ford
	187		EM-Weak Interference in $e^+e^- \rightarrow \mu^+\mu^-$ Scattering	R. Morse

- 262 -

PEP NOTE #	Title	Author(s)
188	Weak-Electromagnetic Interference Effects in $e^+e^- \rightarrow \mu^+\mu^-$ Hadrons	D. Hitlin, A. Sessoms
189	A General Users Magnet Design	F. Lobkowicz, U. Becker, K. Berkelman, M. A. Green,
		E. Groves, K. Halbach,
		A. Sessoms, M. Strovink
190	Use of Discrete Coils in Axial Field Spectrometers	J.D. Taylor, W.A. Wenzel
191	The Study of Neutral Particles	W. Bartel, F. Bulos,
		A. Eisner, G. Hanson,
		D. Hitlin, U. Koetz.
		R. Kotthaus, D. Luke,
		M. Marshak, T. Mast.
		J. Matthews, C. Peck.
		K. Strauch, D. Yount
192	The Crystal Ball at PEP	' W. Bartel, F. Bulos,
		D. Luke, C. Peck,
		K. Strauch
193	A Liquid Argon Neutrals Detector (LAND)	A. Eisner, G. Hanson,
1,0	for PEP	D. Hitlin, U. Koetz.
		M. Marshak, T. Mast.
		J. Matthews, C. Peck,
		D. Yount
194	Resolving Overlapping Gammas in a Modular Neutrals Detector	F. Bulos
195	Report of the General Purpose Detector	A. Barbaro-Galtieri.
175	Group	W. Bartel, F. Bulos.
	. OL OUP	R. Cool. G. Hanson.
		U. Koetz, R. Kotthaus.
		S. Loken, D. Luke.
		A. Rothenberg
196	Considerations for a General Flexible Detector	F. Bulos
197	The Streamer Chamber as a General Detector	G. Barbiellini, R. Kotthaus
		S. Poucher, A. Seidl,
		F. Villa, D. Yount
198	A Time Projection Chamber	D. Nygren
199	Comparison of Time Projection and Drift Chamber Detectors	J.A.J. Matthews, A. Rothenberg

PEP	NOTE #	Title	Author(s)
	200	Mark II Magnetic Detector for SPEAR	R. R. Larsen
	201	Detection of High Momentum Particles with Identification of the Final State	U. Becker, R. Cashmore, E. Groves, L. Keller, S. Loken, C. Morehouse, S. Poucher, M. Strovink
	202	Use of Microchannel Electron Multipliers in High Energy Physics	P. Lecomte, V. Perez-Mendez
	203	Photon-photon Physics	 G. Barbiellini, A. Benvenuti, K. Berkelman, A. Courau, F. Foster, KW. Lai, F. Lobkowicz, J. Matthews, N. Mistry, T. Rhoades
	204	Report of the New Particle Group	 A. Carroll, B. Cox, A. Eisner, KW. Lai, F. Lobkowicz, M. Marchak, J. Marx, J. Matthews, N. Mistry, C. Morehouse, J. Poucher, R. Rothenberg, A. Seidl, D. Yount
	205	Report of the Experimental Areas Group	 A. Carroll, B. Case, D. Coyne, F. Foster, F. Lobkowicz, F. Martin, C. Morehouse, P. Oddone, C. Prescott, L. Keller, G. Manning
	206	Geotechnical Investigation of the PEP Site	R. S. Gould
	207		
	208		
	209		
	210		
	211	Status Report: Plans for PEP Survey and Alignment	R. Sah

APPENDIX E

REFERENCES

- C. Pellegrini et al., Proc. 8th Int. Conf. on High Energy Accelerators 1. CERN 1971 (European Org. for Nuclear Research, Geneva, 1971), p. 153. T. Elioff, IEEE Trans. Nucl. Sci. NS-20, No. 3, 1039 (1973). 2. R. Bangerter et al., IEEE Trans. Nucl. Sci. NS-20, No. 3, 786 (1973). 3. A Proposal for a Positron-Electron Colliding-Beam Storage-Ring Project 4. (PEP), Report Nos. LBL-2688 and SLAC-171 (April 1974). J.-E. Augustin et al., Phys. Rev. Letters 33, 1406 (1974). 5. J. J. Aubert et al., Phys. Rev. Letters 33, 1404 (1974). 6. G. S. Abrams et al., Phys. Rev. Letters 33, 1453 (1974). 7. J.-E. Augustin et al., Phys. Rev. Letters 34, 764 (1975). 8. 9. G. J. Feldman et al., Phys. Rev. Letters 35, 821 (1975). W. Tanenbaum et al., SLAC-PUB-1644 (1975) (to be published). 10. W. Braunschweig et al., Phys. Letters 57B, 407 (1975). 11. K. L. Brown, D. C. Carey, C. H. Iselin, F. Rothacker, SLAC-91, Rev. 1 12. (1974). 13. A. A. Garren, A. S. Kenny, LBL Internal Note, 1968 (unpublished). A. S. King, M. J. Lee, W. W. Lee, SLAC-183 (1975). 14. R. H. Helm, M. J. Lee, Proc. 9th Int. Conf. on High Energy Accelerators, 15. Stanford, 2-7 May 1974 (Stanford Linear Accelerator Center, Stanford, California, 1974), p. 622. H. Wiedemann, Proc. 9th Int. Conf. on High Energy Accelerators, Stanford, 16. 1974 (Stanford, 1974), p. 629, or PEP-117 (March 1975) (unpublished).
- J. M. Paterson, J. R. Rees, H. Wiedemann, PEP-124 (July 1975) (unpublished).

- 265 -

- 18. R. Schwitters, SPEAR Note 159 (April 1973) (unpublished).
- A. W. Chao, M. J. Lee, P. L. Morton, IEEE Trans. Nucl. Sci. <u>NS-22</u>, No. 3, 1878 (1975).
- 20. H. DeStaebler, SLAC-TN-74-13 (August 1974).
- W. R. Nelson, G. T. Warren, R. L. Ford, PEP-109 (March 1975) (unpublished).
- 22. E. Keil, PEP-126 (August 1975) (unpublished).
- See, for example, M. A. Allen and P. B. Wilson, <u>Proc. 1972 Proton</u> <u>Linear Accelerator Conf., Los Alamos, N. Mex., 10-13 Oct 1972</u> (USAEC TIC, Oak Ridge, Tenn., 1972), p. 279.
- M. A. Allen and R. A. McConnell, IEEE Trans. Nucl. Sci. <u>NS-20</u>, No. 3, 373 (1973).
- 25. M. A. Allen et al., IEEE Trans. Nucl. Sci. NS-22, No. 3, 1269 (1975).
- E. A. Knapp, B. C. Knapp, and J. M. Potter, Rev. Sci. Instrum. <u>39</u>, 979 (1968).
- 27. F. Amman, IEEE Trans. Nucl. Sci. NS-20, No. 3, 858 (1973).
- 28. E. Keil et al., "Beam Cavity Interaction in Electron Storage Rings," SLAC-PUB-1580 (1975). To be published in Nucl. Instrum. Meth.
 A. W. Chao, PEP Note 118 (April 1975) (unpublished).
- M. A. Allen, J. M. Paterson, J. R. Rees, and P. B. Wilson, IEEE Trans. Nucl. Sci. <u>NS-22</u>, No. 3, 1838 (1975).
- 30. P. B. Wilson, PEP-123 (July 1975) (unpublished).
- 31. U. Cummings et al., J. Vac. Sci. Technol. 8, 348 (1971).
- C. R. Carman and J.-L. Pellegrin, Nucl. Instrum. Methods <u>113</u>, 423 (1973).
- 33. LBL-SLAC Study Group, Report Nos. LBL-750 and SLAC-136 (April 1972).

- 266 -

- W. Gilbert, R. Meuser, and F. Toby, <u>Proc. 4th Int. Conf. on Magnet</u> Technology, Brookhaven, 1972 (NTIF CONF-720908).
- 35. W. Gilbert, LBL-2418 (Nov 1973).
- R. Avery et al., Proc. 9th Int. Conf. on High Energy Accelerators, Stanford, 1974 (Stanford, 1974), p. 179, and LBL-2603 (May 1974).
- 37. T. Elioff et al., LBL-3078 (Sep 1974).
- 38. R. Byrns et al., LBL-3387 (Nov 1974).
- 39. C. Benvenuti, private communication (unpublished).
- John A. Blume & Assoc., "Final Report on Reconnaissance Geophysical Survey, 300 Meter Radius Storage Ring," private communication (Sep 1973).
- Dames & Moore and Frank W. Atchley, "Soils and Geological Investigations for Proposed Linear Electron Accelerator - Sand Hill Site" (Nov 1960).
- 42. Aetron-Blum-Atkinson Report No. ABA 88, "Geological Site Investigation for Stanford Linear Accelerator Center" (March 1965).
- B. M. Page and L. L. Tabor, "Chaotic Structure and Decollement in Cenozoic Rocks near Stanford University," Geol. Soc. Am. Bull. <u>78</u>, 1 (Jan 1967).
- 44. Earth Sciences Associates, "Geotechnical Site Investigations of Regions 11, 12, 1, 2, and 3 Positron-Electron Project" (July 1975).
- 45. L. L. Tabor, "Interim Geological Report on the PEP Site" (Oct 1975).

APPENDIX F

STORAGE RING PARAMETERS

Main Storage Ring Parameters

Nominal maximum energy	18	GeV
Minimum energy	4	GeV
Maximum current per beam (at 15 GeV)	92	ma
Design luminosity per interaction region		
Maximum luminosity at 15 GeV	1×10^{32}	cm ⁻² sec ⁻¹
Below 15 GeV	$10^{32}(E/15)^2$	cm ⁻² sec ⁻¹
At 18 GeV	1.5 x 10 ³¹	cm ⁻² sec ⁻¹
Beam lifetime	2.5 to 5.7	h
Number of interaction regions	6	
Available free length for experimental setup	19.0	m
Circumference	2200.0002	m
Symmetry	sixfold	
Average radius	350.1409	m
Largest diameter	710.8429	m
Smallest diameter	677.7638	m
Average radius with normal periodic cells	219.9240	m
Magnetic radius	165.5177	m
Bending magnet filling factor in cells	75	%
Length of interaction straight section (IP to center of Q3)	58.54335	m
Length of bend section (center of Q3 to center of 9QF)	121.96000	m
Length of symmetry straight section (center of 90F to center of sextant)	2.83000	m
Orbital frequency	136.2693	kHz

Lattice Parameters for Standard Configurations Used for Operation with Wiggler Magnets from below 5 GeV to up to 15 GeV

Focusing structure in bend section	F-0-D-0	
Total number of cells	96	
Number of normal cells		
Mechanically identical	72	
Electrically identical	48	
Number of matching cells	24	
Length of normal cell	14.35	m
Length of matching cell at symmetry point	14.90	m
Length of matching cell at interaction straight section	20.96	m

		Beam dynamics function values in				
		Normal cell	Matching cell	Interaction straight section		
	Maximum betatron function:					
	β _x (m)	26.5	33.5	190		
	β _y (m)	33.1	32.3	530		
	Maximum eta function:					
	n _x (m)	1.81	1.98	1.15		
	ny(m)	0	0	0		
	Phase advance per normal cell		$\psi_{x} = 47^{\circ}$ $\psi_{y} = 36^{\circ}$			
	Betatron oscillation tunes		$v_{\rm X} = 18.77$ $v_{\rm Y} = 19.26$			
	Synchrotron oscillation tune		$v_{s} = 0.064$			
	Momentum compaction factor		$\alpha_{c} = 0.00415$			
Tra id	nsverse acceptance of the storage	ge ring for				
	and a second		$A_{\chi} = 30 \pi$ r	nrad mm		
			$A_y = 14 \pi$ r	nrad mm		

Maximum energy spread acceptance relative to beam energy	≥ 1.4	%
Horizontal beam emittance	$\sigma_{\rm X}^2 / \beta_{\rm X} = 0.231 \ \pi$	mrad mm
Natural energy spread	$\sigma_{e}/E_{0} = \pm 0.100$	%
Transverse damping time	$\tau_{x} = \tau_{y} = 8.2$	msec
Uncorrected chromaticity ($\delta = \Delta p/p_0$)		
	$\xi_{\rm X} = \Delta v_{\rm X} / \delta = -34.0$	
	$\xi_y = \Delta v_y / \delta = -100.3$	
Variation of damping partition number with energy	∆J/8 = 462	

number with energy

Beam dynamics parameters at interaction point:

Betatron function	β* :	= 3.707	m
	β∳	= 0.184	m
Eta function	nġ : n*	= -0.653 = 0	m m
Crossing angle	χ	= 0	
Maximum beam-beam tune shift	$\Delta v_{\rm X} = \Delta v_{\rm Y} =$	= 0.06	
Optimum coupling	ĸ	= 0.27	

0 0 0 0 4 4 0 3 0 3 6

PEP Main Ring Bend Parameters

Magnet Designation		70C5400	
Number of Magnets.		192	
Field @ 18 GeV		0.3625	Т
JBdl @ 18 GeV		1.957	T-m
Pole Width		0.21	m
Gap Height		70	mm
Core Length		5.33	m
Magnetic Length	1	5.40	m
Width of Useful Field (0.1%)		100	mm
Lamination Height		0.496	m
Lamination Width		0.53	m
Packing Factor (min)		96	%
Core Weight		8580	kg
Amp Turns per Pole @ 18 GeV		10409	A-turns
Turns per Pole		16	
Pancakes per Pole		1	
Conductor Cross Section		65 x 9	mm ²
Cooling Hole Diameter		2 @ 5	mm
Conductor Cross-Sectional Area		546	mm ²
Current @ 18 GeV		650.6	A
Inductance		19.6	mH
Resistance @ 40 ⁰ C	-	17.9	mΩ
Power @ 18 GeV		7.58	kW
Voltage Drop @ 18 GeV		11.6	V
Stored Energy @ 18 GeV		4.15	kJ
Coil Weight		242	kg
Number of Water Circuits		2	-
Water Flow Rate		9.45 x	$10^{-5} \text{ m}^{3}/\text{sec}$
Water Pressure Drop		 1.38	MPa
Temperature Rise		19	°C

PEP Standard Quadrupole Parameters (18 GeV)

(Low Impedance Design)

Magnet Designation	120Q64	10
Nominal Peak Gradient	20	T/m
Gradient	12.61	T/m
Pole Tip Field	0.757	Т
Gradient Length Product	8.07	Т
Inscribed Radius	60	mm
Minimum Gap	34.4	mm
Core Length	0.580) m
Magnetic Length	0.64	m
Width of Useful Field	120	mm
Laminate Height	365	mm
Laminate Width	402	mm
Packing Factor (min)	96%	
Core Weight	1700	kg
Amp Turns per Pole	18062	A-turns
Turns per Pole	12	
Pancakes per Pole	1	
Conductor Cross Section	9×7	2 mm^2
Cooling Hole(s) Diameter	2@5	mm
Conductor Cross-sectional Area	609	mm^2
Current	1505	A
Current Density	2.47	A/mm^2
Inductance	5.14	mH
Resistance @ 40°C	4.47	mΩ
Power	10.1	kW
Voltage Drop	6.73	V
Stored Energy	5,82	kJ
Aluminum Weight	150	kg
Number of Water Circuits	1	
Temperature Rise	35.4	°C
Water Flow Rate	6.85	$\times 10^{-5} \text{m}^3/\text{sec}$
Water Pressure Drop	1.034	MPa

- 272 -

PEP Standard Quadrupole Parameters (18 GeV) (High-impedance Design)

Magnet Designation		1200750	12001000	1200380
Used for		QF, QD, 2QF, 3QF, 8QF, 8QD, 1QD	Q3, 1QF	9QF
Number of Magnets		180	24	12
Nominal Peak Gradient	T/m	20	20	20
Operating Gradient	T/m	10.76	10.76	10.76
Pole Tip Field @ Operating Gradient	T	0.646	0.646	0.646
Gradient Length Product	Т	8.07	10.76	4.09
Inscribed Radius	mm	60	60	60
Minimum Gap	mm	34.4	34.4	34.4
Core Length	m	0.690	0.940	0.32
Magnetic Length	m	0.750	1.00	0.38
Width of Useful Field	mm	120	120	120
Lamination Height	mm	340	340	340
Lamination Width	mm	378	378	378
Packing Factor (min)	%	96	96	96
Core Weight	kg	1700	2316	788
Amp Turns per Pole	A-turns	15412	15412	15412
Turns per Pole		57	57	57
Pancakes per Pole		1	1	1
Conductor Cross Section	mm ²	12.7 sq.	12.7 sq.	12.7 sq
Cooling Hole Diameter	mm	6.3	6.3	6.3
Conductor Cross-Sectional Area	mm ²	121.3	121.3	121.3
Current	A	270.4	270.4	270.4
Current Density	A/mm^2	2.23	2.23	2.23
Inductance	mH	56.4	75.2	28.6
Resistance @ 40 ⁰ C	mΩ	112	140	68.4
Power @ 18 GeV	kW	8.17	10.2	5.0
Voltage Drop @ 18 GeV	V	30.2	37.9	18.5
Stored Energy	kJ	2.06	2.74	1.04
Aluminum Weight	kg	150	187.5	91.6
Number of Water Circuits		2	4	2
Temperature Rise	°C	24.6	10.2	11.4
Water Flow Rate	10 ⁻⁵ m ³ /sec	7.95	18.4	10.5
Water Pressure Drop	MPa	1.034	1.034	1.034

- 273 -

PEP Insertion Region Quadrupole Parameters

Magnet Designation		160Q2000 (Q1)	160Q1500 (Q2)
Number of Ouadrupoles		12	12
Rated Gradient	T/m	6.6 (±0.4)	6.6 (±0.4)
Rated Pole-tip Field @ 18 GeV	т	0.53 (±0.03)	0.53 (±0.03)
Inscribed Aperture Radius	mm	80	80
Minimum Gap Between Poles	mm	53	53
Core Length	m	1.95	1.45
Magnetic Length	m	2.0	1.5
Useful Field Width ($\Delta B/B \le 10^{-4}$)	mm	168	168
Turns per Pole		26 (16)	26 (16)
Rated Current	А	660 (±65)	660 (±65)
Current @ 15 GeV	А	542 (-16)	542 (+9)
Current @ 18 GeV	А	651 (-5)	651 (+22)
Coil Sections per Pole		2 (1)	2 (1)
Conductor Cross Section	mm ²	23 x 20 (6.5 x 6.5)	23 x 20 (6.5 x 6.5)
Cooling Hole Diameter	mm	6.5 (3.5)	6.5 (3.5)
Conductor Area	mm ²	426 (32)	426 (32)
Rated Current Density @ 18 GeV	A/mm ²	1.54 (2.0)	1.54 (2.0)
Resistance @ 40 ⁰ C	mΩ	36,5 (260)	29.1 (200)
Rated Voltage (max.)	V	24.1 (16.9)	19.2 (13.0)
Rated Power (max.)	kW	15.9 (1.1)	12.7 (0.9)
Stored Energy @ 18 GeV	kJ	9 (~0)	7 (~0)
Inductance @ 18 GeV	mΗ	42 (16)	32 (12)
Core Weight	kg	9000	6700
Aluminum Coil Weight	kg	594	474
Number of Water Circuits		4 (2)	4 (2)
Water Temperature Rise	°C	20	20
Water Flow Rate	m ³ /sec	1.90×10^{-4} (1.3 × 10^{-5})	1.52×10^{-4} (1.0 × 10 ⁻⁵)
Water Pressure Drop	MPa	0.82 (0.60)	0.46 (0.30)

Values in parentheses are for auxiliary windings.

PEP Standard Sextupole Parameters

Magnet Designation		1 40S250	
Number of Sextupoles		162	
Peak Design Gradient	1	15.0	T/m
Design Gradient at Pole Tip		7.91	T/m
Pole Tip Field @ Design Gradient		0.277	Т
Inscribed Radius		70	mm
Core Length		0.20	m
Magnetic Length		0.25	m
Weight of Iron		205	kg
Amp Turns per Pole		5655	A-turns
Turns per Pole		49	
Design Current		115	A
Conductor Size (square copper)		5.8 x 5.8	mm ²
Conductor Area		24.7	mm ²
Current Density		4.7	A/mm ²
Resistance @ 40 ⁰ C		91.6	mΩ
Power		1.22	kW
Number of Water Circuits		2	
Temperature Rise		9	°c
Water Flow Rate		1.6 x	10 ⁻⁵ m ³ /sec
Water Pressure Drop		1.03	MPa

PEP Wiggler Magnet

Magnet Designation	50H1200	
Number of Magnets	9	
Peak Field	2	Т
∫Bdl @ 2T	2.40	T-m
Gap Height	50	mm
Pole Width	240	mm
Core Length	1.15	m
Magnetic Length	1.20	m
Width of Useful Field (∆B/B < 0.1%)	130	mm
Magnet Height	500	mm
Magnet Width	960	mm
Core Weight	3360	kg
Amp Turns per Pole @ 2T	44210	A-turns
Turns per Pole	96	
Pancakes per Pole	3	0
Conductor Cross Section (sq. aluminum)	12.7 x 12.7	mm ²
Cooling Hole Diameter	6.3	mm
Conductor Cross-Sectional Area	121.3	mm ²
Current @ 2T	460.5	A
Inductance	968	nıH
Resistance @ 40 ⁰ C	184	mΩ
Power @ 2T	39.1	kW
Voltage Drop	84.7	V
Stored Energy	102.7	kJ
Coil Weight	123.4	kg
Number of Water Circuits	6	4
Water Flow Rate	3.26 x	$10^{-4} \text{ m}^3/\text{sec}$
Water Pressure Drop	1.38	mPa
Temperature Rise	28.8	°C

Low Field Bend Magnet

Magnet designation	70C2000	U.,
Number of magnets	24	
Field @ 18 GeV	240	G
∫.Bdl @ 18 GeV	480	G-m
Pole width	0.19	m
Gap height	0.07	m
Core length	1.93	m
Magnetic length	2.0	m
Width of the useful field	.080	m
Amp-turns/pole @ 18 GeV	690	A-turns
Turns/pole	23	
Conductor cross section	26.7	mm^2
Cooling	Air	
Current @ 18 GeV	30	A
Resistance	0.172	Ω
Power @ 18 GeV	154	W
Voltage drop	5.13	V

- 277 -

Magnet Circuits	Total Power Required (kW)	No. of 60 dc Choppe	0V Current ers Rating (A) Locations	No. of Magnets per Circuit
B+Q1+Q2	1850	6	700	4,8,12	192+12+12
Q3	134	1	300	8	12
1QF	185	1	300	8	12
1QD	114	1	300	8	12
2QF	252	1	300	8	12
3QF	196	1	300	8	12
QF	430	. 3	300	4.8.12	48
QD	420	3	300	4.8.12	72
8QF	130	1	300	8	12
8QD	116	1	300	8	12
9QF	99	1	300	8	12
Wigglers	180	1	700	8	9
SD	53	1	300	8	48
SF	26	1	300	8	48
H1	160	1	200	Sector 30	15
H9S	80	1	200	Sector 30	8
H9N	80	1	200	Sector 30	8
Q1S	36	1	100	Sector 30	9
Q1N	36	1	100	Sector 30	9
Q18S	28	1	100	Sector 30	7
Q18N	28	1	100	Sector 30	7
Magnet		Fotal Power	No. of Circuits	Rating (V/A)	Location
Ring Corrective El	lements (not ch	oppers)			
Special Sextupole	S	60	5		8
Q1, Q2 Trims		48	24	$\pm 30/100$	2, 4, 6, 8, 10, 12
Steering Coils (tr	ansitions)	160	48	$\pm 30/100$	2, 4, 6, 8, 10, 12
Steering Coils (an	rcs)	30	96	$\pm 30/10$	2, 4, 6, 8, 10, 12
Low Field Bends		7	24	$\pm 30/10$	2, 4, 6, 8, 10, 12
abon a solu bondb					
Rotated Quad		20	2	$\pm 120/100$	8
Rotated Quad	n Supply Requi	20 rements (not o	2 choppers)	± 120/100	8
Rotated Quad Remaining Injection Q6N, S thru Q17N	n Supply Requi	20 rements (not o 64	2 choppers) 16	$\pm 120/100$ + 50/100	8 Sector 30
Rotated Quad Remaining Injection Q6N, S thru Q17N, Bumps	n Supply Requir , S	20 rements (not o 64 40	2 choppers) 16 8	$\pm 120/100$ + 50/100 + 50/100	8 Sector 30 Sector 30
Rotated Quad Remaining Injection Q6N, S thru Q17N, Bumps Trim T1	n Supply Requi: , S	20 rements (not o 64 40 3	2 choppers) 16 8 . 1	\pm 120/100 + 50/100 \pm 50/100 \pm 50/100	8 Sector 30 Sector 30 Sector 30
Rotated Quad Remaining Injection Q6N, S thru Q17N, Bumps Trim T1 Vertical Bends	n Supply Requi: , S	20 rements (not o 64 40 3 36	2 choppers) 16 8 1 3	\pm 120/100 + 50/100 + 50/100 \pm 50/100 + 120/100	8 Sector 30 Sector 30 Sector 30 Sector 30
Rotated Quad Remaining Injection Q6N, S thru Q17N, Bumps Trim T1 Vertical Bends Trims T2S, N thru	n Supply Requir , S u T18S, N	20 rements (not o 64 40 3 36 12	2 choppers) 16 8 1 3 10	\pm 120/100 + 50/100 + 50/100 \pm 50/100 + 120/100 \pm 120/10	8 Sector 30 Sector 30 Sector 30 Sector 30 Sector 30

PEP Magnet Power Supplies

Ring and Injection Choppers

Rf Parameters (15 GeV)

Orbital frequency	136.2693	kHz
Radiofrequency	353.21016	MHz
Harmonic number $(2^5 \times 3^4)$	2592	
Momentum compaction factor	0.00417	
Synchrotron radiation loss per turn	27.056	MeV
Energy loss into parasitic modes per turn ¹	3.7	MeV
Peak rf voltage	48.8	MV
Quantum lifetime	50	h
Circulating current per beam	92	mA
Particles per beam	4.22 x 10	$)^{12}$
Synchrotron radiation power per beam	2.5	MW
Total active length of accelerating structure	38.2	m
Total shunt impedance	715	MΩ
Number of accelerator sections	18	
Number of cavities per accelerator section	5	
Fundamental mode dissipation per cavity	36.7	kW
Power loss to parasitic modes ¹	0.7	MW
Total available rf power	9.0	MW
Number of vacuum pumps (500 &/sec) per accelerator section	1 3	
Number of klystrons	18	
Klystron beam voltage	62	k٧
Klystron beam current	11.5	А
Klystron beam power	713	kW
Klystron drive power	15W	
Klystron output power	500	k₩
Klystron efficiency	70	%
Maximum energy, limited by rf system		
9 MW, 38.2-m accelerating structure	18.4	GeV
9 MW, 76.4-m accelerating structure	20.5	GeV
9 MW, 152.8-m accelerating structure	22.8	GeV
Bunch length (theoretical, without bunch lengthening)	v _e = 2.3	cm
Total rf bucket height relative to beam energy	≥ 1.4	%

 $^{1}\text{Estimated}$ for a bunch length of 4.5 cm and a parasitic-mode-loss impedance of 40 M $_{\Omega}.$

Vacuum System

1. Vacuum Components in One Bend Arc

	Average pressure	2.2 x	10 ⁻⁸	Torr	
	Desorption due to synchrotron radiation at 15 GeV		10 ⁻⁵	Torr	l/sec/ma
	Total pumping speed	27,	400	٤/sec	0
	Number of distribution pumps		32		
	Pumping speed of distribution pumps		800	٤/sec	C
	Number of holding pumps		18		
1	Pumping speed of holding pumps		100	٤/sec	C
	Material for bend chamber	A1	6061-T4		
	Length of bend chamber		13.92	m	
	Number of bend chambers		32		
	Material for instrument module	304	Stainless	Steel/	Copper
	Length of instrument module		0.43	m	
	Number of instrument modules		18		
	Number of isolation valves		4		
	Number of ion gauges		4		
	In situ bake-out temperature (hot water, 18 atm)		185	°C	
Vacuur	m Components in One Interaction Straight S	Section			
	Average pressure	5 x	10 ⁻⁹	Torr	
	Total pumping speed per straight section	4	400	l/se	С
	Number of pumps (pumps at rf cavities not included)		20		
	Pumping speed per pump		220	l/sec	C
	Number of fast valves		2		
	Number of isolation valves		2		
	Material for vacuum chamber	304	Stainless	Steel	
	Number of ion gauges		8		
	In situ bake-out temperature		200	^O C ma	ax.

3. General Vacuum Components

2.

Number of roughing pumps (portable units)	6
Quadrupole residual gas analyzer	3
Temperature-monitoring system with 100 thermocouples (movable unit)	1

Injection System

Injector accelerator			SLAC		
SLAC beam parameters for	injection	into PEP			
Energy			4 to 15		GeV
Momentum width			±0.5		%
Emittance					
Positrons		.,	0.2π x (1	5 GeV/E)	mm-mrad
Electrons			0.02π x (1	5 GeV/E)	mm-mrad
Pulse length			1		nsec
Particles per pulse					
Positrons			1.3 x 10	3	
Electrons			1.3 x 10	9	
Repetition rate			up to 360		pps
Injection time			4 to 10		min.

Injection System Magnet Parameters

1.	Pulsed Switching Magnet	(29PM1)			
	Maximum field		3.3		kG
	Effective length		0.96		m
	Bend angle (15 GeV)		6.3		mr
	Clear aperture		± 12.5		mm
	Wave form		Single	600-Hz si	nusoid
	Repetition rate		360		Hz
	Peak voltage		3.8		kV
	Peak current		420		А
	Average power		3		kW
	Weight		725		kg
	Number required		1		

2.	Splitter Iron-Septum Magnet (29B1)		
	Maximum field	10.9	kG
	Effective length	3.0	m
	Bend angle (15 GeV)	65	mr (3.75 ⁰)
	Gap height	30	mm
	Clear aperture		
	Vertical	+ 12.5	mm
	Horizontal	+115	mm
	Ampere-turns	34,000	A-t, d.c.
	Power	22	kW
	Weight	9,000	ka
	Number required	1	3
		_	
3.	Horizontal Bend Magnets (28B2 to 28	3B16; 30B2 to 30B	16)
	Maximum field	12.6	kG
	Effective length	2.6	m
	Bend angle (15 GeV)	65	mr (3.75°)
	Gap height	30	mm
	Clear aperture		
	Vertical	+ 12.5	mm
	Horizontal	+ 25	mm
	Ampere-turns	32,000	A-t, d.c.
	Power	12	kW
	Weight	2,700	kg
	Number required	30	
		,	
4.	Quadrupoles (28Q1 to 28Q23; 30Q1 to	30023)	
	Maximum gradient	3.0	kG/cm
	Effective length	0.4	m
	Inscribed radius	30	mm
	Clear aperture	25.0	mm radius
	Ampere-turns per pole	12,000	A-t, d.c.
	Power	7.9	kW, max.
	Weight	225	kg
	Number required	46	A.202

- 282 -

5.

6.

7.

Vertical Bend Magnets (28B17, 30B17) Maximum field 7.3 kG Effective length 3.0 m (2.5°) Bend angle 44 mr Gap height 45 mm Clear aperture Horizontal + 20 mm Vertical + 35 mm Ampere-turns A-t, d.c. 28,000 Power 10 kW Weight 2,250 kg Number required 2 Injection Iron-Septum Magnets (28B18, 30B18) Maximum field 7.3 kG Effective length 3.0 m (2.5°) Bend angle (15 GeV) 44 mr Gap height 35 mm Clear Aperture Horizontal + 12.5 mm Vertical + 25 mm Ampere-turns 21,500 A-t,d.c. Power 8.2 kW Weight 2,250 kg Number required 2 Pulsed Kicker Magnets (28PM1 to 28PM3; 30PM1 to 30PM3)

Maximum field r 0.6 kG 1.0 (28PM1 & 28PM3) m Effective length 2.0 (30PM1 & 30PM3) m Clear aperture **Vertical** ∿ + 40 mm Horizontal ∿ + 40 - + 80 mm Wave form Half-sinusoid, damped, 3 µs long Peak Voltage 12 - 19 k٧ Peak current 10 - 15 kA Repetition rate 360 Hz Number required 6

8.

d.c. Bump Magnets (28A1 to 28A4; 30A1 to 30A4)

	Maximum field	4.7	kG
	Effective length	0.5	m
	Gap height	140	mm
	Clear aperture		
	Vertical	<u>+</u> 25 - <u>+</u> 40	mm
	Horizontal	<u>+</u> 50 - <u>+</u> 80	mm
	Ampere-turns	23 - 50	kA-t
	Power	2 - 5	kW (max.)
1	Weight	∿ 225	kg
	Number required	8	
	1922 A MARKA CARACTER AN AND A MARKA AND A MARKA AND A CARACTER A		

Totala Total Sector Demand Demand 10 **Region** Location 12 2 4 6 8 30 by to Power Supply Components SYSTEM 1. Magnets and Buses 500 500 Main Dipoles) b 500 2224 1890 130 130 Q1 and Q2 130 c Q1-Q2 Trim 10 10 60 70 10 10 10 10 280 988 QF's and QD's 280 840 280 1470 All other Quads 1250 1250 300 300 353 Sextupoles 0 0 (180)Wiggler 180 212 **Correction** Elements 30 30 30 30 30 30 Injection Magnets^d 760 895 760 (Magnet Subtotal) (950) $(\overline{40})$ $(\overline{950})$ (40) (2500) $(\overline{40})$ (760)(5280)(6210) 3000 3000 9000 15000 Rf System 3000 2. Experimental Equipment^e 850 ~100^f 4350 5120 850 850 850 850 3. House Power^g 4. 20^{f} 270 50 Tunnels 40 40 40 40 40 Interaction Halls 35 35 35 35 45 10 195 50^{f} 100 70 110 20 520 Surface Buildings 100 60 50^f 50 MCR $(\overline{245})$ (80) (70)(1035)1035 (HP Subtotal) (175) (135) (175)(145)5. Mechanical Utilities LCW Systems 400 60 400 60 420 0 150 1490 1490 1200 1200 1200 Cooling Towers 22345 30055 TOTAL 5375 1085 5375 1095 8215 220 980

PEP Power Requirements at 18 GeV (kW)

NOTES:

^a Projects overall magnet power supply efficiency of 85% and overall rf system's efficiency of 60%.

^bDipoles and insertion Quads, Q1Q2, are in series.

^CBased on 120 mm design for normal cell quads. (The potential 100 mm bore design being studied can provide ~700 kW power reduction.)

^dFor operation at 15 GeV.

^eActual demand per area can be 3 × 850 kW with the total power for all areas constrained to 4350 kW.

^f Assumes power from existing substations.

^gPower for lights, electronics, cranes, convenience outlets, etc.

Region Location	System	Maximum ⁽¹⁾ Power Demand (kW)	Approx.(2) Line Requirement KVA	Area Sub-Station Transfers
12 and 4	Magnets R.F. Exp. Equip. House Power Mech. Utilities	1120 5000 1000 175 400	1315 5880 1175 205 470	- One 1500 kVA (12.5 kV - 480 V) - 12.5 kV Step Regulators - One 1500 kVA (12.5 kV - 480 V) One 300 kVA (480-208/120 Two 75 kVA (480 - 120)
2 and 6	<pre>Magnets Exp. Equip House Power Mech. Utilities</pre>	47 1000 140 60	55 1175 165 70	- One 1500 kVA (12.5 kV - 480 V) One 300 kVA (480 - 208/120) Two 75 kVA (480-120)
8	(Magnets R.F. Exp. Equip. House Power Mech. Utilities	2940 5000 1000 245 1620	3450 5880 1175 290 1900	 Two 2000 kVA (12.5 kV - 480 V) 12.5 kV Step Regulators Two 1500 kVA (12.5 - 480 V) One 300 kVA (480 - 208/120) Two 75 kVA (480 - 120)
10	<pre>{ Magnets Exp. Equipmen House Power</pre>	47 t 120 70	55 140 80	From Existing Sub-station
Sector 30	{ Magnets House Power Mech. Utilities	895 70 150	1050 80 175	- One 1500 kVA (12.5 - 480 V) Two 100 kVA (480-208/120)

PEP Power Requirements (18 GeV) by Area

(1) Includes power supplies where applicable

(2) Assumes average power factor of .85.

- 286 -