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Introduction

The phenomenon of CP -violation in weak interactions, discovered in 1964

in decays of neutral kaons, receives a simple and elegant explanation in the

Standard Model with three generations of quarks. Indeed, in this model the

common source of CP -asymmetry phenomena is represented by a simple com-

plex phase in the unitary matrix (the Cabibbo-Kobayashi-Maskawa matrix)

describing the charged weak couplings of the quarks.

This simple scheme has never received an accurate validation, because

the phenomenological parameters determined from measurements of CP -

violation in kaons decays are related to the fundamental parameters of the

theory in a complex way, sensitive to large theoretical uncertainties. On the

contrary, decays of neutral B mesons like B0 → J/ψK0
S represent a unique

laboratory to test the predictions of the theory because they are expected

to show significant CP -violation effects, the magnitude of which is cleanly

related to the Standard Model parameters. Thus experimental facilities have

been built with the purpose of performing extensive studies of B decays.

The BABAR experiment is operating at one of these facilities, at the Stan-

ford Linear Accelerator Center. It is collecting data at the PEP-II asymmetric

e+e− collider (Ee− = 9.0 GeV; Ee+ = 3.1 GeV), a high-luminosity accelerator

machine (L = 3 × 1033 cm−2s−1). The center-of-mass energy (10.58 GeV) of

the e+e− system at PEP-II allowes resonant production of the Υ (4S), a bb

bound state, which decays almost exclusively in a B0B0 or a B+B− pair. A

high-acceptance detector, projected and built by a wide international collab-

oration, detects and characterizes the decay products of the B mesons. From

the analysis of the data collected during the first two years of operation,

the BABAR collaboration has established CP -violation in decays of neutral B

mesons at the 4.1σ level.

Besides the primary goal of CP -violation studies, the high luminosity of

PEP-II, coupled with the high acceptance of the BABAR detector, allowes

1



2 Introduction

competitive studies of the properties of a wide set of B decay modes. In

particular, measurements of non-leptonic decays are extremely useful to un-

derstand the dynamics of the non-perturbative strong interactions involved

in these processes.

In this thesis a study of the non-leptonic decay mode B± → J/ψπ± is

presented. This channel is Cabibbo-suppressed, and its branching fraction is

expected to be of the order of 10−5. Detailed predictions are obtained using

the hypothesis of factorization of the hadronic matrix elements, a theoreti-

cal approach widely used in the treatment of non-leptonic decays of heavy

mesons. However, the absence of strong theoretical arguments supporting

factorization and the use of phenomenological models, which are source of

theoretical uncertainties, weaken the reliability of these predictions, that need

to be accurately tested on data. Furthermore, significant interference terms

between the suppressed tree and penguin amplitudes could be the source of

significant direct CP -violation at the few percent level. No searches for direct

CP -violation in this channel have been previously performed.

The analysis reported here is based on data recorded in 1999-2000 with

the BABAR detector; the integrated luminosity is 20.7 fb−1, corresponding to

22.7 million BB pairs. A measurement of the ratio of branching fractions

B(B± → J/ψπ±)/B(B± → J/ψK±), along with a search for direct CP -

violation in B± → J/ψπ± and B± → J/ψK± decays, is described. Since

the Standard Model does not predict a significant direct CP -violation in the

B± → J/ψK± channel, it has been used as a control mode to test the anal-

ysis for the asymmetry determination. The high luminosity recorded by the

BABAR detector allowes a significant improvement in the statistical precision

of the measurements.

The present thesis is organized in five chapters. Chapters 1 and 2 rep-

resent an introduction to the BABAR experiment. The CP -violation in the

framework of the Standard Model and its manifestations in the phenomenol-

ogy of B decays are discussed in Chapter 1, while Chapter 2 is devoted to

a detailed description of the BABAR detector, built around the e+e− inter-

action region of PEP-II. Chapter 3 is a brief introduction to the study of

the B± → J/ψπ± mode, in which the theoretical expectations are discussed.

The remaining part of the thesis gives a detailed description of the analysis

developed to study the B± → J/ψπ± channel. A sample of B± → J/ψh±

(h = π,K) decays is fully reconstructed, and the yields and CP -violating

charge asymmetries are determined from an unbinned maximum likelihood
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fit that exploits the kinematics of the decay to identify the B± → J/ψπ±,

B± → J/ψK±, and background components in the sample. The measure-

ment of B(B± → J/ψπ±)/B(B± → J/ψK±) is reported in Chapter 4, while

Chapter 5 describes the study of direct CP -violation in the B± → J/ψπ±

and B± → J/ψK± channels.

A signal of 51 ± 10 B± → J/ψπ± events is observed, and the ratio

B(B± → J/ψπ±)/B(B± → J/ψK±) that has been determined is in agree-

ment with previous measurements and with the Standard Model expectation.

No evidence of direct CP -violation in the B± → J/ψπ± and B± → J/ψK±

channels has been found. This confirms the Standard Model expectation for

B± → J/ψK± decays.





Chapter 1

CP -violation in B mesons

decays

This chapter is a theoretical introduction to the study of CP -violation in the

decays of B mesons, which is the primary goal of the BABAR experiment. We

first introduce the Cabibbo-Kobayashi-Maskawa matrix, which describes the

flavor-changing weak couplings between the quarks: in the Standard Model it

contains the source of CP -violation. Then we discuss the three possible man-

ifestations of CP -asymmetries in B mesons phenomenology (CP -violation in

decay, CP -violation in mixing, and from interference between mixing and de-

cay). Finally, we show that in certain decays of neutral B mesons a measure-

ment of the time-dependent CP -violation allowes a clean test of the Standard

Model predictions.

1.1 CP -violation in the Standard Model

The Standard Model (SM) of the electro-weak interactions [1, 2, 3] is a gauge

theory based on the SU(2)L×U(1)Y symmetry group. Considering only the

quark sector, the fermion fields are divided into three generations of the

following SU(2) multiplets:

QI
L =

(
uIL
dIL

)
, uIR, d

I
R . (1.1)

With the symbols uIL (uIR)and dIL (dIR) we denote the left-handed (right-

handed) components of the up-type (u, c, t) and down-type (d, s, b) weak

5



6 CP -violation in B mesons decays

eigenstates of the quarks, respectively. They interact with the SU(2)L×U(1)Y
gauge bosons according to the following Lagrangian:

−Lew =
∑
i

Q̄I
Liγ

μ

(
g �T · �Wμ +

1

2
g′Y Bμ

)
QI
Li +

+ ūIRiγ
μ

(
1

2
g′Y Bμ

)
uIRi + d̄IRiγ

μ

(
1

2
g′Y Bμ

)
dIRi . (1.2)

In Eq. 1.2 we have denoted with g, �T , �Wμ and g′, Y , Bμ the coupling con-

stants, the generators and the gauge fields of SU(2)L and U(1)Y respectively;

the index i runs over the three quarks generations.

In order to preserve the gauge invariance and therefore the renormaliz-

ability of the theory, the masses of the gauge bosons are generated by spon-

taneous symmetry breaking of SU(2)L×U(1)Y . This mechanism requires the

introduction of an SU(2) doublet of scalar fields:

Φ =

(
φ+(x)

φ0(x)

)
, (1.3)

with vacuum expectation value 〈Φ〉0 = v �= 0. The scalar fields in Eq. 1.3 are

coupled with the fermion fields through the following Yukawa interaction:

−LY =
∑
ij

FijQ̄
I
LiΦu

I
Rj +GijQ̄

I
LiΦd

I
Rj + h.c. , (1.4)

where the indices i, j run over the quarks generations, and Fij , Gij are in

general complex matrices.

Denoting with Φ0 a particular vacuum state:

Φ0 =
1√
2

(
0

v

)
,

and exploiting the gauge symmetry of the Lagrangian, we can write the field

Φ in the following “expanded” form around Φ0:

Φ =

(
φ+(x)

φ0(x)

)
→ 1√

2

(
0

v + h(x)

)
, (1.5)

that, substituted in Eq. 1.4 generates the mass terms of the quarks:

−LM =
1√
2
v

∑
i,j

Fijū
I
Liu

I
Rj +

1√
2
v

∑
i,j

Gij d̄
I
Lid

I
Rj + h.c. . (1.6)
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In general, the weak (or interaction) eigenstates (that we have denoted so

far with the superscript I) are different from the mass eigenstates, and the

mass matrices:

Mu =
1√
2
vF (1.7)

Md =
1√
2
vG (1.8)

are not diagonal. After the diagonalization of the mass matrices, performed

with the introduction of four unitary matrices VuL, VuR, VdL, VdR such that:

MDiag
u = VuLMuV

†
dR (1.9)

MDiag
d = VdLMdV

†
uR , (1.10)

Eq. 1.6 becomes:

−LM =
∑
i

(MDiag
u )iiūLiuRi +

∑
i

(MDiag
d )iid̄LidRi + h.c. , (1.11)

and the charged current weak interactions in the Lagrangian Lew assume the

following form:

−LCC =
g

2
√

2

∑
i,j

ūLiγ
μVijdLjW

†
μ + h.c. . (1.12)

In Eq. 1.12 with the symbols u and d we have denoted the mass eigenstates

of the quarks, Wμ is the field of the weak boson W±, and V = VuLV
†
dL

represents the unitary mixing matrix for the quarks generations, known as

the Cabibbo-Kobayashi-Maskawa (CKM) matrix [4]:

VCKM =

⎛
⎝ Vud Vus Vub

Vcd Vcs Vcb
Vtd Vts Vtb

⎞
⎠ . (1.13)

The generic element Vq1q2 describes the strength of the flavor-changing weak

coupling between the quarks q1 and q2.

Even if it is evident the deep connection of the CKM matrix elements

with the quarks masses generation, the SM does not provide any mechanism

to derive their values, which are considered input parameters of the theory

and need to be inferred from experimental data.
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1.1.1 Parameterizations of the CKM matrix

In a generic n×n complex matrix there are 2n2 real parameters. Unitarity of

the matrix (V V † = 1) implies n real constraints
∑

q2
|Vq1q2|2 (normalization

of each row) and n(n−1)/2 complex constraints
∑

q2
V ∗
q3q2Vq1q2 (orthogonality

of each pair of rows) that reduce the number of independent real parameters

to n2. Exploiting the degree of freedom in the definition of the phases of the

quarks fields we can still eliminate 2n−1 unphysical phases, and leave in the

matrix only (n− 1)2 independent and physical parameters.

In a model with two generation of quarks [5] there is just one independent

parameter represented by a rotation angle in a two-dimensional space: the

Cabibbo angle θC [6]. In the SM model with three generations of quarks

there are instead four independent parameters represented by three rotation

angles and a complex phase. Since the transformation properties of the fields

in Eq. 1.12 imply that LCC is invariant under a CP -transformation only if

Vij = V ∗
ij , the complex phase in the CKM matrix is essential to account

for CP -violation in weak interactions, a phenomenon discovered in 1964 in

decays of neutral kaons [7]. Furthermore, it is evident that CP -violation is

forbidden in a model with just two generations of quarks.

Several equivalent parameterizations for the CKM matrix have been de-

veloped, differing for the particular choice of the arbitrary phase of the quarks

fields.

In the standard parameterization [8] the CKM matrix is explicitly written

in terms of three rotation angles θij and a complex phase δ:

VCKM =

⎛
⎝ c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −s23c12 − s12c23s13e
iδ c23c13

⎞
⎠ ,

where cij = cos θij and sij = sin θij . The small measured value of Vub
(|Vub| = s13 ∼ 10−3) implies c13 ∼ 1, and with these approximations the

matrix becomes:

VCKM =

⎛
⎝ c12 s12 s13e

−iδ

−s12c23 c12c23 s23

s12s23 − c12c23s13e
iδ −s23c12 c23c13

⎞
⎠ , (1.14)

where it is evident that the dominant terms carrying the phase factor are Vub
and Vtd.
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In the Wolfenstein parameterization [9] the empirical hierarchy of the

CKM matrix elements is shown explicitly through an expansion in powers of

the parameter λ = sin θC ∼ 0.22:

VCKM =

⎛
⎜⎝ 1 − λ2

2
λ Aλ3(ρ− iη)

−λ 1 − λ2

2
Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1

⎞
⎟⎠ +O(λ4) . (1.15)

In this representation the four independent parameters of the matrix are

(λ,A, ρ, η), and η �= 0 is responsible for the complex phase.

1.1.2 The Unitarity Triangle

From the orthogonality of two rows or two columns of the CKM matrix we

obtain the following six equations:

(ds) VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0 (1.16)

(db) VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (1.17)

(sb) VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0 (1.18)

(uc) VudV
∗
cd + VusV

∗
cs + VubV

∗
cb = 0 (1.19)

(ut) VudV
∗
td + VusV

∗
ts + VubV

∗
tb = 0 (1.20)

(ct) VcdV
∗
td + VcsV

∗
ts + VcbV

∗
tb = 0 , (1.21)

that can be interpreted as closure relations of triangles in the complex plane.

Each term in a sum represents a side of the corresponding triangle. Using

the Wolfenstein parameterization we can investigate the relative magnitude

of the sides:

(ds) O(λ) +O(λ) +O(λ5)

(db) O(λ3) +O(λ3) +O(λ3)

(sb) O(λ4) +O(λ2) +O(λ2)

(uc) O(λ) +O(λ) +O(λ5)

(ut) O(λ4) +O(λ2) +O(λ2)

(ct) O(λ5) +O(λ3) +O(λ3) .

We can see that the (db) triangle has the property that all the sides, which

are related to b quark transitions, are of comparable magnitude. The opening
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γ β

A
V*  α

cb

B
C

 ρ0
0

1

η

V*
td

λ

ub

λ V*cb
V

Figure 1.1: The normalized Unitarity Triangle

of this triangle has important implications for the phenomenology of CP -

violation in decays of B mesons. Indeed, the internal angles α, β, γ:

α = Arg

(
− VtdV

∗
tb

VudV ∗
ub

)

β = Arg

(
−VcdV

∗
cb

VtdV
∗
tb

)
(1.22)

γ = Arg

(
−VudV

∗
ub

VcdV ∗
cb

)

are physically meaningful quantities that govern the strength of the CP -

asymmetry in B decays, and in some cases they can be measured quite di-

rectly from data (see Section 1.3.1). For its importance the (db) triangle is

known as the Unitarity Triangle.

From the Wolfenstein parameterization, and neglecting terms of O(λ4),

the Unitarity Triangle is defined by the following equation:

V ∗
ub + λV ∗

cb + Vtd ∼ 0 , (1.23)

and, after the normalization of the sides by |λV ∗
cb|, it is represented by the

triangle in Fig. 1.1, which is completely determined by the position of the

upper vertex A of coordinates (ρ, η). If η = 0 (no complex phase in the CKM

matrix, and therefore no CP -violation) the triangle collapses on the real axis.

In fact, it can demonstrated [10] that all the triangles in Equations 1.16 - 1.21

have the same area, independent of the parameterization of the CKM matrix,
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 ρ 0  1

η

 0

Figure 1.2: Annular constraint from |Vcb| and |Vub| measurements. The dashed curves
represent the boundaries of the allowed region for the vertex A of the Unitarity Triangle.

and their non-degeneration represents a general condition for CP -violation

in the SM.

1.1.3 Constraints on the Unitarity Triangle

Experimental results can be used to constrain the position of the vertex A of

the Unitarity Triangle. Because of experimental and theoretical uncertainties,

each constraint is equivalent to an allowed region for A in the (ρ, η) plane.

The intersection of all these regions represents the SM prediction for the

Unitarity Triangle.

Measurements of |Vcb| and |Vub| provide the constraint:

|Vub|
λ|Vcb| =

√
ρ2 + η2 . (1.24)

It is represented, when errors are taken into account, by an annulus in the

(ρ, η) plane centered at (0, 0) (see Fig. 1.2).

Determinations of the Bd-Bd oscillation frequency (given by ΔmBd , the

mass difference between the heavy and the light Bd states) are sensitive to

|VtdV ∗
tb| because of the dominance of the box diagram with an intermediate

tt state (shown in Fig. 1.3). The following constraint is obtained:

|VtdV ∗
tb| = Aλ3

√
(1 − ρ)2 + η2 , (1.25)
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W + W -

d

d    t

    t

b

b

Figure 1.3: The dominant box diagram for the Bd-Bd mixing

 ρ 0  1

η

 0

Figure 1.4: Annular constraint from ΔmBd
measurements. The dashed curves represent

the boundaries of the allowed region for the vertex A of the Unitarity Triangle.

represented by an annulus in the (ρ, η) plane centered at (1, 0) (see Fig. 1.4).

It is useful to consider also determinations of Bs-Bs oscillation frequency,

sensitive to |VtsV ∗
tb|. Indeed, from the quantity ΔmBd/ΔmBs the ratio:

|Vtd|
|Vts| = λ

√
(1 − ρ)2 + η2 (1.26)

can be extracted with reduced theoretical uncertainties, improving the con-

straint from ΔmBd .

Measurements of CP -violation in neutral kaon decays are sensitive to the

phenomenological parameter εK , describing the amount of CP -violation in

the mass matrix of the K0-K0 system. To a good approximation:

εK =
eiπ/4√
2ΔMK

Im[M12] , (1.27)
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 ρ 0  1

η

 0

Figure 1.5: Hyperbolic constraint from |εK | determinations. The dashed curves represent
the boundaries of the allowed regions for the vertex A of the Unitarity Triangle.

where M12 is the off-diagonal element of the mass matrix and ΔMK is the

mass difference of the two neutral kaon states. Writing M12 in terms of the

parameters of the CKM matrix and using the experimental value for ΔMK

it can be shown [11] that |εK| provides a hyperbolic constraint in the (ρ, η)

plane (see Fig. 1.5).

Several procedures have been developed to derive the prediction for the

vertex A starting from experimental data. They differ primarily for the treat-

ment of theoretical uncertainties, whose statistical nature is not Gaussian.

Figure 1.6 summarizes the status of the constraints on the Unitarity Triangle,

as reported by the 2000 Particle Data Group [12]. More conservative methods

based on the “scanning” of the theoretical parameters within their allowed

range [13], predict for sin2β a value approximately between 0.4 and 0.8 at

the 95% Confidence Level. We remark that these expectations are not based

on CP -violation studies in B decays, and therefore the comparison with the

measurements performed at BABAR will provide a test of the SM.

1.2 Phenomenology of CP -violation in B de-

cays

In this section we describe the three model-independent mechanisms, and the

corresponding conditions, leading to CP -violation effects in the phenomenol-

ogy of B mesons decays.
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Figure 1.6: Summary of the constraints on the Unitarity Triangle from |Vub

Vcb
|, |εK |, ΔmBd

and ΔmBs measurements. The shaded region represents the SM prediction for the A
vertex.

1.2.1 CP -violation in decay

If A is the amplitude of a generic decay B → f , described by the hamiltonian

H :

A ≡< f |H|B > ,

the hypothesis of CP -conservation (equivalent to (CP )†H(CP ) = H) implies:

A = < f |(CP )†(CP )H(CP )†(CP )|B >=

= < f |(CP )†H(CP )|B >=< f̄ |H|B̄ > e2i(θB−θf ) ,

where the phases θB,f , parameterizing the chosen CP -phase convention, are

defined through:

CP |B > = e2iθB |B > (1.28)

CP |f > = e2iθf |f̄ > . (1.29)

Therefore CP -conservation implies the following relation between the ampli-

tude A and the amplitude Ā of the CP -conjugate decay B → f :

A = Āe2i(θB−θf ) , (1.30)

and considering the magnitudes of the amplitudes we obtain:∣∣∣∣ĀA
∣∣∣∣ = 1 , (1.31)
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which is independent of the phase convention and implies a physically mean-

ingful condition for CP -violation:∣∣∣∣ĀA
∣∣∣∣ �= 1 ⇒ CP -violation in decay. (1.32)

In general, several contributions will determine the amplitude A:

A =
∑
k

ake
iφkeiδk , (1.33)

where the phases φk and δk have different origins. The phases φk are due

to the elements of the CMK matrix (weak phases) and, since B → f in-

volves complex-conjugate CMK elements, they change sign under CP . The

phases shifts δk are due to hadronic final-state interactions (strong phases)

and therefore they are CP -invariant. Writing explicitly the amplitude Ā:

Ā = e−2i(θB−θf )
∑
k

ake
−iφkeiδk (1.34)

we obtain:

|Ā|2 − |A|2 = 2
∑
k,j

|ak||aj| sin (φk − φj) sin (δk − δj) , (1.35)

which means that CP -violation in decay can occur only if there are at least

two contributions to the amplitude A with different weak and strong phases.

CP -violation in decay (also called direct CP -violation) implies Γ(B →
f) �= Γ(B → f) or, in terms of the asymmetry A:

A ≡ Γ(B → f) − Γ(B → f)

Γ(B → f) + Γ(B → f)
�= 0 . (1.36)

This type of CP -violation can be studied in decays of charged B mesons,

in which effects due to B-B mixing are absent and the charge of the final

state provides directly the flavor of the B (self-tagging). Unfortunately, mea-

surements cannot be easily related to fundamental CKM parameters since

large theoretical uncertainties affect the knowledge of the contributions to

the amplitude.

While direct CP -violation in B decays has not yet been observed, exper-

imental results have finally established the existence of this phenomenon in

decays of neutral K mesons [14].
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1.2.2 CP -violation in mixing

Weak interactions are responsible for the oscillation of neutral mesons like

K0, D0 and B0 into the corresponding antiparticle state. This phenomenon

can be described with the simple quantum-mechanics formalism for a two-

level system characterized by the Hamiltonian H = H0 + HW , where H0

is due to strong and electromagnetic interactions and HW is due to weak

interactions. In the following we will consider the B0-B0 system, but the

formalism we will develop is quite general and can be extended to other

systems as well.

The term H0 is flavor-conserving and determines the production of the

system. The term HW violates the flavor quantum number and determines

the evolution of the system and the decay of the particles. Thus the two-

by-two matrix H is in general not diagonal in the flavor eigenstates basis

(|B >, |B >) and mixing can occur. Furthermore, since |B > and |B > are

not stable states the matrix H is not hermitean. However, it can be written

as the combination of two hermitean matrices, M (the mass matrix) and Γ

(the decay matrix):

H = M − i

2
Γ . (1.37)

The CPT theorem [15] implies the following form for these matrices:(
H11 H12

H21 H22

)
=

(
M M12

M∗
12 M

)
− i

2

(
Γ Γ12

Γ∗
12 Γ

)
. (1.38)

Using perturbations theory it is possible to show [16] that:

Mij = m0δij+ < i|HW,ΔB=2|j > +P
∑
n

< i|HW,ΔB=1|n >< n|HW,ΔB=1|j >
MB − En

Γij = 2π
∑
n

< i|HW,ΔB=1|n >< n|HW,ΔB=1|j > δ(m0 −En) ,

that establish the following properties of the mass and decay matrices:

1. The diagonal elements M of the mass matrix are dominated by the

eigenvalue m0 of the unperturbed Hamiltonian H0.

2. Since ΔB = 2 transitions are forbidden at the first order in the SM,

the off-diagonal elements of the mass matrix can only be due to second

order B0-B0 transitions via off-shell intermediate states.
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3. The diagonal elements Γ of the decay matrix receive contribution from

all the allowed decay channels of B0 and B0.

4. The off-diagonal elements of the decay matrix are due to to second

order B0-B0 transitions via on-shell intermediate states.

The eigenvectors |B+ > and |B− > of the Hamiltonian H , that we can

write as a linear combination of the flavor eigenstates:

|B± >≡ 1√|p|2 + |q|2
(
p|B > ±q|B >

)
,

are found solving the secular equation:

H|B± >= μ±|B± > . (1.39)

The solutions satisfy:

q

p
=

(
H21

H12

)1/2

=

√
M∗

12 − i
2
Γ∗

12

M12 − i
2
Γ12

, (1.40)

and the corresponding eigenvalues are:

μ± = H11 ± (H12H21)
1/2 ≡M± − i

2
Γ± , (1.41)

where we have defined:

M± = M ± Re[(H12H21)
1/2] (1.42)

Γ± = Γ ∓ 2 Im[(H12H21)
1/2] . (1.43)

The mass and width differences ΔM ≡ M− −M+ and ΔΓ ≡ Γ− − Γ+ are

thus given by:

ΔM = −2Re[(H12H21)
1/2] (1.44)

ΔΓ = 4 Im[(H12H21)
1/2] . (1.45)

If CP is conserved, we expect that the eigenstates of the Hamiltonian

concide with the CP -eigenstates. In addition, with an argument similar to

the one used to derive Eq. 1.30, it is possible to show that CP -conservation

implies:

e4iθB(M12 − i

2
Γ12) = M∗

12 −
i

2
Γ∗

12 , (1.46)
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where θB is the arbitrary phase defined in Eq. 1.29. Consequently:

q

p
=

√
M∗

12 − i
2
Γ∗

12

M12 − i
2
Γ12

= ei(2θB+nπ) n = 0, 1, 2, . . . , (1.47)

and the phase convention independent quantity |q/p| represents an observable

sensitive to CP -violation:∣∣∣∣qp
∣∣∣∣ �= 1 ⇒ CP -violation in mixing . (1.48)

If CP is violated in mixing, the probability of the transition B0 → B0 will

differ from the probability of the transition B0 → B0.

This type of CP -violation is suppressed for a B-B system. Indeed, since

the mixing amplitude is dominated by the (off-shell) tt intermediate state,

we can write to a good approximation:

H12 ∼M12 ⇒ H12H21 ∼ |M12|2 (1.49)

that implies:

ΔΓ

Γ
� 1 (1.50)

and:

q

p
∼

√
M∗

12

M12

⇒
∣∣∣∣qp

∣∣∣∣ ∼ 1 . (1.51)

We conclude this discussion noting that Eq. 1.50 and Eq. 1.51 are not

necessarily satisfied for other neutral mesons systems. For instance, the long-

lived eigenstate of the K0-K0 system (K0
L
) is characterized by a width which

is two orders of magnitude smaller than the short-lived eigenstate (K0
S), and

the CP -violation in mixing (described by the parameter εK already intro-

duced in Section 1.1.3) is a well established phenomenon [17].

1.2.3 CP -violation in interference between mixing and

decay

The time evolution B(t) of an initially pure B0 state is obtained solving the

time-dependent Schröedinger equation:

i
d

dt

(
a

b

)
= H

(
a

b

)
(1.52)
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with the initial conditions a(0) = 1, b(0) = 0, if the equation is projected

onto the (|B >,|B >) basis. We obtain:

B(t) = f+(t) |B > +
q

p
f−(t) |B > , (1.53)

where:

f±(t) =
1

2
(e−iμ+t ± e−iμ−t) . (1.54)

Similarly, the time evolution B(t) of an initially pure B0 state is:

B(t) =
p

q
f−(t) |B > + f+(t) |B > . (1.55)

From Eq. 1.50 we have: Γ+ ≈ Γ− ≡ Γ. Defining M ≡ (M+ +M−)/2, we can

write:

f+(t) = e−
Γ
2
t e−iMt cos

ΔMt

2
(1.56)

f−(t) = ie−
Γ
2
t e−iMt sin

ΔMt

2
, (1.57)

which, substituted in Eq. 1.53 and Eq. 1.55, gives for the two evolutions:

B(t) = e−
Γ
2
t e−iMt

(
cos

ΔMt

2
|B > + i

q

p
sin

ΔMt

2
|B >

)
(1.58)

B(t) = e−
Γ
2
t e−iMt

(
i
p

q
sin

ΔMt

2
|B > + cos

ΔMt

2
|B >

)
. (1.59)

If we consider the decays B → f andB → f , in which f is a CP -eigenstate

with eigenvalue ηCP :

CP |f >= ηCP |f > ηCP = ±1 , (1.60)

the time-dependent decay amplitudes will be:

< f |H|B(t) > = e−
Γ
2
t e−iMt Af ×

×
(

cos
ΔMt

2
+ i

q

p

Āf
Af

sin
ΔMt

2

)
(1.61)

< f |H|B(t) > = e−
Γ
2
t e−iMt iAf

p

q
×

×
(

sin
ΔMt

2
− i

q

p

Āf
Af

cos
ΔMt

2

)
, (1.62)
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where Af ≡< f |H|B > and Āf ≡< f |H|B >.

Thus, the time-dependent probability for a state initially B0 to decay to

f is given by:

| < f |H|B(t) > |2 = e−Γt |Af |2 [
1

2
(1 + |λ|2) +

+
1

2
(1 − |λ|2) cos ΔMt − Imλ sin ΔMt ] , (1.63)

where we have defined:

λ ≡ q

p
· Āf
Af

, (1.64)

and the analogue probability for a state initially B0 is:

| < f |H|B(t) > |2 = e−Γt |Af |2 |p
q
|2 [

1

2
(1 + |λ|2) −

− 1

2
(1 − |λ|2) cos ΔMt+ Imλ sin ΔMt ] . (1.65)

Equation 1.63 and Eq. 1.65 can be combined in a time-dependent CP -asymmetry

observable:

A(t) ≡ Γ(B(t) → f) − Γ(B(t) → f)

Γ(B(t) → f) + Γ(B(t) → f)
(1.66)

obtaining:

A(t) =
(1 − |λ|2) cos ΔMt− 2 Imλ sin ΔMt

1 + |λ|2 , (1.67)

where we have used the suppression of the CP -violation in mixing for the

B0-B0 system: ∣∣∣∣qp
∣∣∣∣ = 1 . (1.68)

It is evident that the parameter λ is a physically meaningful quantity that

defines, through the condition:

λ �= ±1 (1.69)

another type of manifestation of CP -violation, the CP -violation in the inter-

ference between mixing and decay.
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If the mode B → f is characterized by only one weak phase (no direct

CP -violation) we have also: ∣∣∣∣ĀfAf
∣∣∣∣ = 1 (1.70)

and:

|λ| = 1 , (1.71)

with the time-dependent CP -asymmetry becoming simply:

A(t) = −Imλ sin ΔMt . (1.72)

We remark the distinctive feature of this situation: when the decay is

characterized by a unique weak phase, in the ratio Āf/Af the dependence

on the strong phases (source of theoretical uncertainties) cancel out, and λ

becomes related only to the difference between the weak phases from mixing

and decay, which is a function of the parameters of the CKM matrix.

1.3 CP -asymmetry measurement at a B-factory

B mesons are produced in decays of the Υ (4S) resonance: Υ (4S) → B0B0

and Υ (4S) → B+B−. The Υ (4S) is a bb bound state of mass MΥ (4S) =

10.58 GeV/c2, slightly above the threshold for decaying into a B mesons pair.

C-conservation implies that the pair is produced in a C = −1 state, which

constrains the time-dependent wave function of the system to the following

form:

|ψ(t1, t2) >∝ 1√
2

( |B(t1), �p > |B(t2),−�p > − |B(t1), �p > |B(t2),−�p > ) .

In this equation �p is the momentum of a meson in the center-of-mass frame,

and t1,2 are approximately equal to the proper times of the B mesons, pro-

duced almost at rest in this frame. Writing explicitly the time dependent

evolutions B(t) and B(t) (Eq. 1.58 and 1.59), we obtain:

|ψ(t1, t2) > ∝ cos [
ΔM

2
(t1 − t2)] ×

× [ |B, �p > |B,−�p > − |B, �p > |B,−�p > ] −
− i sin[

ΔΓ

2
(t1 − t2)] ×

×
[
p

q
|B, �p > |B,−�p > −q

p
|B, �p > |B,−�p >

]
. (1.73)
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Until one of the two mesons decays, t1 = t2 and the sin term vanishes: at

each time there is always a BB state and the other possibilities (a BB or a

BB state) are exluded (coherent evolution of the BB state).

As an useful example, let us suppose that at time t2 = ttag one B decays

into a final state ftag which determines univocally its flavor as a B0. Thus,

at the same time ttag the flavor of the other B is a B0 and it will continue

to evolve according to the evolution function B(t), with t = t1 − ttag , until

it decays. Let us suppose that this other B decays into a CP -eigenstate fCP
at time t1 = tCP . We can use Eq. 1.73 to write the decay amplitude of the

overall process:

< fCP (tCP ) ftag(ttag)B0 |H| ψ(t1, t2) >∝ ACP Ātag ×
×

(
cos

ΔMt

2
(tCP − ttag) + i

q

p

ĀCP
ACP

sin
ΔMt

2
(tCP − ttag)

)
, (1.74)

where ACP and Ātag are the matrix elements < fCP |H|B > and < ftag|H|B >

respectively. We remark that Eq. 1.74 is the same of Eq. 1.61, but with

t = tCP − ttag and the flavor tagging decay included.

In conclusion, if the asymmetry observable A is studied at a B-factory, re-

alized with an e+e− collider working at the Υ (4S) resonance (see Section 2.1),

we can still use Eq. 1.67 but the time t has to be interpreted as the relative

time between the tagging and the CP decays (t = tCP − ttag), which can be

either positive or negative according to the succession of the decays. For this

reason the measurement must be performed as a function of time, otherwise

the asymmetry for t > 0 would cancel the contribution for t < 0 and no

asymmetry will be observed.

1.3.1 The golden mode

The condition of no direct CP -violation is satisfied by the class of modes with

a b→ ccs transitions and a charmonium resonance in the final state, like the

golden mode B0 → J/ψK0
S [18]. The calculation of the parameter λ for this

decay has to take into account that the K0
S

is a mixing of K0 and K0 states:

|K0
S
>= pK |K > +qK |K > , (1.75)

and the amplitude of the decay will be:

AJ/ψK0
S

=< J/ψK0
S |H|B >= p∗K < J/ψK|H|B > +q∗K < J/ψK|H|B > .
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Since the only possible processes are B0 → J/ψK0 and B0 → J/ψK0, we

have:

AJ/ψK0
S

= p∗K < J/ψK|H|B >≡ p∗KA0 . (1.76)

Similarly, the amplitude of the CP -conjugate decay B0 → J/ψK0
S will be

given by:

ĀJ/ψK0
S

= q∗K < J/ψK|H|B >≡ q∗KĀ0 . (1.77)

From the definition of λ we have:

λJ/ψK0
S

=

(
q

p

)
B

· ĀJ/ψK0
S

AJ/ψK0
S

=

(
q

p

)
B

·
(
q∗

p∗

)
K

Ā0

A0

, (1.78)

that in the SM leads to:

λJ/ψK0
S

= ηCP e
−2iβ , (1.79)

where the CP -eigenvalue of the final state J/ψK0
S is ηCP (J/ψK0

S) = −1.

Thus the measurement of the time-dependent CP -asymmetry for the

B0 → J/ψK0
S

channel (and for a class of similar decays) provides a clean

determination of Imλ = sin2β. For other classes of decays the parameter λ

can be related to the angles α or γ of the Unitarity Triangle [18] but the

condition of a unique weak phase in the decay amplitude is not well satisfied,

and therefore the extraction of these angles from the observed asymmetry is

not simple and is affected by larger theoretical uncertainties.

From the analysis of a data sample of 32 million BB pairs collected in

1999-2001, the BABAR collaboration has determined for sin2β a value of [19]:

sin2β = 0.59 ± 0.14(stat.) ± 0.03(syst.) , (1.80)

that establishes CP -violation in the B0 meson system at the 4.1σ level. No

evidence of direct CP -violation for the examined modes has been found. The

measured value of sin2β can be compared with the existing constraints on

the Unitarity Triangle (see Section 1.1.3) and it is found to be consistent

with the SM predictions.





Chapter 2

The BABAR experiment

The BABAR experiment is currently collecting data at the Stanford Linear

Accelerator Center (SLAC). The small branching fractions of the relevant

modes to be studied (10−4 or less) and the CP -asymmetry measurement pose

stringent requirements both on the accelerator machine for the production

of the B mesons and on the particles detector, which are described in the

present chapter.

2.1 The PEP-II B Factory

The PEP-II B Factory [20] is a high luminosity (L = 3×1033 cm−2s−1) e+e−

collider operating at the Υ (4S) resonance, which decays almost exclusively

in a B0B0 or a B+B− pair with equal probabilities. This results in a clean

environment, characterized by a high signal-to-noise ratio (σbb/σTOT ≈ 0.28)

and low track multiplicity per event (≈ 11). In addition, events reconstruc-

tion and background rejection benefit by the kinematic constraint on the

momentum and energy of each B in the center-of-mass frame.

At PEP-II the energy of the electron beam (Ee− = 9.0 GeV) is different

from the energy of the positron beam (Ee− = 3.1 GeV), with a consequent

boost of the Υ (4S) in the laboratory frame. The asymmetry of the machine is

motivated by the need of separating the decay vertices of the two B mesons, a

feature which is crucial for the CP -asymmetry determination. Indeed, the rel-

ative time tCP−ttag between the decays of the two B mesons (see Section 1.3)

can be derived in principle from their relative decay length (Δz)CM measured

in the center-of-mass frame. Unfortunately, on the average (Δz)CM ≈ 30μm,

25



26 The BABAR experiment

Figure 2.1: A drawing of the PEP-II B Factory, along with the SLAC Linac.

which is below the limit set by the spatial resolution of present vertex detec-

tors technology. On the contrary, if the machine is asymmetric the relative

decay time in the laboratory frame receives a relativistic enhancement:

(Δt)lab = γ(tCP − ttag) , (2.1)

that increases the separation of the decay vertices. The boost of PEP-II

(βγ = 0.56) provides a mean vertex separation (Δz)lab ≈ 260μm, that is

measurable with state-of-the-art vertex detectors.

The electrons and positrons beams are produced at the SLAC Linac, a

linear accelerator 3 km-long, and are injected into separate storage rings: the

e− in the High Energy Ring (HER) and the e+ in the Low Energy Ring

(LER), which are installed on top of each other in a tunnel 2.2 km-long (see

Fig. 2.1). The e− and e+ bunches collide head on in a single Interaction

Point (IP) and are separated in the horizontal plane, after the collision, by

permanent dipole magnets (B1), located at ±21 cm on either side of the IP

(see Fig. 2.2). Permanent quadrupole magnets (Q1), installed at ±90 cm from

the IP, provide strong focalization of the beams.

The interaction region is enclosed by a beam pipe of 27.9mm outer ra-

dius. It is composed of two layers of beryllium, with a cooling water channel

between them. The inner surface of the pipe is coated with a 4μm layer of

gold for attenuation of the strong synchrotron radiation due to the B1 deflect-

ing dipoles. In addition, the beam pipe is wrapped with 150μm of tantalum
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Figure 2.2: A schematic view of the interaction region in the horizontal plane of the
accelerator. The deflection of the beams due to the B1 dipoles and the focalization due to
the Q1 quadrupoles are also shown.

foil on either side of the IP, beyond z = +10.1 cm and z = −7.9 cm. The

beam pipe, the permanent magnets and the vertex detector (the innermost

component of the BABAR detector) are enclosed in a 4.5m-long carbon fiber

support tube (inner diameter = 21.7 cm) surrounding the IP.

2.1.1 Performances

The luminosity L of the machine depends on the careful tuning of several

parameters. This dependence can be expressed with the following equation:

L =
nfN1N2

A
, (2.2)

where n is the number of bunches in a ring, f is the frequency of the bunch

crossing, N1,2 are the number of particles in each bunch, and A is their overlap

section.

Table 2.1 reports the design values of these parameters and the reached

performances. The machine has surpassed the design performances, reaching

a peak luminosity of L = 3× 1033 cm−2s−1 with a significantly lower number

of bunches. Figure 2.3 shows the integrated luminosity provided by PEP-

II from May 1999 to September 2001, along with the integrated luminosity

recorded by the BABAR detector.
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Table 2.1: PEP-II beam parameters. Design values and typical performances are re-
ported.

Parameters Units Design Typical
Energy HER/LER GeV 9.0/3.1 9.0/3.1
Current HER/LER A 0.75/2.15 0.7/1.3
# of bunches 1658 553-829
Bunch spacing ns 4.2 6.3-10.5
Beam spot x-size μm 220 190
Beam spot y-size μm 6.7 6.0
Peak luminosity 1033 cm−2s−1 3 2.5

2.1.2 Machine background

Machine-generated background causes high single counting rates, data acqui-

sition dead times, high currents, and radiation damages both of the detector

components and of the electronics. This results in lower data quality and

may limit the lifetime of the apparatus. For this reason, the background

generated by PEP-II has been studied in detail and the interaction region

has been carefully designed. Furthermore, background rates are continously

monitored during data acquisition to prevent critical operating conditions of

the detector.

The primary sources of machine-generated background are: synchrotron

radiation in the proximity of the interaction region, interactions between

beam particles and residual gas in either ring, and electromagnetic showers

generated by beam-beam collisions.

Synchrotron radiation is a strong source of background (many KW of

power), and it is due to the beam deflections in the interaction region. The

impact of this background on the detector is limited by channelling the ra-

diation out of the BABAR acceptance with a proper design of the interaction

region and the beam orbits, and placing absorbing masks before the detector

components.

Interactions between beam particles and residual gas molecules in the

rings are of two types: beam-gas bremsstrahlung and Coulomb scattering. In

both cases, the interaction causes the beam particles to escape from their or-

bit. The B1 dipoles bend these particles in two opposite directions (depending

on their charge) in the horizontal plane of the machine. As a consequence,
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Figure 2.3: Integrated luminosity provided by the PEP-II B Factory in 1999-2001. The
total integrated luminosity, and the off-peak only, recorded by the BABAR detector is also
shown.

two occupancy peaks are clearly revealed in the BABAR detector system.

This background represents the primary source of radiation damage for the

inner vertex detector and the principal background for the other detector

components.

Radiative Bhabha scattering can produce energy degradated e+ or e−

hitting the beam pipe within a few meters of the IP with the consequent

generation of electromagnetic showers that may reach the BABAR detector.

This background is proportional to the luminosity of the machine. In the

actual operating conditions this source of background is under control, but

it is expected to increase its relevance if the machine will operate at higher

values of the luminosity.

2.2 The BABAR detector

The CP -asymmetry measurement and the properties of the decay channels

to be studied at BABAR determine the general features of the detector sur-

rounding the PEP-II interaction region [21, 22].



30 The BABAR experiment

For a CP -asymmetry measurement full reconstruction of the decay of one

B is needed, while the flavor of the other B has to be determined from its

charged decay products. Typical events are characterized by small branching

fractions (≤ 10−4), two to six charged particles and one or more π0 in

the final state. In addition, the asymmetry of the machine causes the decay

products to be emitted at small polar angles relative to the e− high energy

beam direction (which is assumed as the forward direction). An efficient

events reconstruction requires therefore a detector with large and uniform

acceptance down to these angles.

Figure 2.4 shows a longitudinal view of the detector, while an end view is

shown in Fig. 2.5. A conventional right-handed coordinate system is defined:

the z-axis coincides with the principal axis of the DCH, while the y-axis

points upward. The polar angle coverage extends down to 0.35 rad in the

forward direction and to 0.4 rad in the backward direction. These limits are

determined by the B1 and Q1 magnets of PEP-II. In order to improve the

coverage of the forward region, the whole detector is offset relative to the IP

by 370mm in the forward direction. The distance of the beam pipe from the

floor (3.5m) poses a constraint on the transversal dimension of the detector,

that has to be of compact design.

Starting from the innermost components, the detector consists of a silicon

vertex tracker (SVT) and a drift chamber (DCH) for charged particles track

reconstruction, a detector of internally reflected Cherenkov light (DIRC) for

charged hadrons identification, a CsI calorimeter (EMC) for identification of

electromagnetic showers from electrons and photons; these components are

embedded in a 1.5T magnetic field generated by a superconducting solenoid.

The steel of the flux return of the magnet (IFR) is the outermost part of the

detector and is instrumented with resistive plate chambers for muons and

neutral hadrons identification.

2.2.1 The tracking system

The SVT and the DCH constitute the tracking system of the detector, for

the efficient detection of charged particles and the determination of the track

parameters with high precision. These high precision measurements allow for

the reconstruction of exclusive B and D mesons decays with high resolution

and thus minimal background. In particular, angles and positions measured

by the SVT are used for determining the decay vertices of the B mesons, and
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Figure 2.4: Longitudinal section of the BABAR detector.

the curvature of the track in the DCH measures the momentum of the charged

particle. Tracks reconstructed in the SVT and DCH are also extrapolated to

the other components (DIRC, EMC, and IFR). Since the average momentum

of charged particles from B decays is less than 1 GeV/c, the precision of the

measured track parameters is mostly affected by multiple Coulomb scattering

in the detector material. Thus, the design of the components required a

special attention in limiting the overall amount of material in the active

region.

The silicon vertex tracker

The main purpose of the SVT is the measurement of the angles and positions

of charged particles immediately outside the beam pipe. The SVT is located
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inside the support tube along with the machine components, which limit the

angular acceptance of the detector to 350mrad in the forward direction and

520mrad in the backward direction.

Figure 2.6 shows a longitudinal view of the detector: it is composed of five

concentric layers of 300μm double-sided silicon strip detectors, organized in

6, 6, 6, 16, and 18 modules (see Fig. 2.7). The modules of the inner three

layers are straight, while the modules of layers 4 and 5 are arch-shaped

in order to minimize both the amount of silicon required to cover the solid

angle and the material traversed by the particle at small or large polar angles.

The inner modules are tilted in φ by 5◦, allowing an overlap region between

adjacent modules. The outer modules cannot be tilted, because of the arch

geometry, but are divided into two sub-layers (layers 4a, 4b, 5a, 5b) placed at

slightly different radii. The radius of the innermost layer (layer 1) is 32mm

while the radius of the outermost layer (layer 5b) is 144mm. The strips on
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the opposite sides of each silicon sensor measure different coordinates: we

have z-strips, oriented perpendicularly to the beam axis, and longitudinal

φ-strips. The total active silicon area is 0.96m2.

The angles and positions measured in the innermost three layers are used

for B vertex determination. They have been mounted very close to the beam

pipe in order to minimize the impact of multiple scattering in the vertex

resolution. The angles and positions measured in the last two layers are used,

together with the DCH measurements, for track reconstruction. Charged

particles with transverse momentum less than 120 MeV/c are not reliably

reconstructed in the DCH. In order to improve tracking efficiency for these

particles (such as slow pions from D∗ decays), the SVT is able to provide

standalone tracking.

For perpendicular tracks a position resolution of about 15μm in the three

inner layers and 40μm in the outer layers is achieved. Furthermore, the mean

resolution on the separation between the two B vertices is less than 100μm.

In addition to the position measurement, the double-sided silicon devices

provide measurements of the dE/dx ionization loss of the track, useful for

particle identification. Indeed, the time interval during which the signal from

a strip is above a certain threshold (“time over threshold”) is logarithmically

related to the charge induced on the sensor.
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The drift chamber

The main purpose of the DCH is the efficient detection of charged particles

and the measurement of their momenta and angles with high precision. Fur-

thermore, in order to reconstruct decay vertices outside the SVT volume (for

instance the K0
S
→ π+π− vertex), the drift chamber is required to measure

both the transverse and the longitudinal position of the tracks.

The DCH is a 280 cm-long cylinder with an inner radius of 23.6 cm and

an outer radius of 80.9 cm (see Fig. 2.8). The forward and rear aluminium

endplates are 12mm-thick and 24mm-thick respectively, and all the elec-

tronics is mounted on the rear endplate. This choice prevents degradation

of performances for the successive BABAR detector components in the most

critical (because of the boost) forward region.

The DCH consists of 7104 hexagonal drift cells arranged in 40 concentric

layers. An exagonal cell has dimensions ∼ 12mm along the radial direc-

tion and ∼ 19.0mm along the azimuthal direction. It consists of one sense

wire surrounded by six field-shaping wires such that an approximate circular

symmetry of the electric field is reached over a large portion of the cell. The

field wires are at ground potential while a positive high voltage is applied to

the sense wires. Wires parallel to the z-axis (type A wires) provide position
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measurements in the x-y plane, while longitudinal position information is

obtained with wires placed at small angles with respect to the z-axis (type

U or V wires). In order to minimize multiple scattering inside the active vol-

ume, low-mass aluminum field wires and a helium-based gas mixture (with

a radiation length five times larger than commonly used argon-based gases)

are employed. At a typical operating voltage of 1960 V and with an 80:20

helium:isobutane gas mixture, the avalanche gain is approximately 5 × 104.

The layers are grouped by four into superlayers, each characterized by a

definite orientation of the wires. There is a total of ten superlayers, which

alternate between axial (A) and stereo (U,V) pairs, according to the sequence

AUVAUVAUVA, as shown in Fig. 2.9.

The drift time in a cell, measured by detecting the leading edge of the sig-

nal on the sense wire, is digitized and a time-to-distance relation, calibrated

on data (e+e− and μ+μ− events), connects this time with the drift distance

needed for the position measurement. The position resolution depends on the

drift distance; typical values in the range 0.1 − 0.15mm are achieved.

For low momentum particles the DCH provides also particle identification

by measurements of the dE/dx ionization loss in the cells. This requires the

integration of the signals from the cells traversed by the particle in order to

obtain the total charge collected by the wires.
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Performances of the tracking system

The performances of charged particle reconstruction at BABAR have been

extensively studied, both in data and with Monte Carlo simulations.

Track reconstruction can be performed indipendently in the SVT and

the DCH. This gives the possibility to determine the efficiency of the track

reconstruction in the DCH as:

ε(DCH) =
Ntrk(DCH)

Ntrk(SVT)
, (2.3)

where Ntrk(DCH) is the number of reconstructed tracks in the DCH and

Ntrk(SVT) is the number of tracks detected in the SVT and falling within

the DCH acceptance. At the design voltage of 1960 V, the average efficiency
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Figure 2.10: (a): Transverse momentum spectrum of pions from D∗+ → D0π+ decays as
obtained in data and from Monte Carlo simulations. (b): Efficiency for slow pion detection
as obtained from Monte Carlo simulations.

per track, with transverse momentum above 200 MeV/c and polar angle θ >

500mrad, is (98 ± 1)%.

The SVT standalone tracking is extremely important for the detection

of soft pions from D∗+ → D0π+ decays. Figure 2.10-(a) shows the trans-

verse momentum spectrum for these pions, as measured in data and from

Monte Carlo simulations. The detection efficiency is shown in Fig. 2.10-(b)

where it is evident that charged particle detection extends down to transverse

momenta of ∼50 MeV/c.

The parameters of a track are measured at the point of closest approach to

the z-axis. In particular, the parameter d0 and z0 are defined as the distances

of this point from the origin of the coordinate system in the x-y plane and

along the z-axis, respectively. The measured resolution in d0 and z0, as a

function of the transverse momentum pt, is shown in Fig. 2.11. At pt =

3 GeV/c the d0 and z0 resolutions are about 25μm and 40μm respectively.

Figure 2.12 shows the resolution in the transverse momentum as derived

from cosmic rays muons. The data are well represented by a linear function:

σpt/pt = (0.13 ± 0.01)% · pt + (0.45 ± 0.03)%, (2.4)
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Figure 2.11: Resolution in the parameters d0 and z0, as a function of the transverse
momentum pt, determined from tracks in multi-hadron events.

where the transverse momentum pt is measured in GeV/c.

2.2.2 The DIRC

Particle identification of charged hadrons is extremely important for flavor

tagging of the B via the cascade decay b → c → s. The momenta of the

kaons used for tagging extend up to about 2 GeV/c. Furthermore, charged

hadrons discrimination is very useful for the separation of rare decay modes,

like B0 → π+π− and B0 → K+π− (where kaons and pions have momenta

between 1.7 and 4.2 GeV/c). While particle identification at momenta below

700 MeV/c relies primarily on the dE/dx measurements in the DCH and

SVT, at higher momenta this task is performed by a Cherenkov detector,

the DIRC.

The phenomenon of Cherenkov light emission is widely used in particle

detectors technology. A charged particle traversing a medium with a velocity

β greater than the speed of light in that medium (that is β > 1/n, where n

is the index of refraction of the medium) emits directional electromagnetic

radiation (called Cherenkov light). The angle of emission θC of the photons

with respect to the track direction is called Cherenkov angle and is deter-

mined by the velocity of the particle: θC = 1/nβ. Thus, the measurement of

θC determines β and, given the momentum of the particle (measured in the
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DCH), the mass of the particle can be obtained.

The DIRC is composed of 144 thin quartz bars of rectangular cross sec-

tion, disposed longitudinally to form a 12-sided polygonal barrel. Each bar is

17mm-thick, 35mm-wide, and 4.9m-long, and acts both as radiator material

(index of refraction n = 1.473) and light pipe. Photons are transmitted in the

bar via total internal reflections at the flat surface, a mechanism preserving

the angular information (see Fig. 2.13).

In order to minimize interference with other detector systems in the most

critical forward region, only the backward end is instrumented with photons

detectors. However, photons moving forward are not lost because mirrors

placed at the forward end of each bar reflect them to the backward end.

Here a small piece of quartz with a trapezoidal profile allowes for significant

reduction in the area requiring instrumentation because it folds one half of

the Cherenkov image into the other half. The photons emerge into a toroidal

tank (the standoff box) filled with purified water, where the Cherenkov angle

is allowed to expand. The choice of water has been dictated by its refractive

index, matching quite well with that of the bars, thus minimizing the total

internal reflection at the quartz-water interface. The Cherenkov photons are

finally detected, in the visible and near-UV range, by an array of photomulti-

plier tubes (PMT), placed on the surface of the tank (at a distance of about

1.2m from the bar end).
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Figure 2.13: Light generation, transmission and detection in the DIRC.

The informations used for the reconstruction of the Cherenkov angle are

the position and arrival time of the PMT signal, along with the known spa-

tial position of the quartz bar traversed by the track. The three-dimensional

vector pointing from the center of the bar end to the center of the PMT is

computed, and then is extrapolated (using Snell’s law) into the radiator bar

in order to extract, given the direction of the charged particle, the Cherenkov

angle. Timing information is used to suppress background hits and to cor-

rectly identify the track emitting the photons.

The number of detected photons Npe varies between 20 for tracks at

normal incidence and 65 for tracks at small or large polar angles, because

of the different pathlengths in the radiator. The Cherenkov angle resolution

scales as 1/
√
Npe and has been measured in μ+μ− events: typical values of

about 2.5mrad are reached. This results in a separation power between pions

and kaons at 3 GeV/c of about 4.2σ.

Selection algorithms for charged kaons have been developed. They use

particle identification informations from the SVT, the DCH and the DIRC,

and differ for the level of purity of the selection. The efficiency for correctly

identifying a charged kaon and the probability to wrongly identify a pion as

a kaon are illustrated, as a function of the track momentum, in Fig. 2.14 (for

a particular selection algorithm). The average kaon selection efficiency and

pion misidentification are ∼ 96% and ∼ 2.1%, respectively.
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inclusive D∗ production.

2.2.3 The electromagnetic calorimeter

The purpose of the electromagnetic calorimeter is the detection of electro-

magnetic showers with very high efficiency, and the measurement of the en-

ergy and direction of the primary photon or electron. The energy range to be

covered at BABAR goes from about 20 MeV (for photons from decays of slow

π0 or η0) to about 4 GeV (for photons and electrons from QED processes).

An efficient π0 reconstruction is critical for the measurement of extremely

rare decays, such as B0 → π0π0. An efficient and pure selection of electrons

is useful for B flavor tagging via semileptonic decays, for the reconstruction

of vector mesons like J/ψ , or for the reconstruction of several exclusive final

states of B and D mesons. Furthermore QED processes like e+e− → e+e−(γ)

and e+e− → γγ, need to be efficiently detected because they are useful for

calibration and luminosity determination.

The EMC is constituted by a finely segmented array of thallium-doped

cesium iodide (CsI(Tl)) crystals. It extends in polar angle from 15.8◦ to

141.8◦ (see Fig. 2.15). The crystals are disposed according to a projective

geometry and are arranged in modules. We distinguish two sectors of the

EMC: a cylindrical barrel and a conical forward endcap. The barrel has an

inner radius of 92 cm and an outer radius of 136 cm, with a longitudinal

dimension of about 3m. It contains 5760 crystals arranged in 48 distinct
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Figure 2.15: Longitudinal section of the EMC (top-half only).

rings. The conical endcap contains 6580 crystals arranged in eight rings.

The CsI(Tl) crystals are characterized by high light yield (5×104γ/MeV)

and small Molière radius (3.8 cm), for excellent energy and angular resolution,

and a short radiation length (1.85 cm) for shower containement. They have

a tapered trapezoidal cross section: the typical area of the front face is 4.7×
4.7 cm2, while the back face area is typically 6.1 × 6.0 cm2. The length of

the crystals has been chosen to limit possible shower leakages from higher

energy particles: it goes from 29.6 cm (for crystals in the backward region)

to 32.4 cm (for crystals in the forward direction).

The EMC crystals act not only as a total-absorption scintillating medium,

but also as a light guide. The light is collected by silicon photodiodes that

are mounted on the rear surface. A periodical calibration procedure is needed

to extract the energy of the incident photon or electron. Furthermore, the

energy deposited over several adjacent crystals needs to be corrected for

energy losses (due to shower leakages, absorption in the material between

and in front of the crystals, and photomultiplier signals not associated with

the shower).

A typical electromagnetic shower spreads over many adjacent crystals,

forming a cluster of energy deposits. Clusters are identified and associated to

a charged or a neutral particle by pattern recognition algorithms. Two kinds

of clusters are reconstructed: single clusters with one energy maximum, and

merged clusters characterized by several local energy maxima (bumps).
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Figure 2.16 shows the energy resolution as a function of the shower energy.

It is described empirically as a quadratic sum of two terms:

σE
E

=
(2.32 ± 0.30)%

4
√
E( GeV)

⊕ (1.85 ± 0.12)% . (2.5)

Figure 2.17 shows the angular resolution as a function of the shower

energy. It can be empirically parameterized as a sum of two terms:

σθ = σφ =

[
(3.87 ± 0.07)√

E( GeV)
+ (0.00 ± 0.04)

]
mrad . (2.6)

The EMC is the primary detector for electron identification through quan-

tities like the ratio of the shower energy to the track momentum, or variables

related to the shape of the cluster. Electrons identification algorithms have

been developed, which use these variables along with the dE/dx energy loss in

the DCH and the DIRC Cherenkov angle. The efficiency for correctly identi-

fying an electron, and the pion misidentification probability for a particular

selection algorithm are shown, as a function of the momentum and polar

angle of the particle, in Fig. 2.18. The efficiency in the momentum range

0.5 < p < 2 GeV/c is ∼ 88%, while the average misidentification probability

is ∼ 0.15%.
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2.2.4 The instrumented flux return

The instrumented flux return (IFR) identifies muons with high efficiency

and good purity, and detects neutral hadrons (primarily K0
L
) over a wide

range of momenta and angles. Muons identification with good efficiency and

high background rejection down to momenta below 1 GeV/c is important for

B flavor tagging via semi-leptonic decays, for the reconstruction of vector

mesons like the J/ψ , and the study of many exclusive decays of B and D

mesons. K0
L detection is used for the study of exclusive B decays, like the

CP -mode B → J/ψK0
L

(useful for sin2β determination as the golden mode

B → J/ψK0
S
).

The IFR consists of three sectors (see Fig. 2.19): the Barrel concentric to

the z-axis (inner radius = 182 cm, outer radius = 304 cm), and the two end

doors of the flux return (Forward and Backward End Caps), which extend the

polar angle coverage down to 300mrad in the forward direction and 400mrad

in the backward direction. The steel of the flux return acts as muon filter and

hadron absorber. It is segmented into 18 plates of variable thickness (from

the 2 cm of the inner nine plates to the 10 cm of the outermost plate) for a

total of 65 cm in the Barrel and 60 cm in each End Cap. The gaps between the

plates (∼ 3.2 cm) are instrumented with single gap resistive plate chambers
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Figure 2.18: The electron efficiency and pion misidentification probability as a function
of: (left plot) momentum of the particle in the laboratory frame; (right plot) polar angle
of the particle in the laboratory frame. The electron efficiency is measured using elec-
trons from radiative Bhabhas and e+e− → e+e−e+e− events. The pion misidentification
probability is measured using charged pions from K0

S
decays and three-prongs τ decays.

(RPC) for particles detection. There are 19 RPC layers in the barrel and

18 in each endcap. In addition, two layers of cylindrical RPCs are installed

between the EMC and the magnet cryostat to detect neutral hadrons that

start to interact in the EMC.

A cross section of an RPC is shown schematically in Fig. 2.20. Two 2mm-

thick sheets of bakelite are separated by a 2mm gap enclosed at the edge by

a 7mm-wide frame. The gap width is kept uniform by polycarbonate spacers

(0.8 cm2), that are glued to the bakelite and spaced at distances of about

10 cm. The external surfaces of the bakelite sheets are coated with graphite,

connected to high voltage (typically 7.6 KV) and ground, and are insulated

by a mylar film. The inner surfaces of the bakelite sheets are treated with

linseed oil for noise reduction. A non-flammable gas mixture (approximately

56.7% Argon, 38.8% Freon 134a, and 4.5% Isobutane) fills the gap.

An ionizing particle traversing the gap produces a local streamer. Since

the bakelite has a resistivity of ∼ 1011–1012Ω cm, the streamer induces a

signal on aluminium electrodes in the shape of strips, which are mounted
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Figure 2.19: The three sectors of the IFR: Barrel, Forward End Cap and Backward End
Cap.

externally on the mylar film. There are strips on both sides of the gap,

running in perpendicular directions in order to obtain a two-dimensional

measurement of the position of the particle. The read out strips are separated

from a ground aluminium plane (for electric shielding) by a 4mm-thick foam

sheet; this configuration makes the strips equivalent to transmission lines

of 33Ω impedance. Thus, the signal induced on a strip moves towards the

readout electronics connected at one end.

Each layer in the Barrel extends 375 cm in the z-direction and varies in

width from 194 cm to 320 cm. Three RPC modules are needed to cover the

surface of a layer. Each module has 32 strips running perpendicularly to the

beam axis (z-strips) and 96 strips in the orthogonal direction extending over

three modules (φ-strips). A layer in a half end door is divided into three

sections by steel spacers that are needed for mechanical support. The surface

of a section is covered by two RPC modules provided with horizontal and

vertical readout strips (y and x-strips). The cylindrical RPCs are provided

with orthogonal readout strips: the inner layer has helical strips which run

parallel to the diagonals of the chambers, while the outer layer has axial

and azimuthal strips. On the whole, there are 806 RPC modules of different

shapes and sizes in the IFR, covering an area of about 2000m2.

Hits from different layers in coincidence with an event are grouped into

a charged cluster if they can be associated to a track detected in the SVT
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Figure 2.20: Transversal section of a resistive plate chamber.

and the DCH. The track is extrapolated to the IFR taking into account the

non-uniform magnetic field, the multiple scattering, and the average energy

loss. Then the projected intersections with the RPC planes are computed, and

finally all the hits within a predefined distance from the predicted intersection

are associated to the track.

The IFR is the primary detector for muons identification through sev-

eral variables computed for the charged cluster, such as the total number

of interaction lengths traversed by the track in the detector; the difference

between the above number of interaction lengths and the number of inter-

action lengths predicted for a muon of the same momentum and angle; the

average number and the RMS of the distribution of RPC hit strips per layer;

the χ2 of the geometric match between the projected track and the cen-

troids of clusters in different RPC layers. Muons identification algorithms

have been developed, which use the above variables along with the energy

released in the EMC. The efficiency for correctly identifying a muon and

the pion misidentification probability for a particular selection algorithm are

shown, as a function of the momentum and polar angle of the particle, in

Fig. 2.21. The muon efficiency in the momentum range 1.5 < p < 3.0 GeV/c

is ∼ 87%, with a pion misidentification of ∼ 7%. Tighter selection criteria

reduce the pion misidentification to ∼ 2.7%, with a muon detection efficiency

at the 76% level.

K0
L

and other neutral hadrons that interact in the steel of the IFR are
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Figure 2.21: The muon efficiency and pion misidentification probability as a function of:
(left plot) momentum of the particle in the laboratory frame; (right plot) polar angle of
the particle in the laboratory frame. The muon efficiency is measured using muons from
e+e− → μ+μ−γ and e+e− → μ+μ−e+e− events. The pion misidentification probability is
measured using charged pions from K0

S
decays and three-prongs τ decays.

identified as clusters of hits not associated to a charged track. According

to Monte Carlo simulations, about 64% of the K0
L
s with momentum greater

than 1 GeV/c is reconstructed as a cluster of hits in the IFR. The direction

of the neutral hadron is determined from the event vertex and the centroid

of the neutral cluster. If the K0
L

starts to interact in the EMC, the cluster

in the IFR is associated to a neutral shower in the calorimeter if there is a

match in the corresponding directions.

Performances of K0
L

reconstruction are derived using samples of K0
L

se-

lected from e+e− → φγ → K0
L
K0

S
γ events. The K0

L
detection efficiency in-

creases roughly linearly with momentum. It varies from 20% to 40% in the

momentum range from 1 GeV/c to 4 GeV/c. An angular resolution of the order

of 60mrad is achieved.

2.2.5 The trigger system

The trigger system consists of a sequence of two independent stages: the Level

1 (L1) trigger, implemented in hardware, and the Level 3 (L3) trigger, im-

plemented in software. The L1 trigger interpretes incoming detector signals,
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and recognizes and removes beam-induced background to a level acceptable

for the subsequent stage. The software of the L3 trigger runs on a farm of

commercial processors.

Level 1 trigger

The L1 trigger is designed to provide an output trigger rate < 2 KHz, and

has a latency of 11 − 12 μs after the beam crossing. It is based on data

from DCH, EMC, and IFR. The DCH trigger identifies long and short tracks

down to pT = 120 MeV. The EMC trigger identifies energy deposits above

a certain threshold, chosen to be as small as 100 MeV in order to efficiently

recognize minimum ionizing particles. The IFR trigger identifies μ+μ− and

cosmic rays for diagnostic purposes. At a luminosity of 2.2 · 1033 cm−2s−1 the

L1 trigger efficiency for BB events is > 99.9%, and the typical L1 rate is 970

Hz, stable to within 20% for the same machine configuration.

Level 3 trigger

The L3 software algorithms select events of interest that are then stored for

processing. It receives the output from L1, performs a second stage reduction

for the main physics sources, and identifies and flags the special categories

of events needed for luminosity determination, diagnostic and calibration

purposes. The L3 trigger retains events in which the track candidates point

back to the beam interaction region (L3 DCH trigger), or there are EMC

cluster candidates with energy greater than a minimum ionizing particle,

and correlated in time with the rest of the event (L3 EMC trigger). At the

design luminosity, the L3 acceptance rate for physics is ∼ 90 Hz, and the

efficiency for BB events is > 99.9%.





Chapter 3

Introduction to the study of

the B± → J/ψπ± mode

Studies of non-leptonic decays of B mesons are very useful to gain a better

understanding of the dynamics of strong interactions, which are responsible

for the bounding of quarks and gluons into hadrons. The complexity of the

processes involved in non-leptonic decays is illustrated in Fig. 3.1, where

it is shown how strong interactions of quarks can affect a simple b → cud

tree diagram. Several approaches have been developed by theorists in order

to obtain reliable predictions for these decays. In particular, a factorization

prescription allows us to write the decay amplitude in terms of a product of

hadronic current matrix elements.

This chapter represents a brief theoretical introduction to the study of the

B± → J/ψπ± decay mode. The principles and the limits of the factorization-

based approach, widely used for the treatment of non-leptonic decays, are

described, and the properties of the B± → J/ψπ± channel are then discussed.

3.1 The effective Hamiltonian

Let us consider, as an example of two-body non-leptonic decay, the mode

B0 → D+π−. The basic diagram for this process is shown in Fig. 3.2, in which

we can distinguish a tree diagram b → cud and a spectator quark d. Strong

interactions affect this simple W -exchange in different ways, according to the

energy of the exchanged gluons. Short-range interactions, characterized by

energy scales > ΛQCD, can be described by perturbative QCD, while long-

51
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Figure 3.1: Tree diagram b→ cud, with a spectator quark d, affected by gluon exchanges.
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ū

Figure 3.2: The tree diagram for the decay B0 → D+π−.

range interactions, characterized by energy scales ≤ ΛQCD, cannot be treated

perturbatively.

In order to manage these complicate effects, the technique known as the

Operator Product Expansion [23] is used to write the amplitude of a generic

decay B → f as:

A = −GF√
2
VCKM

∑
j

Cj · 〈f |Oj|B〉
[
1 +O

(
m2
b

M2
W

)]
, (3.1)

where the Wilson coefficients Cj are independent of the final state f , the

Oj are local four-quarks operators and VCKM represents the product of the

CKM matrix elements for the decay considered. The coefficients Cj can be

interpreted as the “universal” coupling constants of the following effective

Hamiltonian:

Heff =
GF√

2
VCKM

∑
j

Cj(μ)Oj(μ) + h.c. , (3.2)
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where we have shown explicitly that the operators Oj are renormalized at the

energy scale μ. The μ-dependence of the Wilson coefficients assures that the

physics is independent of the renormalization scale. However, an appropriate

choice of μ permits to disentangle the physics of hard QCD interactions from

the physics of soft gluon exchanges. Indeed, the effects of the heavy degrees

of freedom, which have been integrated out of the theory, are included in

the coefficients Cj . They therefore need to be evaluated at a scale μ where a

perturbative expansion is possible. The effects of long-distance interactions,

instead, are included in the hadronic matrix elements < f |Oj|B > and cannot

be evaluated by perturbative methods.

The structure of the relevant operators Oj depends on the particular

process. For b→ cud transitions the effective hamiltonian is:

Heff =
4GF√

2
VcbV

∗
ud[C1(μ)O1(μ) + C2(μ)O2(μ)], (3.3)

with:

O1 =

(
ciγμ

1 − γ5

2
bi

) (
djγ

μ1 − γ5

2
uj

)
(3.4)

O2 =

(
ciγμ

1 − γ5

2
bj

) (
djγ

μ1 − γ5

2
uj

)
, (3.5)

where the Roman indices give the explicit color structure of the quarks. For

B mesons decays, a reasonable choice of the scale is μ ∼ mb. The coefficients

C1,2 evaluated at this scale have values C1 ≈ 1.13, C2 ≈ −0.29 (while in the

limit of no QCD corrections: C1 = 1, C2 = 0).

3.2 The factorization prescription

From Eq. 3.1 we see that the amplitude for a non-leptonic decay depends on

complicate hadronic matrix elements < f |Oj|B >, whose evaluation is not

trivial. The factorization hypothesis overcomes these difficulties by replac-

ing the hadronic matrix elements with more manageable products of current

matrix elements. In the following we illustrate how factorization works con-

sidering three types of decays.

3.2.1 Type-I decays

In the decay B0 → D+π− the (ud) quark pair is produced as a point-like,

color-singlet state. Since the energy released to the pair is quite high, it
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can escape from the quark-gluon cloud before it reaches the size of a meson

and the corresponding color dipole becomes relevant. This color transparency

argument [24] allows us to neglect the interactions of the light meson with the

rest of the quark-gluon system and to factorize the hadronic matrix elements:

< Dπ|O1,2|B >=< D|cγμ1 − γ5

2
b|B >< π|dγμ1 − γ5

2
u|0 > , (3.6)

where the color structures of O1,2 have been omitted. Considering also the

color structures, we can expect a suppression factor of 1/Nc for the O2 am-

plitude, where Nc = 3 is the number of colors. Therefore we can write the

amplitude of the decay as:

A = −i 4GF√
2
VcbV

∗
ud a1 < D|cγμ1 − γ5

2
b|B >< π|dγμ1 − γ5

2
u|0 >, (3.7)

where:

a1 = C1 +
1

Nc
C2 ∼ 1. (3.8)

The current matrix elements are parameterized with the use of form fac-

tors and decay constants:

< π|dγμ1 − γ5

2
u|0 > = ifπqμ (3.9)

< D|cγμ1 − γ5

2
b|B > = F1(q

2)

[
(pB + pD)μ − M2

B −M2
D

q2
qμ

]
+

+ F0(q
2)
M2

B −M2
D

q2
qμ, (3.10)

where qμ is the four-momentum transferred to the pion (q2 = m2
π). The pion

decay constant fπ ≈ 131 MeV is obtained from the leptonic decay π+ → μ+νμ
and it is known with good accuracy. The form factors of the heavy-to-heavy

transition B → D come from the covariant decomposition of the current

matrix element. In general, there are two form factors (F0, F1) if the daughter

meson is pseudoscalar, while four form factors (V,A0, A1, A2) are defined for

a vector meson. Large theoretical uncertainties and model dependencies can

affect the knowledge of these form factors.

For heavy-to-heavy transitions, heavy-quark symmetry [25] implies con-

straints on the form factors. For instance, in the case of a pseudoscalar daugh-
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Figure 3.3: The tree diagram for the decay B0 → D0π0.

ter meson:

F1(q
2) =

mB +mD

2
√
mBmD

· ξ(ω) (3.11)

F0(q
2) =

2
√
mBmD

mB +mD
· ω + 1

2
· ξ(ω), (3.12)

where ω = vB · vD is the product of the four-velocities of the two mesons,

and ξ(ω) is the Isgur-Wise function [26, 27]. The deviations due to the finite

masses of the heavy quarks can be analized in detail with the use of the

Heavy Quark Effective Theory [25]. Finally, from the study of semileptonic

decays it is possible to extract reliable predictions for these form factors.

Decays that are described by a tree diagram as in Fig. 3.2 are denoted as

Type-I (or color-allowed) transitions. For energetic decays, color transparency

suggests that factorization works properly and they are well described by a

“universal” coefficient a1 ∼ 1.

3.2.2 Type-II decays

The decay B0 → D0π0, described by the tree diagram in Fig. 3.3, is allowed

if the quark pair (uc) has the right color structure to form a meson. This is

equivalent, as the color structure of the operators O1,2 suggests, to a suppres-

sion factor of 1/Nc for the O1 amplitude. Therefore we can write the decay

amplitude as:

A = −i 4GF√
2
VcbV

∗
ud a2 < π|dγμ1 − γ5

2
b|B >< D|uγμ1 − γ5

2
c|0 >, (3.13)



56 Introduction to the study of the B± → J/ψπ±
mode

where:

a2 = C2 +
1

Nc
C1 ∼ 0.1 . (3.14)

The current matrix elements are again parameterized with the use of

form factors and decay constants as in Eq. 3.9 and Eq. 3.10, with qμ that

now represents the four-momentum transferred to the D meson (q2 = m2
D).

For heavy-to-light transitions like B → π the constraints from heavy-quark

symmetry cannot be exploited. Usually, phenomenological models based on

several assumptions are used to evaluate these form factors, and factorization-

based predictions are therefore affected by large theoretical uncertainties and

model dependencies.

Decays described by a tree diagram as in Fig. 3.3 are denoted as Type-

II (or color-suppressed) transitions. Two-body decays with a charmonium

resonance in the final state, like B± → J/ψπ± or B± → J/ψK±, belong

to this category. We point out that in this case there are no color trans-

parency arguments justifying factorization of the hadronic matrix elements:

non-factorizable contributions can become dominant and change relevantly

the predictions obtained with the factorized amplitudes. There are also exper-

imental results that suggest departure from simple factorization. For instance,

measurements of the decay amplitudes in the B → J/ψK∗(892) mode [28, 29]

show discrepancies with the expectations based on the absence of final state

interactions (as it is supposed in the simple factorization scheme).

3.2.3 Type-III decays

Decays like B− → D0π− are described by both color-allowed and color-

suppressed diagrams and therefore are sensitive to interference terms between

them. In the limit of validity of factorization, the relative sign of a1 and a2

suggests that for decays of B mesons the interference is constructive.

3.3 Deviations from factorization

Using Fierz identities, it is possible to write the effective Hamiltonian in

Eq. 3.3 as the sum of a color-singlet operator O1 and a color-octet oper-

ator O(8). This implies also a transformation of the Wilson coefficients; in

particular: C1 → C1 + (C2/Nc). We obtain the following transformed decay
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amplitude for a type-I decay:

A = −i 4GF√
2
VcbV

∗
ud { [C1 + (1/Nc)C2] M1 + 2 C2M8 }, (3.15)

where:

M1 = < πD|O1|B > (3.16)

M8 = < πD|O(8)|B > . (3.17)

The simple factorization approach described in the previous section is there-

fore based on the following assumptions:

1. Negligible contribution from the color-octet operator:

M8 ≈ 0.

2. Assumption of factorization for the color-singlet matrix element:

M1 =< D|(cb)V−A|B >< π|(du)V−A|0 > ,

where (cb)V−A is a simplified notation for cγμ[(1 − γ5)/2]b.

In order to describe deviations from factorization, the following parame-

ters are introduced:

ε1 =
M1

< D|(cb)V−A|B >< π|(du)V−A|0 >
− 1 (3.18)

ε8 =
M8

< D|(cb)V−A|B >< π|(du)V−A|0 >
. (3.19)

The parameter ε1 measures the deviation of M1 from the factorized form,

while ε8 measures the contribution from the octet-operator. Thus, the decay

amplitude can be written in the general form:

A = −i 4GF√
2
VcbV

∗
ud a

eff
1 < D|cγμ1 − γ5

2
b|B >< π|dγμ1 − γ5

2
u|0 >, (3.20)

where:

aeff
1 = [C1 + (C2/Nc)](1 + ε1) + 2C2ε8. (3.21)

Also for class-II decays it is possible to define a coefficient aeff
2 :

aeff
2 = [C2 + (C1/Nc)](1 + ε̃1) + 2C1ε̃8 . (3.22)
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We can see that, also assuming that factorization of M1 is well satisfied

(ε̃1 ≈ 1), aeff
2 can be sensitive to octet operator admixture, due to the small-

ness of the term C2 +(C1/Nc). In other words, while the simple factorization

approach with aeff
1 ≈ 1 represents a reliable scheme for class-I decays, size-

ble deviations from the predicted decay rates are not surprising for class-II

decays.

3.4 Generalized factorization

It is still possible to preserve the factorization-based approach for the treat-

ment of non-leptonic decays, despite significant non-factorizable contribu-

tions, if the coefficients aeff
1,2 are interpreted as phenomenological parameters

to be fitted on data [30, 31]. Sets of theoretically and experimentally clean

modes are used to extract aeff
1,2. These fitted values are then employed to

obtain predictions for other decays [32]. The underlying assumption is, of

course, a weak dependence of the parameters aeff
1,2 on the particular process,

which is not supported by strong theoretical arguments and needs therefore

to be tested on data.

In an equivalent approach, deviations from factorizations are described

introducing additional parameters in the factorized amplitude [33]; again, the

values of the parameters are derived from data.

For class-I decays, the comparison between the values of aeff
1 extracted

from quite different channels supports the validity of simple factorization

with aeff
1 ≈ 1. For class-II decays, data seem to agree with the assumption of

weak dependence of aeff
2 on the particular process. However, the reliability of

this conclusion is limited by the not well understood theoretical uncertainties

affecting the heavy-to-light form factors used for these channels. It is therefore

extremely important that predictions rely on well tested phenomenological

models for the form factors.

3.5 Properties of the B± → J/ψπ± channel

The B± → J/ψπ± channel is a class-II decay, described at the leading order

by the tree diagram b → ccd in Fig. 3.4 1. According to the scheme outlined

1Actually the b → ccd diagram describes the decay B− → J/ψπ−. However, in the
present chapter, and unless stated explicitly, with this notation we will denote also the
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Figure 3.4: The tree diagram for the decay B− → J/ψπ−.

in the previous sections, the factorized amplitude is given by:

Atree(B
± → J/ψπ±) ∼ aeff

2 V ∗
cbVcd fJ/ψ FB→π(q

2 = m2
J/ψ ) , (3.23)

where fJ/ψ is the decay constant of the J/ψ , and FB→π denotes the form

factors contribution. Similarly, the Cabibbo-allowed decay B± → J/ψK± is

described by the tree diagram b → ccs and the factorized amplitude is:

Atree(B
± → J/ψK±) ∼ aeff

2 V ∗
cbVcs fJ/ψ FB→K(q2 = m2

J/ψ ) . (3.24)

If the tree diagram is the dominant contribution for both decays (A =

Atree), the ratio of the branching fractions is an interesting quantity because

it does not depend on the particular value of aeff
2 (sensitive to non-factorizable

contributions):

B(B± → J/ψπ±)

B(B± → J/ψK±)
=

|Vcd|2
|Vcs|2 · |FB→π|2

|FB→K |2 ∼ tan θC
2 |FB→π|2
|FB→K |2 , (3.25)

where θC is the Cabibbo angle. Therefore we expect for the B± → J/ψπ±

mode a branching fraction of the order of 5% of B(B± → J/ψK±). In ad-

dition, the ratio of the branching fractions is sensitive to the quality of the

phenomenological models employed to compute the heavy-to-light form fac-

tors in FB→π and FB→K . A calculation of the above amplitudes gives [32]:

B(B± → J/ψπ±) = 0.038 (aeff
2 )2 (3.26)

B(B± → J/ψK±) = 0.852 (aeff
2 )2 , (3.27)

CP -conjugate decay B+ → J/ψπ+.
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Figure 3.5: The gluonic penguin diagram (q = u, c, t).

and thus:

B(B± → J/ψπ±)

B(B± → J/ψK±)
= 0.045 . (3.28)

Because of the simplicity of the phenomenological model used for the deter-

mination of the form factors, the theoretical expectation in Eq. 3.28 has to

be considered no more than a rough estimate of the ratio, and therefore no

uncertainties are provided with the prediction.

While the tree diagram dominance is a reliable hypothesis for the B± →
J/ψK± channel, the Cabibbo-suppressed B± → J/ψπ± mode may be sensi-

tive to higher order contributions from additional operators in the effective

Hamiltonian. They correspond to 1-loop diagrams known as “penguin dia-

grams”. Figure 3.5 shows a gluonic (or QCD) penguin; we distinguish three

possible diagrams, characterized by the identity of the quark in the loop.

Electroweak penguins are also possible, characterized by the emission of a

photon or a Z0 (see Fig. 3.6).

Penguin diagrams lead to deviations from the simple expectation stated

in Eq. 3.25. Furthermore, they weaken the reliability of the theoretical pre-

diction because uncertainties on penguin diagrams calculations sum up with

the uncertainties on the form factors. Finally, the interference between the

tree diagram and penguin diagrams with different weak and strong phases

can produce significant direct CP -violation in B± → J/ψπ± decays.

3.5.1 Direct CP -violation in B± → J/ψπ± decays

Denoting with T the contribution from the tree diagram and with P q the

contribution from the penguin diagram with the quark q in the loop (q =
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Figure 3.6: The electroweak penguin diagram (q = u, c, t).

u, c, t), the total amplitude for the B− → J/ψπ− mode can be written as:

A(B− → J/ψπ−) = VtbV
∗
td P

t + VcbV
∗
cd (T + P c) + VubV

∗
ud P

u , (3.29)

where we have shown explicitly the CKM matrix coefficients. From the uni-

tarity of the CKM matrix we have:

VtbV
∗
td = −VcbV ∗

cd − VubV
∗
ud , (3.30)

that, substituded in Eq. 3.29, yields:

A(B− → J/ψπ−) = VcbV
∗
cd (T + P c − P t) + VubV

∗
ud (P u − P t) . (3.31)

We note that in the above expression only differences of penguin contributions

appear, in which the ultraviolet divergences associated to the quark loop

cancel out.

The calculation of the Wilson coefficients for the penguin operators sug-

gests a suppression factor for penguin contributions of the order of 10−2.

Thus, neglecting P c − P t we can write the amplitude in the following form:

A(B− → J/ψπ−) ≈ ξc a2 e
iΔ + ξu b , (3.32)

where ξc ≡ VcbV
∗
cd, ξu ≡ VubV

∗
ud, a2 and b are the magnitudes of T and P u−P t

respectively, and Δ is the strong phase difference between the two terms in

the sum.

The weak structure of the two contributions to the amplitude can be ex-

amined from the Wolfenstein parameterization of the CKM matrix (Eq. 1.15):

ξc ∼ Aλ3 (3.33)

ξu ∼ Aλ3 (ρ− i η) . (3.34)
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Since the two contributions are characterized by different weak phases, the

existence of direct CP -violation relies on the condition Δ �= 0. Considering

also the amplitude for the B+ → J/ψπ+ decay:

A(B+ → J/ψπ+) ≈ ξ∗c a2 e
iΔ + ξ∗u b , (3.35)

the CP -violation observable will be given by:

Aπ =
Γ(B− → J/ψπ−) − Γ(B+ → J/ψπ+)

Γ(B− → J/ψπ−) + Γ(B+ → J/ψπ+)
=

=
2 a2 b sin Δ sin γ

∣∣∣ ξuξc
∣∣∣

a2
2 +

∣∣∣ ξuξc
∣∣∣2 b2 + 2 a2 b

∣∣∣ ξuξc
∣∣∣ cos Δ cosγ

, (3.36)

where γ is one of the angles of the Unitarity Triangle:

γ = Arg

[
−ξ

∗
u

ξ∗c

]
.

Exploiting the dominance of the a2
2 term in the denominator, we have:

Aπ = 2
b

a2
sin Δ sin γ

∣∣∣∣Vub VudVcb Vcd

∣∣∣∣ . (3.37)

It has been shown [34] that values of b/a2 ≈ 0.05 are possible; the calcu-

lation for strong penguins is affected by large theoretical uncertainties, but

for electroweak penguins it is quite reliable. Furthermore, the strong phase

difference Δ could be large. This results in a direct CP -violation for the

B± → J/ψπ± mode that can be at the percent level. However, since the

uncertainty on this prediction is large, the asymmetry could be significantly

smaller.

We conclude this discussion showing that no direct CP -violation is ex-

pected in the SM for the B± → J/ψK± channel. Indeed in this case, also

including the penguin contributions, we have:

A(B− → J/ψK−) = VcbV
∗
cs (T + P c − P t) + VubV

∗
us (P u − P t) , (3.38)

and since the second term in the sum is both Cabibbo-suppressed and pen-

guin coupling constants-suppressed, we have:

A(B− → J/ψK−) ≈ VcbV
∗
cs (T + P c − P t) . (3.39)

Therefore the decay is approximately characterized by a single weak phase

and no CP -violating interference terms are possible.



Chapter 4

Measurement of

B(B± → J/ψπ±)/B(B± → J/ψK±)

In this chapter we describe a measurement of the ratio of branching frac-

tions B(B± → J/ψπ±)/B(B± → J/ψK±). The data that we have analyzed

were recorded in 1999-2000 and the integrated luminosity is 20.7 fb−1, cor-

responding to 22.7 million BB pairs. The world average value of this ra-

tio is (5.1 ± 1.4)% [8] and is based on the measurements performed by the

CLEO [35] and CDF [36] collaborations.

The number of B± → J/ψπ± events produced at the Υ (4S) is 20 times

smaller than the number of B± → J/ψK± events, while the kinematics of

the decays is quite similar (see Fig. 4.1). For this reason it is difficult, with

a simple “cut-and-count” analysis, to observe a B± → J/ψπ± signal char-

acterized by a good signal-to-background ratio. Therefore our study of the

B± → J/ψπ± channel is based on an alternative approach. We fully recon-

struct B± → J/ψh± (h = π,K) decays, and determine at one time the signal

yields Nπ and NK from an unbinned maximum likelihood fit that exploits

the kinematics of the decay to identify the J/ψπ±, J/ψK± and background

components in the sample.

4.1 Selection of the data sample

In order to reduce the amount of data as input to the analysis, we use only

events that have passed a pre-selection which enhances the number of BB and

B+B− events over the background from qq continuum and QED processes.

63
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Figure 4.1: The cosθ vs. momentum distribution in the laboratory frame for the final
state charged hadron in simulated B± → J/ψπ± (left plot) and B± → J/ψK± (right plot)
decays.

From these events we reconstruct a B± candidate as the combination of a

J/ψ and a charged track in the SVT or the DCH. The J/ψ is reconstructed

in the leptonic channel J/ψ → l+l− (l = μ, e) as the combination of two

charged tracks that have been identified as leptons.

4.1.1 Pre-selection of the events

We define a fiducial volume of the detector as a region characterized by

a well-measured reconstruction efficiency and an accurate modeling of the

detector material in the Monte Carlo (MC) simulations. The fiducial volume

for tracks is 0.41 < θlab < 2.54 rad, while the fiducial volume for neutrals

is 0.41 < θlab < 2.409 rad. In addition, we consider only neutrals with an

energy greater than 30 MeV.

The pre-selection is based on the following requirements:

1. The event must satisfy a physics trigger (L3 EMC or L3 DCH trigger).

2. At least three charged tracks must be in the fiducial volume. They

must also include at least 12 DCH hits, to ensure that their momenta

and dE/dx are well measured. In addition they are required to have
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pT > 100 MeV/c, and to point back to the nominal interaction point

within 1.5 cm in the xy-plane and 3 cm along the z-axis.

3. The ratio R2 of the second to the zeroth Fox-Wolfram moment [37]

tends to 0 for bb events. We require that R2 for the tracks and neutrals

in the fiducial volume must be less than 0.5.

4. The primary vertex constructed from the tracks in the fiducial volume

must be within 0.5 cm of the beam spot in the xy-plane and within

6 cm on the z-axis.

5. The total energy in the fiducial volume must be greater than 4.5 GeV.

The efficiency of this pre-selection is 95.6%, as estimated with Monte Carlo

simulations of generic bb events.

4.1.2 Reconstruction of the J/ψ candidates

A J/ψ meson is reconstructed in the leptonic channel J/ψ → l+l− (l = μ, e)

as the combination of two charged tracks with a common vertex. In order to

reject the hadron-hadron or hadron-lepton combinatorial background, lepton

identification criteria have been applied to each of the tracks (“legs” of the

J/ψ ).

A J/ψ → μ+μ− candidate is constructed from two identified muons in the

fiducial volume 0.3 < θlab < 2.7 rad, dictated by the IFR angular acceptance.

The variables used for muon identification are:

1. the energy deposited in the EMC (EEMC);

2. the number of IFR layers with hits (Nlayers);

3. the number of nuclear interaction lengths traversed in the detector

(Nλ);

4. the difference between the number of nuclear interaction lengths tra-

versed in the detector and the expectation for a muon with the same

momentum and polar angle as the track (|Nλ −N exp
λ |);

5. the average number of hits per IFR layer (〈Nhit〉);

6. the RMS of the distribution of the number of hits on each layer (RMShit);
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Table 4.1: Muon selection algorithms applied in J/ψ → μ+μ− reconstruction. We also
report the efficiency for muons in inclusive J/ψ events, and the average misidentification
probability for pions with momentum above 1 GeV/c.

MIP Loose
EEMC (GeV) < 0.5 < 0.5
Nlayers − > 1
Nλ − > 2
|Nλ −N exp

λ | − < 2.0
〈Nhit〉 − < 10
RMShit − < 6
ctrk − > 0.2
χ2
trk/Nlayers − < 7.0
χ2
IFR/Nlayers − < 4.0

Efficiency (%) 99.6 86.2
π misidentification (%) 57.9 7.0

7. the ratio of Nlayers to the number of IFR layers spanned by the track

(ctrk);

8. the χ2 of the match between the hits in the IFR and the extrapolated

track (χ2
trk);

9. the χ2 of a polynomial fit to the hits in the IFR (χ2
IFR).

One “leg” must pass the loose muon selection algorithm and the other the

MIP selection (see Table 4.1). We require the invariant mass of the pair,

computed after a vertex constraint, to be: 3.06 < Mμ+μ− < 3.14 GeV/c2.

A J/ψ → e+e− candidate is constructed from two identified electrons

in the fiducial volume 0.41 < θlab < 2.409. The variables used for electron

identification are:

1. the energy loss in the DCH (dE/dx);

2. the ratio of the energy released in the EMC to the track momentum

(E/p);

3. the number of crystals in the EMC cluster (Ncrys);

4. the lateral energy distribution [39] of the EMC cluster (LAT).
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Table 4.2: Electron selection algorithms applied in J/ψ → e+e− reconstruction. We also
report the efficiency for electrons in inclusive J/ψ events, and the average misidentification
probability for pions with momentum above 1 GeV/c.

DCH-only Loose Tight
dE/dx (meas.) − dE/dx (exp.) −2 to +4σmeas −3 to +7σmeas −3 to +7σmeas
E/p − 0.65 − 5.0 0.75 − 1.3
Ncrys − > 3 > 3
LAT − − 0.0 − 0.6
Efficiency (%) 94.9 97.2 95.4
π misidentification (%) 21.6 4.8 1.2

One “leg” must pass the tight electron selection algorithm and the other the

loose selection or, if not associated to an EMC cluster, the DCH-only selec-

tion (see Table 4.2). To increase the efficiency of the event selection, electron

candidates are combined with photon candidates in the event in order to

recover some of the energy lost through bremsstrahlung. The photon candi-

dates are required to have a Zernike moment A42 [38] (which measures the

azimuthal asymmetry of the EMC cluster) below 0.25, to be within 35mrad

in θ from the track, and to have a φ between the initial track direction

and the centroid of the EMC cluster associated to the track. We require

the invariant mass of the pair, computed after a vertex constraint, to be:

2.95 < Me+e− < 3.14 GeV/c2. Figure 4.2 shows the invariant mass distribu-

tion of the J/ψ candidates in the data.

4.1.3 Reconstruction and selection of B± candidates

B± candidates are obtained from the combination of a reconstructed J/ψ ,

constrained to the world average mass [8], and a charged track h± in the

momentum range 1 < ph < 3 GeV/c2 (see fig. 4.3).

The helicity angle of the J/ψ decay is a useful variable to reject the

background. Let us consider the generic decay Y → X → a + b, and denote

with JX the spin of X, and with λX its projection along the direction of Y

in the X rest frame (assumed as the spin quantization axis). Since this axis

is equivalent to the direction of X in the Y rest frame, λX coincides with

the helicity of X. Furthermore, let us denote with λa and λb the helicities
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Figure 4.2: The invariant mass distribution for reconstructed J/ψ → e+e− (a) and
J/ψ → μ+μ− (b) candidates. The requirements on the invariant mass are also displayed.

of a and b respectively. We define the helicity angle of the particle a as the

angle θa, measured in the rest frame of X, between the direction of a and

the direction of Y . The matrix element of the decay is proportional to the

function dJXλX ,λa−λb(θa) [40].

The helicity angle θl for the decay B± → J/ψ (→ l+l−)h±, with h = π,K,

is shown in Fig. 4.4. The leptons in the J/ψ → l+l− decay are produced with

opposite helicities:

λl+ − λl− = ±1 , (4.1)

and, being JJ/ψ = 1, the θl distribution will be proportional to |d1
λJ/ψ ,±1|2.

Since h± is a pseudoscalar meson, the J/ψ must be longitudinally polarized

(λJ/ψ = 0) and the resulting lepton angular distribution is proportional to

|d1
0,±1|2 ∼ sin2θl. Figure 4.5 shows a typical cos θl distribution for signal and

background events: we observe that the background is highly peaked at ±1.

Indeed, in order to fake a J/ψ → l+l− decay, two random tracks are required

to be back-to-back in separate jets. The h± track will lie in one of these jets,

and thus will be close to one of the lepton candidates. We require |cosθl| < 0.9

for J/ψ → μ+μ− events and |cosθl| < 0.8 for J/ψ → e+e− events.

The J/ψ candidate and the charged track h± are constrained to a com-

mon vertex before computing the following kinematic quantities of the B±
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Figure 4.3: The momentum distribution in the laboratory frame for the final state
charged hadron in simulated B± → J/ψπ± (left plot) and B± → J/ψK± (right plot)
decays.
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Figure 4.4: The helicity angle θl in the decay B± → J/ψ (→ l+l−)h±.

candidate used to discriminate signal from background.

The ΔE variable

The ΔE variable is defined as:

ΔE = Ecm
B −Ecm

beam , (4.2)

where Ecm
B is the energy of the B candidate computed in the Υ (4S) rest

frame, and Ecm
beam is the beam energy in the same frame. Because of the

boost of the Υ (4S) in the laboratory, the computation of ΔE requires a

Lorentz-transformation to the center-of-mass frame, which involves the mass
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Figure 4.5: A typical distribution of cos θl for B± → J/ψK± (solid histogram) and
background (dashed histogram) events.

hypothesis made on the track h±. We denote as ΔEπ (ΔEK) the ΔE variable

computed with the pion (kaon) mass hypothesis. Signal events with the right

mass hypothesis have ΔE close to 0 (see Fig. 4.6). In order to select both

B± → J/ψπ± and B± → J/ψK± events we require: |ΔEπ| < 120 MeV and

|ΔEK | < 120 MeV.

The energy substituted mass mES

The energy substituted mass mES is defined as:

mES =
√

[Ecm
beam]2 − [pcmB ]2 , (4.3)

where pcmB is the magnitude of the momentum of the B candidate in the

Υ (4S) rest frame. According to the above definition, also the computation of

this variable requires a Lorentz transformation involving the mass hypothesis

made on h±. However, mES can be computed indipendently of the mass

hypothesis writing:

mES =
√

[Elab
B ]2 − [plabB ]2 . (4.4)

The quantity Elab
B in Eq. 4.4 is obtained exploiting the relativistic invariance

of the product pB ·pΥ (4S) (where pB is the four-momentum of the B candidate
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Figure 4.6: The distribution in ΔEπ (left plot) and ΔEK (right plot) for simulated
B± → J/ψπ± (solid histograms) and B± → J/ψK± (dashed histograms) events.

and pΥ (4S) is the four-momentum of the Υ (4S)), and constraining Ecm
B =

Ecm
beam:

�p labB · �p labΥ (4S) − Elab
B Elab

Υ (4S) = −2[Ecm
beam]2 . (4.5)

Signal events have mES close to the B± meson mass, 5.279 GeV/c2 (see

Fig. 4.7). The mES signal region is defined as mES > 5.27 GeV/c2. We select

events with 5.2 < mES < 5.3 GeV/c2.

4.2 The selected sample

The selected sample contains 1074 B± → J/ψ (→ μ+μ−)h± and 1081 B± →
J/ψ (→ e+e−)h± candidates. Their distribution in the (mES,ΔEK) plane is

shown in fig. 4.8: the dominance of the B± → J/ψK± component is evident.

The distribution in ΔEK for events in the mES signal region is shown

in Fig. 4.9. It has been fitted with the sum of a Gaussian and a polynomial

function, modeling the B± → J/ψK± signal and the background contribution

respectively. The width of the Gaussian represents a measurement of the

resolution in ΔE. Table 4.3 reports the resolutions estimated separately for

B± → J/ψ (→ μ+μ−)h± and B± → J/ψ (→ e+e−)h± events.
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Figure 4.7: The distribution in mES for simulated B± → J/ψπ± (solid histograms) and
B± → J/ψK± (dashed histograms) events.

Table 4.3: Resolutions in ΔE and mES determined with a fit to data.

B± → J/ψ (→ μ+μ−)h± B± → J/ψ (→ e+e−)h±

σ(ΔE) 10.1 ± 0.3MeV 12.8 ± 0.6MeV
σ(mES) 2.30 ± 0.06MeV/c2 2.50 ± 0.05MeV/c2

The distribution inmES for events in the data sample is shown in Fig. 4.10.

It has been fitted with the sum of a Gaussian and a phenomenological func-

tion, modeling the signal and the background contribution respectively. The

phenomenological function is denoted as ARGUS function [41] and has the

following form:

A(mES;m0, c) ∝ mES

√
1 −

(
mES

m0

)2

× exp

{
c ·

[
1 −

(
mES

m0

)2
]}

, (4.6)

where m0 is set to the typical beam energy and c is a parameter to be fitted

(“shape parameter”). The width of the Gaussian represents a measurement of

the resolution in mES. Table 4.3 reports the resolutions estimated separately

for B± → J/ψ (→ μ+μ−)h± and B± → J/ψ (→ e+e−)h± events.
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Figure 4.8: The ΔEK vs. mES distributions for the selected data sample.

Table 4.4: Summary of the sidebands definitions.

B± → J/ψ (→ μ+μ−)h± B± → J/ψ (→ e+e−)h±

mES sideband mES < 5.27GeV/c2 mES < 5.27GeV/c2

ΔEK sideband |ΔEK | > 40.4MeV |ΔEK | > 51.2MeV
ΔEπ sideband |ΔEπ| > 40.4MeV |ΔEK | > 51.2MeV

4.2.1 Background characterization

The background contaminating the sample is characterized with events in the

data that are sufficiently removed from the typical signal regions (sidebands

of the data sample).

We define mES sideband events by the requirement that 5.2 < mES <

MB± − 4σ(mES), where MB± is the world average B± mass [8] and σ(mES)

is the mES resolution. We define ΔEπ and ΔEK sideband events by the

requirements |ΔEπ| > 4σ(ΔE) and |ΔEK | > 4σ(ΔE), where σ(ΔE) is the

ΔE resolution. The sidebands definitions are summarized in Table 4.4.
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Figure 4.9: The distribution in ΔEK and fit for events in the data sample with mES >

5.27 GeV/c2. The dashed curve represents the background contribution.

4.2.2 Discriminating variables

We identify a set of three variables useful to discriminate between the J/ψπ±,

J/ψK± and background components in the sample: (ΔEπ,ΔEK , mES). Fig-

ure 4.11 shows the distributions of B± → J/ψπ±, B± → J/ψK±, and back-

ground events in the (ΔEπ,ΔEK) plane. Since we choose both the ΔEπ and

ΔEK variables, we exploit all the information contained in Fig. 4.11. It is

worthwhile to note that choosing (ΔEπ,ΔEK) is equivalent to choose the

pair of variables (ΔEπ, ph), where ph is the momentum of the final state

charged hadron h± in the laboratory frame. Indeed we have:

D ≡ ΔEK − ΔEπ = γ

(√
p2
h +m2

K −
√
p2
h +m2

π

)
, (4.7)

where γ is the Lorentz boost from the laboratory frame to the Υ (4S) rest

frame, and mπ, mK are the masses of the π and K mesons, respectively.

The separation provided by the above variables is sufficiently good, so

that no explicit particle identification is required on the charged hadron h±,

thereby simplifying the analysis.
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Figure 4.10: The distribution in mES and fit for events in the data sample.

4.3 The likelihood function

The yields Ni (i = π,K, bkd) for the B± → J/ψπ±, B± → J/ψK± and back-

ground events in the sample are determined maximizing a likelihood function

that uses as arguments the variables identified in the previous section.

We denote with Pi(ΔEπ,ΔEK , mES) the probability density functions

(PDFs) in the B± → J/ψπ±, B± → J/ψK± and background event hypothe-

ses. The probability to measure, in the j-th event of the data sample, the

values (ΔEj
π,ΔE

j
K , mES

j) is given by:

∑
i

Pi(ΔE
j
π,ΔE

j
K , mES

j) × Ni

N
,

where Ni is the number of expected events for each hypothesis, and N =∑
iNi. Denoting with M the total number of observed events, the likelihood

to obtaine the actual data sample is:

L = P(M ;N) ×
M∏
j=1

∑
i

Pi(ΔE
j
π,ΔE

j
K , mES

j) × Ni

N
, (4.8)

where P(M ;N) is the Poissonian probability to observe M events where N
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Figure 4.11: (left plot): Distribution of ΔEK vs. ΔEπ for B± → J/ψK± and B± →
J/ψπ± events from Monte Carlo simulations. (right plot): Distribution of ΔEK vs. ΔEπ

for the events in the mES sideband of the data sample.

are expected:

P(M ;N) = NM × e−N

M !
. (4.9)

Thus, apart from a constant factor 1/M !, we obtain that the likelihood func-

tion 1 to maximize has the following form:

L(Ni) = e−N ×
M∏
j=1

∑
i

Pi(ΔE
j
π,ΔE

j
K , mES

j)Ni . (4.10)

4.3.1 Uncorrelated variables

Performing a likelihood fit to extract the yields Ni requires the characteriza-

tion of the Pi PDFs. However, the study of multi-dimensional PDFs requires

high statistics. Therefore it is preferable to express each Pi as the product

of one-dimensional PDFs, which is a good approximation if the variables

are weakly correlated. This is not the case for the (ΔEπ,ΔEK) variables, as

evident from Fig. 4.11.

1Since the overall normalization N is allowed to vary, this likelihood function is also
denoted as an “extended likelihood function”.
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Figure 4.12: (left plot): The D vs. ΔEπ distribution for simulated B± → J/ψπ± events.
(right plot): The D vs. ΔEK distribution for simulated B± → J/ψK± events.

Figure 4.12 shows that for B± → J/ψπ± events the variables (ΔEπ, D),

where D = ΔEK − ΔEπ, are less correlated than (ΔEπ,ΔEK). Similarly,

for B± → J/ψK± events the variables (ΔEK , D) are less correlated than

(ΔEπ,ΔEK). A quantitative estimate shows that the correlation of the new

variables is at the 1% level.

Figure 4.13 shows that in the background case the variables (S,D), where

S ≡ ΔEK + ΔEπ, are less correlated than (ΔEπ,ΔEK). A quantitative

estimate shows that the correlation of the new variables is at the 0.6% level.

For each hypothesis we perform a transformation to the weakly correlated

variables. Thus, each Pi(ΔEπ,ΔEK , mES) can be written as a product of one-

dimensional PDFs:

Pπ(ΔEπ,ΔEK , mES) = fπ(ΔEπ) gπ(D) hπ(mES) (4.11)

PK(ΔEπ,ΔEK , mES) = fK(ΔEK) gK(D) hK(mES) (4.12)

Pbkd(ΔEπ,ΔEK , mES) = 2 fbkd(S) gbkd(D) hbkd(mES) . (4.13)

The factor 2 in Eq. 4.13 is the inverse of the Jacobian of the transformation

(ΔEπ,ΔEK , mES) → (S,D,mES); for the other transformations the Jaco-

bian is 1.
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Figure 4.13: The D vs. S distribution for the events in the mES sideband of the data
sample.

4.3.2 Characterization of the PDFs

The one-dimensional PDFs are mainly determined from data. Inputs from

Monte Carlo simulations have been used only if a good agreement between

data and simulations has been verified.

fπ(ΔEπ) and fK(ΔEK) PDFs

The fπ(ΔEπ) and fK(ΔEK) PDFs are the ΔE resolution functions for the

signal components (see Fig. 4.6). They are parameterized with the sum of

two Gaussians:

fπ,K(x) =
r√

2πσn
e−(x−mn)2/2(σn)2 +

1 − r√
2πσl

e−(x−ml)2/2(σl)2 . (4.14)

The mean value mn and the width σn of the core Gaussian are allowed to

float as free parameters in the likelihood fit.

A fit to the distribution in ΔEK for simulated B± → J/ψK± events (see

Fig. 4.14) has been used to estimate the following parameters:

1. the difference ml − mn between the mean values of the core and tail

Gaussians;

2. the ratio σl/σn between the widths of the core and tail Gaussians;
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Figure 4.14: The fit to the distribution in ΔEK for simulated J/ψ (→ μ+μ−)K± (left
plot) and J/ψ (→ e+e−)K± (right plot) events.

3. the fraction r of the events under the core Gaussian.

We use different parameters for J/ψ (→ μ+μ−)h± and J/ψ (→ e+e−)h± events.

Their values are reported in Table 4.5. Finally, we constrain fπ = fK in the

fit.

hπ(mES) and hK(mES) PDFs

The hπ(mES) and hK(mES) PDFs are the mES resolution functions for the

signals (see Fig. 4.7). They are parameterized with a single Gaussians:

hπ,K(x) =
1√

2πσM
e−(x−M)2/2(σM )2 (4.15)

The mean value M and the width σM are allowed to float as free parameters

in the likelihood fit. We allow for different parameters for J/ψ (→ μ+μ−)h±

and J/ψ (→ e+e−)h± events. Furthermore,, we constrain hπ = hK in the fit.
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Table 4.5: Values of the fixed parameters in the fπ and fK PDFs.

ml −mn (MeV) σl/σn r

J/ψ (→ μ+μ−)h± 2.2 ± 1.2 3.19 ± 0.24 0.915 ± 0.009
J/ψ (→ e+e−)h± 1.47 ± 0.95 2.89 ± 0.14 0.822 ± 0.019

  30.07    /    25
P1   520.1   10.95
P2  0.4730E-01  0.2645E-03
P3  0.2103E-02  0.1772E-03
P4   101.5   5.294
P5  0.1051  0.9024E-03
P6  0.5785E-02  0.5135E-03
P7  0.1474E+06  0.1137E+05
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Figure 4.15: The D distributions and fit for simulated B± → J/ψπ± (left plot) and
B± → J/ψK± (right plot) events.

gπ(D) and gK(D) PDFs

The gπ(D) and gK(D) PDFs are each represented by a phenomenological

function determined from the distributions of simulated B± → J/ψπ± and

B± → J/ψK± events. We fit each distribution with a second-order approxi-

mation to an exponential function, closed at each edge by half of a Gaussian

function (see Fig. 4.15):

gπ,K(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p1 e
−(x−p2)2/2(p3)2 if x < p2

p1 + (p4−p1)(x−p2)
p5−p2 + (x− p2)(x− p5)p7 if p2 < x < p5

p4 e
−(x−p5)2/2(p6)2 if x > p5
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Figure 4.16: The D distribution for B± → J/ψK± events in data and in Monte Carlo
simulations. The B± → J/ψK± events in the data sample have been selected applying
tight requirements on ΔEK and mES : |ΔEK | < 50 MeV, mES > 5.27 GeV/c2. The distri-
butions are normalized to one.

Figure 4.16 shows that the Monte Carlo simulation reproduces the data.

Furthermore, there are no significant discrepancies between the distribu-

tions for B± → J/ψ (→ μ+μ−)h± and B± → J/ψ (→ e+e−)h± events (see

Fig. 4.17), therefore a unique PDF is used in the two cases.

fbkd(S) and gbkd(D) PDFs

The fbkd(S) and gbkd(D) PDFs are each represented by a phenomenological

function determined from the distribution of the events in the mES sideband.

We fit the S distribution with a product of a Gaussian and a fifth-order

polynomial function (see Fig. 4.18-left plot):

fbkd(x) = e−(x−p1)2/2(p2)2 (p3 + p4x+ p5x
2 + p6x

3 + p7x
4 + p8x

5) . (4.16)

We fit the D distribution with a phenomenological function of the same form

as for the gπ and gK PDFs (see Fig. 4.18-right plot).

There are no significant discrepancies between the distributions for B± →
J/ψ (→ μ+μ−)h± and B± → J/ψ (→ e+e−)h± events (see Fig. 4.19), therefore

a unique PDF is used in the two cases.
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Figure 4.17: The D distributions for J/ψ (→ μ+μ−)K± and J/ψ (→ e+e−)K± events
as obtained from Monte Carlo simulations (left plot) and from B± → J/ψK± events
in data (right plot). The B± → J/ψK± events in the data sample have been selected
applying tight requirements on ΔEK and mES : |ΔEK | < 50 MeV, mES > 5.27 GeV/c2.
The distributions are normalized to one.

Table 4.6: Values of the parameters in the hbkd PDF.

ζ1 ζ2 Mpk (GeV/c2) σpk (MeV/c2)
3200 ± 1100 −35 ± 16 5.2801 ± 0.0013 3.86 ± 0.90

hbkd(mES) PDF

The hbkd(mES) PDF is determined from the distribution in mES of the events

in the ΔEπ and ΔEK sidebands. We fit the distribution with the sum of an

ARGUS and a Gaussian function (see Fig. 4.20):

hbkd(x) = (1 −R) [ζ1 x
√

1 − (x/eb)2 eζ2[1−(x/eb)
2]] +

+ Re−(x−Mpk)
2/2(σpk)

2

(eb = 5.29) . (4.17)

The values of the fitted parameters are reported in Table 4.6.

There are no significant discrepancies between the distributions for B± →
J/ψ (→ μ+μ−)h± and B± → J/ψ (→ e+e−)h± events (see Fig. 4.21), therefore

a unique PDF is used in the two cases.
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Figure 4.18: The S (left plot) and D (right plot) distributions and fit for the events in
the mES sideband.

In order to estimate the number of events described by the Gaussian

peak in the data sample, we have considered Monte Carlo simulations of the

following events: continuum qq (q = u, d, s, c), generic bb (with the B →
J/ψX component subtracted), and inclusive J/ψ (with the B± → J/ψπ±

and B± → J/ψK± components subtracted). The events that pass the same

selection of the data sample are distributed in mES as in Figures 4.22 - 4.23.

Summarizing:

1. The hbkd PDF is described by the sum of an ARGUS and a Gaussian

function. The ARGUS function describes the background from generic

bb and continuum events, and the not-peaking component of inclusive

J/ψ background. The Gaussian function describes the peaking compo-

nent of the inclusive J/ψ background.

2. The number Npk of peaking background events in the data sample is

estimated as the area of the Gaussian in Fig. 4.23, scaled to a luminosity

of 20.7 fb−1. We obtain Npk = 10.3 ± 3.9.

3. The number NAR of background events in the data sample described

by the ARGUS function is estimated integrating the ARGUS function

in the fit of Fig. 4.10. We obtain NAR = 753±27; the number of events

in the mES signal region (mES > 5.27 GeV/c2) is N ′
AR = 107 ± 10.
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Figure 4.19: The S (left plot) and D (right plot) distributions for J/ψ (→ μ+μ−)h± and
J/ψ (→ e+e−)h± events in the mES sideband. The distributions are normalized to one.

4. The parameter R in the hbkd PDF is estimated as:

R =
Npk

NAR +Npk
, (4.18)

obtaining:

R = 0.0135 ± 0.0052 . (4.19)

4.3.3 Summary of the fit strategy

Table 4.7 summarizes the parameters in the PDFs and whether their value

has been fixed in the maximum likelihood fit. In this case we also indicate

the sample used to estimate them.

In the maximum likelihood fit:

1. we constrain fπ = fK and hπ = hK ;

2. mean values and widths of fπ,K and hπ,K are left free;

3. fπ,K and hπ,K use different parameters for J/ψ (→ μ+μ−)h± and J/ψ (→
e+e−)h± events.
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Figure 4.20: ThemES distribution and fit for the events in the ΔEπ and ΔEK sidebands.

The B± → J/ψ (→ μ+μ−)h± and B± → J/ψ (→ e+e−)h± samples are fitted

separately. The parameters extracted from the likelihood fit are summarized

in Table 4.8.

4.4 Fit results

Table 4.9 shows the yields and the values of the parameters extracted from

the fit. The correlation coefficient ρπK between Nπ and NK , the confidence

level of the fit (C.L.), and the statistical significance of the B± → J/ψπ±

signal are also reported.

In order to estimate the confidence level, we have performed the fit on

5000 simulated J/ψ (→ μ+μ−)h± and 5000 simulated J/ψ (→ e+e−)h± sam-

ples. The number of J/ψπ±, J/ψK±, and background events in each sample is

extracted from Poissonian distributions, having the measured yields as mean.

The values of (ΔEπ,ΔEK , mES) for each event are extracted from the PDFs

used in the likelihood fit. For each sample we have evaluated − ln max(L),
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Figure 4.21: The mES distributions for J/ψ (→ μ+μ−)h± and J/ψ (→ e+e−)h± events
in the ΔEπ and ΔEK sidebands. The distributions are normalized to one.

which is distributed as in Fig. 4.24. We compute the confidence level as the

fraction of events with − ln max(L) greater than the value observed for the

data sample.

The statistical significance of the B± → J/ψπ± signal is evaluated (with

a Gaussian approximation for the likelihood) as the change in the maximum

value of L when we constrain Nπ = 0.

4.4.1 Tests of the fit

Possible biases in the fitting procedure are investigated by performing the fit

on simulated samples of known composition. We have considered a mix of

simulated B± → J/ψπ±, B± → J/ψK±, and background events that have

passed the same selection of the data sample. The yields determined with

the likelihood fit are then compared with the composition of the sample.

Table 4.10 summarizes the results of the fit to a simulated sample in which

the background component is selected from continuum qq (q = u, d, s, c), and

generic bb (with the B → J/ψX component subtracted) events. The extracted

yields reproduce the sample composition.

Table 4.11 summarizes the results of the fit to three simulated samples in

which the background component is selected from inclusive J/ψ events (with
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Figure 4.22: (left plot): The mES distribution for simulated continuum qq events (more
than 3 million generated events) passing the same selection of the data sample; the dis-
tribution has been fitted with an ARGUS function. (right plot): The mES distribution
for simulated generic bb events (more than 4.6 million generated events) passing the same
selection of the data sample; the B → J/ψX component has been subtracted. The distri-
bution has been fitted with an ARGUS function.

the signal components removed). Each sample corresponds to an equivalent

luminosity of 84.5 fb−1, and the ratio between the J/ψπ± and J/ψK± com-

ponents is about 5%. The average values of the extracted yields, and their

differences Δ with the known compositions are also reported. These differ-

ences are consistent with 0 within the error.

4.4.2 Ratio of branching fractions

From the tests on simulated samples we have seen no evidence of bias in the

fitting procedure. However, because of the limited statistics of the simulated

samples, we correct the yields for the small observed deviations (scaled to

20.7 fb−1) in Table 4.11. The original and the corrected yields (N eff
i ) are

compared in Table 4.12.
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Figure 4.23: The mES distribution for simulated inclusive J/ψ events (for an equivalent
luminosity of 50.46 fb−1) passing the same selection defining the data sample. The B± →
J/ψπ± and B± → J/ψK± components have been subtracted. The distribution has been
fitted with the sum of an ARGUS and a Gaussian function.

The ratio of branching fractions has been determined as:

B(B± → J/ψπ±)

B(B± → J/ψK±)
=
N eff
π

N eff
K

, (4.20)

obtaining, separately for the J/ψ (→ μ+μ−)h± and the J/ψ (→ e+e−)h± sam-

ples:

[ B(B± → J/ψπ±)

B(B± → J/ψK±)

]
J/ψ→μ+μ−

= (4.2 ± 1.0)% (4.21)

[ B(B± → J/ψπ±)

B(B± → J/ψK±)

]
J/ψ→e+e−

= (3.5 ± 1.2)% . (4.22)

Performing the fit to the entire data sample of 2155 events we obtain the
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Table 4.7: Summary of the PDFs parameters.

PDF # of param. parameters fixed/free sample

fπ,K 5 mn, σn free
ml −mn, σl/σn fixed MC
r fixed MC

gπ,K 7 p1 . . . p7 fixed MC
hπ,K 2 M , σM free
fbkd 8 p1 . . . p8 fixed mES sideband
gbkd 7 p1 . . . p7 fixed mES sideband
hbkd 5 ζ1, ζ2 fixed ΔEπ & ΔEK sidebands

mpk, σpk fixed ΔEπ & ΔEK sidebands
R fixed J/ψX MC

Table 4.8: Quantities extracted from the likelihood fit.

Parameters #

Ni 3
mn, σn 2
M , σM 2
TOT. 7

total yields:

Nπ = 52 ± 10

NK = 1284 ± 37

Nbkd = 819 ± 31 .

The distribution of ln(Pπ/PK) for the data sample, after subtraction of

the background component in each bin, is shown in Fig. 4.25. The back-

ground distribution is obtained from the mES sideband and is normalized

to the background yield. The distribution of ln(Pπ/PK) for simulated sig-

nal samples, normalized to the yields extracted from the likelihood fit, is

also shown. The distribution in mES for the events in the data sample with

ln(Pπ/PK) > 0 can be seen in Fig. 4.26. The likelihood fit predictions for all

components, and for J/ψπ± and J/ψK± separately, are also shown. Fig. 4.27
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Table 4.9: The results of the fit to the data sample.

J/ψ (→ μ+μ−)h± J/ψ (→ e+e−)h±

Nπ 29.5 ± 6.9 21.9 ± 7.4
NK 685 ± 27 601 ± 26
Nbkd 360 ± 20 458 ± 23
mn (MeV) −1.4 ± 0.4 −1.2 ± 0.6
σn (MeV) 9.8 ± 0.3 11.5 ± 0.5
M (GeV/c2) 5.2798 ± 0.0001 5.2799 ± 0.0001
σM (MeV/c2) 2.40 ± 0.07 2.75 ± 0.09
ρπK −0.025 −0.070
C.L. 53.0% 59.5%
stat. signif. 6.3σ 3.7σ

Table 4.10: Test of the fit to a simulated sample of known composition. The background
sample is selected from continuum and generic bb events.

Nπ NK Nbkd

J/ψ (→ μ+μ−)h± expected 30 600 149
fit 28.5 ± 5.9 589 ± 24 162 ± 13

J/ψ (→ e+e−)h± expected 30 600 115
fit 32.1 ± 6.3 582 ± 24 131 ± 12

shows the likelihood fit results superimposed to the distribution in ΔEπ for

the events in the mES signal region (mES > 5.27 GeV/c2). The ΔEπ PDFs in

the J/ψK± and background hypotheses have been obtained with a numerical

integration of the Pi PDFs:

pK(ΔEπ) =

∫
fK(x)gK(x− ΔEπ) dx (4.23)

pbkd(ΔEπ) =

∫
fbkd(x+ ΔEπ)gbkd(x− ΔEπ) dx . (4.24)

The ratio of branching fractions is determined from the total yields, cor-

rected for the small deviations Δπ and ΔK estimated in section 4.4.1 and

reported in Table 4.13. We finally obtain:
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Figure 4.24: The distribution of the − lnmax(L) for 5000 simulated J/ψ (→ μ+μ−)h±

(left plot) and J/ψ (→ e+e−)h± (right plot) simulated samples. The vertical line marks
the value of the − lnmax(L) for the data sample.

B(B± → J/ψπ±)

B(B± → J/ψK±)
= (3.91 ± 0.78)% , (4.25)

where the error is statistical only.

4.5 Use of particle identification

The use of particle identification for the charged hadron h± has been investi-

gated by adding to the likelihood, as an additional argument, the Cherenkov

angle θC measured in the DIRC for this track. Figure 4.28 shows the distribu-

tion of B± → J/ψh± events (h = π,K) in the (θC , ph) plane; the distribution

of the difference between the measured and the expected Cherenkov angle

for kaons from B± → J/ψK± events is also shown.

The particle identification (PID) information allowes us to split the back-

ground events into background with a pion as a final state charged hadron,

and background with a kaon as a final state charged hadron. The yields of

these two components are denoted as Nbkdπ and NbkdK .
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Table 4.11: Test of the fit to simulated samples of known composition. The background
component is selected from simulated inclusive J/ψ events.

Nπ NK

J/ψ → μ+μ− expected 133 2652
fit sample 1 141 ± 13 2614 ± 52
fit sample 2 129 ± 12 2633 ± 52
fit sample 3 134 ± 13 2622 ± 52
average 134.7 ± 7.5 2623 ± 30
Δ (84.5 fb−1) 1.7 ± 7.5 −29 ± 30
Δ (20.7 fb−1) 0.4 ± 1.8 −7.1 ± 7.3

J/ψ → e+e− expected 60 1207
fit sample 1 56.3 ± 8.8 1195 ± 35
fit sample 2 68.3 ± 9.4 1197 ± 35
fit sample 3 63.2 ± 9.0 1177 ± 35
average 62.9 ± 5.2 11900 ± 20
Δ (84.5 fb−1) 2.9 ± 5.2 −17 ± 20
Δ (20.7 fb−1) 0.7 ± 1.3 −4.2 ± 4.9

4.5.1 Likelihood function

The modified likelihood function including the PID information has the fol-

lowing form:

L′(Ni) = e−N ×
M∏
j=1

∑
i

P ′
i (ΔE

j
π,ΔE

j
K , mES

j , θjC)Ni , (4.26)

where i = π,K, bkdπ, bkdK. We factorize the P ′
i PDFs as:

P ′
i (ΔEπ,ΔEK , mES, θC) = Pi(ΔEπ,ΔEK , mES) · ti(θC) , (4.27)

where ti(θC) are the one-dimensional PDFs for the θC variable and the Pi
are the kinematical PDFs used in the previous fit. We have assumed:

Pbkdπ = PbkdK = Pbkd , (4.28)

which has been verified with the events in the sidebands. They are classified

as “pion-like” and “kaon-like” events according to the θC of the final state
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Table 4.12: Original (Ni) and corrected yields (Neff
i ) for the signal components.

sample i Ni N eff
i

J/ψ (→ μ+μ−)h± π 29.6 ± 6.9 29.1 ± 6.9
K 685 ± 27 692 ± 27

J/ψ (→ e+e−)h± π 21.9 ± 7.4 21.2 ± 7.4
K 601 ± 26 605 ± 26
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Figure 4.25: The ln(Pπ/PK) distribution for events in the data sample (after the sub-
traction of the background component in each bin) and from Monte Carlo simulations of
J/ψπ± and J/ψK± events; the distributions are normalized to the yields extracted from
the maximum likelihood fit.

charged hadron:

|θC − θC,π| < 0.01 → pion-like event (4.29)

|θC − θC,K | < 0.01 → kaon-like event , (4.30)

where θC,π and θC,K are the expected values of the Cherenkov angle in the

pion and kaon hypothesis respectively. Figure 4.29 shows the comparison

between the distributions in D for “pion-like” and “kaon-like” background

events; the comparison between the S distributions is also shown. Figure 4.30

shows the comparison between the distributions in mES for “pion-like” and

“kaon-like” background events.
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Figure 4.26: The mES distribution for events with ln(Pπ/PK) > 0 compared with the fit
result (solid curve); the dashed and dotted curves represent the fitted contributions from
the J/ψπ± and the J/ψK± components.

Table 4.13: Original yield Ni, correction Δi and corrected yield Neff
i for the signal

components.

i Ni Δi N eff
i

π 52 ± 10 1.1 ± 2.2 51 ± 10
K 1284 ± 37 −11.3 ± 8.8 1296 ± 38

4.5.2 Characterization of the θC PDFs

The PDFs for the variable θC are determined from the distributions for pions

and kaons in D∗+ → D0π+, D0 → K−π+ decays. The PDFs are parameter-

ized as Gaussian functions with mean values and widths that depend on the

momentum of the track:

tπ(θC) = tbkdπ(θC) =
1√

2πσπ(p)
e−(θC−θmC,π(p))2/2(σπ(p))2 (4.31)

tK(θC) = tbkdK(θC) =
1√

2πσK(p)
e−(θC−θmC,K(p))2/2(σK (p))2 . (4.32)
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Figure 4.27: The ΔEπ distribution for events with mES > 5.27 GeV/c2 compared with
the fit result (solid curve). The dotted curve represents the fitted contribution from the
background alone, while the dashed curve represents the fitted contribution from the sum
of background and J/ψK± components.

The mean values are parameterized as:

θmC,π(p) = θC,π + θoffC,π (p) (4.33)

θoffC,π (p) = p0,π + p1,π · p+ p2,π · p2 (4.34)

θmC,K(p) = θC,K + θoffC,K(p) (4.35)

θoffC,K(p) = p0,K + p1,K · p+ p2,K · p2 , (4.36)

where θC,π, θC,K are the expected values of the Cherenkov angle, and θoffC,π (p),

θoffC,K(p) are empirical offsets. The widths are parameterized as:

σπ(p) = s0,π + s1,π · p+ s2,π · p2 (4.37)

σK(p) = s0,K + s1,K · p+ s2,K · p2 . (4.38)

Table 4.14 summarizes the values of the parameters.
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Figure 4.28: (left plot): The Cherenkov angle vs. momentum distribution for the fi-
nal state charged hadron in B± → J/ψπ± and B± → J/ψK± simulated events. (right
plot): The difference between the measured and expected Cherenkov angles for a kaon in
B± → J/ψK± simulated events. The expected value has been computed according to the
momentum of the track and in the kaon mass hypothesis.

4.5.3 Likelihood fit results

The fit with the modified likelihood function is performed to a restricted

sample of events. Indeed we consider only tracks in a fiducial region defined

by the angular acceptance of the DIRC (0.45 < θh < 2.5 rad) and for which

the Cherenkov angle is available (θC > 0). In addition we require that the

DIRC signal is very well separated from the noise: nγ − nbkdγ > 10, where

nγ is the number of collected photons. Finally, we require that the measured

Cherenkov angle is not compatible with the angle expected for a proton

(|θC − θC,p| > 2 × σθC , where σθC is the Cherenkov angle resolution). Ta-

ble 4.15 summarizes the efficiencies of the above requirements, as estimated

with kaons and pions from D∗ decays. It is evident that the requirement on

the number of collected photons has a different efficiency for pions and kaons.

The fit has been performed separately on the 697 B± → J/ψ (→ μ+μ−)h±

and the 680 B± → J/ψ (→ e+e−)h± candidates of the data sample. Table 4.16

shows the fitted yields. The tests performed with simulated samples of known

composition give deviations from the expected yields that are consistent with

0. However, because of the limited statistics of the simulated samples, we
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Figure 4.29: (left plot): The D distributions for “pion-like” and “kaon-like” events in
the mES sideband. (right plot): The S distributions for “pion-like” and “kaon-like” events
in the mES sideband.

correct the fitted yields for the small observed deviations. The original and

the corrected yields (N eff
i ) are compared in Table 4.17.

4.5.4 Ratio of branching fractions

The ratio of branching fractions has been determined as:

B(B± → J/ψπ±)

B(B± → J/ψK±)
=
N eff
π

N eff
K

× εK(nγ)

επ(nγ)
. (4.39)

In the above equation εK(nγ) and επ(nγ) represent the efficiencies of the

requirements on the number of collected photons in the DIRC (reported in

Table 4.15). The result can be compared with the measurement obtained

without the use of the PID information (see Table 4.18). We obtain that the

addition of particle identification does not significantly change the statistical

precision of the results. Estimating the error on the difference Δ between

the measurements as σΔ =
√|σ2

1 − σ2
2| we obtain a combined discrepancy of

1.6σ.
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Figure 4.30: The mES distributions for “pion-like” and “kaon-like” events in both the
ΔEK and ΔEπ sidebands.

4.6 Systematic uncertainties

4.6.1 PDFs parameterizations

The uncertainties on the fixed parameters of the PDFs represent a source of

systematic error on the observed yields Nπ and NK . Since:

B(B± → J/ψπ±)

B(B± → J/ψK±)
=

Nπ − Δπ

NK − ΔK
, (4.40)

where Δπ and ΔK are the applied corrections to the fitted yields, the sys-

tematic error on Nπ and NK affects also the ratio of branching fractions

measurement.

We have varied each of these parameters by ±1σ, and have repeated the

likelihood fit. For each PDF, the standard deviation of the new results with

respect to the observed yields is assumed as a contribution to the systematic

uncertainty on Nπ and NK . The contributions due to the parameter r (frac-

tion of the events under the core Gaussian of the signal) and R (fraction of

the peaking background events) are estimated separately.

The several contributions have been quadratically added to give the total

systematic errors on the yields Nπ and NK . Propagating these errors, we ob-

tain a contribution of 0.0007 to the systematic error on the ratio of branching
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Table 4.14: Values of the parameters used in the ti(θC) PDFs (for momenta measured
in GeV/c and θC in mrad.)

p0,π p1,π p2,π

0.4823 ± 0.20 −0.6917 ± 0.19 0.1224 ± 0.042

s0,π s1,π s2,π
5.670 ± 0.18 −1.638 ± 0.17 0.2504 ± 0.037

p0,K p1,K p2,K

−2.02 ± 0.19 1.237 ± 0.17 −0.2029 ± 0.037

s0,K s1,K s2,K
6.235 ± 0.1645 −2.058 ± 0.15 0.3248 ± 0.032

Table 4.15: The efficiencies of the additional requirements in the data sample selection.
The efficiencies are quoted separately for pion and kaon tracks.

θC cut nγ cut proton rejection cut
επ (84.44 ± 0.49)% (80.56 ± 0.28)% (99.78 ± 0.07)%
εK (85.24 ± 0.27)% (76.24 ± 0.29)% (99.80 ± 0.04)%
εK/επ 1.009 ± 0.007 0.9464 ± 0.0049 1.0002 ± 0.0008

fractions.

4.6.2 Uncertainties on the corrections

From Eq. 4.40, we can see that the uncertainties on the corrections Δπ and

ΔK , related to the statistics of the simulated samples, represent another

contribution to the systematic error on the ratio of branching fractions. The

uncertainties are propagated with the systematic errors on Nπ and NK , ob-

taining a contribution of 0.0017.

4.6.3 Inaccuracies in Monte Carlo simulations

The systematic uncertainty coming from inaccuracies in Monte Carlo simu-

lations is limited by the following choices:

1. The parameters of the core Gaussians in fπ,K and hπ,K are extracted
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Table 4.16: Yields extracted with a likelihood fit using the PID information.

J/ψ (→ μ+μ−)h± J/ψ (→ e+e−)h±

Nπ 21.1 ± 5.2 15.5 ± 5.1
NK 439 ± 21 377 ± 20
Nbkdπ 175 ± 14 195 ± 14
NbkdK 62.1 ± 8.4 93 ± 10

Table 4.17: Original (Ni) and corrected yields (Neff
i ) for the signal components.

sample i Ni N eff
i

J/ψ (→ μ+μ−)h± π 21.1 ± 5.2 21.9 ± 5.2
K 439 ± 21 441 ± 21

J/ψ (→ e+e−)h± π 15.5 ± 5.1 16.5 ± 5.1
K 377 ± 20 379 ± 20

from the fit.

2. The parameters of the tail Gaussian in fπ,K are expressed in terms of

the parameters of the core Gaussian; only the “scaling factors” ml−mn

and σl/σn are determined from simulations.

3. The requirements |ΔEπ| < 120 MeV and |ΔEK | < 120 MeV, used to

select the data sample, are very soft, both for B± → J/ψπ± and for

B± → J/ψK± events. Therefore the efficiency of these requirements

is weakly dependent on possible inaccuracies in the description of the

ΔEπ and ΔEK distributions.

In order to estimate the systematic error due to any residual effects, we have

performed the fit on a sample simulated with broader ΔE resolution. The

sample has been selected from 15,000B± → J/ψπ± and 43,000B± → J/ψK±

events. We have performed the fit using also the nominal simulation, and the

ratio between the extracted yields Nπ and NK in the two cases is computed.

The systematic error has been estimated as half of the difference of the two

ratios, obtaining a negligible contribution.
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Table 4.18: Measurements of B(B± → J/ψπ±)/B(B± → J/ψK±) obtained with the
original (fit 1) and a modified likelihood function (fit 2) that includes particle identification
for h±.

sample fit 1 fit 2 Δ/σΔ

J/ψ (→ μ+μ−)h± (4.2 ± 1.0)% (4.7 ± 1.1)% 1.1
J/ψ (→ e+e−)h± (3.5 ± 1.2)% (4.1 ± 1.3)% 1.2

Table 4.19: Contributions to the systematic error on the ratio of branching fractions.

Source σsys[B(B± → J/ψπ±)/B(B± → J/ψK±)]

PDFs parameterization 0.0007
Δπ and ΔK corrections 0.0017
MC inaccuracies < 10−4

TOT. 0.0019

4.6.4 Total systematic error

Table 4.19 summarizes the several contributions to the systematic error on

the ratio of branching fractions. They have been added quadratically to ob-

tain the total systematic error.

4.7 Summary

We have measured the ratio of branching fractions B(B± → J/ψπ±)/B(B± →
J/ψK±), analyzing a data set corresponding to an integrated luminosity of

20.7 fb−1. We have observed 51 ± 10 B± → J/ψπ± events, and the ratio of

branching fractions has been determined to be:

B(B± → J/ψπ±)

B(B± → J/ψK±)
= [3.91 ± 0.78(stat.) ± 0.19(syst.)]% . (4.41)





Chapter 5

Search for direct CP -violation

in B± → J/ψπ± and

B± → J/ψK± decays

In this chapter we describe a study of direct CP -violation in the B± → J/ψπ±

and B± → J/ψK± channels. Using an approach similar to the one developed

for the ratio of branching fractions measurement, we determine at one time

the CP -violating charge asymmetry observables Aπ and AK . The asymmetry

observable AK is also determined with a “cut-based” analysis.

Since in the Standard Model the B± → J/ψK± mode is not expected

to show significant direct CP -violation, it is used as a control mode to test

the analysis procedure. Furthermore, any evidence of CP -asymmetry in this

channel would represent a clue to New Physics.

No previous measurements are available for the B± → J/ψπ± channel. A

search for direct CP -violation in B± → J/ψK± decays was performed by the

CLEO collaboration, obtaining no evidence of asymmetry [42]:

AK = 0.018 ± 0.043 (stat.) ± 0.004 (syst.) . (5.1)

The data set considered for this study is the same one of the B(B± →
J/ψπ±)/B(B± → J/ψK±) measurement, corresponding to an integrated lu-

minosity of 20.7 fb−1.

103
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5.1 Cut-based analysis for AK determination

This analysis is based on the reconstruction and selection of a sample of

B± → J/ψK± events. We determine the CP -asymmetry observable as:

AK =
N− −N+

N− +N+
, (5.2)

where N+ and N− are the extracted yields for the two charge-conjugate

channels.

5.1.1 Events selection

We reconstruct a B± → J/ψK± candidate as the combination of a J/ψ

candidate and a charged track, as described in Section 4.1. The kaon mass

hypothesis is assigned to the track. In addition, we use as kaon candidates

only tracks in a fiducial volume where an accurate modeling of the detector

material is available (0.41 < θlab < 2.54 rad), and for which the tracking

efficiency is accurately measured. For this reason the kaon candidate must

include at least 12 DCH hits, must have pT > 100 MeV/c, and point back to

the nominal interaction point within 1.5 cm in the xy-plane and 3 cm along

the z-axis.

The final selection of the B candidates is made according to the values of

ΔE and of the energy substituted mass mES (see Section 4.1.3). We require

|ΔE| < 120 MeV and mES > 5.2 GeV/c2; if more than one candidate is

selected per event, then the one with the lowest |ΔE| is chosen. Figure 5.1

shows the distributions of the selected B− → J/ψK− and B+ → J/ψK+

candidates in the (ΔE,mES) plane.

The (ΔE,mES) plane is divided in several regions. We define the ΔE

signal region as |ΔE| < 3σ(ΔE), and the ΔE sideband as |ΔE| > 4σ(ΔE),

where σ(ΔE) is the energy resolution for B± → J/ψK± events, determined

from data (see Table 4.3); we take into account differences in the resolution

for J/ψ (→ μ+μ−)h± and J/ψ (→ e+e−)h± events. Table 5.1 summarizes the

definitions. The candidates in the signal box are defined as the candidates

belonging to the ΔE signal region and with 5.27 < mES < 5.29 GeV/c2;

this cut on mES corresponds to the requirement |mES −MB± | < 3σ(mES),

where MB± is the B± mass as reported by the PDG [8], and σ(mES) is the

resolution in mES determined from data (see Table 4.3).
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Figure 5.1: The ΔE vs. mES distribution for the selected B− → J/ψK− (left plot) and
B+ → J/ψK+ (right plot) candidates.

Table 5.1: Definitions of the ΔE signal region and the ΔE sideband for the data sample.

J/ψ (→ μ+μ−)h± J/ψ (→ e+e−)h±

ΔE signal region |ΔE| < 30.3MeV |ΔE| < 38.4MeV
ΔE sideband |ΔE| > 40.4MeV |ΔE| > 51.2MeV

As it will be described in Section 5.1.3, we determine the B± → J/ψK±

yields fitting the distributions in mES of the events in the ΔE signal region.

5.1.2 Tracking efficiency correction

Neglecting possible charge asymmetries in tracking efficiency can be the

source of a systematic error in our measurement. Indeed, denoting with

〈ε−trk〉K (〈ε+trk〉K) the tracking efficiency for negative (positive) particles aver-

aged over the kaon spectrum in B± → J/ψK± decays, the condition:

〈ε−trk〉K �= 〈ε+trk〉K (5.3)
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implies that the correct expression for the asymmetry observable is:

AK =
N− − rK ·N+

N− + rK ·N+
, (5.4)

in which the quantity rK is defined as:

rK =
〈ε−trk〉K
〈ε+trk〉K

. (5.5)

In order to take into account possible charge asymmetries due to the

tracking, the distributions to fit are re-weighted by the tracking efficiencies

(measured as explained in Section 2.2.1). Each entry in a distribution is

weighted by a quantity w±(pT , m, θ, φ) defined as:

w±(pT , m, θ, φ) =
1

ε±trk(pT , m, θ, φ)
, (5.6)

where the variables (pT , m, θ, φ) refer to the kaon candidate and denote its

transverse momentum, the track multiplicity in the event, its polar and az-

imuthal angles. Charge-dependent tracking efficiency tables reporting ε±trk
measured in bins of (pT , m, θ, φ) are used in this procedure. There are 5610

bins in each table: 11 bins in p, 17 bins in m, 10 bins in θ, and 3 bins in φ. If

the yields are extracted fitting the re-weighted distributions, the asymmetry

observable is still given by Eq. 5.2.

In order to express in a compact formula the number of entries in each

bin of a re-weighted distribution, we use the following notations:

1. the indices i and j are associated to generic bins of the distribution;

2. the index k is associated to a generic bin of the tracking efficiency table;

3. wk is the weight from the k-th bin of the tracking efficiency table (wk =

1/εtrk(k));

4. mik (mik = 0, 1, 2, . . . ) is the number of entries in the i-th bin of the

original distribution that have been re-weighted by wk.

The number of entries N0
i in the i-th bin of the original distribution is given

by:

N0
i =

∑
k

mik , (5.7)
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while the number of entries Ni in the i-th bin of the re-weighted distribution

is:

Ni =
∑
k

mikwk . (5.8)

The uncertainty associated to Ni is given by:

σ2(Ni) =
∑
k

mikw
2
k +m2

ikσ
2(wk) , (5.9)

where the component linear in mik represents the contribution from the Pois-

sonian uncertainty of the bin content, and the component quadratical in mik

represents the contribution from the statistical uncertainty of the tracking

efficiencies:

σ2(wk) = σ2[εtrk(k)] · w4
k . (5.10)

5.1.3 Yields determination

Figure 5.2 shows the original mES distributions for the 736 B− → J/ψK−

and 742 B+ → J/ψK+ candidates in the ΔE signal region. After the re-

weighting procedure we obtain the distributions in Fig. 5.3: in this case we

have 779.1 B− → J/ψK− and 785.4 B+ → J/ψK+ candidates.

We fit simultaneously the re-weighted distributions with the sum of an

ARGUS and a Gaussian function (see Fig. 5.4): the ARGUS function (defined

in Eq. 4.6) describes the background component, while the Gaussian function

describes the signal peak. The events under each Gaussian represent the

yields of the charge conjugate signals. In the fit we constrain the widths of

the two Gaussians to be equal. We also constrain the shape parameters of

the two ARGUS functions to be equal. If the fit is performed without this

constraint (see Fig. 5.5) we obtain consistent values of the shape parameters.

5.1.4 Peaking background

As discussed in Section 4.3.2, a fraction of background events from other

B → J/ψX decays does not distribute in mES according to an ARGUS

function, but is described by a Gaussian peak around the B± mass. Denoting
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Figure 5.2: The mES distributions for the B− → J/ψK− (left plot) and B+ → J/ψK+

(right plot) candidates in the ΔE signal region. There are 736 B− → J/ψK− and 742
B+ → J/ψK+ candidates.

with Npk the number of peaking background events in the ΔE signal region,

their subtraction leads to the following formula for the asymmetry observable:

AK =
N− −N+

N− +N+ −Npk

. (5.11)

In the above equation we have assumed that the peaking background is

charge-symmetrical; this assumption is discussed in Section 5.1.8, where also

the corresponding systematic error is computed.

The number of peaking background events Npk is estimated with a fit

to the mES distribution in the ΔE signal region for simulated inclusive J/ψ

events (with the B± → J/ψK± component subtracted) that have passed the

same selection of the data sample. The distribution is fitted with the sum of

a Gaussian and an ARGUS function (see Fig. 5.6). A sample corresponding

to an equivalent luminosity of 83.8 fb−1 has been used. Scaling to 20.7 fb−1

we obtain: Npk = 6.2 ± 2.4.

5.1.5 Statistical uncertainty on the extracted yields

Since the same weight can be applied to entries in different bins i and j, the

errors on the yields receive an additional contribution from the off-diagonal
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Figure 5.3: The re-weighted mES distributions for the B− → J/ψK− (left plot) and
B+ → J/ψK+ (right plot) candidates in the ΔE signal region. There are 779.1 B− →
J/ψK− and 785.4 B+ → J/ψK+ candidates.

terms of the covariance matrix Sij :

Sij =

⎧⎨
⎩

∑
kmikmjkσ

2(wk) (i �= j)

σ2(Ni) (i = j) .

(5.12)

We have computed the elements of Sij according to Eq. 5.12 and have

estimated the separate contributions to σ2(N) in the following way:

1. contribution from statistical fluctuations of the bins content:

σ2
P (N) =

∑
i

∑
k

mikw
2
k ; (5.13)

2. contribution from uncorrelated errors on Ni:

σ2
u(N) =

∑
i

∑
k

m2
ikσ

2(wk) ; (5.14)

3. contribution from correlations between Ni and Nj :

σ2
c (N) =

∑
i�=j

∑
k

mikmjkσ
2(wk) . (5.15)
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Figure 5.4: The fit to the re-weighted mES distributions for the B− → J/ψK− (left plot)
and B+ → J/ψK+ (right plot) events in the ΔE signal region; each distribution is fitted
with the sum of an ARGUS and a Gaussian function; the shape parameters (“EFACT”)
of the ARGUS functions are constrained to assume the same value.

In all the above sums the indices i and j are restricted to the bins corre-

sponding to 5.27 < mES < 5.29 GeV/c2. Table 5.2 summarizes the results of

our estimates. It is evident that σ2
P (N) represents the dominant contribution

to the errors on the yields.

5.1.6 CP -asymmetry measurement

Table 5.3 summarizes the yields and the level of the background under the

signal (estimated integrating the fitted ARGUS function in the signal box).

We determine the CP -asymmetry observable to be:

AK = 0.001 ± 0.030 , (5.16)

where the error is statistical only.
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Figure 5.5: The fit to the mES distributions for the B− → J/ψK− (left plot) and
B+ → J/ψK+ (right plot) candidates in the ΔE signal region; each distribution is fitted
with the sum of an ARGUS and a Gaussian function; no constraints are applied between
the shape parameters (“EFACT”) of the ARGUS functions.

5.1.7 Tests on simulated samples

The analysis procedure described in the previous sections has been tested on

Monte Carlo simulations of generic bb and inclusive J/ψ events. We apply

the same reconstruction and selection criteria of the data sample. The mES

distributions for the events in the ΔE signal region are corrected for tracking

efficiency as described in Section 5.1.2, and are fitted with the sum of an

ARGUS and a Gaussian function (see Fig. 5.7 and Fig. 5.8). Table 5.4

summarizes the estimated yields and asymmetries. There is no evidence of

significant charge asymmetry for the fitted yields.
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Figure 5.6: The fit to the mES distribution for simulated inclusive J/ψ events (with the
B± → J/ψK± component subtracted) in the ΔE signal region.

5.1.8 Systematic uncertainties

Differences in K+ vs. K− detection efficiency

Kaons that interact inelastically in the detector material before the DCH

could be undetected. For this reason, the different cross-sections for nuclear

interactions of K+ and K− represent a source of fake charge asymmetry in

our measurement. This effect is not reflected in the tracking efficiency tables

used for the re-weighting, because of the dominance of the pion component

in the sample of tracks used for the tracking efficiency determination. In

order to estimate this fake asymmetry, we have performed a calculation based

on the values of the cross-sections for nuclear interactions as a function of

momentum [43]. We use an accurate model of the detector material before

the DCH, and a simplified model of the geometry of the detector.

Let us consider N0 kaons traversing a layer of material of thickness x; the
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Table 5.2: Breakdown of the contributions to the statistical uncertainty on N− and N+.

N− N+

σ2
P (N) 682.7 688.3
σ2
u(N) 0.103 0.055
σ2
c (N) 0.0024 0.0039√

σ2
P (N) + σ2

u(N) + σ2
c (N) 26.24 26.13

Table 5.3: Estimated yields and background under the signal peak.

N− N+

yields 626 ± 26 625 ± 26
background 20 ± 5 21 ± 5

number of kaons N that pass through it without interacting will be given by:

N = N0e
−x/λ , (5.17)

where λ is the mean free path between inelastic interactions. In our calcula-

tion all the lengths are expressed in g/ cm2 and λ is estimated as:

λ−1 =
NA

A
σ(p)A0.7 , (5.18)

where NA is the Avogadro constant, A is the atomic weight of the material

and σ(p) is the inelastic kaon-nucleon cross-section, as a function of the

momentum p of the kaon; the factor A0.7 takes into account the dependency of

the cross-section on the atomic number of the material. The detector elements

contributing to the amount of material are schematized as 9 cylindrical layers,

each one with a certain thickness l. Table 5.5 summarizes the parameters used

in the calculation. It is worthwhile to note that the actual thickness traversed

by a kaon is a function of its polar angle:

x = l/ sin θ . (5.19)

We divide the (p, θ) space in 120 two-dimensional bins: 20 bins in p from

1 to 3 GeV/c and six bins in θ (bin edges: 20◦, 40◦, 60◦, 80◦, 100◦, 120◦,
150◦). The fraction fj(pj, θj) of kaons in the j-th bin is obtained from Monte
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Figure 5.7: The fit to the mES distributions for generic bb events selected as the data
sample. (left plot): B− candidates in the ΔE signal region; (right plot): B+ candidates
in the ΔE signal region.

Carlo simulations of B± → J/ψK± events. We compute the fraction of kaons

passing through the material without interacting as:

F±
K =

∑
j

a±j fj , (5.20)

where a±j is the suppression factor for the j-th bin:

a±j =

9∏
i=1

e−xi(θj)/λ
±
i (pj) . (5.21)

In the above equation the index i runs over the detector elements in Table 5.5.

Finally, the fake asymmetry AF is given by:

AF =
F−
K − F+

K

F−
K + F+

K

. (5.22)
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Figure 5.8: The fit to the mES distributions for inclusive J/ψ events selected as the data
sample. (left plot): B− candidates in the ΔE signal region; (right plot): B+ candidates
in the ΔE signal region.

We estimate F−
K = 0.9878 and F+

K = 0.9956, obtaining:

AF = −0.0039 . (5.23)

We correct our CP -asymmetry determination by −AF and assign |AF | as a

contribution to the systematic error.

Peaking background asymmetry

An asymmetry of the peaking background in the ΔE signal region adds a

contribution to the measured AK . Indeed, writing AK as:

AK =
(N− −N−

pk) − (N+ −N+
pk)

N− +N+ −Npk

, (5.24)

and using:

Apk =
(N−

pk −N+
pk)

Npk

, (5.25)
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Table 5.4: Summary of the tests performed on simulated samples.

N− N+ A
generic bb 261 ± 17 246 ± 16 0.030 ± 0.046
inclusive J/ψ 2962 ± 54 2982 ± 55 −0.003 ± 0.013

Table 5.5: Model of the detector material before the DCH. For each layer of material we
report its thickness l and the atomic weight A.

Detector element Material l ( g/ cm2) A

Beam pipe Au 0.008 196.967
Be 0.157 9.012
Ni 0.008 58.693
H2O 0.147 18.015
Ni 0.008 58.693
Be 0.094 9.012

SVT Si 0.350 28.086
Support tube C 0.460 12.011
DCH support Be 0.185 9.012

we have:

AK =
N− −N+

N− +N+ −Npk

− Apk ×Npk

N− +N+ −Npk

. (5.26)

If the peaking background is charge-symmetrical the second term vanishes

and we obtain Eq. 5.11.

In our determination of the CP -asymmetry we have assumed that the

peaking background is charge-symmetrical. This assumption has been verified

with the study of the mES distributions for the events in the ΔE sideband

(defined in Table 5.1). We fit each distribution with the sum of a Gaussian

and an ARGUS function and constrain the widths of the two Gaussians

to have the same value as the signal Gaussians. In addition, we constrain

the shape parameters of the ARGUS functions to be equal (see Fig. 5.9).

We obtain N− = 38.2 ± 8.5, N+ = 38.1 ± 8.2, with no evidence of charge

asymmetry of the peaking background within the error:

Apk = 0.00 ± 0.15 . (5.27)
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Figure 5.9: The fit to the mES distribution for the B− (left plot) and the B+ (right
plot) candidates in the ΔE sideband.

The uncertainty on Apk adds a contribution to the systematic error:

σpksys = σ(Apk) × Npk

N− +N+ −Npk

. (5.28)

Using Npk = 6.2 ± 2.4 and σ(Apk) = 0.15, we obtain:

σpksys = 0.0008 . (5.29)

Statistical uncertainty on Npk

The statistical uncertainty on the value of Npk gives a negligible contribution

(1.5 × 10−6) to the systematic error.

Total systematic error

Table 5.6 summarizes the several contributions to the systematic error. They

are quadratically summed to obtain the total systematic error. We obtain:

σTOTsys = 0.004 (5.30)
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Table 5.6: Contributions to the systematic error.

σsys
K+ vs. K− detection efficiency 0.0039
Peaking background asymmetry 0.0008
Peaking background stat. uncertainty < 10−5

TOT. 0.004

5.1.9 Results

We have searched for direct CP -violation in B± → J/ψK± decays with a

“cut-based” analysis. No evidence of CP -violation has been found, in agree-

ment with the expectation from the Standard Model. The measured CP -

violating charge asymmetry is:

AK = 0.005 ± 0.030(stat.) ± 0.004(syst.) . (5.31)

5.2 Unbinned likelihood fit-based analysis.

This analysis is based on the approach developed for the B(B± → J/ψπ±)/B(B± →
J/ψK±) measurement and described in the previous chapter. We reconstruct

and select a sample of B± → J/ψh± (h = π,K) events and define the charge

asymmetry observables Aπ, AK , Abkd as:

Ai =
N−
i −N+

i

N−
i +N+

i

i = π,K, bkd , (5.32)

where N±
π , N±

K and N±
bkd are the yields for the J/ψπ±, the J/ψK±, and the

background component in the sample respectively. The asymmetry observ-

ables are determined performing an unbinned maximum likelihood fit to the

selected data sample.

5.2.1 Events selection

The reconstruction and selection of the B candidates has already been de-

scribed in Section 4.1. In addition, the track h must be in the fiducial vol-

ume 0.41 < θlab < 2.54 rad and must satisfy the requirements described in

Section 5.1.1. Finally, we define the variables ΔEπ, ΔEK and the energy
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Figure 5.10: The distribution of the data sample in the (mES ,ΔEK) plane.

substituted mass mES (see Section 4.1.3) and require |ΔEπ| < 120 MeV,

|ΔEK | < 120 MeV, and mES > 5.2 GeV/c2. Figure 5.10 shows the distribu-

tion in the (mES,ΔEK) plane of the selected 982 B− → J/ψK− and 970

B+ → J/ψK+ candidates.

5.2.2 Likelihood function

The CP -violating charge asymmetries Aπ, AK and Abkd are determined with

an unbinned maximum likelihood fit to the data sample. We have maximized

a likelihood function L′ similar to the likelihood in Eq. 4.10:

L′(Ni) = e−
∑
iNi

M∏
j=1

∑
i

P ′
i (ΔE

j
π,ΔE

j
K , mES

j , qj)Ni , (5.33)

where j is the index of the event, i is the index of the hypothesis (i =

π,K, bkd), Ni = N+
i + N−

i , and M is the total number of events in the

data sample. The arguments of the P ′
i PDFs are the kinematical variables

(ΔEπ,ΔEK , mES) and the charge q of the final-state charged hadron. We

factorize the P ′
i PDFs as:

P ′
i (ΔEπ,ΔEK , mES, q) = Pi(ΔEπ,ΔEK , mES) ci(q) , (5.34)
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Table 5.7: Quantities determined from the likelihood fit. The parameters pee
i (i =

π,K, bkd) represent the fraction of J/ψ (→ e+e−)h± events in a certain hypothesis. The
parameters mn and σn are the mean and width of the ΔE resolution function; M and σM

are the mean and width of the mES resolution function. These parameters are doubled
because we allow for different values for J/ψ (→ e+e−)h± and J/ψ (→ μ+μ−)h± events; in
addition, we allow for different values of mn and M for B+ → J/ψh+ and B− → J/ψh−

events.

Parameters #
Ni 3
Ai 3
peei 3
mn 1 × 2 × 2
σn 1 × 2
M 1 × 2 × 2
σM 1 × 2
TOT. 21

where ci(q) represents the probability for the final state charged hadron in a

certain event hypothesis to have charge q. The ci(q) PDFs can be expressed

in terms of the asymmetry observables Ai:

ci(q) =
1

2
[(1 −Ai)f

+(q) + (1 + Ai)f
−(q)] , (5.35)

where the functions f±(q) are defined as:

f±(q) =

⎧⎨
⎩

1 if q = ±1

0 if q = ∓1 .

(5.36)

The Pi(ΔEπ,ΔEK , mES) are the PDFs in Eq. 4.10, characterized as described

in Section 4.3.2.

We perform the fit to the entire data sample of 1952 candidates. The

parameters determined from the likelihood fit are summarized in Table 5.7.

5.2.3 Tests on simulated samples

The reliability of the fit for the determination of the asymmetry has been

tested on simulated samples of known compositions. They are constituted by
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Table 5.8: Results of the fit to simulated samples of known composition. The two samples
differ for the background source: sample 1 uses continuum + generic bb events, while sample
2 uses inclusive J/ψ events.

Sample 1 Sample 2
Expected Fitted Expected Fitted

Nπ 50 53.1 ± 8.4 188 191 ± 14
NK 1000 996 ± 32 3754 3744 ± 57
Nbkd 301 302 ± 18 368 375 ± 19
Aπ −0.08 0.05 ± 0.16 0.000 0.025 ± 0.083
AK −0.036 −0.043 ± 0.032 −0.007 −0.013 ± 0.016
Abkd 0.030 0.031 ± 0.060 0.044 0.093 ± 0.057

Table 5.9: Fitted asymmetry AK as a function of the expected asymmetry in sample 2.

Expected AK Fitted AK

0 −0.009 ± 0.016
0.25 0.243 ± 0.016
0.50 0.491 ± 0.014
0.75 0.740 ± 0.012

a mix of signal and background events that have passed the same selection

of the data sample. In each simulated sample there is a definite background

source: continuum qq (q = u, d, s, c) and generic bb (“sample 1”), and inclusive

J/ψ (“sample 2”). The B± → J/ψπ± and B± → J/ψK± events in each

sample are in the ratio of ∼ 5%.

The asymmetries Ai determined with the likelihood fit are compared with

the known charge asymmetries of the components in the samples. Table 5.8

summarizes the results of the tests: we do not have any significant disagree-

ment of the fit results with the expected asymmetries.

Table 5.9 shows the value of the fitted asymmetry AK in sample 2 as a

function of the expected asymmetry of the B± → J/ψK± component. The

fitted asymmetry reproduces the expected asymmetry within the error.
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Table 5.10: The results of the fit to the data sample.

π K bkd

Ni 43.1 ± 9.0 1190 ± 36 719 ± 29
Ai 0.01 ± 0.22 −0.001 ± 0.030 0.018 ± 0.039
peei 0.48 ± 0.11 0.467 ± 0.015 0.562 ± 0.020

Table 5.11: Parameters of the PDFs extracted from the fit.

mn (MeV) σn (MeV) M (GeV/c2) σM (MeV/c2)
J/ψ (→ μ+μ−)h+ −1.8 ± 0.6 9.3 ± 0.3 5.2799 ± 0.0001 2.39 ± 0.07
J/ψ (→ μ+μ−)h− −0.6 ± 0.6 9.3 ± 0.3 5.2799 ± 0.0001 2.39 ± 0.07
J/ψ (→ e+e−)h+ −2.4 ± 0.8 11.0 ± 0.5 5.2799 ± 0.0001 2.71 ± 0.09
J/ψ (→ e+e−)h− −0.2 ± 0.8 11.0 ± 0.5 5.2797 ± 0.0001 2.71 ± 0.09

5.2.4 Fit results

Table 5.10 reports the fitted yields and asymmetries for the data sample,

while Table 5.11 reports the values of the fitted PDFs parameters. We obtain:

Aπ = 0.01 ± 0.22 (5.37)

AK = −0.001 ± 0.030 , (5.38)

where the error is statistical only. Figure 5.11 shows the probability contour

plot for the asymmetry observables Aπ and AK . The correlation coefficient

ρAπ,AK between the asymmetries is −0.032.

In order to estimate the confidence level of the fit, we have considered

2000 simulated samples. The number of J/ψπ±, J/ψK±, and background

events in each sample is extracted from Poissonian distributions, having the

measured yields as mean. The values of (ΔEπ,ΔEK , mES) for each event

are extracted from the PDFs used in the likelihood fit. The charge q for

each event is alternatively +1 and −1. For each sample we have evaluated

− ln max(L), which is distributed as in Fig. 5.12. We compute the confidence

level of the fit (58.6%) as the fraction of events with − ln max(L) greater

than the value observed for the data sample.



5.2 Unbinned likelihood fit-based analysis. 123

Aπ

A
K

-0.2

-0.1

0

0.1

0.2

-1 -0.5 0 0.5 1

Figure 5.11: The probability contour plot for the asymmetries Aπ and AK . The curves
correspond to 1, 2 and 3 standard deviations.

5.2.5 Systematic uncertainties

PDFs parameterizations

The uncertainties on the fixed parameters of the PDFs represent a source of

systematic error on the asymmetries. We have varied each of these parameters

by ±1σ, and have repeated the likelihood fit. For each PDF, the standard

deviation of the new results with respect to the observed asymmetries is

assumed as a contribution to the systematic uncertainty on Aπ and AK . The

contributions due to the parameter r (fraction of the events under the core

Gaussian of the signal) and R (fraction of the peaking background events)

are estimated separately.

The several contributions have been quadratically added to give the to-

tal systematic errors on Aπ and AK , obtaining σPDFsys (Aπ) = 0.0056 and

σPDFsys (AK) = 1.9 × 10−4.

Tracking efficiency corrections

The fitted asymmetries Afit
i in Eq. 5.37 and Eq. 5.38 do not take into

account possible charge asymmetries in tracking efficiency. Denoting with

〈ε±trk〉π (〈ε±trk〉K) the tracking efficiencies averaged over the pion (kaon) spec-
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Figure 5.12: The distribution of − lnmax(L) for 2000 simulated samples. The vertical
line marks the value of the − lnmax(L) for the data sample.

trum in B± → J/ψπ± (B± → J/ψK±) decays, the condition:

〈ε−trk〉i �= 〈ε+trk〉i (i = π,K) , (5.39)

implies that the correct expression for the asymmetry observables is:

Ai =
(1 + ri)Afit

i + (1 − ri)

(1 − ri)Afit
i + (1 + ri)

(i = π,K) , (5.40)

in which the quantity ri is defined as:

ri =
〈ε−trk〉i
〈ε+trk〉i

(i = π,K) . (5.41)

In order to compute 〈ε−trk〉i and 〈ε+trk〉i we have used the tracking efficiency

tables mentioned in Section 5.1.2. Monte Carlo simulations of B± → J/ψπ±

(B± → J/ψK±) events are used to obtain the fraction of events with the

pion (kaon) characterized by a value of (pT , m, θ, φ) in the m-th bin of the

table. Denoting this fraction of events with fπ(m) (fK(m)), we compute:

〈ε±trk〉i =
∑
m

fi(m) ε±trk(m) , (5.42)
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and the corresponding uncertainty:

σ2(〈ε±trk〉i) =
∑
m

f 2
i (m) σ2[ε±trk(m)] + σ2[fi(m)] [ε±trk(m)]2 . (5.43)

The first term in the above sum represents the contribution from the statis-

tical uncertainty on the tracking efficiency measurements, while the second

term represents the contribution from the statistics of the simulated samples.

They contribute to the error on ri:

σ2(ri)

r2
i

=
σ2(〈ε+trk〉i)
〈ε+trk〉2i

+
σ2(〈ε−trk〉i)
〈ε−trk〉2i

, (5.44)

and finally to the error on Ai:

σ2(Ai) =

∣∣∣∣∣ ∂Ai

∂Afit
i

∣∣∣∣∣
2

× σ2(Afit
i ) +

∣∣∣∣∂Ai

∂ri

∣∣∣∣
2

× σ2(ri) . (5.45)

Thus, the first term in the sum of Eq. 5.43 affects the statistical error on Ai,

while the second term is considered a contribution to the systematic error on

the asymmetry measurement. We obtain:

rπ = 0.9972 ± 0.0052 (5.46)

rK = 1.0006 ± 0.0041 . (5.47)

The errors on rπ and rK are due to the statistics of the simulated samples,

while the contribution of the statistical uncertainty on the tracking efficiency

measurements is negligible (3 × 10−4).

The correction to the fitted asymmetries and their statistical precision is

negligible. The contributions to the systematic error due to the statistics of

the simulated samples are:

σMC
sys (Aπ) = 0.0026 (5.48)

σMC
sys (AK) = 0.0020 . (5.49)

Differences in K+ vs. K− detection efficiency

The fake asymmetry due to the different cross-sections for nuclear interac-

tions of K+ and K− has been estimated in Section 5.1.8:

AF = −0.0039 . (5.50)

We correct AK by −AF and assign |AF | as a contribution to the systematic

error on AK .
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Table 5.12: Contributions to the systematic error.

σsys(Aπ) σsys(AK)
PDFs parameterization 0.0056 0.0002
K+ vs. K− detection efficiency 0.0039
MC statistics 0.0026 0.0020
TOT. 0.0062 0.0044

Total systematic error

Table 5.12 summarizes the several contributions to the systematic error on

Aπ and AK . They are quadratically summed to obtain the total systematic

errors:

σTOTsys (Aπ) = 0.006 (5.51)

σTOTsys (AK) = 0.004 . (5.52)

5.2.6 Results

We have searched for direct CP -violation in the B± → J/ψπ± and B± →
J/ψK± channels with an unbinned likelihood fit approach. The measured

CP -violating charge asymmetries are:

Aπ = 0.01 ± 0.22(stat.) ± 0.006(syst.) (5.53)

AK = 0.003 ± 0.030(stat.) ± 0.004(syst.) . (5.54)

5.3 Summary

We have analyzed a data set corresponding to an integrated luminosity of

20.7 fb−1 to search for direct CP -violation in the B± → J/ψπ± and B± →
J/ψK± channels. The CP -violating charge asymmetries are determined to

be:

Aπ = 0.01 ± 0.22(stat.) ± 0.006(syst.) (5.55)

AK = 0.003 ± 0.030(stat.) ± 0.004(syst.) . (5.56)
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The asymmetry in B± → J/ψK± decays can be compared with the result

from a “cut-based” analysis:

AK = 0.005 ± 0.030(stat.) ± 0.004(syst.) . (5.57)

No evidence of direct CP -violation has been found, which is in agreement,

for the B± → J/ψK± channel, with the Standard Model expectation.





Conclusions

In this thesis a study of the non-leptonic decay B± → J/ψπ± has been

presented. The analysis is based on data collected at BABAR in 1999-2000,

for an equivalent luminosity of 20.7 fb−1.

The ratio of branching fraction B(B± → J/ψπ±)/B(B± → J/ψK±) has

been determined with an approach based on a maximum likelihood fit to a

reconstructed sample of B± → J/ψh± (h = π,K) decays. A signal of 51±10

B± → J/ψπ± events is observed, and the ratio B(B± → J/ψπ±)/B(B± →
J/ψK±) is determined to be:

B(B± → J/ψπ±)

B(B± → J/ψK±)
= [3.91 ± 0.78(stat.) ± 0.19(syst.)]% ,

which is in agreement with previous measurements (but with a substantially

lower uncertainty), and with theoretical expectations.

Using the same approach, the CP -violating charge asymmetry observables

for the B± → J/ψπ± and B± → J/ψK± decays have been determined to be:

Aπ = 0.01 ± 0.22(stat.) ± 0.006(syst.)

AK = 0.003 ± 0.030(stat.) ± 0.004(syst.) .

These results are consistent with no direct CP -violation in these channels,

and confirm the Standard Model expectation for B± → J/ψK± decays. The

determination for the B± → J/ψK± channel can be also compared with the

result from an analysis based on an alternative (“cut-based”) approach:

AK = 0.005 ± 0.030(stat.) ± 0.004(syst.) .

All the measurements reported here are affected by a systematic error

which is much smaller than the statistical error, therefore new data being

accumulated by BABAR will allow further improvements.
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