
SLAC-R-841 
 

 
 
 
 
 

Measurement of the Branching Fraction for the Decay 

B^{\pm} to K^{*\pm} gamma, K^{*\pm} to 

K^{\pm} \pi^{0} with the BaBar Detector 

 

 
Karsten Koeneke 

 
 
 
 
 
 
 

SLAC-R-841 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Prepared for the Department of Energy 
under contract number DE-AC02-76SF00515 

Printed in the United States of America. Available from the National Technical Information 
Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA  22161. 



 

 

 

 

 

 

This document, and the material and data contained therein, was developed under sponsorship of the United States 
Government.  Neither the United States nor the Department of Energy, nor the Leland Stanford Junior University, 
nor their employees, nor their respective contractors, subcontractors, or their employees, makes an warranty, 
express or implied, or assumes any liability of responsibility for accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents that its use will not infringe privately owned 
rights.  Mention of any product, its manufacturer, or suppliers shall not, nor is it intended to, imply approval, 
disapproval, or fitness of any particular use.  A royalty-free, nonexclusive right to use and disseminate same of 
whatsoever, is expressly reserved to the United States and the University. 



Measurement of the branching fraction for the decay

B± → K∗±γ, K∗± → K±π0 with the BABAR detector 1

Karsten Köneke
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ABSTRACT

MEASUREMENT OF THE BRANCHING FRACTION

FOR THE DECAY B± → K∗±γ, K∗± → K±π0 WITH THE

BABAR DETECTOR

SEPTEMBER 2003

KARSTEN KÖNEKE

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Stéphane Willocq

The branching fraction of the radiative penguin B meson decay B± → K∗±γ is

measured at the PEP-II asymmetric energy e+e− collider, operating at a center of

momentum energy of 10.58GeV, the Υ(4S) resonance. This document concentrates

on the case K∗± → K±π0; π0 → γγ. This analysis is based on a dataset of 88.2-

million Υ(4S) → BB̄ events corresponding to 81.3 fb−1 collected with the BABAR

detector.
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CHAPTER 1

INTRODUCTION

Currently, two high precision experiments designed to study the B-meson sector

are running: BABAR and Belle. Both experiments are very similar, they are both

asymmetric energy electron-positron colliders running at a center of momentum (CM)

energy of 10.58GeV. This is the energy of the Υ(4S) resonance, a meson which

is a bound state of a b quark and an anti-b quark in the 4S configuration. Both

BABAR and Belle are high luminosity experiments with a current peak luminosity of

6.6 · 1033cm−2s−1 and 1.1 · 1034cm−2s−1 respectively.

Also, there is data available from the CLEO collaboration, the previous-generation

experiment studying B mesons at an e+e− collider. This experiment is a symmetric

machine also running at the Υ(4S) resonance. This experiment is acquiring data at

a much lower rate, the peak luminosity is about 8.5 · 1032cm−2s−1.

Furthermore, the two detectors at the Tevatron, CDF and D∅, are also examining

the physics in the b-quark system. These two experiments are not as clean as the

other three mentioned above since the Tevatron is a hadron collider and thus the

initial state is not known like it is in the e+e− machines. Also, there are a lot more

final state particles in a hadron collider than in a e+e− collider. Thus it is much

harder to isolate a photon from the rest of the event which will be needed for this

analysis.
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1.1 Theoretical Motivation

1.1.1 The Standard Model

Nowadays, there is a good model of the physics of elementary particles available,

the Standard Model of Elementary Particle Physics (SM). This model is dealing with

two types of spin- 1
2
particles (quarks and leptons) and three types of forces (strong,

electromagnetic and weak force) mediated by three different types of force carriers (8

gluons, the photon and the W± and Z0 vector (=spin-1) bosons, respectively). The

SM is a gauge theory, the invariance of the SM lagrangian under local transformation

belonging to the U(1)Y ⊗ SU(2)L group yields the electroweak part of the SM and

the local transformation belonging to the SU(3)C group leads to the part of the SM

dealing with strong interactions, as described by Quantum Chromo Dynamics (QCD).

To be more precise, the required invariance of the lagrangian under these local gauge

transformations leads to the three types of force carriers, the vector bosons. Therefore,

these force carriers are also known under the name “gauge bosons”.

Up to now, the theoretical predictions of the SM agree to a high precision with

experimental measurements that it is sometimes frustrating not to see any deviation.

1.1.2 CP Violation in the Standard Model

In the SM, the quark mass (or flavor) matrices are in general not diagonal. In

order to transform the quark flavor states into the weak eigenstates needed in the

lagrangian, one performs a rotation in the quark flavor space. This rotation of the

flavor eigenstates leads to the diagonal weak eigenstates which are used in the la-

grangian. This leads to a non-vanishing rotation matrix in the weak charged current

term of the lagrangian, the Cabibbo-Kobayashi-Maskawa (CKM) matrix. This uni-

tary matrix is usually interpreted as a redefinition of the down-type eigenstates of the

weak interaction (primed) as a linear combination of the down-type flavor eigenstates

(unprimed).
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This CKM matrix is a unitary complex matrix and it has for the case of three quark

generations 18 parameters. But since the matrix is unitary, only nine of these 18

parameters are independent. Furthermore, one can always redefine the individual

phases of the six quark fields and thus remove five more independent parameters.

This leaves us with four independent parameters, three real parameters (angles) and

one irreducible phase factor. This phase factor is the source of CP violation in the

SM.

With this remaining four independent parameters, one can expand the CKM ma-

trix in a widely known way, the Wolfenstein parameterization of the CKM matrix

[1][2]:
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The unitarity conditions of the CKM matrix are

3
∑

i=1

VjiV
∗
ki = 0 =

3
∑

i=1

VijV
∗
ik forj 6= k. (1.3)

These can be visualized with six triangles. But for only two of those the length of all

three sides are of the same order of λ (λ ≈ |Vus| ≈ |Vcd| ≈ 0.22). One of these two

triangles is usually referred to as “The Unitary Triangle” .

There are three types of CP violation known in the Standard Model of elementary

particle physics:
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• Direct CP violation (also known as CP violation in decay),

• Indirect CP violation (also known as CP violation in mixing), and

• CP violation due to interference between decays with mixing and without mix-

ing.

The last manifestation of CP violation is the experimentally best measured case. This

has been measured for instance in the decay B0(B̄0)→ J/ΨK0
s [3][4].

1.1.3 The B → K∗γ Radiative Penguin Decay

A penguin decay is a flavor changing neutral current (FCNC) process which takes

place in the SM only with a loop in the Feynman diagram. The name “penguin

decay” was first used as a result of a bet in [5]. In the case of B → K∗γ, a W boson

and an up-type quark are in the loop (see Figure 1.1).

W W

 

ū

b u,c,t s

- -

Figure 1.1. Feynman diagram for the B± → K∗±γ transition. This is the leading
order “penguin” diagram for this transition.

There are several interesting motivations to look at this B → K∗γ decay which in

leading order proceeds via this electroweak penguin loop. Since the top- and charm-

quark penguin diagrams are the largest contributions to this process, this analysis is

a probe of the top- and charm-quark couplings. A reasonably clean determination

of the ratio of the CKM matrix elements Vtd/Vts can be calculated from the ratio
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of branching fractions of the two exclusive radiative penguin decays B → ργ and

B → K∗γ [6]:

B(B → ργ)

B(B → K∗γ)
= Sρ

∣

∣

∣

∣

Vtd
Vts

∣

∣

∣

∣

2
(

1−m2
ρ/M

2
)3

(1−m2
K∗/M

2)
3 ζ

2 [1 + ∆R(ρ/K∗)] (1.4)

where ζ = ξρ⊥(0)/ξ
K∗
⊥ (0) is the ratio of form factors computed in Heavy Quark Ef-

fective Theory (HQET), Sρ = 1(1/2) are isospin weights for the charged (neutral)

ρ-meson and ∆R(ρ/K∗) is a dynamical function calculated in [6] which accounts for

vertex, hard-spectator and annihilation contributions. The B → ργ decay has not

yet been observed, but it is expected to be observed in the near future.

One can easily imagine a new (e.g. supersymmetric) particle in the penguin loop.

This non-SM physics contribution could change the branching fraction of this decay

measurably. The hopes of discovering non-SM physics in this way were diminished by

early measurements (see Chapter 1.2). In fact these measurements agree within errors

with the SM predictions (see Table 1.1). The large uncertainties of these theoretical

calculations are due to difficulties in calculating the hadronization of the final state

mesons. Also QCD corrections to the penguin loop itself are hard to compute.

B(B → K∗γ) (NLO) Reference
(6.8± 2.6)× 10−5 Ali and Parkhomenko [6]
(7.9+1.8

−1.6)× 10−5 Beneke, Feldmann and Seidel [7]
(7.09+2.47

−2.27)× 10−5 Bosch and Buchalla [8]

Table 1.1. Theoretical predictions for the B → K∗γ branching fraction. The calcu-
lations are done at next to leading order (NLO) precision).

In order to actually compute the branching fraction, an effective theory is used.

In this particular case, the heavy quark effective theory is used. This effective the-

ory integrates out the heavy fields from the full theory. The effective interaction

Hamiltonian is [9]
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Heff = −4GF√
2
V ∗
tsVtb

8
∑

i=1

Ci(µ)Qi , (1.5)

where GF is the Fermi constant, Vtj are CKM matrix elements, Ci(µ) are Wilson

coefficient (dependent on the renormalization scale µ) and Qi are the operators. Uni-

tarity of the CKM matrix has been assumed and everything bejond leading order

in αem, mb/mW , ms/mb and Vub/Vcb has been neglected. The short distance QCD

effects due to hard gluon exchanges between the quark lines of the leading order one

loop Feynman diagram is contained in the Wilson coefficients which can be calculated

perturbativly. The Hamiltonian has to be sandwiched between the final K∗± meson

state and the initial B± meson state.

The measurement of the branching fraction for the B → K∗γ decay will determine

the form factor involved with the calculation of the electroweak penguin transition. A

comparison between the pure calculation of this form factor and the calculation with

input from the experimentally measured branching fraction will give useful input to

the QCD calculations.

Also, the B → K∗γ decay process is a good candidate for the search for direct CP

violation. This is due to cancellations of most hadronic uncertainties in the calculation

of this CP violating charge asymmetry:

ACP (B
+ → K∗+γ) =

Γ(B− → K∗−γ)− Γ(B+ → K∗+γ)

Γ(B− → K∗−γ) + Γ(B+ → K∗+γ)
. (1.6)

The SM-based theoretical calculations indicate that this asymmetry can be no

larger than 1%. Nonetheless, Feynman diagrams with non-SM processes can interfere

with the usual SM processes and thus lead to CP violating asymmetries of up to 20%.

1.2 B → K∗γ Branching Fraction Measurements

As of today (August 2003), the current Particle Data Group (PDG) [10] values for

the branching fractions for the charged and neutral B → K∗γ decays are averages of

6



two measurements. The first measurement has been done by the CLEOII collabora-

tion in 1999 [11] and the second one is a previous BABAR measurement [12]. There is

a new measurement provided by the Belle collaboration [13] which is not yet included

into the PDG value (see Table 1.2).

CLEOII [11] BABAR [12] Belle[13]
Integrated luminosity 9.2fb−1 20.7fb−1 78.0fb−1

B(B0 → K∗0γ) (×10−5) 4.55+0.72
−0.68 ± 0.34 4.23± 0.40± 0.22 4.09± 0.21± 0.19

B(B+ → K∗+γ) (×10−5) 3.76+0.89
−0.83 ± 0.28 3.83± 0.62± 0.22 4.40± 0.33± 0.24

Table 1.2. Previous measurements of the branching fractions. The first error is the
statistical and the second is the systematical error (absolute values).

Taking the new Belle measurement into account, the average value for the branch-

ing fraction becomes approximately (4.0± 0.4)× 10−5 (see Table 1.3).

Mode Assumed branching fractions

B → K∗γ (4.0± 0.4) · 10−5

B → Xsγ (3.6± 0.3) · 10−4

Table 1.3. Assumed branching fractions for this analysis.

The decay B → Xs(d/u)γ is a potential background for this analysis and needs to

be understood. The value listed in Table 1.3 is a rounded number from an inclusive

BABAR measurement of this branching fraction [14]. The error on this is approximately

10% and the branching fraction will be varied accordingly in order to study systematic

effects due to this uncertainty on the analysis.
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CHAPTER 2

THE BABAR EXPERIMENT

The BABAR experiment is based on an asymmetric energy e+e− collider at the

Stanford Linear Accelerator Center (SLAC) operating at a center of momentum (CM)

energy of 10.58GeV, coinciding with the Υ(4S) resonance. BABAR started taking data

in 1999 and will continue running most probably beyond 2007.

2.1 The Stanford Linear Accelerator Center

The Stanford Linear Accelerator Center (SLAC) was established in 1962 and is

located in Menlo Park, California. In 1966, the main machine went into operation, the

main linear accelerator (Linac). This is a three kilometer long electron and positron

accelerator now used to inject the electron and positron beams into the PEP-II storage

rings. The linac is still the worlds largest and most powerful linear accelerator and

it can provide beam energies of up to about 50GeV. A schematic overview of the

experimental site at SLAC can be seen in Figure 2.1.

2.2 The PEP-II Collider

The PEP-II collider is a two storage ring machine. One ring is an upgrade of

the previously existing PEP collider which now stores a 9.0GeV electron beam. The

second storage ring is a new ring storing a 3.1GeV positron beam. The PEP-II

collider was completed in July 1998.

The different energies of the electron- and positron beams result into a CM frame

which is moving in the laboratory frame with a βγ Lorentz boost of 0.56. This boost
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Figure 2.1. A schematic overview of the experimental site at SLAC. (Courtesy of
Stanford Linear Accelerator Center)

is crucial to study the B-meson system. Since the Υ(4S) is only about 22MeV heavier

than the two resulting B-mesons, the B-mesons are produced almost at rest in the

Υ(4S) rest frame. But with the above mentioned Lorentz boost of the CM frame

(which is the Υ(4S) rest frame), it is possible to measure the difference in the decay

length of the two B-mesons which is due to a difference in their decay times.

The design peak luminosity of the PEP-II collider is 3 × 1033 cm−2s−1. As of

today, the current PEP-II record is 6.106 × 1033 cm−2s−1 (achieved May 2, 2003),

which already exceeds this goal by a factor of two. With this high luminosity, there

could be about 30–100 million Υ(4S) produced by PEP-II each year with increasing

rate.
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Figure 2.2. The PEP-II storage ring. The upper ring is the low energy positron
ring and the lower ring is the high energy electron ring. (Courtesy of Stanford Linear
Accelerator Center)

The two beams in the PEP-II machine collide head on, i.e. there is no crossing

angle at the interaction point (IP). And the time between two bunch crossings is

4.2 ns. A picture of the PEP-II storage ring is shown in Figure 2.2.

2.3 The BABAR Detector

The BABAR detector is a modern high energy particle detector designed specifically

for an asymmetric electron positron collider running at the Υ(4S) resonance. Because

of the boost along the e− direction, the detector is asymmetric with respect to the

collision point. The forward–backward asymmetry of the detector is designed in such

a way that it covers approximately the same solid angle in the forward and backward

direction in the CM frame.
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I am going to describe the different subsystems of the BABAR detector following

a particle produced at the interaction point in the center of the detector to the

outermost part of the detector. A schematic overview of the BABAR detector with its

subsystems can be seen in Figure 2.3. The information in these sections is coming

mostly from “The BABAR Physics Book” [15] and “The BABAR Detector” [16].

Figure 2.3. The BABAR detector. (Courtesy of Stanford Linear Accelerator Center)

2.3.1 The Silicon Vertex Tracker

The silicon vertex tracker (SVT) is the innermost part of the BABAR detector. It

consists of five layers of silicon detectors ordered cylindrically around the beam axis at

the interaction point. The innermost layer is in radial direction only 3.3 cm away from

the interaction point and the outermost layer is 14.6 cm away. The SVT provides a

spatial resolution in the z-direction of less than 70µm [16] which is absolutely crucial

in order to be able to resolve the separated vertices for the two B-mesons and thus

being able to study CP-violation in the B-meson system.
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Figure 2.4. The BABAR Silicon Vertex Tracker (SVT). (side view) [16]

2.3.2 The Drift Chamber

The BABAR drift chamber (DCH) is a 280 cm long cylinder with an inner radius

of 23.6 cm and an outer radius of 80.9 cm (see Figure 2.5). The drift chamber is,

like other parts of the detector, asymmetric in the forward–backward design in order

to account for the asymmetric beam energies. The wires in the tracking volume are

arranged in 10 super-layers of 4 layers of wires each, summing up to a total of 40

layers of wires. The super–layers have a slightly different orientation with respect to

each other in order to be able to achieve a three-dimensional track reconstruction.

The first super–layer is oriented exactly along the beam axis, the second and third

one are tilted with an opposite angle with respect to the beam axis. The fourth layer

is again oriented along the beam axis and this pattern is continued until the last

super–layer is again oriented along the beam axis. The volume around the wires is

filled with a Helium–based drift gas. A schematic overview of the DCH is shown in

Figure 2.5.

With this configuration, the drift chamber performance for spatial resolution is

better than 140µm. Charged particles produced at the interaction point need at least

a transverse momentum of about 100MeV in order to reach the DCH. The tracking

device (SVT and DCH) is located inside of an axial 1.5T magnetic field.
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Figure 2.5. The BABAR drift chamber (DCH). (side view)

From the curvature of a reconstructed track in the tracking systems of the BABAR

detector (SVT and DCH), one can deduce the momentum of the associated particle.

The Lorentz force acting on a particle with charge q and velocity ~v propagating in a

magnetic field ~B is (without the presence of an electric field)

~FLorentz = q
(

~v × ~B
)

. (2.1)

The centrifugal force is

~Fcentrifugal = m
|~v|2
r

, (2.2)

where m is the mass of the particle and r is the radius of the track curvature. Since

both forces have equal magnitude and opposite directions, one can combine these

two equations and gets a relation between the charge q and the momentum ~p of the

particle, the magnetic field, the angle between magnetic field and particle momentum

α ~B−~p and the radius of the track curvature

|~p| = rq
∣

∣

∣

~B
∣

∣

∣ sinα ~B−~p . (2.3)
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2.3.3 The Detector of Internally Reflected Cherenkov Light

The detector of internally reflected Cherenkov light (DIRC) is designed to separate

charged kaons from charged pions. If a charged particle travels in a medium faster

than the speed of light in that medium, it emits Cherenkov light. The relation

between the momentum of the charged particle and the angle between the particle’s

flight direction and the Cherenkov light cone emission angle is

cos θCherenkov =
1

βn
, (2.4)

where n = 1.473 is the refraction index of the medium and β is the velocity of the

charged particle normalized to the vacuum speed of light.
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Figure 2.6. The BABAR Detector of Internally Reflected Cherenkov Light (DIRC).
(side view) [16]

The DIRC is an array of 4.9m long, 3.5 cm wide and 1.7 cm high bars made

of synthetic fused silica, a translucent material in which Cherenkov light can be

produced. There are a total of 144 bars arranged in 12 groups of 12 bars each.

The Cherenkov light travels inside these bars towards a toroidal water tank at the

backward end of the detector. The emission angle is preserved in these internat

reflections due to the high accuracy of the parallel quartz–bar surfaces. Finally, an
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array of photomultiplier tubes detects the Cherenkov light at the backward end of this

water tank. From the position and time of the detection in the photomultiplier tubes,

an image of the initially produced Cherenkov light cone is inferred. This process is

illustrated in Figure 2.6.

The separation between charged pions and kaons relies on their different masses.

With the same momentum (measured by the tracking devices, see Sections 2.3.1

and 2.5), particles with different masses have different velocities and thus produce

Cherenkov light at different angles. The separation only works if the charged particles

are faster than the speed of light in the bars. A charged pion starts producing

Cherenkov light if its momentum is larger than 129MeV/c and a charged kaon has to

have a momentum larger than 457MeV/c in order to produce Cherenkov light. The

number of Cherenkov photons produced increases with the momentum of the charged

particle and a sufficient number of photons is needed in order to separate them from

the background. Thus, charged pions can be separated from charged kaons reliably

only, if the momentum of these particles is larger than about 600MeV.

2.3.4 The Electromagnetic Calorimeter

The electromagnetic calorimeter (EMC) is an array of 6580 Thallium-doped Cesium-

Iodide (CsI(Tl)) crystals. This part of the detector covers a polar angle of −0.775 ≤

cos(θ) ≤ 0.962 in the laboratory frame, corresponding to −0.916 ≤ cos(θ) ≤ 0.895 in

the center of momentum frame. If a particle hits the very forward or backward end of

the EMC, a part of the energy of this particle will not be deposited in a crystal of the

EMC. Some of this particle energy will escape on these edges of the EMC. Thus, for

analysis purposes, the solid angle coverage is slightly smaller. Two photodiodes are

mounted at the rear end of each crystal. These photodiodes convert scintillation light

produced by an electromagnetic shower inside the crystals into a measurable electric
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pulse. In the radial direction, the calorimeter is placed between the DIRC and the

magnet cryostat. A schematic overview of the EMC design is shown in Figure 2.7.
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Figure 2.7. The BABAR Electromagnetic Calorimeter (EMC). (side view) [16]

The EMC is designed to be capable of detecting photons (coming from π0 and η

decays) very efficiently in the energy range of 20MeV up to 9GeV. The design energy

resolution is of the order of 1-2%. Also a high angular resolution was a design goal.

The achieved position resolution of a few mm translates into an angular resolution

of a few mrad. The energy–dependent resolutions are for the energy resolution (⊕

means sum in quadrature)

σE
E

=
a

4
√

E(GeV)
⊕ b (2.5)

and for the angular resolution

σθ = σφ =
c

√

E(GeV)
+ d (2.6)

with a = (2.32 ± 0.30)%, b = (1.85 ± 0.12)%, c = (3.87 ± 0.07)mrad and d =

(0.00± 0.04)mrad [16].

The crystals are arranged in two sections. The first section is a cylindrical ar-

rangement of 48 rings with 120 crystals each. This barrel covers in polar angle in the
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laboratory frame −0.775 ≤ cos(θ) ≤ 0.892. A conical end cap consisting of 8 rings

with a total of 820 crystals is mounted in addition in the forward direction. This end

cap covers in the forward direction in the laboratory frame 0.893 ≤ cos(θ) ≤ 0.962 in

polar angle. The gap between barrel and end cap is of the order of 2mm.

Most of the support structure and all of the electronics is mounted at the radial

outer end of the crystals in order to minimize the material in front of the crystals.

This results in less than 0.3− 0.6X0(radiation length) in front of the crystals.

2.3.5 The Instrumented Flux Return

The outer part of the BABAR detector has three main purposes:

• Magnetic flux return in the iron yoke,

• Muon detection,

• Neutral hadron detection.

Figure 2.8. The BABAR Instrumented Flux Return (IFR). [16]
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The Instrumented Flux Return (IFR) consists of a barrel and two end caps. The

iron for the magnetic yoke is in radial direction separated into 18 plates. In the barrel,

the nine innermost plates are 2 cm thick and 3.5 cm apart, the next four plates are

3 cm thick and 3.2 cm apart followed by three 5 cm thick plates and two 10 cm thick

plates, all 3.2 cm apart. The end caps have a similar layout, the two differences are

that all plates are 3.2 cm apart and that the outer two plates are 5 cm and 10 cm

thick. The barrel is furthermore segmented in azimuthal direction into six sectors

forming a uniform hexagon. The two end caps as well as the barrel layout can be

seen if Figure 2.8.
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Figure 2.9. The BABAR Resistive Plate Counters (RPCs). These particle detectors
are mounted in the gaps between the iron plates of the IFR [16].

The gaps between the iron plates are instrumented with resistive plate counters

(RPCs) [17] in order to detect muons and neutral hadrons. The basic layout of these

RPCs is the following: Two graphite plates are separated by a 6mm thin gap. One

of the plates is electrically grounded and the other is at an 8 kV electric potential. In

between these two graphite plates is first a 2mm thin layer of a bakelite with a high

bulk resistivity (1010 − 1011Ωcm), followed by a 2mm thin gap filled with a gas with

high absorption coefficient for ultraviolet light, followed by another 2mm thin layer

of the same bakelite. Aluminum strips are glued on the outside of the graphite plates,

18



separated by an insulator. The signal is read out capacitively from these strips. The

design of the RPCs can be seen in Figure 2.9.

A signal is induced when a charged particle traverses the RPC. The charged

particle can either be a muon coming from the inside of the detector or a charged

particle coming from a hadronic shower due to a hadron interacting in the material

of the IFR (or upstream). A discharge is produced at the point where the charged

particle traversed the gas, due to the high electric field. When the discharge occurs,

the electrons travel to the electrode and ionize more gas molecules on their way.

When they arrive at the bakelite, they remain there for a sufficient time due to the

high resistivity of the bakelite and locally, there is now only an electric field between

the surface of the bakelite facing the gas gap (where the electrons accumulated) and

the graphite electrode on the other side of the bakelite. But there is no electric

field in the gas any more, thus the discharge is stopped. On the other hand, the high

absorption coefficient for ultraviolet light of the gas prevents photons of this discharge

to travel in the gas and produce a secondary discharge away from the primary one.

Since the spacing between the two charges (the graphite electrode on one side and

the accumulated electrons on the other side) differs from the larger distance between

the two graphite plates, the capacitance of this system changes and this signal is read

out by the strips on the outside.
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CHAPTER 3

ANALYSIS OVERVIEW

3.1 Introduction

This analysis has been done in collaboration with Mark Convery (Stanford Linear

Accelerator Center), Ping Tan and Sridhara Dasu (University of Wisconsin, Madison),

Patrick Spradlin (University of California, Santa Cruz) and my advisor Stéphane

Willocq (University of Massachusetts, Amherst). We reconstructed four different K ∗

decay modes: K∗0 → K+π− (Patrick Spradlin), K∗0 → K0
sπ

0 and K∗+ → K0
sπ

+

(Ping Tan) and K∗+ → K+π0, which I have performed and which this document is

dealing with.

3.2 Event Signatures

The most striking signature of a B → K∗γ decay is the presence of a very high-

energy photon in the event. In the system of the B meson decaying into the signal

mode, the photon energy is about half the B meson mass. This still holds for the

center of momentum (CM) frame of the whole event since the B mesons have only a

momentum of 341MeV/c in the CM frame. In each event, the highest energy photon

is selected and required to have an energy between 1.5GeV and 3.5GeV in the CM

frame. A photon is a cluster in the electromagnetic calorimeter with no associated

charged track.

Also, the event has to contain a well–reconstructed charged track which is identi-

fied as a kaon. The excellent charged particle identification capabilities of the BABAR

detector will be very useful for this analysis. The most important information for
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Kaon identification is provided by the DIRC; in addition, dE/dx information from

the drift chamber is used to distinguish different types of charged particles.

The last particle needed to be able to reconstruct the signal B meson is a π0.

The π0s can be obtained by computing the invariant mass of any pair of photons

in the event (which have to fulfill some quality requirements) and requiring that the

computed invariant mass of this photon pair be close to the nominal π0 mass of

(134.9766± 0.0006)MeV/c2 [10].

3.3 Major Backgrounds

The major background for this analysis originates from e+e− → qq̄ events (where q

= u,d,s,c). The most outstanding signature of a signal event, the high-energy photon,

can be mimicked in the following ways:

• The process e+e− → qq̄γ can occur due to initial state radiation (ISR) or final

state radiation. In particular, a photon due to ISR can have very high energy

and thus fake a photon from a signal event.

• The high-energy photon can be a decay product of a high-energy π0(η). This

high-energy π0(η) can decay into a photon pair with very asymmetric energies

and the low-energy photon can be lost, e.g. by going along the beam pipe. Or

the two photons from the high-energy π0(η) can be in the same cluster in the

calorimeter and thus be identified as only one photon.

Due to the jetlike structure of these so-called continuum events, the high-energy

photon is highly correlated with the energy flow of the rest of the event. This is not

the case for an isotropic signal event since the B mesons have only a momentum of

about 341MeV/c in the CM frame.
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Figure 3.1. Event signatures. All plots are shown in the CM frame.
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3.4 Expected Yields

Using the assumed branching fraction for B → K∗γ of (4.0 ± 0.4) × 10−5 (see

Section 1.2), one expects in the total dataset of 81.3 fb−1 a total number of 3530±353

B+ → K∗+γ + c.c. events. Due to the isospin factor of 1/3, the expected total number

of B+ → K∗+γ, K∗+ → K+π0 + c.c. events is thus 1177 ± 118. With the hope of

increasing the efficiency from the previous BABAR measurement [12] from 12.9% for

this mode to about (16-20)%, the number of expected observed signal events would

be (188 − 235)+24
−19. The errors stated here are simply the 10% uncertainty of the

assumed branching fraction.

Also, the continuum background suppression is expected to be improved by a

factor of 1.5–2 due to the combination of signal–background separating variables in a

neural network similar to the one used in the B → ργ analysis performed by BABAR

[18].

3.5 A Blind Analysis

This analysis is done “blind” which means that all the analysis optimizations and

considerations are based on so called Monte Carlo (MC) simulations (see Section 3.6.1)

of the physics at the particle level and their interaction with each other and the

detector material. Only at the very end, after the whole analysis procedure is fixed,

the real data (see Section 3.6.2) is used instead of the Monte Carlo. The continuum

Monte Carlo (see Section 3.6.1) can be verified with offpeak data. Offpeak data has

been collected in a mode where the collision energy
√
s is reduced by 40MeV. This

is sufficiently away from the Υ(4S) resonance so that no B mesons can be produced

any more. Therefore, there cannot be a signal event in the offpeak data.

Since Monte Carlo is a computer simulation, the type of a generated particle is

truly known. This Monte Carlo truth information is used to optimize the analysis
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with respect to the efficiency of the true signal events (referred to as truth matched

MC hereafter).

3.6 Data Samples

3.6.1 Monte Carlo

In this analysis, Monte Carlo simulations have been used (they are referred to as

SP4 Monte Carlo or simply MC in the remainder of this thesis). The samples are

listed in Table 3.1. All B → K∗γ and B → Xs(d/u)γ events have been excluded from

the generic B Monte Carlo samples. Furthermore, all B+ → K∗+γ, K∗+ → K+π0

events have been excluded from the B+ → K∗+γ generic Monte Carlo sample. Also,

a cut on the generated hadronic mass > 1.1GeV/c2 has been applied for the generic

B → Xs(d/u)γ Monte Carlo samples. The nominal B → Xs(d/u)γ samples are the

ones with the b-quark mass hypothesis of mb = 4.80GeV/c2. Samples with different

b-quark masses have been used for systematic studies or to gain more statistics where

necessary. When the word “generic” is used, it means that the particle decays into all

possible modes according to the Particle Data Group (PDG) [10], this is also true for

the B → K∗γ generic Monte Carlo simulations; here, the K∗ decays into all possible

final states.

3.6.2 Real Data

The real data used for this analysis is the combined RUN1 and RUN2 dataset.

The total number of onpeak events of this combined dataset is 1.1 × 109. Within

that sample, there are (88.2 ± 1) × 106 Υ(4S) → BB̄ events, which corresponds to

an integrated luminosity of 81.3 fb−1(see Table 3.1). An equal B+/B0 production at

the Υ(4S) resonance has been assumed .
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Mode
Amount
(events)

Integrated
luminosity
(fb−1)

Production
cross sec-
tion (nb)

B0 → K∗0γ, K∗0 → K+π− + c.c. 72, 000 2, 571.4 1.05
B0 → K∗0γ, K∗0 → K0

sπ
0 + c.c. 16, 000 3, 341.7 1.05

B+ → K∗+γ, K∗+ → K+π0 + c.c. 18, 000 1, 285.7 1.05
B+ → K∗+γ, K∗+ → K0

sπ
+ + c.c. 16, 000 1, 663.5 1.05

e+e− → cc̄ 56, 817, 800 42.1 1.30
e+e− → uū, dd̄, ss̄ 83, 392, 000 39.9 2.09
e+e− → τ+τ− 42, 958, 300 45.7 0.94

B0B0 generic 155, 287, 100 295.8 1.05
B+B− generic 150, 426, 700 286.5 1.05

B0 → K∗0γ generic + c.c. 108, 000 2571.4 1.05
B+ → K∗+γ generic + c.c. 114, 000 2714.3 1.05

B0 → Xsdγ + c.c. (mb = 4.80GeV)1) 110, 000 291.0 1.05
B0 → Xsdγ + c.c. (mb = 4.65GeV) 78, 000 206.3 1.05
B0 → Xsdγ + c.c. (mb = 4.75GeV) 18, 000 47.6 1.05
B0 → Xsdγ + c.c. (mb = 4.95GeV) 76, 000 201.1 1.05

B+ → Xsuγ + c.c. (mb = 4.80GeV)1) 106, 000 280.4 1.05
B+ → Xsuγ + c.c. (mb = 4.65GeV) 72, 000 190.5 1.05
B+ → Xsuγ + c.c. (mb = 4.75GeV) 18, 000 47.6 1.05
B+ → Xsuγ + c.c. (mb = 4.95GeV) 76, 000 201.1 1.05
Off–Peak data 117, 041, 128 9.49

On–Peak data 1, 093, 418, 668 81.3

Table 3.1. Monte Carlo and data samples used in this analysis. (Second column:
Total numbers; Third column: Corresponding integrated luminosity; Fourth column:
Assumed production cross-section at the Υ(4S) resonance. [15]). 1)Nominal samples.
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CHAPTER 4

EVENT SELECTION

4.1 Skim Requirements

The skim requirements are cuts which keep most of the signal events but remove

events from the continuum like bhabhas, radiative bhabhas, dimuons and probably

most important many hadronic events with no high–energy photon.

4.1.1 Number of Reconstructed Tracks

The first requirement is that there be at least two charged tracks in the event

which fulfill the following criteria (referred to as “GoodTracksLoose” (GTL) criteria

in BABAR lingo):

• The number of hits in the drift chamber (DCH, see Section 2.3.2) must be more

than 12.

• The transverse momentum must be larger than 100MeV/c.

• The track must have come closer than 1.5 cm to the beam axis.

• The track must have come closer than 10 cm to the nominal beam spot, mea-

sured along the z (beam) direction.

• The momentum of the track must be less than 10GeV/c.

The first two requirements ensure that the particle traverses a sufficiently long path

through the tracking device (SVT and DCH) to be reliably reconstructed. The last

three requirements ensure that the track is not due to a cosmic ray event.
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4.1.2 R2

Also, the ratio R2 of the 2nd to the 0th Fox-Wolfram moment is computed in the

CM frame as

R2 =
H2

H0

, (4.1)

with Hl being the Fox-Wolfram moment defined in [19] as

Hl =
∑

i, j

|~pi| |~pj|
s

Pl(cosφij), (4.2)

where ~pi/j are the momenta of two particles in the CM frame, φij is the angle between

these two momenta, Pl are Legendre polynomials and s is the square of the CM en-

ergy. R2 is required to be less than 0.9. This removes some portion of continuum

background events since it is a measure of an event being jetlike. Continuum back-

ground events (e+e− → ff̄ , where f = u, d, s, c or a charged lepton) are in the CM

frame in general two rather collimated bunches of particles back to back. This is due

to the large excess of kinetic energy and the conservation of energy and momentum.

On the other hand, e+e− → Υ(4S)→ BB̄ events are almost isotropic since the Υ(4S)

resonance is only about 20MeV/c2 heavier than the sum of the two B meson masses

and thus there is almost no excess of kinetic energy available which could go into the

momenta of the B mesons.

4.1.3 Energy of the Highest Energy Photon

In a signal event, the decay of the B meson is a two–body decay into a K∗± meson

and a high energy photon. Thus, the energy of this photon is in the rest frame of the

B meson approximately half of the B meson mass. Furthermore, since the B meson

has a very low momentum in the CM frame due to the small mass difference between

the Υ(4S) and the sum of two B mesons, the energy of this photon is also in the CM

frame approximately half of the B meson mass. Thus, the CM energy distribution of
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the high energy photon peaks at approximately half of the B mass, with a long tail

on the low energy side due to missing energy in the calorimeter. Thus a cut on the

energy of the highest energy photon in the event is applied to suppress continuum

events with no high energy photon, π0 or η, and e+e− → γγ events. The requirement

on the highest energy photon in the event is thus 1.5GeV < Eγ high < 3.5GeV. This

cut is rather loose as can be seen in Figure 4.1 (c). Since the photon CM momentum

is used to compute mES (see Section 4.6), a tight cut on the CM energy would be

correlated with mES (the momentum and the energy are the same for a massless

particle like the photon). A correlation of mES with any other variable is not wanted

since this variable is used in the fit.
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(c) Eγ in the CM frame.

Figure 4.1. Skim variables for truth matched signal Monte Carlo. No cuts are
applied.
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4.2 High Energy Photon Selection

The high energy photon is detected as an energy deposition in the EMC (see

Section 2.3.4). A photon produces an electromagnetic shower via pair production in

the crystals of the EMC. In general, this electromagnetic shower spreads out over

several EMC crystals. A number of adjoining (connected at at least one corner)

crystals with energy deposited in them is called a cluster. A local maximum (bump)

within this cluster is identified as a photon, if no charged track points directly to it.

Besides the requirement of the CM energy of the photon being in the range 1.5–

3.5GeV (see Section 4.1.3), there are further requirements which shall ensure that it

is indeed a high energy photon coming directly from a two–body B meson decay.

• The cluster in the EMC caused by the photon is required not to have any noisy

or dead channels.

• If a noisy crystal is overlooked by the EMC monitoring, it can fake an energy

deposition and thus a photon. Because of this, it is required that the photon

has deposited energy in more than four crystals with a circular lateral energy

distribution.

• A single photon causes a shower and thus the distribution of energy deposited in

the crystals is circular around the centroid of the bump. The energy deposition

caused by two very close photons (e.g. a π0 or η decay with very collimated de-

cay product photons due to Lorentz boost) is more ellipsoidal. This is measured

by the second moment variable defined as

L2 =
∑

crystal i

Ei

[

(θi − θC)
2 + (φi − φC)

2]

∑

iEi

, (4.3)

where θC and φC are the angular coordinates of the centroid of the bump and

θi and φi are the angular coordinates of the ith crystal of the bump. A bump
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caused by a single photon has a smaller second moment than a bump caused

by two photons. Thus, the second moment of the photon is required to be less

than 0.002 (mrad)2.

• The EMC covers a polar angle of −0.775 ≤ cos(θ) ≤ 0.962 in the laboratory

frame. An electromagnetic shower spreads out over several crystals in the EMC.

In order to ensure that the shower is fully contained inside, the photon is re-

quired to be away from the edges of the EMC. Furthermore, the photon needs to

be within the acceptance of the tracking device (SVT and DCH, Sections 2.3.1

and 2.3.2 respectively) in order to ensure that the energy deposited in the EMC

is not due to a charged track. Also, beam backgrounds are possible sources

of energy deposition in the EMC close to the beam pipe. Thus, the photon is

required to be within −0.74 ≤ cos(θ) ≤ 0.93 in the laboratory frame.

• The closest charged or neutral bump is required to be at least 25 cm away

from the centroid of the bump caused by the photon in consideration. This

requirement reduces contamination due to hadronic split off as well as high

energy π0s and ηs decaying into a close pair of photons. A hadronic split of

is a hadron producing a hadronic shower inside the calorimeter and one of the

hadrons in this shower traverses a few crystals before inducing a secondary

hadronic shower. The crystals detecting the secondary hadronic shower are not

necessarily connected to the crystals detecting the primary shower.

• As already mentioned π0 and η decays constitute a major background source

for the high energy photon. Therefore, the high energy photon is required not

to be consistent with originating from a π0 or η decay. Therefore, the photon is

paired with all other photons in the event, provided their energies are more than

50MeV for the π0 veto and more than 250MeV for the η veto. The threshold

energies for the other photon reduce spurious combinations with low energy
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background photons. The higher threshold for the photon from η decays is due

to higher mass of the η and thus the decay products (photons) have higher

energy. The two–photon invariant mass windows which have been vetoed are

[0.115—0.155]GeV/c2 for the π0 veto and [0.505—0.587]GeV/c2 for the η veto.
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(c) Distance to closest neutral bump.
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(d) Distance to closest charged track.

Figure 4.2. High–energy photon quality variables. Shown is truth matched signal
Monte Carlo only.

4.3 π0 Selection

In order to reconstruct a π0, the four-momenta of two photons (EMC bumps with

no associated charged track) are combined. There are two requirements on these two

photons:
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Figure 4.3. Illustration of the second moment variable. The low second moment is
caused by a single photon and thus circular. If two photons hit the EMC very close,
an elliptical distribution and thus a higher second moment is the result.

• They are both required to have an energy of at least 30MeV. This cut is

applied in order to reduce beam–related background photons or noise in the

EMC electronics.

• Also, both photons are required to have a LAT of less than 0.8, where the LAT

is a shape variable defined in Section 4.3.1.

Furthermore, the resulting π0 candidate has to have an energy greater than 200MeV

in the laboratory frame. A π0 mass constrained fit is applied to improve the π0 energy

resolution. A cut on the “unfitted” mass of [115—150]MeV/c2 has also been applied.

The two–photon invariant mass after all π0 selection cuts is shown in Figure 4.4,

together with the momentum distribution of the π0s in the CM frame.

4.3.1 The Lateral Shower Shape

Electromagnetic showers have a different lateral energy distribution than hadronic

showers. In general, a hadronic shower has a wider lateral distribution. This difference

can be quantified in the LAT variable defined as [20]

LAT =

∑N
i=3Eir

2
i

∑N
i=3Eir2i + E1r20 + E2r20

, (4.4)
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(b) π0 candidate momentum.

Figure 4.4. γγ-mass peak and momentum for π0 candidates in signal MC. (a) A
novosibirsk function has been fitted to the γγ invariant mass peak. (b) The momen-
tum of the π0 candidate in the laboratory frame. The π0-candidate is Monte Carlo
truth matched. No cuts are applied in order to gain statistics.

where

• N is the number of crystals hit by the shower,

• Ei is the energy deposited in the i-th crystal, ordered in decreasing energy

starting with 1 being the highest energy.

• ri is the lateral radius between the centroid of the shower and the i-th crystal,

• r0 = 5 cm, which is roughly the width of a crystal and thus the distance between

two crystal centers.

Since the Molière radius for the CsI(Tl) crystals of the EMC is 3.8 cm, most of the

energy of an electromagnetic shower is deposited within only 2–4 crystals. This is not

the case for a hadronic shower. A hadronic shower spreads out over more crystals in

the EMC and thus the LAT variable is on average larger than for an electromagnetic

shower.
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4.4 Kaon Selection

A charged track is identified as a kaon if it fulfills the following two requirements:

• The charged track must satisfy the GTL requirements described in Section 4.1.1.

• The charged track must be identified as a Kaon based on the so–called “Pid-

KaonSMSSelector Tight” described in the following Section 4.4.1. [21].
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(a) CM frame.
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(b) Laboratory frame.

Figure 4.5. Kaon momenum in CM and laboratory frame for signal MC. The can-
didate is truth matched and no cuts are applied in order to gain statistics.

4.4.1 Kaon Particle Identification

One of the outstanding capabilities of the BABAR detector is the excellent charged

particle identification system and especially the capability of separating charged kaons

from charged pions and protons. This excellent separation power of the detector is

due to the DIRC (2.3.3).

In the momentum regime above 0.7GeV/c (in the laboratory frame), only the in-

formation from the DIRC is used for the kaon selector chosen (“PidKaonSMSSelector

Tight”) [22]. This is the momentum regime where most of the signal kaons are (see

Figure 4.5 (b)). For the few events in the momentum range of 0.6GeV/c – 0.7GeV/c

measured in the laboratory frame, information from the SVT and the DCH is also

34



used to identify charged particles. If the laboratory–frame momentum of a charged

particle is less than 0.6GeV/c, only information from the SVT and the DCH is used

for kaon identification. This is due to the fact that kaons with such low momentum

do not produce Cherenkov light in the quartz bars of the DIRC, their momentum is

below Cherenkov threshold according to the formula

∣

∣~plab(K
±)
∣

∣ >
m(K±)c√
n2 − 1

≈ 0.46GeV/c, (4.5)

where c is the vacuum speed of light, m(K±) ≈ 0.494GeV/c2 is the mass of the

particle (in this case the kaon) and n = 1.473 is the refraction index for the quartz

bars. Between this threshold for producing Cherenkov light at all and the above

stated lower limit of 0.6GeV/c is still a gap. This is due to the fact that the number

of produced Cherenkov photons is too small to separate them from the background.

The charged particle identification in the SVT and the DCH is based on dE/dx

measurements for the track in consideration. Charged particles lose energy when they

traverse a medium due to scattering with the electrons and nuclei in the medium.

For the charged particle identification in the tracking devices of the BABAR detector,

a parameterization of the Bethe-Bloch formula is used.

But the overwhelming portion of kaons is identified by the DIRC due to the

Cherenkov effect. A specific charged particle produces a specific number of Cherenkov

photons in the DIRC depending on the type of the particle, its charge, momentum and

position in the DIRC. A lookup table relates the number of expected photons to these

parameters. A maximum likelihood fit is performed on the reconstructed emission

angle of all measured individual photons. The result of this fit is the measured

Cherenkov angle for each track, as well as the number of signal and background

photons. Background photons can be suppressed by fitting simultaneously to the

photon arrival time [23]. The parameterization for the central value of the Cherenkov
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Figure 4.6. Charged kaon selector efficiencies. (Top) charged kaon selector efficiency
and (bottom) misidentification probability vs. track momentum determined with a
D0 → K−π+ data sample [16].

angle follows Equation (2.4), where the refraction index of the quartz bars is fixed to

n = 1.473.

The total likelihood for a kaon is based on a normalized product of a gaussian and

a poisson probability. The gaussian probability is based on the expected Cherenkov

angle, its fitted value and the error on this fit value. The poisson probability is based

on the number of expected photons and number of signal and background photons

also obtained from the maximum likelihood fit. The performance of this technique

can be seen in Figure 4.6.

4.5 K∗± Selection

In order to obtain theK∗± candidate, a simple addition of the four-momenta of the

kaon and pion is performed. A cut on the invariant mass of this particle combination

around the nominal K∗± mass of 891.66MeV/c2 [10] is applied:

• Cut on the K±π0 invariant mass: 0.8GeV/c2 < mK±π0 < 1.0GeV/c2

36



)2 invariant mass (GeV/c0π-±K
0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

 )2
E

ve
nt

s 
/ (

 0
.0

08
 G

eV
/c

0

100

200

300

400

500

600

700  0.0010± =  0.0574 Γ
 0.00045±<m> =  0.89104 

 86±nSig =  7397 

)2 invariant mass (GeV/c0π-±K
0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

 )2
E

ve
nt

s 
/ (

 0
.0

08
 G

eV
/c

0

100

200

300

400

500

600

700

Truth matched signal MC

Figure 4.7. K±π0 invariant mass distribution for signal Monte Carlo. TheK∗± mass
peak has been fitted with a relativistic Breit–Wigner function, see Equation (A.5) and
the candidate is Monte Carlo truth matched.

4.6 B± Selection

The B meson candidate is reconstructed by combining the four momenta of the

high–energy photon with the K∗± candidate. Two independent variables are used.

The first variable is ∆E. This is simply the reconstructed energy of the B can-

didate shifted by the expected energy of the B meson, both computed in the CM

frame. The expected energy of the B meson is simply half of the total CM energy

√
s/2 which is the energy of one of the incoming beams in the CM frame. Thus, the

definition of ∆E is

∆E = Eγ + EK∗± −
√
s

2
. (4.6)

With this definition, the correctly reconstructed signal events should form a peak

centered at zero in ∆E.

The second variable ism0
ES which is usually called “beam energy substituted mass”

(or also “beam constrained mass”). In order to compute it, one invokes the relativistic

mass–energy–momentum relation, the usual way of calculating the invariant mass
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from its energy and momentum. But with one important trick: The momentum of

the B meson candidate is very small, thus an error on the momentum measurement

dues not have so much of an impact as an error on the energy measurement will have.

One can now use the knowledge of the initial state instead, namely half of the total

available CM energy which is equal to the energy of one of the incoming beams in

the CM frame. The beam energies are known to a precision of the order of 1–2MeV,

much better than any energy measurement of a final state particle in the detector.

Using this knowledge, the definition of m0
ES becomes

m0
ES =

1

c

√

s

4
− (~pK∗± + ~pγ)

2 . (4.7)

An additional improvement of this variable can be made by assuming that the m0
ES

resolution is dominated by the energy resolution of the high–energy photon. The

impact of the limited resolution can be reduced by rescaling the four momentum of

the photon in such a way as to satisfy ∆E = 0 for the B candidate

p′γ =

√
s
2
− EK∗±

Eγ

· pγ , (4.8)

and by using this momentum for the computation of a rescaled energy–substituted

mass

mES =
1

c

√

s

4
−
(

~pK∗± + ~p′γ
)2
. (4.9)

The improvement in the energy resolution can be seen by comparing the truth

matched signal Monte Carlo peak in m0
ES with the peak in mES (see Figure 4.8).

The analysis makes use of a fit region and a signal region, defined as:

• Fit region: (−0.3GeV < ∆E < 0.3GeV)× (5.2GeV/c2 < mES < 5.29GeV/c2)

• Signal region: (−0.2GeV < ∆E < 0.1GeV)×(5.27GeV/c2 < mES < 5.29GeV/c2)
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Figure 4.8. Comparison of the resolution of m0
ES with mES. Only truth matched

signal Monte Carlo candidates have been selected and no cuts have been applied in
order to gain statistics.

A scatter plot together with the corresponding projections is shown for a wider ∆E

range in Figure 4.9.
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Figure 4.9. Scatter plot of ∆E vs. mES for truth matched signal Monte Carlo. No
cuts have been applied in order to gain statistics.
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CHAPTER 5

BACKGROUND SUPPRESSION WITH A NEURAL

NETWORK

5.1 Introduction to Neural Networks

A neural network–based analysis has an intrinsic advantage over an analysis based

on a series of cuts on individual variables. The neural network is able to consider cor-

relations between variables and thus find a better separation between signal and back-

ground. One can, for example, consider the task of separating sample A (e.g. signal

events) from sample B (e.g. background events) in the variable X1 (see Figure 5.1(a))

and the same separation of A and B in X2. A simple cut on both variables X1 and

X2 would not be an optimal separation of A and B. A neural net can find a better

separation by considering the correlation between X1 and X2 (see Figure 5.1(b)).

X

0

0.2

0.4

0.6

0.8

1

B A

cut

1

(a) Separation of two samples A and B in
X1.

A

cut

cut

Neural Net

X1

X2

(b) Two dimensional plot of variable X1

and X2.

Figure 5.1. A one dimensional cut. (a) Separation of two samples in the variable
X1. (b) Separation of these two samples in two variables with two individual cuts
and with a neural network.
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One can also imagine more complicated correlations between two variables, for

example something like the situation shown in Figure 5.2. The neural network is in

principle able to use the complicated correlation between the different variables (here

only X1 and X2 for simplicity) in order to find the best achievable separation between

signal (A) and background (B).

B

A

Neural Net

X1

X2

Figure 5.2. A two dimensional cut compared to a neural network. A more compli-
cated correlation between X1 and X2. A neural net is in principle able to find a good
separation between A and B.

A cut can be understood as a step function Θ (X −X ′), where events are kept if

Θ (X −X ′) = 1 and rejected if Θ (X −X ′) = 0. The separation found by a neural

net in Figure 5.1(b) can be thus written as Θ (aX1 + bX2 + c) and the complicated

shape in Figure 5.2 can be understood as a combination of step functions

Θ (Θ (a1X1 + b1X2 + c1) + Θ (a2X1 + b2X2 + c2) + Θ (a2X1 + b2X2 + c2)− 2) .

(5.1)

This combination of step functions takes on the value 0 in region B and 1 in region

A, thus it can be identified with the desired discrimination.

A neural net for the above example can be visualized as seen in Figure 5.3. The

values of two inputs X1 and X2 are combined at three hidden nodes Yj, altered by
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Figure 5.3. Neural network visualization.

weights wij and biases cj (with i = 1, 2 and j = 1, 2, 3). The inputs yj to these hidden

nodes Yj are computed as yj =
∑

iwijxi + cj. This is equivalent to the argument of

the step functions in example above. But the step function is replaced in a neural

net with a function whose first derivative is smooth, in this case the function is the

sigmoid function σ (yj) = 1/(1 + e−yj). This so–called transfer function needs to

have a smooth first derivative due to the training procedure of the neural net (see

Section 5.2). Also, in case of overlap regions of signal and background events, the

smooth σ (yj) transfer function allows the neural net to assign a signal probability to

each event rather than classify it absolutely like it would be done if a step function

is used as the transfer function.

The outputs of the hidden nodes gj = σ (yj) are then again combined with weights

uj and a single bias c0 to the input z =
∑

j ujgj + c0 of the last node, the output

node Z. The final output of the neural net is NNout = σ (z). The complete neural
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net can be described in the mathematical formula

NNout = σ

(

∑

j

uj

[

σ

(

∑

i

wijxi + cj

)]

+ c0

)

. (5.2)

For the interested reader, [24] is a good source of information about neural networks.

5.2 Neural Network Training

The important task is now to determine the optimal combination of weights wij

and uj and biases cj and c0. In order to measure the performance of a given neural

net, an analog to the “χ2” for histogram fitting is used, the “sum–squared error”

(SSE) is defined as:

SSE (wij, uj) =
N
∑

a=1

[NNout (~xa;wij, uj)− F (~xa)]
2 , (5.3)

where ~xa is the vector of input variables for the ath event, NNout (~xa;wij, uj) is the

previously defined neural net output with the weights as parameters and F (~xa) is

the desired output, e.g. 0 if the input was a background event and 1 if the input was

a signal event. The SSE can be minimized in the same way as the minimization for

a χ2 fit, via gradient descent. First, the derivative of the SSE is computed relative

to changes in the weights uj, these weight coefficients are altered such that the SSE

is minimized. Since the desired output of the hidden nodes is not known, the next

step in the optimization is to compute the new weights uj. With these new weights,

the desired output for the hidden nodes can be computed and then, the weights from

the input nodes to the hidden notes wij can be optimized in a similar way. Now, the

SSE of the hidden node needs to be computed and differentiated with respect to the

weights wij. Then, the changes for these weights can be computed. This procedure

is called “backpropagation”, for obvious reasons.
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The derivative of the SSE is needed in this procedure. Thus, the derivative of the

transfer function is also needed and the step function cannot be used as a transfer

function for this optimization procedure.

For the training of the neural net for this analysis, the input consists of truth

matched signal Monte Carlo (from the generic B± → K∗±γ Monte Carlo sample) and

the same number of continuum background events. For both samples, only events

within the fit region are selected and also all the cuts explained in Chapter 4 are

applied. The continuum background sample consist of three parts, uds, cc̄ and τ+τ−

events. Events from these subsamples are chosen in that number that they correspond

to the same integrated luminosity. The desired neural net output for a signal event

is 1 and for a continuum background event it is 0. Both samples are divided into

two parts of equal size, one part is used for training the neural net and the second is

used for validation. The validation with a different data sample is required in order

to ensure that the neural net is not overtrained. Overtraining occurs when the neural

net learns statistical fluctuations in the training sample.

The performance of the neural net is quantified by the “mean squared error”

(MSE):

MSE =
SSE

Number of events
. (5.4)

It is computed after each cycle for both the training and validation sample. If the

neural net overtrains, the MSE for the validation sample does not decrease any more

while the MSE for the training sample keeps decreasing after each cycle. The neural

network is optimized at the minimum of the MSE for the validation sample.

5.3 Neural Network Algorithm

The “Stuttgart Neural Network Simulator” (SNNS) [25] is the neural network

implementation used for this analysis. A ROOT interface called RooSNNS has been
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developed for setting up the network and training it. Also, it makes it possible to use

conveniently the ROOT files which contain the data as input for the neural network.

5.4 Input Variables to the Neural Network

The neural network used for this analysis relies on the following 23 input variables

which are:

• The cosine of the helicity angle cos(θH) of the K
∗± described in Section 5.4.1.

• cos(θB) described in Section 5.4.2.

• The event shape variable cos(θT ) described in Section 5.4.3.1.

• 18 energy cones described in Section 5.4.3.2.

• R′
2 described in Section 5.4.4.

• The net flavor of the event described in Section 5.4.5.

All these variables have discrimination power, which means that their shape is differ-

ent for signal and continuum background events.

5.4.1 Helicity Angle of the K∗±

The helicity angle θH of theK∗± meson is the angle between the momentum vector

of the K± and the momentum vector of the B± meson, computed in the rest frame

of the K∗±. The θH distribution for a signal event is expected to follow a sin2(θH)

function. This is due to conservation of helicity in the ultra–relativistic limit and the

nature of the decay: A vector meson decaying into two scalar mesons.

The signal and background shapes of this variable can be seen in Figure 5.4.
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Figure 5.4. Helicity distribution. Distributions of cos (θH) for (a) continuum
background from offpeak data (points) and Monte Carlo (histogram) and (b) truth
matched signal Monte Carlo. All cuts but the neural net cut are applied.

5.4.2 cos(θB)

The variable θB is the angle between the momentum vector of the B meson candi-

date and the beam direction computed in the CM frame. This is basically the helicity

angle for the Υ(4S) meson. Since the Υ(4S) is also a vector meson and the two B

mesons are scalars, the expected distribution of θB is also a sin2(θB) distribution, just

like in the case of the helicity angle of the K∗± (see Section 5.4.1). The expected

signal distribution of cos(θB) is shown in Figure 5.5 (b). Since there is no true B

meson candidate in a continuum event, the distribution of cos(θB) is expected to be

flat, as can be seen in Figure 5.5 (a).

5.4.3 Event Shape Variables

5.4.3.1 cos(θT )

The thrust angle θT is the angle between the high-energy photon and the thrust

axis of the rest of the event computed in the CM frame. The thrust axis of the event

T̂ is defined as the axis which maximizes the sum of the particle momenta alon this

axis. The thrust T is related to this axis by
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Figure 5.5. cos(θB) distribution. The shape for continuum background Monte Carlo
(blue) and overlaid offpeak data (black circles) is shown in Figure (a). The same
distribution for truth matched signal Monte Carlo is shown in red in Figure (b). All
cuts but the neural net cut are applied.
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Figure 5.6. cos(θT ) distribution. The shape for continuum background Monte Carlo
(blue) and overlaid offpeak data (black circles) is shown in Figure (a). The same
distribution for truth matched signal Monte Carlo is shown in red in Figure (b). All
cuts but the neural net cut are applied.
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T =

∑

i

∣

∣

∣T̂ · ~pi
∣

∣

∣

∑

i |~pi|
, (5.5)

where 0.5 < T < 1.0. T close to 1 corresponds to a jet like event and T close to

0.5 corresponds to an isotropic B meson event. The daughters of the signal B meson

(K∗± and π0) are excluded for the determination of the thrust axis, but all other

neutral and charged candidates in the event are used.

Due to the small 3-momentum of the B meson, signal events are very isotropic.

Thus, the momentum direction of the high energy photon is uncorrelated with the

daughters of the other B meson. The distribution of |cos(θT )| is thus expected to be

flat as can be seen in Figure 5.6 (b). This is not the case for continuum background

events. As mentioned before, a continuum background event is mostly a pair of two

back–to–back jets. The high–energy photon originates usually from a high energy

π0 or η decaying in one of these jets. Thus, the momentum direction of the high

energy photon is almost identical with the direction of one of the jets. For continuum

background events, θT is thus expected to be close to 0◦ or 180◦. The absolute value

of cos(θT ) is thus expected to peak around 1 for a continuum background event, as

can be seen in Figure 5.6 (a).

5.4.3.2 18 Energy Cones

The energy cones provide additional means to distinguish spherical B meson events

from jet–like continuum background events. The CM frame momentum of each track

and photon not associated with the signal B meson is compared to the CM frame

momentum of the high–energy photon. The angle between each of these momentum

vectors and the momentum vector of the high–energy photon is computed and as-

sociated with one of 18 angular bins ranging from parallel to antiparallel with the

CM frame momentum of the high–energy photon (see Figure 5.7). The energy of all

tracks and photons in each of these angular bins is summed up. Thus, one obtains 18
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Figure 5.7. Energy cones. They are ordered around the momentum of the high
energy photon in the CM frame. The energy in each cone is the sum of the energies
of tracks and photons whose momenta point into the specific cone.

variables characterizing the energy distribution in the event with respect to the CM

frame momentum of the high–energy photon.

As mentioned before, the high energy photon is in a continuum background event

expected to be within one of two back–to–back particle jets. Thus, for a continuum

background event, most of the energy of the event is expected to be within the cones

parallel and antiparallel to the photon momentum in the CM frame (see Figure 5.8).

This is not the case in a B meson event. Since a B meson event is more spherically

symmetric, the energy is expected to be more evenly distributed in all the energy

cones (see Figure 5.9).

5.4.4 R′
2

The R′
2 variable is similar to R2 and it is computed in almost the same way. The

only difference is that it is not computed in the CM frame as R2 is. Rather, the
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Figure 5.8. Continuum background energy cones. The continuum background
Monte Carlo (blue) overlaid with offpeak data (black). All cuts but the neural net
cut are applied.
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Figure 5.9. Signal energy cones. The truth matched signal Monte Carlo candidates
have been selected only (red). All cuts but the neural net cut are applied.
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(b) Signal Monte Carlo.

Figure 5.10. Distribution of R′
2. The shape for continuum background Monte Carlo

(blue) and overlaid offpeak data (black circles) is shown in (a). The same distribution
for truth matched signal Monte Carlo is shown in red (b). All cuts but the neural
net cut are applied.

high–energy photon is removed from the event and the rest frame of the remaining

particles is used for computing R′
2. The idea of “removing” the high–energy photon

from the event is to be sensitive to ISR events. By going to the rest frame of the high

energy photon coming from ISR, one recovers two back–to–back final state particle

jets in the event. The signal and background shapes of this variable can be seen in

Figure 5.10.

5.4.5 Net Flavor of the other B

The net flavor variable looks at the rest of the event which are all particles but the

kaon, pion and high–energy photon considered as the signal B meson decay products.

If a specific event is an event containing a signal decay, the particles in the rest of

the event are decay products of the other B meson in the event. The idea of the net

flavor variable is to look at properties of this other B meson candidate in the event.

Due to the flavor changing weak B meson decay, the decay products of the B meson

can contain the following:

• An unpaired charged kaon,
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Figure 5.11. Flavor variable. This variable is shown for continuum background
Monte Carlo (blue) and overlaid offpeak data (black circles) is shown in (a). The
same distribution for truth matched signal Monte Carlo is shown in red (b). All cuts
but the neural net cut are applied.

• an unpaired electron (or positron),

• an unpaired muon,

• an unpaired slow charged pion,

• several K0
S.

An unpaired charged kaon can be produced due to a weakly decaying B or D

meson. An e+e− → ss̄ event produces a charged kaon pair (positive and negative),

but not a single unpaired charged kaon. A single unpaired kaon can occur if a pair

of charged kaons was produced in the first place but one of them decayed inside

the detector (i.e. before it reaches the DIRC). The remaining kaon is then a single

unpaired kaon.

A similar situation is given for the single unpaired electron or muon. Both the B

mesons and the D mesons can undergo a semileptonic decay where a single unpaired

electron or muon is produced together with a (not observed) neutrino. This is not

likely to occur in a light quark event. The events of the type e+e− → l+l− produces

a charged lepton pair, but not a single unpaired charged lepton. Another source of a

54



charged lepton pair is pair production. A possible source of a single unpaired muon

in an e+e− → ss̄ event is a decay of a charged kaon inside the detector (cτ(K±) =

3.713m [10]). A single unpaired muon and a muon–type neutrino are in 63.43% of

those decays the decay products.

A unpaired slow charged pion can be produced in the decay chain B− → D∗+X,

D∗+ → D0π+.

Another source of unpaired charged particles of the categories considered above

is loosing one of those particles (originally produced in a pair) in the detector, e.g. if

its momentum is along the beam pipe.

The knowledge of the above differences between B meson decays and non–B meson

decays can be utilized for separating the signal from the background. A new variable

is computed with the following quantities:

1. The net kaon number is defined as: NK = Number of K+− Number of K−.

The kaon must be identified with the “PidKaonSMSSelector Tight” described

in Section 4.4.1.

2. The net electron number is defined as: Ne = Number of e+− Number of e−.

The electron must be identified with a selector similar to the “PidKaonSMSS-

elector Tight”, but tailored for electrons. In addition, |~pCMS(e)| > 0.5GeV/c is

required.

3. The net muon number is defined as: Nµ = Number of µ+− Number of µ−. The

muon must be identified with a selector similar to the “PidKaonSMSSelector

Tight”, but tailored for muons. In addition, |~pCMS(µ)| > 1.0GeV/c is required.

4. The net slow charged pion number is defined as: N(slow π±) = Number of slow

π+− Number of slow π−. Here, slow means that |~pCMS(π)| < 0.250GeV/c is

required. For the angle between the pion momentum and the thrust axis of the

event, cos(θThrust,|~pCMS(π)|) > 0.8 is required. Also, distance of closest approach
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to the beam axis is required to be d0 < 0.5 cm. In the z direction (the direction

of the electron beam), the track must be within −2 cm < z0 < 0.8 cm.

5. The number of K0
s is simply: NK0

s
= Number of K0

s . The K0
s candidate must

be successfully vertexed (via its decay products π+π−) and its mass must ful-

fill the requirement 0.480GeV/c2 < mπ+π− < 0.516GeV/c2. Also, the angle

θ[Disp,|~pCMS(K0
s )|] between the CM frame momentum of the K0

s and the vector

connecting the beam spot with the K0
s vertex is computed and the requirement

∣

∣cos(θ[Disp,|~pCMS(K0
s )|]
∣

∣ > 0.98 needs to be fulfilled. Furthermore, the K0
svertex

needs to be at least 1mm displaced from the beam spot. (The beam spot is the

primary vertex of charged tracks averaged ever a number of runs.)

These categories are exclusive and hierarchical, meaning the following: If a track is

identified as a kaon, it will contribute to the first category and to no other. For the

electron identification, only the remaining tracks are considered. Of course, all tracks

associated with the signal B± → K∗±γ are excluded from this computation. The

combined net flavor is then defined as:

NF = |NK |+ |Ne|+ |Nµ|+
∣

∣N(slow π±)

∣

∣+NK0
s
. (5.6)

Continuum background and signal distributions of NF can be seen in Figure 5.11.

5.5 Neural Network Performance

The neural network has been setup with 200 hidden nodes in one layer and one

output node. The desired neural network output is 1 for a signal event and 0 for

a continuum background event. The neural network was trained for 900 cycles with

“BackpropChunk” as training function. The difference between this training function

and “Backprop” (see Section 5.2) is that the weights are not altered after each event,

but after a chunk of 20 events. The development of the MSE during the training can
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be seen in Figure 5.12 (a) for both training and validation samples. The performance

of the neural net is shown in Figure 5.12 (b). This plot shows the fraction of the

continuum background that is rejected vs. the fraction of the signal that is kept,

for both the training and validation samples. The cross in this plot indicates the

performance of a series of usual cuts on the three angles cos(θH,B,T ). Since the neural

network can keep with the same background rejection efficiency more signal events, it

performs better than the series of simple cuts do. That both training and validation

samples show the same performance is an indication that the neural network was

not overtrained. This can also be seen by comparing the output for the two samples

and noting that they are the same within errors (see Figure 5.12 (c) and (d)). A

comparison of the neural network output for continuum background Monte Carlo

with offpeak data can be seen in Figure 5.12 (e). The offpeak data agrees well with

the continuum Monte Carlo. A cut optimization of the neural network output has

been done with the goal of maximizing the significance S/
√
S +B, where S is the

number of signal events and B is the number of background events, in the signal

region. The plot of the significance vs. cut value on the neural network output can

be seen in Figure 5.12 (f).

The most powerful input to the neural network is cos(θT ). This can already

be seen by noting the big shape difference of the continuum background and signal

distributions of this variable (see Figure 5.6). The inclusion of the 18 energy cones

and especially the net flavor variable in the neural network results only in a slight

improvement of the continuum background suppression. This can also be noted by

realizing that these variables are not very different for continuum background and

signal events as can be seen in Figure 5.8, Figure 5.9 and Figure 5.11.
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(d) NN validation output.
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(e) NN background output comparison.
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Figure 5.12. Neural network training and validation. The learning curve (MSE
vs. cycles) is shown in (a), both for the training and validation samples. The effi-
ciency curve for training and validation samples is shown in (b), the cross marks the
achieved efficiency for optimized single cuts on the three cos(θH,B,T ) variables. The
NN output is shown for the training– (c) and validation–sample (d), where the red
is the continuum Monte Carlo and the black is signal Monte Carlo. A comparison
of the NN output is shown in (e) for continuum Monte Carlo and offpeak data. The
significance curve for the cut optimization is shown in (f), the cut value is indicated
by the vertical line.
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CHAPTER 6

EXPECTED YIELDS

6.1 Best B± Candidate Selection

Since there are multiple B meson candidates in each event, the best candidate

per event needs to be selected. The total CM energy of a good B meson candidate

should be close to half of the total CM energy available. Thus, for a good B meson

candidate, ∆E is close to zero. After all the analysis cuts are applied, the B meson

candidates remaining in the fit region are considered. Of those B meson candidates,

the one with the smallest absolute value of ∆E is selected. This selection removes

about 3.5% of the truth matched signal events as can be seen in Table 6.1.

6.2 Signal Yield

The effects of all the cuts on the number of truth matched signal events can be

seen in Table 6.1. The cut which removes most of the truth matched signal is the first

one in this table. This cut actually consists of several parts from which the finding of

a B candidate in the event is reducing the number of events the most. This is due to

the limited solid angle coverage of the detector. Since four particles need to be found

in the event, the probability of having one of them outside the detector coverage is

high.

The most important number in this table is 18.9% for the cumulative overall

efficiency (with truth match released). All signal events will be classified as signal,

even if the event is not correctly reconstructed, e.g. the true signal pion can be lost

and a pion originating from the other B meson can be used to form the signal B
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meson candidate. If the truth match is required, the signal efficiency drops to 16.5%.

The misreconstructed signal events account for the efficiency difference between truth

matched event and event without a required truth match.

6.3 B Meson Background Distributions

As mentioned before, by far the largest background contribution comes from con-

tinuum events. Nevertheless, there is some non negligible background due to a real B

meson decaying into a non signal mode. This B meson background can be classified

in three categories:

• The “crossfeed” background category consists of events with a real B → K∗γ

decay (charged or neutral), but not from signal K∗± → K±π0 decays. One

of the other B → K∗γ decay modes can occur but due to picking one of the

particles needed for forming a signal candidate from the other B meson in the

event, this event gets identified as a signal event. For example a K∗0 → K+π−

decay from a neutral B meson can occur, and the correct high energy photon

and kaon has been used to reconstruct the B meson, but the charged pion gets

swapped for a neutral pion from the other B meson in the event. As a result,

such an event gets identified as a signal event.

• The “downfeed” background is a real b→ sγ transition which does not hadronize

as a B → K∗γ decay, but as a higher–mass K∗ resonance and possibly higher

particle multiplicities in the final state. These higher multiplicity final states

can contain the same final state particles as a signal event (high energy photon,

charged kaon and neutral pion) and in addition one or more pions. Since these

additional pions carry away only a small portion of the total energy, the event

can still be reconstructed as a signal event. This missing energy will show up

in a broad ∆E peak shifted to negative values.
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Section Cut Passed
Rel.
ε (%)

Cum.
ε (%)

B+ → K∗+γ(K∗+ → K+π0)
events generated and processed

18000

4.1 Beta Skim/Candidate Finding/Truth Match 7708 42.8 42.8

4.2 High-Energy Photon Quality
No problematic channels 7605 98.7 42.2
Nxtal > 4 7605 100.0 42.2
Second Moment < 0.002 7455 98.0 41.4
−0.74 < cos θγ < 0.93 7327 98.3 40.7
25 cm Isolation from Neutral bumps 6801 92.8 37.8
25 cm Isolation from Charged bumps 6651 97.8 37.0
π0 Veto 6416 96.5 35.6
η0 Veto 6154 95.9 34.2

4.4 Charged-Track Quality
K± Track requirements 5794 94.2 32.2
K± particle ID 4734 81.7 26.3

4.5 K±π0 invariant mass requirement
0.8GeV/c2 < mK±π0 < 1.0GeV/c2 4171 88.1 23.2

4.6 Fit Region
−0.3GeV < ∆E < 0.3GeV 4033 96.7 22.4
5.2GeV/c2 < mES < 5.29GeV/c2 4033 100.0 22.4

5.5 Neural Net Cut
NNOUT > 0.68 3078 76.3 17.1

6.1 Best Candidate Selection
Best Candidate Selection 2973 96.6 16.5

Overall efficiency (truth matched) 2973 16.5
Overall efficiency (releasing truth match) 3403 18.9

Expected signal yield in 81.3 fb−1 215.2

Table 6.1. Cut table for signal Monte Carlo. The last column states the cumulative
efficiency and the second last column states the relative efficiency of the cut.
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• Another B meson background category is due to all other B meson decays but

b → sγ transitions. As an example, the B → K∗η (η → γγ) decay can occur

where the η can decay in the laboratory frame into two photons with very

different energies and the low energy photon is not reconstructed, therefore, the

η is not vetoed and the high–energy photon from the η decay is identified as

the high–energy photon from a B → K∗γ decay.

The ∆E and mES distributions for the three different types of B meson backgrounds

can be seen in Figure 6.1 for the neutral B meson decays and in Figure 6.2 for the

charged B meson decays.

6.4 Background Yields

The expected background yields before the neural net cut is applied can be seen

in Table 6.2. The expected off peak data yield is included for comparison with the

continuum background Monte Carlo. At this stage of the analysis the Monte Carlo

agrees with the offpeak data within three standard deviation. The same table with

neural net cut applied and thus with overall expected number of events in the onpeak

data is shown in Table 6.3. The expected off peak data yield is again included for

comparison with the continuum background Monte Carlo. In this case the Monte

Carlo agrees with the offpeak data within one standard deviation. Thus, the neural

net cut improves the agreement between offpeak data and continuum Monte Carlo.

6.5 Combined Shapes in the Fit Region

The ∆E and mES distributions for all Monte Carlo samples combined according

to their integrated luminosities can be seen in Figure 6.3 (a) for the ∆E shape and

in Figure 6.3 (b) for the mES shape.
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Figure 6.1. Neutral B meson background shapes in the fit region. The plots on the
left hand side show the ∆E distributions and the plots on the right hand side show
the mES distributions. All analysis cuts are applied.
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Figure 6.2. Charged B meson background shapes in the fit region. The plots on the
left hand side show the ∆E distributions and the plots on the right hand side show
the mES distributions. All analysis cuts are applied.
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All cuts except NN
Lumi. (fb−1) Raw Yield 81.3 fb−1 Exp.

B0B̄0 generic 295.79 39 10.7 ± 1.7
B+B− generic 286.53 155 44.0 ± 3.5
B0 → Xsdγ + c.c. 291.00 413 115.3 ± 5.7
B+ → Xsuγ + c.c. 280.42 274 79.4 ± 4.8
B0 → K∗0γ generic + c.c. 2571.43 1763 55.8 ± 1.3
B+ → K∗+γ generic + c.c. 2714.29 46 1.4 ± 0.2
Sum of B backgrounds 306.6 ± 8.5

e+e− → uū, dd̄, ss̄ 39.90 3732 7604.3 ± 124.5
e+e− → cc̄ 42.09 1822 3519.6 ± 82.5
e+e− → τ+τ− 45.70 151 268.6 ± 21.9
uds+ cc̄+ τ+τ− 11392.5 ± 151.0
Off-Resonance Data 9.49 1440 12335.1 ± 325.1

Table 6.2. Background yields without neural net cut applied. The errors stated are
purely statistical.

All cuts with NN
Lumi. (fb−1) Raw Yield 81.3 fb−1 Exp.

B0B̄0 generic 295.79 13 3.6 ± 1.0
B+B− generic 286.53 73 20.7 ± 2.4
B0 → Xsdγ + c.c. 291.00 240 67.0 ± 4.3
B+ → Xsuγ + c.c. 280.42 137 39.7 ± 3.4
B0 → K∗0γ generic + c.c. 2571.43 569 18.0 ± 0.8
B+ → K∗+γ generic + c.c. 2714.29 20 0.6 ± 0.1
Sum of B backgrounds 149.6 ± 6.1

e+e− → uū, dd̄, ss̄ 39.90 295 601.1 ± 35.0
e+e− → cc̄ 42.09 202 390.2 ± 27.7
e+e− → τ+τ− 45.70 6 10.7 ± 4.4
uds+ cc̄+ τ+τ− 1002.0 ± 44.9
Off-Resonance Data 9.49 119 1019.4 ± 93.4

Table 6.3. Background yields with neural net cut applied. The errors stated are
purely statistical.
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Figure 6.3. Combined Monte Carlo distributions in the fit region. The upper plot
shows the ∆E distribution and the lower plot shows themES distribution. All analysis
cuts are applied and the signal events are not required to be truth matched.
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CHAPTER 7

SIGNAL FIT

7.1 Overview

The final fit to the real data is done with a two dimensional probability density

function (PDF) in ∆E and mES. The two dimensional region in which the fit is

performed has been defined previously in Section 4.6, as a reminder,

• Fit region: (−0.3GeV < ∆E < 0.3GeV)× (5.2GeV/c2 < mES < 5.29GeV/c2).

In comparison with the one dimensional fit in mES done in the previous analysis [12],

the extension to a two dimensional fit allows for the determination of the number of

B background events. Therefore, there is no need to correct the signal yield in the

end due to peaking B background events in mES. The most distinct feature of the

B background is its rising shape for negative ∆E values. The fit performed in this

analysis therefore has three floating event yield parameters, one for the signal yield,

one for the continuum background yield and one for the B background yield.

The signal is extracted with an unbinned maximum likelihood fit. Such a fit has

the advantage of being free from binning systematics.

7.2 Construction of the Probability Density Function

As mentioned before, the PDF consists of three main parts for the onpeak data

fit and another part for a simultaneous fit to the offpeak data:

• The PDF describing the signal events (not requiring truth match) has been built

by multiplying two simple one–dimensional PDFs and extending the resulting

shape function with a multiplicative poisson factor for the signal yield.
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– The first one–dimensional PDF describes the signal in ∆E with a Crystal

Ball function (see Appendix A) where the mean and the width of the peak

are floating in the fit but the power n of the tail and the attachment point

α of the tail are fixed to the values extracted from the signal Monte Carlo.

– The second one–dimensional PDF describes the signal in mES also with

a Crystal Ball function (see Appendix A) where the mean and the width

of the peak are again floating in the fit. The power n of the tail and the

attachment point α of the tail are fixed to the values extracted from the

signal Monte Carlo.

• The continuum background events are described with a two–dimensional PDF

consisting of two simple one–dimensional PDFs multiplied with each other. The

resulting shape function is also extended with a multiplicative poisson factor

for the continuum background yield. The two one–dimensional PDFs for the

continuum background in the onpeak dataset are:

– A first order polynomial with one floating parameter is used to describe

the ∆E shape.

– The mES shape is described with an Argus function (see Appendix A)

where the endpointEBEAM is fixed to the kinematical endpoint of 5.29GeV/c2.

The Argus parameter ξ is allowed to float in the fit.

• The PDF describing the B background also consists of the product of two one

dimensional PDFs. Again, the resulting shape function is also extended with a

multiplicative poisson factor for the B background yield. These two PDFs are:

– The ∆E shape is described by a Gaussian function (see Appendix A) with

all parameters fixed (mean and σ) to the values extracted from Monte

Carlo.
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– In mES, the B background events are described by a Novosibirsk func-

tion (see Appendix A) with all three parameters (mean, σ and the tail

parameter τ) fixed to the values extracted from the corresponding Monte

Carlo.

• In addition, a simultaneous fit to the offpeak dataset is performed. The PDF

describing this part of the fit is the same PDF as used to describe the continuum

background events in the onpeak dataset. The shape parameters are shared by

these two fits. Thus, the simultaneous fit to the continuum background of the

onpeak data and the offpeak data improves the separation between continuum

background events and B background events in the onpeak dataset. The pa-

rameter for the number of offpeak events is fixed to the number of events in the

offpeak data set.

The Crystal Ball function for the signal in ∆E is necessary to account for energy

leakage from the high–energy photon and the π0 in the EMC (see Section 2.3.4). Thus

the ∆E signal distribution is expected to have a long tail at negative ∆E values. Also,

the mES distribution is expected to be slightly asymmetric. mES has been rescaled

by adjusting the high–energy photon momentum in order to account for the energy

leakage of this high–energy photon in the EMC. But the photons originating from the

π0 also experience some energy leakage in the EMC. Thus, even in the high energy

photon rescaled mES distribution there is a residual asymmetry due to the energy

leakage of the π0. This is accounted for by using the Crystal Ball function for the

signal in mES.

An overview of the functions for the different parts of the total PDF is given

in Table 7.1. The results of the separate one–dimensional fits to the Monte Carlo

samples are shown in Figure 7.1. The result of the fit to the combined onpeak Monte

Carlo sample and simultaneously to the offpeak data can be seen in Figure 7.2. The
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projections to the different Monte Carlo sub samples (b) and to the offpeak data (c)

are also shown in the same figure.

Function used

signal ∆E Crystal Ball (2)
signal mES Crystal Ball (2)

Continuum background ∆E and offpeak data ∆E 1st-order polynomial (1)
Continuum background mES and offpeak data mES Argus (1)

B-meson background ∆E Gaussian (0)
B-meson background mES Novosibirsk (0)

Table 7.1. Used functions to build the combined PDF. The number of floating shape
parameters is given between parenthesis.

7.3 Correlations between ∆E and mES

The total PDF assumes no correlation between ∆E and mES for the individual

components. This is checked with the events passing all the selection criteria. The

result is shown in Table 7.2 and shows no large correlations for background events.

The relatively large correlation between ∆E and mES for signal Monte Carlo has

been studied further with embedded toy Monte Carlo studies (see Section 7.6).

Continuum MC -0.021
Off-peak Data 0.058
Generic B MC 0.018
Signal MC 0.185

Table 7.2. Correlations between ∆E and mES. Shown are continuum background
Monte Carlo, off-peak data, generic B Monte Carlo and signal Monte Carlo corre-
lations. The events are required to be in the fit region and to satisfy all selection
criteria.
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Figure 7.1. Separate fits to individual Monte Carlo distributions. First plot: Six
separate fits to the six different parts of the SP4 Monte Carlo. First Row (∆E): signal
(no truth match is required), continuum background, B background. Second Row
(mES): signal (no truth match is required), continuum background, B background.
Second plot: Fit to offpeak data in ∆E and mES
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(b) Projections of the combined fit to the different Monte Carlo sub-samples.
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Figure 7.2. Full fit to SP4 Monte Carlo. First plot: Combined simultaneous fit
to the SP4 Monte Carlo and to the off-peak data for K∗+ → K+π0 (blue = sig-
nal, green-dashed = B-background, red = continuum background MC). Second Plot:
Projections to the different Monte Carlo sub-samples; first Row (∆E): non truth
matched signal, continuum background, B background. Second Row (mES): non
truth matched signal, continuum background, B background. Third plot: Projection
to the offpeak data in ∆E (left) and mES (middle), the resulting fit parameters for
the combined simultaneous fit are listed on the right.
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7.4 Monte Carlo Studies

In order to test the self consistency of the PDF and also in order to study the

changes in the fit results due to statistical fluctuations, “toy” Monte Carlo studies have

been performed. A toy Monte Carlo experiment is a data sample that was generated

according to the PDF line shapes obtained from the different fits to SP4 Monte

Carlo. Also, the number of events generated for each sub sample (signal, continuum

background and B background) is varied according to a Poisson distribution centered

at the expected yields. With this technique, each toy Monte Carlo experiment is

different from other toy Monte Carlo experiments due to statistical fluctuations. But

on average, the parameter values used to generate these toy Monte Carlo experiments

should be found by the fit. This is measured by a pull distribution for each of the

floating parameters. The pull of parameter P is defined as

Pull(P ) =
Fit Result of P − Expected V alue of P

Fit Error of P
. (7.1)

If the fit yields the expected answer on average, the pull distribution is a normal

distribution with a width of 1 and a mean of 0. If the mean is significantly different

from zero, the fit is biased for the parameter in question. If the width differs from 1,

the fit uncertainty for the given parameter is either over– or under–estimated.

A set of 500 toy Monte Carlo experiments has been generated according to the

PDF in Figure 7.1 with one exception: The ∆E shape for the B background was

changed to a double–gaussian for the generation of the toy Monte Carlo experiments.

Different functions have been tested to fit the Monte Carlo B background shape in

∆E and the double–gaussian has been found to describe the SP4 Monte Carlo the

best as can be seen in Figure 7.3. For the fit, the usual gaussian distribution is chosen

in order to keep the number of parameters as small as possible.

The Pull plots for the floating parameters can be seen in Figure 7.4. Furthermore,

the negative log likelihood (NLL) for this set of toy Monte Carlo experiments is shown
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in Figure 7.7 (a). A significant deviation from the expected normal distribution is

not seen. Only the widths of the pull plots for the continuum background shape

parameters are significantly smaller the 1. This is due to the use of the same offpeak

dataset in all toy Monte Carlo experiments.
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Figure 7.3. Comparison of ∆E line shapes for B background Monte Carlo.

7.5 Correlation between the Yields

The correlations between the three different yields have also been studied using

the 500 toy Monte Carlo experiments. Scatter plots for different pairs of event yields

are shown in Figure 7.5. The signal yield shows no strong correlation with the other

two yields whereas the B background yield is anti–correlated with the continuum

background yield (see Figure 7.5).
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Figure 7.4. Pull distributions for pure toy Monte Carlo studies. Different PDFs have
been used for the fitting and generating only in the ∆E shape of the B background.
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Figure 7.5. Correlations between the three event yields. These data points are
obtained from the fits to toy Monte Carlo experiments.

7.6 Embedded Toy Monte Carlo Studies

Embedded toy Monte Carlo studies make use of the availability of a large signal

Monte Carlo dataset. This fully simulated dataset exceeds the expected number of

signal events in the onpeak dataset by a factor of ≈ 16. This makes it possible to put

together another set of toy Monte Carlo experiments by generating the background

events as before according to the PDF line shapes but choosing the signal events from

the fully simulated SP4 Monte Carlo. The number of signal events is chosen randomly

from the fully simulated SP4 Monte Carlo according to a poisson distribution centered
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at the expected number of signal events. It is taken care of not choosing the same

signal event for the same embedded toy Monte Carlo experiment.

The signal embedded toy Monte Carlo studies have been performed in order to

study efficiency corrections due to correlations of the signal events between ∆E and

mES and more important due to differences between the signal line shape parameter-

izations and the actual signal distributions.

A set of 500 signal embedded toy Monte Carlo experiments has been generated.

The mean of each fit result is reliable, but the errors on the means of the fit results are

too small due to the correlation between the signal events in one experiment and those

in the other experiments. To compute the errors on the fit result average, one needs

to take into account that only 16 independent signal experiments have been used.

Thus, the correct error on the mean of the signal yield is computed by dividing the

mean on the fit result error (see Figure 7.6) by the number of independent samples

(
√
16). The shift between the number of expected signal events and the mean of

the signal yield is 216 − 208.05 = 7.95 ± 5.07. Thus, the signal efficiency correction

related with the uncertainty in the signal part of the fit is 208/216 = 0.963 ± 2.4%.

The NLL distribution for this signal embedded toy Monte Carlo study is shown in

Figure 7.7 (b).
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Figure 7.6. Signal yield distribution for a embedded toy Monte Carlo study. (a)
The signal yield is shown with its associated error (b).
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Figure 7.7. Minimum negative log(Likelihood) for toy Monte Carlo studies. (a) For
a pure toy Monte Carlo study and (b) for a signal embedded toy Monte Carlo study.
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CHAPTER 8

SYSTEMATIC ERRORS

Sources of systematic error are extensively studied by specialized groups within

the BABAR collaboration. Usually, one either has to simply use a number for a specific

source of a systematic error or one is supposed to follow a recipe in order to determine

the analysis–specific systematic error. Most systematic errors and efficiency correc-

tions are due to differences between Monte Carlo and real data. These differences

have been studied by analyzing a real data sample specifically suited for a study of the

considered systematic error. This real data sample (“control sample”) is compared

with its corresponding Monte Carlo sample and the difference between these two is

considered as an efficiency correction. The statistical error of this control sample is

considered as a systematic error on the efficiency correction.

8.1 B Counting

A 1.1% systematic error on the number of Υ(4S) is considered. This error is due

to the uncertainty in counting the number of processed BB̄ events. This number is

(88.2± 1.0)× 106 and thus leads to the 1.1% systematic error.

8.2 Tracking Efficiency Systematics

The systematic error for the GTL selection is taken into account by applying a

bin–by–bin correction to the charged track in the signal event. The systematic error

for this correction is 0.8%.
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8.3 Charged Particle ID Systematics

The systematic uncertainty for the kaon identification efficiency has been taken

into account with a 1% systematic error.

8.4 Neutrals Systematics

Two neutral candidates need to be considered in this analysis: The high–energy

photon and the π0. There are two main differences between neutral candidates in real

data and in SP4 Monte Carlo. The first difference is the number of reconstructed π0

as a function of energy. The second one is the difference in the π0 mass width which

is due to different energy resolution for photons in data and Monte Carlo.

These issues have been studied with a sample of τ+τ− events by the Neutral Re-

construction Analysis Working Group, as described on their web page [26]. Following

their recipe, the neutrals systematic study involves two steps. The first step consists

of smearing and rescaling the energy of the photons to achieve better agreement in

the π0 width for data and Monte Carlo. The second step accounts for differences in

the number of π0s reconstructed in data and Monte Carlo by applying an energy–

dependent π0 killing.

Two kinds of errors are considered, correlated and uncorrelated errors. The overall

correlated error is 7.5%, 2.5% for the high–energy photon and 5% for the π0. This

error comes from the error on the branching fraction for the τ decays used in the

study (1.6%), the error on the analysis with and without photon energy smearing

applied (2%), the error from the embedding of the π0s in a hadronic event (1̃%) and

in the case of two photons in the same EMC cluster, the difference in the fit line

leads to another error (3%). The source for the uncorrelated error is dominated by

statistics. Other sources for this error are the lower cut on the π0 energy at 1GeV in

the τ study and the difference between a simple π0 counting and the result of a fit to

the π0 mass peak.
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The total error is then achieved by processing the signal Monte Carlo twice. First

with applied smearing and rescaling of the energy of the photons and with the energy

dependent π0 killing alone. This first time, the uncorrelated errors are not considered

in the processing. The same Monte Carlo is processed a second time taking also the

uncorrelated errors into account. The difference in the numbers of signal events (no

truth matching is required) in these two runs on SP4 signal Monte Carlo gives the

uncorrelated error. To obtain the total error on the neutrals, the uncorrelated error is

added in quadrature with the 7.5% correlated error. The result of these two different

processing methods is listed in Table 8.1.

Number of signal events in fit region (raw
numbers, no truth match required) for
run
without
correc-
tions

with cor-
rections, no
uncorrelated
error

with correc-
tions and
uncorrelated
error

Resulting
uncor-
related
error

Resulting
total
error

3,403 3,340 3,290 1.5% 7.6%

Table 8.1. Neutrals systematics. Obtaining the systematic error of the π0 and
the high energy photon from the number of events of signal events (no truth match
required) for the runs with and without uncorrelated errors.

8.5 Photon Selection Systematics

The systematic errors for the π0 and η veto cuts and the photon isolation cuts

have been studied in the previous BABAR analysis [12]. The errors were found to be

1% and 2% respectively.

8.6 Neural Network Systematics

The systematics related to the neural network have been studied by Ping Tan using

a B → Dπ control sample. The discrepancy between Monte Carlo and real data for
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this control sample is considered as an efficiency correction and the statistical error

on this control sample is considered as a systematic error. The efficiency correction

due to the neural network used in this analysis is found to be 0.998 with a systematic

error of 2.7%.

8.7 B Background Systematics

The systematics due to the fixed line shapes for the B background are studied by

varying these fixed parameters in the onpeak data fit and determining the effect on

the signal yield. The parameters are varied by one sigma from the fit to Monte Carlo.

The parameter variations are also combined in order to achieve maximal variations

in the PDF shape. It is found that the signal yield changed by at most 3 events,

corresponding to a systematic error of 1.2%.

8.8 Fit Model Systematics

The efficiency correction and the corresponding systematic error due to discrep-

ancies between the line shapes of the PDFs and the actual event distribution in data

needed to be studied. Describing a data distribution with a simple mathematical

function (in this case a PDF) is not accurate. This difference has been studied with

signal embedded toy Monte Carlo studies described in Section 7.6. The result of this

study is an efficiency correction of 0.963 with a systematic error of 2.4%.

8.9 Monte Carlo Statistics

The signal efficiency is calculated with the signal Monte Carlo simulation. The

uncertainty on the signal efficiency due to the statistics of this signal Monte Carlo is

also considered as a systematic error.
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Uncorrected Efficiency 0.189

Efficiency Correction Systematic Error (σ)

B Counting 1.000 1.1%
Tracking Eff 0.995 0.8%
PID 1.000 1.0%
Neutrals Efficiency 0.981 7.6%
Distance cut 1.000 2.0%
π0(η) veto 1.000 1.0%
Neural network 0.998 2.7%
B background 1.000 1.2%
Fit Model 0.963 2.4%
MC statistics 1.000 1.7%

Total Correction 0.938 9.1%

Corrected Efficiency 0.177 9.1%

Sub-Mode Branching Fraction 0.333

Table 8.2. Efficiency corrections and systematic errors. The efficiency corrections
are multiplied and the systematic errors are summed in quadrature.

8.10 Total Systematic Error

A summary of all efficiency corrections together with the corresponding systematic

errors is listed in Table 8.2. The total efficiency correction is 0.938 and the total

systematic uncertainty on this is 9.1%.
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CHAPTER 9

RESULTS

9.1 Unblinded Fit Results

The fit result to the onpeak data for theK∗+ → K+π0 mode is shown in Figure 9.1.

The signal yield is 250.9+23.2
−21.8, approximately two sigmas higher than the assumed

central value (see Table 1.3). The continuum background yield is 1124.1 ± 52.9,

approximately 2.5 sigmas higher than expected; and the B background yield is 18.1

± 44.9, about three sigmas lower than expected. A comparison between the results

of the individual fits to the separate Monte Carlo samples and the combined fit to

Monte Carlo and real data is shown in Table 9.1.

9.2 Discussion of B Background Yield

Since the fitted B background yield is much lower than expected, we thought about

reasons for this. The first reason is that the B background yield is anticorrelated with

the continuum background yield. Thus, a sizable portion of B background events is

probably picked up by the continuum background part of the fit. Furthermore, there

is a shift in ∆E between data and Monte Carlo. Since the B background is peaked at

low ∆E, this shift cuts out about 20% of the B background events. Also, as suggested

in [27], the ratio of one pion events vs. two pion events in the inclusive B → Xsγ

Monte Carlo is too high by a factor of 2.5 with respect to real data. Since in ∆E, we

are mostly sensitive to the one pion modes, this can also explain part of the low B

background yield. A new toy Monte Carlo study has been performed based on these

two assumptions:
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Figure 9.1. Fit result for the real data fit.
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Individual fits Fit result for a combined fit to
Fit parameter to Monte Carlo Monte Carlo Real data

Signal Yield 216 ± 15 226 ± 20 250.9 ± 22.6
Continuum Back-
ground Yield

1009 ± 32 1001 ± 52 1124.1 ± 52.9

B Background Yield 150 ± 12 149 ± 46 18.1 ± 44.9
< mES > (GeV/c2) 5.27922 ± 0.00025 5.27909 ± 0.00028 5.2798 ± 0.00035
< ∆E > (GeV) 0.0053 ± 0.0096 0.0094 ± 0.0056 -0.0289 ± 0.0055
σmES

(MeV/c2) 3.18 ± 0.19 2.82 ± 0.23 3.68 ± 0.35
σ∆E (MeV) 56.9 ± 2.6 47.5 ± 5.1 53.3 ± 5.7
ξ 4.4 ± 3.5 2.9 ± 4.8 8.36 ± 4.51
ξ (offpeak data) 0.0 ± 10 2.9 ± 4.8 8.36 ± 4.51
P0∆E -0.601 ± 0.18 -0.623 ± 0.22 -0.282 ± 0.213
P0∆E (offpeak data) -0.819 ± 0.52 -0.623 ± 0.22 -0.282 ± 0.213

Table 9.1. Comparison of fit results between Monte Carlo and real data.

• Shift in ∆E by −38MeV and

• Scaling the inclusive B → Xsγ Monte Carlo down with a factor of 0.4.

The distribution of the fitted B background yield is shown in Figure 9.3(b) for this

new toy Monte Carlo study. The comparison with the usual old toy Monte Carlo

study (Figure 9.3(a)) shows that the probability of the observed low B background

yield in the onpeak data increases from about 1% to about 10%.

9.3 The K±π0 Invariant Mass Peak

In order to ensure that all K∗± candidates are really due to a K∗± decay and not

due to non resonant K±π0, the K±π0 invariant mass for signal events needs to be

plotted. This plot is done by only choosing event from the ∆E–mES signal region

and plotting the K±π0 invariant mass in a reasonable window around the expected

K∗± mass peak. In order to account for the non signal events (continuum and B

background) in the signal region, the events from the mES sideband are subtracted

from the signal region events. The events from the mES sideband are scaled in order
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Figure 9.2. Lower assumed B background shapes. The reduction of the number of
B background events is achieved by shifting the B background in ∆E according to
the shift between Monte Carlo and real data and also by multiplying the B → Xs/dγ
Monte Carlo by a factor of 0.4.
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(b) 74 generated B background events.

Figure 9.3. Fitted B background yield. Two toy Monte Carlo studies have been
performed with different number of B background generated. The plot on the left
shows the fit result for the B background yield parameter (nBBkg) to a set of 500
toy Monte Carlo experiments generated with 150 B background events. The plot on
the left shows the fit result for the B background yield parameter (nBBkg) to a set
of 500 toy Monte Carlo experiments generated with 74 B background events.

to subtract the same number of events from the signal region than there are expected

background events in that region. A relativistic Breit–Wigner distribution has been

fitted to the background subtractedK±π0 invariant mass distribution (see Figure 9.4).

The fitted width of the Breit–Wigner is 896.6± 2.4MeV/c2 about two sigmas higher

than the tabulated position of the K∗± peak [10]. The fitted Breit–Wigner width

is 49.5 ± 5.4MeV/c2, perfectly consistent with the tabulated K∗± width [10]. Since

there is no indication for a flat component, the observed signal is consistent with

originating from B → K∗γ decays exclusively.

9.4 Resulting Branching Fraction

The branching fraction is computed from the fit result of the signal yield. The

corrected efficiency εSIG = 0.177 is used as well as the systematic error in it. Also,

a isospin factor for the decay K∗± → K±π0 of 0.333 has been assumed; this is the

branching fraction of this K∗± decay mode B(K∗± → K±π0). Furthermore, the

number of BB̄ events NBB̄ = 88.2× 106 is needed. The branching fraction B for the
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B± → K∗±γ decay is then computed as

B(B± → K∗±γ) =
NSIG

εSIG ·NBB̄ · B(K∗± → K±π0)
= (4.83+0.45+0.48

−0.42−0.40)× 10−5 , (9.1)

where the first error is statistical and the second is systematic. All the information

needed for calculating the branching fraction is summarized in Table 9.2.

Signal Yield Efficiency NBB̄(×106) Isospin B(B± → K∗±γ)(×10−5)

250.9+23.2
−21.8 0.177± 0.016 88.2 0.333 4.83+0.45+0.48

−0.42−0.40

Table 9.2. Unblinded signal yield and branching fraction for Run1 + Run2 data.
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Figure 9.4. K±π0 invariant mass distribution for onpeak data. Distribution for
(a) all selected onpeak data events, (b) events from the mES sideband scaled to the
number of expected background events in the signal region. A relativistic Breit–
Wigner distribution has been fitted to (c) background subtracted K±π0 invariant
mass distribution.
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CHAPTER 10

CONCLUSION

We have studied the rare radiative penguin decay B± → K∗±γ with K∗± → K±π0

using a sample of (88.2± 1.0)× 106 BB̄ events collected with the BABAR detector at

the the PEP-II asymmetric energy e+e− collider, operating at a center of momentum

energy of 10.58GeV, the Υ(4S) resonance. The signal of 250.9+23.2
−21.8 events is extracted

and the corresponding branching fraction is found to be (4.83+0.45+0.48
−0.42−0.40)×10−5, where

the first error is statistical and the second is systematic.

The preliminary result presented here is about one standard deviation lower than

the SM–based next to leading order calculations (see Table 1.1). In order to be able

to make conclusions about differences between the SM and this measurement, the

theoretical precision will need to improve considerably, e.g. by going to the next to

next leading order calculation.

The measured branching fraction for the decay B± → K∗±γ presented in this

document is higher than the on 85.0× 106 BB̄ pairs based corresponding Belle mea-

surement of (4.40±0.33±0.24)×10−5 (see Table 1.2). The difference is not significant

since both results differ by less than one standard deviation.

The statistical error of this Belle measurement stated in Table 1.2 is smaller due to

the inclusion of the decay mode K∗± → K0
Sπ

±. This measurement is also performed

by the BABAR collaboration and its result will be included into the overall measurement

of the branching fraction for the decay B± → K∗±γ. Since the statistical precision

for this mode in the BABAR analysis is about the same as for the one discussed in this

document, the total statistical error on the combined branching fraction will drop by
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approximately a factor of 1/
√
2. This will lead to a slightly better statistical error for

the BABAR measurement in comparison with the result from the Belle collaboration.

The systematic error for this analysis is dominated by the error on the neutral can-

didates (high–energy photon and especially π0). An improvement of this systematic

uncertainty is expected to be made soon. Once this improvement is done, the total

systematic error for the BABAR result for the combined decay B± → K∗±γ should be

of the same order as the systematic error from the Belle collaboration.

B± → K∗±γ, K∗± → K±π0 decay mode only
Signal Yield B(B± → K∗±γ)

BABAR 250.9+23.2
−21.8 (4.83+0.45+0.48

−0.42−0.40)× 10−5

Belle 86.4± 11.1± 2.4 (4.52± 0.58± 0.27)× 10−5

Table 10.1. Comparison between the BABAR and Belle measurement. The decay
modes B± → K∗±γ, K∗± → K±π0 are shown. Signal yield is given in the middle
column and the calculated branching fraction is given in the right column. The first
error is statistical and the second is systematic.

Thanks to the superb charged particle ID system of the BABAR detector, the

decay mode discussed in this document is statistical much cleaner than the same

decay mode measured with the Belle detector. The signal yield for this analysis is

250.9± 22.6 which corresponds to a 9.0% statistical error. The corresponding signal

yield measured with the Belle detector is 86.4 ± 11.1 ± 2.4 which corresponds to a

12.8% statistical error for the decay B± → K∗±γ, K∗± → K±π0. With this signal

yield, the Belle collaboration also calculated the branching fraction for the decay

B± → K∗±γ, K∗± → K±π0 and their result is (4.52 ± 0.58 ± 0.27) × 10−5 [13].

This result is in excellent agreement with the one presented in this document (see

Table 10.1).

Overall, this analysis can compete very well with the Belle measurement. Both

measurements are based on a similar amount of data. In fact the statistical preci-
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sion of the measurement discussed in this document is considerably better than the

corresponding statistical error achieved by the Belle collaboration.

The measurement of the branching fraction for the decay B± → K∗±γ, K∗± →

K±π0 presented in this document is statistically the most precise measurement per-

formed so far!
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APPENDIX

USED FUNCTIONS

The Gaussian Function

A simple symmetric Gaussian function is defined as

FGauss(x) = CGauss · e−
(x−〈x〉)2

2σ2 , (A.1)

where 〈x〉 is the mean of the distribution, σ is its width and CGauss is the normalization

constant.

The Novosibirsk Function

The Novosibirsk function is a function describing an asymmetric peak

FNovo(x) = CNovo · e
− 1

2







ln2

(

1+τ ·(x−〈x〉)· sinh(τ
√

ln 4)
στ
√

ln 4

)

τ
+τ2







. (A.2)

As usual, 〈x〉 refers to the mean of the distribution and σ refers to the width. The

asymmetry (w.r.t. a gaussian function) is described by the additional parameter τ ,

referred to as the “tail” parameter.

The Crystal Ball Function

The Crystal Ball function is a simple Gaussian at the peak center. It deviates

from a Gaussian in that it has a tail attached at one side of the peak, depending on
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the parameter α. The tail is attached in such a way as to have continuous function

and first derivative. The function is

FCB(x) = CCB ·











e−
(x−〈x〉)2

2σ2 for x > 〈x〉 − ασ

(n
α)

n·e−
α2

2

( 〈x〉−xσ
+n

α
−α)

n for x ≤ 〈x〉 − ασ
, (A.3)

where 〈x〉 is the mean of the function and σ is the width. These two parameters are

the same as in a usual Gaussian function. We refer to the two new parameters α and

n as the “attachment point” and the “power of the tail”, respectively.

The Argus Function

The Argus function was first used to describe the continuum background in mES

by the ARGUS collaboration [28]

FArgus(x) = CArgus ·
x

EBEAM

·
√

1− x2

E2
BEAM

· e−ξ
(

1− x2

E2
BEAM

)

, (A.4)

where ξ is the “Argus parameter” and EBEAM is the “Argus endpoint”. In our case,

EBEAM is simply half of the center-of-momentum energy (=
√
s
2
).

The Relativistic Breit–Wigner Function

An orbital angular momentum dependent relativistic Breit–Wigner function is

used to describe the K∗± mass peak in data and Monte Carlo:

fBW (m) = CBW ·
m · Γrel

(m2 −m2
0)

2
+ (m0 · Γrel)2

, (A.5)

with

Γrel = Γ

(

p

p0

)2l+1
(m0

m

)

·Bl(p, p0) , (A.6)

where:
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• m is the reconstructed mass,

• m0 = 891.66MeV/c2 is the position of the K∗± resonance peak [10],

• Γ = 50.8MeV/c2 is the resonance width [10],

• p is the 3–momentum of the outgoing particle (either one due to momentum

conservation) measured in the rest frame of the K∗± meson and depending on

its reconstructed mass,

• p0 is the 3–momentum of the outgoing particle (either one due to momentum

conservation) measured in the rest frame of the K∗± meson evaluated at 〈m〉,

• l is the orbital angular momentum of the daughter particles (l = 1 in this case

since the K∗± is a vector meson (spin 1) and both daughter particles are scalar

mesons (spin 0)),

• Bl(p, p0) is the ratio of two Blatt–Weisskopf barrier functions (see Equation A.10).

The Blatt–Weisskopf barrier functions are due to the limited range of the strong force

(≈ 1fm). Thus, the maximum angular momentum in a strong decay is limited by

the momenta of the decay products:

~L = ~r × ~p , (A.7)

∣

∣

∣

~L
∣

∣

∣ = (1fm) · |~p| . (A.8)

If the decay particles have low momentum and the impact parameter, due to the

strong force, is of the order of 1fm, the decay products cannot generate sufficient

angular momentum to conserve the spin of the decaying particle. Blatt and Weisskopf
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calculated functions in order to account for this effect [29]. The Blatt-Weisskopf

function for angular momentum l = 1 is:

F1(p) =

√

(pr)2

(pr)2 + 1
, (A.9)

where r = 5GeV−1c is the range of the interaction. The above mentioned ratio is

then:

Bl(p, p0) =
F1(p)

F1(p0)
. (A.10)
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