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Abstract

The BaBar electromagnetic calorimeter energy calibration method was

compared with the local and global peak iteration procedures� of Crystal Barrel and

CLEO�II� An investigation was made of the possibility of �
	S� background reduc�

tion� which could lead to increased statistics over a shorter time interval� for e�cient

calibration runs� The BaBar software package was used with unreconstructed data

to study the energy response of the calorimeter� by utilising the �� mass constraint

on pairs of photon clusters�
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Chapter �

Introduction

In recent years� the formulation of the Standard Model has improved con�

siderably our understanding of the elementary particles and their interactions� It is

now known that nature has provided us with three distinct generations of quarks

and leptons� whilst accomodating for the fundamental forces in the provision of

a number of integer�spin gauge bosons� However� despite continued and unprece�

dented agreement between experimental observations and theoretical predictions�

many unanswered questions still remain� For example� the exact mechanism of elec�

troweak symmetry breaking� through which the quarks and leptons acquire their

spectrum of masses is unknown� moreover� the origin of CP violation is not fully

understood� Indeed� the unsatisfactory presence of eighteen undetermined free pa�

rameters in the Standard Model� coupled with the prominent absence of gravity�

has forced many to conclude that our quantum �eld theories are only a low energy

approximation to a grand� more �uni�ed� theory�

The Large Hadron Collider at CERN and the PEP�II facility at SLAC�

operating at the high energy and higher luminosity frontiers respectively� will provide

us with the invaluable opportunity to validate further the predictions of the Standard

Model� or to probe the physics beyond�
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��� The BaBar Experiment and CP Violation

An international collaboration is designing and constructing a multi�purpose

detector for the BaBar Experiment� to fully exploit the physics potential and clean

environment of the PEP�II asymmetric e�e� collider� One of the BaBar experiments

principal aims is to study the weak decays of B mesons� where the exhibition of CP

violation is expected to be large� Within the framework of the Standard Model�

these e�ects can be incorporated through the introduction of a complex phase to

the Cabibbo�Kobayashi�Maskawa quark mixing matrix ���� This has fundamental

implications for the subtle asymmetry between matter and anti�matter� which give

rise to CP violation� Clear predictions result� which will be tested by BaBar�

��� Calibration and Monitoring

In order to achieve the targeted sensitivity� for measurements of asymme�

try in important CP decay modes� and to ensure that very rare decay channels are

observed� stringent requirements are placed on the performance of the BaBar detec�

tor� Since B meson decays frequently contain ���s with photon energies below �

MeV� a CsI
Tl� electromagnetic calorimeter with a high photon detection e�ciency

and excellent energy resolution is needed� Ensuring that the BaBar electromagnetic

calorimeter system achieves and maintains the planned resolution in a potentially

high radiation environment� demands an accurate and precise method of setting

the energy scale� A variety of calibration and monitoring procedures are therefore

planned� These will characterize the response of the detector for a range of physical

processes� Events involving high and low energy particles� such as Bhabha scat�

tering� radiative QED Bhabhas and muon pairs will be used� Importantly� the low

energy region will be checked by constraining the energy of well�separated photon

pairs� to the reconstructed �� mass in the neutral pion decay �� � ���



�	 CHAPTER �� INTRODUCTION

This calibration technique is expected to be useful for the � MeV to � GeV

energy region� but could be �awed at the very lowest energies� where background

e�ects are not negligible� Figure 
���� displays the requirements for the optimization

of photon detection e�ciency� and excellent energy resolution at low energies� The

detector performance was simulated using a detailed Monte Carlo program ����� The

reduction of this background could enable the extraction of calibration information�

over a time scale adequate for short�term variations in the response of the system

to be monitored� An investigation of this reduction will be one of the aims of this

thesis�

Figure ���� Energy resolution 
a� and photon detection e�ciency 
b� requirements

of the BaBar electromagnetic calorimeter� Displayed for cos ��  in the laboratory

frame� solid line indicates target resolution�
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Theory

��� Physics Aims

The very early Universe may yet prove to be an important testing ground

for speculative theories of particle physics� Even with current technology� the energy

at which the intrinsic strength of the electroweak interaction is expected to become

comparable to that of the strong� seems inescapably out of reach�� Nevertheless� the

BaBar Experiment could provide a glimpse of the physical phenomena which occur

at higher energies� through the independent determination of as many parameters

as possible� in CP violating B decays� Such observations would enable the minimal

Standard Model 
SU
��C�SU
��L�U
��Y � to be overconstrained� and therefore

tested�

The elucidation of the origin of CP violation is of equal importance� It has

been suggested that electroweak baryogenesis� resulting from the mixing of three

generations of quarks� is unable to account satisfactorily for the observed baryon

asymmetry of the Universe ���� The ratio of the number of baryons to the number

�Current extrapolations at the GUT scale suggest that this uni�cation may occur at a uni�cation
mass � ���� GeV�
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of photons in our Universe� calculable from the baryon asymmetry of models based

upon Grand Uni�ed Theories� is close to the observed value�

nB
n�
� ��� 
����

An unexpected result for the measured value of the CKM complex phase� or any

deviation from unitarity bounds would imply the existence of new sources of CP

violation �	�� Thus� the inference of the higher�order presence of multi�Higgs� Su�

persymmetric particles or a fourth generation of quarks could provide an answer to

the CP problem� and account for the overall preponderance of matter�

��� CP Violation

CP violation has been observed over thirty years ago in the decays of

neutral kaons

� �

�����qp
�����
�

�
 
KL � ��l����  
KL � ��l���

 
KL � ��l��� �  
KL � ��l���
� ��� � ��� 
����

where KS and KL are the two mass eigenstates of the neutral K meson system�

jKS �� pjK� � �qj �K� �� jKL �� pjK� � �qj �K� � � 
����

Here� S and L refer to the short and long relative lifetimes of the states� the coe��

cients p and q are complex numbers which de�ne the KS and KL eigenstates of the

non�Hermitian matrix operator�

The discovery of an unexpectedly long b quark lifetime at PEP in ����


�B � ����s�� together with that of signi�cant B�� �B� mixing shortly after� assured

the future prospects of observing CP violation in the time�dependent asymmetries

of B meson decays�



���� CP VIOLATION ��

����� The Unitarity Triangle

The charge�raising current for the weak interaction�

J� � 
 �u �c �t � ��

� � ���

�
V

�
BBB�
d

s

b

�
CCCA 
��	�

contains the � � � CKM quark mixing matrix V��

V �

�
BBB�

c��c�� s��c�� s��e
�i�

�s��c�� � c��s��s��e
i� c��c�� � s��s��s��e

i� s��c��

s��s�� � c��c��s��e
i� �c��s�� � s��c��s��e

i� c��c��

�
CCCA 
����

In the Standard Model� the CKM matrix relates the bases of the quark mass eigen�

states and the weak eigenstates� which are not the same�
BBB�
d�

s�

b�

�
CCCA �

�
BBB�
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

�
CCCA
�
BBB�
d

s

b

�
CCCA � 
����

For six quarks� the matrix has three rotation angles and a complex phase ei�� If

the amplitudes for the weak processes are equivalent and real� then the existence of

a complex phase would ensure that for a certain relative phase� CP violation can

occur� The scenario for four quarks is completely generalised� however� because the

third generation of quarks decouple� Mixing is then initiated by a single Cabibbo

angle�

A more instructive parametrisation was due to Wolfenstein� Re�casting the Cabibbo

sin �c term 
which couples the charged currents to rotated quark states� as 	� then

cos �c � � � ��

�
and up to O
	��� the CKM matrix has the form

V �

�
BBB�
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

�
CCCA �

�
BBB�

�� ��

�
	 A	�

� i��

�	 �� ��

�
A	�

A	�
�� 
 � i�� �A	� �

�
CCCA 
����

�And similarly for the Hermitian conjugate charge�lowering current�
�Here Sij represents sin �ij etc�
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where A is a parameter which is dependent upon the b lifetime and other factors�

and � is a complex parameter relating to the original phase� The unitarity of the

CKM matrix dictates that the sum of the elements�squared in any row or column

must equal unity�

�X
i��

jV�ij� �
�X
i��

jV�ij� �
�X

i��

jV�ij� 
����

� V yV � I 
����

Mixing and CP violation can be described in a similar way to the neutral

kaon system� but any small violation of the unitarity constraints would give a sig�

ni�cant contribution to B� �B mixing� From the orthogonality of the �rst and third

columns of the CKM matrix� the relation

VudV
�
ub � VcdV

�
cb � VtdV

�
tb �  
����

can be represented as a triangle in an Argand diagram� Rescaling by a factor

V �
cb sin ��� and setting the cosines to one produces a triangle with an apex at the

co�ordinate 

� ��� and a base of unit length 
Figure �����

Figure ���� The rescaled Unitarity Triangle
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����� CP Asymmetries in the B System

To overconstrain the Standard Model� it is essential to determine all of the

angles and sides of the unitarity triangle� This can be accomplished by accurately

measuring the asymmetry inherent in certain decay channels� In consideration of

the decay B�
d � J�K��
K�� � K�

S�
��� one can reliably extract a value for the

angle � of the unitarity triangle��

The decay from which the angle � may be extracted� B�
d � ����� can

occur through tree�level and higher�order penguin decays� The CP violating contri�

butions from these orders have identical weak phase� Since the parameter 
��


 �
AP

AT


�����

relates the value of � to the observed asymmetry� the total penguin contribution

to the decay must be evaluated	� If the CP asymmetry in B�
d � ���� is found to

be small because 
 is small� then sin
��� may be measured accurately ���� Weak

interaction mixing is permitted between the �B� and the B�� through second�order

box diagrams 
Figure �����

d
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Bo

Bo

BoW W

W

W

u, c, tu, c, t

u, c, t

u, c, t

b

b

b

d

d

b

d

Figure ���� Box diagrams for B�� �B� mixing

�Although� the best decay channel for extraction of the angle � is from B�

d � J��K�

S
�� is the ratio of penguin �AP � to tree �AT � amplitudes
�The current data fromCLEO suggest that � is in fact greater than one�	
� �Cabbibo suppression

factors are not included in AP and AT �
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Produced in a coherent state� the B� and �B� must be tagged as a �avour

mode or a CP eigenstate� respectively�
 Using the time t in the following equations�

the time�dependence of the asymmetry can be reconstructed from the di�erence

between the tagging mode and the decay CP eigenstate� De�ning

	f �
�
qB
pB

�
�A

A
� 
�����

the decay rate for initially pure B� or �B� states to decay into a �nal CP eigenstate

f� has the following time�dependence�

 
B�
t�� f� � jAj�e��t
�
�� � j	f j��� ��� j	f j�� cos
�Mt�	 Im	f sin
�Mt�

�

�����

where the bottom sign is for �B� and the top for B�� �A
A� is the decay amplitude

to a CP eigenstate� f for �B�
B��� and the qB and pB are de�ned in a similar manner

to equations ���� The time�dependent CP asymmetry is given by the following

f
t� �
 
B�
t�� f� �  
 �B�
t�� f�

 
B�
t�� f� �  
 �B�
t�� f�

���	�

f
t� �

�� j	j�� cos
�Mt�� �Im	 sin
�Mt�

� � j	j� � 
�����

CP violation in mixing requires j q
p
j 
� �� If only one weak decay phase �D is present

in the b� c�cs transition� then the ratio of the amplitudes is a pure phase

�A

A
� e��i�D �

VcbV
�
cs

V �
cbVcs

� 
�����

Consequently� this asymmetry will determine the phase of the element argjVtdj � If
the amplitude for B� � f were the same as for �B� � f � then CP would not be

violated� It is the phase di�erence between decay amplitudes which is of importance

here� Since a KS is present in the �nal state� K � �K mixing can occur� Interference

due to

B�
t�� f� B�
t�� �B�
t�� f

�Or vice�versa�
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must then be taken into account using

	 �
q

p

� f jHjB� �

� f jHj �B� �
�
�
qB
pB

��
�A

A

��
q

p

�
K

�

�
q

p

�
K

�
VcsV

�
cd

V �
csVcd

� 
�����

Finally� the mixing phase� �M for the B�
d system is given by the ratio of the CKM

vertex factors ��� �
qB
pB

�
�

V �
tbVtd
VtbV �

td

� e��i�M 
�����

Putting these terms together�

	
B�
d � J�K��

S � �

�
V �
tbVtd
VtbV �

td

��
VcbV

�
cs

V �
cbVcs

��
VcsV

�
cd

V �
csVcd

�

�����

� Im	 � � sin
��� af
t� � sin �� 
����

To illustrate further� the measurement of asymmetry� af
t� can be used

to obtain the relative phase and magnitudes of the CKM matrix elements� through

the direct extraction of the angle �� Decay channels such as J�K�� are there�

fore of particular interest� because they demonstrate clearly the need for good ��

reconstruction e�ciency�

����� �
� Resolution and E�ciency

To summarise� the following reasons specify the detector requirements�

of high photon detection e�ciency and excellent energy resolution in neutral pion

decays�

�� Reconstruction e�ciency must be optimized for benchmark decays to all �nal

states� Many of these� such as B� � J�K��
K�� � K�
S�

��� B� � ���� and

B� � 
� contain ���s� where e�ciency is rather low�

�� Combinatorial backgrounds� for analyses involving the reconstruction of ���s

from calorimeter cluster pairs� are generally high� These parts of the recon�

struction are found to be the most unreliable�
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�� Typical �� momenta in physics simulations are � � GeV�

	� The di�neutral decay modes of the �� and � can be conveniently utilised to

calibrate the electromagnetic calorimeter� using iterative peak�shifting proce�

dures�

��� Neutral Pion Decays

Because the strong force does not violate CP invariance� the QCD La�

grangian will be invariant under chiral transformations� These transformations

normally mix the left and right�handed fermion �elds amongst themselves indepen�

dently� implying that the QCD Lagrangian would be invariant to an SU
��L�SU
��R
symmetry� As the vacuum j� � is not invariant under these transformations� and

the resultant massless left and right�handed quarks with identical weak coupling are

not observed� this global chiral symmetry must be dynamically broken�

In a manner analogous to the famous Higgs mechanism� three broken chiral

symmetry generators will result in three �massless� pseudoscalar Goldstone bosons�

Comparing the negligible u and d quark masses and their almost unbroken symmetry�

these Goldstone bosons can gain small masses � �	 MeV� and are the isotriplet of

light pseudoscalar mesons ��� ��� Consequently� the �� is the lightest pseudoscalar

meson with a mass � ��	��� MeV� and is a bound state consisting of a quark and

an anti�quark�

j�� �� �p
�
j�uu� �dd � � 
�����

The dominant decay mode occurs via an electromagnetic process �� � ��� which

has a mean life ���  ��	 � ���
s� With a large relativistic boost� colliders such

as the Tevatron at Fermilab have the opportunity to study the �� � �� decay�

using high resolution silicon vertex detectors� At BaBar� the photons are considered

to originate directly from the interaction point� A calibrated EMC detector would
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in this case be adequate to perform accurate measurements of the �� mass� The

calculated width is reasonably small�

 
�� � ��� � 	��� jf�� j� m�
��

��

�����

� ���	 eV

and is in good agreement with experiment���� The decay process 
Figure ���� is

depicted by an isotriplet axial�vector current� coupling via a triangular fermion loop

to two gauge bosons� Here� I� is the third�component of the isospin projection

operator and f��  ��� MeV is a constant related to the pion structure function�

which characterizes our ignorance of the pion structure�

e

π I

γ

πo

γ

f
3

e

o

Figure ���� Diagram for the decay �� � ��

����� The �� Invariant Mass Equation

To determine the energy peak�shift of radiatively decaying mesons e�g�

�� � ��� � � �� for the detector calibration method� the invariant mass� mij

must be calculated� This can be done by �nding mij for all possible cluster pair

combinations� using the measured energies Ei� Ej and the opening space�angle �

mij � ��EiEj
�� cos ���
�

� 
�����

where mij is the equation for the invariant mass of two photons� This equation is

derivable from the decay of the �� to two photons in it�s centre�of�mass 
�gure ��	��

Using the conservation of energy and momentum� one �nds
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m�
�� � 
E� � E��

� � 
�p� � �p��
� 
���	�

� m�
�� � �E�E�
�� cos �� 
�����

m�� � ��E�E�
�� cos ���
�

� � 
�����

It will be recognised later that equation ���� forms the basis of the �� invariant mass

energy calibration procedure�

2

πo

γ γ

18 0 
o

E 1 , p 1 E 2 , p

Figure ��	� The decay of the ��
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The Electromagnetic Calorimeter

��� The Electromagnetic Calorimeter

The prospect of observing CP violation in the B system has enforced major

advances in both detector and accelerator technology� At PEP�II� 
Figure ����

the aymmetric collisions of �� GeV electrons with ��� GeV positrons are expected

to produce a �� � ���� A boost of that kind in the centre�of�mass frame in the

laboratory will provide a ten�fold increase in the decay length of B mesons� a notable

enhancement over existing symmetric storage rings� This will enable current silicon

vertex tracking technology to resolve the time�di�erence between decay tags and CP

eigenstates� If CP asymmetries were to be measured for the rapid frequency mixing

of the B�
s �

�B�
s system� then the predicted large value of the mixing parameter� xs

could only be studied experimentally at centre�of�mass energies above the �
	s�

mass�� A design luminosity of �����cm��s�� will produce of the order of �����	

B�B� and ��� � �	 B� �B� pairs per year� from the decays of the �
	s� resonance�

This can be achieved by the generation of ���� bunches� containing ���� � ��� e�

and ���� � ��� e� per bunch� at a 	��ns beam crossing rate� High beam currents

�Currently there are no plans to do this with BaBar
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of ���A and ���	A will be accelerated by an improved r�f� superconducting cavity

system� The beams will be supported by an upgraded high�energy ring 
HER� and

a newly constructed low�energy ring 
LER�� the former storing the electrons and

the latter storing the positrons�

Figure ���� The PEP�II facility at SLAC

��� The Interaction Region

The Stanford B Factory� comprising the BaBar detector and the PEP�II

storage rings� will be the �rst establishment as such in a burgeoning �B Industry�� A

host of other proposed experiments� including Belle� LHC B� HERA B� B�Tevatron

and a CLEO�III upgrade will complement the physics results in the near future�

In order to achieve its primary objectives� the BaBar experiment has neces�

sitated new developments� in facing considerable technological challenges� Including
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the �standard� requirements of precision tracking and vertexing� excellent calorime�

try is required� alongside accurate particle identi�cation� These speci�cations have

resulted in the design of a multi�purpose detector� consisting of many separate com�

ponents and encapsulating much of the solid angle around the interaction region�


Figure �����

SUPERCONDUCTING
SOLENOID

Figure ���� A schematic cut�away view of the BaBar detector

����� Detector Components

The BaBar detector will be comprised of the following components�

� A silicon vertex detector 
SVT�� Situated near to the beam�pipe� the silicon

tracker consists of a �ve layered set of double�sided silicon microstrips� with a

readout pitch of ��m and ��m in the inner and outer layers� This serves

to measure accurately the spatial postion and directions of charged tracks� B

vertices can also be separated with an intrinsic resolution of ���m at normal
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incidence� enabling increased background reduction capability and improved

pattern recognition in rare B decay reconstructions�

� A Gas Drift Chamber 
DC�� This is composed of over � wires strung axi�

ally in 	 cylindrical layers� Trajectories of charged particles can be tracked�

and transverse momenta found from curvature measurements inside the axial

magnetic �eld�

� A Detector for Internally Re�ected !Cerenkov photons 
DIRC� will be used for

particle identi�cation� in particular kaon"pion separation� The ring imaging

system passes totally internally re�ected light along a quartz pathway� for

detection by a series of photomultiplier tubes�

� An Electromagnetic Calorimeter 
EMC� which consists of a cylindrical barrel

section� 
mounted asymmetrically about the interaction point� and a conically�

shaped forward endcap� Employing ��� thallium doped caesium iodide crys�

tals� photodiode pulse heights allow the total energy deposition in the crystals

to be determined� The calorimeter must satisfy an energy measurement pre�

cision of approximately �# at � GeV� whilst covering a photon energy range

from � MeV up to 	�� GeV� This allows a neutral pion mass resolution of

� MeV� As a result the calibration and monitoring procedures will provide

special challenges�

� A Superconducting Solenoid entailing a �m diameter� ����m long cryogenically�

cooled magnet� providing a homogeneous axial �eld of ��� T� to aid the mo�

mentum measurement of charged particles�

� An Instrumented Flux Return 
IFR�� The IFR provides an iron return yoke

for the solenoidal �eld� It is comprised of � iron plates� interspersed with

Resistive Plate Chambers� The instrumentation supplements the EMC in the

identi�cation of muons� which penetrate the rest of the detector�
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��� Calorimeter Overview

����� Calorimetry Requirements

The BaBar EMC has been designed and constructed to meet speci�c per�

formance criteria� Reconstructing CP eigenstates containing one or more ���s re�

quires a calorimeter with high e�ciency� to counter the small branching fractions

expected� The high e�ciency needed will be catered for by the minimization of

material preceeding the calorimeter 
material in front of the calorimeter does not

a�ect resolution�� and in the use of low noise preampli�ers and digitising electronics

for the DAQ and crystal readout system� The calorimeter must also be sensitive

to low energy photons if �nal state ���s� which are produced copiously in B decays�

are to be detected e�ciently� Good energy and angular resolution is also needed to

improve the �� and B mass resolutions� leading to increased signal�to�background

ratios for rare decays� The �ne granularity of the calorimeter� and improvements in

crystal growing methods should ensure that an energy resolution for the crystals of

�
E�

E
� ��#

�
p
E
� ���# 
����

will allow these criteria to be ful�lled�

Another essential requirement which the calorimeter must satisfy involves

electron identi�cation� where e�� and e�� separation can provide useful tags for

subsequent analyses�

����� Description of the Calorimeter

The EMC is comprised of a cylindrical barrel section 
mounted asymmetri�

cally about the interaction point�� and a conical forward endcap� A total of ��� cae�

sium iodide crystals are arranged in a quasi�projective geometry inside the calorime�

ter� with each crystal varying in radiation length X� and orientated to face toward
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the interaction point� The barrel section contains ��� of the crystals� arranged

in 	� rows of distinct sizes� each having �� identical crystals in azimuth� For the

endcap� �� crystals are con�ned to � separate modules� each having eight radial

rows�

The support structure for the crystals must be rigid� and should introduce

the minimum possible amount of material between crystal blocks and in front of

them� This is achieved by utilising a modular scheme for the calorimeter construc�

tion� where each module is made from a thin honeycomb�like carbon��bre composite

structure� In the barrel� modules are suspended from a large aluminium cylinder�

whilst the endcap is suspended from a large steel ring� 
Figure ��� displays the

crystal arrangements within the calorimeter��

Figure ���� Crystal arrangements in the Electromagnetic Calorimeter

The endcap� which forms a plug at the forward end of the calorimeter

covers a solid angle between cos � � ��� and cos � � ��� in the laboratory� It

has been designed to split into two parts for installation around the beam�pipe� and
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Properties CsI�Tl�
Radiation Length 
cm� ����
Absorption Length 
cm� �	��
Light Yield 
Photons"MeVx��� ���
Light Yield Temperature Coef� 
#"oC� ��
Moli$ere Radius 
cm� ���
Peak Emission 
nm� ���
Lower Wavelength Cuto� 
nm� ��
Refractive Index at Emission Maximum ����
Decay Time 
ns� �	
Density 
g"cm�� 	���
Hygroscopic slight

Table ���� CsI
Tl� crystal properties

must match the conical cross�section of the barrel with a minimum of deadspace�

To achieve near hermiticity around the interaction region� the clearance between

individual modules is only ��mm� and the di�erence between the conical surfaces

of the endcap and barrel are of the order of �mm� The individual crystals are tapered

and are trapezoidal in shape� and have a typical length of �cm 
lengths vary from

�� to ���� in radiation length� X���� with front and back face areas of 	���cm� and

���cm� respectively�

����� Calorimeter Interactions

Caesium iodide was chosen as a material for the calorimeter� as it is a

proven technology and has well de�ned scintillation light yield properties 
Table

����� The charged and neutral particles which interact with the CsI produce photons�

electrons and positrons in a variety of physical ways� The processes that take place

involve Bremsstrahlung and pair�production for electron�photon electromagnetic

�One radiation length is de�ned as the distance over which an electron loses ��e of its energy
via bremsstrahlung radiation� The radiation length is dependent upon the Z and A values of the
medium
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interactions� and secondary �� and hence electromagnetic shower production� via

the strong interaction of charged pions���� Charged pions also lose energy by dE�dx

loss continuously throughout the crystal� As in most calorimeters� the number of

particles produced in a shower increases with the energy of the incident particle�

and the depth of a shower varies as the logarithm of the initial particle energy� A

shower will contain a maximum number of particles Nmax at the critical energy Ec�

where the ionization loss is equal to the particle�s energy�

Nmax �
E�

Ec

� 
����

the number of particles is therefore proportional to the incident energy� E�� The

mean energy deposition for an electromagnetic shower can be used to calculate

analytically the depth at which a shower may occur� as a function of energy �����

D � ��	� � ��� ln
E�MeV �� 
����

where D is the shower deposition depth in centimetres� Whereas the depth of an

electromagnetic shower is quite well�de�ned� a strong interaction can occur anywhere

in a crystal� with a distribution exponential in form� characterized by a strong

interaction length� Photons with intermediate energy 
such as those arising from

�� decays� may therefore shower deep inside the calorimeter� leading to reductions

in resolution due to energy losses� Shower non�containment is therefore a pricipal

reason why energy scale calibration of the EMC detector is important�

Losses in energy can also arise from the �disappearance� of photons and

other particles through gaps in the detector� such as those found between adjacent

crystals� Energy losses such as these are a primary source of calorimeter resolu�

tion degradation� The e�ects are signi�cant in �� reconstruction� where asymmetric

Gaussian peaks are found to result�
Figure ��	�� The formation of �low�side tails� are

a notable feature of these mass resolution plots� which are caused by the folding to�

gether of two asymmetric photon lineshapes� Noise in the electronic readout system�

the nature of the cluster�forming algorithms used� shower containment� transverse
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energy losses� calorimeter granularity and crystal performance ultimately have a

bearing upon this energy�shifting e�ect�

Figure ��	� �� reconstruction detailing a shifted asymmetric peak

So� for a CsI
Tl� calorimeter and neutral pions with an incident energy

of � GeV� the typical decay photons will produce a shower of  � particles� at

a depth of  �cm� A resultant shower of charged particles may also undergo

multiple Coulomb scattering� for which much of the transverse spread in the shower

development is contained within a circle of area �R�
M � where RM is de�ned as the

Moli$ere radius� and is equal to the right hand side of equation 
 �����X�� where

E� � �� MeV�

��� CsI�Tl� Crystals and Module Construction

Groups from UK universities and RAL are responsible for all aspects of the

design� construction� installation� commissioning and operation of the EMC endcap�

The BaBar group at Manchester is responsible for the construction of � of the �
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endcap modules� This work involved crystal quality control and quality assurance

procedures� in ensuring that the crystals had the correct uniformity and light yield�

Visual and dimensional inspections of each crystal were also undertaken� as precise

tolerances 
 ���m� in the sizes were required for crystal module installation�

Since the light output of a crystal should be uniform along the length of the crystal�

great care has been taken to ensure that the crystals have been �tuned� to produce

a uniform light output� Crystal QC therefore involved scanning for light response

uniformity along each crystal� using a collimated Na�� radioactive source under

remote computer control� The light output was measured by a PMT at the base of

the crystal� All data had to be within the required envelope� a deviation of not more

than �# from a standard reference crystal� Figures 
 ���� and 
 ���� show a typical

CsI crystal and the cross section of a module�prepared crystal� Crystals which met

Figure ���� A CsI crystal

these speci�cations were wrapped in three insulating layers of Tyvek� Mylar and

aluminium foil� to increase di�use re�ectivity and to provide r�f� shielding� ready

for module insertion� They were then cabled for preamp electronics and �bre�optic

calibration 
�gure ����� before �nal shipment to SLAC�
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����� Handling Crystal Data

The development of a shower inside of an individual crystal is essentially

a random phenomenon� Photons scattering in the trapezoidal geometry of a crys�

tal renders the process as intrinsically non�uniform� so that the light output as a

function of position along the crystal is non�linear� When a particle passes through

the scintillating material of the crystals� photons are produced uniformly within a

certain spectral range� For each crystal� these photons are collected by two indepen�

dent Hamamatsu photodiodes which produce electrical signals� These signals are

ampli�ed by a pre�amplifying circuit� and are then inputted to ADC�s which digitize

the data for further analysis� Each of the ��� crystals has its own trigger readout�

For an event rate %� an instrument with dead time t can only measure a fraction f

of the Poisson distribution of events�

f �
�

� � %t
� 
��	�

During an experimental run� as the calorimeter trigger cannot handle all of the en�

ergy and time�of�deposition �feature extraction� information in the short timescale

that events take place� smaller regions of crystals in � � � blocks or �towers�� are

summed in sectors of phi� Using this method� shower depositions overlapping many

crystals are summed over quickly and e�ciently� reducing the complexity of a po�

tentially di�cult problem� Maps are then produced to describe the total energy

depostion in the calorimeter� The information can then be passed to the Global

Trigger� which also receives information from the other components of the detec�

tor� for �nal decision making� In this way� calorimeter information corresponding

to potentially interesting events can be processed �in situ� as part of Online Event

Processing 
OEP�� for further analysis�
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����� Calorimeter Objects

All simulated crystal digitisations are stored as objects called hits� for ma�

nipulation by the EMC reconstruction software� These can be formed into further

objects known as digis� clusters and bumps� A cluster is a continuously connected

region of energy deposits in contiguous crystals� where each energy deposit has at

least one neighbour� and one crystal has a deposition � � MeV� A bump is de�ned

as a local maximum of a cluster� The position of a local maximum is equivalent to

a bump�s centroid� and the neighbouring crystals must have less than half of the

bump�s total energy� These objects comprise the �raw� data which can be used for

studies involving analysis� monitoring and calibration�

Figure ���� Module construction

��� Calibration and Performance Monitoring

Throughout the projected � year life of the BaBar experiment� less than

one CsI
Tl� crystal and it�s associated electronics readout and DAQ chain is required

to fail� To attain this goal� a systematic programme of monitoring and calibration

studies will be implemented during start�up� commisioning and throughout the du�

ration of the experiment� It is anticipated that a large amount of time will be
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spent in progressing through the calorimeter studies �learning curve�� in ensuring

that progress can be made in the understanding and evaluation of the di�erences

between the simulated studies� and the response and performance of the actual

detector�

Considering the high radiation environment in which the crystals will have

to operate� degradation in the performance of both the crystals and optical joints

is to be expected because of radiation damage and ageing� Results from radiation

tests on crystals have indicated that the loss of light is insu�cient to degrade the

energy resolution of the calorimeter� Changes in e�ective light yield and in the

uniformity of the crystal response must still be monitored precisely� however� if the

energy resolution is to be maintained�

At intermediate energies� the calorimeter is e�ectively self�calibrating� us�

ing physics processes involving photons� Although� the �Calorimeter Calibration

Task Force� ���� have argued that these are not always the simplest and fastest

methods of keeping track of variations in response over the whole energy range� The

task of monitoring crystal gain changes over short periods of time has been accounted

for in the novel introduction of a light pulser system to the baseline design�

����� The Light Pulser Monitoring System

Monitoring is essentially a complementary procedure to calibration� The

two processes may act in tandem� The changes in the response of the system can

be monitored� and those changes can be used in the correction and compensation of

those variations� in the determination of calibration constants 
�gure �����

In between calibration runs� the relative performance of all of the crystals

will be monitored continuously with a pulsed �bre�optic system� This consists of a

number of Xenon �ash lamps arranged such that light pulses are passed via �bre

bundles and �lters into the rear of each crystal 
�gure ����� The light pulser system
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is designed to take data over a short timescale� enabling monitoring to take place

continuously� with a precision of less than ��# on a pulse�to�pulse basis� In this

way� the e�ects of gradual drifts in individual crystal constants can be elucidated�

when the light�pulser system data is compared to other calibration and monitoring

tools� Calibration constants derived from the �� invariant mass method will not be

derived within a timescale fast enough to track crystal changes� This method may

evaluate long�term gradual changes in the overall response of the calorimeter� A

fast response to the changes in relative crystal constants is therefore possible with

the pulser� The diagnosis of problems relating to the following e�ects of�

� radiation damage

� changes in uniformity and light yield from temperature and humidity �uctua�

tions

� deterioration in the optical properties of joints

� photodiode adhesive crazing

� ion absorption

� wrapping re�ectivity changes

will also be accessible�

����� Radioactive Source and Electronic Calibration

Because of the importance of very precise calibration at low energies� a

technique involving the pumping of a short�lived liquid radioactive isotope� around

the front faces of the crystals has been developed� The decays of the isotope �	N

to the excited state �	O produces a source of ��� MeV photons� su�cient to secure

the sensitivity to photons down to � MeV� The radioactive source calibration can
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only be performed with no beam present� but may provide a calibration point with

a precision better than �# within �� minutes�

Advances in crystal growing techniques� electronics development and me�

chanical design have enabled an overall improvement in the BaBar EMC� over earlier

designs� Electronics calibration can be achieved by linearization of the response of

the front�end electronics� A preset charge injection is used to derive corrections from

a comparison with the peak ADC and pedestal sample� before �ltering and scaling is

performed� from source or Bhabha calibration data� The resultant corrected values

are then stored for each ADC channel� as ���bit integers in a lookup table� These

crystal gain constants are then available for use in feature extraction� trigger en�

ergy summation� and for adjustments during reconstruction� In this way� incoherent

noise in the electronics can be reduced to approximately �� KeV for each crystal�

during physics runs involving intermediate energies� Due to the ine�ective nature

of the �� photon calibration at energies lower than � MeV� the use of a radioac�

tive source will be essential in determining crystal response at the low energy scale�

Measurements taken at this scale will enhance reconstruction e�ciency and provide

invaluable low energy calibration data�

����� Colliding Beam Calibration Events

Absolute calibration using physics processes essentially involves the mea�

surement of the behaviour of the system to particles of known energy� type and

spatial position� Energy response to known stimuli like the above are used to pro�

vide a greater understanding of the physics signi�cance of the event data� and to

enable the detector to be optimized for subsequent data�taking� Calibration meth�

ods frequently employ �tting or iterative procedures� which allow the response of

the detector to be used in the elucidation of crystal calibration constants� For simu�

lated events� calibration constants provide data which can be analysed to determine



	 CHAPTER �� THE ELECTROMAGNETIC CALORIMETER

the e�ects of detector geometry on physics results� Both staggered and �saw tooth�

crystal arrangements� and extra material have been investigated� Corrections have

then been derived for �� events� High yield non�radiative Bhabha events 
e�e� �nal

states� are a good example of how clean physics events are used����� For a range

in energies of �� GeV up to ��� GeV� data�sets from direct �
	s� decays to e�

and e� are obtained� These can be utilised in the extrapolation of an appropriate

calibration energy scale� and to aid in the interpretation of temporal gain changes�

Other physics events including radiative Bhabhas� ���� various D�meson signals and

of course� �� diphoton decays provide similar methods to the above� Each of these

examples is used primarily to calibrate at intermediate energy scales� Moreover� the

diverse nature of these events ensure that useful cross�checks and comparisons of

the full detector response can be made�

Since the minimum accepted polar angle is ��� seven rings at the rear

barrel can be calibrated only using single Bhabha positrons and electrons� Beyond

this acceptance� shared electrons must be utilised� The innermost instrumented

endcap ring cannot be calibrated at all� however� with Bhabhas or any other physics

events� For this reason� and because of the high radiation environment expected�

the innermost ring of crystals has been replaced with blocks of carbon �bre in the

�nal constructed endcap�
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Figure ���� Cross section of a CsI
Tl� crystal� 
�� Tyvek� 
�� spreader plate� 
��

metal enclosure for pre�amps� 
	� brass backplate� 
�� optic��bre guide� 
�� cooling

pipe� 
�� insulated pipe holder� 
�� stando�� 
�� PIN photodiode� 
�� Al foil� 
���

Mylar�
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Figure ���� The Light Pulser System



		

Chapter �

Software

��� Software

C�� is a highly versatile and robust industry standard programming lan�

guage� It has many distinct advantages over problem�oriented languages such as

FORTRAN� and is well suited for the development of large projects involving many

users� The capability of using Object Oriented Design methodologies allows for

greater �exibility over previous languages� including ease of code re�use� which in�

creases e�ciency and shortens code development time� C�� was initially devel�

oped as a superset of the C programming language called C with classes� by Bjarne

Stroustrup at AT & T Bell Laboratories in ���� ����� The name C��� or �the in�

crementation of C by one unit� aptly implies an evolution in C� which has a similar

syntax�

����� The BaBar Framework and OOP

The power of the Object Oriented Programming 
OOP� style supported

by C��� was instrumental in the decision to adopt it as the preferred language for
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BaBar� The experiment will be the �rst in High Energy Physics to use C�� at the

data acquisition� reconstruction and analysis stages� Object Oriented Programming

advocates three methods of structuring programs�

� procedural programming

� data abstraction

� modular programming

Procedural programming involves logical procedures� and the implementation of the

best algorithms to perform required tasks� Data abstraction methods are based

upon the provision of user�de�ned types and a full set of operations for each type


i�e de�ning complex numbers and �nding their moduli�� Modular programming

places emphasis on data organisation and related procedures� which are grouped

into modules� The latter style is predominantly used in the BaBar Framework� of

which the basic unit is the module� A module contains code which takes various

data from events� runs speci�c algorithms� and returns results for later analysis�

The module used to perform photon energy calibration using �� decays

functions in exactly the same way� Initial calibration constants are extracted from

a �le� and are used with all measured photon energy values from events to �nd

the true position and minimum width of the invariant �� mass peak� Algorithms

that �nd and shift the peak using iterative procedures are then employed� alongside

many more that perform tasks such as spline interpolation� neutral cluster isolation

and background �tting� Finally� the minimization of the likelihood function of the

calibration procedure results in the output of analysed histograms and a �le of

derived correction coe�cients for every energy bin of photons� The calibration

module is described in greater detail below�

One of the main features of C�� is the class� an idea borrowed from the

earlier Simula �� language� A class is similar to a structure in C� The creation of
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a class� with appropriate member functions and data members enables objects to

be de�ned such as clusters and bumps� which are variables of user�de�ned type�

The framework consists of a set of such classes� that provide a structured inter�

face between code which performs di�erent tasks and allows for code re�use between

subsystems through inheritance� Examples of tasks which are provided by the frame�

work package are calibration� input and output of events and management of the

event processing loop� Knowledge of the arcania of C�� is therefore kept to a mini�

mum for users� since speci�c solutions are already provided for coding environments

such as reconstruction� OEP and analysis�

����� BaBar Computer Simulation

Extensive studies have been performed using computer simulations of the

BaBar detector performance� in reducing background and measuring physics chan�

nels of interest� These have been carried out using two di�erent simulation packages�

ASLUND and BBSIM� The former is a fast Monte Carlo� while the latter is a de�

tailed simulation based upon the GEANT package developed at CERN� ASLUND

consists of two main components� an event generator and a parametric simulation

of the detector to provide particle calorimetry� particle identi�cation and charged

tracking�

The package BBSIM was used extensively throughout this investigation of

background reduction in the energy calibration procedure� It comprises a descrip�

tion of the detector geometry and the capacity for full simulation of the range of

interactions expected within the detector� Detector response and subsequent anal�

ysis are studied using generated events� which are stepped through the simulated

detector� In determining EMC calibration response to photons of varying angle and

energy� neutral and charged particles are interacted with a subpackage representing

the calorimeter� Positions and depositions within the barrel and endcap� which are
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modelled as a non�segmented cylinder of caesium iodide� are registered as hits in in�

dividual crystals or blocks� In the real detector� these interactions will be registered

as digitised signals from the crystal readouts� called digits�

All possible physics events of interest have been simulated and stored as

�mock data� �les on tape for ease of analysis� These �les are known as BEAST


BaBar Event Analysis Summary tapes�� They are produced when BBSIM outputs

�les to the BEAR software package� These tapes will eventually be replaced with a

repository to store the data from real events�

����� Reconstructed Data

Data from the simulation is used to reconstruct physics events� The input

to EMC reconstruction consists of a list of crystals� with each single crystal having

an energy above a threshold of �� MeV� The energy in a given crystal is processed

online� This means that individual crystal calibration constants 
from for example�

Bhabha colliding beam calibration events� are applied during online event process�

ing� Crystal geometry data� charged track� IFR� DIRC and event vertex information

are additional data needed to fully reconstruct events�

The EMC reconstruction uses geometry �les to reconstruct digis from hits�

clusters from digis� bumps from clusters and other related objects� A shower energy

calibration is available in reconstruction based on Monte Carlo studies� Since crystal

shower calibration constants are already applied during reconstruction� the module

EmcCalPi� has been implemented using �unreconstructed data��� The package Em�

cReco contains some classes which provide clustering and bump �nding algorithms

in a manner similar to the above� However� no energy calibration corrections are

applied at this stage�

�The term �unreconstructed data� will be used to describe the data which does not include this
shower energy calibration� but which does include single crystal calibrations�
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To observe the e�ects of these calibration corrections� the package BetaUser

was used to reconstruct �� decays to two gammas� This was originally done using

the release ������ a corrected and updated beta version of earlier releases� The ac�

quisition of reconstructed data from the tape storage silo onto a tape suitable for

reconstruction running� or �staging� had to be done before any compiling or linking

of the code could take place� The �tcl module control script� which activates certain

modules and also subdetector components in the package� was used to provide a

pointer to a �le� electrons�xdr� This contained a link to the original �le staged to

disk� The �le contained �� � �� decays with �� momenta in the range �� � p

� �� GeV� of the Mock Data Challenge set of events� After the correct tape had

been staged� the module� including the �le MySampleBetaAnalysis was compiled

and linked ready for running�

MySampleBetaAnalysis is a prototype �le that users can modify in order

to do their own analysis� Figure 
 	��� shows the di�neutral spectrum for �
	s��
B� �B� � Q �Q � background events� These histograms indicate the presence of

a large background� caused by the neutral cluster�merging algorithm used in the

BetaUser analysis� An invariant mass peak close to that of the �� can be seen for the

Monte Carlo di�neutral match� which takes the Monte Carlo truth energies of neutral

clusters and bumps� and forms neutral candidates from all pairs� Combinatorial

background due to the presence of noise and wrongly combined pairs can be seen

below the small peak� No peak was distinctly observed for the compared di�neutral

spectrum� For the histogram of �gure 
 	���� only di�neutral combinations were

selected� The cuts placed were ��� � m�� � ��� GeV� This histogram of the total

number of entries versus the invariant mass of the two gammas clearly shows an

invariant mass peak which is close to the �� invariant mass� This was formed by

combining neutral clusters over all energies� Better cuts would increase the e�ciency


table 	��� and would help to eliminate the observed background� resulting in a well

de�ned peak�
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The next step taken was to determine the number of clusters and bumps�

which are split clusters� formed at di�ering energies� This would enable one to

determine the number of individual clusters and bumps expected at certain energies�

and could prove useful in rejecting clusters and bumps that constitute background�

These should not be included in the iteration over neutral candidates� First� a

pointer to a function which accessed an array of objects as cluster energies was

included in the code� These cluster energies were then looped over for � events

and �nally binned for the number of single and paired clusters formed over the

energy interval �� to �� GeV� The resulting cluster energies were appended to a

log� and are shown in table 
 	����

It can be seen that the number of clusters formed by the two dimensional

clustering algorithm decreases with increasing energy� This could be explained by

the behaviour of the clustering algorithm� or because there may really have been

fewer clusters to begin with�

The way in which clusters are formed from individual hits in the calorimeter

involves a summing of crystal blocks� with the total number of blocks being summed

varying as a logarithmic function of energy� Of the order of 	 blocks are summed

at an energy of �� MeV� rising to �� blocks for energies of the order of several

GeV� A cluster in this context is de�ned as that region in which the total energy

deposition � � MeV� Summing over contiguous neighbours� which must not be

isolated bymore than two blocks from the main deposition� can then give the position

of highest energy deposition� The relative positions of clusters are then adjusted

from the centroid using a weighted mean and crystal penetration depths and lateral

adjustments calculated� This feature of the clustering algorithms has particular

importance for the angular resolution of clusters found in the endcap�

Histograms of the total number of bumps and clusters were then produced

for � � �� events 
�gure 	���� The number of bumps and clusters produced were

found to increase with energy to a maximum� and decrease accordingly� At higher
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energies�  	 pairs of clusters were seen� The total number of entries where no

clusters were found was about �� Again� with energy increasing to the right of

the histograms� � entries with no bumps were found� Over � single bumps and

under � bump pairs can also be seen�

These e�ects can be accounted for if the merging of clusters 
at higher

energies� is considered� At higher energies� the number of cluster pairs found is

lower than the number of single clusters� These single clusters have an increased

probability of being separated to form bumps� With increasing energy and greater

shower production� paired bumps are at a maximum� More bump pairs than singles

can be seen� because both decay photons are individually resolved as bumps� or

localised energy deposition maxima� at higher energies� Above � GeV� these photons

are from �� decays� Single bumps may correspond either to blocks that contain two

unresolved photons� or to photons that have to be combined into pairs�

The exercise in manipulating reconstructed data and in using the package

BetaUser provided familiarity with the framework� and served to clarify further the

nature and action of the cluster�forming algorithms� However� to fully investigate

the energy calibration procedure it was necessary to use the �unreconstructed data��

The module EmcCalPi�has been implemented with the class EmcMakeABsCalPi�and

can be used for such a task� with useful classes available from the module EmcReco�

��� The Calibration Module

From the equation for the invariant mass of two photons 
 ������ the un�

calibrated � energy has the following relationship

� � f
E� ��E 
	���
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which enables the observed photon cluster energy depositions to be corrected� using

a searched for calibration function� The calibration function

�

m��
� f
E� �� 
	���

has the explicit form

f
E� �� � exp
A� �A� lnE �A� ln
�E �A� cos � �A� cos

� � � � � ��An�� 
	���

To illustrate how the calibration function may correct the measured invariant mass�

consider a correction factor equivalent to f
E� ���

�

'
� m�� 
	�	�

��MeV

��
� m�� 
	���

where � is the uncorrected � energy� ' is the correction factor andm�� represents the

corrected � energy� For example� in equation 
 	��� if the observed photon energy

deposition is �� MeV� then a correction factor of �� is clearly needed in order

to calibrate the uncorrected energy � to the corrected �� mass� The calibration

function is e�ectively used to �t an asymmetric lineshape or trendline to the peak�

It is a polynomial function� logarithmic in powers of energy and theta angle to order

n�

����� The Calibration Method

The initial set ofAi are called the distortion coe�cients� values for these are

estimated before the procedure of peak iteration and adjustment takes place� After

succesive iterations� the Ai
� become correction coe�cients� These are saved to a

separate �le EmcCalPi��const and are used for the next peak iteration� Calibration

takes place through the minimisation of the likelihood function 
 	���� When this

�Where the subscript i are integers� Ai  A�� A�� A�� A� � � �



�� CHAPTER �� SOFTWARE

has been achieved� the true position and width of the �� mass peak can be found�

The likelihood function for the calibration procedure can be written in the following

form� where minv�j
� is equivalent to m�

�� in equation 
 ����� and m� is equivalent to

m��� the mass of the �� peak�

L �
NX
j��

�
�
�

�
lnm�

inv�j � lnm�

	�

	���

The �rst auxilliary variable becomes equation 
 	���� Proceeding in this way� auxil�

liary variables can be de�ned 
equations 	��� 	�� and 	��� for the elements of the

minimization matrix 
 	�����

	�j � � 
	���

	�j �
�

�

lnE�j � lnE�j�� 	�j �

�

�

ln�E�j � ln�E�j�� 
	���

	�j �
�

�

cos ��j � cos ��j�� 	�j �

�

�

cos� ��j � cos� ��j� � � � 
	���


j � ln



� m�q

���j��j
� � cos �j�

�
 
	���

For the above auxiliary variables� the terms inside brackets correspond

to observables� as measured by the electromagnetic calorimeter� In the EmcCalPi�

calibration module� algorithms are used to return con�dence levels for an observation

to be consistent with a given particle hypothesis� In this case� the observables

correspond to the energy depositions and angles for each pair of photon clusters

when all blocks are iterated over by the clustering algorithms� This method allows

each cluster to be paired and combined with all of the other clusters� The invariant

�� energies are binned by energy� for the number of entries produced� Interpolating

the photon lineshape for individual energy bins with splines is also more manageable�

as the peak has been divided�

Each observation gets manipulated as a list of objects in an array� C��

operations de�ned on these objects can then be used to �nd the most probable

�The index j labels the j�th pair of the photons� clusters
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peak position� the position of the �rst �lled energy bin and the maximum of the

peak� for example� The code has been structured such that incrementation� operator

overloading and matrix operations 
as de�ned in the CLHEP class library of useful

HEP classes� are facilitated to perform these tasks accurately and e�ciently� The

auxilliary observables are de�ned as follows�

� E�j is the energy deposition of the �rst cluster for the jth pair of the photon

clusters�

� E�j is the energy deposition of the second cluster for the jth pair of the photon

clusters�

� �j corresponds to the space angle between both clusters in the j
th pair�

� ��j and ��j are the � angles of these clusters�

Using equation 
 	���� the partial derivative of � with respect to A� is

��

�A�

�
�f
E� ��

�A�

E � f
E� ��E � �� 
	����

and the partial derivative of m�
inv�j with respect to A� is also

�m�
inv�j

�A�

� �

�
���j
�A�

��j � ��j
���j
�A�

�
� 
� � cos �j� 
	����

� �
��j��j � ��j��j�
�� cos �j�� 
	����

Partially di�erentiating the likelihood function L� with respect to A� gives

�L
�A�

�
NX
j��

�
�
�

�
lnm�

inv�j � lnm�

	� �

�m�
inv�j

�m�
inv�j

�A�

� 
	��	�

The maximum likelihood estimate says that this gradient is zero

�L
�A�

�
NX
j��

�
�
�

�
lnm�

inv�j � lnm�

	 � �m�
inv�j

m�
inv�j

�  
	����

Using the auxilliary variables and equations 
 	��� and 	���� the maximum

of the peak and its width for each succesive peak iteration� using all photon clusters
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are calculated� Some typical values after one calibrative iteration for the minimised

likelihood are given in table 
 	����

L	kj �  
	����

NX
j��

�
�

�
lnm�

inv�j � lnm�

	
	kj �  
	����

Although the re�positioning of the peak is usually precise� the width was frequently

not optimized to be at its narrowest� As a result� the likelihood values were only

found to equal zero on a small number of occasions� within small errors� In min�

imising the Likelihood function� one has to solve the symmetric matrix of linear

equations for the searched coe�cients� Ai��
BBBBBBBBBB�

G��� G��� G��� G��� G��� � � �

G��� G��� G��� G��� G��� � � �
���

��� � � �

G��� G��� G��� G��� G��� � � �

� � � � � �
� � �

����������������

����������������

R�

R�

���

R�

���

�
CCCCCCCCCCA
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such that the Rk have zero as the values of their solutions

Rk �
NX
j��

	kj � 
j �  � k 
	����

This is done by diagonalizing for the gradients G� given by

G �
�Rk

�Al

�
NX
j��

	lj � 	kj 
	���

where
�
j
�Al

� 	lj � 
	����

The procedure involves the following steps�

�� Initial values for the Ai are estimated�

�� The Rk� using the auxilliary variables and other relations given above are

then calculated� If their values are all equal to zero to within errors� then the
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function has been correctly minimized� If the Rk are not all equal to zero�

then the gradient� G must be calculated� To do this� the Ai are perturbed by

a small amount Ai � Ai � � during iteration�

R then becomes�

R� R �

�
�Rk

�Al

�
�l� 
	����

For the Rk to again equal zero then R�G� � � because � � �G��R and R � �G��
If Rk 
�  at any particular step� then this procedure is repeated continuously until

all of the Rk � � The resultant perturbed values of the Ai are then used to calculate

the new Rk� proceeding again from step one�

����� Iterating the �� Mass Peak

Iteration involves a method by which an initial estimation is given for a

value� which may be inaccurate to start o� with� Better and better approximations

are then computed until the solution is converged upon with the desired accuracy�

The quality of the iteration method can be speci�ed by the speed of its convergence�

Typically� the �� peak has to be iterated � or � times before acceptable peak po�

sitions are found� Figure 
 	�	� shows the results of the iteration procedure after

some iterations� It can be seen that the uncalibrated peak position 
solid line� has

been shifted further to the right 
dotted line� after calibration� closer to the correct

invariant mass point� The machinery described in the previous section has been

used to �pull� the �� mass peak closer towards to the proper place� As will be de�

scribed later� CLEO�II do not shift to ��� MeV because this overshifts the gamma

energy peaks 
due to the asymmetric tails�� CLEO�II aim to get the mass peak

in the wrong place but by the right amount� Conversely� BaBar are aiming to get

the mass peak in the right place by the �correct amount�� but instead are gaining

an �incorrect amount�� Some of the code implemented to do this contains standard

procedures� which have been written previously in FORTRAN for the CLEO�II ex�
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periment� Essentially� the basic premise of the entire calibration procedure rests

upon the fact that the energy input does not equal the energy output� Iterating the

invariant mass histogram peak back to ��� MeV remedies the problem because

ln

����� m��

minv�
��

������  
	����

is set as close to zero as possible� A �t to the photon lineshape given by the coe��

cients of the correction function must be varied until they approximate the expected�

rather than the measured lineshape� Because the formula for the correction function

will only give exact numerical solutions in all but the simplest of cases� 
when many

of the coe�cients are zero� then the approximation method of iteration must be used�

The Gaussian �t to the once iterated peak of �gure 
 	��� which agrees to within ���

# of the proper invariant mass value� did not match the asymmetric� skewed peak

well� In the EmcCalPi� module code� a better calibration �t is performed when the

best �t is found� using the member function EmcMakeABsCAlPi���fitPoly��� and

the peak parameters� Protected member function EmcMakeABsCalPi� ��BestPeak

loops over all possible peak positions and includes the searched�for minimum likeli�

hood values� it takes as its arguments the parameters�

int Nbin number of energy bins in the histogram

double Hbin bin size

ksi� centre co�ordinate of the �rst bin in the histogram

nP width of the peak region in bins

nHist array of histogram accumulators for the bins

The peak itself is shifted using the member function PeakShift��� This takes similar

arguments and also returns the values of  or �� for peak parameter��nding success

or failure� after the relevant operations have been executed�
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����� Spline Interpolation

Other member functions are supplied in the class EmcABsCalPi���smooth���

which includes the spline interpolation procedure for the correction coe�cients� Cor�

rection coe�cients are obtained with greater accuracy if a good �t to the lineshape

can be obtained� Spline interpolation� or sectionalised polynomial interpolation in�

volves the dividing of the lineshape into separate bins� If the lineshape for the peak

is considered to be a continuous function f 
x�� then this can similarly be divided

into subintervals with common endpoints called nodes��	�� If these partitions are

then regarded to consist of polynomials� then the function f 
x� can be approximated

even for polynomials of high degree n� by the subinterval functions g 
x��

Therefore� f 
x� is not approximated by a single polynomial over the entire

interval� but instead by n polynomials� This method is generally more stable� and

does not exhibit oscillatory behaviour as much between nodes� The reason for this

increased quality of interpolation is due to the presence of continuous �rst and second

derivatives everywhere in the intervals� Quadratic interpolation splines� where each

polynomial partition has a degree of not greater than �� have been used for several

grouped terms of the correction function� for both the peak and the background

intermediate regions�

����� Simplex Minimization

A simplex is an object in n dimensions� consisting of the lines that connect

n � � points� For a non�degenerate simplex� none of the lines exist such that they

are collinear� A simplex of this form therefore encloses a �nite n dimensional space

or volume� Examples are a � dimensional triangle and a � dimensional tetrahedron�

Choosing one of the n � � points as the origin� the n lines which originate from

that point de�ne vectors that span the n dimensional space� For the purposes of

calibration� one would like to minimize the likelihood function L for the contents of
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the bins� This is equivalent to minimizing the �� of Poisson�distributed events� which

is a discrete frequency distribution that gives the probability of events occuring

within a �xed time interval� The method for minimization of the likelihood� as

de�ned in the code� again employs a numerical procedure for the incrementation of

parameters which specify the �chosen points�and associated vectors�

�� Start with an initial guess V�� and increment the vector sizes in each dimension�

ei� This de�nes the simplex� where all of the vertices are speci�ed by

Vi � v� � ei 
	��	�

�� Carry out a series of incrementations that transform the simplex by expansion

and contraction in n dimensions� These can also include a group of transfor�

mations which re�ect the largest function value through the opposite face of

the simplex� Under re�ection� the new point is kept if the function value is

reduced� The simplex must be expanded if� under both re�ection and expan�

sion� the function value at the new point is the smallest of all of the points�

For both re�ection and contraction� a smaller incrementation is used in the

direction of function value increase�

�� After a combination of these tranformations� the simplex may eventually en�

close a minimum and contract around it� This can occur until the function

value within the simplex is minimized�

����� Calibration Module Details

Other code is used to provide for logarithmic energy corrections� direct cal�

ibration operators�� statistical error calculations� and for manipulation of auxilliary

matrix elements and vectors�

�A CalD dot operator has been de�ned� The application of this to cluster and bump energies
and angles enables the results of the calibrative procedures to be immediately plotted in histograms
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The above member functions of the classes EmcMakeABsCalPi� and

EmcABsCAlPi� de�ne algorithms which are fundamental to the requirements of the

background reduction investigation� Prominent examples of calibration function�

ality are provided by the separate �tting of the background with an exponential

polynomial function� and of the peak with a bell�shaped Gaussian curve� Here� the

parameters are incremented such that the background is carefully excluded from the

peak �tting region� Charged tracks� bump matching and neutral cluster isolation

algorithms are given with the detector geometry of the endcap and barrel specially

de�ned� so that charged track positioning and vertexing can be compared to the

angular positions of clusters and bumps�

����� The Calibration Database

The BaBar Calibration System is a toolkit of classes designed to imple�

ment calibration� It is not a framework like the o(ine reconstruction and analysis

frameworks� but provides tested interfaces and implementations for developers to

use� It divides the calibration procedures into a series of logical steps� and it is

versatile enough to be used for processes like electronics calibration and Prompt

Reconstruction� Included in the toolkit are classes to facilitate database storage�

calibration data retrieval� the comparison of calibration constants and the modi�ca�

tion of calibration data� Although the module EmcCalPi� used in the the �� calibra�

tion procedure for unreconstructed data does not utilise this toolkit� the calibration

constants produced by the process can ultimately be placed into a database based

upon the Calibration System� This database has been implemented by D� Brown of

LBL and has been optimized further for �� calibration data by P� Strother� in the

introduction of a new calibration class EmcCalibrator�

It is divided into several packages for dual� o(ine and online use� The pack�

age BbrCalib is an example which contains most of the base classes used throughout
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the calibration system� The system can operate by storing the calibration constants

in a database� CalDatabase which de�nes the base classes for the storage of calibra�

tion data� Before this happens� the correct data has to be extracted and analysed�

C�� objectivity provides an e�cient method of performing this procedure� because

calibration data is irreplaceable once lost� and any subsequent analysis is essentially

meaningless if the objects have not been properly calibrated� In this way it is possi�

ble for a user to apply the correct calibration procedure� such as energy calibration�

to physics data� The user can then choose which set of calibration coe�cients and

which data to �nally use�

Any calibration constants measured at a particular time� that have been

found to change over a certain timescale can be stored safely in the database�

The correct calibration data can then be used in a future analysis� The module

EmcCalPi� does not output any calibration correction coe�cients directly into the

database at present� but could be modi�ed later to provide real� not Monte Carlo

simulated data calibration� Currently� energy calibration constants for use in recon�

structed analyses are outputted to the database from Bhabha physics events� With

real physics data� a direct interface for calibration coe�cients to be inputted to the

database for �� calibration runs� perhaps using the Calibration System would prove

to be advantageous�
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Figure 	��� Dineutral spectra for BetaUser analysis

�� Invariant mass cut E�ciency

��� GeV � M�� � ��� GeV ��

Table 	��� �� invariant mass cut and e�ciency
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Figure 	��� �� invariant mass peak from combined neutral clusters
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Cluster energy range Total number of clusters formed

� GeV � energy � �� GeV 	�

�� GeV � energy � �� GeV ��

�� GeV � energy � �� GeV ��

�� GeV � energy � 	� GeV �

	� GeV � energy � �� GeV �

Table 	��� Number of clusters formed

Figure 	��� Number of clusters and bumps found in reconstruction
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Minimum likelihood estimation Value of likelihood at minimized point

��� �����	�

��� ����

Table 	��� Typical likelihood values

Figure 	�	� Shifting the invariant mass peak
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Figure 	��� Results for one iteration of the peak
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Chapter �

CLEO II and Crystal Barrel

Calibration

��� Calibration of Crystal barrel and CLEO II

The idea of constraining the �� mass peak using the energies of pairs of

photon clusters is not new� The experiments CLEO II� Crystal Barrel and OPAL

have all utilised this particular technique���� ���� to calibrate their electromagnetic

calorimeters� A review is given here of the methods used in the electromagnetic

calorimeter energy calibration of both CLEO�II and Crystal Barrel� whose EMC�s

have very similar speci�cations and designs to that of BaBar�

����� CLEO�II

The CLEO�II experiment has similar goals to BaBar� It aims to make

measurements of many of the CKM matrix elements� and to provide useful data on

aspects of B physics� It�s EMC has a barrel and endcap section containing ��

CsI
Tl� crystals� with a prominent di�erence from BaBar arising due to the layout
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of the endcap crystals� These are not organised radially into modular units� but are

structured into columns and rows by quadrants�

At energies of  � GeV� photons are calibrated by constraining Bhabha

showers to the beam energy� Below � GeV and down to approximately �� GeV�

photon energies from radiative QED events are analysed� For this energy scale� use

was made of the fact that for radiative events� the photon energy can be constrained

from the angles and track momenta� Deviations for various physics events were found

to be consistent with one another� and amounted to a small correction at the ��#

level� The energy scale below � MeV has been calibrated using both ���s and

��s� The ���s cannot be used to calibrate using the same methods as for radiative

QED events because not every �� candidate is real� and there are two photons per

��� The calibration is therefore done on a statistical basis� so that both constituent

energies are accounted for� CLEO have adopted a convention whereby����

�the peak energy should be at the true incident photon energy��

In e�ect� the CLEO calibration approach aims to provide an incorrect value for the

mass� but with the discrepancy being correctly accounted for by the data and Monte

Carlo comparison�

Again� because of the e�ects of the clustering algorithms� electronic noise

and photon shower leakage CLEO have found that the �� photon lineshape is asym�

metric about the peak� with an e�ciency related low�side tail� They have observed

that even for perfectly calibrated photons� the �� mass peak will be found at a

position below the expected mass of the ��� Although the photon peaks may be

accurate� the low side tails cause the �� mass to peak below nominal� CLEO have

noted that because the tail varies with energy� the extent to which the �� mass peak

is found to be below the nominal energy is governed by the energies of both photons�

These are termed Elo and Ehi�

As a consequence� CLEO have performed the �� calibration using the fol�
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lowing steps�

�� Use the Monte Carlo data to generate a � dimensional grid� in Elo and Ehi

bins of expected �� masses for perfectly calibrated photons� This grid shows

a discrepancy in the �� mass peaks from �� to �� MeV below the nominal ��

mass� resulting from the photon energies�

�� Prepare �� mass histograms from the data for each Elo� Ehi bin� The cuts

on selecting candidates are used to maximize the probability that the photon

shower is not overlapped by any other showers� and that the neutral showers

are isolated away from tracks and have lateral shape consistent with photons�

�� Fit each � dimensional bin with a curve matching the expected photon line�

shape� using a polynomial background and the peak as a free parameter� This

produces � dimensional grids containing the expected and measured �� masses�

	� Extract from the data and Monte Carlo comparison the photon energy correc�

tion factor� using the measured and expected masses�

The CLEO II collaboration managed to achieve an absolute energy calibration�

�semi�globally� over their calorimeter to better than ��#� the �� calibration was

never done for the endcaps� An energy dependent factor was also found in the

region of � � �#� No angular dependence was observed within the barrel because

statistics were limited� the �� mass width was found to be dependent upon both the

photon energy and angular resolution�

����� Crystal Barrel

The aim of the Crystal Barrel experiment at CERN is to observe p�p an�

nihilations at rest� An array containing ��� CsI crystals has been constructed to

provide calorimetry for decaying �� �� and � mesons� Crystal Barrel�s �� calibration
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procedure� which was done once every one to three weeks� di�ered in approach to

the method used by BaBar and CLEO II�

Hits were used to calibrate the crystals on a local� individual basis� Charged

clusters were separated from those caused by neutrals by using a cut placed on cluster

size� which was found to be dependent upon energy� Cuts were applied �rst on

cluster energy� and on the number of photons observed� Events were selected which

contained no more than � photons� This was claimed to reduce the combinatorial

background�

Histograms of invariant mass were then produced for each crystal which

recorded a photon� and all mass�squared values were considered� by pairing the

measured photon in sequence with all of the other photons found in the events�

A pre�calibration� using a minimum ionizing peak method was required� So� each

crystal had a pre�calibration factor and an invariant mass peak� To save time� a level

two software trigger was used to decide on events for the calibration dataset� This

had a � dimensional look�up table� which held invariant mass� energy and space�

angular information for every possible pair combination� �� and � mesons could be

selected within a � MeV mass window�

In e�ect� the Crystal Barrel method �rst localised the peak position using

another calibrative method� The application of Chebyshev polynomial �ts to the

peaks ensured that the peaks could be iterated back to their proper places� the peak

position being largely dependent upon the pre�calibration factor determined�

The Crystal Barrel calorimeter achieved a mass resolution of �
m��� f ���

MeV� with experimental data in agreement at the lower energy scale to a �� �
p
E

dependence�
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Analysis� Results and Conclusion

��� Results and Analysis

In an ideal world� no background processes would be available to contam�

inate and mimic important physics events� and all physics analyses would have a

reconstruction e�ciency of � #� The reality is that background events are as

unavoidable as quantum uncertainty� Ways must therefore be found to e�ciently

reject� reduce or estimate background events�

The possibility of �
	s� background reduction� for energy calibration with

small datasets and hence small statistics was investigated� At present� relatively

large numbers of events are needed� to perform the �� calibration� This amount of

data has to be collected over a timescale  � � 	 weeks� The long timescale involved

means that studies of the short term behaviour of crystal response are e�ectively

excluded� However� long term e�ects resulting from radiation damage and crystal

ageing� may be noticeable from any observed long term changes in crystal calibration

constants�

�For �� calibration � � ���� events are required
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The background reduction investigation was done under the assumption

that the methods described which �nd� iterate and produce correction coe�cients

from the �� peak were already working correctly�

Two main decay modes were used to compare the performance of the cal�

ibration code� under clean and background�contaminated conditions� The modes

considered were the Mock Data Challenge BEAST tape events �� � ��� and

�
	s� � B� �B� � Q �Q � X� where X constituted background� If the background

could be reduced for the actual �
	s� run data� then the �� peaks would be de�ned

with greater clarity� and the e�ciency for ���s would be increased����� This would

allow the uncalibrated peak position to be located more precisely� leading to the

production of more accurate calibration constants�

The �rst step was to ensure that clean �� peaks could be found� Ntuples

could then be written to investigate the results and workings of the clustering algo�

rithms for the unreconstructed data� Using �� � �� data� various cuts were tried

until the best peaks were seen� The e�ciency for the production of a prominent ��

peak is determined by a cut on the �� mass� the value of which depends upon the

background level for a particular process ����� Various mass cuts were tried� and

the optimal mass peak � examples of which are shown in �gure 
 ����� was found to

occur for ��� � m�� � ��� GeV� The next step was to observe the nature and

e�ects of the cluster and bump algorithms� and to evaluate the performance of the

calibration procedure on cluster and bump energies and the photon decay angles�

This was because it was necessary to �nd out whether or not the cluster and bump

forming algorithms were working properly�

Combinatorial background can increase if an incorrect number of clusters

or bumps are summed over� because the clusters and bumps summed over should

have a strict dependence on energy� The bottom part of �gure 
 ���� shows the

unreconstructed number of clusters found at a particular energy� for the energy

range � � �� GeV� It can be seen that the total number of clusters summed
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over decreases with energy up to approximately � GeV� Beyond this point� the

distribution is roughly level� The number of clusters formed is found to be highest

below an energy of �� MeV� The greatest numbers of clusters are summed and

combined to form ���s� which have a distinguishable peak above the continuous Q �Q

background� No notable increase was seen in the number of clusters� at an energy

favourable for � meson production�

With increasing �� energies� the space angle between the two decay photons

will decrease� in accordance with equation 
 ������ This means that at lower energies�

we expect to see more individual clusters in the calorimeter� At higher energies small

space angles� � cause the photons to cause neutral showering over a smaller angular

region in the calorimeter� It is therefore expected that at higher �� energies� more

bumps will be found by the action of the bump�forming algorithms� A cluster can

begin as a CR 
connected region of adjacent crystals�� and it may be separated into

�bumps� if it contains a local maximum of energy deposition� A bump is a CR or

part of a CR that is associated with a single particle interaction� such as a photon�

����� Considering Clustering Strategies

To see whether the cluster and bump forming algorithms were working

correctly� it was decided that the number of bumps and clusters formed should be

investigated� as a function of energy� Figure 
 ���� implies that bumps are really

clusters that are merged together by the clustering algorithms� These histograms

were created using unreconstructed data� and they display how many individual

bumps or clusters� pairs of bumps or clusters and groups of three bumps or more

were found in the calorimeter� for � � �� events� The bottom part of �gure 
 ����

shows that� with energy decreasing to the left� the number of individual clusters

found at low energies is greater than the number of individual clusters found at

higher energies� The top part of the �gure is not as well understood� Although
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most of the bumps are found in pairs� as in �gure 
 	���� the reason why more

bumps are not seen at higher energy 
with energy increasing to the right of the

plot� is unclear� It could be that the � dimensional algorithm� which forms clusters

from bumps was not functioning properly in this case� or that higher statistics were

needed�

The e�ects of energy calibration on the bump energies were then checked�

The aim of the calibration procedure is not only to get the �� mass peak in the

right place�� but to correct the photon energies measured by the calorimeter� If

the mass peak is shifted to ��� MeV and the resultant photon energies are found

to be incorrectly calibrated� then perhaps the correct peak position is that which

determines the actual mean� mode or median of the photon energies� The ratio

of the calibrated energies of the bumps to the uncalibrated bumps energies were

plotted in �gure 
 ��	�� The �rst and second bumps corresponded here to the two

�individual� �� decay photons� The ratios Ecal
�� �E

uncal
�� and Ecal

�� �E
uncal
�� were plotted

as ntuples� where the pointers

en� � theBump��	energy�� en
 � theBump
�	energy��

were used to access the uncalibrated bump energies� Similar pointers were used for

the calibrated bump energies� the calibration was applied through the use of the

CalD calibration dot operator to the en��
 photon energies�

As the peaks are narrow� the di�erence between the calibrated and uncali�

brated bump energies must be small� despite the small tail found for the �rst bump

ratio� Figure 
 ���� shows the number of bumps against energy for both calibrated

and uncalibrated bump E� and E��s� where the number of bumps found has the

same form of decreasing energy dependence as for the cluster histogram in �gure


 ����� For the same number of events� there was clearly a de�cit in the total number

�this would be bene�cial to reconstruction e�ciency in physics analyses� if the calibration
constants produced a good �t
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of entries binned between the �rst and second bumps� A possible explanation is that

the second bumps should usually be found to contain an energy below � GeV�

����� Photon Candidates

A plot of the number of individual hits� which are the raw materials from

which clusters and bumps are formed� has been plotted as a function of bump energy�


�gure ����� The increase of the number of hits with bump energy is apparent� where

the total number of hits at any bump energy seems to be con�ned to a scattered

region of  to �� At higher energies more hits are expected to be found� with

the energy of bump split�o�s increasing as local maxima contain more energy� from

increased showering over more crystals� A two�bump CR with an energy of � MeV

is most likely to be caused by random overlap� but one with an energy of � GeV is

most likely to be caused by a ��� Cuts on bumps� for the summation of energies

above � to � GeV should therefore minimise the probability that a bump pair was

not caused by a neutral ���

To investigate this bump merging behaviour� a comparison of the Monte

Carlo �� truth energies with the number of bumps formed would be bene�cial� Fig�

ure 
 ���� shows the �� mass� 
derived from the �� energy� plotted against the bump

energy found� Below bump energies of aproximately � MeV� spurious background

can be observed� caused by the summation of bump pairs which need not be summed�

In this region� the �� mass is not well de�ned� Above � GeV� the scattered points

are observed to lie in a �� mass range of ��� � ��� GeV� Figure 
 ���� ��� gave

further indication that the bump and cluster forming algorithms were not working

as e�ciently as expected� This conveys the energy discrepancy seen in the Monte

Carlo data� for the energy of the �photon� candidates and their GEANT ancestors�

The �photon� candidate energy is plotted against the MC truth energy� resulting

in a clear linear relationship between the two variables� Toward the base of the
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histogram horizontal bands can be seen� which are due to the presence of charged

minimum ionising particles 
MIP�s�� These have an energy  � MeV� Considering

the energy losses of minimum ionising particles in the CsI crystal medium� where

dE�dxjmin � ���	� MeV g�� cm�� and the density is 	��� g cm��� a �� cm crystal

will have a minimum ionisation energy of ��� MeV ����� These particles must not

be included in bump pair combinations� as they a�ect the tail and hence the mass

resolution of the �� peak� and contribute greatly to unwanted background�

����� Finding the Peak

The Crystal Barrel Collaboration ���� have noted that the � peak� corre�

sponding to a mass of �	��� MeV� appeared when the continuum background level

was reduced� A method of accurately determining the position and mass resolu�

tion of the � peak� in amongst the background would be highly bene�cial to the

calibration procedure� The careful application of cuts� or a reduction of the �
	s�

continuum background could enable the calibration code to resolve a good � peak�

The method of photon energy calibration� whereby both the � and �� peaks are

iterated simultaneously would then be possible�

During the analysis of the decay �� � �� above� no � peaks were found�

A di�erent method� which could be used to measure the accuracy to which the ��

peak has been shifted to the proper place� or perhaps even to �nd the �� and �

peaks in a large amount of background is described below� Consider a pseudoscalar

meson decaying at rest to two photons 
equation ������ the invariant mass equation

is relevant for both ��s as well as ���s and can be rewritten as

m�
meson

�E�E�

� cos � � � 
����

Re�arranging this gives an equation which is linear in form�

cos �� � � � m�
meson

�E�E�


����
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Plotting a histogram of � � cos � as ordinate� against ��
�E�E�� therefore gives a

linear straight line� with an intercept of zero and where the �tted gradient is equal

to the invariant mass squared of the pseudoscalar meson� This method can be used

to both identify and distinguish between the � and �� candidates� The results are

shown in histogram 
�gure ���� and lego plot 
�gure �����

����� Fitting Background Events

To investigate the e�ects of background on the ability of the code to �nd the

peak signals� and to evaluate the proportion of background present further events

were processed� These were done using the relatively clean decays B� � �����

�B� � ��� and the decay �
	s� � Q �Q � X� background so that the e�ects of

background could be evaluated� and so that methods of background reduction could

be applied� The results for invariant mass histograms for the decays B� � �����

�B� � ��� where two ���s were looked for� are given in �gure 
 ������ These show that

the ratios of the invariant mass of the two photons to the �� mass are shifted closer to

the true value� after calibration has been applied� Since the �B� decays to neutrinos�

these events have �missing energy� but little background� The lower histograms

give the results for the ratios of the calibrated and uncalibrated invariant masses of

the two photons found� over the expected mass of the � meson� No peak is really

discernible here� the � decays have provided too few events� Larger cuts on invariant

mass� in the range � � m�� � ��� GeV could help the � peak to be found� but

the �� peak would not be as prominent� The decays �
	s�� Q �Q�X were used for

the background investigation� The same form of plots as for the above were done for

these background events� and the results are shown in �gure 
 ������ where no plots

for the � peak are shown as none were found� The top and bottom histograms are the

same and were produced using simple cuts� where ��� � m�� � ��� GeV� The �ts

to the top two histograms are polynomial� to �fth order� The �ts to the bottom two

histograms are gaussian� The histograms at the top show a peak forming amongst
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continuum background� which has successfully been calibrated to the correct ��

value� if the polynomial �ts are to be believed� The gaussian �ts do not seem to �t

well� and the polynomial �ts diverge asymptotically at the edges� where the second

derivatives of the function should be zero� This is one reason why the peak and

background must be �tted with gaussian and exponential or logarithmic polynomial


not Legendre polynomial�like Chebyshev� functions� respectively� Marsiske et al�

���� have shown that the rejection of charged tracks before neutral cluster summation

has resulted in a four�fold background reduction�

����� Charged Track Rejection and Angular Resolution

For e�ective background reduction� the clusters and bumps which are com�

bined to form ���s should be�

� isolated from other neutral clusters at energies approaching ��� GeV

� not near any charged tracks

� consistent with photons in lateral and longitudinal shower shape and total

energy deposition

If any of the neutral clusters do not agree with the above criteria� they should not

be included in the �nal iteration over photon clusters�

In the calibration module� due to the relativistic boost in the centre�of�mass

frame� the space�angle � is de�ned in terms of functions containing transformations

of the angles � and �� Pointers to the � and � cluster angles were used for the

purposes of neutral cluster and charged track isolation in the background rejec�

tion algorithms� These functions were looped over separately in the code and were

compared individually� to the value given for � calculated by the invariant mass

equation� One good reason for de�ning the angles of the clusters and bumps in this
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way was that the resolution of the detector could be incorporated easily into the

cluster isolation algorithm� If clusters did not ful�ll the selection criteria de�ned in

the code� then they were not listed as neutral clusters and were not included in any

further combinatorial or iterative processes� The inequality �����
�clus � �track

��

��

�

�
�clus � �track

��

�
�
� �� 
����

was used to reject charged tracks when the � and � angles between the track and

neutral cluster candidates were small� The denominators speci�ed in equation 
 ����

above characterize the angular resolution in � and � for the electromagnetic calorime�

ter� The intrinsic resolution in � must be greater than that for �� because of the

bending of the charged tracks over this angular region in the solenoidal �eld�

These particular values may not have been accounted for correctly� with

respect to the expected low angular resolution behaviour� As the calorimeter is

�nely segmented with respect to the dimensions of each crystal block� the angular

resolution is expected to be much greater than that of CLEO�II�s electromagnetic

calorimeter� with an expected resolution of �� � 	��� milliradians at cos � � ���

This resolution� achieved by the smaller transverse crystal sizes� the longer distances

encountered to many of the crystals and much lower electronic noise� is found to

decrease as the angle � 
in the laboratory frame� increases� Although the previous

may compensate slightly for the increased staggering of the crystals�� as � increases�

the angular resolution is still degraded somewhat by the nature of the weighted

centre�of�gravity� and other similar cluster positioning algorithms� within individual

blocks� The target angular resolution is�

�� �
�mradq
E
GeV �

� �mrad 
��	�

where the design performance target for �� at � GeV and �� is � milliradians�

Accounting for these� a reduction of the values of the denominator in equa�

tion 
 ���� could have improved the background reduction� if the resolution was set

�The projective geometry encountered in the endcap also a�ects resolution
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to values closer to those required by the design performance targets� The results�

with and without the denominator value changes by � and � milliradians respec�

tively� are shown in �gures 
 ����� and 
 ���	�� Unfortunately� the total number

of entries for each histogram is not the same� The histograms cannot therefore be

compared for any sign of a reduction in background� or for the development of a

signi�cant peak� Polynomial �ts to ��th order indicate that an �emerging� peak has

been shifted to the right after calibration�

��� Conclusion

The Manchester and Liverpool BaBar groups have successfully constructed

the twenty endcap modules needed for the EMC endcap� The calorimeter should

take its �rst data with cosmic rays before spring ����� Positive results from a

calorimeter testbeam study have indicated that the calorimeter will achieve the

required performance targets�

Low noise electronics and �ner segmentation should enable BaBar to achieve

an absolute energy calibration over the barrel and endcap regions comparable to�

or better than CLEO II�s �� #� For these reasons� the calorimeter should have

excellent energy resolution� although it remains to be seen whether the real data

will be consistent with the Monte Carlo expectations�

From the bumps and clustering results� the algorithms seem to be work�

ing well� but they do not seem to be performing as e�ciently as they could� The

charged track and neutral cluster isolation algorithms have previously reduced the

background by � to 	 times� It seems that too many charged particles� such as

M�I�P�s are evading the neutral cluster isolation and charged track rejection algo�

rithms� The Monte Carlo truth data for the bumps and clusters therefore needs to

be looked at in more detail� so that a comparison can pinpoint the precise areas in

which the discrepancies lie�
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In a rapidly changing software environment� not all code works as e�ciently

as it should� Ongoing software package releases and continued testing will help to

ensure that the desired results are achieved� The methods of cluster positioning will

soon be optimised� using weighted rejection and centre�of�gravity methods�

It was realised� after the number of bumps and clusters had been investi�

gated 
as a function of varying energy� that measurements of the lateral shower shape

of the clusters could be signi�cant in reducing background� If the expected shower

shapes for neutral clusters of varying energy and relative position were known� then

these could be compared with mixed charged and neutral clusters� Questions would

then be raised regarding the consistency of these measurements with neutral can�

didates� If the lateral shower shapes were then seen to be more consistent with

electron showers than photons� then these objects could be deleted from the neutral

cluster lists� before �� combination� The histogram shown for the number of hits

against photon energy is� as it were� a step in the right direction� This showed

hits in individual crystal blocks which were later combined to produce clusters� at

a given energy� The clustering algorithms use a random walk technique to iterate

over crystal energy deposits� Lateral shower spread measurements requiring the de�

termination of the spatial characteristics 
and not just the number of�� depositions

are needed� Measurements of the moments and weighting of the clusters can also

return four�vectors for the positions of the original particles� again useful for studies

of angular resolution�

A useful method which can be used to separate both photon peaks found

in a cluster involves second moments� The second moment of a cluster is given by�

M �
)iEij*ij
)iEi

� 
����

where *i is a vector containing the angular separation in theta and phi of the ith

crystal and the cluster major axis� A cluster may be resolved into its component

photons using this technique�
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����� Background Reduction 	

The charged track rejection and other methods used in the investigation

of background reduction provided inconclusive results� as the histograms both with

and without the algorithms were returned with a large di�erence in the total number

of events� The polynomial �tted results to the background events imply that one

does not necessarily have to reduce the background� it is the accuracy of the �t

to the peak� amongst the background which is important� Exponential polynomial

functions should be used to �t these peaks�

Fitting the peak accurately� so that it may be shifted to give an answer

approaching unity for m�� � m�� does not ensure that the calibration procedure is

correct� Due to the way in which the photon lineshapes are folded together� the

individual photon peaks do not obey the usual rules of addition in forming a ��

peak� If the photon energies� E� and E� are measured precisely� then the peak will

not be found in the right place� If the peak is iterated to the right place� then

the photon energies will be incorrect� If both the peak and photon energies can

be measured correctly� then the absolute energy calibration has been successful�

Reconstruction e�ciency may also improve as a result� Photon energy calibration

using the logarithm of the photon energies may help in this case�

The module EmcCalPi�worked well� but the coe�cients initially used were

incorrect� This had an e�ect on the end result calibration constants� It is possible

that the calibration procedure implemented using class EmcCalibrator has pro�

duced better results for the coe�cients� albeit utilising a simpli�ed method� The

class TrkRecoTrk in module EmcReco should be implemented� This would provide

a better method of ensuring that neutral clusters are isolated from charged tracks�

as information can be used directly from the tracker�

The lego plot technique could be developed further� as a method for distin�

guishing �� and � peaks from large levels of background� A proper straight line �t
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to the similar linear plot would give the mass�squared of the mesons� The departure

from the expected masses for the measured masses be evaluated simultaneously� if

both the �� and � peaks could be iterated simultaneously�

����� Discussion

The aim of this thesis has been to give an overview of the BaBar �� energy

calibration procedure� An investigation of the possibility of background reduction

was undertaken� The results have been presented�

The local calibration procedure of Crystal Barrel� whereby each crystal

was calibrated individually used ��� � �	 neutral events� where � ���s were seen

per event� Hadronic events that will take place at BaBar are expected to have 	

���s per event� BaBar�s global calibration procedure� where each �� event is used

to calibrate over � crystals� averaged for �� energy bins� is expected to collect

the necessary statistics for the barrel region in a day� The necessary crystal ring

statistics will take longer to accumulate� For an accurate calibration of the whole

detector 
including the endcap�� � to 	 days are required�

This investigation has looked at methods of decreasing the background ex�

pected for �
	s� decays� However� the primary aim of the calibration procedure is

to produce accurate calibration coe�cients� If the background can be reduced signif�

icantly� by perhaps another factor of �� then certainly the peak will be found more

e�ciently and more accurate calibration coe�cients will result� With regards to the

decrease in the timescale needed� monitoring of short term variations in calorime�

ter response will not be possible� but short term monitoring of the calorimeter

response will be provided by the light pulser system� Further investigations of the

lateral shower�shape consistency� of the expected detector angular resolution� and of

charged track rejection will indicate whether the timescale can actually be reduced

to the order of a week� for more e�cient calibration runs�
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Figure ���� Shifted peaks for 
top� invariant mass ratio and 
bottom� invariant mass
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Figure ���� Optimal �� peak and cluster numbers found
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Figure ���� Numbers of individual merged bumps and clusters summed
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Figure ��	� Entries vs calibrated bump energies and uncalibrated energies for bumps

� and �
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Figure ���� Number of entries vs� bump energy for bumps � and �
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Figure ���� Photon candidate energy vs� MC truth energy

Figure ���� Bump energy hitmap
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Figure ���� �� mass as a function of bump energy

Figure ���� Linear plot of mass�squared
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Figure ���� Lego plot for peak��nding and mass measurement
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Figure ����� B� � ����
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Figure ����� �
	s�� Q �Q� X� background events




��� CONCLUSION ��

Figure ����� Background results without charged rejection
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Figure ���	� Background results with charged rejection
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