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Abstract

Measurements of the branching fraction, CP asymmetry and isospin asymmetry

of the radiative penguin decay B0 → K∗0γ and a search for the decays B → ργ

and B0 → ωγ at BABAR

by

Patrick Michael Spradlin

Radiative penguin decays of B mesons provide a fertile ground for precision tests of the Standard

Model. Because such decays must proceed through 1-loop or higher processes in Standard

Model perturbation theory, they are quite rare and their amplitudes are particularly susceptible

to interference from physics beyond the Standard Model. This thesis presents measurements

carried out at the BABAR experiment of the branching fraction B, CP asymmetry parameter

ACP and isospin asymmetry parameter ∆0− of the radiative penguin decay B0 → K∗0γ. The

results of these measurements are

B(B0 → K∗0γ) = (3.92± 0.20± 0.24)× 10−5

ACP (B → K∗γ) = −0.013± 0.036± 0.010

∆0−(B → K∗γ) = 0.050± 0.045± 0.037.

The measurements are consistent with Standard Model predictions, but do not rule out future

discovery of non-Standard Model deviations with an enlarged data set. This thesis also presents

a related search for the radiative penguin decays B0 → ρ0γ, B+ → ρ+γ and B0 → ωγ. These

decays have yet to be observed at any experiment. This analysis sets 90% confidence upper



limits on their branching fractions of

B(B0 → ρ0γ) < 0.4× 10−6

B(B+ → ρ+γ) < 1.8× 10−6

B(B0 → ωγ) < 1.0× 10−6

B(B → (ρ/ω)γ) < 1.2× 10−6 ,

where B(B → (ρ/ω)γ) is a combined limit from a search for decays in any of the three modes.

The B(B → (ρ/ω)γ) measurement assumes theoretical isospin relationships among

B(B0 → ρ0γ), B(B+ → ρ+γ), and B(B0 → ωγ). The ratio of the branching fractions

B(B → (ρ/ω)γ) and B(B → K∗γ) are related to the CKM matrix ratio |Vtd/Vts|. The measure-

ments presented in this thesis give a 90% confidence level upper limit of

|Vtd/Vts| < 0.190.



Chapter 1

Motivation

This thesis details measurements of the decays B → K∗γ, B → ργ, and B0 → ωγ car-

ried out at the BABAR experiment and published in [1] and [2]. The physics of these decays are

closely related. In the Standard Model (SM), the leading order contributions to their amplitudes

are flavor changing neutral quark currents b→ sγ or b→ dγ. Such transitions cannot proceed

through tree-level SM weak processes; they must involve one loop or higher order diagrams,

the leading of which is depicted in Figure 1.1. Such one loop diagrams have become commonly

referred to as penguin diagrams. Decays dominated by such processes, such as B → K∗γ and

B → ρ(ω)γ, are called radiative penguin decays.

Figure 1.1: The leading order Feynman diagram for the b→ sγ, b→ dγ process.

Radiative penguin decays of B mesons have garnered increasing theoretical attention

as measurements of them have become more precise. Most interesting is the potential for dis-
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covery of effects in the b→ sγ and b→ dγ transition amplitudes that cannot be accounted for

in the Standard Model (new physics contributions). Many theoretical extensions to the Stan-

dard Model, including supersymmetric theories, involve new particles and couplings that lead

to one-loop contributions similar to that in Figure 1.1 but with non-SM particles in the loop.

The absence of a dominant tree level contribution and the large mass of the loop propagators

make the amplitudes of penguin transitions highly susceptible to interference from such new

physics interactions. A less exotic, but nonetheless valuable, use of radiative penguin measure-

ments provides independent determinations of Standard Model parameters. Most important

among the SM parameters measureable in radiative penguin physics is the ratio of CKM matrix

elements |Vtd/Vts|, which is currently known only indirectly from unitarity constraints on the

CKM elements.

1.1 Measured observables

Ideally, one would make direct measurements of b→ sγ or b→ dγ transitions. Quark

confinement makes this impossible. One is forced, instead, to make measurements of hadronic

manifestations of quark transitions such as B → K∗γ or B → ργ. Theoretic calculations on such

hadronic decays are complicated by non-perturbative QCD effects leading to large theoretical

uncertainties. Since most of most of the theoretical uncertainty involves hadronization, or the

arrangement of the quarks into bound states after the b→ s(d) transition, it can be significantly

reduced if one integrates hadronization effects out by considering inclusive decays, e.g. B → Xsγ,

whereXs represents all allowable hadronic final states. Such calculations and measurements have

been performed (e.g. [3], [4]), but this thesis is restricted to exclusive decays.

The basic experimental observables of interest in studies of exclusive B decays are the

branching fractions B(B → X), or the fractions of all B mesons that will decay to the final

2



Calculations

B(B0 → K∗0γ)(×10−5) 7.09+2.47
−2.27 [5] 7.6+3.5

−3.0 [6] 7.0 ± 2.7 [7]

B(B+ → K∗+γ)(×10−5) 7.45+2.47
−2.27 [5] 8.1+3.5

−3.0 [6] 7.4 ± 2.7 [7]

ACP (B → K∗γ) < 1% [5, 8]

∆0−(B → K∗γ) (8.0+2.1
−3.2)% × (0.3/TB→K∗

1 ) [9]

B(B0 → ρ0γ)(×10−6) 0.49± 0.18(th) ± 0.04(ex) [7] 0.66± 0.20 [10] 0.76+0.26
−0.23 [5]

B(B+ → ρ+γ)(×10−6) 0.90± 0.33(th) ± 0.10(ex) [7] 1.35± 0.42 [10] 1.58+0.53
−0.46 [5]

Table 1.1: Next to leading order theoretical predictions of parameters for the B → K∗γ and
B → ργ decays. Columns represent different published calculations for each observable. The
source of each value is referenced in square brackets [] beside it. The value of B(B0 → ωγ) is
theoretically predicted by isospin symmetry to be the same as B(B0 → ρ0γ). The factor TB→K∗

1

in the prediction for ∆0− is a form factor which is the dominant source of the theoretical error.
Determinations of TB→K∗

1 include 0.32+0.04
−0.02 ([11]), 0.38± 0.06 ([12]), and 0.27± 0.04 ([6]).

states X . Branching fractions are simply related to the partial widths or partial transition rates

Γ(B → X), which are the more commonly theoretically calculated observables:

B(B → X) =
Γ(B → X)

Γ(B)
= τBΓ(B → X) , (1.1)

where Γ(B) = 1/τB is the B full width or decay rate, and τB is the mean B lifetime. As evidence

of the challenge posed by theoretical calculations of these values, measurements of the branching

fraction B(B0 → K∗0γ) are already more than twice as precise as theoretical calculations for

the same quantity (Tables 1.1 and 1.2).

No measurement of any of the branching fractions B(B0 → ρ0γ), B(B+ → ρ+γ), or

B(B0 → ωγ) has yet produced a statistically significant result. This has led to combined mea-

surements on a union of the individual decay modes. The hope is that, although the number of

events observed for any single decay mode is not statistically significant, the sum of the number

of events in the three modes together may be. The result of such a combined measurement

is usually quoted as a combined branching fraction defined in terms of the three individual

branching fractions as

B(B → (ρ, ω)γ) ≡ 1

2
· [B(B+ → ρ+γ) +

τB+

τB0

· (B(B0 → ρ0γ) + B(B0 → ωγ))] . (1.2)
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Experiment Previous BABAR[13] BELLE [14] This thesis [1]

BB pairs 23 × 106 85 × 106 88× 106

Branching Fractions (×10−5)

B(B0 → K∗0γ) 4.23± 0.40 ± 0.22 4.01± 0.21± 0.17 3.92± 0.20± 0.24

B(B+ → K∗+γ) 3.83± 0.62 ± 0.22 4.25± 0.31± 0.24 3.87± 0.28± 0.26

Asymmetries

ACP (B → K∗γ) −0.044± 0.076± 0.012 −0.015± 0.044± 0.012 −0.013± 0.036± 0.010

∆0−(B → K∗γ) N/A 0.012± 0.044± 0.026 0.050± 0.045± 0.037

Experiment Previous BABAR[15] BELLE [16] This thesis [2]

BB pairs 84 × 106 274× 106 211× 106

Branching Fractions (×10−6)

B(B0 → ρ0γ) < 1.2 < 0.8 < 0.4

B(B+ → ρ+γ) < 2.1 < 2.2 < 1.8

B(B0 → ωγ) < 1.0 < 0.8 < 1.0

Measurement Limit from ∆MBd
/∆MBs

[17] This thesis [2]

|Vtd/Vts| < 0.25 < 0.195

Table 1.2: Current experimental measurements for B → K∗γ, B → ργ, and B0 → ωγ. Values
for B → K∗γ are quoted as (central value)±(statistical uncertainty)±(systematic uncertainty).
The upper limits for B(B → ργ) and B(B0 → ωγ) are quoted at 90% confidence level. The
publications in which the measurements are published are cited in sqaure brackets []. The
rightmost column lists the results of the measurements described in this thesis.
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Isospin symmetry implies the relationship

Γ(B0 → ρ0γ) = Γ(B0 → ωγ) =
1

2
Γ(B+ → ρ+γ) , (1.3)

which gives B(B → (ρ, ω)γ) a theoretical value equal to B(B+ → ρ+γ). Unfortunately, even this

combined approach has failed to yield statistically significant evidence for b→ dγ transitions.

The impact of the large relative magnitudes of the theoretical branching fraction un-

certainties can be reduced by considering quantities that are ratios of transition rates of ex-

clusive decays. Many of the uncertain terms associated with the non-perturbative physics are

approximately factorizable and largely cancel in appropriate ratios. Two of these ratios—the

CP-asymmetry parameter ACP and the isospin violation parameter ∆0−—have been particu-

larly studied by theorists as possible signatures of new physics ([8, 9]). For the set of decays

B → K∗γ, these quantities are defined as

ACP ≡ Γ(B → K
∗
γ) − Γ(B → K∗γ)

Γ(B → K
∗
γ) + Γ(B → K∗γ)

(1.4)

and

∆0− ≡ Γ(B
0 → K

∗0
γ) − Γ(B− → K∗−γ)

Γ(B
0 → K

∗0
γ) + Γ(B− → K∗−γ)

. (1.5)

1.2 |Vtd/Vts| and the unitarity triangle

The cancellation of theoretical errors in ratios also improves the chance for a direct

measurement of the ratio of CKM elements |Vtd/Vts|. The CKM ratio is related to branching

fractions for exclusive radiative penguin decays of B mesons by ([7])

Γ(B+ → ρ+γ)

Γ(B+ → K∗+γ)
=

B(B+ → ρ+γ)

B(B+ → K∗+γ)
=

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

2
(

1 −m2
ρ/M

2
B

1 −m2
K∗/M2

B

)3

ζ2[1 + ∆R] , (1.6)

wheremρ, mK∗ andMB are respectively the masses of the ρ+, K∗+ and B+ mesons, ζ is the ratio

of the transition form factors and ∆R parameterizes the remaining small calculable dynamical
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differences. This relation assumes that interference from physics beyond the Standard Model is

negligible. The same relationship is expected to hold for 2Γ(B0 → ρ0γ)/Γ(B0 → K∗0γ), where

the additional factor of 2 is the isospin factor from Equation 1.3.

A direct measurement of |Vtd/Vts| is important for confirming the unitarity of the CKM

matrix. A brief digression is required to explain the presentation conventions for CKM unitarity

tests in B physics (see [17] for a more complete review). Unitarity in the B sector is most

commonly presented in terms of the Wolfenstein approximate parameterization of the CKM

matrix V ([18])

V =



















Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



















=



















1 − λ2/2 λ Aλ3(ρ− iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1



















+ O(λ4). (1.7)

Unitarity of V implies, among other relations, that

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 , (1.8)

which can be graphically represented by a triangle in the complex plane, as shown in Fig-

ure 1.2 (a). Usually, relation 1.8 is divided by VcdV
∗
cb to yield the similar triangle in Figure 1.2 (b),

where ρ = ρ(1−λ2/2) and η = η(1−λ2/2). B physics literature usually refers to Figure 1.2 (b)

as the unitarity triangle.

Independently measuring each of unitarity triangle’s angles and sides is a test of the

unitarity of the CKM matrix. The CKMfitter group [19] maintains a global fit of the unitarity

triangle to relevent measurements. Their results at the time of the publication of [2] appear in

Figure 1.3. Still missing from this picture is a direct determination of the length of AB, which

can be provided by a direct measurement of |Vtd/Vts|. Conventional wisdom suggests that the

leading experimental method for directly measuring this quantity is a ratio of the neutral B

meson mass splittings ∆MBs
= mB0

s
−m

B
0

s

and ∆MBd
= mB0

d
−m

B
0

d

. However, the Bs mixing
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measurement to determine ∆MBs
has proven difficult and has yielded only a limit on |Vtd/Vts|

[17] (see Table 1.2). The branching fraction ratio in Equation 1.6 represents an independent

and increasingly promising method for a direct measurement.

BC

Aa)

VudV *
ub

VtdV *
tb

VcdV *
cb

α

βγ

C = (0,0)

A = (ρ,η)

B = (1,0)

b)

α

βγ

Figure 1.2: (a) Representation in the complex plane of the triangle formed by the CKM matrix
elements VudV

∗
ub, VtdV

∗
tb, and VcdV

∗
cb. (b) Rescaled triangle with vertices A, B and C at (ρ, η),

(1, 0), and (0, 0) respectively. Figure and caption taken from [17].

1.3 Theoretical framework

Theoretical values for each of the observables have been calculated to next to leading or-

der (NLO) in the Standard Model. For immediate reference, NLO calculations for the branching

fraction B → K∗γ are presented in [5, 6, 7]. The branching fractions B → ργ and B0 → ωγ are
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Figure 1.3: Winter 2004 results of the CKMfitter group’s global CKM fit of relevant experimental
results to the unitarity triangle. Figure taken from [19].
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calculated in [5, 10]. The paper [9] calculates the isospin violation parameter ∆0−(B → K∗γ) to

NLO and analyzes its potential as a signature of non-Standard Model physics. The new physics

potential for the CP asymmetry parameter ACP (B → Xsγ) is similarly treated with an NLO

calculation in [8]. This section subsequently presents a brief outline of the theoretic branching

fraction calculations as presented in [5].

The basic calculational framework is an operator product expansion (OPE) of the Stan-

dard Model. The OPE for B meson decays is an effective field theory that replaces non-local

Standard Model interactions with highly virtual propagators—which necessarily take place over

small distances—with a set of effective local operators On. The details of the short distance

physics thus replaced—most significantly W± and Z exchange, t quark propagation, and hard

gluon exchange—are contained within the effective coupling strengths Cn, called Wilson coeffi-

cients, of these new local operators. For example, the t quark penguin loop (Figure 1.1), which

is the leading order contributor to the b→ sγ decay, is absorbed into the OPE operator O7 as

shown in Figure 1.4. The set of B decay OPE operators relevant to the B → K∗γ calculations

are depicted in Figure 1.5 and listed below:

Op
1 = s̄αγµ(1 − γ5)pβp̄βγ

µ(1 − γ5)bα

Op
2 = s̄αγµ(1 − γ5)pαp̄βγ

µ(1 − γ5)bβ

O3 =
∑

q

s̄αγµ(1 − γ5)bαq̄βγ
µ(1 − γ5)qβ

O4 =
∑

q

s̄αγµ(1 − γ5)bβ q̄βγ
µ(1 − γ5)qα

O5 =
∑

q

s̄αγµ(1 − γ5)bαq̄βγ
µ(1 + γ5)qβ (1.9)

O6 =
∑

q

s̄αγµ(1 − γ5)bβ q̄βγ
µ(1 + γ5)qα

O7 =
e

8π2
mbs̄σ

µν(1 + γ5)bFµν

O8 =
g

8π2
mbs̄σ

µν(1 + γ5)T
abGa

µν ,
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Figure 1.4: Penguin diagram contribution to O7

1,2
qO

b

c,u=q

d,s

q

3-6O

b

q

d,s

q

7O

b d,s

8O

b d,s

Figure 1.5: Local operators of the OPE effective theory for B meson decay.

where α, β are color indices, p ∈ u, c in O1,2, and the sum in O3−6 over quark flavors q ∈

u, d, s, c, b. Assembling these components, the effective Hamiltonian for B → K∗γ decays can

be written

Heff =
GF√

2
V ∗

psVpb





∑

p=u,c

(C1O
p
1 + C2O

p
2)

∑

i=3,...,8

CiOi



 . (1.10)

The effective theory for B → ργ and B0 → ωγ decays is obtained from Equations 1.9 and 1.10

by the substitution s → d in the operator quark currents and CKM factors. Operators O1−6

are often called four-fermion operators with O1,2 additionally termed current-current operators.

O7 and O8 are respectively called the electromagnetic and chromomagnetic penguin operators.

The Wilson coefficients Ci are independent of the initial and final state wave functions

and have been calculated perturbatively to next to leading order. They obey renormalization

group equations that allow matching to the scale at which operator matrix elements are calcu-
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lated. These mesonic matrix elements of Oi necessarily involve nonperturbative physics. Bosch

and Buchalla [5] demonstrate that the remaining perturbative physics in the operator matrix el-

ements can be further factorized from the nonperturbative physics in the heavy quark (mb → ∞)

limit by

< V γ|Oi|B >=

[

FB→V (0)T I
i +

∫ 1

0

dξ dυ T II
i (ξ, υ)ΦB(ξ)ΦV (υ)

]

· ε , (1.11)

where ε is the photon polarization four-vector. The long distance nonperturbative physics is

contained in the B → V transition form factor FB→V and the leading twist light-cone distribu-

tions of the mesons ΦB and ΦV . These have been calculated using QCD sum rules in [12]. The

remaining perturbative physics contribute to the hard-scattering kernels T I
i and T II

i . Equa-

tion 1.11 is valid to corrections of the order ΛQCD/mb.

Recent calculations in [8] and [9] have explored possible deviations from the Standard

Model values for ACP and ∆0− respectively in some of the more popular supersymmetric ex-

tensions to the Standard Model. Such models do not expand the set of operators in the OPE of

the model as the additional supersymmetric particles have large masses that are integrated out

of the expansion like the t quark and W . However, they do modify the Wilson coefficients Ci.

In these models the differences most likely to affect the asymmetries ACP and ∆0− are modifi-

cations to the coefficients for the electromagnetic penguin operator C7 and the chromomagnetic

penguin operator C8. Such new physics effects can have quite a dramatic effect on ACP and

∆0−, creating ACP ∼ 10% in one scenario calculated in [8].

1.4 State of the measurements

The first evidence for any radiative penguin decay of a B meson was an observation of

B → K∗γ published by the CLEO collaboration in 1993 [20]. Since then, the measurements have

been and continue to be refined with increasingly large data sets. The latest measurements from
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the BABAR and Belle collaborations, which are still continuing to take data, are summarized in

Table 1.2.

The decays B → K∗γ are experimentally well-established and their branching ratios

B(B0 → K∗0γ) and B(B+ → K∗+γ) are fast becoming precision measurements, with uncer-

tainties of < 10%. Their central values appear lower than the theoretically calculated values

(Table 1.1), however the theoretical uncertainties are still large enough to accommodate the mea-

surements. Measurements of ACP (B → K∗γ) and ∆0− are also consistent with the Standard

Model calculations and constrain new physics effects. It should be noted that the uncertainties

of ACP and ∆0− are still limited by the statistics of their data sets and can significantly improve,

thus further constraining new physics models.

Experimental evidence for the decays B → ργ and B0 → ωγ remains elusive. However,

the current upper bounds are beginning to encroach upon the Standard Model predictions. The

next iteration of measurements from Belle and BABAR are greatly anticipated and have an

excellent probability of establishing first evidence for the existence of the decays or forcing a

reevaluation of the calculations.

The analysis presented in this thesis represents the most recent results published by

the BABAR collaboration. It is organized as follows: Chapter 2 describes the BABAR experi-

ment, which provides the data for the measurements. Chapter 3 provides an overview of the

measurement strategy, which is subsequently detailed in Chapters 4-11. The final results of the

measurements from Chapters 10 and 11 are recapitulated with concluding remarks in Chapter 12.
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Chapter 2

The BABAR experiment

The data upon which the present measurements were based were collected by the

BABAR experiment. BABAR is a general purpose solenoidal particle detector observing positron-

electron (e+e−) collisions in the PEP-II (Positron- Electron Project II) [21] at the Stanford

Linear Accelerator Center (SLAC). BABAR also refers to the international collaboration of uni-

versities and research institutions that operate the detector and collect and analyze its data.

BABAR has published a complete description of the detector as [22]. The bulk of this

chapter is condensed from that excellent paper. The design goals of the detector and the initial

prospective physics program for the experiment appear in [23].

The principal goal of the BABAR experiment is a comprehensive study of CP-violation

in B meson decay processes, represented by unitarity triangle (Figure 1.2). PEP-II provides

an abundant supply of B mesons by colliding positrons and electrons at the Υ (4S) resonance

energy in the collision center-of-momentum (CM) reference frame (
√
s = 10.58 GeV). Υ (4S)

decays almost exclusively to a pair of B mesons (B+B− or B0B
0
). To facilitate CP-asymmetry

measurements, the CM frame of the e+e− collision is boosted with respect to the laboratory

frame of the detector. Because the B daughters of the Υ (4S) are produced almost at rest in
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the CM frame, this boost transforms differences in their decay times in the CM frame into

displacements of their decay points (termed decay vertices) in the lab frame. This is significant

because CP-violation in a B → X decay manifests as a difference between the decay amplitudes

of B → X and the conjugate decay process B → X. Asymmetric e+ and e− beam energies

accomplish the relative boost between the collision CM frame and the laboratory frame.

Although CP-violation studies motivated its construction, the BABAR experiment is an

excellent environment in which to study a broad range of τ lepton and b and c quark physics. The

rich supply of B mesons allows the studies of very rare B decays, such as the radiative penguin

decays studied in this thesis. At the time the B → ργ and B0 → ωγ analyses were published in

[2], BABARhad recorded approximately 230× 106 BB events. This large set of data is coarsely

divided into periods of data collection called Runs, which represent many months of continous

data collection separated from each other by periods of scheduled detector maintenance and

improvement. The B0 → K∗0γ measurement presented in this thesis is based on the 88 × 106

BB events of Runs I and II. The B → ργ and B0 → ωγ measurements are based on 211 × 106

BB events from Runs I-IV. As this thesis is written, Run V is under way; BABAR continues to

take data that will lead to future refinements of the measurements presented here.

2.1 PEP-II

Figure 2.1 depicts the PEP-II storage ring and the linear electron/positron accelerator

(linac), which gives SLAC its name. Electrons and positrons are accelerated to their collision

energies—9.0 GeV for e− and 3.1 GeV for e+—in the linac and injected into the PEP-II rings

where the beams are stored, tuned, and brought into collision. The electron and positron beams

are stored in separate counterrotating rings. The asymmetric energies of the particles give their

head–on collisions the specified 10.58 GeV CM energy and the CM frame boost βγ = 0.56
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relative to the laboratory frame.

While in the PEP-II storage rings, the beams are tuned to minimize the spatial extent of

the interaction region, to ensure that its position remains stable, and to optimize the luminosity.

In the BABAR coordinate system, the typical RMS Cartesian extent of the luminous region is

σLx
= 120µm, σLy

= 5.6µm, and σLz
= 9 mm [22]. Figures 2.2 and 2.3 diagram the BABAR

detector and define its coordinate system. The positive z direction is along the cylindrical axis

of the detector in the direction of the e− momentum. The positive y direction is vertically

upward, and the x axis completes the right-handed coordinate system.

Through continued improvements to the hardware and operations, the instantaneous

luminosity supplied by PEP-II has steadily improved since operations began in 2001. At the time

of the publication of the B → ργ measurements presented in this thesis ([2]), PEP-II regularly

supplied over twice the original design luminosity of 3 × 1033 cm−2s−1 = 3nb−1s−1. Its total

time-integrated supplied luminosity had reached 256 fb−1.

Table 2.1 lists the quark and leptonic production cross-sections for e+e− collisions at

the Υ (4S) resonance. Production of the bb quark pairs, which leads to the production of the

desired BB meson pairs, competes with the production of light and charm quark pairs and with

the production of charged leptons. The production of charmed and light quark pairs together

with the production of τ+τ− pairs are called collectively continuum production among BABAR

physicists and in subsequent chapters of this thesis. Because of their relative abundance, con-

tinuum events are a significant background for almost any analysis of B mesons. To facilitate

the characterization and suppression of these backgrounds, approximately 10% of the events

produced by PEP-II (and recorded by BABAR) are produced with a collision CM energy approx-

imately 10 MeV below the Υ (4S) resonance mass. This energy is beneath the BB production

threshold, yet near enough resonance so that the continuum cross-sections are approximately

equal to their values at the Υ (4S) resonance. This sample of off-resonance events also allows
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Figure 2.1: Illustration of the SLAC linac and PEP-II storage ring.
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Figure 2.2: BABAR detector longitudinal section [22]
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the independent measurement of the number of B decays recorded at BABAR that is described

in Chapter 10.1. Although the complete set of BABAR data includes both the off-resonance and

on-resonance samples, unless otherwise stated, the term BABAR data in this thesis refers only

to the on-resonance subset.

2.2 BABAR detector overview

BABAR is a cylindrically symmetric general-purpose solenoidal particle detector. Fig-

ures 2.2 and 2.3 depict the detector and indicate its major subsystems and dimensions. Because

the CM frame (and hence all of the Υ (4S) and subsequent decay products) are boosted with

respect to the laboratory frame, the longitudinal center of the entire detector is set 0.37 m

behind (in the direction opposite of the boost to) the interaction point in order to maximize

its geometric acceptance in the CM frame. In addition, most of the component subdetectors
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Product Cross-section

e+e− → ( nb)

bb 1.05

cc 1.30

uu, dd, ss 2.09

τ+τ− 0.94

µ+µ− 1.16

e+e− ∼ 40

Table 2.1: Production cross-sections at
√
s = M(Υ (4S)) = 10.58 GeV [23]

have a forward-backward asymmetry with a more comprehensive laboratory frame polar angle

acceptance in the boost (+z) direction.

The charged particle tracking and vertexing system occupies the volume closest to the

interaction point (IP). This system is composed of two major subsystems: the silicon vertex

tracker (SVT), which lies closest to the IP within a mechanical support tube, and the drift

chamber (DCH), which surrounds the mechanical support tube. Proceeding radially outward,

the next major detector subsystem is a novel ring-imaging Cherenkov detector (DIRC) followed

by a CsI calorimeter (EMC). These are surrounded by the superconducting solenoid, which

suffuses the inner detector with a magnetic field of 1.5T. The magnetic field bends the paths of

charged particles into helices allowing measurement of the particles’ momenta. The outer steel

flux return for the solenoid field (IFR), a last major detector hardware subsytem, is instrumented

for the detection of muons and neutral hadrons.

With the exception of the IFR, each of these detector subsystems is described with more

detail in subsequent sections of this chapter. The primary purposes of the IFR are identifying

muons and detecting neutral hadrons (mostly neutrons and K0
L mesons). Neither muons nor

neutrons are part of the decays under study, nor do they produce significant backgrounds. While

K0
L detection could be used in B → K∗γ analyses, measurements using K0

L would be much less
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precise than the same measurements using K0
S due to the significantly lower detection efficiency

and less precisely measured momenta of the K0
L candidates. In contrast to those of the other

subdetectors, IFR measurements are used only indirectly in the current analyses.

2.3 BABAR subsytem: SVT

The Silicon Vertex Tracker (SVT) is the innermost active section of the BABAR detector.

It occupies a cylindrical radius of approximately 32 mm to 144 mm relative to the collision axis.

Its main purpose is to provide precise measurements of charged particle positions very close to

the interaction point. This role is crucial in the time-dependent CP-asymmetry measurements

that drove many aspects of the BABAR design. These measurements probe the time structure of

B meson decays by utilizing the CM frame boost, which transforms meson lifetimes to laboratory

flight distances. With a boost of βγ = 0.56 and a mean lifetime cτB0 = 460± 4µm [17], the

mean flight distance of a B0 meson is approximately 260µm. Analysis requires the determination

of a B decay vertex from its charged decay products with a precision significantly smaller than

this mean flight distance. The BABAR SVT was designed to provide estimates of reconstructed

B decay vertices with resolutions better than 80µm in z direction, and better than 100µm in

the transverse plane. In addition, measurements of the energy deposited by charged particles in

the silicon of the SVT (dE/dx) contribute to charged particle identification.

The analyses described in this thesis employs this remarkable vertexing power of the

SVT for the more prosaic purpose of background suppression. For the analysis modes with two

or more charged final state particles, a reconstructed B candidate is analyzed to determine if

the charged particles are consistent with the hypothesis that they emerge from the same decay

vertex. The displacement of the calculated vertex is also analyzed for consistency with the flight

distance of a B meson. The use of decay vertexes in the analysis are detailed in Chapter 4.5.2.
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Figures 2.4 and 2.5 show the layout of the SVT. The active sensor components are 300

µm double-sided silicon strip detectors, which are described briefly below. These are arranged in

five coaxial layers covering a range of polar angles θ = [20◦, 150◦] with respect to the interaction

point.

Many textbooks on detector physics (e.g., [24]) describe the theory and operation of

semiconductor particle detectors in more detail than the account given here. The SVT silicon

wafers are biased to deplete the conduction band of charge carriers. Interactions of charged

particles with the silicon material create electron-hole pairs in the silicon. These drift with the

applied electric field to the planar faces of the detector, where the charge is collected on detection

strips. The strips on opposite sides of the wafers are orthogonal to give two-dimensional position

measurements with a single detector wafer. The wafers are positioned so that the strips on one

side are oriented parallel to the detector axis and measure the azimuthal cylindrical angle φ

coordinate at which a charged particle crossed the detector (φ strips). The strips on the other

side run transversely to the detector axis and measure the z position of the charged particle

”hit” (z strips). The pitch (distance between centers of adjacent strips) of the z strips is 100 µm

on the innermost 3 layers and 210 µm for the outer two layers. The φ strip pitch varies among

the layers in the range 50-110 µm. Hit position measurements in the SVT achieve sub-pitch

resolutions, with z resolution 10-60 µm and φ resolution 10-40 µm depending on the layer and

angle of the charged particle momentum with respect to the detector.

2.4 BABAR subsystem: DCH

The BABAR drift chamber (DCH) is the primary source of charged particle momentum

and angle measurements. It occupies the cylindrical region from a radius of 236 mm, just

outside the support tube which houses the SVT, to 809 mm, just inside the cylindrical DIRC
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barrel. The DCH also provides measurements of the energy lost by charged particles passing

through the DCH, dE/dx, which provides information about the particle’s identity. The DCH

measurements are the most powerful discriminant of charged particle types for particles with

momenta below 700 MeV. Higher momenta charged hadrons rely more on measurements from

the DIRC.

Almost all BABAR analyses rely on precise measurements of the momenta of charged

particles, especially analyses, like those of this thesis, that proceed by reconstructing decay

chains from a set of detected final state particles.

Figure 2.6 depicts a longitudinal cross section of the DCH. The detector volume is

comprised of hexagonal drift cells, which span the entire length of the detector. These cells are

arranged in 40 cylindrical layers, which are grouped into ten superlayers. Figure 2.7 shows a

section of the innermost four superlayers. Each cell is delimited by six field wires and has a

sense wire at its center. The detector is filled with a gas mixture of 80:20 helium:isobutane at

a constant pressure of 4 mbar over environmental air pressure.

The operation is typical of a gas drift detector (see, e.g., [24]). A charged particle

passing through a drift cell locally ionizes the gas. The sense wire of each cell is held at an

electrical potential of 1960V relative to the field wires. As the charge carriers accelerate toward

the sense wire, they collide with the gas causing an ionization avalanche, which is detected on

the sense wire. The amount of time required for the avalanche to reach the sense wire, called

drift time, and total charge of the avalanche are directly measured on the sense wire. The drift

time is converted to a measurement of the radius with respect to the sense wire at which the

original ionization event occurred. The total charge provides a measurement of the amount of

energy transferred to the gas in that ionization event (dE/dx).

To allow for measurement of the z positions of passing charged particles, the cell axes of

several superlayers have angles roatated with respect to the detector axis for stereo observation.
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Figure 2.6: BABAR Drift Chamber (DCH) longitudinal section with principal dimensions in mm.
The chamber center is offset by 370 mm from the interaction point. [22]

Superlayers of axial cells (A) alternate with pairs of stereo superlayers (U, V) with opposite-sign

offsets in the order AUVAUVAUVA from innermost to outermost superlayer. The stereo angles

vary between ±45 mrad and ±76 mrad. This structure is indicated in Figure 2.7, which shows

a section of the innermost four superlayers (AUVA).

The precise position information provided by the DCH allows precise fits of the helical

path a charged particle traces through the detector’s solenoid field, and hence precise mea-

surements of its momentum. Figure 2.8 shows the relationship between dE/dx and particle

momentum used for identifying particles below the DIRC’s Cherenkov threshold. As shown in

Figure 2.9, the measured RMS dE/dx resolution for Bhabha events is typically 7.5%.

2.5 Tracking performance

A sophisticated and evolving system of software and electronic hardware reconstructs

the paths (tracks) of charged particles from the observed interactions with the tracking sub-

sytems (the SVT and DCH). The hardware component resides mostly in the electronic trigger-

ing system, which determines which detector events are recorded for physics analysis. Among
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Figure 2.9: Difference between the measured and expected energy loss dE/dx for e± from
Bhabha scattering, measured in the DCH at an operating voltage of 1900 V. The curve represents
a Gaussian fit to the data with a resolution of 7.5% [22].

many other things less relevant to tracking, the trigger system performs a very fast association

of drift chamber interactions into track segments. In subsequent software processing of recorded

events, these track segments and the other observed SVT and DCH interactions are combined

into helical paths. The track finding and fitting procedures rely on Kalman filter algorithms

that produce estimates and error matrices for the track parameters. Five parameters define the

path of a track: d0, φ0, z0, ω and tanλ. These parameters are measured at the point of closest

approach (POCA) of the helix to the z axis. The parameters z0, d0 and φ0 are the cylindrical

coordinates of the POCA relative to the origin of the coordinate system: z0 is the z displacement

of the POCA, d0 is the distance between the POCA and the z axis, and φ0 is the azimuthal

angle of the POCA. The angle λ is the dip angle of the helix relative to the x − y plane, and

ω = 1/pt is its curvature, where pt is the magnitude of the transverse (x− y) momentum of the

charged particle. The resolution with which the tracking system measures helix parameters for
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charged tracks is given by [22] as

σd0 = 23 µm σz0 = 29 µm

σφ0 = 0.43 mrad σtan λ = 0.53× 10−3

σpt
/pt = (0.13± 0.01)% · pt + (0.45± 0.03)% .

The efficiency of the charged particle tracking depends on the selection criteria suitable to a

given measurement. The efficiencies for the analyses described in this thesis are discussed in

Chapter 10.2.

2.6 BABAR subsystem: DIRC

The Detector of Internally Reflected Cherenkov light (DIRC) is the main source of

information for charged particle identification (PID) for hadrons with momenta from 700 MeV

up to 4.2 GeV. Discrimination for particles below 700 MeV relies primarily on dE/dx mea-

surements in the DCH.

The DIRC is a ring-imaging Cherenkov detector with a novel design that is shown

in Figure 2.10. This design minimizes the amount of material between the DCH and EMC.

Optically flat fused silica bars are arranged in a thin 12-sided polygonal barrel between the outer

radius of the DCH and the inner radius of the EMC. These bars are the Cherenkov radiators,

with an index of refraction n = 1.473 at optical frequencies. Charged particles with velocities v

exceeding that of light in the fused silica (β = v/c > 1/n) radiate a cone of of light with polar

angle cos θc = 1/nβ with respect to the particle’s velocity ~v. The highly-polished fused silica

bars also act as light pipes for Cherenkov photons trapped by total internal reflection. Mirrors at

the forward (+ẑ) ends of the bars reflect forward-traveling photons back to the rear of the bars

so that only one end of the barrel needs to be instrumented. The internally reflected photons

exit the rear of the bar and travel through a toroidal reservoir of purified water before their
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Figure 2.10: Elevation view of the nominal DIRC system geometry. All dimensions are given in
mm. [22]

detection by a densely packed array of array of photomultiplier tubes (PMTs) (Figure 2.11). The

photon’s emission angle is preserved in its transmission allowing for reconstruction of Cherenkov

rings at the PMT array and for measurement of the track’s Cherenkov angle θc. This gives

a measurement of the charged particle’s velocity, which in turn, when considered with the

its measured momentum, determines the particle’s mass and identity. Figure 2.12 shows the

variation of cos θc with particle momentum p for several charged particle types. Figure 2.13

shows the expected π-K separation. The typically quoted DIRC performance benchmark is

4.2σ π-K separation for tracks of momentum 3 GeV. The uses of the BABAR PID system in the

analyses of this thesis are detailed in Chapter 4.3.2.

2.7 BABAR subsystem: EMC

The BABAR EMC is a total absorption calorimeter for measuring electromagnetic show-

ers. It occupies cylindrical volume at a radial interval of 920 mm to 1375 mm, between the
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DIRC and the superconducting solenoid. As the main detector of photons, its excellent energy

and angular resolution is vital to any analysis relying on the detection of photons or the recon-

struction of π0 or η decays. The EMC is designed to measure the large range of shower energies

from 20 MeV to 9 GeV with energy resolutions approaching 1-2%. Thallium-doped cesium

iodide (CsI(Tl)) crystals compose the scintillator material of the EMC. These are arranged in

a finely segmented series of axial rings as depicted in Figure 2.14. The scintillation light is read

by silicon photodiodes optically coupled to each crystal.

The decays studied in this thesis all involve a photon with a lab frame energy in the

range range 1.5 GeV to 3.5 GeV (Figure 2.16) from a decay B → Xγ, where X is one of

(K∗, ρ, ω). This prominent photon is a key signature of such decays, and the analyses of this

thesis exercise the full capabilities of the EMC to maximally exploit this signature. Details of the

role of this high energy photon in the analyses appear in Chapter 4.2. These analyses rely on the

excellent detection efficiency and angular coverage of the EMC to find the B-daughter photon.

The resolution of the measured energy of the B-daughter photon dominates the resolution of the

estimated energy of the reconstructed B meson. The EMC’s resolution performance allows the

reconstructed B energy to be used as a good discriminating variable for background suppression.

The full range of detectable photon energies is used to find the sister photons for high energy

photons from π0 → γγ and η → γγ decays that would otherwise mimic signal photons. The

EMC’s energy resolution allows a relatively narrow veto for such photons, reducing the number

true signal decays eliminated by spurious association.

The 9 GeV upper bound of photon detection design range derives from the kinematic

limit for photons from e+e− → γγ and from asymmetric laboratory frame decays of π0s from

B0 → π0π0. The lower limit of 20 MeV is largely determined by backgrounds and the amount

of material between the interaction point and the calorimeter. There is just 0.3-0.6 radiation

lengths of material before most of the calorimeter.
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The CsI(Tl) crystals have a trapezoidal cross-section, as depicted in Figure 2.15. They

are arranged in 56 rings around the beam axis (Figure 2.14) with the axis of each crystal aimed

at the interaction point. Readout diodes are attached to the rear face of each crystal. The EMC

covers the lab frame polar angles from 15.8◦ to 141.8◦, corresponding to approximately 90%

coverage in the CM frame, with full azimuthal coverage. The dimensions of the crystals vary

among the rings to achieve the proper orientation of the crystals with minimal gaps between

them, though typical dimensions are 4.7× 4.7 cm2 at the front face of the crystal (side nearest

the interaction point) increasing to typically 6.1× 6.0 cm2 at the rear face. This gives the front

faces of the crystals an angular extent of 2.3 to 5.1 mrad in each dimension. Individual crystal

size is a key factor in the angular resolution of the calorimeter. Most electromagnetic showers

will not be confined to a single crystal, but will also register in adjacent crystals. Clustering

algorithms are required to agglomerate signals associated with a single particle impacting on

the calorimeter and to separate the contributions from closely spaced particles. This extended

‘bump’ structure allows for an angular resolution smaller than crystal size.

Figure 2.17 shows EMC’s relative energy resolution σE/E and angular resolution σθ =

σφ. The energy resolution generally conforms to the empirical relation

σE

E
=

(2.32± 0.30)%
4
√
E( GeV)

⊕ (1.85± 0.12) , (2.1)

where ⊕ indicates a sum in quadrature. For photons in the signal region, σE/E ∈ [2.51, 2.80]%.

The angular resolution has been fit to the empirical relation

σθ = σφ =

(

3.87± 0.07√
E( GeV)

+ (0.00 ± 0.04)

)

mrad. (2.2)

For signal photons this gives, σθ ∈ [2.07± 0.08, 3.16± 0.10]mrad.
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2.8 Simulation

The BABAR collaboration maintains a complete and highly detailed Monte Carlo (MC)

simulation of the experiment for use in detector studies and physics analyses. By comparing the

expected properties of the data from a detailed simulation of the detector to those of the actual

data, BABAR physicists have achieved a deeper understanding of the detector and the subtleties

of its data. Data-Monte Carlo comparison studies have significantly improved the quality of

BABAR physics results and have proven invaluable for the evaluation of systematic sources of

uncertainty in measurements. Understanding gained from such studies is incorporated into the

simulation, iteratively refining the understanding of the detector. The detector itself and the

way the experiment operates has and continues to change. The simulation has helped to guide

its evolution.

More relevant to this thesis, the full simulation of the BABAR experiment played a

vital role in developing the analyses presented herein. Details of the use of the Monte Carlo

33



γγ→
0π
Bhabhas

c

MonteCarlo
γψ J/→
χ

3-2001

8583A41 Photon Energy (GeV)

10-1 1.0 10.0

 σ
E
 / 

E

0.02

0.02

0.04

0.06

3-2001

8583A42 Photon Energy (GeV)

0 1 2 3

σ θ
  (

m
ra

d)

0

4

8

12
γγ →
 0π

MonteCarlo

Figure 2.17: The energy resolution for the EMC measured for photons and electrons from various
processes, and the angular resolution of the EMC for photons from π0 decays. [22]

34



simulation pervade the description of the analysis in subsequent chapters. The analyses were

developed ‘blind’. This means that all of the selection criteria and measurement procedures

were fully developed on the Monte Carlo simulated data before being applied to the real data.

By avoiding reference to the real data in the development of the selection criteria, analysts

avoid biasing the final result by, consciously of unconsciously, tuning selection criteria toward

preferred values of the final parameters. This removal of personal bias is especially important

for the B → ργ and B0 → ωγ modes, which have not yet been observed. Blind analyses are only

possible with accurate simulated data. The simulated data is also important for dealing with

backgrounds. As a concrete example from this analysis, B → ρπ0 decays can closely resemble

B → ργ decays if one of the photons from the π0 → γγ is undetected or otherwise allows the

other photon to pass the π0 veto (Chapter 4.2.2). B → ρπ0 occurs at a rate sufficient to make it

a significant background that may mistakenly raise the estimate of the number of signal decays

unless it is dealt with carefully. However, its rate is small enough that no clean, statistically

significant sample of such events can be extracted from the real data. The ability to generate

such events in large quantities with the detailed simulation led to the identification of variables

that discriminate signal decays from this class of background (Chapter 7.3).

The simulation encompasses the complete sequence of events from the e+e− collision to

reconstruction of candidates and physics quantities identical in form to the real data products

upon which analysis is performed. The first step is a generation of a physics event without

detector interactions. These start with the initial e+e− collision and simulate the subsequent

particle-level interactions. This step is performed by EvtGen [25], a package developed by BABAR

physicists. EvtGen is a suite of evolving event generators representing the best understanding

of the underlying physics. Most of the B decay generators have been developed by BABAR

physicists, however, third party event generators have been incorporated for specific types of

interactions. For example, events evolving from an initial interaction of e+e− → qq, where
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q ∈ u, d, s, are simulated with JETSET [26].

After EvtGen has created the physics event, the resulting particulate interactions with

the detector are simulated with a detailed representation of the physical detector based on the

GEANT4 [27] simulation toolkit. This step produces a sequence of interactions between the

physics particles and the material of the detector, e.g. scattering and energy deposition, pair

conversion, etc. Another layer of simulation is applied to these interactions to give the detector

response and the corresponding electronic signals. At this point the simulated Monte Carlo

events are in exactly the same form as the raw data from the detector itself and can be sub-

mitted to the same suite of reconstruction software for the extraction of physics information.

Throughout the simulation chain, an association with the original particles produced by Evt-

Gen is maintained so that it is possible to identify which generated particle produced a given

electronic signal or higher level structure.

The full BABAR simulation requires a great deal of computing power. To prevent redun-

dant and wasteful use of limited computing resources in simulation, and to provide uniformity

in the quality of the simulated data used in the many BABAR analyses, production of most of the

Monte Carlo data used by BABAR is generated by a single dedicated subgroup. They produce

data sets for a wide variety of physics processes including continuum e+e− → qq interactions,

generic ensembles of B decays in accordance with the best current branching fraction measure-

ments, and sets exclusively containing signal decays for many modes and analyses. So that

sets of simulated signal and background sets are based on single instance of the evolving event

and detector models, the Simulation Production group organizes the data sets they produce

into Simulation Production (SP) runs. Within an SP run, every simulated data set is produced

with the same detector representation. SP runs are referred to by a serial number, i.e. SP4.

The B → K∗γ analysis described in this thesis was developed with SP4 Monte Carlo simulated

events. The B → ργ and B0 → ωγ analyses were developed with SP6 Monte Carlo.
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Chapter 3

Analysis overview

The goal of this analysis is to measure branching fractions of the specific (signal) decay

processes B → K∗γ, B → ργ, and B0 → ωγ in data collected by the BABAR experiment.

The basic procedure achieving this goal first identifies candidate signal decays in the data, then

exploits calculable physics quantities to discriminate true signal decays from various processes

that can mimic signal decays (backgrounds). Last is the calculation of the branching fractions

from the resulting number of signal events and an estimate of the efficiency of the selection

criteria.

3.1 Candidate identification

Functionally, the current analysis has employed a two-stage process to identify can-

didate signal decays. First, the events are coarsely filtered to remove quark jet or continuum

backgrounds (see Chapter 5) and to ensure that the requisite final state particles were detected.

This first stage filter is computationally very fast and efficiently reduces the data to a manage-

able volume. The second stage is a reconstruction of the complete signal B decay chain from
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detected final state particles.

3.1.1 Reconstruction

Reconstruction is experimental particle physics jargon by which we mean the process

of identifying hypotheses for a series of particle interactions linking the detected evidence of a

final state with the prepared initial state.

For example, part of this analysis searches for evidence of the decay B+ → ρ+γ. The ρ+

decays almost immediately and is too short-lived to be detected directly in the BABAR detector.

ρ+ decays almost uniformly to π+π0. The π0 will also decay before it is detected into a pair of

photons (B(π0 → γγ) = 98.798± 0.032) [17].

Consider a BABAR event with (at least) three detected neutral clusters that are con-

sistent with photon interactions with the calorimeter and one or more charged track that is

consistent with the passage of a π+ through the tracking volume. Reconstruction of the signal

decay in this event means determining whether the decay chainB+ → ρ+γ, ρ+ → π+π0, π0 → γγ

is a valid hypothesis leading to the detected final state. This analysis uses a rather literal ‘con-

struction’ technique common in BABAR analyses.

First the photons are examined pairwise to find a couple consistent with a π0 decay.

The resulting π0 candidate, provided one is found, is paired with a charged π+ candidate for

consideration in the ρ+ → π+π0 hypothesis. A valid ρ+ candidate is then combined with a

γ candidates to test the hypothesis B+ → ρ+γ. A set of detected final state particles with a

decay hypothesis with which it is found consistent is termed a reconstructed candidate, e.g. a

reconstructed B.

This process of reconstruction can lead to a combinatoric explosion of valid candidates

unless the hypothesis criteria are very specific. Even when the hypotheses are very narrowly

defined, random combinations of final state candidates will still appear valid. This leads to
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Fraction of

Final state B → V γ

B0 → K∗0γ K∗0 → K+π− γBK
+π− 0.667

K∗0 → K0
S(π+π−)π0(γγ) γB(π+π−)K0

S
(γγ)π0 0.114

B+ → K∗+γ K∗+ → K+π0(γγ) γBK
+(γγ)π0 0.333

K∗+ → K0
S(π+π−)π+ γB(π+π−)K0

S
π+ 0.229

B+ → ρ+γ ρ+ → π+π0(γγ) γBπ
+(γγ)π0 1.000

B0 → ρ0γ ρ0 → π+π− γBπ
+π− 1.000

B0 → ωγ ω → π+π−π0(γγ) γBπ
+π−(γγ)π0 0.891

Table 3.1: Exclusive decay modes and final states used in published measurements. Conjugate
modes are implied.

combinatoric backgrounds. Further, each event may have several reconstructed B candidates

passing the reconstruction criteria, necessitating a strategy to select a ‘best’ candidate in an

event.

3.1.2 Final states

The K∗, ρ and ω mesons are too short-lived to be directly detected in BABAR. Instead,

they are reconstructed from a set of decay hypotheses as described in Chapter 3.1.1.

Table 3.1 lists the decay hypotheses measured for publication.

3.2 Optimization of selection criteria

Of course, the best set of selection criteria for B candidate reconstruction does not

spring fully formed from anyone’s head. Optimization is usually an iterated process. The key

is finding physics quantities with clearly different distributions for true signal decays and for

backgrounds that provide information not already present in the existing selection criteria.

The analyses described in this report were carried out ‘blind’. This means that the

measurement procedures were completely determined–all selection criteria, cross-checks, and
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statistical methods–before they were applied to recorded BABAR data. In lieu of true data,

the analyses were developed using data from BABAR’s detailed GEANT4-based Monte Carlo

simulation.

The BABAR computing group produces this detailed Monte Carlo data in large batches

or series labeled by a Simulation Production (SP) serial number. The B → K∗γ analyses were

developed using the SP-4 series of BABAR Monte Carlo, which represents a luminosity-weighted

sample consistent with the detector configuration in collecting the actual Run I + Run II data.

The B → ργ analyses were developed with SP-6 series Monte Carlo data, which gives a sample

that is luminosity-weighted to the Run I-IV detector conditions. Table 3.2 lists the Monte Carlo

samples used for these analyses.

Physics quantities that show clear differences in their distributions for signal decays

and background may be used either directly as selection variables in a cut or as a domain

variable in a fit, or included in a multivariate combination–a Fisher discriminant (linear com-

bination) or neural network (non-linear combination)–to construct a composite variable with

more discrimination power than any of its components. A cut is usually applied when there is a

clear separation between the signal and background distributions, or when either the signal or

background is confined to a relatively narrow region in the domain of the variable. Multivariate

techniques are applied when there are clear differences in distribution but no clear separation

or confinement that would make a cut an efficient selector, or to analyze a set of correlated

variables.

When applying a set of cuts ( ~C) to a set of variables (~x), an optimized placement for

these cuts is sought by maximizing the significance score function f(S,B) on Monte Carlo data:

f(S,B) =
S(~x; ~C(~x))

√

S(~x; ~C(~x)) +B(~x; ~C(~x))

,

where S(~x; ~C(~x)) and B(~x; ~C(~x)) are the numbers of signal and background candidates expected
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in the measurement luminosity given the cuts ~C(~x). S and B are calculated from the efficiency

(NS(B),passed/NS(B),tested) of the cuts on Monte Carlo events, and from estimates of the signal

and background branching fractions. Assuming a branching fraction for the signal during cut

optimization should not significantly bias the final measurement of the true branching fraction.

At worst, it should lead to sub-optimal selection criteria and a smaller signal significance for the

final measurement than might have been obtained.

Complete details of the cuts and multivariate techniques used in the present analyses

can be found in Chapters 5 and 7.

3.3 Definition of signal

After hypothetical decay candidates have been reconstructed and selection criteria

optimized and applied to refine the hypothesis and reduce the number of background events,

the next step in the analysis is to measure how many of the surviving B candidates are truly

signal decays and how many are misreconstructed background events. Two strategies have

commonly been applied to this task: a cut-and-count method and a likelihood fit.

The cut-and-count strategy is the simpler of the two, but has recently been uniformly

replaced by a likelihood fit for BABAR exclusive radiative penguin analyses. In this strategy,

only cuts are used to eliminate backgrounds. The candidate hypotheses are refined by paring

away segments of variable distributions to optimize the significance score on Monte Carlo data.

When the cuts are applied to actual data, the number of surviving background candidates is es-

timated either from Monte Carlo projections or, more commonly, extrapolations from sidebands

or control samples in data. This estimated background is subtracted from the total number of

passing candidates giving a signal yield, which, in turn, is used with an estimate of the total

number of B events in the observed data and the efficiency of selection criteria determiined with
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signal Monte Carlo events to provide an estimate of the branching fraction.

In the likelihood fit method, one or more variables (~x) are reserved for use in a fit

rather than cut. A fit to the distribution of ~x can directly estimate simultaneously the number

of signal candidates and the number of candidates in several classes of background. There is

no need for the post-hoc background subtraction of the cut-and-count method. The additional

uncertainty in the signal measurement resulting from a background subtraction is almost entirely

eliminated. For the signal and each class of background, parameterized probability density

functions (PDFs) Pclass(~x; ~αclass) are constructed from their Monte Carlo distributions in ~x

(~αclass are free parameters determining the shape of Pclass). These PDFs are used to construct

a likelihood function over the Ncand candidates surviving selection:

L(~n, ~α) = exp

(

−
Nclass
∑

i=1

ni

)

·





Ncand
∏

j=1

(

Nclass
∑

i=1

niPi(~xj ; ~αi)

)



 , (3.1)

where ni is the estimated yield in each class. The Ncand data set is fit by maximizing the

likelihood score over (~n, ~α), giving estimated yields and errors on those yields for each signal

and background class.

The key to a success with a likelihood fit is choosing an appropriate set of discriminating

variables ~x. Experience in exclusive radiative penguin analyses has yielded excellent results with

the beam-energy-substituted mass:

mES ≡
√

E∗2
beam − p∗2B ,

where E∗
beam is the center-of-mass (CM) beam energy and p∗B is the CM momentum of the B

candidate. All quantities calculated in the CM frame are denoted with an asterisk (∗). In BABAR

data, E∗
beam is known with a much better precision than E∗

γ , the CM energy of the photon from

B → K∗γ and B → ργ. The narrow distribution of mES for true signal events make it an

excellent discriminator. Figure 3.1 shows the distribution of mES for B0 → K∗0γ.
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Figure 3.1: Distributions of the fit variablesmES and ∆E∗ for signalB0 → K∗0γ(K∗0 → K+π−)
and background components for fully simulated BABAR Monte Carlo. Black lines denote signal
distributions, red lines continuum background, green line BB backgrounds, and blue lines the
sum of the 3 components. Parameters values in plots represent a trial maximum likelihood fit
to the Monte Carlo data.

The PDFs for both the B → ργ and the B → K∗γ analyses presented in this report

rely on mES . The B → K∗γ analysis uses a slightly modified version denoted the beam-

constrained energy-substituted mass, m′
ES ≡

√

E∗2
beam − p′∗2B , where the B momentum p′∗B is

modified by scaling the photon momentum to make E ′∗
γ + E∗

K∗ − E∗
beam = 0. The value of

m′
ES is largely independent of the calorimetric energy measurement of the photon and reduces

the asymmetry in the signal distribution systematic of energy leakage in the calorimeter. In

addition to m′
ES, the B → K∗γ analysis uses ∆E∗ ≡ E∗

B −E∗
beam as a fit variable. The B → ργ

and B0 → ωγ analyses are based on a four-dimensional likelihood fit incorporating mES , ∆E∗,

a neural network output variable for continuum background discrimination (Chapter 5), and a

Fisher discriminant variable for discrimination from similar B decay modes (Chapter 7).

3.4 Backgrounds

This is a short introduction to the background processes leading to false decay candi-

dates. More complete discussions of the backgrounds and their suppression appear in Chapters 5
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and 7.

The primary signature of photonic radiative penguin decays is the high energy photon

daughter of the of B mesons. Figure 3.2 shows the expected observed distribution of the CMS

energy of the photon E∗
γ for B → K∗γ decays as modeled in BABAR Monte Carlo. The primary

backgrounds for the analyses are then those that can produce or fake photons in the energy

range [1.5, 3.5]GeV.

With that, the dominant sources of high energy photons are non-resonant e+e− → qq

(q ∈ u, d, s, c) ‘continuum’ processes (Chapter 5). Continuum interactions produce high energy

photons predominantly through initial state radiation (ISR) or through π0 and η decays. In

ISR, the photon is emitted by either the e− or e+ prior to the e+e− → qq interaction. A

π0, η → γγ decay in one of the quark jets may proceed asymmetrically in the CM frame with

one of the daughter photons carrying most of the energy. In both cases, the qq system produces

jets rich in final state particles from which a K∗, ρ, or ω candidate might be reconstructed,

either because the jet really contained such a meson or simply by a combinatoric coincidence.

This jet-like character is also the best discriminator to use against this class of background,

and suppression is based largely on event shape variables. The combinatoric nature of these

background candidates also gives them flat distributions in the fit variables mES and ∆E∗

allowing additional discrimination from signal candidates. Backgrounds from π0 and η decays

can be further suppressed by eliminating high energy photon candidates that, when combined

with another photon candidate, are consistent with a π0 or η daughter. This strategy fails

when the secondary photon is beneath the detection threshold or when it falls outside of the

calorimeter acceptance.

Though far less numerous than continuum background events, background events from

BB decays pose a more significant complication to the analysis. Decay modes that are similar

enough to signal decays to pass the selection criteria in significant numbers may also have
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distributions that peak in mES and ∆E∗.

Monte Carlo studies indicate that non-resonant b→ sγ penguin transitions supply the

dominant peaking background in B → K∗γ analyses, and are also a significant background for

B → ργ. These transitions manifest as B → Xsγ decays, where the Xs is any non-K∗ system

of unit strangeness. Final states of the Xs system that differ from the signal final states of

Table 3.1 (p. 39) by one or a small number of low energy particles easily mimic signal decays

with a peaking structure in mES that overlaps the signal distribution. Because of the missing

mass in the reconstructed B this class background peaks at a lower value of ∆E∗ than the

signal. The B → Xsγ backgrounds are controlled with relatively strict selection criteria for the

reconstructed intermediate K∗, ρ, or ω. Yet even after strict cuts, enough of these background

candidates remain that they must be accounted in the final yield calculation. Neither the

overall b → sγ branching fraction, nor the fractional hadronization of the Xs system have yet

been well measured. This imparts a relatively large systematic uncertainty to the signal yield

if an estimated background level is subtracted. Chapters 7 and 9 will demonstrate that the fit

variable distributions of B → Xsγ backgrounds differ from the signal distributions enough to

allow independent estimation of their yield in the likelihood fit.

The B → K∗γ decays themselves form a dangerous peaking background for the B → ργ

analyses. The kinematics for the decays are very similar with final states differing only by a

substitution of a pion for a kaon. The BABAR charged particle identification (PID) group has

developed tools optimized to discriminate between charged kaons and pions. These tools will

misidentify a few percent of the charged kaons as a pions, with the rate of misidentification highly

dependent on the particle’s momentum. Considering that the branching fraction for B → K∗γ

is expected to be about forty times that of B → ργ, even a few percent PID inefficiency results

in a significant background. The misassignment of a pion mass to a kaon in these cases results

in mES and ∆E∗ peaking structure different enough to allow independent yield estimation in
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Figure 3.2: Distribution of E∗
γ in B → K∗γ Monte Carlo.

the likelihood fit (Chapters 7 and 9).

Decays of the form B → ρπ0 and B → ρη comprise a final important class of back-

ground in B → ργ analyses. As in continuum processes, the danger lay in a daughter photon

carrying most of the energy of the π0 or η in the CM frame. The B → ρπ0(η) branching fractions

are similar to the expected B → ργ branching fractions making this a potentially significant

class of background. The missing π0/η daughter photon in the reconstruction of the B candidate

leads to a different peaking structure in ∆E∗, which can be exploited to independently measure

this class of background yield in the likelihood fit (Chapters 7 and 9).

3.5 Data sets and involvement

The work detailed in this report was performed by the author in direct collaboration

with several other BABAR physicists (see author lists of [28] and [29]).

Complete documentation of the measurements of the B → K∗γ branching fractions

and associated asymmetries appears in [28]. These measurements have been published ([1]) and

are based on an estimated 88.2×106±(1.1%) BB decays, equivalent to an integrated luminosity
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Mode
Amount
(events)

Integrated
luminosity
(fb−1)

Assumed
branching
ratio (10−5)

B0 → K∗0γ, K∗0 → K+π− + c.c. 72, 000 2, 571.4 4.0± 0.4

B0 → K∗0γ, K∗0 → K0
sπ

0 + c.c. 16, 000 3, 341.7 4.0± 0.4

B+ → K∗+γ, K∗+ → K+π0 + c.c. 18, 000 1, 285.7 4.0± 0.4

B+ → K∗+γ, K∗+ → K0
sπ

+ + c.c. 16, 000 1, 663.5 4.0± 0.4

e+e− → cc̄ 56, 817, 800 42.1

e+e− → uū, dd̄, ss̄ 83, 392, 000 39.9

e+e− → τ+τ− 42, 958, 300 45.7

B0B0 generic 155, 287, 100 295.8

B+B− generic 150, 426, 700 286.5

B0 → K∗0γ generic + c.c. 108, 000 2571.4 4.0± 0.4

B+ → K∗+γ generic + c.c. 114, 000 2714.3 4.0± 0.4

B0 → Xsuγ + c.c. (mb = 4.80 GeV)1) 106, 000 280.4 36 ± 3

B0 → Xsuγ + c.c. (mb = 4.65 GeV) 72, 000 190.5 36 ± 3

B0 → Xsuγ + c.c. (mb = 4.75 GeV) 18, 000 47.6 36 ± 3

B0 → Xsuγ + c.c. (mb = 4.95 GeV) 76, 000 201.1 36 ± 3

B+ → Xsdγ + c.c. (mb = 4.80 GeV)1) 110, 000 291.0 36 ± 3

B+ → Xsdγ + c.c. (mb = 4.65 GeV) 78, 000 206.3 36 ± 3

B+ → Xsdγ + c.c. (mb = 4.75 GeV) 18, 000 47.6 36 ± 3

B+ → Xsdγ + c.c. (mb = 4.95 GeV) 76, 000 201.1 36 ± 3

Off–Peak data 117, 041, 128 9.49

On–Peak data 1, 093, 418, 668 81.9

Table 3.2: Monte Carlo samples used in this analysis with total amounts used for B → K∗γ
analyses (Second column: Total numbers; Third column: Corresponding integrated luminosity;
Fourth column: Assumed production cross-section at the Υ (4S) resonance. [23]; Fifth column:
Assumed branching ratios for the decaying B meson). 1)Standard samples.
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Description Events Luminosity( fb−1) Comments

B0
→ ρ0γ 118,000 224, 762 B = 0.5 × 10−6

B+
→ ρ+γ 67,000 63, 810 B = 1.0 × 10−6

B0
→ ωγ 67,000 127, 619 B = 0.5 × 10−6

B0
→ K∗0γ 130,000 3, 158 B = 39.2 × 10−6

B+
→ K∗+γ 156,000 3, 839 B = 38.7 × 10−6

B+
→ ρ+π0 220,000 19, 222 B = 10.9 × 10−6

B0
→ ρ0π0 215,000 102, 381 B = 2.00 × 10−6

generic B0B0 75,180,000 143.20 σ = 1.05 nb

generic B+B− 82,880,000 157.86 σ = 1.05 nb

e+e− → uu, dd, ss 80,100,000 38.33 σ = 2.09 nb

e+e− → cc 54,750,000 42.12 σ = 1.30 nb

e+e− → τ+τ− 13,626,000 14.50 σ = 0.94 nb

off-peak n/a 11.59 n/a

Table 3.3: Release-12 series SP5 Monte Carlo and off-peak data used in the B → ργ analysis.

of approximately 81.9 fb−1 recorded at BABARThe present author had primary responsibility

for the measurement of the branching fraction B(B0 → K∗0γ,K∗0 → K+π−).

Complete documentation of the measurements of the B → ργ and B0 → ωγ branching

fractions and associated asymmetries appears in [29]. These measurements have been published

([2]) and are based on an estimated 211× 106 ± (1.1%) BB decays, equivalent to an integrated

luminosity of approximately 191 fb−1 recorded at BABAR.

The remainder of this thesis will cover the areas of the analyses with which the author

was involved. Coverage of the B → K∗γ analysis will be restricted to the B0 → K∗0γ,K∗0 →

K+π− decay mode until Chapter 11, where the measurements from the various individual modes

are combined into composite branching fraction and asymmetry measurements. The B → ργ

analyses will be fully covered.
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Chapter 4

Event reconstruction

This chapter covers in more detail the initial process of candidate reconstruction for the

four exclusive decay modes: B0 → K∗0γ (K∗0 → K+π−), B0 → ρ0γ (ρ0 → π+π−), B+ → ρ+γ

(ρ+ → π+π0), and B0 → ωγ (ω → π+π−π0). As described in 3.1, this procedure first involves

a coarse efficient filtering (detailed in Subsection 4.1) followed by a step-by-step construction of

the decay hypothesis from detected final state candidates (covered in the rest of the chapter).

Subsequent chapters (Chapters 5 and 7) will further refine the selection criteria to suppress

specific remaining backgrounds.

4.1 BtoXGamma selection criteria

The calculations and combinatorics involved in the reconstruction of signal candi-

dates and background suppression are very compute-intensive. With a data set of 1.457 billion

recorded events (and still counting), it is imperative to discard as many uninteresting events as

possible prior to reconstruction. Physicists at BABAR have developed a set of selection criteria to

very rapidly eliminate a majority of continuum events and ensure the presence of the necessary
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final state particles for radiative penguin analyses. These selection criteria are referred to by

BABAR physicists and this thesis as the ‘BtoXGamma skim’.

The BtoXGamma skim consists of three simple criteria:

• 1.5GeV < E∗
γ,max < 3.5GeV

E∗
γ,max is the largest CM energy of any neutral calorimeter energy deposit or ‘bump’

(CalorNeutral candidate in BABAR reconstruction jargon). A neutral bump is one that

not been matched with the trajectory of a detected charged track. The reconstruction of

bumps in the EMC and their association with charged tracks is described in [22]. The 3-

momentum of each neutral bump is estimated in the lab frame from its angle in the detector

coordinate system and its measured energy, assuming a photon mass. The estimated 4-

momentum is then transformed into the known interaction CM frame and the largest

resultant energy tagged as E∗
γ,max.

As emphasized in 3.4, the primary signature of photonic radiative penguin decays is the

high energy photon daughter of the B mesons. For the two-body exclusive B decays of

the present analysis, this photon is almost monoenergetic with an energy approximately

half of the B rest mass (mB = 5.279GeV) in the B rest frame. The B rest frame is almost

coincident with the CM frame, hence this criterion requires the existence of a photon

candidate consistent with a penguin primary photon in the event.

• NGTL ≥ 2

NGTL is the number of charged tracks meeting the ‘Good Tracks Loose’ criteria established

by BABAR physicists to identify charged tracks with a high probability of representing the

path of a charged product of the e−e+ interaction (rather than that of an environmental

charged particle or a result of detector noise). The Good Tracks Loose criteria are described

in Chapter 4.3.1.
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All but two of the final states listed in Table 3.1 involve two charged particles. Even

for the B+ → K∗+γ (K∗+ → K+π0) and B+ → ρ+γ (ρ+ → π+π0) modes, at least one

more charged particle is expected from the decay of the non-signal or ‘tag side’ B∓. This

criterion enforces the minimum charged content required for reconstruction of a signal

candidate.

• R2 < 0.9

R2 is the ratio of the second to the zeroth Fox-Wolfram (FW) moment calculated in the

CM frame of the charged content of the event. The FW moments are rotationally invariant

moments of angular energy distribution described in [30]. The momentum for each charged

track in an event is transformed into the CM frame with the assumption that it has the

mass of a pion. These momenta are then used to calculate the Fox-Wolfram moments of

the event. The normalized second FW moment is a measure of the ‘jettiness’ of an event.

For spherically symmetric distributions of momentum, it has a value of 0. For axial events,

it has a value close to 1.

This is the first of the event shape variables used to suppress continuum backgrounds

by exploiting their jet-like topology. More are discussed in Chapter 5. This R2 cut also

significantly reduces the number of radiative Bhabha scattering events. B mesons from

the decay of an Υ (4S) are produced almost at rest in the Υ (4S) rest frame (BABAR CM

frame). Since the decay axes of the two B mesons are uncorrelated, we expect signal

decays to have a spherically symmetric shape.

4.2 B daughter photon selection

Care is taken to guaranty the quality and verity of the signature photon. The selection

of photon candidates for reconstruction begins with the set of CalorNeutral candidates in the
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event with a CM energy in the range [1.5, 3.5]GeV (see Chapter 4.1). To these basic requirements

additional criteria of two types are applied to photon candidates: criteria related to the quality

and completeness of the detector’s measurements, and criteria eliminating photons from π0 and

η decays.

4.2.1 Measurement quality

An enumeration of criteria:

• −0.74 < cos θγ < 0.93

The EMC provides full azimuthal coverage and a polar coverage of about

cos θγ ∈ [−0.774, 0.962] ([22]) in the lab frame, taking the interaction point (IP) as the ori-

gin and the beam axis as the polar axis. The B daughter photon candidates are restricted

to a tighter polar region for two resons. First, to ensure that a charged particle making

an energy deposit at the bump location would need to pass through the tracking volume

of the detector. This eliminates photon candidates faked by untracked charged particles.

Second, to ensure that the photon showers are completely contained within the EMC.

Interactions near the edge of the detector can produce showers that extend beyond the

fiducial calorimetric volume. This results in an underestimation of the particle’s energy.

• Ncrystal > 4

Ncrystal is the number of calorimeter crystals contributing to the cluster containing the

photon candidate bump (see [22] for a description of clusters and bumps). A bump created

by a noisy electronic channel will generally contain just one or a small number of channels

while a true photon bump will contain many more.

• No bad crystals/channels
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Photon candidates carry a status flag to indicate certain types of electronic errors that

can affect the measured energy ([31]). Candidates are flagged ‘bad’ if any of the crystals

contained in the bump results from a noisy or dead channel, or if the electronic event

readout was somehow incomplete.

• 25 cm bump isolation

Requiring that the high energy photon is well isolated from any other calorimeter bump

simplifies the calorimeter systematic error and eliminates several classes of background.

Nearly adjacent or overlapping EMC showers may simultaneously deposit energy in one or

more of the same channels–frequently called energy sharing. Energy sharing systematically

degrades the measured energy and position resolution of a calorimeter bump. Isolating

the bump avoids this degradation.

Isolation also eliminates bumps that are indirect products of a high energy hadron. High

energy π0 decays form a key class of such events. The bumps corresponding to the photon

daughters of high energy π0s are frequently close together as they are effectively collimated

by the π0 boost.

The position centroid of the B daughter photon candidate’s EMC bump is required to be

at least 25 cm from the the centroid of the EMC bump of every other CalorNeutral can-

didate and from that of every charged track (ChargedTracks in BABAR jargon) candidate

associated with a calorimeter bump.

4.2.2 π0 and η suppression

To suppress photons from π0 and η decays:

• Lateral shower profile: second moment

53



Typically the EMC shower from a photon is well collimated and cylindrically symmetric

with respect to the photon direction. The photon daughters of highly energetic π0 may

hit the calorimeter so near each other that the clustering algorithm cannot resolve the

interactions into two bumps. However, in this case we expect the EMC shower of the

merged bump to be elongated along the decay plane of the π0 rather than cylindrically

symmetric.

The second moment (L2) of the shower shape is a useful discriminating variable:

L2 =
∑

crystals i

Ei[(θi − θcentroid)
2 + (φi − φcentroid)2]
∑

iEi
,

where (θcentroid, φcentroid) are the angular coordinates of the bump’s centroid in the labo-

ratory system and (θi, φi) are the angular coordinates of center of the ith crystal in the

bump. Well collimated cylindrically symmetric bumps have small values of L2.

To reduce backgrounds from ‘merged π0s’ the second moment is required to satisfy L2 <

0.002.

• Explicit π0/η veto

High energy photon candidates (γB) consistent with the final state of a π0 → γγ or a

η → γγ decay are explicitly excluded from signal reconstruction. The estimated laboratory

4-momentum of γB is added in turn to that of each of a set of CalorNeutral candidates,

{γi}. If the invariant mass (mγBγi
) of any one of the resulting combinations is consistent

with that of a π0 or a η meson, then γB is vetoed from signal reconstruction.

The set of CalorNeutral candidates {γi} consists of the set of all CalorNeutral candi-

dates excepting γB that have a lab energy Eγi
greater than a threshold value Eγ,min:

{γi|γi 6= γB ∧Eγi
> Eγ,min}. Application of this threshold reduces the frequency with

which valid γB are vetoed by spurious combinations with calorimeter backgrounds.
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The mass windows and thresholdEγ,min for the vetoes are set by an optimization procedure

as described in Chapter 3.2, and differ between the B → K∗γ and B → ργ analyses.

The optimization for B0 → K∗0γ,K∗0 → K+π− appears in [32] and results in vetoing γB

if for any γi:

– (π0 veto) Eγi
> 0.050GeV and mγBγi

∈ (0.115, 0.155)GeV

– (η veto) Eγi
> 0.250GeV and mγBγi

∈ (0.507, 0.587)GeV

The optimization for B → ργ and B0 → ωγ was performed for [29] and results in vetoing

γB if for any γi:

– (π0 veto) Eγi
> 0.030GeV and mγBγi

∈ [0.105, 0.155]GeV

– (η veto) Eγi
> 0.250GeV and mγBγi

∈ [0.500, 0.590]GeV

The wider veto windows for the B → ργ and analyses are in part due to the presence of

significant B → ρπ0 and B → ρη backgrounds (see Chapter 7).

4.3 Charged particle selection

Each of the final states reconstructed for this analysis includes at least one charged

particle. Physicists at BABAR have extensively studied the problems of charged particle track-

ing, identification, and momentum estimation in the BABAR data. This analysis relies on the

tools they have developed for identifying good tracks with well estimated momenta, discrimi-

nating between charged particles of various types, and estimating the systematic uncertainties

of calculated values and efficiencies.

The basics of tracking and of the formation of charged track candidates is described

in [22]. In a BABAR event, the broadest class of tracks identified by the tracking system is termed
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the list of ‘ChargedTracks’ candidates. This analysis requires that ChargedTracks candidates

pass more restrictive quality and identification criteria described below prior to their use in

signal reconstruction.

4.3.1 GoodTracksLoose criteria

The BABAR Charged Particle Tracking Group has developed a hierarchy of quality

criteria sets to assure that the tracks are well defined, their momenta well measured, and they

likely originate from a BABAR physics event (e−e+ collision) rather than from a background

source. These criteria sets are dubbed, in increasing stringency, GoodTracksVeryLoose, Good-

TracksLoose, and GoodTracksTight. Each ChargedTracks candidate has a helical fit to the

detector hits, which provides many of the values used in the quality classification, such as the

momentum estimate, the χ2 score of the fit, and the distance of closest approach (DOCA) to

the interaction point.

Of the levels of criteria, GoodTracksLoose represents the best compromise of efficiency

and purity for the analyses described in this thesis. Each candidate used in signal reconstruction

is required to pass the GoodTracksLoose criteria.

A summary of the GoodTracksLoose criteria [33]:

• successful helical fit: Prob(ξ2) > 0

• minimum transverse momentum: pT > 0.1GeV

• maximum total momentum: |~p| < 10GeV

• minimum number of DCH hits ([22]): NDCH ≥ 12

• maximum DOCA in XY plane: doca(xy) < 1.5cm

• range of DOCA along Z axis: −10cm < doca(z) < 10cm

56



4.3.2 Particle identification

The BABAR Particle Identification (PID) Group has developed many tools for classify-

ing charged tracks by the charged particle type most likely to have generated the track. This

analysis relies on several of the tools, usually called PID hadron selectors, to discriminate tracks

from charged pions and those from charged kaons. A general description of these tools follows.

Three detector subsytems contribute information directly to the hadron PID selector

algorithms: SVT, DCH, and DIRC. The key values from the SVT and DCH are the measure-

ments of the energy deposited by the charged particle in the detector elements dE/dx. Two key

measurements are provided by the DIRC: the measured Cherenkov angle θC and the number of

detected Cherenkov photons Nphot . Nphot is dependent on dE/dx in the DIRC. Each of these

values are related to the speed β of the charged track, which can be used with the measured

momentum of the track to estimate the candidate’s mass. However, a direct estimation of a

candidate’s mass, or even β, is not the optimal use of the data.

The PID Group has developed two principal methods of using the detector measure-

ments to classify hadrons: calculation of probabilistic likelihoods for the various particle hy-

potheses, and combination in a neural network. These two methods have led to two classes

of hadron selectors termed in BABAR Likelihood (LH) selectors and SMS or Micro selectors

respectively.

The Likelihood selectors use the measured charged track data to calculate the proba-

bilistic likelihood that the track matches each of five charged particle hypotheses: electron (e±),

muon (µ±), pion (π±), kaon (k±), and proton (p±). The selectors then apply to these likelihoods

and their ratios to produce a binary classification. For example, the PidKaonLHSelector will

analyze a candidate’s likelihoods and tag it either as a kaon or as not a kaon.

The SMS selectors combine a candidate’s data in a single-output neural network trained
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to recognize a specific particle type. Information about neural networks can be found in Chap-

ter 5. The output of the neural network is a single floating point value between 0.0, indicating

a poor match with the particle hypothesis, and 1.0, indicating good agreement with the particle

hypothesis. A cut on this output value provides the binary classification of the selector. For ex-

ample, the PidKaonSMSSelector will analyze the candidate with its neural network, and deliver

a classification of ‘kaon’ or ‘not a kaon’ based on the output value.

Each of these selectors has a hierarchy of criteria, essentially levels of agreement with

the given particle hypothesis. Usually, at least four levels of agreement are defined for each

selector: (in increasing level of agreement with particle hypothesis) VeryLoose, Loose, Tight,

and VeryTight. So in BABAR parlance, a KLHTight candidate is a charged track candidate that

satisfies the Tight criteria of the PidKaonLHSelector selector.

It is worthwhile to reiterate that the selectors only deliver binary decisions–does this

candidate look like a given particle type or doesn’t it. The selectors for the various hypotheses

are not mutually exclusive. It is quite possible for a candidate to satisfy both the KLHTight

and piLHTight criteria.

With that short description of the BABAR PID tools out of the way, on to their use in

the present analyses.

4.3.3 Kaon selection (B → K∗γ)

Only charged candidates satisfying the Tight criterion of the PidKaonSMSSelector

selector are considered as the final state K± in the reconstruction of B0 → K∗0γ,K∗0 → K+π−.

This is a selection criteria inherited from the previous iteration of the measurement ([13]),

where it was found to maximize signal significance among the selectors considered, and was not

reconsidered for this analysis.

58



4.3.4 pion selection (B → K∗γ)

The final state π± in the reconstruction of B0 → K∗0γ,K∗0 → K+π− is taken from

the set of charged candidates that fail the Tight criteria of the PidKaonSMSSelector. This is

also a requirement inherited from [13], where it was found to maximize signal significance, and

was not reconsidered for this analysis.

4.3.5 pion selection (B → ργ)

Because B → K∗γ decays form a particularly dangerous class of background for B →

ργ and B0 → ωγ decays, much more care is applied to pion/kaon discrimination for these modes.

To determine the best selection criteria for the final state π± candidates in these modes,

several PID selectors at several level of criteria were considered in an optimization study. First

the basic reconstruction detailed throughout this Chapter 4, excepting any PID requirements

for the final state π±, was applied to BABAR Monte Carlo samples of simulated signal decays for

each mode and to a background of simulated B → K∗γ decays. Then each of the PID selection

criteria was applied to these samples, and for each signal mode the significance score S/
√
S +B

is calculated. In the calculation of S/
√
S +B, the signal and background MC B → K∗γ yields

are weighted to represent their expected relative abundances in real data.

The result for both the B+ → ρ+γ (ρ+ → π+π0) and B0 → ρ0γ (ρ0 → π+π−) data sets

the VeryTight criteria of the PidPionLHSelector as the optimal choice. However, the Likelihood

selectors do not make optimal use of the number of DIRC photons detected in the DIRC. This

is a known weakness of the Likelihood selectors. A brief addendum to the optimization study

indicates that the significance of the π± selection criteria can be further improved if a cut is

applied on the probabalistic consistency of the number of detected DIRC photons Nphot ,meas

with the number expected for the passage of a charged pion Nphot,exp(π). Nphot ,exp is assumed
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to be Poisson-distributed. The final set of PID requirements for the π± candidates used in

B → ργ reconstruction:

• satisfies the PidPionLHSelector VeryTight criteria and

• if the candidate momentum |~p| > 0.6GeV, the consistency C(Nphot ,meas ;Nphot,exp(π)) >

0.001

For the B0 → ωγ mode, the less stringent Tight criteria of the PidPionLHSelector is

found to be optimal. The addition of a DIRC photon consistency requirement degrades the

signal significance and is not applied for B0 → ωγ.

4.4 π0 reconstruction

Stepping away from the final state, consider next the reconstruction of π0 candidates

for the B+ → ρ+γ (ρ+ → π+π0) and B0 → ωγ (ω → π+π−π0) modes. The reconstruction of

π0 candidates is vital to many BABAR analyses. The BABAR Neutral Reconstruction Analysis

Working Group ([34]) has invested significant effort in studying this problem and this anal-

ysis uses their prescription for pi0DefaultMass candidates as the π0 candidates in the signal

reconstruction.

Reconstruction of pi0DefaultMass candidates begins with the set of GoodPhotonLoose

candidates. These are CalorNeutral (Chapter 4.2) candidates that satisfy the following addi-

tional criteria:

• Measured energy: Eγ > 0.030GeV

• Lateral moment: LAT < 0.8.

LAT is a shower shape variable similar to the second moment L2 described in 4.2.
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For every pair (γi, γj) of GoodPhotonLoose candidates, the 4-momentum of the hypo-

thetical π0 is estimated in each of two ways. First, by a direct addition of the estimated Good-

PhotonLoose candidate 4-momenta. If the resulting invariant mass mγγ ∈ [0.115, 0.150]GeV,

then pπ0 is recalculated from a fit constraining the invariant mass of the π0 to its PDG ([17])

value. This ‘mass constrained fit’ improves the resolution of the energy measurement Eπ0 . The

pi0DefaultMass selection criteria are finalized by requiring that this fit converge and that the

resulting Eπ0,fit > 0.200GeV. In summary:

• mγγ ∈ [0.115, 0.150]GeV

• convergence of mass constrained fit

• Eπ0,fit > 0.200GeV

For the B0 → ωγ mode, the pi0DefaultMass candidates are used in signal reconstruc-

tion without further qualification.

For the B+ → ρ+γ mode, two additional criteria are applied to the pi0DefaultMass

candidates:

• mass window: mγγ ∈ [0.117, 0.145]GeV

• photon opening angle: cos θγγ > 0.6

The θγγ (calculated in the lab frame) cut helps to reduce reconstructed candidate multi-

plicity by suppressing the low momentum π0s, which are frequently produced in B decays.

4.5 Intermediate meson selection

The next layer of reconstruction identifies candidates for the B-daughter (intermediate)

mesonic resonances: K∗0, ρ0, ρ±, and ω. The final state charged particle (K±, π±) candidates
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selected according to Chapter 4.3 and the π0 candidates from Chapter 4.4 are combined accord-

ing to the sought decay modes: K∗0(K+π−), ρ0(π+π−), ρ+(π+π0), and ω(π+π−π0). Each such

combination of candidates passing the previous selection criteria is considered and additional

requirements applied to the combination (reconstructed intermediate meson).

At this stage, the selection criteria for the intermediate meson are very simple. The 4-

momentum of the candidate meson is computed from a simple addition of the measured daughter

momenta. The resulting invariant mass is required to fall within a window consistent with the

PDG [17] values of the hypothetical meson. Then final states with at least two charged particles

(every one except ρ+ → π+π0) are ‘vertexed’ to determine the probability that the charged

candidates originated from the same point.

These selection criteria do not fully exploit the physics of the mesons’ decays. The

chapters describing background suppression, Chapters 5 and 7, include refinements to the meson

selection criteria reliant on the mesons’ decay physics.

4.5.1 mass windows

The invariant mass of the reconstructed 4-momentum of intermediate meson candidates

are required to fall within the intervals:

• K∗0: mKπ ∈ [0.8, 1.0]GeV

• ρ±/ρ0: mππ ∈ [0.55, 1.05]GeV

• ω: mπππ ∈ [0.752, 0.812]GeV

4.5.2 Vertexing

Vertexing is the estimation of an intersection point or common decay vertex for two

or more trajectories. The algorithms commonly employed in BABAR analyses for this task are
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described in [35].

This analysis applies the BABAR calculation routine VtxLeastChiVertexer described

in [35] to determine the likelihood that the two charged tracks in the reconstruction of K∗0, ρ0

and ω candidates originate from a common point. As its name suggests, the VtxLeastChiVer-

texer estimates a common origin for the tracks via a χ2 minimization. The probability of the

resulting χ2 is used as a measure of the consistency of the single-decay-origin hypothesis. The

requirements:

• K∗0: Prob(χ2) > 0.01

• ρ0: Prob(χ2) > 0.0001

• ω: Prob(χ2) > 0.0001.

These cuts require little more than the convergence of the vertex fit.

4.5.3 K0
S veto for ω candidates

Although this item contextually belongs in the discussion of B backgrounds (Chap-

ter 7), mechanically it more naturally fits here.

The decay chain B0 → K∗0γ, K∗0 → K0
sπ

0, K0
s → π+π− shares a final state with the

B0 → ωγ mode and represents for it a dangerous background. π+π− combinations consistent

with K0
s decays must be eliminated. The estimated position of the decay vertex of the ω

candidates has proven an excellent way to do this.

A K0
s produced with β ≈ 1 has a flight distance of ≈ 2.7cm, whereas an ω will decay

almost at its production point. To eliminate K0
s combinations, the ω vertex is required to

be < 0.3cm of the ‘primary vertex’ of the interaction. The primary vertex is the estimated

position of the primary e−e+ interaction for an event.
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4.6 B reconstruction and fit region

Combining the high energy photon candidates from Chapter 4.2 with the intermediate

meson candidates from Chapter 4.5 completes the reconstruction of the B decay hypothesis.

The two principal variables associated with the complete decay chain are mES and

∆E∗ described in Chapter 3.3. The subsequent steps of the analysis use two rectangular regions

in the mES : ∆E∗ plane:

• signal box

(mES ,∆E
∗) ∈ [5.27, 5.29]GeV× [−0.2, 0.1]GeV

The signal box represents a relatively tight cut on the signal peak in mES : ∆E∗. This

region is used in the optimization of a selection criteria as described in Chapter 3.2. The

goal of optimization is to enhance the prominence of the signal peak to improve the yield

estimates ultimately obtained from the likelihood fit.

• fit region

(mES ,∆E
∗) ∈ [5.20, 5.29]GeV× [−0.3, 0.3]GeV

The fit region represents a relatively wide window in mES : ∆E∗. This region becomes

the domain for the likelihood fit. It is deliberately extended well beyond the signal peak

(signal box) so that the shapes of the background distributions in these variables can be

better estimated.

4.7 Single B candidate selection

The reconstruction process may produce more than one unique B decay candidate in

an individual signal mode for a given event. The probability that each B produced by an Υ (4S)
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will decay in the signal channel is negligible. Multiple candidates almost always result from

combinatoric coincidences.

A single ‘best’ B candidate for each mode for each event is selected for use in the

likelihood fit, provided such a reconstructed candidate exists for that event and mode. This

selection is made after all of the other criteria, including the background suppression criteria

described in Chapters 5 and 7.

The strategy adopted by this analysis for best candidate selection: use the B candidate

with |∆E∗| closest to 0.
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Chapter 5

Background suppression variables

The basic reconstruction of Chapter 4 provides a rather minimal necessary set of cri-

teria for signal event. High background levels, particularly from continuum processes, remain

and must be suppressed by further refining the selection criteria. The variables used in this

suppression fall into three broad categories:

• Event shape variables that discriminate continuum events from B decays based on the

usual jet shape of e−e+ → qq events,

• B tagging variables that identify general signatures of B decays in the rest of the event

(ROE)–the set of charged tracks and neutral candidates that are not part of the signal

candidate,

• Physics variables of the signal decay with calculable and distinctive distributions.

Very few of these variables lend themselves to direct cuts. Although the signal and

background distributions may differ significantly, there is commonly too much overlap to effec-

tively suppress background while maintaining an acceptable signal level with a simple selection

range. Additionally, many of these variables may be highly correlated–especially the event shape
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variables. Cuts are optimal only for independent variables as changing a cut range for one vari-

able can significantly change the distribution of a correlated variable. With these considerations,

the current analysis combines these variables via multivariate techniques to optimally exploit

more subtle differences in distributions and correlations among the variables. For each mode, a

combination of variables in a neural network has been used to suppress continum backgrounds.

As introduced in Chapter 3.4, the dominant source of backgrounds are continuum

processes that produce high energy photons or particles, such as merged π0s, which can mimic

a high energy photon. Monte Carlo simulations of continuum events and previous analyses

of radiative penguin decays indicate that the dominant sources of continuum backgrounds are

events with asymmetrically decaying high energy π0s and initial state radiation (ISR) events

(Figure 5.1). The topologies of these two classes of background events is subtly different. Usually

the high energy π0 is part of one of the two back-to-back jets in the CM frame and the axial

nature of the event shape is apparent with a simple well-known transformation from the lab to

the CM frame. For ISR events, the high energy ISR photon carries away a significant fraction of

the energry from one of the leptons before their collision. Thus the center of momentum frame

for the e−e+ interaction is boosted relative to the experiment’s known initial state CM frame

(prior to the emission of the ISR photon). The resulting jets no longer appear to be back-to-back

in the experiment’s CM frame, but rather each jet has its axis bent away from the direction of

the ISR photon. The analysis must employ variables that discern both of these topologies.

5.1 Event shape variables

5.1.1 Thrust angle ΘT

Continuum events in which a high energy photon originates from a π0 or other particle

in one of the two jets naturally show a high degree of correlation between the photon direction
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Figure 5.1: Cartoons of continuum background processes.
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and the jet axis. For a signal event the two B mesons are created almost at rest in the CM

frame and should show almost no correlation between their decay axes. Hence the direction of

a true signal photon should be largely uncorrelated with the decay axis of the non-signal or ‘tag

side’ B meson.

The thrust angle ΘT is the angle between the direction of the B candidate daughter

photon and thrust axis of the ROE calculated in the BABAR CM frame. Each ChargedTracks

candidate (Chapter 4.3) that is not part of the reconstructed signal B candidate is boosted into

the CM frame with an assumed pion mass. Also, each CalorNeutral candidate (Chapter 4.1)

that isn’t part of the reconstructed B boosted into the CM frame with the assumption that it

has zero (photon) mass. The union of these two sets constitutes the ROE in the CM frame.

The thrust axis t̂ is defined as the unit vector that maximizes the thrust T :

T =

∑NROE

i=1 |~pi · t̂|
∑NROE

i=1 |~pi|

up to a two-fold ambiguity as T is equal for t̂ and −t̂.

Figure 5.2 shows that | cosΘT | peaks sharply 1.0 for continuum events while remaining

uniform (uncorrelated) for signal events. This variable has proven to be one of the most powerful

for discriminating between continuum and signal events.

5.1.2 R
′

2

As related in Chapter 4.1, the normalized second FW moment (R2, [30]) is an extremely

useful measure of the ‘jettiness’ of an event shape. This utility can be extended to aid in the

identification of ISR events by performing the calculations in the recoil frame of the high energy

B daughter photon candidate. This variable is represented by R
′

2: the normalized second FW

moment of the event (less the B daughter photon candidate) calculated in the recoil frame of

the B daughter photon candidate.
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Figure 5.2: Distributions of | cosΘT | for B0 → ρ0γ signal Monte Carlo, continuum Monte Carlo,
and off peak data.

The boost vector from the photon recoil frame into the laboratory frame ~βrecoil is

calculated by subtracting the estimated 4-momentum of the photon candidate pγ from the

prepared 4-momentum of the collision pCM : precoil = pCM − pγ , ~βrecoil = ~precoil/p
0
recoil . The

boost is applied to every ChargedTracks candidate in the event with the assumption that each

candidate has a pion mass. It is also applied to every CalorNeutral candidate except the photon

recoiled against with the assumption that each candidate has a zero (photon) mass. R
′

2 is then

FW formula applied to the combined set of boosted momenta.

Distributions of R
′

2 in BABAR MC for signal events and a generic sample of continuum

events appears in Figure 5.3.

5.1.3 Energy cones

The variables R2, R
′

2, and cosΘT are all good individual event shape indicators, but

none of them gives a full picture of the event topology. A more complete description of the

event shape requires a related ensemble of variables. One of the simplest schemes for such an

ensemble is a division of the 4π steradian solid angle into bins and a measurement of the total

energy leaving the interaction through each of those bins.
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2 for B0 → ρ0γ signal Monte Carlo, continuum Monte Carlo, and
off peak data.

The energy cones depicted in Figure 5.4 is just such a scheme. The cones are coaxial

about the direction of the high energy B daughter photon in the BABAR CM frame in opening

angle intervals of 10◦. The volumes between successive cones and within the smallest cones in

the forward (aligned with the photon) direction and backward (opposite to the photon) direction

make a set of 18 solid angle bins.

Just as in the calculation of cosΘT (Chapter 5.1.1), each ChargedTracks candidate

and CalorNeutral candidate in the ROE is boosted into the BABAR CM frame with a pion and

a photon mass hypothesis respectively. The energy in the ROE is then binned accordingly into

the 18 energy cones based on the candidates’ estimated momentum directions.

For non-ISR events, the B daughter photon direction should be highly correlated with

the thrust axis of the event, so an excess of energy in the few forward most and backward

most cones is expected. Even for ISR events a two jet signature is expected with excess energy

deposited in a small adjacent group of forward cones and a corresponding group of backward

cones. Distributions of the energy deposited in the cones for BABAR MC are shown in Figure 5.5.

The discriminating power of the energy cones exists in their correlations–the complete

picture of the event shape–rather than in the distributions of any or a small number of them.
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Figure 5.4: Diagrammatic definition of energy cones.

To be useful the energy cones can only be used in conjunction in a multivariate technique. The

B0 → K∗0γ,K∗0 → K+π− analysis uses all of the 18 energy cones as inputs to a neural network

for suppression of continuum backgrounds (Chapter 6).

5.1.4 L-moments

An expansion of the event shape in moments provides another set of variables giving a

complete picture of the event topology. The previously mentioned FW moments ([30]) are one

example of such moments. Of rising popularity in BABAR analyses are the L-moments defined

over a set of N candidates with momentum ~pj as:

Li =

∑N
j=1 |~pj | × | cos θj |i
∑N

j=1 |~pj |
,

where θj is the angle of ~pj with respect to an axis â: cos θj = (~pj · â)/|~pj |.

The L-moments are used to describe the ROE shape in the B → ργ and B0 → ωγ anal-

yses in lieu of the energy cones. As for the cosΘT and energy cone calculations, the Charged-
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Figure 5.5: Distributions of energy cones for B0 → K∗0γ signal Monte Carlo, continuum Monte
Carlo, and off-peak data.
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Tracks and CalorNeutral candidates in the ROE are boosted into the BABAR CM frame assuming

for them pion and photon mass hypotheses respectively. The L-moments of the ROE are then

calculated in the CM frame with respect to two axes: the direction of the high energy B daughter

photon candidate, and the thrust axis t̂∗ (Chapter 5.1.1) of the ROE.

A previous BABAR analysis [36] has shown, unsurprisingly, that the L-moments indeed

contain the same event shape information as the energy cones with respect to the same axis.

It was discovered in the B → ργ and B0 → ωγ analyses that a neural network with the four

L-moments L2(γB), L1(t̂
∗), L2(t̂

∗), and L3(t̂
∗) could be trained to a continuum-discriminating

power equivalent to a network based on the 18 energy cones. This dramatic simplification of the

neural network configuration led to the use of these L-moments rather than the energy cones

for the B → ργ and B0 → ωγ analyses.

5.2 B Tagging variables

If the signal B decay is extant in an event and has been properly reconstructed, then

the ROE should be the decay product of the other B meson produced by the Υ (4S) decay. A

strategy of identifying B decays by their general properties in the ROE is complementary to

identification of continuum events by their general properties. BABAR and the group working

on these analyses have developed several variables employed for this purpose. The net flavor

value NF was used in the B0 → K∗0γ, K∗0 → K+π− decay mode. The standard BABAR flavor

tagging variables were used in the B → ργ and B0 → ωγ analyses. Flavor tagging variables

are employed only for separating signal events from continuum background. The additional

information they provide on whether the ROE is more likely a B decay or a B decay is unused.
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Figure 5.6: The L-moment distributions for the B0 → ρ0γ signal MC, continuum MC, and
off-peak data.
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5.2.1 Net flavor

The net flavor variable NF analyzes the flavor content of the ROE in an attempt

to discover particle or antiparticle excesses indicative of a weak B decay. The strong and

electromagnetic interactions, which dominate the initial particle production in continuum events,

conserve flavor–no muon without a corresponding antimuon, no net strangeness, etc. Conversely,

large classes of B decays produce flavor excesses. Single leptons are produced in semi-leptonic

decays of B mesons and in similar decays of charmed daughters of the B mesons. Kaons are

also produced singly in flavor changing interactions in B decay chains.

Toward a classification of the ROE based on these generic ideas, the ChargedTracks

candidates in the ROE are subdivided into mutually exclusive sets of kaons, electrons, muons,

slow pions (a signature of D∗ decays), and unclassified remainder tracks. Each of these sets is

further divided by the charge of the track. The classification is hierarchical–a track is considered

for inclusion in a set only if it has failed the criteria for all of the prior sets in the following

order:

1. Kaons: pass SMSKaonTight selector

2. Electrons: pass ElectronMicroTight selector and momentum |~pCM | > 0.5GeV

3. Muons: pass MuonMicroTight selector and momentum |~pCM | > 1.0GeV

4. Slow pions: fail previous classifications and momentum |~pCM | < 0.250GeV and

| cosΘT,~p| > 0.8 and d0 < 0.5cm

5. Unclassified: fail all previous classifications

where pCM is the momentum of the track after being boosted into the event CM frame with an

assumed pion mass, cosΘT,~p is the angle between the thrust axis ~t (Chapter 5.1.1) and track
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momentum ~pCM in the CM frame, and d0 is the track’s distance of closest approach to the

primary vertex of the ROE.

In addition to these sets of charged tracks, we also count the number of K0
S candidates

in the ROE. The set of K0
S candidates is composed of unique pairs of oppositely charged ROE

ChargedTracks candidates that satisfy the following criteria:

• Vertexing: a successful decay vertex calculated Chapter 4.5.2

• Mass: mK0
S
∈ [0.480, 0.516]GeV

• Displacement: calculated K0
S vertex must be separated from the calculated signal meson

vertex (K∗0 → K+π−) by at least 1 mm: |~xK0
S
− ~xK∗0 | > 1.0mm

• Direction: the K0
S candidate must be headed away from the decay vertex of the signalK∗0.

The angle ΘDisp,K0
S

between the K0
S displacement vector ~xK0

S
− ~xK∗0 and its laboratory

momentum ~pK0
S

must be: cosΘDisp,K0
S
> 0.98

As it was implemented in the analysis, the inclusion of a ChargedTracks candidate in one of the

charged candidate classifications does note preclude its inclusion in a K0
S candidate. Nor are

ChargedTracks candidates prevented from inclusion in multiple K0
S candidates.

With these classifications, the net flavor value NF is calculated as:

NF = |NK+ −NK− | + |Ne+ −Ne− | + |Nµ+ −Nµ− | + |NSl.π+ −NSl.π− | +NK0
S

Figure 5.7 shows the distributions of NF for continuum and signal.

5.2.2 Standard BABAR B tagging variables

A complete description of the standard BABARB tagging variables can be found in [37].

The B tagging algorithm was developed for time-dependent CP -violation analyses to classify the
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Figure 5.7: The NF distribution for B0 → K∗0γ signal MC, continuum MC, and off-peak data.

tag side of the event or ROE into several mutually exclusive physics and B flavor categories. A

complete description of the algorithms is well beyond the scope of this thesis. A coarse summary

description follows.

In this analysis five of the standard B tagging variables have been employed. Distri-

butions of these variables appear in Figure 5.8.

5.2.2.1 P ∗
max

P ∗
max is the maximum CM momentum of the charged tagging candidates in the ROE.

The candidates considered are ChargedTracks candidates satisfying:

• docaxy < 0.1cm

• docaz < 4cm

• plab < 10GeV.

P ∗
max is more useful for tagging the flavor of a tag-side B than for discriminating against con-

tinuum events. However, when combined with other B tagging variables with multivariate

techniques, it does add to the overall background suppressing power.
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5.2.2.2 electron tag

The electron tag is the output of a neural network trained to recognize direct electrons

from a semileptonic decay of a B meson. The inputs to the neural network are three kinematic

variables (to be described later) associated with a primary electron candidate. Its output is a

floating point value [0.0, 1.0] with 1.0 representing an electron most like a primary electron from

a semi-leptonic decay. The neural network is applied to each of the charged candidates in the

ROE passing the ElectronMicroVeryTight criteria. The electron tag value is the neural network

output value that is most like a primary electron, multiplied by the sign of the charge of the

input electron candidate.

The inputs to the neural network follow:

• p∗: the CM momentum of the electron

• EW
90 : the energy in the hemisphere defined by the direction of the virtual W± in the

assumed semi-leptonic B decay as calculated in the Υ (4S) frame.

• cos θmiss : the cosine of the angle between the electron candidate’s momentum ~pe and the

missing momentum of the assumed tag side B meson ~pmiss .

5.2.2.3 muon tag

The muon tag is calculated in the same way as the electron tag. A neural network

trained to identify primary muons from semi-leptonic B decays is applied to each muon candidate

in the ROE. This neural network takes the same inputs and produces an output with the same

range and significance as that as that for the the electron tag. The list of muons is taken from

those ChargedCandidates passing the MuonMicroTight criteria in the ROE. The tag value is the

neural network output for the muon candidate most like a primary muon signed by the charge

of the muon candidate.

79



5.2.2.4 slow-pion tag

The slow-pion tag is the output of a neural network trained to recognize the slow pion

from a D∗ daughter of a B meson. Like the electron and muon tags, the neural network is

applied to each candidate in a set of SlowPion candidates and the best (most B-like) score is

used as the output of the tagger with the sign of the slow-pion charge. The inputs for the neural

network:

• p∗: the CM momentum of the pion

• | cos θthrust |: the cosine of the angle between the pion momentum and the ROE thrust axis

in the Υ (4S) rest frame.

• output value of PidKaonMicroSelector.

The list of SlowPion candidates in the ROE is composed of charged candidates that aren’t classi-

fied as leptons or kaons by the tagging algorithms and that have a CM momentum p∗ < 0.25GeV.

5.2.2.5 kaon slow-pion tag

The kaon slow-poin tag combines information from the kaon tag and the slow-pion tag

described above. The kaon tag is just the output of the PidKaonMicroSelector algorithm. The

goal of the kaon slow-poin tag is to identify correlated kaons and slow pions resulting from the

same B decay chain to improve tagging in these instances. The tag value is the output of a neural

network trained to recognize a kaon and slow-pion pair from a single B decay cascade. Kaon

candidates and slow-pion candidates are analyzed pairwise, with the neural network output of

the pair most consistent with a B decay returned as the tag value with a sign indicating the

flavor of the hypothetical B. The inputs to the neural network:

• Kaon tag value of the kaon candidate
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• slow-pion tag value of the slow-pion candidate

• cos θK,π: the angle between the kaon and slow-pion candidate momenta calculated in the

Υ (4S) rest frame.

5.2.3 Number of Kaons and P ∗

K,max

B decays produce kaons with a much higher frequency than the continuum processes

e−e+ → uu, dd. Hence the total number of kaons in the ROE can help to suppress these in-

teractions. As shown in Figure 5.9, when kaons are produced in continuum processes (usually

e−e+ → ss), the distribution of their momenta tends to larger values than that for generic B

decays such as those on the tag side of the event.

The total number of kaons NK and the maximum kaon momentum in the ROE P ∗
K,max

are included in a neural network for continuum suppression in the B → ργ and B0 → ωγ

analyses. The set of kaons are those ChargedTracks candidates in the ROE that fail to satisfy

all of the PionLHLoose, PionLHTight, and PionLHVeryTight criteria, and the reconstructed

K0
S candidates defined as follows:

• pairs of oppositely charged ChargedTracks candidates in the ROE

• vertex χ2 probability (Chapter 4.5.2) Prob(χ2) > 0.0001 (convergent fit)

• mass constraint mππ ∈ [0.4827, 0.5127]

• flight distance from primary vertex ~xprime |~xK0
S
− ~xprime | > 0.3cm

5.3 Physics variables

A final class of background suppression variables relies on the physics of signal B decay

to distinguish a correctly reconstructed signal B from background processes. In this class are
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Figure 5.8: The distributions of some standard BABAR tagging variables for the B0 → ρ0γ signal
MC, continuum MC, and off-peak data.
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Figure 5.9: The number of kaons (left) and the maximum kaon momentum in the center of mass
frame (right) for B0 → ρ0γ signal Monte Carlo, continuum Monte Carlo and offpeak data.

the previously introduced mES and ∆E∗ (Chapter 4.6), which are included in the likelihood fit

(Chapter 9). Additionally, the variables described in this section are used for cuts to suppress

backgrounds or as inputs to multivariate background discriminators.

5.3.1 ∆z

This is another technique borrowed from the time-dependent CP asymmetry analyses

for which BABAR is eminently designed. As described in Chapter 2, the CM frame of the

primary e−e+ collision is boosted relative to the lab frame. B mesons from Υ (4S) decays travel

an average 250µm from their production point, which coincides with the e−e+ collision point

as the Υ (4S) decays almost instantaneously. The e−e+ collision point cannot, in general, be

determined precisely enough to be useful in estimating a B flight distance. However, since the

decay times of the two B daughters of an Υ (4S) are uncorrelated, the distance between their

decay points has the same distribution as the distance of a single B meson from its creation

point. The B mesons’ displacement in the xy plane is small and in general, not measurable with

sufficient relative precision to be useful–the collision boost is in the ẑ direction. Hence the use

of ∆z, the estimated z difference in decay vertices of the reconstructed signal Bsig and the tag
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Btag .

∆z = zsig − ztag

For continuum processes most of the final state charged candidates originate from the

e−e+ collision point. The decay vertices of the (ersatz) reconstructed B candidate and the ROE

should be coincident. The distribution of ∆z is peaked at 0.0 for both continuum and signal

decays, however, as shown in Figure 5.10, the distribution for signal events is predictably wider

due to the B flight distance.

Use of ∆z requires precise vertexing of the reconstructed signal B. Like the calculated

vertex used in reconstruction quality (Chapter 4.5.2), ∆z is only used for the modes with at

least two charged particles in the final state. Of the modes detailed in this thesis (Table 3.1),

this includes every mode save B+ → ρ+γ(ρ+ → π+π0).

The calculation of ∆z is carried out by a standard BABAR analysis routine VtxTagBta-

SelFit described in [35]. The vertex calculated in the reconstruction of the intermediate meson

candidate in Chapter 4.5.2 is used as the decay point of the reconstructed signal B candidate.

The routine uses a beam-constrained fit to estimate a vertex for the ChargedTracks candidates

in the ROE. Logic in the routine removes candidates that more likely originate from the decays

of longer lived particles if the fit fails quality cuts. The VtxTagBtaSelFit routine produces and

estimate for ∆z and an estimate for its error σ(∆z).

Some classes of vertexing failures and pathological events appear as unusually large

values for ∆z or σ(∆z). Prior to using ∆z in a neural network the quality of the estimate is

insured by requiring:

• K∗0 → K+π− mode: σ(∆z) < 0.04cm

• ρ0 → π+π− mode: |∆z| < 0.4cm and σ(∆z) < 0.04cm

• ω → π+π−π0 mode: |∆z| < 0.4cm and σ(∆z) < 0.04cm
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Figure 5.10: The ∆z distribution for B0 → ρ0γ signal MC, continuum MC, and off-peak data.
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Figure 5.11: The cosΘB distribution for B0 → ρ0γ signal MC, continuum MC, and off-peak
data.

5.3.2 B direction cos Θ∗

B

The polar angle of the Υ (4S) decay axis in the event CM frame conforms to a

sin2 Θ = 1 − cos2 Θ distribution due to conservation of angular momentum. This distribution

is reflected the distribution of the polar angle of the reconstructed signal B momentum in the

CM frame Θ∗
B . As shown in Figure 5.11, continuum processes result in an almost uniform

distribution of cosΘ∗
B consistent with the very weak correlation between the event thrust axis

and beam axis.
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Figure 5.12: The ΘH distribution for B0 → ρ0γ signal MC, continuum MC, and off-peak data.

5.3.3 Helicity angle ΘH

Angular momentum conservation provides another useful tool. Each of the radiative

penguin B decay modes covered by this thesis involve a pseudoscalar B meson decaying into

a photon and vector meson. The transverse polarization of the photon constrains the vector

meson to also be transversely polarized relative to its momentum. This transverse polarization

manifests as a sin2 ΘH helicity angle distribution of the vector meson decay products.

For the vector to two pseudoscalar decaysK∗0 → K+π−, ρ+ → π+π0, and ρ0 → π+π−,

ΘH is the angle between the decay axis of the vector meson (momentum of one of the decay

products) as calculated in the vector meson candidate rest frame and the momentum of the

vector meson as calculated in rest frame of the parent B candidate.

For the decay ω → π+π−π0, ΘH is defined as the angle between the normal to the

decay plane of the ω as calculated in the ω rest frame and the momentum of the ω as calculated

in rest frame of the parent B candidate.

Figure 5.12 displays distributions for cosΘH for the B0 → ρ0γ mode.
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Figure 5.13: The ΘD distribution for B0 → ωγ signal MC, continuum MC, and off-peak data.

5.3.4 Dalitz angle ΘD

For the B0 → ωγ, ω → π+π−π0 mode, a degree of discrimination against backgrounds

from false or misreconstructed ω candidates can be attained with the Dalitz angle ΘD. ΘD is

defined as the angle between the π+ and the π0 momenta calculated in the rest frame of the π+π−

system. For real ω mesons, ΘD follows a sin2 ΘD distribution required by simultaneous isospin

and angular momentum conservation in an ω decay. For false ω candidates the distribution

of cosΘD should be approximately uniform. Figure 5.13 shows distributions for signal and

continuum background events. A contribution from real ωs is perceptible in the continuum

distribution.
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Chapter 6

Continuum suppression with neural

networks

The use of neural networks has become commonplace in particle physics analyses to

discriminate among classes of events. Each of the analysis modes detailed in this thesis uses a

neural network to distinguish continuum background from properly reconstructed signal events

based on the variables described in Chapter 5.

A complete discussion of neural networks lies well beyond the scope of this thesis. The

User Manual of the Stuttgart Neural Network Simulator (SNNS) package [38] provides more

complete description of neural networks with references to excellent publications providing even

more detail. Chapter 6.1 below gives a brief introduction to neural networks specific to those

used in this analysis. Each of the signal modes uses a neural network with a different architecture

and set of input variables. These mode-specific details are covered in Chapter 6.2.

The neural networks for continuum background suppression described in this thesis are

implemented and trained with the SNNS [38] software package. SNNS is a software simulator

for neural networks with a powerful set of tools for training and testing neural networks. The
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accompanying C function library makes neural networks created with SNNS easy to integrate

into analysis code. Its ease of use has made it one of the more popular implementations of neural

networks in BABAR analyses.

It should be noted that the contents of this chapter are applicable only to the neural

networks developed by the authors of the radiative penguin analyses presented in this thesis for

suppressing continuum background. This is not a description of the neural networks used to

produce the standard BABAR B tagging briefly described in Chapter 5.2.2.

6.1 Introduction to neural networks

A neural network is an algorithmic construct developed to model the operation of a

brain or other neurological system. Their basic components are nodes representing neurons,

which store single activity levels, and weighted and transformed connections among those nodes

representing synapses.

These analyses use a specific type of neural network architecture known as a Feed-

Forward network. This means that the outputs of the network are essentially a non-linear

combination of the input variables (provided the transfer function of the connections is non-

linear, more on that later). In the present case, the goal is an output with a characteristic

value for each class of event (continuum background, signal). The connection weights store

the information required to make this discrimination distributed throughout the network. This

distribution of information allows the network to exploit rather subtle correlations among the

input variables in a powerful way. These connection weights are adjusted in a process termed

‘training’ so that input values typical of a class of event produce a consistent output. Specifically,

this analysis has employed the training method of Back-Propagation using BABAR Monte Carlo

events.
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Figure 6.1: Basic structure of a single hidden layer neural network. Input nodes (red) corre-
sponding to event variables are passed to “hidden” nodes (blue) as linear combinations. The
line combination is then transformed by an “activation function,”. Linear combinations of the
hidden node outputs are then passed to the output node (black), where it is transformed once
again by the activation function to give the final neural network output.

6.1.1 Topology

Figure 6.1 shows a simple Feed-Forward neural network. Each circle represents a node

that stores an activation value, a single floating point number. The nodes are arranged in layers

of three types: input layers, output layers and hidden layers. The input layer receives the input

values from their external source. There is a single input layer and it has a number of nodes

equal to the number of input variables. The output layer relays the result of the network’s

calculations to the external user. There is also a single output layer. The number of nodes

in an output layer usually depends on the number of classes among which the network is to

discriminate. For two types of events, only one output value is necessary. The output value

will be in the range [0, 1] with 0 trained to represent continuum background and 1 trained to

represent signal. Between the input and output layers are one or more hidden layers. Each of

the neural networks used for this analysis have a single hidden layer.

The nodes are connected by unidirectional output-to-input connections. Each connec-

tion has a strength or weight associated with it. These weights are fixed in training–only the

node activation values vary in the calculations for each set of input values. Each node has a
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set of input connections, which are used for calculating its activation value, and a set of output

connections for nodes that use its output value in their calculations. The output value of a node

is calculated from its activation value with a transfer or ‘activation’ function. The networks

of this analysis use an identity transform g(x) = x for the input nodes and a logistic function

g(x) = 1/(1 + e−x) for all other nodes.

In simple Feed-Forward networks, nodes only have input connections from each node

in the layer immediately proceeding it or, equivalently, each node has output connections only

to each node in the subsequent layer. Indexing the layers Input = 1, Hidden = 2 . . .N − 1,

N = Output, the output of each node of layer n is only connected to the input of each node of

layer n+ 1–not to nodes in any subsequent layers > n+ 1, nor to adjacent nodes in layer n, nor

to nodes in previous layers < n. There is no feedback and information flows contiguously from

input layer to output layer.

Assigning an index in to each node in a layer n with Nn nodes, each node has an

activation value xin
and an output value gn(xin

), where gn is the transfer function for nodes

on layer n (identity for input layer, logistic function for all others). Each connection from the

output of node in to the input of node jn+1 has a weight winjn+1 . The activation value of the

node jn+1 is simply the weighted sum of its inputs:

xjn+1 =

Nn
∑

in=1n

winjn+1 · gn(xin
). (6.1)

For neural networks with only one hidden layer, the layers of indexing can be simplified.

Denote the activation values of the input layer xi ≡ xi1 , the hidden layer yj ≡ xj2 , and the

output layer zk ≡ xk3 . Let the connection weights be denoted aij ≡ wi1j2 and bjk ≡ wj2k3 . And

finally, let g(x) denote the logistic function as the identity function will be explicitly replaced

in subsequent formulae. The input values xi are fed into the input nodes of the network. The
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activation value of the hidden nodes are easily calculated:

yj =
∑

i

aij · xi. (6.2)

The activation level of the output nodes are

zk =
∑

j

bjk · g(yj) =
∑

j

bjk · 1

1 + e−
∑

i
aijxi

. (6.3)

Finally, the output values of the network are

ok = g(zk) =
1

1 + e

−
∑

j

bjk
(

1+e
−

∑

i
aij xi

)

. (6.4)

6.1.2 Training

6.1.2.1 Training set

Training is the process by which this algorithmic construct becomes useful. In order

to adjust the connection weights win
to produce the desired output, the first requirement is

a ‘training set’. This is a set of input vectors and their corresponding desired output vectors.

The training set is a priori information about events of the various target classes, which will

be encoded in the weights of the network by the training process. After it’s been trained, the

network will provide an a posteriori classification for an input of unknown type based on that

input’s similarities to the features of the training set encoded in the network. Hence it is vital

to choose a training set that fully and accurately represents the target classes. The training set

must represent the class in the most general way, otherwise the network may be overspecialized.

For example, say the network is to distinguish between continuum background and signal events.

If continuum events in the training set all have the same jet axis then the network may have

difficulty recognizing continuum events aligned significantly differently from the training events

and erroneously classify the event as signal.
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The number of events required for a training set generally depends on the complexity

(numbers of nodes, layers, and connections) of the network. In the training process, each training

event can be considered a constraint and each connection weight an independent variable. There

are no fast rules about the optimal relationship between the relative number of the two. If there

are too few training events relative to the network complexity, there is the risk of overspecializing

the network to recognize exactly the events in the training set rather than their common features–

the exact solutions to the constraint relations become encoded in the network. If there are too

many training events for the network complexity (a rare concern), the iterative training process

may not converge well due to the overconstrained architecture and the overall performance of

the network after training will suffer–the training solution is overconstrained. In general, the

complexity of the network needed must be determined empirically, with the goal being the

simplest network that sufficiently solves the problem.

The networks used in this analysis have a single output value in the range [0, 1] with 0

indicating a continuum background event and 1 indicating a signal event. There is one network

per signal mode. The training sets are drawn from the set of detailed BABAR Monte Carlo events.

Only MC events that pass all of the cuts listed above the neural network cuts in Tables 8.1,

8.3, 8.5 and 8.7 for the B0 → K∗0γ, B0 → ρ0γ, B+ → ρ+γ and B0 → ωγ modes respectively

are allowed into the training set. An equal number of continuum MC events and properly

reconstructed signal mode MC events are included in the training set for each network. It’s

important that the two classes of events are equally represented in the training set to produce

a network with unbiased discrimination. The largest training set possible for each network is

aggregated under these conditions. The complete set of events from the least numerous class,

usually continuum MC, is included in the training set. Included events are randomly selected

from the more numerous class of event, usually signal mode MC. Then the training set is divided

approximately in half with one half the training set proper, and the other half a ‘validation set’
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(Chapter 6.1.2.3).

6.1.2.2 Back Propagation

With the training set established, the training commences. There are several estab-

lished methods for training neural networks. The method employed in this analysis is called

‘Back Propagation’. Back Propagation is essentially an application of the method of steepest

descent to minimize the difference between the desired output and the actual output of the

network.

Back Propagation is an iterative process of adjusting the network connection weights.

The initial values of the weights are usually randomly assigned to values in the range [−1, 1].

A given event p from the training set p ∈ T has input values xpi and a set of target

output values tpk. For the networks of this analysis, the single target output values tp = 0 for

p a continuum background MC events and tp = 1 for p a signal mode MC event. When the

values xpi are input to the network, the results are output values opk. The difference between

the actual and target outputs is denoted

δpk = opk − tpk. (6.5)

The Sum Squared Error E for a subset of the training set S ⊆ T containing N(S) events gives

a performance measure for the network on S:

E(S) =
∑

p∈S

∑

k

δ2pk. (6.6)

The goal of training is to find a set of weights winjn+1 that minimizes E(T ), or equiva-

lently the Mean Squared Error E(T )/N(T ), where N(T ) is the number of events in the training

set. A single update step of Back Propagation involves changing the weights winjn+1 by an
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amount ∆Swinjn+1 to descend the error surface:

∆Swinjn+1 = −η ∂E(S)

∂winjn+1

, (6.7)

where η is a learning rate to adjust the speed and stability of training convergence.

The Back Propagation process comes in three varieties dependent on the size of the

size of the subset S used in the update step: Standard, Chunk, and Batch. In Standard Back

Propagation the weights are updated after the evaluation of each event–S is a single element.

Because the weights are updated for every event, the network learns very quickly with Standard

Back Propagation. However, the results can also be unstable as the goal becomes to sequentially

minimize individual event errors rather than the error of the entire training set E(T ). Batch

Propagation uses the entire training set for the update set–S = T . It explicitly pursues the

training goal of minimizing E(T ), however it converges very slowly. Chunk Back Propagation

is the logical compromise between Standard and Batch Back Propagation. An update subset S

contains at least several events but significantly smaller than the complete training set T . The

inclusion of many events in the update step provides a more stable convergence than Standard

Back Propagation, suppressing possible spurious excursions generated by a single event, while

the increased frequency of updates speeds convergence over Batch Back Propagation. The

optimal size of the update set depends on the network complexity and the size of the training

set. It’s generally determined empirically.

Regardless of the specific brand of Back Propagation used, a single iteration or training

cycle consists of a complete pass through the training set applying the network exactly once to

each event. The procedure of a training cycle:

1. Partition the training set T into update sets Si ⊆ T .

2. For each update set Si perform an update step:
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(a) Calculate the sum squared error E(Si) of the network (as it was left by the last

update step).

(b) Calculate the changes to the weights ∆Swinjn+1

(c) Apply the weight changes ∆Swinjn+1 modifying the network.

For Standard Back Propagation there will be as many update steps in a training cycle as there

are events in the training set. Batch Back Propagation will have a single update step per training

cycle. The training cycle is iterated until a minimum error or the desired level of performance

is attained.

6.1.2.3 Validation set

As a final component, the training process needs a way of evaluating the ‘desired level

of performance’. Training to a finely convergent minimum of the training set error E(T ) is

almost never desirable. The problem here is, again, over specialization of the network, termed

‘over training’ in this context. The ultimate goal of the network is a reliable classification of an

event–one that will not be part of the training set–based on the general features of the classes

of events as contained in the input variables and their correlations. If the input variables are

chosen judiciously, these general features of the class will be ‘trained into’ the network relatively

rapidly. Further training beyond this point risks encoding into the network specific features of

individual events or unintended weak correlations accidentally present only in the training set.

The network ceases to be a general pattern recognition tool and produces reliable classifications

only if an analyzed event closely resembles an event or set of events in the training set.

Use of a validation set helps to prevent this overtraining. The validation set V is

a set of events and desired output values similar in composition (and usually in size) to the

training set. The validation and training sets must be disjoint and independent in order for the
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validation set to serve as a measure of the generality of the network. Periodically during the

training, the mean squared error of the validation set E(V )/N(V ) is evaluated and compared

to that of the training set E(T )/N(T ). While general properties of the classifications are being

trained into the network the mean squared errors of the two sets should be nearly equal. E(V )

should decrease as E(T ) is minimized by the training. When overtraining begins, E(V )/N(V )

will begin to diverge from E(T )/N(T ) as the validation set diverges from the idiosyncrasies of

the training set. E(T ) will continue to decrease, but eventually E(V ) will actually begin to

increase as the network becomes increasingly specialized to the training set.

Often, the network is optimally trained at the cycle on which E(V ) obtains its min-

imum. Sometimes overtraining is indicated even at this point by significant differences in

E(V )/N(V ) and E(T )/N(T ). In this case, an earlier state of the network is chosen at which the

errors are consistent. In practice, neural networks are deliberately over trained in a reproducible

way to identify the cycle or range of cycles at which the network is optimally trained. Once the

optimal point is identified the network is retrained from the (reproduced) random initialization

to this optimal state. Examples of the evolution with training cycles of the MSE for neural

networks can be found in Figure 6.2. The upper left hand plot clearly shows the expected rapid

decrease in the MSE of the validation set to a minimum followed by divergence from the MSE

of the training set.

As indicated in Chapter 6.1.2.1, the validation sets used in this analysis are half of the

available BABAR Monte Carlo satisfying the distribution requirements of the training set.

6.1.3 Final note

If an optimized network fails to meet whatever performance goals were set for it prior

to its implementation, the fault may lay either in the relative simplicity of the network or just in

the lack of discriminating power of the input variables. Determining whether or not a network is
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too simple or too complex is sometimes possible by closely examining the weights after training.

Similarly, how useful an individual input variable is to the final classification can sometimes be

determined. For the application to this thesis, the networks are generally quite complex and

such judgments are more easily made empirically by experimenting with network topology.

6.2 Networks for continuum suppression

Most of the general properties of the neural networks used in this thesis for the sup-

pression of continuum background are mentioned in context in Chapter 6.1. Summarizing some

of the key points:

• Each analysis mode has its own Feed-Forward neural network for continuum suppression.

• Each neural network is trained to discriminate between continuum background events and

the events of a specific signal mode.

• The set of input variables is mode-dependent.

• Each network has a single hidden layer, but the number of nodes in that layer is mode-

dependent.

• Each neural network has a single output value in the range [continuum = 0, 1 = signal]

• Each network is trained by a variety of Back Propagation.

• The training and validation events are drawn from the detailed BABAR Monte Carlo sim-

ulations.

• MC Events are required to pass reconstruction and basic background cuts to be included

in the training and validation sets.
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Modes Variables Configuration

cos(ΘT ), cos(ΘH), cos(Θ∗
B), R′

2, ∆z,

B0 → K∗0γ Net Flavor (NF), 24:10:1

18 Energy cones (10◦ intervals)

| cos(ΘT )|, R′
2, L2(γ), L1, L2, L3, |∆z|,

B0 → ρ0γ e-tag, µ-tag, πS-tag, K-πS-tag, P ∗
max-tag, 14:5:1

Num. of Kaons, kaon P ∗
max

| cos(ΘT )|, R′
2, L2(γ), L1, L2, L3,

B+ → ρ+γ e-tag, µ-tag, πS-tag, K-πS-tag, P ∗
max-tag, 13:6:1

Num. of Kaons, kaon P ∗
max

| cos(ΘT )|, R′
2, L2(γ), L1, L2, L3, |∆z|,

B0 → ωγ e-tag, µ-tag, πS-tag, K-πS-tag, P ∗
max-tag, 14:5:1

Num. of Kaons, kaon P ∗
max

Table 6.1: Summary of the neural net configuration for each decay mode with the input variables
to the neural net in the second column, the configuration of the neural net in the third column,
and the learning function in the last column. Due to poor statistics, the BackpropChunk learning
function is used in the B0 → ωγ decay mode. The configuration shows the number of input
nodes, followed by the number of nodes in the (single) hidden layer, followed by the number of
output nodes.

The output of a mode’s neural network is used either in an explicit cut, as in the

K∗0 → K+π− mode, or in the final likelihood fit, as in the B → ργ and B0 → ωγ modes.

The remainder of this chapter includes the details of the neural networks, which are

summarized in Table 6.1.

6.2.1 Mode B0 → K∗0γ(K∗0 → K+π−)

The set of input variables used in the K∗0 → K+π− neural network is: thrust angle

cos(ΘT ), helicity angle cos(ΘH), B direction cos(Θ∗
B), second γ recoil Fox-Wolfram moment R′

2,

vertex displacement ∆z, net flavor (NF ), and the 18 energy cones in 10◦ intervals. Each of these

variables is described in Chapter 5. The energy cone values calculated are divided by 10 prior

to their input to the neural network to bring the bulk of their distributions into the range [0, 1].

Neural networks typically learn faster if their inputs are constrained to the range [−1, 1]. The
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reason is that large input values will saturate the transfer function at the hidden nodes unless

the weight is correspondingly small. Saturation means that the transfer function is deep into

one of its asymptotic regimes where its derivative is small. A small derivative typically means a

small shift in the weight, which only slowly moves the network out of a regime in which hidden

nodes are saturated. None of the other inputs are normalized in this manner–their distributions

for the most part already lie in the range [−1, 1].

A total 24 input variables are used. A single hidden layer with 10 nodes and a single

output node completes the network architecture.

The training and validation sets each contains 941 signal MC events and 938 contin-

uum MC events selected from the detailed BABAR Monte Carlo simulation data sets. The sets

contain equal numbers of events reconstructed in the B0 → K∗0γ, K∗0 → K+π− mode and in

the implied conjugate mode B
0 → K

∗0
γ, K

∗0 → K−π+. Training proceeded via Chunk Back

Propagation with 50 event chunks. Figure 6.2 shows the evolution of the mean squared error

(MSE) of the training and validation sets as the network was trained.

One can see in the selection-rejection plot in Figure 6.3 a significant separation between

the training and validation set performances for this mode. Such a discrepancy is indicative of

overtraining. In this case the overtraining had only a minor impact on the performance of the

neural network. The result is still a powerful tool for suppressing continuum background, but

one that is slightly less optimal than it might have been.

The output of the neural network for the K∗0 → K+π− mode is used as a simple cut

selection criterion. The cut is optimized by the maximization of significance method described in

Chapter 3.2. This cut on the neural network output is applied after the reconstruction selection

described in Chapter 4. The results of this cut optimization is presented in Figure 6.4. The
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Figure 6.2: Neural network training plots, one plot for each mode. Each plot shows the mean
squared error (MSE) of the network’s performance on both training and validation sets as a
function of training cycle. The mode represented in each plot starting with the upper left
hand plot and proceeding clockwise: B0 → K∗0γ(K∗0 → K+π−), B0 → ρ0γ, B+ → ρ+γ, and
B0 → ωγ.
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Figure 6.3: Neural network performance plots, one plot for each mode. For a given value x in
the output range of the neural network and a given set of background and signal events, the
signal selection efficiency is the number of signal events with neural network output onn ≥ x
divided by the total number of signal events in the set. The background rejection efficiency is the
number of background events with onn < x divided by the total number of background events
in the set. The plots show the relationship between the signal selection efficiency (horizontal
axis) and the background rejection efficiency (vertical axis) for both the training and validation
sets. The mode represented in each plot starting with the upper left hand plot and proceeding
clockwise: B0 → K∗0γ(K∗0 → K+π−), B0 → ρ0γ, B+ → ρ+γ, and B0 → ωγ. The crosses on
the plots are drawn automatically by the plotting routine and signify nothing.

102



NN Output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

/(S
 +

 B
)

2
S

0

100

200

300

400

500

-π+NN Optimization, K

Cut: nn > 0.425719

Figure 6.4: Results of an application of cut optimization to the output of the neural network for
continuum background suppression, K∗0 → K+π− mode. The network is applied to a marked
sample of BABAR MC events containing continuum background events, B background events,
and signal events that have all passed the basic reconstruction criteria. Each event is assigned
a relative weight representing the relative abundance of events of that type expected in the real
data set. Given a cut level x, S(x) is the weighted number of signal events with neural network
output onn > x. Similarly, B(x) is the weighted number of passing background events. The plot
shows the squared significance S(x)2/(S(x) +B(x)) as a function of the cut level x. The point
of maximum significance (x = 0.425719) represents the optimal selection criteria.

output of the neural network is required to satisfy

onn > 0.425719 .

6.2.2 Modes B → ργ and B0 → ωγ

The neural networks for all three exclusive modes B0 → ρ0γ, B+ → ρ+γ and B0 → ωγ

take as inputs the following: thrust angle | cos(ΘT )|, second γ recoil Fox-Wolfram moment R′
2,

four L-moments L2(γB), L1(t̂
∗), L2(t̂

∗), and L3(t̂
∗), five standard BABAR B tagging variables e-

tag, µ-tag, πS-tag, K-πS-tag, and P ∗
max, number of kaons NK , and maximum kaon momentum

P ∗
K,max. In addition, the modes B0 → ρ0γ and B0 → ωγ for which a decay vertex can be

calculated also use the vertex displacement |∆z| as an input. This is a total of 13 inputs for

B+ → ρ+γ and 14 inputs each for B0 → ρ0γ and B0 → ωγ.

There are several important differences between these sets of input variables and the
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earlier one used in the B0 → K∗0γ mode. Each of these improvements was the product of

experience and study in the time interval between the B0 → K∗0γ analysis and the B → ργ and

B0 → ωγ analyses. The first is that these networks only use information from the tag side of the

event. The helicity angle cos(ΘH) and signal B direction cos(ΘB) are omitted. In the analysis

of the systematic uncertainty associated with the efficiency of the neural network output (see

Chapter 10), it was discovered that this interlacing is a major contributor to the uncertainty. By

removing these variables from the neural network and incorporating them in a separate Fisher

discriminant (Chapter 7) the total systematic uncertainty is reduced for these modes.

A second important difference is the replacement of the primitive net flavor variable

NF with the more powerful suite of standard BABAR B tagging variables and with the kaon

number NK and maximum kaon momentum P ∗
max. The purpose of these new variables is the

same as that of NF–to identify the signature of a B decay in the ROE. However, the standard

BABAR B tagging variables do a much better job than NF .

A last difference is the replacement of the 18 energy cones with the four L-moments

L2(γB), L1(t̂
∗), L2(t̂

∗), and L3(t̂
∗). Several network architectures with various combinations

of the L-moments and energy cones were constructed and tested for the B → ργ and B0 → ωγ

modes. As mentioned in Chapter 5.1.4, for each mode an optimized network with the four listed

L-moments performs at least as well as an analogous optimized network using the 18 energy

cones instead of the L-moments. This means a significant simplification of the neural network

with no loss of performance.

Each of the three neural networks for B0 → ρ0γ, B+ → ρ+γ and B0 → ωγ has a single

hidden layer and a single output node. Tests of various sizes of the hidden layer indicate an

optimal 6 nodes in the hidden layer for the B+ → ρ+γ network and 5 nodes in the hidden

layers of each of the B0 → ρ0γ and B0 → ωγ networks. Simpler networks display a significant

degradation of performance while more comlpex networks show no significant improvement.

104



The training and validation sets come from the set of detailed BABAR Monte Carlo sim-

ulation events that pass the basic reconstruction criteria described in Chapter 4. The B0 → ρ0γ

and B+ → ρ+γ networks are trained using the Standard Back Propagation. The training set for

the B0 → ωγ network is small enough that Standard Back Propagation has proven too unstable.

This network is trained with Chunk Back Propagation. Figure 6.2 shows the evolution of the

mean squared error (MSE) of the training and validation sets as each network was trained.

Figure 6.3 demonstrates the performance of the optimally trained networks. The net-

work performances on the training sets are almost identical to those of the validation sets

demonstrating that the networks have not been over-trained. Figure 6.5 shows the distributions

of the neural network outputs for continuum background MC, off peak detector data, and signal

MC.

Instead of creating an optimized cut as in the K∗0 → K+π− analysis, the output values

of the neural networks are used as independent variables to improve the power of the likelihood

fit for signal estimation (Chapter 9). The optimization process requires a good estimate of the

relative number of continuum and background events. Since there was no evidence of the decays

B → ργ and B0 → ωγ prior to this analysis, there was no way to reliably estimate the expected

signal yield in data. Loose cuts are applied to the outputs of the neural networks to suppress

the bulk of the continuum background and simplify the fit, but these cuts are far less restrictive

than optimized cuts based on optimistic estimates of the signal yields. These loose cuts are

onn > 0.6 for the two B → ργ modes and onn > 0.65 for the B0 → ωγ mode.
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Figure 6.5: Plots of the distributions of the output of the fully trained neural network for
continuum MC, signal MC, and off-peak data. The distributions are normalized so that all of
the distributions on a plot have the same area. The mode represented in each plot starting with
the upper left hand plot and proceeding clockwise: B0 → K∗0γ(K∗0 → K+π−), B0 → ρ0γ,
B+ → ρ+γ, and B0 → ωγ.
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Chapter 7

BB̄ background suppression and

discrimination

The key sources and features of B background candidates—reconstructed signal decay

candidates originating from Υ (4S) decays in which neither B actually decays in the signal mode–

are well introduced in Chapter 3.4. Here’s a summary of some of the key points made in that

introduction:

• Even after a neural network cut meant to suppress them, continuum background candidates

still outnumber B background candidates by at least an order of magnitude.

• There are two general types of B background candidates:

– combinatoric accidents like continuum background candidates

– candidates reconstructed from decays physically similar to the signal decays, usually

differing from the signal final states by one or two low energy particles

• Because they may have distributions in the analysis variables similar to those of signal

decays, B backgrounds are, in a sense, more dangerous than continuum backgrounds to
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the measurement of the signal yield.

The detailed simulated BABAR Monte Carlo events are a powerful aid in identifying

specific B decays that mimic signal decays with a high frequency. The BABAR Simulation

Production Group creates samples of ‘generic B0B
0
’ and ‘generic B+B−’ events, which are well

suited to this task. The physics in these generic samples are statistically representative of the

best knowledge of natural B decays available at the time of production [17]. An examination

of the generic B Monte Carlo events that pass the selection criteria yields an estimate of the

frequency with which events of various types ape signal decays. This is not a tool to be used

blindly. Decays that are known to be physically similar to the signals must be examined carefully

and independently regardless of their survival frequency in the generic samples. However, such

an analysis of the generic samples may highlight dangerous backgrounds that may have otherwise

been missed.

The details of the B backgrounds and the ways with which they’re dealt are covered

below.

7.1 Mode B0 → K∗0γ(K∗0 → K+π−)

7.1.1 B → Xsγ, down-feed

The dominant B background sources are the so-called inclusive decays B → Xsγ. Xs

represents any hadronic system with unit strangeness–either a higher K resonance or a non-

resonant collection of kaons and pions. Such decays proceed via precisely the same radiative

penguin quark transition b→ sγ and hence have a hard photon energy spectrum strongly over-

lapping with that of B0 → K∗0γ. Almost all such background events have a final state for the

Xs that differs from the final state of the K∗0 → K+π− decay by a small number of relatively
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All cuts except NN All cuts with NN

Lumi Raw Expected Raw Expected

(fb−1) Yield 81.9fb−1 Yield 81.9fb−1

Generic B+B− 286.53 62 17.7 ± 2.3 39 11.1 ± 1.8

Generic B0B̄0 295.79 82 22.7 ± 2.5 56 15.5 ± 2.1

B0 → X0
sγ 291.00 321 90.3 ± 5.0 242 68.1 ± 4.4

B+ → X+
s γ 280.42 321 93.8 ± 5.2 238 69.5 ± 4.5

Generic B0 → K∗0γ 2571.43 1 0.0 ± 0.0 0 0.0 ± 0.0

Generic B+ → K∗+γ 2714.29 570 17.2 ± 0.7 344 10.4 ± 0.6

Sum of B bkgnd. 244.4 ± 7.6 179.3 ± 6.9

uds continuum 39.90 3265 6701.8 ± 117.3 639 1311.6 ± 51.9

cc̄ continuum 42.09 1937 3769.3 ± 85.6 455 885.4 ± 41.5

τ+τ− 45.70 202 362.0 ± 25.5 10 17.9 ± 5.7

uds+ cc̄+ τ+τ− 10833.2 ± 147.4 2215.0 ± 66.7

Off-Resonance Data 9.49 1368 11804.8 ± 319.2 306 2640.5 ± 150.9

Table 7.1: Expected background event yields for the mode B0 → K∗0γ(K∗0 → K+π−) without
and with Neural Net cut. Lumi represents the integrated luminosity of real data in which
one would expect the number events produced of that type to be equal to the number of events
initially included in the Monte Carlo set. Note about the removal of the B → K∗γ and B → Xsγ
modes from the ‘Generic’ Monte Carlo samples. I’m certain there’s much to say about this plot.
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Figure 7.1: mES and ∆E∗ distributions of B → Xsγ

low energy pions. A typical example is X+
s = π+K∗0. Omitting a low energy π+ leaves a decay

similar in all save a few respects to a signal decay. Because Xs can represent a higher kaon

resonance, this class of background is ofter called ‘down-feed’.

Because these background candidates are partially reconstructed real B decays, their

mES and ∆E∗ distributions are qualitatively similar to those of signal decays. However, ∆E∗

must peak at a negative value because the B is incompletely reconstructed. Also, the wide dis-

tribution of the missing momentum broadens the peaks of both the mES and ∆E∗ distributions

relative to the distributions of properly reconstructed signal candidates, as seen in Figure 7.1.

7.1.2 Other B → K∗γ decays, cross-feed

The second most abundant source of B background events are other B → K∗γ decays–

specifically, the decay chain B+ → K∗+γ, K∗+ → K+π0. Because these decay chains are usually

analyzed as part of the same effort (e.g. [1]) background events of this type are often called ‘cross-

feed’ events. This decay is dynamically identical to the signal decay B0 → K∗0γ, K∗0 → K+π−

and the final states of the two processes differ only in the charge of the pion. If the final state γ

and K+ are combined with a serendipitous π− from the decay of the tag-side B−, the resulting
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Figure 7.2: mES and ∆E∗ distributions of cross-feed

reconstructed background B can mimic a properly reconstructed signal event well.

The adopted orphan pion in this type candidate has a random momentum. Although

the reconstructed K∗0 candidate must pass a mass window, the variation of pion momentum

allowed within this window significantly broadens the mES and ∆E∗ distributions relative to

the signal distributions, as seen in Figure 7.2. Despite its claim to the title of second most

abundant B background source, Table 7.1 clearly shows that candidates of this type very rarely

survive all of the selection criteria, befitting of the coincidence required. About 10 events of

this type are expected in the actual data set of 81.9 fb−1 compared to approximately 600 signal

events expected.

One might expect a similar background from signal B0 → K∗0γ, K∗0 → K+π− decays

reconstructed with tag-side orphan pions. However, such a candidate usually has to compete

with the correctly reconstructed signal candidate in the best candidate selection method, which

rarely selects a misreconstructed candidate over a properly reconstructed one. The combination

of coincidences required for a self cross-fed candidate to pass candidate selection make it a

negligible source of background.
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Figure 7.3: mES and ∆E∗ distributions of combinatoric B backgrounds

7.1.3 Other B decays

Most of the remaining background events in the generic BB samples are combinatoric

coincidences, like the continuum background events. There is a small component from B → K∗η

and B → K∗π0, where one of photons from η/π0 → γγ is lost or not included in the reconstruc-

tion. Like the down-feed component, this component peaks at negative ∆E∗ and has broader

mES and ∆E∗ distributions than the signal. This class of background is highly suppressed.

Firstly, such decays have relatively small branching fractions–on the order of the signal branch-

ing fraction or smaller. The π0η veto eliminates this background with a high efficiency. These

events have a different K∗ helicity structure causing further suppression by the neural network.

The cumulative effect reduces this background to negligible levels.

7.1.4 Strategy

The B background yield is estimated in the final fit to data by including a representative

component distribution. The expected yields of the various types of B backgrounds are too small

and their distributions in mES and ∆E∗ have too much overlap with each other to allow reliable

estimation of the size of each component individually. Instead an aggregate B background
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shape is used to measure the total B background yield. This shape is described in Chapter 9

and is a parameterized fit shape to a weighted sum of the distributions of the B background

components. The weight given to each component in constructing the representative distribution

is its expected relative yield in data based on estimates from studies in the detailed BABAR Monte

Carlo data.

The principal complication with this method is a significant systematic uncertainty

associated with the relative sizes of the B background components. Neither the total branching

fraction nor the individual fragmentation rates for the B → Xsγ decays, which dominate the

B backgrounds, are well measured. The magnitude of this systematic uncertainty is estimated

after the likelihood fit to data by varying the shape of the B background distribution used in

the fit to represent varying proportions of B → Xsγ events. This study is described completely

in Chapter 10.

7.2 Fisher discriminants

It was noted in Chapter 6.2 that for the three b → dγ modes, the variables cos(ΘH),

cos(ΘB), and cos(ΘD) were left out of the neural network to improve the systematic uncertainty

associated with the neural network efficiency. Yet it is these variables (and mES and ∆E∗) that

contain most of the discriminating power against B backgrounds. The event shape and flavor

tagging variables, which do serve as neural network inputs, are intended to identify general

properties of B decays that will be present in almost any true B event. The variables of the

physics of the signal decay are what really distinguish them from background decays with similar

structures.

To incorporate these physics variables back into the analysis, they are used to construct

a Fisher discriminant. This is a linear combination of the variables optimized to the problem of
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classification. The value of this Fisher discriminant F is used as an independent variable in the

likelihood fit.

Briefly, let populations π1 and π2 over independent variables ~x be representative of two

categories that are to be discriminated. Let ~µ1 and ~µ2 represent the means of ~x over populations

π1 and π2 respectively, and let Vij be the joint covariance matrix over the two populations. The

goal is a set of coefficients ~a in the linear function

F (~x) = ~a · ~x

that maximizes the distance d between the two populations

d =
(~a · (~µ1 − ~µ2))

2

∑

i,j aiVijaj
.

It can be shown by the Cauchy-Schwarz inequality [39] that

(~a · (~µ1 − ~µ2))
2

∑

i,j aiVijaj
≤
∑

i,j

(~µ1 − ~µ2)i(V
−1)ij(~µ1 − ~µ2)j

with equality holding only for ai = λ
∑

j(V
−1)ij(~µ1 − ~µ2)j for arbitrary scalar λ. The optimal

F (~x) is then:

F (~x) = ~a · ~x =
∑

i,j

(~µ1 − ~µ2)i(V
−1)ijxj

.

The populations selected to train the Fisher discriminant for each mode are sets of sig-

nal and continuum from BABAR detailed Monte Carlo. Although it is optimized to discriminate

against the dominant continuum backgrounds, it has proven effective against both combinatoric

B events, which share the continuum’s flat distributions in the Fisher variables, and against

B → ρ(η/π0) backgrounds, which have a significantly different helicity structure that manifests

as a significantly different Fisher distribution.

The formulae for the Fisher discriminants used in this analysis are listed in Table 7.2.
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Mode Fisher Coefficients

B0 → ρ0γ −0.567607 + 0.659776 · | cos(θH)| + 0.75146 · | cos(θB)|
B+ → ρ+γ −0.584202 + 0.761998 · | cos(θH)| + 0.64758 · | cos(θB)|
B0 → ωγ −0.533986− 0.183946 · | cos(θH)| + 0.754176 · | cos(θB)| + 0.630382 · | cos(θD)|

Table 7.2: The Fisher coefficients for each decay mode. These coefficients have been obtained
from Monte Carlo samples.

Exp. Results Assumed BF
Description (×10-6) (×10-6) Events Lumi( fb−1)

B0 → K∗0γ 39.2±2.0±2.4 [28] 39.2±3.1 130,000 3,158

B+ → K∗+γ 38.7±2.8±2.6 [28] 38.7±3.8 156,000 3,839

B → K∗0η 18.6±2.3±1.2 [40] 18.6±2.6 70,000 13,638

B → K∗+π0 4.0+1.3
−1.2±0.63 [41] 4.0±1.4 213,000 152,295

B → K∗+η 25.6±4.0±2.4 [40] 25.6±4.7 70,000 19,848

B → ρ0π0 < 2.9(90% C.L.) [42] 2 215,000 102,381

B → ρ0η < 1.5(90% C.L.) [40] 1 68,000 164,370

B → ρ+π0 10.9±1.9±1.9 [42] 10.9±2.7 220,000 19,222

B → ρ+η 9.2±3.4±1.0 [40] 9.2±3.5 70,000 18,391

B → ωπ0 < 1.2 (90% C.L.) [40] 1.0 70,000 74,822

B → ωη 4.0±1.2±0.4 [43] 4.0±1.3 70,000 18,705

B → π+η 5.3±1.0±0.3 [44] 5.0±1.0 70,000 33,840

B → K+η 3.4±0.8±0.2 [44] 3.0±0.8 70,000 56,401

B → KSη 2.9±1.0±0.2 [44] 3.0±1.0 70,000 82,218

B → π+π0 5.5±1.0±0.6 [45] 5.0±1.2 63,000 12,000

B → K+π0 12.8±1.2±1.0 [45] 13.0±1.6 220,000 16,117

B → KSπ
0 10.7±2.5 [17] 10.0±2.5 64,000 8,885

Table 7.3: The current experimental results and the assumed branching fractions of the peaking
B background decay modes. Column 2 shows the mode number used in the BABAR simulation
production to identify each decay mode. Column 3 shows the fraction of sub-decays produced
in the simulation, which consider decays like ω → π+π−π0(0.891) or η → γγ(0.394) or K∗0 →
K+π− (0.667) or K∗+ → K+π0 (0.333) or KS → π+π−(0.686), with the number in bracket as
decay fraction.
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fit region signal region

Description raw (200 fb−1) raw (200 fb−1)

B0 → ρ0γ 29416 26.17±0.15 26839 23.88±0.14

B0B
0

combinatoric 138 192.7±16.4 23 32.1±6.7

B+B− combinatoric 150 190.0±15.5 26 32.9±6.5

B0 → K∗0γ 336 21.3±1.2 217 13.7±0.9

B → K∗0η 40 0.58±0.09 12 0.18±0.05

B → ρ0π0 2948 5.76±0.11 2283 4.46±0.09

B → ρ0η 2631 3.20±0.06 1561 1.90±0.04

B → π+η 1017 6.01±0.18 259 1.5±0.1

B → K+η 34 0.12±0.02 7 0.024±0.009

B → KSη 88 0.21±0.02 27 0.06±0.01

B → π+π0 265 4.41±0.27 45 0.75±0.11

B → K+π0 23 0.28±0.06 1 0.01±0.01

B → KSπ
0(∗) 1 0.02±0.02 0 0±0

Table 7.4: The yields of the peaking background components for the B0 → ρ0γ decay mode
at 200 fb−1. All yields are normalized using the branching fractions assumed in Table 7.3.
The error on the yield is the statistical error only and does not include the uncertainty in the
branching fractions.

7.3 Mode B0 → ρ0γ(ρ0 → π+π−)

Table 7.4 lists the various B background modes considered as possibly dangerous for

the B0 → ρ0γ(ρ0 → π+π−) analysis. Combinatoric coincidences are the primary source of B

background for this mode. However, special care must be taken with those specific modes

that peak in signal variables mES and ∆E∗. Because this analysis had the possibility of a

first significant evidence of this decay mode these signal-faking backgrounds must be removed

properly.

As Table 7.4 indicates, the only non-negligible sources of peaking background events

in the signal region are B0 → K∗0γ, K∗0 → K+π− decays, where K+ is misidentified as π+,

and events from B0 → ρ0η and B0 → ρ0π0 decays, where one of the photon daughters of the

η → γγ or π0 → γγ is left out of the reconstructed signal B. The following sections examine
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each of these backgrounds in turn.

7.3.1 B0 → K∗0γ

Considering the similarities in the physics of the decays B0 → K∗0γ and B0 → ρ0γ it is

unsurprising B0 → K∗0γ proves a formidable background. Most of this background component

is suppressed by the PID requirements placed on the final state charged pion candidates. How-

ever, with a branching fraction approximately 40 times larger than the upper limit for B0 → ρ0γ,

even a misidentification rate of a few percent can result is a significant background component.

As Figure 7.4 shows, even the helicity structure of the background is signal-like. The

only thing that allows discrimination of this background is the negative shift in its ∆E∗ distri-

bution, which results from misassigning a pion mass to a true kaon. ∆E∗ is the key to measuring

this background component in the final likelihood fit.

7.3.2 B0 → ρ0(η/π0)

These background components are strongly suppressed by the π0 and η vetoes for the

high energy photon. However, there are instances in which the second π0 or η daughter photon is

not reconstructed or falls beneath the minimum energy threshold. As Figure 7.5 indicates, these

backgrounds are more easily identified than B0 → K∗0γ. They have a significantly different

helicity structure. To suppress these background components, the helicity angle is required

to satisfy | cosΘH | < 0.75. The remaining contribution is estimated in the likelihood fit by

including a component representing the η/π0 background. The key variables in the fit are the

Fisher discriminant, which inherits the difference in the helicity distribution, and ∆E∗, which

has a large negative-side tail from the missing energy of the lost η/π0 daughter photon.

The primary difficulty with this particular background is that the branching fractions

for the decays B0 → ρ0(η/π0) are not well measured. The branching fractions and efficiencies
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Figure 7.4: The mES , ∆E∗, cos(θB), and cos(θH) distributions of the B0 → ρ0γ signal MC,
B → K∗γ background and combinatoric B background. All quality cuts have been applied and
all distributions are normalized to the same area.
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Figure 7.5: The mES , ∆E∗, cos(θB), and cos(θH) distributions for the B0 → ρ0γ signal and
ρ(π0/η) backgrounds. All quality cuts have been applied and all distributions are normalized
to the same area.

are too small to allow independent measurement of the yield of this class of background in the

likelihood fit. Thus, the uncertainty in the branching fractions must be incorporated into the

systematic uncertainty of the measurement after the fit is performed.

7.3.3 Strategy

Separate components representing the distributions of the combinatoricB, B0 → K∗0γ,

and B0 → ρ0(η/π0) backgrounds are included in the likelihood fit to data. See Chapter 9.
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fit region signal region

Description raw (200 fb−1) raw (200 fb−1)

B+ → ρ+γ 15102 47.33±0.38 12581 39.43±0.35

B0B
0

combinatoric 226 316±21 32 44.7±7.9

B+B− combinatoric 370 469±24 101 128±13

B+ → K∗+γ 242 12.6±0.8 106 5.52±0.54

B → K∗+π0 72 0.09±0.01 17 0.022±0.005

B → K∗+η 76 0.76±0.09 14 0.14±0.04

B → ρ+π0 2739 28.50±0.54 1580 16.44±0.41

B → ρ+η 2174 23.64±0.51 1090 11.85±0.36

B → π+η 669 3.9±0.2 81 0.47±0.05

B → K+η 22 0.08±0.02 3 0.01±0.01

B → KSη 293 0.71±0.04 69 0.16±0.02

B → π+π0 148 2.46±0.20 17 0.28±0.06

B → K+π0 25 0.31±0.06 4 0.05±0.02

B → KSπ
0(∗) 15 0.33±0.08 5 0.11±0.05

Table 7.5: The yields of the peaking background components for the B+ → ρ+γ decay mode
at 200 fb−1. All yields are normalized using the branching fractions assumed in Table 7.3.
The error on the yield is the statistical error only and does not include the uncertainty in the
branching fractions.
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7.4 Mode B+ → ρ+γ(ρ+ → π+π0)

The sources of B backgrounds for the B+ → ρ+γ (Table 7.5) are analogous to those

of B0 → ρ0γ. Random combinations of candidates form the numerically dominant background.

Dangerous backgrounds that peak in the signal region inmES and ∆E∗ come from B+ → K∗+γ,

B+ → ρ+η, and B+ → ρ+η, which are covered in more detail below.

7.4.1 B+ → K∗+γ

The relationship between the decays B+ → ρ+γ and B+ → K∗+γ is analogous to that

between B0 → ρ0γ and B0 → K∗0γ. Misidentification of a final state K+ as π+ leads to a

false candidate from a B+ → K∗+γ decay that mimics many of the distributions of true signal

candidates (Figure 7.6). The key to discerning this background in the final fit is the negative

shift in the ∆E∗ distribution due to the incorrect mass hypothesis assigned to the misidentified

kaon.

7.4.2 B+ → ρ+(η/π0)

A below-threshold or missing photon from η/π0 → γγ decay can lead to a

B+ → ρ+(η/π0) decay that closely resembles a B+ → ρ+γ signal decay. Again, these back-

grounds can be distinguished by their helicity distribution (Figure 7.7) and the long negative-

side tail on their ∆E∗ distributions due to the missing photon. Candidates are required to

satisfy | cosΘH | < 0.7 to suppress most candidates from theses backgrounds.

7.4.3 Strategy

Separate components representing the distributions of the combinatoric B,

B+ → K∗+γ, and B+ → ρ+(η/π0) backgrounds are included in the likelihood fit to data. See
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Figure 7.6: The mES , ∆E∗, cos(θB), and cos(θH) distributions for the B+ → ρ+γ signal,
B → K∗γ background, and combinatoric B background. All quality cuts have been applied and
all distributions are normalized to the same area.
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Figure 7.7: The mES , ∆E∗, cos(θB), and cos(θH) distributions of the B0 → ρ0γ signal and
ρ(π/η) backgrounds. All quality cuts have been applied and all distributions are normalized to
the same area.
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fit region signal region

Description raw (200 fb−1) raw (200 fb−1)

B0 → ωγ 10888 17.06±0.16 9438 14.79±0.15

B0B
0

combinatoric 37 51.7±8.5 8 11.17±3.95

B+B− combinatoric 47 59.5±8.7 9 11.40±3.80

B0 → K∗0γ,K∗0 → K+π− 84 5.31±0.58 18 1.14±0.27

B0 → K∗0γ,K∗0 → K0
sπ

0 18 1.14±0.27 6 0.38±0.16

B+ → K∗+γ,K∗+ → K+π0 26 1.35±0.27 8 0.42±0.15

B+ → K∗+γ,K∗+ → K0
sπ

+ 38 1.98±0.32 11 0.57±0.17

B → K∗0η 33 0.48±0.084 9 0.131±0.043

B → K∗+η 4 0.040±0.020 2 0.020±0.014

B → ρ0π0 56 0.11±0.014 12 0.023±0.006

B → ρ0η 56 0.068±0.009 11 0.013±0.004

B → ρ+π0 33 0.34±0.06 10 0.10±0.03

B → ρ+η 40 0.43±0.07 11 0.12±0.04

B → ωη 791 8.45±0.30 476 5.09±0.23

B → ωπ0 711 1.90±0.07 554 1.48±0.06

B → π+η 6 0.035±0.014 0 0±0

B → K+η 0 0±0 0 0±0

B → KSη 16 0.038±0.009 5 0.012±0.005

B → π+π0 0 0±0 0 0±0

B → K+π0 1 0.01±0.01 1 0.01±0.01

B → KSπ
0(∗) 0 0±0 0 0±0

Table 7.6: The yields of the peaking background components for the B0 → ωγ decay mode
at 200 fb−1. All yields are normalized using the branching fractions assumed in Table 7.3.
The error on the yield is the statistical error only and does not include the uncertainty in the
branching fractions.

Chapter 9.

7.5 Mode B0 → ωγ(ω → π+π−π0)

The B backgrounds besetting the B0 → ωγ analysis are enumerated in Table 7.6, and

are analogous to those plaguing the B → ργ modes. Again, B → K∗γ decays and B0 → ω(η/π0)

decays form the most dangerous peaking B backgrounds while the combinatoric background

dominates numerically.
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7.5.1 B → K∗γ

The most dangerous source of background from B → K∗γ decays are decays in the

mode B0 → K∗0γ, K∗0 → K0
sπ

0, K0
s → π+π−, which has the same set of final state particles

as the signal B0 → ωγ. This background is reduced to very low levels by the vertex flight

distance cut detailed in Chapter 4.5.3. The remaining combined B → K∗γ represents a minor

background. Instead of including a component in the likelihood fit representing the B → K∗γ

background, the small bias induced on the signal yield is subtracted from the results of the like-

lihood fit. The bias is small enough that the systematic uncertainty introduced by the subtrac-

tion is relatively small and comparable to the systematic uncertainty necessarily accompanying

a component representing B → K∗γ in the likelihood fit.

7.5.2 B0 → ω(η/π0)

Like similar decays in the B → ργ analyses, events of the decays B0 → ωη and

B0 → ωπ0, where one of the final state η/π0 daughter photons is not reconstructed, peak in

the signal region in mES and ∆E∗. And like the analogous decays in B → ργ modes, this

background is distinguishable from the signal decay by its helicity distribution (Figure 7.8). To

suppress these backgrounds, candidates are required to satisfy | cosΘH | < 0.7.

As indicated in Table 7.3, the branching fraction B(B0 → ωπ0) has not been well

measured. This uncertainty contributes to the systematic uncertainty of the measurement as

described in Chapter 10.

7.5.3 Strategy

A component representing the distribution of the B0 → ω(η/π0) background is included

in the likelihood fit to data. See Chapter 9.
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Figure 7.8: The mES , ∆E∗, cos(θB), cos(θD) and cos(θH ) distributions for the B0 → ωγ signal
MC and ω(η/π0) background. All quality cuts have been applied and all distributions are
normalized to the same area.
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Chapter 8

Monte Carlo efficiencies of selection

criteria

This chapter contains summary tables of the cumulative efficiencies of the selection

criteria described in Chapter 4-7.

8.1 B0 → K∗0γ, K∗0 → K+π−

Table 8.1 displays the cumulative efficiency of each of the selection criteria when applied

to fully simulated B0 → K∗0γ (K∗0 → K+π−) Monte Carlo data. Table 8.2 lists the expected

yields of various backgrounds under the complete set of B0 → K∗0γ (K∗0 → K+π−) selection

criteria based on Monte Carlo studies.
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Cut Passed Rel. ε % Cum. ε %

B0 → K∗0γ(K∗0 → K+π−) Events Generated 72000

Beta Skim/Candidate Finding/Truth Match 50681 70.4 70.4

High-Energy Photon Quality 4.2

No problematic channels 49883 98.4 69.3

Nxtal > 4 49883 100.0 69.3

Second Moment < 0.002 48894 98.0 67.9

−0.74 < cos θγ < 0.93 48038 98.2 66.7

25 cm Isolation from Neutral bumps 44441 92.5 61.7

25 cm Isolation from Charged bumps 43349 97.5 60.2

π0 Veto 41516 95.8 57.7

η0 Veto 39742 95.7 55.2

Charged-Track Quality 4.3

K± GoodTracksLoose 37498 94.4 52.1

π± GoodTracksLoose 35422 94.5 49.2

K± SMSTight 28873 81.5 40.1

π± Not SMSTight 28547 98.9 39.6

Vertex fit χ2 26679 93.5 37.1

σ∆z Cut 25360 95.1 35.2

0.8 < mKπ < 1.0 GeV/c2 22224 87.6 30.9

Fit Region 4.6

−0.3 < ∆E < 0.3 GeV 21474 96.6 29.8

5.2 < mES,rescaled < 5.3 GeV/c2 21474 100.0 29.8

NN > 0.425719 18368 85.5 25.5

Best Candidate Selection 4.7

Best Candidate Selection 18308 99.7 25.4

Overall efficiency 18525 25.7

Expected signal yield in 81.9 fb−1 590.0

Table 8.1: Efficiency of the applied cuts for B0 → K∗0γ(K∗0 → K+π−) signal. Relevant section
numbers are listed for each of the categories of cuts.
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Lumi. Raw Yields in 81.9 fb−1

( fb−1) K+π− K−π+ K+π− K−π+ Total

Generic B+B− 286.53 21 17 6.0 4.9 10.9

Generic B0B̄0 295.79 27 31 7.5 8.6 16.1

B0 → X0
sγ 291.00 120 136 33.8 38.3 72.0

B+ → X+
s γ 280.42 120 126 35.0 36.8 71.8

Generic B0 → K∗0γ 2571.43 0 0 0.0 0.0 0.0

Generic B+ → K∗+γ 2714.29 181 166 5.5 5.0 10.5

Sum of B bkgnds. 87.8 93.5 181.3

uds continuum 39.90 391 385 802.6 790.3 1592.8

cc̄ continuum 42.09 261 257 507.9 500.1 1007.9

τ+τ− 45.70 7 9 12.5 16.1 28.7

uds+ cc̄+ τ+τ− 1323.0 1306.5 2629.5

Off-Resonance Data 9.49 173 144 1493.0 1242.7 2735.8

Table 8.2: K∗0 → K+π− Monte Carlo Yields by CP Mode
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8.2 B0 → ρ0γ

Table 8.3 displays the cumulative efficiency of each of the selection criteria when applied

to fully simulated B0 → ρ0γ Monte Carlo data. Table 8.4 lists the expected yields of various

backgrounds under the complete set of B0 → ρ0γ selection criteria based on Monte Carlo studies.
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Description Events eff.(± stat.) cul. eff.(± stat.)

MC Events 115000

BtoXGamma criteria

1.5 GeV < Emax < 3.5 GeV

nGTL > 2

R2 < 0.9 81836 0.712±0.002 0.712±0.002

high-energy photon

−0.74 < cos(θ) < 0.93 79645 0.973±0.003 0.693±0.002

No problem crystal 79645 1.0±0.0 0.693±0.002

ncrystals > 4 79645 1.0±0.0 0.693±0.002

Second moment < 0.002 78802 0.989±0.004 0.685±0.002

> 25 cm isolation 70976 0.901±0.003 0.617±0.002

π0/η veto 60780 0.856±0.003 0.529±0.002

Charged Tracks

GoodTracksLoose 58591 0.964±0.004 0.509±0.002

π± selector 38948 0.665±0.003 0.339±0.002

ρ0 Meson

mππ 30123 0.773±0.004 0.262±0.002

χ2 prob 28942 0.961±0.006 0.252±0.001

| cos(θH)| < 0.75 25252 0.873±0.005 0.220±0.001

Vertexing

|∆z| < 0.4 cm, |∆zerr| < 0.04 cm 24147 0.956±0.006 0.210±0.001

NN output

NN> 0.6 19435 0.805±0.006 0.169±0.001

fit region

total 17480 0.152±0.001

Table 8.3: The efficiencies of different cuts for the B0 → ρ0γ decay mode with CM2-based
signal Monte Carlo. Truth-matching is not required for the individual cut efficiencies, only for
the last line-item. The efficiency of the corresponding cuts in SP5 signal Monte Carlo is shown
in column 2.
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fit region signal region

Description raw (200 fb−1) raw (200 fb−1)

B0 → ρ0γ 18382 16.8±0.1 17035 15.6±0.2

B0 → K∗0γ, K∗0 → K+π− 320 11.4±0.6 260 9.2±0.6

B → ρ0π0 4471 1.60±0.02 3328 1.20±0.02

B → ρ0η 1052 0.99±0.03 615 0.58±0.02

Sum 2.59±0.04 1.77±0.03

other B0B0 backgrounds 58 33.3±4.4 15 8.6±2.2

other B+B− backgrounds 37 43.2±7.1 3 3.5±2.0

Sum 76.5±8.3 12.1±3.0

off-peak 322 4025±224 24 300±61

Table 8.4: The expected yield for the B0 → ρ0γ decay mode at 200 fb−1 after applying all
cuts. The yields are obtained using the assumed branching fraction or cross sections shown in
Table 7.3.
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8.3 B+ → ρ+γ

Table 8.5 displays the cumulative efficiency of each of the selection criteria when applied

to fully simulated B+ → ρ+γ Monte Carlo data. Table 8.6 lists the expected yields of various

backgrounds under the complete set of B+ → ρ+γ selection criteria based on Monte Carlo

studies.
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Description Events eff.(± stat.) cul. eff.(± stat.)

MC Events 118000

BtoXGamma criteria

1.5 GeV < Emax < 3.5 GeV

nGTL > 2

R2 < 0.9 63753 0.540±0.002 0.540±0.002

high-energy photon

−0.74 < cos(θ) < 0.93 62439 0.979±0.004 0.529±0.002

No problem crystal 62439 1.0±0.0 0.529±0.002

ncrystals > 4 62439 1.0±0.0 0.529±0.002

Second moment < 0.002 61758 0.989±0.004 0.523±0.002

> 25 cm isolation 55560 0.900±0.004 0.471±0.002

π0/η veto 47410 0.853±0.004 0.402±0.002

π0 selections

mπ0 45322 0.956±0.004 0.384±0.002

cos(θ) < 0.6 43077 0.950±0.005 0.365±0.002

Charged Tracks

GoodTracksLoose 42409 0.984±0.005 0.359±0.002

π± selector 34233 0.807±0.004 0.290±0.002

ρ0 Meson

mππ 27217 0.795±0.005 0.231±0.001

| cos(θH)| < 0.7 23157 0.851±0.006 0.196±0.001

NN output

NN> 0.6 17674 0.763±0.006 0.150±0.001

fit region

total 12447 0.105±0.001

Table 8.5: The efficiencies of different cuts for the B+ → ρ+γ decay mode with CM2-based
signal Monte Carlo. Truth-matching is not required for the individual cut efficiencies, only for
the last line-item. The efficiency of the corresponding cuts in SP5 signal Monte Carlo is shown
in column 2.
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fit region signal region

Description raw (200 fb−1) raw (200 fb−1)

B+ → ρ+γ 16132 28.7±0.2 14232 25.3±0.2

B+ → K∗+γ, K∗+ → K+π0 151 4.4±0.4 102 3.0±0.3

B → ρ+π0 3897 7.0±0.1 2609 4.7±0.1

B → ρ+η 769 6.5±0.2 413 3.5±0.2

Sum 13.5±0.3 8.2±0.2

other B0B0 backgrounds 130 74.7±6.5 29 16.6±3.0

other B+B− backgrounds 82 95.6±10.5 17 19.8±4.8

Sum 170.3±12.4 36.5±5.7

off-peak 564 7050±296 32 400±70

Table 8.6: The expected yield for the B+ → ρ+γ decay mode at 200 fb−1 after applying all
cuts. The yields are obtained using the assumed branching fraction or cross sections shown in
Table 7.3.
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8.4 B0 → ωγ

Table 8.7 displays the cumulative efficiency of each of the selection criteria when applied

to fully simulated B0 → ωγ Monte Carlo data. Table 8.8 lists the expected yields of various

backgrounds under the complete set of B0 → ωγ selection criteria based on Monte Carlo studies.
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Description Events eff.(± stat.) cul. eff.(± stat.)

MC Events 118000

BtoXGamma criteria

1.5 GeV < Emax < 3.5 GeV

nGTL > 2

R2 < 0.9 58953 0.500±0.002 0.500±0.002

high-energy photon

−0.74 < cos(θ) < 0.93 57705 0.979±0.004 0.489±0.002

No problem crystal 57705 1.0±0.0 0.489±0.002

ncrystals > 4 57705 1.0±0.0 0.489±0.002

Second moment < 0.002 57096 0.989±0.004 0.484±0.002

> 25 cm isolation 51377 0.900±0.004 0.435±0.002

π0/η veto 43856 0.854±0.004 0.372±0.002

Charged Tracks

GoodTracksLoose 40524 0.924±0.005 0.343±0.002

π± selector 36028 0.889±0.005 0.305±0.002

ω Meson

χ2 prob 34566 0.959±0.005 0.293±0.002

KS flight distance veto 33435 0.967±0.005 0.283±0.002

mπππ 18411 0.551±0.004 0.156±0.001

cos θH < 0.7 16175 0.879±0.007 0.137±0.001

Vertexing

|∆z| < 0.4 cm, |∆zerr| < 0.04 cm 15090 0.933±0.008 0.128±0.001

NN output

NN> 0.65 11486 0.761±0.007 0.097±0.001

fit region

total 8297 0.070±0.001

Table 8.7: The efficiencies of different cuts for the B0 → ωγ decay mode with CM2-based signal
Monte Carlo. Truth-matching is not required for the individual cut efficiencies, only for the
last line-item. The efficiency of the corresponding cuts in SP5 signal Monte Carlo is shown in
column 2.
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fit region signal region

Description raw (200 fb−1) raw (200 fb−1)

B0 → ωγ 10662 9.5±0.1 9591 8.5±0.1

B → ωπ0 243 0.50±0.03 171 0.35±0.03

B → ωη 267 2.2±0.1 162 1.3±0.1

Sum 2.7±0.1 1.7±0.1

B0 → K∗0γ 76 2.7±0.3 21 0.7±0.2

B+ → K∗+γ 78 2.3±0.3 28 0.8±0.2

Sum 5.0±0.4 1.6±0.2

other B0B0 backgrounds 20 11.5±2.6 3 1.7±1.0

other B+B− backgrounds 12 14.0±4.0 1 1.2±1.2

Sum 25.5±4.7 2.8±1.5

off-peak 141 1763±148 14 175±46

Table 8.8: The expected yield for the B0 → ωγ decay mode at 200 fb−1 after applying all
cuts. The yields are obtained using the assumed branching fraction or cross sections shown in
Table 7.3.
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Chapter 9

Signal extraction for individual modes

This chapter presents the likelihood fit that determines the signal yield of each signal

mode individually. The fit estimates the raw number of signal events surviving the selection

criteria. Converting this measurement into an estimation of the branching fractions requires

an estimated efficiency of the selection criteria, which will be described in Chapter 10 along

with a treatment of the systematic uncertainties of the measurement and the estimates for the

individual branching fraction.

The use of the likelihood fit is described in Chapter 3.3. The likelihood function L(~n, ~α)

over a set of independent variables ~x is constructed from a set of PDFs Pi(~xj ; ~αi). for the various

candidate hypotheses i (signal, continuum background, combinatoric B backgrounds, etc.). For

these analyses, the Pi(~xj ; ~αi) are constructed as if the variables ~x are uncorrelated for each

candidate hypothesis. This assumption leads to separable PDF’s of the form

Pi(~xj ; ~αi) ≡
∏

k

Pik(xk ; ~αik) .

Construction of such PDFs becomes simply a matter of fitting a parameterized shape to each

distribution of each variable for each candidate hypothesis. However, the assumption also leads
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to a source of systematic error that must be examined carefully. The detailed BABAR Monte

Carlo is used to determine the shapes of the PDFs.

The likelihood fits are implemented in the RooFit [46] package for the Root [47] data

analysis framework.

This chapter begins with a recapitulation of the independent variables upon which the

fits are based, followed by a description of the construction, verification, and application to real

data of the likelihood fit for each signal mode.

9.1 Likelihood fit variables

Chapter 3.3 describes the variables mES and ∆E∗ that form the foundation of discrim-

ination against the remaining combinatoric backgrounds, both from continuum and B decays.

mES and ∆E∗ are included as independent variable in the fit for each of the four analysis

modes. In these variables, properly reconstructed signal candidates portray strongly peaking

distributions, while combinatoric backgrounds show flatter distributions.

For the B0 → K∗0γ mode, mES and ∆E∗ are the only independent variables in the

fit. The signal B0 → K∗0γ is prominent in these variables and no further variables are required

to discriminate signal from background.

For the B → ργ and B0 → ωγ decays mES and ∆E∗ are not enough. The branching

fractions for these modes are so small as to make their peaks appear as mere statistical fluctua-

tions of the large backgrounds. mES and ∆E∗ alone do not give enough discrimination against

B backgrounds that peak in the signal region. To enhance the power of the fit to discriminate

signal from background, the B → ργ and B0 → ωγ fits include two additional independent vari-

ables: the output of the neural network onn , and the Fisher discriminant F . The neural network

provides another variable in which the signal distribution peaks strongly while the continuum
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distribution is smooth. The Fisher discriminant aids in discrimination against certain dangerous

B backgrounds described in Chapter 7.

9.2 Mode B0 → K∗0γ(K∗0 → K+π−)

9.2.1 Fit components

Three candidate hypotheses are included as components in the fit: signal candidates,

continuum background candidates, and B background candidates.

When the likelihood fit is applied to real data, several parameters defining the shapes

of distributions are allowed to ‘float’–that is they become variables in the parameter space over

which the likelihood function in maximized. It is desirable to float as many of these shape

parameters as possible to avoid systematic uncertainties associated with subtle differences that

may exist between the simulated detector response in the Monte Carlo and the actual detector

response to real events. In general, it is not possible to float every parameter. If the likelihood

function is too general, the maximization fit may fail to converge or converge to pathological

local minima. Table 9.1 indicates which of the parameters of the component PDFs are fixed

and which of them are allowed to float in the likelihood fit.

9.2.1.1 Signal distributions

Studies on the BABAR detailed Monte Carlo events show that the mES distribution of

signal decays is well represented by a simple Gaussian distribution (Appendix A.1). Both of the

Gaussian parameters < mES > and σmES
are allowed to float in the fit.

The ∆E∗ distribution has a significant tail on the negative side due to shower losses

in the calorimetric energy measurements. This asymmetric peak distribution is well described
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Figure 9.1: K∗0 → K+π− Component Fit to signal K∗0 → K+π− Monte Carlo of Gaussian
(mES) × Crystal Ball (∆E∗).

by a Crystal Ball function (Appendix A.3):

FCB(∆E∗) = CCB ·



















e−
(∆E∗−〈∆E∗〉)2

2σ∆E∗2 for ∆E∗ > 〈∆E∗〉 − α∆E∗σ∆E∗

(

n∆E∗

α∆E∗

)n∆E∗ ·e−
α2
∆E∗
2

(

〈∆E∗〉−∆E∗

σ∆E∗
+

n∆E∗
α∆E∗

−α∆E∗

)n∆E∗ for ∆E∗ ≤ 〈∆E∗〉 − α∆E∗σ∆E∗



















,

where CCB is a normalization constant, 〈∆E∗〉 and σ∆E∗ are the mean and standard deviation

of the Gaussian part of the function, α∆E∗ controls the location of the connection between

the Gaussian part and exponential tail, and n∆E∗ controls the shape of the exponential tail.

Figure 9.1 shows fits of these distributions to the BABARMonte Carlo signal events.

Studies with Monte Carlo events indicate that allowing the Crystal Ball parameters

α∆E∗ and n∆E∗ to float in the fit frequently leads to convergence failures. When the likelihood

fit is applied to data, these two parameters are fixed to the values estimated from the fit to Monte

Carlo depicted in Figure 9.1 and listed in Table 9.1. The other two Crystal Ball parameters

defining the location and width of the peak (< ∆E∗ > and σ∆E∗ are allowed to float. The

systematic uncertainties associated with deviations of the true signal distributions of mES and

∆E∗ from these functional shapes used in the likelihood fit are estimated in Chapter 10.8.1.
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Figure 9.2: K∗0 → K+π− Component Fit to continuum Monte Carlo of Argus (mES) × 1st

order polynomial (∆E∗).

9.2.1.2 Continuum distributions

The mES distribution of continuum background conforms to the well-known Argus

function (Appendix A.4)

FArgus(mES) = CArgus ·
mES

EBEAM
·
√

1 − m2
ES

E2
BEAM

· e
−ξmES

(

1−
m2

ES

E2
BEAM

)

,

where CArgus is a normalization constant. The Argus function is a threshold or cutoff function

derived from phase-space considerations in random candidate reconstruction. The cutoff pa-

rameter EBEAM is fixed by the known CM energy of the interaction and is not allowed to float

in the fit. The Argus shape parameter ξmES
is allowed to float.

The ∆E∗ distribution of the continuum background can be represented by a simple

first order polynomial. The slope of the polynomial is allowed to float in the fit. A first

order polynomial makes a one parameter PDF–the constant of the polynomial is fixed by the

normalization condition of the PDF. Figure 9.2 and Table 9.1 show the results of fitting these

shape functions to Monte Carlo continuum events.
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9.2.1.3 B background distributions

The component PDF for the B background component must represent a proportional

sum of the various types of B background described in Chapter 7.1, namely

• Down-feed from B → Xsγ decays,

• Cross-feed from B+ → K∗+γ, K∗+ → K+π0,

• Combinatoric coincidences.

As Chapter 7.1 indicates, the proportion of B → Xsγ decays relative to other B decay processes

was not well measured at the time this analysis was performed. Nor is the yield of any of the

B background components large enough to reliable estimate the relative proportions. The PDF

included in the fit represents the shape of the distributions of a sum of these components in

proportions based on the best estimates available. The systematic uncertainty associated with

the uncertain proportion of B → Xsγ is investigated in Chapter 10.8.1 by varying the shape of

the B background PDF to represent different proportions of the background components.

Several functional representations of the mES distribution of the best-estimate sum

B background were tested. The best representation was obtained with a Novosibirsk function

(Appendix A.2) as depicted in Figure 9.3:

FNovo(mES) = CNovo · exp(−1

2
(
ln(1 + τmES

· (mES− < mES >) · sinh(τmES

√
ln 4)

σmES
τmES

√
ln 4

)

τmES

)2 + τ2
mES

) ,

where CNovo is a normalization constant, 〈mES〉 and σmES
control the location of the maximum

and width of the distribution similar to Gaussian parameters, and τmES
controls the shape of

the tail. The ∆E∗ distribution follows an exponential shape well. Monte Carlo studies indicate

that allowing any of the parameters of these shapes to float leads to convergence problems in the

fit to data Table 9.1. All of the parameters are fixed in the fit to data to the values obtained in a
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Figure 9.3: K∗0 → K+π− Component Fit to non-signal B Monte Carlo of Novosibirsk (mES)
× exponential (∆E∗).

fit to the Monte Carlo distributions of the B background. The systematic uncertainty associated

with fixing this shape in the fit is investigated in Chapter 10.8.1.

9.2.1.4 Direct CP asymmetry

Another goal of the fit is to measure the direct CP asymmetry aCP of the signal in

addition to yields of the three candidate hypotheses. To do this, the candidates over which the

fit is applied are divided into two disjoint populations depending on the charge of the charged

final state candidate tagged as the kaon. Candidates with a positively charged kaon are placed

in the population X+ representing B0 → K∗0γ, K∗0 → K+π− decays, while candidates with a

negative kaon candidate are assigned to the population X− representing the conjugate decay

B
0 → K

∗0
γ, K

∗0 → K−π+.

Each of these populations has a PDF representing each of the three candidate hy-

potheses. This doubles the number of the number of PDFs as each component PDF is repro-

duced for each candidate hypothesis–a total of six components in the fit. With each of the six

components is associated a yield, e.g. nsig,+ represents the estimated number of signal candi-

dates in population X+. With each candidate hypothesis is associated a direct CP asymmetry

aCP,i =
ni,−−ni,+

ni,−+ni,+
.
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The shapes of the distributions for the candidate hypotheses of population X+ are

expected to be identical to those of population X−. Thus the values of the floated parameters

α+ in each distribution over population X+ Pi,+(~x; ~αi,+) are constrained to the same values as

their corresponding parameters α− in population X−.

Monte Carlo studies indicate that the B background yield is too small for reliable

independent estimation of aCP,BBkg (Chapter 9.2.2). Thus in the likelihood fit to data it is

constrained aCP ,BBkg = aCP ,ContBkg ≡ aCP,Bkg . With the population specific yields ni,± related

to the total hypothesis yield ni and CP asymmetry aCP,i by ni,± = ni(1 ∓ aCP,i), the likelihood

function becomes:

L(~n, ~α) = exp

(

−
∑

i∈Hev

ni

)

(9.1)

·





∏

j∈X+

(

∑

i∈Hev

ni(1 − aCP ,i)Pi(~xj ; ~αi)

)

·
∏

j∈X−

(

∑

i∈Hev

ni(1 + aCP,i)Pi(~xj ; ~αi)

)



 ,

where the Hev sums are over event hypotheses Hev = {sig ,BBkg ,ContBkg}.

The parameters over which the likelihood function are maximized are the shape pa-

rameters of the individual PDFs listed in Table 9.1, the total yields in each of the candidate

hypotheses ni, and the two CP asymmetry parameters aCP ,sig and aCP,Bkg–a total 11 parame-

ters.

9.2.2 Toy Monte Carlo studies

Toy Monte Carlo studies are a tool for examining the robustness of the likelihood fit

and for estimating some of the systematic uncertainties associated with the fitting procedure.

In a Toy Monte Carlo study, the likelihood fit is applied to many (usually ≥ 100) prototype data

sets that are generated via Monte Carlo methods. Each data set is referred to as a toy data

set or experiment and represents the content of real data under a well-defined scenario. The

collection of experiments generated under the same scenario is usually termed an ensemble. The
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Data Set/Parameter float/fit Value±Error

Signal MC

Gaussian(mES) < mES > (GeV) float 5.27946±0.00011

σmES
(GeV) float 0.002628±0.000077

Crystal Ball(∆E∗) < ∆E∗ > (GeV) float 0.01802±0.00367

σ∆E∗ (GeV) float 0.04273±0.00257

α∆E∗ fix 0.700083±0.136

n∆E∗ fix 5.19±3.85

Continuum background MC

Argus(mES) ξmES
float −11.00±2.18

EBEAM (GeV) fix 5.29

1st order Poly (∆E∗) P0∆E∗ (GeV−1) float −0.697±0.111

Off resonance data

Argus(mES) ξmES
float −17.68±2.04

EBEAM (GeV) fix 5.27

1st order Poly (∆E∗) P0∆E∗ (GeV−1) float −1.037±0.105

BB̄

Novosibirsk(mES) < mES >Bbkg (GeV) fix 5.28107±0.00145

σmES ,Bbkg (GeV) fix 0.0117±0.0013

τBbkg fix −1.061±0.129

Exponential(∆E∗) cBbkg (GeV−1) fix −6.640±0.593

Table 9.1: K∗0 → K+π− PDF parameters fit to fully simulated Monte Carlo and off resonance
data
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Figure 9.4: K∗0 → K+π− Full Fit to SP4 Monte Carlo: The data are a weighted sum of all
components. The PDF is the combined PDF for the branching fraction fit.
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ensemble averages and distributions of the fit values of the floating parameters and of maximum

likelihood value itself convey information about the robustness and fidelity of the fit function.

These qualitative statements can be clarified using the ACP measurement in

B0 → K∗0γ as an example. The PDFs used in the likelihood function itself create an useful first

scenario to test the intrinsic robustness of the fit. If the experiments are generated in accordance

with the likelihood PDFs–with the assumptions that mES and ∆E∗ are uncorrelated for each

candidate hypothesis and the distributions conform exactly to the empirical function fit to the

fully simulated BABAR Monte Carlo–then the likelihood fit applied to the experiments should

reproduce the values of the floating parameters used to generate the experiments. A toy ensemble

generated in this way, directly from the PDF used to fit it, is termed a ‘pure’ toy ensemble. Of

course, there will be statistical fluctuations of the fit parameters, but the ensemble distributions

of the fit values of the parameters should follow a Gaussian (A.1) shape with a mean at the

generator value. A more commonly used figure of merit is termed the ‘pull’ p(a) of a floating

parameter a. For each toy data set, the likelihood fit estimates a value aest and an error σ(a) for

each of the floating parameters. The pull p(a) is defined in terms of the value of the parameter

used in generating the data set agen as p(aest ) = (aest − agen)/σ(a). The distribution of the pull

p(a) over an ensemble should be Gaussian with mean 0 and σ 1. Significant deviations from

these values in the pull distributions are indicative of a possible problem with the likelihood fit.

Studies on the fully simulated BABAR Monte Carlo give estimates for the yields Ni

of each of the six candidate hypotheses (2 CP states × {signal, continuum, B background})

expected in real data (Table 8.2). Each toy data set contains a randomly generated number of

candidates ni of each type i. The ni are generated from a Poisson distribution with mean Ni.

Hence, the ensemble distribution of ni is Poisson with mean at the expected value Ni. The ni

candidates are generated from the appropriate PDF described in Chapter 9.2.1 via the common

rejection method. For example, the two dimension PDF for signal candidates is a Gaussian in
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mES times a Crystal Ball in ∆E∗ normalized to unit volume over the fit region:

Psig(mES ,∆E
∗; ~α) ≡ FGauss(mES) ×FCB(∆E∗)

Events are ordered pairs of (mESj ,∆E
∗
j ) values generated randomly and uniformly over the fit

region. Along with an event is a randomly generated selection value sj . If

sj < Psig(mESj ,∆E
∗
j ; ~α) the event is included in the toy data set. This procedure is repeated

until ni events have been included in the data set for each candidate hypothesis. In the toy

study to be described next, 751 independent data sets were generated in this way to form the

ensemble.

Applying a pure toy Monte Carlo study to the B0 → K∗0γ likelihood function disqual-

ifies aCP,BBkg as a free parameter as follows. The data sets for this study are generated from

the PDFs described in Chapter 9.2.1. The numbers of events for each of the six hypotheses are

Poisson-distributed about the mean numbers expected in the real 81.9 fb−1 data set according

to studies with the detailed BABAR Monte Carlo (Table 8.2) with the assumption that there

is no CP asymmetry for any of the three candidate types (signal, continuum, B background)

(aCP ,i = 0). The ensemble contains 751 toy data sets generated with these assumptions. The

likelihood function described in Chapter 9.2.1 is maximized over each of the toy data sets in the

ensemble. The list of floated parameters is that listed in Table 9.1 and the total yields and CP

asymmetries for each of the three candidate hypotheses. Note that this is 12 total parameters.

The constraint aCP ,BBkg = aCP ,ContBkg is not enforced, aCP,BBkg and aCP ,ContBkg are varied

separately.

Table 9.2 shows the resulting mean and RMS values for the floating fit parameter

distributions over the ensemble. With an RMS value of 0.260, it is clear that aCP,BBkg cannot

be measured well by the likelihood fit even over these most ideal of data set. Several toy data

sets produce estimates for aCP,BBkg with very large errors. These large errors are commonly
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Float ACP,BBkg ACP,BBkg = ACP,ContBkg

Variable Mean RMS Mean RMS

nBBkg 170.1 51.6 170.1 51.8

nContBkg 2232.4 67.0 2232.4 67.1

nSig 581.4 28.5 581.35 28.54

aCP,BBkg -0.000 0.260 N/A

aCP,ContBkg -0.000 0.026 -0.00 0.026

aCP,Sig 0.0020 0.047 0.00 0.047

P0∆E -0.715 0.154 -0.715 0.155

ξ -11.65 3.14 -11.65 3.14

< ∆E > 0.0179 0.0030 0.018 0.003

σ∆E 0.0428 0.0026 0.0427 0.0026

< mES > 5.27948 0.00013 5.27948 0.00013

σmES
0.00258 0.00012 0.00258 0.00011

Table 9.2: K∗0 → K+π− Values of Fit Parameters for CP Asymmetry fit from pure toy Monte
Carlo Study.

accompanied by very low values of the estimated error on NBBkg . These appear as bins with

small but nonzero populations far removed from the main peak in the center two plots of

Figure 9.5A and expanded in Figure 9.6 , which show the estimated error distributions of NBBkg

and aCP,BBkg . Such unusual errors are commonly a symptom of convergence problems with the

likelihood fit. Not only is aCP ,BBkg poorly measured, its inclusion may be leading the fit into

regions of parameter space that make fit convergence difficult.

This toy Monte Carlo study was repeated, this time including the constraint

aCP,BBkg = aCP,ContBkg . The same ensemble of data sets was used, only the likelihood function

was changed to reflect the constraint and reduce the number of free parameters from 12 to the

11 proposed for the final fit to data. The results of this study are also presented in Table 9.2

and Figure 9.5. Note from Figures 9.5 and 9.6 that removing aCP ,BBkg as a free parameter

eliminates the instances of unusual error in the NBBkg .

A final pure toy Monte Carlo study was conducted to verify the fit’s sensitivity to

an actual aCP,sig in data. According to the RMS of the aCP ,sig distribution in Table 9.2
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Figure 9.5: K∗0 → K+π− Pure toy Monte Carlo : Distributions of NBBkg (first row) and
aCP,ContBkg (second row) for two toy studies: A) in which aCP,BBkg is free to float in the fit and
B) in which aCP,BBkg is fixed equal to aCP,ContBkg. For both aCP,generated = 0. The first column
shows the distributions of the estimated parametersNBBkg and aCP,ContBkg. The second column
shows the distributions of the estimated uncertainties σ(NBBkg) and σ(aCP,BBkg). The third
column shows the distributions of the pulls NBBkg/σ(NBBkg) and aCP,ContBkg/σ(aCP,BBkg).
Enlarged versions of the plots of σ(NBBkg) and σ(aCP,BBkg) for the freely floating aCP,BBkg

study (A) appear in Figure 9.6, which more clearly shows the anomalous values.
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Figure 9.6: Enlarged versions of the plots of distributions σ(NBBkg) and σ(aCP,ContBkg) from
Figure 9.5 A. The distributions are from pure toy Monte Carlo study of K∗0 → K+π− in
which aCP,BBkg is freely estimated by the likelihood fit. Note the occassional occurrence of
estimated errors far from the central peak. This is often indicative of a failure in the likelihood
fit procedure.
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for the last aCP,sig = 0 pure toy, an asymmetry of aCP,sig = 0.1 should be unambiguously

measurable. An ensemble of 751 toy data sets was generated from the PDFs described in

Chapter 9.2.1 in the same way as for the previous toy Monte Carlo study with aCP,sig =

0.1. That is, the mean number of representative signal candidates included in the population

X+ is no longer equal to the mean number of candidates included in X− for the data set.

Rather, they have means set by the value of aCP,sig : N+,sig = Nsig(1 − aCP,sig)/2 = 0.45Nsig ,

N−,sig = Nsig (1 + aCP,sig)/2 = 0.55Nsig . The summary of mean and RMS values for the esti-

mated values of the floating fit parameters shown in Table 9.3 indicates that, indeed, the fit is

sensitive to values of aCP ,sig ≈ 0.1.

A final toy Monte Carlo study is conducted to examine the effects of correlations

between mES and ∆E∗ in data on the likelihood fit, which assumes that the variable are un-

correlated. Table 9.4 shows that in the fully simulated BABAR Monte Carlo data. mES and

∆E∗ are not strongly correlated for any of the three event types for K∗0 → K+π−. However,

the stronger correlations in other B → K∗γ modes led to a further investigation, which was also

applied to K∗0 → K+π− for uniformity.

In order to introduce the correlations in mES and ∆E∗ into the data, the data sets

for the toy Monte Carlo ensemble include events from the fully simulated BABAR Monte Carlo,

which simulate these correlations correctly. The continuum and B background components of

the data set are generated from the appropriate PDFs described in Chapter 9.2.1. All of the

signal events included in the data sets are drawn from the fully simulated BABAR Monte Carlo.

The process of mixing fully simulated data with PDF generated data is known as ‘embedding’

by BABAR analysts, and a toy Monte Carlo study that uses this technique to construct the

ensemble data sets is called an embedded toy Monte Carlo study.

Embedded toy Monte Carlo studies represent a necessary compromise. Ideally, every

data set in a toy Monte Carlo study would draw all of its events from the fully simulated Monte
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Carlo. However, usually only enough continuum and generic B Monte Carlo is generated in the

BABAR simulation production to create a single data set of appropriate size. The simulation

is time and compute intensive and it is impossible to generate more than one independent set

of fully simulated Monte Carlo, so independent sets of continuum and B background data are

generated from the PDFs–the implicit assumption that their mES and ∆E∗ correlations are

negligible is supported by the fully simulated Monte Carlo. Specific signal modes, like the

decays B0 → K∗0γ, K∗0 → K+π−, are generated in relatively large quantities because of their

need in the development for analysis. The set of fully generated B0 → K∗0γ, K∗0 → K+π−

events used in the development of this analysis contains as many events as are expected in

2571.4 fb−1–enough to create 31 independent data sets equivalent to 81.9 fb−1. This is still not

enough to create the desired ensemble of > 100 independent toy data sets, so a random selection

of these events are included in each toy data set with the recognition that the data sets will

not be completely independent. The statistics of the toy Monte Carlo study are interpreted as

if there were just 31 independent data sets in the ensemble. If all of the N toy data sets were

independent, the statistical error σ(x) on the ensemble average of the fit parameter x would be

computed as the ensemble standard deviation σ(x) ≈ 1
N−1

∑

(x− < x >)2. Since the N data

sets of the ensemble are not all independent, the number of independent data sets that could be

constructed Nind = 31 is used instead: σ(x) ≈ 1
Nind−1

∑

(x− < x >)2.

Table 9.3 displays the means of the fit parameters over the ensemble of 751 signal-

embedded toy data sets, and Table 9.5 tabulates their pulls. These toys were generated with an

average 590 embedded signal decays equally distributed between the two modes. It is clear that

the likelihood fit underestimates the number of signal events. To determine the necessary cor-

rection factor, the distribution of the ratios of the number fit yields of each candidate hypothesis

Ni,fit to the number of generated or included events of each type Ni,gen , Ni,fit/Ni,gen , is fit with

a Gaussian distribution. The fit mean of the Gaussian is used as a correction factor in the final
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result. The fit σ/
√
Nind of the Gaussian is incorporated into the estimated systematic error

(Chapter 10.8.1). These efficiency distributions are displayed in Figure 9.7 and summarized in

Table 9.6.

Pure Toy Monte Carlo Embedded Toy

(ACP,Sig = 0.1) (ACP,Sig = 0.0)

Variable Mean RMS Mean RMS

nBBkg 175.6 52.3 190.4 54.6

nContBkg 2223.2 65.9 2221.9 70.11

nSig 581.1 28.7 573.8 28.7

aCP,ContBkg -0.000 0.021 -0.002 0.021

aCP,Sig 0.102 0.045 0.00 0.047

P0∆E -0.705 0.151 -0.692 0.158

ξ -11.46 3.31 -11.32 3.37

< ∆E > 0.0181 0.0028 0.020 0.003

σ∆E 0.0427 0.0026 0.039 0.0023

< mES > 5.27948 0.00013 5.27952 0.00012

σmES
0.00259 0.00011 0.00256 0.00011

Table 9.3: K∗0 → K+π− Values of Fit Parameters for CP Asymmetry fit from pure toy Monte
Carlo Study (ACP,Sig = 0.1) and Embedded Toy study.

Data set Correlation

Continuum MC -0.045

Off-peak Data 0.027

Generic B MC -0.084

Signal MC 0.020

Table 9.4: The correlations between mES and ∆E∗ for continuum background Monte Carlo,
off-peak data, generic B Monte Carlo and signal Monte Carlo for reconstructed B0 → K∗0γ
(K∗0 → K+π−) candidates. The events in the fitting region are selected and all the cuts are
applied.

9.2.3 Fit results on data

After the likelihood fit procedure has been vetted by toy Monte Carlo studies the fit

can be applied to the real data. The results are depicted in Figure 9.8 with the fit values of
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Pure Toy MC Embedded Toy MC

Description Mean of Pull σ of Pull Mean of Pull σ of Pull

ACP,Sig 0.042 1.002 -0.014 1.013

ACP,Bkg -0.012 1.006 -0.110 1.004

Sig. Yield -0.318 0.997 -0.589 1.019

Cont. Bkg. Yield 0.243 0.992 0.086 1.040

B Bkg. Yield -0.185 0.995 0.207 1.046

< mES > 0.017 1.004 0.336 0.950

< ∆E∗ > -0.003 1.011 0.636 1.097

σmES
-0.133 1.076 -0.310 1.014

σ∆E∗ -0.050 1.055 -1.596 1.036

ξ -0.209 0.957 -0.114 1.023

P0∆E∗ -0.136 1.022 0.013 1.051

Table 9.5: K∗0 → K+π− Toy Monte Carlo Pulls, ACP fit: The mean and σ of the pull distri-
butions for both Pure and Signal-Embedded Toy studies for each of the floating parameters.

Yield Parameter Pure Toy Signal Embedded Toy

εnSig 0.99958±0.00082 0.97386±0.00085

σ(εnSig) 0.02592±0.00059 0.02746±0.00062

εnContBkg 1.00046±0.00070 1.00155±0.00070

σ(εnContBkg) 0.02216±0.00050 0.02263±0.00050

εnBBkg 0.9960±0.0090 1.0658±0.0092

σ(εnBBkg) 0.2833±0.0064 0.2983±0.0066

Table 9.6: K∗0 → K+π− Toy Monte Carlo yield efficiencies
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Figure 9.7: K∗0 → K+π− Embedded Toy MC study of fits with randomly selected simulated sig-
nal data. Top row: distributions for the estimated component yields. Bottom row: distributions
of the ratio of estimated to generated component yield with Gaussian fit.

the parameters summarized in Table 9.7. There are no surprises in the fit. The fit values of the

parameters are used to estimate the branching fraction and CP asymmetry of B0 → K∗0γ in

Chapter 10.8.1.

A final toy Monte Carlo study is used to validate the fit maximum value of the likelihood

function. Assume that the true distribution of real data is represented by the parameters and

yields produced by the likelihood fit. How likely is the value of the likelihood function under

this assumption? A signal embedded toy Monte Carlo study is used to answer this question.

The data sets in the study ensemble are composed of embedded events from the fully simulated

signal Monte Carlo and generated events from the continuum and B background PDFs. The

shape parameters of the continuum background PDF used in generation are fixed to the values

produced by the likelihood fit to data. The B background shape was fixed for the likelihood fit

to data and remained fixed in the same shape for generation of the toy events. The numbers of

events of each type included in data set are the values estimated by the likelihood fit to data.
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Figure 9.8: K∗0 → K+π−: CP fit to onpeak RunI + RunII data. The fit regions are projected
onto mES (right) and ∆E∗ (left). The points with errors represent the binned data. The
blue lines represent the complete fit PDF. The black, red, and green lines represent the signal,
continuum, and B background components.

In the case of the signal component, the number of events in each data set is the fit yield scaled

up by the reciprocal of the fit efficiency determined in Chapter 9.2.2. The likelihood fit was

applied to each data set in the ensemble exactly as it was applied to the real data. The resulting

distribution of the negative log likelihood (NLL) value appears in Figure 9.9. The NLL value

produced by the fit lies well within the toy Monte Carlo distribution signifying a good fit.
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Modes K∗0 → K+π−

Param BF fit ACP fit

Signal 582.6 583±30

ACP,sig N/A -0.069±0.046

Cont. Bkg. 2579.8 2579±70

B Bkg. 141.5 142±54

ACP,bkg N/A 0.006±0.020

< mES > 5.27980 5.27980±0.00013

σmES
0.00254 0.00255±0.00012

< ∆E∗ > -0.0109 -0.0109±0.0031

σ∆E∗ 0.0450 0.0450±0.0027

ξ -12.6 -12.58±3.0

P0∆E∗ -0.492 -0.490±0.14

Table 9.7: Comparison of results from branching fraction and ACP fits to data
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Figure 9.9: ACP Goodness of fit test. Negative maximum likelihood distributions of a signal
embedded toy studies for K∗0 → K+π−. The yields and parameters for PDF are fixed from
unblinded results, the negative maximum likelihoods from the unblinded results are marked by
red lines in the same figures.
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9.3 Modes B → ργ and B0 → ωγ

The likelihood fit functions for the decays B0 → ρ0γ, B+ → ρ+γ, and B0 → ωγ are

more complicated than that for (B0 → K∗0γ, K∗0 → K+π−). The relative backgrounds yields

are expected to be much larger than for B0 → K∗0γ, and as such must be treated more carefully

and completely. Clear discrimination must be established against the peaking backgrounds,

which have concentrations of events in the signal region inmES and ∆E∗. To enhance separation

between signal and the various backgrounds each candidate hypothesis is represented by a four

dimensional PDF over mES, ∆E∗, the neural network output onn , and the Fisher discriminant

F .

The likelihood fit for each mode has PDF components representing signal decays, con-

tinuum background decays, and peaking B → (ρ/ω)(η/π0) decays. In addition, the B → ργ

decay modes have PDF components representing peaking B → K∗γ backgrounds and combina-

toric B backgrounds. The B → K∗γ and combinatoric B backgrounds are much less significant

for the B0 → ωγ mode and do not need independent PDFs (Chapter 7.5).

The shapes of these PDFs for each mode are fixed to distributions of the variables in

the fully simulated BABAR Monte Carlo and in data sidebands. Table 9.9 summarizes the shapes

used for each PDF. The determination of each of these shapes will be described later in this

chapter.

As in the B0 → K∗0γ analysis, the likelihood functions are vetted using toy Monte

Carlo studies and finally applied to data.

9.3.1 Signal components

The PDFs used to represent the signal components of each of the B → (ρ/ω)γ modes

are depicted in Figures 9.10-9.12.
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Component Yield mES ∆E∗ Neural Net Shape Fisher Shape

Signal Fit MC MC MC, val: CS MC

peaking B background MC MC MC same as signal MC

combinatoric B background Fit MC MC same as signal MC

continuum background Fit Fit Fit side band on-peak side band on-peak

Table 9.8: The treatment of the normalization and shape parameters of the individual PDF
components. The combinatoric B background is negligible in the B0 → ωγ decay mode and
is not treated in the likelihood fit. The neural net signal shape is fixed by Monte Carlo but
validated by a control sample. The neural net shape for peaking B background and combinatoric
B background is fixed to be the same as the shape in signal.

Mode Description mES ∆E∗ neural net Fisher

B0
→ ρ0γ

signal Crystal-Ball Crystal-Ball Crystal-Ball KEYS

B → K∗γ bkg. Crystal-Ball Crystal-Ball same as signal KEYS

B → ρ(π/η) bkg Crystal-Ball Crystal-Ball same as signal KEYS

Combinatoric B bkg KEYS KEYS same as Signal KEYS

Continuum bkg ARGUS 2nd poly Histogram PDF KEYS

B+
→ ρ+γ

signal Crystal-Ball Crystal-Ball Crystal-Ball KEYS

B → K∗γ bkg Crystal-Ball Crystal-Ball same as Signal KEYS

B → ρ(π/η) bkg Crystal-Ball Crystal-Ball same as Signal KEYS

Combinatoric B bkg KEYS KEYS same as signal KEYS

Continuum bkg ARGUS 2nd poly Histogram PDF KEYS

B0
→ ωγ

signal Crystal-Ball Crystal-Ball KEYS KEYS

B → ω(π/η) bkg Crystal-Ball Crystal-Ball same as Signal KEYS

Continuum bkg ARGUS 2nd poly Histogram PDF KEYS

Table 9.9: The standard functions used to build the final PDF for B0 → ρ0γ, B+ → ρ+γ,
and B0 → ωγ decay modes. Descriptions of the functions can be found in [48] (ARGUS), [49]
(Crystal-Ball), and [50] (KEYS).
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Studies on the BABAR detailed signal Monte Carlo indicate that the mES and ∆E∗

distributions for each of the three B → (ρ/ω)γ signal modes are well represented by Crystal Ball

functions (Appendix A.3). The ∆E∗ distributions display the same significant negative-side tail

also observed in B0 → K∗0γ (Chapter 9.2.1). This tail is largely due to shower losses in the

measurement of the high energy photon momentum. These losses also contribute to a low-side

tail in mES more significantly than observed in B0 → K∗0γ.

The mES and ∆E∗ distributions shapes have a theoretic foundation. This is not the

case for the distributions of the neural network (NN) outputs onn and the Fisher discriminants

F . More empirical representational functions must be selected for these variables. The NN

distributions for the B0 → ρ0γ and B+ → ρ+γ modes fit Crystal Ball functions well, as seen

in Figures 9.10 and 9.11. The B0 → ωγ NN distribution does not fit any relatively simple and

common function and must be represented by a one-dimensional KEYS PDF (Appendix A.5).

A KEYS function is a non-parametric shape that constructs a smooth distribution from a finite

set of discrete points.

The Fisher discriminant F distributions for each of the signal modes also must be

empirically represented by a KEYS PDF.

In the BABAR data set, the signal yields of the signal modes are not expected to be

large enough to estimate any of the distribution shape parameters. The shapes of the signal

distributions are fixed to those fit to fully simulated signal Monte Carlo. The effect of fixing

the signal shape will be examined after the application of the fit to data for determination of a

systematic error associated therewith.

9.3.2 Continuum background components

The PDFs used to represent the continuum background components of each of the

B → (ρ/ω)γ modes are depicted in Figures 9.13-9.15.
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Figure 9.10: The PDFs for the signal in B0 → ρ0γ decay mode. The lines represent the
functional form of the PDFs used in the likelihood fit. The points are a histogram of the fully
simulated signal Monte Carlo from which the PDF shapes are derived.
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Figure 9.11: The PDFs for the signal in B+ → ρ+γ decay mode. The lines represent the
functional form of the PDFs used in the likelihood fit. The points are a histogram of the fully
simulated signal Monte Carlo from which the PDF shapes are derived.
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Figure 9.12: The PDFs for the signal in B0 → ωγ decay mode. The lines represent the functional
form of the PDFs used in the likelihood fit. The points are a histogram of the fully simulated
signal Monte Carlo from which the PDF shapes are derived.
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The mES and ∆E∗ distributions of the continuum background events for the

B → (ρ/ω)γ modes are similar to those for B0 → K∗0γ. The mES distributions are well rep-

resented by an Argus shape (Appendix A.4). The ∆E∗ distributions conform well to a simple

second order polynomial.

Like the signal components, the continuum components have NN and F distributions

that must be modeled empirically. Rather than the Monte Carlo events, the wealth of real

events in the sidebands outside of fit region are used to create the continuum NN and F PDF

models. If judiciously selected these real events, which are primarily from continuum processes

with small contributions from combinatoric B candidates, represent the distributions of the

continuum candidates in the fit region better than simulated Monte Carlo events. Each mode

uses the union of two sidebands for developing the continuum background distributions: an

upper ∆E∗ sideband, and a mass-veto sideband that inverts the analysis cut on the ρ or ω

mass. Explicitly defining these sidebands:

• Upper ∆E∗ sideband (all modes): candidates passing all of the analysis cuts save the fit

region cut in the mES × ∆E∗ region [5.2, 5.3]GeV × [0.3, 0.6]GeV.

• Mass veto sideband (B → ργ modes): candidates passing all of the analysis cuts save

the fit region and mππ cut in the mππ ×mES × ∆E∗ region [0.5, 0.63]
⋃

[0.94, 1.10]GeV×

[5.2, 5.26]GeV× [−0.35, 0.6]GeV.

• Mass veto sideband (B0 → ωγ modes): candidates passing all of the analysis cuts save the

fit region and mππ cut in the mππ ×mES × ∆E∗ region [0.7, 0.764]
⋃

[0.795, 0.85]GeV ×

[5.2, 5.26]GeV× [−0.35, 0.6]GeV.

The NN PDFs used for each of the modes in the likelihood fits are the histograms

of the neural network output for the union of the sidebands. That is, the PDF shape is the

166



MES
5.2 5.22 5.24 5.26 5.28

E
ve

nt
s 

/ (
 0

.0
02

25
 )

0

10

20

30

40

50
 3.2± = -12.83 

MES(1)
ξ

MES
5.2 5.22 5.24 5.26 5.28

E
ve

nt
s 

/ (
 0

.0
02

25
 )

0

10

20

30

40

50

a)

 (GeV)*E∆
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

E
ve

nt
s 

/ (
 0

.0
15

 )

0

20

40

60
 0.16± = -1.288 deltaE(1)P1

 1.00± =  1.43 deltaE(1)P2

 (GeV)*E∆
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

E
ve

nt
s 

/ (
 0

.0
15

 )

0

20

40

60

b)

NN
0.6 0.7 0.8 0.9 1

E
ve

nt
s/

0.
01

33
33

0

50

100

150

c)

Fisher
-0.5 0 0.5

E
ve

nt
s 

/ (
 0

.0
42

5 
)

0

50

100

150

200

250

Fisher
-0.5 0 0.5

E
ve

nt
s 

/ (
 0

.0
42

5 
)

0

50

100

150

200

250

d)

Figure 9.13: The PDFs for the continuum background in B0 → ρ0γ decay mode. The lines
represent the functional form of the PDFs used in the likelihood fit. The points are a histogram
of the sideband in BABAR data from which the PDF shapes are derived. In the case of the
neural network (NN) distribution, the PDF is itself the sideband histogram so the two exactly
coincide.

normalized step function corresponding to a histogram of the NN values of candidates in the

sidebands.

The Fisher F PDFs are non-parametric KEYS PDFs (Appendix A.5) generated by the

sideband events for each of the signal modes.

Continuum processes are the single largest source of candidates. As such, the shape

parameters for the Argus and polynomial functions in mES and ∆E∗ can be easily determined

in the likelihood fit. For each mode, the Argus parameter ξ, the first and second polynomial

coefficients P1 and P2, and the total continuum yield are independently estimated in the like-

lihood fit. The constant terms of the secon order polynomial PDFs is fixed by normalization

conditions on the PDFs.

167



 (GeV)ESM
5.2 5.22 5.24 5.26 5.28

E
ve

nt
s 

/ (
 0

.0
02

25
 )

0

20

40

60

80  2.6± = -6.58  (GeV)(1)ESMξ

 (GeV)ESM
5.2 5.22 5.24 5.26 5.28

E
ve

nt
s 

/ (
 0

.0
02

25
 )

0

20

40

60

80

 (GeV)*E∆
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

E
ve

nt
s 

/ (
 0

.0
15

 )

0

20

40

60

80

100  0.11± = -1.036 deltaE(1)P1
 0.70± = -0.302 deltaE(1)P2

 (GeV)*E∆
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

E
ve

nt
s 

/ (
 0

.0
15

 )

0

20

40

60

80

100

b)

NN
0.6 0.7 0.8 0.9 1

E
ve

nt
s/

0.
00

80
00

0

50

100

150

c)

Fisher
-0.5 0 0.5

E
ve

nt
s 

/ (
 0

.0
42

5 
)

0

100

200

300

400

Fisher
-0.5 0 0.5

E
ve

nt
s 

/ (
 0

.0
42

5 
)

0

100

200

300

400

d) 

Figure 9.14: The PDFs for the continuum background in B+ → ρ+γ decay mode. The lines
represent the functional form of the PDFs used in the likelihood fit. The points are a histogram
of the sideband in BABAR data from which the PDF shapes are derived. In the case of the
neural network (NN) distribution, the PDF is itself the sideband histogram so the two exactly
coincide.
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Figure 9.15: The PDFs for the continuum background in B0 → ωγ decay mode. The lines
represent the functional form of the PDFs used in the likelihood fit. The points are a histogram
of the sideband in BABAR data from which the PDF shapes are derived. In the case of the
neural network (NN) distribution, the PDF is itself the sideband histogram so the two exactly
coincide.
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9.3.3 B → K∗γ background components

The PDFs used to represent the B → K∗γ background components for the B0 → ρ0γ

and B+ → ρ+γ modes are depicted in Figures 9.16 and 9.17.

Table 8.8 shows that the analysis cuts eliminate almost all of the background candidates

from B → K∗γ decays in the B0 → ωγ mode. No component PDF is included to represent this

background in the B0 → ωγ mode.

B → K∗γ processes do create a significant peaking background for the B0 → ρ0γ and

B+ → ρ+γ modes (Tables 8.4 and 8.6).

The distributions of the four variables for B → K∗γ processes are qualitatively similar

to those of the signal. In fact, the neural network output distributions, which is entirely de-

pendent on the rest of the event (ROE), are almost identical to those for the respective signal

modes. The neural network distributions of the B → K∗γ backgrounds for the B0 → ρ0γ and

B+ → ρ+γ modes are exactly those Crystal Ball functions used for the respective signal decays.

The mES and ∆E∗ PDFs of B → K∗γ for both of the B → ργ decay modes are Crystal

Ball functions fit to the fully simulated BABAR Monte Carlo data. Although the signal decays

are also represented by Crystal Ball functions, the fit values of the Crystal Ball parameters for

the background are significantly different and lead to a distinct PDF shape (see Figures 9.10

and 9.11 for signal shapes). In particular, the peak in the ∆E∗ distribution for B → K∗γ

backgrounds lies significantly beneath that for the signal, making the ∆E∗ distribution the key

discriminating variable in the distribution.

The Fisher discriminant F distributions for the B → K∗γ backgrounds are represented

by KEYS PDFs generated from the fully simulated Monte Carlo events.

The yields of the B → K∗γ are too small to permit independent measurement of ei-

ther their shape parameter or even their yields. Instead of treating B → K∗γ backgrounds as
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Figure 9.16: The PDFs for the B → K∗γ background in B0 → ρ0γ decay mode. The lines
represent the functional form of the PDFs used in the likelihood fit. The points are a histogram
of the fully simulated B → K∗γ Monte Carlo. The neural network (NN) distribution is the
same as that for the signal component and not derived from the B → K∗γ Monte Carlo. The
remaining components are derived from the Monte Carlo data sets against which they’re plotted.

biases that must be subtracted from the final signal yields, fixed PDF components representing

B → K∗γ are included in the likelihood functions. This accomplishes a distributed background

subtraction in the fits that reduces the contribution from B → K∗γ backgrounds to the system-

atic uncertainties. The shape parameters of the PDFs are fixed to the values determined from

the Monte Carlo fits. The yields of the B → K∗γ are fixed to values estimated from the Monte

Carlo efficiency of the selection applied to B → K∗γ decays and the measured B → K∗γ branch-

ing fractions. Fixing the shape and yield of this background component contributes systematic

uncertainties to the final fit yield.
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Figure 9.17: The PDFs for the B → K∗γ background in B+ → ρ+γ decay mode. The lines
represent the functional form of the PDFs used in the likelihood fit. The points are a histogram
of the fully simulated B → K∗γ Monte Carlo. The neural network (NN) distribution is the
same as that for the signal component and not derived from the B → K∗γ Monte Carlo. The
remaining components are derived from the Monte Carlo data sets against which they’re plotted.
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9.3.4 π0/η background components

The PDFs used to represent the B → (ρ/ω)(η/π0) background components of each of

the B → (ρ/ω)γ modes are depicted in Figures 9.18-9.20.

Backgrounds from the processes B → ρη, B → ρπ0, B → ωη, and B → ωπ0, referred

to collectively as B → (ρ/ω)(η/π0), represent a significant signal-like background in each of the

B → (ρ/ω)γ signal modes. Each likelihood fit has a component representing this background.

Like the B → K∗γ backgrounds, the B → (ρ/ω)(η/π0) backgrounds have neural net-

work distributions that are almost identical to those for the signal and mES and ∆E∗ dis-

tributions that are qualitatively similar to those for signal. The neural network PDFs of the

B → ρ(η/π0) backgrounds for the B0 → ρ0γ and B+ → ρ+γ modes are exactly those Crys-

tal Ball functions used for the respective signal decays. The neural network PDF for the

B → ω(η/π0) background component is exactly the KEYS PDF used to represent the signal

neural network distribution.

The mES and ∆E∗ PDFs for each mode are Crystal Ball functions fit the appropriate

fully simulated Monte Carlo distributions. Although the signal PDFs are also Crystal Ball

functions, their parameters differ from those of the π0/η backgrounds. The Fisher discriminant

PDFs are KEYS PDFs generated from the fully simulated Monte Carlo data.

The key variables discriminating B → (ρ/ω)(η/π0) events from signal events in the

fit are ∆E∗ and the Fisher discriminant F (see Chapters 7.3.2, 7.4.2, and 7.5.2, and compare

Figure 9.10 to Figure 9.18, Figure 9.11 to Figure 9.19 and Figure 9.12 to Figure 9.20).

Also like those of the B → K∗γ backgrounds, the yields of the B → (ρ/ω)(η/π0) are

too small for either their distribution shapes or their total yields to be measured independently.

Their shapes in the likelihood fit are fixed to those fit to the fully simulated BABAR Monte Carlo

events. Their yields are fixed to values estimated from the Monte Carlo efficiency of the selection

173



(GeV)ESM
5.26 5.265 5.27 5.275 5.28 5.285 5.29

E
ve

nt
s 

/ (
 0

.0
00

75
 )

0

50

100

150  0.031± =  0.577 (GeV)(1)ESMα
 0.00011± =  0.00353 (GeV)(1)ESMσ

 0.00015±(GeV)(1)> =  5.28027 ES<M

(GeV)ESM
5.26 5.265 5.27 5.275 5.28 5.285 5.29

E
ve

nt
s 

/ (
 0

.0
00

75
 )

0

50

100

150

 (GeV)*E∆
-0.3 -0.2 -0.1 -0 0.1

E
ve

nt
s 

/ (
 0

.0
1 

)

0

20

40

60

80

100

120
 0.032± =  0.229  (GeV)(1)*E∆α

 0.0040± =  0.0657  (GeV)(1)*E∆σ
 0.0060± (GeV)(1)> = -0.06080 *E∆<

 (GeV)*E∆
-0.3 -0.2 -0.1 -0 0.1

E
ve

nt
s 

/ (
 0

.0
1 

)

0

20

40

60

80

100

120

NN
0.6 0.7 0.8 0.9 1

E
ve

nt
s 

/ (
 0

.0
08

 )

0

100

200

300

NN
0.6 0.7 0.8 0.9 1

E
ve

nt
s 

/ (
 0

.0
08

 )

0

100

200

300

c)

Fisher
-0.5 0 0.5

E
ve

nt
s 

/ (
 0

.0
42

5 
)

0

50

100

150

200

Fisher
-0.5 0 0.5

E
ve

nt
s 

/ (
 0

.0
42

5 
)

0

50

100

150

200

d)

Figure 9.18: The PDFs for the ρ(π/η) background in B0 → ρ0γ decay mode. The lines represent
the functional form of the PDFs used in the likelihood fit. The points are a histogram of the
fully simulated ρ(π/η) Monte Carlo. The neural network (NN) distribution is the same as
that for the signal component and not derived from the ρ(π/η) Monte Carlo. The remaining
components are derived from the Monte Carlo data sets against which they’re plotted.

applied to B → (ρ/ω)(η/π0) decays and the best estimates of the B → (ρ/ω)(η/π0) branching

fractions. As noted in Chapter 7 and Table 7.3, the branching fractions of these processes are

not all well measured. This adds an additional uncertainty to the final measurement.

9.3.5 Combinatoric B background components

The PDFs used to represent the combinatoric B background components of the

B0 → ρ0γ and B+ → ρ+γ modes are depicted in Figures 9.21 and 9.22.

The analysis cuts reduce the combinatoric B background to ignorable levels in the

B0 → ωγ (Table 8.8). No PDF component is included to represent combinatoric B backgrounds

for this mode.
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Figure 9.19: The PDFs for the ρ(π/η) background in B+ → ρ+γ decay mode. The lines
represent the functional form of the PDFs used in the likelihood fit. The points are a histogram
of the fully simulated ρ(π/η) Monte Carlo. The neural network (NN) distribution is the same
as that for the signal component and not derived from the ρ(π/η) Monte Carlo. The remaining
components are derived from the Monte Carlo data sets against which they’re plotted.
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Figure 9.20: The PDFs for the ω(π/η) background in B0 → ωγ decay mode. The lines represent
the functional form of the PDFs used in the likelihood fit. The points are a histogram of the
fully simulated ρ(π/η) Monte Carlo. The neural network (NN) distribution is the same as
that for the signal component and not derived from the ρ(π/η) Monte Carlo. The remaining
components are derived from the Monte Carlo data sets against which they’re plotted.
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The combinatoric B backgrounds in the B0 → ρ0γ and B+ → ρ+γ analyses are domi-

nated by B → Xsγ processes. Since the fully simulated Monte Carlo sample of B → Xsγ events

represents the number of events in a much larger sample of equivalent real events than the generic

B samples, the shapes of the combinatoric B background mES , ∆E∗ and Fisher discriminant F

PDFs are fixed to the distributions of the B → Xsγ Monte Carlo. The higher statistics of the

sample will lead to a much smaller systematic uncertainty in the PDF shapes.

As for B → K∗γ and B → (ρ/ω)(η/π0), the neural network PDFs for the combinatoric

B backgrounds are fixed to exactly the distributions used for the signal. The neural network

output distributions for B → Xsγ do not conform to the signal NN shape as well as those for the

other B backgrounds. However, a toy Monte Carlo study shows that the deviation is negligible

as a source of uncertainty.

The mES , ∆E∗, and Fisher distributions of the combinatoric B background component

all resist representation by well known parametric functions. The PDFs for all three variables

for both the B0 → ρ0γ and B+ → ρ+γ analyses are represented by KEYS PDFs generated from

the B → Xsγ Monte Carlo.

The KEYS PDFs have no parameters that can be floated in the likelihood fit. There

are no shape parameters for the combinatoric B background floating in the likelihood fit. How-

ever, the total yields of the combinatoric B background is large enough in the B0 → ρ0γ and

B+ → ρ+γ analyses that they should be independently estimable (see Tables 8.4, 8.6 and 8.8).

9.3.6 Summary of likelihood functions

Table 9.9 (p. 161) summarizes the PDF shapes used for each component of each of the

modes.

Tables 9.10 to 9.12 detail the parameters that are allowed to float in the likelihood

fits and the values of the PDF shape parameters that are fixed in the likelihood fits. Table 9.8
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Figure 9.21: The PDFs for the combinatoric B background in B0 → ρ0γ decay mode. The lines
represent the functional form of the PDFs used in the likelihood fit. The points are a histogram
of the fully simulated generic BB Monte Carlo. The neural network (NN) distribution is the
same as that for the signal component and not derived from the generic BB Monte Carlo. The
remaining components are derived from the Monte Carlo data sets against which they’re plotted.
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Figure 9.22: The PDFs for the combinatoric B background in B+ → ρ+γ decay mode. The lines
represent the functional form of the PDFs used in the likelihood fit. The points are a histogram
of the fully simulated generic BB Monte Carlo. The neural network (NN) distribution is the
same as that for the signal component and not derived from the generic BB Monte Carlo. The
remaining components are derived from the Monte Carlo data sets against which they’re plotted.
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indicates how the values of each of the parameters are fixed.

The likelihood functions for each of the two B → ργ modes are four dimensional (mES ,

∆E∗, onn , and F ) functions with five candidate hypotheses (signal, continuum, B → K∗γ back-

ground, η/π0 background, and combinatoric B background) and a total of six floating parame-

ters: three continuum PDF shape parameters ξmES
, P1,∆E∗ , Pw,∆E∗ and three yields for signal,

continuum, and combinatoric B backgrounds.

The likelihood function for the B0 → ωγ mode is a four dimensional (mES , ∆E∗, onn ,

and F ) function with three candidate hypotheses (signal, continuum, and η/π0 background)

and a total of five floating parameters: three continuum PDF shape parameters ξmES
, P1,∆E∗ ,

Pw,∆E∗ and two yields for signal, continuum background.

9.3.7 Toy Monte Carlo studies

As for the B0 → K∗0γ analysis (Chapter 9.2.2), the likelihood fits for the B → (ρ/ω)γ

modes are validated with toy Monte Carlo studies.

First, pure toy Monte Carlo studies are performed to test the robustness of the pre-

scribed fitting procedure and to obtain an initial estimate of the fit’s sensitivity to expected

signal levels. Studies on the fully simulated BABAR Monte Carlo data, combined with the best

available estimates and measurements of the branching fractions of various data types, lead

to a projected composition of the real 191 fb−1 data set for each of the modes summarized in

Table 9.13. These yields and the PDFs described in Chapters 9.3.1 through 9.3.5 are used to

generate ensembles of toy data sets for each mode. The parameters designated to float in the

likelihood fit are fixed to the values estimated from the development fits to sideband data for

generating the data sets. The likelihood fits are applied to each of the respective toy data sets

and the resulting statistics compiled into Tables 9.14 and 9.15. Table 9.14 shows the pulls of the

floating parameters over the pure toy ensembles. The pulls for the signal yields are depicted in
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Signal Combinatoric backgrounds

Domain B0 → ρ0γ cont. bkg. BB bkg.

Yield (events) float float float

mES( GeV)

< mES >=5.27978±0.00003

ξ (float) KEYS
σmES

=0.00293±0.00002

αmES
=1.24±0.03

nmES
=5.4±0.6

∆E∗( GeV)

< ∆E∗ >=0.005±0.002
P1 (float)

KEYS
σ∆E∗ =0.0368±0.0005

α∆E∗ =0.71±0.03
P2 (float)

n∆E∗ =3.6±0.4

NN

< NN >=0.9784±0.0002

Histogram
PDF

signal NN
σNN =0.0071±0.0002

αNN =0.229±0.009

nNN =1.45±0.04

Fisher KEYS KEYS KEYS

Peaking B backgrounds

B0 → K∗0γ B → ρ0(π0/η)

Yield (events) 15.2±6.1 2.5+3.3
−2.5

mES( GeV)

< mES >=5.2799±0.0003 < mES >=5.2803±0.0002

σmES
=0.0029±0.0002 σmES

=0.0035±0.0001

αmES
=0.87±0.14 αmES

=0.58±0.03

nmES
=10±0 nmES

=10±0

∆E∗( GeV)

< ∆E∗ >=-0.081±0.005 < ∆E∗ >=-0.049±0.006

σ∆E∗ =0.049±0.004 σ∆E∗ =0.066±0.004

α∆E∗ =0.74±0.12 α∆E∗ =0.23±0.03

n∆E∗ =10±0 n∆E∗ =10±0

NN signal NN signal NN

Fisher KEYS KEYS

Table 9.10: All fixed or floating parameters in the final likelihood fit for B0 → ρ0γ decay mode.
The correction of the peak of ∆E∗ has already applied on signal MC and peaking B backgrounds.
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Signal Combinatoric backgrounds

Domain B+ → ρ+γ cont. bkg. BB bkg.

Yield (events) float float float

mES( GeV)

< mES >=5.27951±0.00003

ξ (float) KEYS
σmES

=0.00309±0.00003

αmES
=1.09±0.03

nmES
=6.5±0.9

∆E∗( GeV)

< ∆E∗ >=-0.009±0.002
P1 (float)

KEYS
σ∆E∗ =0.0490±0.0007

α∆E∗ =0.60±0.03
P2 (float)

n∆E∗ =5.8±1.6

NN

< NN >=0.9660±0.0005

Histogram
PDF

signal NN
σNN =0.0241±0.0007

αNN =0.64±0.03

nNN =1.12±0.05

Fisher KEYS KEYS KEYS

Peaking B backgrounds

B+ → K∗+γ B → ρ+(π0/η)

Yield (events) 5.4±1.7 12.9±4.0

mES( GeV)

< mES >=5.280±0.0006 < mES >=5.2790±0.0002

σmES
=0.0033±0.0005 σmES

=0.0042±0.0002

αmES
=0.7±0.2 αmES

=0.73±0.05

nmES
=10±0 nmES

=10±0

∆E∗( GeV)

< ∆E∗ >=-0.087±0.02 < ∆E∗ >=-0.080±0.006

σ∆E∗ =0.073±0.012 σ∆E∗ =0.090±0.005

α∆E∗ =0.6±0.3 α∆E∗ =0.28±0.05

n∆E∗ =10±0 n∆E∗ =10±0

NN signal NN signal NN

Fisher KEYS KEYS

Table 9.11: All fixed or floating parameters in the final likelihood fit for B+ → ρ+γ decay
mode. The correction of the peak of ∆E∗ has already applied on signal MC and peaking B
backgrounds.
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Signal Backgrounds

Domain B0 → ωγ B → ω(π0/η) cont. bkg.

Yield (events) float 2.6+0.8
−1.2 float

mES( GeV)

< mES >=5.27982±0.00004 < mES >=5.2794±0.0004

ξ (float)
σmES

=0.00305±0.00003 σmES
=0.0043±0.0003

αmES
=1.20±0.04 αmES

=0.83±0.10

nmES
=4.3±0.6 nmES

=10±0

∆E∗( GeV)

< ∆E∗ >=-0.004±0.002 < ∆E∗ >
= −0.180± 0.012

P1 (float)
σ∆E∗ =0.0440±0.0007

α∆E∗ =0.62±0.03
σ∆E∗ =0.112±0.009 P2 (float)

n∆E∗ =4.9±1.0

NN KEYS signal NN Histogram PDF

Fisher KEYS KEYS KEYS

Table 9.12: All fixed or floating parameters in the final likelihood fit for B0 → ωγ decay mode.
The correction of the peak of ∆E∗ has already applied on signal MC and peaking B backgrounds.

Mode Signal B → K∗γ bkg. (ρ/ω)(π/η) bkg. Cont. bkg. Comb. B bkg.

B0 → ρ0γ 17 12 3 4000 70

B+ → ρ+γ 29 4 14 7000 170

B0 → ωγ 10 n/a 3 1700 n/a

Table 9.13: The expected fit region yields of each component for each decay mode based on
Monte Carlo efficiencies and the assumed branching fractions from Table 3.3. These yields are
used in the toy Monte Carlo studies. Refer to Tables 8.4, 8.6, and 8.8 for more detailed yield
figures.
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mean/σ Nsig Ncont NBBkg ξ P1 P2

B0 → ρ0γ -0.05/1.02 0.02/1.01 -0.09/0.98 -0.04/0.97 -0.01/0.96 -0.04/0.97

B+ → ρ+γ -0.02/1.00 0.18/1.01 -0.45/1.00 -0.08/1.00 -0.15/1.00 0.02/0.97

B0 → ωγ -0.10/0.99 -0.02/0.99 n/a -0.05/1.05 -0.05/0.97 -0.05/1.00

Table 9.14: The mean and sigma of the pull distributions for all floating parameters in the
likelihood fit. The listed σs are the widths of pull distributions, not the error in the estimated
mean. These are expected to be 1.0 based on the definition of the pull.

Mode Toy Input Mean Fit Yield Mean Fit Error Error(%)

B0 → ρ0γ 17 17.1 9.3 54.4

B+ → ρ+γ 29 29.8 13.4 45.0

B0 → ωγ 10 9.7 6.1 62.9

Table 9.15: The estimated sensitivity from the likelihood fit for each decay mode with 200 fb−1

data.

Figure 9.23. The pulls of the signal yields indicate that the fit is an unbiased estimator of the

signal yield under the assumption that the PDFs of the fit correspond to the true PDFs. The

largest of the signal yield pulls belonging to the B0 → ωγ mode indicates a possible systematic

deviation from the input (true) value of the sigma yield of approximately 1/10 the statistical

error of a single fit, an insignificant deviation. Table 9.15 indicates that the fit can estimate

signal levels based on the assumed branching fractions in Table 3.3 at a 2σ level, still insufficient

to claim observation of these individual modes in BABAR data.

As for the B0 → K∗0γ analysis, the more important toy Monte Carlo study is the

signal-embedded toy study. These use toy data sets with background data generated from the

likelihood fit PDFs incorporated with signal data selected from the fully simulated BABAR Monte

Carlo in the manner previously described (Chapter 9.2.2). The results of this set of toy studies

are summarized in Tables 9.16 through 9.18. The pull distributions of the signal yield estimate

for each mode is displayed Figure 9.24. Figure 9.25 shows the distributions of the significance of

the yield estimates N/σ(N) for each of the decay modes. The signal embedded toy Monte Carlo
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Figure 9.23: The pull distribution of the signal yield for each decay mode, pure toy.
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Par Gen Raw Ensemble Par values Gaussian Fit to Pull dist

value Mean±RMS Err±RMS Pull±RMS Gauss Mean Gauss σ

Nsig 17 17±10 9.3±1.1 −0.08±1.08 −0.03±0.03 1.00±0.03

Ncont 4000 4003±76 72.5±0.8 0.04±1.05 0.06±0.03 1.03±0.02

NBBkg 70 68±38 37.6±1.8 −0.10±1.02 −0.08±0.03 0.98±0.02

ξ -12.8 −12.8±1.9 1.88±0.03 0.03±1.02 −0.02±0.03 0.97±0.02

P1 -1.29 −1.29±0.11 0.11±0.00 0.00±0.99 −0.01±0.03 1.01±0.03

P2 1.43 1.44±0.65 0.65±0.03 −0.02±1.01 0.01±0.03 0.99±0.02

Table 9.16: B0 → ρ0γ: The raw statistical mean and RMS for the values of the fit parameters,
error of the fit parameters, and pulls of the fit parameters for the signal-embedded toy Monte
Carlo study.

Par Gen Raw Ensemble Par values Gaussian Fit to Pull dist

value Mean±RMS Err±RMS Pull±RMS Gauss Mean Gauss σ

Nsig 29 32±14 13.4±1.3 0.11±1.06 0.20±0.03 1.02±0.03

Ncont 7000 7014±92 90.5±0.7 0.15±1.02 0.16±0.03 1.02±0.02

NBBkg 170 152±39 38.7±1.8 −0.51±1.02 −0.51±0.03 1.02±0.02

ξ -6.58 −6.6±1.4 1.43±0.01 −0.01±0.99 −0.01±0.03 0.99±0.02

P1 -1.036 −1.05±0.07 0.07±0.00 −0.17±1.01 −0.16±0.03 1.03±0.02

P2 -0.302 −0.27±0.44 0.44±0.01 0.04±1.01 0.04±0.03 0.99±0.02

Table 9.17: B+ → ρ+γ: The raw statistical mean and RMS for the values of the fit parameters,
error of the fit parameters, and pulls of the fit parameters for the signal-embedded toy Monte
Carlo study.

study verifies the key conclusions of the pure toy study: that the fit is robust and that it is an

unbiased estimator of the signal yield. The complexity of the fit will required more toy Monte

Carlo studies described in Chapter 10 to determine the efficiency of the fit procedures and the

systematic uncertainties associated with the assumptions that go into the likelihood fits.

9.3.8 Signal yields

At last, the likelihood fits are applied to the data. The individual fit yields from

the likelihood fit procedures on data are summarized in Table 9.19. The fits are displayed in

projection plots superposed on histograms of the data in Figures 9.26 to 9.28. These projection
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Par Gen Raw Ensemble Par values Gaussian Fit to Pull dist

value Mean±RMS Er±RMS Pull±RMS Gauss Mean Gauss σ

Nsig 10 10.3±6.5 6.0±1.0 −0.11±1.14 −0.06±0.04 0.99±0.03

Ncont 1700 1698±41 41±3 −0.06±0.98 −0.04±0.03 0.95±0.02

ξ -5.6 −5.7±2.7 2.8±0.2 −0.05±0.95 −0.10±0.03 0.91±0.02

P1 -1.267 −1.26±0.14 0.14±0.01 0.04±0.97 0.05±0.03 0.96±0.02

P2 -0.331 −0.31±0.88 0.87±0.08 −0.04±1.01 −0.04±0.03 0.98±0.02

Table 9.18: B0 → ωγ: The raw statistical mean and RMS for the values of the fit parameters,
error of the fit parameters, and pulls of the fit parameters for the signal-embedded toy Monte
Carlo study.
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Figure 9.24: The pull distribution of the signal yield for the signal-embedded toy study for each
decay mode.
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Figure 9.25: The significance distribution of the signal yield for the signal-embedded toy study
for each decay mode.
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plots do not show the complete data set in the fit region. Cuts are placed on the undisplayed

variables in each plot to enhance the signal peak. As a result, the signal peaks in the projection

plots can appear more prominent than would plots of the complete data set. The PDFs are

scaled appropriately to accurately reflect the composition of the displayed portion of the data.

As for the B0 → K∗0γ mode, the maximum value of the likelihood function determined

by the fit to data is validated by comparison with distributions from a toy Monte Carlo study.

Unlike the B0 → K∗0γ mode, the toy Monte Carlo studies used as a goodness of fit test for the

B → (ρ/ω)γ modes are pure toy Monte Carlo studies rather than signal embedded toy Monte

Carlo studies. The purpose of this validation study is to determine whether the likelihood value

resulting from the fit to data is consistent with the assumption that the distribution of the data

is exactly that produced by the fit. The pure Monte Carlo study addresses this in a pure way.

In the B0 → K∗0γ study, embedded data sets were used to acknowledge that the PDFs naively

represented the signal mES and ∆E∗ distributions as uncorrelated. The assumptions for the

embedded study are that the yields and background distributions are exactly those produced by

the fit and that the signal distributions are exactly those of the fully simulated Monte Carlo. For

the B → (ρ/ω)γ analyses, the researchers decided that additional assumptions involved in the

embedded toy study were unnecessary complications on a test that should be a simple validation.

It should be noted that the likelihood value is dominated by the vast continuum background,

which is generated from a PDF in both kinds of toy ensemble. The numeric differences in the

likelihood between using purely PDF generated signal data and using embedded fully simulated

signal data are insignificant.

For each mode, an ensemble of 950 pure toy data sets is generated from the respective

PDFs for each mode. The shape parameters that float in the likelihood fit are fixed to their

values produced by the likelihood fit to data for generation of the toy data set. The likelihood

fits are then applied to each of their toy data sets, and the maximum likelihood values recorded
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B0 → ρ0γ mode B+ → ρ+γ mode B0 → ωγ mode

Yield fit result expected fit result expected fit result expected

Nsig 0.3+7.2
−5.4 16.1±8.9 25.6+15.3

−13.9 27.5±12.8 8.3+5.7
−4.5 9.1±5.8

Ncont. bkg. 4269±73 3852±214 6850±90 6747±283 1378±37 1687±142

NB bkg. 80±36 73.2±7.9 175±40 163±12 n/a n/a

Table 9.19: The fitted yields for the Run1-4 data set and the expected yields. The expected
yields are estimated from Monte Carlo with the exception on the continuum background, where
off-peak data is used. The quoted uncertainties on the expectations are the expected statistical
fit uncertainties based on toy Monte Carlo trial fits, not a theoretic uncertainty of the quoted
expected values.

in the plots of Figure 9.29. For each of the modes, the likelihood value produced by the fit to

data agrees very well with those produced by the toy studies. The conclusion is that, when the

likelihood fit is applied to data that truly originate from the PDFs produced by the fit to data,

the resulting likelihood value is consistent with that produced by the likelihood fit to data. This

reinforces the hypothesis that the likelihood fit produces an accurate representation of the data.

The generally accepted threshold for evidence of a particular decay is 3σ significance

of the yield. As Table 9.19 indicates, this analysis yields no significant evidence for any of the

decay modes B0 → ρ0γ, B+ → ρ+γ, or B0 → ωγ. We must wait for more data for the first

evidence of these decays in BABAR data.
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Figure 9.26: The projection plots of the unblinded results for B0 → ρ0γ decay mode, where
a), b), c), and d) are the projection onto mES , ∆E∗, neural net, and Fisher, respectively. The
red solid line is the total fit and the dashed blue line is the total background. The plots are
projections with the following cuts applied if that variable is not being plotted: 5.272 < mES <
5.286 GeV/c2, −0.10 < ∆E∗ < 0.05 GeV and N > 0.9. The selection efficiency for signal events
is 50%, 59%, 78%, and 49% for mES , ∆E∗, neural net, and Fisher projections.
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Figure 9.27: The projection plots of the unblinded results for B+ → ρ+γ decay mode, where
a), b), c), and d) are the projection onto mES , ∆E∗, neural net, and Fisher, respectively. The
red solid line is the total fit and the dashed blue line is the total background. The plots are
projections with the following cuts applied if that variable is not being plotted: 5.272 < mES <
5.286 GeV/c2, −0.10 < ∆E∗ < 0.05 GeV and N > 0.9. The selection efficiency for signal events
is 42%, 56%, 66%, and 41% for mES , ∆E∗, neural net, and Fisher projections.
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Figure 9.28: The projection plots of the unblinded results for B0 → ωγ decay mode, where a),
b), c), and d) are the projection onto mES , ∆E∗, neural net, and Fisher, respectively. The
red solid line is the total fit and the dashed blue line is the total background. The plots are
projections with the following cuts applied if that variable is not being plotted: 5.272 < mES <
5.286 GeV/c2, −0.10 < ∆E∗ < 0.05 GeV and N > 0.9. The selection efficiency for signal events
is 46%, 58%, 70%, and 45% for mES , ∆E∗, neural net, and Fisher projections.
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Figure 9.29: The − logL value of the unblinded fit compared to the − logL distribution from
toy Monte Carlo for each decay mode. The − logL values of the unblinded fit are labeled by
red arrows.
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Chapter 10

Systematic uncertainties and individual

measurements

The estimated number of real signal events passing the selection criteria is just one of

the components of the branching fractions measurements. Completing the measurement requires

an estimate of the total number of Υ (4S) events and an estimate of the efficiency of the selection

criteria for signal events. The measurement of the total number of Υ (4S) decays in the data

set is discussed in Chapter 10.1. The selection efficiency is estimated mostly from studies with

the fully simulated BABAR Monte Carlo. The tables in Chapter 8 summarize the efficiency of

the selection criteria on Monte Carlo events. Differences between the simulated event content

and detector response and the actual events and detector response lead to systematic differences

between the efficiencies on Monte Carlo events and actual events. Although a great deal of

work has gone into making the BABAR Monte Carlo an accurate and complete description of the

experiment, measurable differences between the Monte Carlo and real events still remain. Each

of these systematic deviations of the Monte Carlo from the true data leads to a source of error

in the measurement. These are systematic errors tending to shift the mean of the measurement
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away from the true value in a definite direction, rather than stochastic errors representative

of statistical fluctuations of the measurement about the true value of the measured branching

fractions. Many such sources of systematic error in the estimated efficiency are considered

in this chapter. Chapter 10.11 summarizes these errors and the necessary adjustments to the

Monte Carlo selection efficiency. With all the components finally in place, the branching fraction

measurements and upper limits are computed in Chapter 10.12.

10.1 B counting

The determination of the number of Υ (4S) → BB in BABAR data is described fully

in [51]. Briefly, the strategy is to compare the ratios of the number of hadronic events NMH

to the number of e−e+ → µ−µ+ event Nµµ for data taken with the collision CM energy at the

Υ (4S) resonance and for data taken off resonance. Assuming that any increase in the relative

number of hadronic events is due to Υ (4S) production, the number of Υ (4S) events NΥ passing

the hadronic selection criteria is given by:

NΥ = Non
MH −Non

µµ · N
off
MH

Noff
µµ

· κ ,

where κ is factor close to 1 that accounts for small differences between on resonance data and

off resonance data in the hadronic cross section, muonic cross section and selection efficiencies.

The total number of Υ (4S) events in the data N 0
Υ is then calculated from NΥ and the efficiency

of the hadronic selection criteria εΥ by

N0
Υ = NΥ /εΥ

The efficiency εΥ is determined with Monte Carlo simulated events.

This procedure givesN0
Υ = (88.21± 0.97)× 106 for the data set used in the B0 → K∗0γ

measurement, and N0
Υ = (210.9± 2.3) × 106 for the data set used in the B → ργ and B0 → ωγ
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analyses. The 1.1% uncertainty associated measured with N 0
Υ for each data set reflects the

uncertainty with which εΥ is known. The efficiency is determined from fully simulated Monte

Carlo, which is known to deviate somewhat from actual data. Each of the selection criteria

for events included in the determination of N 0
Υ was examined in an independent study. The

total uncertainty in εΥ is an accumulation of the systematic differences between data and Monte

Carlo in these studies. This 1.1% uncertainty must be included as a multiplicative systematic

uncertainty for each branching fraction measurement.

10.2 Tracking efficiency

The analyses described in this thesis use the BABAR GoodTracksLoose selection criteria

for all charged candidates used in reconstruction. BABAR maintains a tracking group dedicated

to studying the efficiencies of the standard selection criteria. Their studies indicate that the

BABAR Monte Carlo overestimates the detection efficiency for charged particles. The result is

a necessary downward correction of the selection efficiency from the value determined in Monte

Carlo studies.

The methods recommended by the tracking group for determining the efficiency cor-

rections for the GoodTracksLoose selection are described in [52]. The efficiency of the Good-

TracksLoose selection on both data and Monte Carlo is measured by comparing tracks detected

in the SVT and DCH. The efficiency of the DCH can be estimated by determining the number of

charged candidates reconstructed in the SVT that are also reconstructed by the DCH. Since the

GoodTracksLoose selection criteria depend almost entirely on the DCH, the GoodTracksLoose

efficiency is essentially the DCH efficiency for tracks passing the GoodTracksLoose criteria.

The analyses described in this thesis all employ the standard BABAR software tools

based on these methods to determine their efficiency corrections. At a procedural level, these
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tools integrate the ratio of the real data and Monte Carlo efficiencies as a function of candidate

charge, transverse momentum, polar angle, azimuthal angle, and the event’s charged track

multiplicity over the distribution of charged particles in the signal decay to produce a total

correction to the Monte Carlo signal selection efficiency.

This method indicates that the signal selection efficiency in Monte Carlo signal data

must be corrected by the following factors for each of the signal modes:

• B0 → K∗0γ: 0.986

• B0 → ρ0γ: 0.9878

• B+ → ρ+γ: 0.9961

• B0 → ωγ: 0.9860

This efficiency correction carries a systematic uncertainty with it associated largely

with the details of track reconstruction. The tracking group estimates a systematic uncertainty

of 0.8% per final state charged track. This means a 0.8% uncertainty for the B+ → ρ+γ efficiency

correction, and a 1.6% uncertainty for the other three modes.

An estimate of the systematic uncertainty associated with tracking efficiency asym-

metries between positively and negatively charged particles is obtained by applying the pre-

scription separately to samples of B0 → K∗0γ and B
0 → K

∗0
γ. No significant asymmetry is

observed, but the 0.35% discrepancy is adopted as a systematic uncertainty on the measurement

of ACP (B0 → K∗0γ).

10.3 PID efficiency

The standard BABAR particle identification selectors are also maintained and studied by

a dedicated analysis group [53]. As with the tracking, there are small but measurable differences
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in the efficiencies of the selectors on real and Monte Carlo simulated data. They also maintain

a standard set of tools for determining the necessary corrections and systematic uncertainties.

The key identification problem in each of the analysis modes is the discrimination of

kaons and pions. The performance of each of the selectors is determined by analyzing samples

of π± and K± from reconstructed decays of D∗ mesons. These decays can be reconstructed

from kinematic signatures independently of the variables used by the PID selectors.

In general, the Monte Carlo efficiencies are higher than those for real data. A correction

factor is determined in almost the same way as the charged particle tracking efficiency correction.

The ratio of data to Monte Carlo efficiency as a function of candidate charge, total momentum,

and polar angle are integrated over the momentum spectra of the charged candidates. For the

B0 → K∗0γ measurement, this procedure gives a correction factor to the Monte Carlo signal

efficiency of 0.9822. A 1% systematic uncertainty is associated with this correction, mostly due

to the differences in the momenta spectra of the candidates used to measure the efficiencies and

the those of the candidates used in the signal reconstruction.

Applying this procedure separately to B0 → K∗0γ and B
0 → K

∗0
γ samples indicates

no significant bias on ACP (B0 → K∗0γ). The 1.0% discrepancy in PID efficiency on the two

samples is adopted as a systematic uncertainty for the measurement of ACP (B0 → K∗0γ).

The PID selection efficiencies in B → ργ and B0 → ωγ for charged pion selection show

no significant difference between data and Monte Carlo. A conservatively estimated systematic

uncertainty of 2% is assigned to each mode associated with the pion selection. The B → ργ and

B0 → ωγ selection use a non-standard PID selector developed specificially for this analysis. It is

less thoroughly studied than the standard PID selectors. The 2% systematic uncertainty could

be reduced with further analysis of the selector; however, such a reduction would be insignificant

relative to the total systematic uncertainty of the measurements.

For the B → ργ modes, the rate at which K± are misidentified as π± must also be
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considered. B → K∗γ decays represent an important background for these modes, and the

likelihood fit uses a fixed yield to effectively subtract this background from the signal yield.

PID studies indicate that the Monte Carlo data underestimate the misidentification rate. The

B0 → K∗0γ(K∗0 → K+π−) background yield in the B0 → ρ0γ analysis must be increased by

a factor of 1.32 for the fit to data. This correction has a systematic bias uncertainty of ±0.32

candidate on the B0 → K∗0γ yield. The B+ → K∗+γ(K∗+ → K+π0) background yield in the

B+ → ρ+γ analysis must be increased by a factor of 1.31 with a ±0.31 candidate systematic

bias uncertainty. The likelihood fits applied to the data in Chapter 9.3 have incorporated these

corrections.

10.4 π0 and single photon efficiency

The BABAR Neutral Reconstruction Analysis Working Group is a team of BABAR physi-

cists that studies issues and efficiencies of the reconstruction neutral final state candidates and

π0s. They have produced an analysis and a set of tools for correcting the efficiencies of recon-

structed decays that incorporate reconstructed π0s from one the standard sets of reconstruction

criteria, i.e. the pi0DefaultMass criteria (Chapter 4.4) used in the B+ → ρ+γ and B0 → ωγ

analyses.

The data and Monte Carlo efficiencies of π0s and photons are measured independently

of these analyses by analyzing a sample of π0s from reconstructed τ± decays. This analysis is

fully described in [54]. In general, the Monte Carlo overestimates the efficiency with which π0s

are reconstructed.

A correction factor for the Monte Carlo signal efficiency is determined by the now-

familiar method of integrating the measured ratio of data to Monte Carlo π0 efficiency as a

function of π0 momentum over the pi0 spectrum for the B+ → ρ+γ and B0 → ωγ modes. This
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results in correction factors of 0.971 for the B+ → ρ+γ efficiency and 0.966 for the B0 → ωγ

efficiency. There is a 3% systematic uncertainty associated with each correction factor.

The efficiencies for the high energy B daughter photons do not differ significantly be-

tween data and Monte Carlo. No correction to the efficiency is indicated. The BABAR Neutral

Reconstruction Analysis Working Group’s photon efficiency study implies an associated system-

atic uncertainty of 2.5% in the B0 → K∗0γ measurement and a 3.0% systematic uncertainty in

each of the B → ργ and B0 → ωγ measurements. In the B+ → ρ+γ and B0 → ωγ analyses,

this error must be added linearly with the 3% π0 systematic uncertainty because the sources of

uncertainty for the two efficiencies are highly correlated.

10.5 Systematic uncertainty for photon quality selection

The B daughter photon selection criteria described in Chapter 4.2 have been used

exclusive radiative penguin measurements largely without change since the first iteration of

the B → K∗γ measurements described in [32] and [55] and published in [13]. The systematic

uncertainty associated with these selection criteria was well measured in that analysis and the

results have been adopted for the analyses described in this thesis.

The efficiencies of π0/η veto and of the photon candidate isolation criteria are fun-

damentally dependent on of the rest of the event. A random calorimeter cluster generated by

noise, machine backgrounds, or the decay of the non-signal B can accidentally combine with a

true signal photon causing a failure of the π0/η veto, or fall near enough to the signal photon to

cause a failure of the isolation criteria. After the calorimeter acceptance, these are the largest

sources of inefficiency for the photon quality selection. To compare the data and Monte Carlo

rates of inefficiency for these cuts, the analysts for [13] embedded Monte Carlo simulated signal

photon candidates in on-resonance data and Monte Carlo simulated B0B
0

decays. They then
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determined the rate with which these embedded photon candidates were accidentally vetoed by

the selection criteria. The results indicate a 1% discrepancy between data and Monte Carlo

efficiencies for the π0/η veto, and a 2% discrepancy for the isolation criteria. These differences

are adopted as systematic uncertainties for each of the decay modes.

10.6 Neural network systematic

Differences between the neural network output distributions for data and signal Monte

Carlo are evaluated with an independent sample of B → Dπ events. Most of the neural network

input variables are dependent only on the decay of the non-signal B (the ROE) and on the

momentum of the high energy photon. The spectrum of the momentum of the B daughter

pion in B → Dπ decays is very similar to that of the photon in B → K∗γ and B → (ρ/ω)γ

exclusive decays. Since the non-signal B decays independently of the signal B, the substitution

of the B daughter pion in B → Dπ events for the photon in the exclusive signal modes yields

distributions for most of the neural network input variables that are almost identical to those

of the signal, complete with appropriate correlations among them. In fact, for the B → ργ and

B0 → ωγ modes the neural network is designed so that it is dependent only on variables with

this character, so that the output distributions of the exact neural networks used in the analyses,

when applied to B → Dπ events under the substitution πB → γB , are almost identical to the

neural network output distributions for B → ργ and B0 → ωγ signal events.

The neural network for the B0 → K∗0γ measurement uses two inputs that rely on

information from the reconstructed signal B: the B decay angle cosΘB and the K∗ helicity angle

cosΘH . The distribution of cosΘB should be the same for any properly fully reconstructed B

meson. With respect to this variable the B → Dπ sample is a good representation of B0 → K∗0γ

signal.
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The B → Dπ distribution of cosΘH is not the same as that of B0 → K∗0γ. However,

the signal cosΘH distribution results from conservation of angular momentum in the decay of

the K∗. The physical content of cosΘH is unambiguous and modeled very well by the Monte

Carlo simulated events. It is not a significant source of discrepancy between signal data and

Monte Carlo simulated events. Further, cosΘH is largely uncorrelated with the rest of the

neural network input variables. In the study of the neural network efficiency with the B → Dπ

sample, the value for cosΘH calculated for the reconstructed B → Dπ candidates is substituted

with a random value generated from the cosΘH distribution of signal B0 → K∗0γ Monte Carlo.

This modification makes the B → Dπ a very good independent sample upon which the neural

network output distribution discrepancies between real BABAR events and BABAR signal Monte

Carlo can be evaluated. These differences are adopted as the systematic uncertainties associated

with the neural network efficiencies in Tables 10.6 and 10.8.

10.7 Fit efficiency systematic

The efficiencies of the likelihood fits are determined with embedded toy Monte Carlo

studies described in Chapter 9.2.2 and Chapter 9.3.7. The use of the embedded toys accounts

for differences between the idealized PDFs and the fully simulated Monte Carlo distributions,

which more accurately represent the true distributions. The statistical error of the efficiency for

these toy Monte Carlo studies are adopted as systematic errors associated with these efficiencies.

The result is a 0.9% error for B0 → K∗0γ, 10.2% for B0 → ρ0γ, 8.4% for B+ → ρ+γ, and 5.4%

for B0 → ωγ.

203



10.8 Fit systematics

The sources of systematic uncertainty described to this point have all been associated

with the signal efficiency. They are all ‘multiplicative’ uncertainties that scale with the signal

yield and that are expressed as a fraction or percent of that yield. The systematic uncertainties

described in this section, which are associated with the likelihood fit, do not scale directly

with the signal yield. They arise from possible systematic deviations between the idealized

distributions (PDFs) in the likelihood fits and the true distributions in the data. As a result,

their scaling properties are usually much more complicated, with terms that also scale with the

various background levels. The uncertainties in the signal yield associated with these effects are

evaluated after the likelihood fit has been applied to data as signal yield biases, or ‘additive’

uncertainties, rather than multiplicative efficiency uncertainties.

The evaluation of additive fit systematics follow a common pattern: a feature of the

PDFs that may differ from the true distributions is identified. This feature of the PDF is varied

within limits representing the degree of uncertainty in the feature. The effect on the signal yield

is determined by applying the varied PDFs either in additional likelihood fits to the data or in

toy Monte Carlo studies. The resulting deviation from the measured fit yield is adopted as an

additive systematic uncertainty on the fit yield.

The additive systematics in the B0 → K∗0γ analysis have been treated superficially

as multiplicative uncertainties by expressing the signal yield bias uncertainties as fractions of

the signal yield. When expressed in this way, the additive fit systematic uncertainties are small

and comparable to the efficiency systematics. This allows for a uniform treatment of the fit

systematics and the efficiency systematics, and leads numerically to the same result as explicitely

treating the additive systematics separately. The separation between signal yield bias (additive)

and signal yield efficiency (multiplicative) errors is rigorously maintained in the B → ργ and
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B0 → ωγ analyses. This avoids the alarm and possible confusion of, for example, expressing the

+1.7 event signal yield uncertainty for the B0 → ρ0γ mode (Table 10.4) as a 567% uncertainty

on the 0.3+7.2
5.4 signal yield (Table 9.19).

10.8.1 B0 → K∗0γ

Three significant sources systematic uncertainty associated with the fit PDF are ex-

amined, each with a toy Monte Carlo study:

1. The accuracy of the uncorrelated parameterized PDF used to represent the BB background

shape,

2. The relative proportion of B → Xsγ in the BB background and

3. The effect of fixing the ∆E∗ tail parameter α∆E∗ for the signal PDF.

The PDF representing the BB background component in the likelihood fit is the best

representation in simple, available functions consistent with the fully simulated BABAR Monte

Carlo. However, it is just a simple parameterized function of a complicated sum of various

individual decay component distributions, and it carries the assumption that mES and ∆E∗

are uncorrelated. The effect of these assumptions on signal yield is investigated using a toy

Monte Carlo study that embeds fully simulated BABAR BB background events in toy data sets

of signal and continuum that are generated from the PDFs. A Pure toy Monte Carlo study

(Chapter 9.2.2) indicates that, if the PDFs are accurate and complete representations of the

data, then the fit is unbiased. The PDF-generated BB candidates are exchanged for fully

simulated BB candidates and the resulting bias in the signal efficiency of the fit is taken as

a systematic uncertainty associated with the simplicity of the BB background PDF. There is

sufficient BABAR BB Monte Carlo to create 3.4 independent B-background embedded toy data
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sets. The toy ensemble consisted of 1000 embedded toy data sets with randomly selected B-

background candidates. The signal efficiency of this embedded toy study is 0.9836 ± 0.0049, a

−1.64% bias on the signal estimate, which is taken as the associated systematic uncertainty.

Chapter 9.2.1 points out that there is a relatively large uncertainty attached to current

measurements of branching fraction B(B → Xsγ), which is the dominant source of B background

candidates. Toy Monte Carlo studies were conducted after the likelihood fit was applied to data

to estimate the effect on the signal yield of both overestimating and underestimating the size

of the B → Xsγ component relative to the remainder of the B backgrounds. Because the B

background yield is independently estimated in the likelihood fit, this uncertainty enters only

through the B background PDF shape. Three pure toy Monte Carlo studies were conducted

to investigate this source of uncertainty. The first was a control using the B background PDF

used in the likelihood fit to data and based on the best available estimate of the relative size of

the B → Xsγ component to generate the toy data sets. The second investigated the effect of

underestimating the relative size of the B → Xsγ component. For this study the B background

candidates in the toy data set are generated from a PDF fit to exclusively B → Xsγ data,

representing a case in which B → Xsγ overwhelmingly dominates other sources of B background.

The third study examined the effect on the signal yield of overestimating the relative size of the

B → Xsγ component. In this study, the PDF used to generate the B background component

is a fit to BABAR Monte Carlo with the relative size of the B → Xsγ reduced to 0.8 of its size

in the control study. In each of the studies, signal and continuum background candidates are

generated from PDFs with their parameters fixed to the output values of the likelihood fit to

data.

The results of these three studies are summarized in Table 10.1. The signal efficiency

of second study is 0.41% less than that for the baseline control study. The third study has a

signal efficiency 0.31% greater than that of the control study. The maximum difference of 0.41%
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is adopted as a systematic uncertainty associated with the uncertain B background content.

Toy 1 Toy 2 Toy 3

Baseline Underestimate b→ sγ Overestimate b→ sγ

Variable Mean RMS Mean RMS Mean RMS

nSig 574.66 29.24 571.34 28.80 576.26 29.51
nSigfit

nSiggen
0.98613 0.02812 0.98208 0.02820 0.98926 0.02908

nContBkg 2590.38 74.31 2581.18 72.63 2596.47 70.29
nContBkgfit

nConBkggen
1.00491 0.01966 1.00185 0.02032 1.00536 0.01920

nBBkg 137.37 54.74 147.67 57.38 135.01 54.48
nBBkgfit

nBBkggen
0.9689 0.3846 1.0397 0.3974 0.9474 0.3784

< mES > 5.2798019 0.0001270 5.2797917 0.0001356 5.2797990 0.0001335

σmES
0.0025395 0.0001089 0.0025244 0.0001105 0.0025374 0.0001141

< ∆E > -0.010763 0.003235 -0.010696 0.003245 -0.011202 0.003462

σ∆E 0.044642 0.002761 0.044753 0.002778 0.045023 0.003015

ξ -13.141 2.921 -12.840 3.085 -13.062 2.965

P0∆E -0.5017 0.1412 -0.5025 0.1372 -0.5012 0.1446

Table 10.1: K∗0 → K+π− Branching Fraction BB̄ Systematics: Toy MC fit result summary

In addition to the possible correlations in mES and ∆E∗ considered in Chapter 9.2.2,

the PDF used in the likelihood fit may differ in shape from the actual data. The functional

forms used to model the signal distributions are well established. The most significant possible

difference is the uncertain value of the fixed tail parameter α∆E∗ . The large background in

the negative ∆E∗ makes α∆E∗ impractical to estimate independently in the likelihood fit. Toy

Monte Carlo studies indicate that attempting to float α∆E∗ in the likelihood fit frequently leads

to intolerable fit failures. The effect of fixing the value of α∆E∗ must be considered a source of

systematic uncertainty.

Two additional toy Monte Carlo studies were performed after the likelihood fit to data

to estimate the size of this uncertainty. A fit to the fully simulated BABAR Monte Carlo gives

α∆E∗ = 0.700 ± 0.136, which is the fixed value used in the likelihood fit to data. The data

sets for the toy Monte Carlo ensembles were generated from signal PDFs with α∆E∗ fixed at
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∓1σ, that is, at 0.564 and 0.836 for the two studies respectively. The other parameters in the

generating PDFs were fixed to the results from the likelihood fit to data. The control study for

the B background shape systematic also serves as a baseline for this pair of studies.

The results of these toy Monte Carlo studies are summarized in Table 10.2. The fit

efficiency for the α∆E∗ = 0.700− 0.136 case is 1.3% lower than that of the baseline study. The

corresponding efficiency deviation for the α∆E∗ = 0.700+0.136 case is 1.3% higher than that of

the baseline. The systematic error associated with fixing the parameter α∆E∗ in the likelihood

fit is estimated to be 1.3%.

Toy 1 Toy 2 Toy 3

Baseline α∆E∗ − σα α∆E∗ + σα

Variable Mean RMS Mean RMS Mean RMS

nSig 574.66 29.24 567.44 28.38 581.65 28.84
nSigfit

nSiggen
0.98613 0.02812 0.97304 0.03068 0.99920 0.02798

nContBkg 2590.38 74.31 2571.10 71.59 2612.00 69.30
nContBkgfit

nConBkggen
1.00491 0.01966 0.99626 0.02000 1.01239 0.01944

nBBkg 137.37 54.74 166.73 57.08 109.9285 54.06
nBBkgfit

nBBkggen
0.9689 0.3846 1.1820 0.4022 0.7744 0.3732

< mES > 5.2798019 0.0001270 5.2798035 0.0001287 5.2798095 0.0001326

σmES
0.0025395 0.0001089 0.0025174 0.0001143 0.0025448 0.0001070

< ∆E > -0.010763 0.003235 -0.015636 0.004052 -0.007948 0.002931

σ∆E 0.044642 0.002761 0.048479 0.003465 0.042167 0.002595

ξ -13.141 2.921 -12.446 2.902 -13.716 2.866

P0∆E -0.5017 0.1412 -0.4745 0.1436 -0.5325 0.1425

Table 10.2: K∗0 → K+π− Branching Fraction α∆E∗ Systematics: Toy MC fit result summary

Adding these three systematic errors in quadrature gives the 2.2% fitting function error

in the systematics summary Table 10.6.

A final set of toy Monte Carlo studies was performed to examine the effect on the

measurement of ACP (B0 → K∗0γ) of fixing the B background CP asymmetry to that of contin-

uum background. BABAR has recently published ([56]) a measurement of the CP asymmetry in
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B → Xsγ processes, which dominate the B background of B0 → K∗0γ. Pure toy Monte Carlo

ensembles were generated with the CP asymmetry of the B background at the extremes of the 1σ

interval measured in [56]. The maximum ensemble mean deviation from the fit ACP (sig) = 0.0

among these studies was 0.25%. This is adopted as a systematic uncertainty associated with

fixing the CP content of the B background.

10.8.2 B → ργ and B0 → ωγ modes

The more complicated likelihood functions for the B → ργ and B0 → ωγ modes com-

bined with the smaller yield relative to backgrounds make the systematic uncertainties associated

with these likelihood fits much more complicated. There are many more ways in which the like-

lihood function can differ from the actual shape of the data distributions, and these differences

may lead to effects that are significant relative to the small signal yields. Many sources of pos-

sible systematic uncertainty have been studied in detail using toy Monte Carlo ensembles. The

general form of these toy Monte Carlo studies are the same: one feature of the likelihood func-

tion is selected for evaluation. Ensembles of toy data sets are then generated from PDFs with

their parameter values fixed to those resulting from or fixed in the likelihood fit to data save for

the feature or parameter under study. Usually two ensembles are generated per parameter, each

representing a 1σ deviation in the parameter or feature from its fixed value, where σ is an error

estimate from the component fits in Chapter 9.3.1. The resulting ensemble mean deviations in

the signal yields from their estimated values on the real data are adopted as 1σ estimates of the

systematic errors associated with the likelihood parameter under study. Table 10.3 summarizes

the results of these tests as biases on the final signal yields from the likelihood fit to data. The

details of these systematic error estimates follow.

For each mode, the shapes of the signal mES and ∆E∗ distributions are fixed to the

component fits to fully simulated Monte Carlo data described in Chapter 9.3.1. The systematic
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B0 → ρ0γ B+ → ρ+γ B0 → ωγ

Description Sig. bias error Sig. bias error Sig. bias error

Fixing of sig. PDFs 0.0 +0.22

−0.02 0.0 +1.54

−0.99 0.0 +0.15

−0.16

Binning of histogram PDFs 0.0 +0.2

−0.7 0.0 +0.0

−0.7 0.0 +0.5

−0.0

Statistics of histogram PDFs 0.0 +0.4

−0.4 0.0 +0.4

−0.4 0.0 +0.4

−0.4

B → K∗γ bkg. 0.0 +1.59
−1.29 0.0 +0.92

−0.81 -1.05 +1.05
−1.05

(ρ/ω)(π/η) bkg. 0.0 +0.56

−0.64 0.0 +1.31

−1.20 0.0 +0.26

−0.19

B bkg. n/a n/a 0.0 +0.0

−1.5

Best Candidate Selection n/a 0.0 +0.0

−1.2 n/a

Total 0.0 +1.7
−1.6 0.0 +2.2

−2.2 -1.05 +1.3
−1.9

Table 10.3: The summary of all systematic uncertainties associated with the likelihood fit for
each decay mode. For each type of systematic uncertainty, a bias on the signal yield and the
error(events) on the signal bias are calculated. Lines in bold have been recomputed using the
unblinded data set. All other numbers are extracted from the toy Monte Carlo studies described
in Section 10.

uncertainties associated with fixing these shapes is estimated with a battery of toy Monte Carlo

studies as described above. An independent toy study was conducted for each of the 8 parameters

in the mES and ∆E∗ distributions. The 8 positive and 8 negative bias estimates from these

studies are added in quadrature in Table 10.4 and summarized as the ‘Fixing of sig. PDFs’ line

item of Table 10.3.

The continuum mES and ∆E∗ shapes parameters are estimated independently in the

likelihood fit and are not expected to be a significant source of error. Systematic uncertain-

ties associated with the fixed PDFs for the neural network and Fisher distributions must be

considered. As a reminder: the neural network and Fisher PDFs for continuum candidates are

fixed to shapes obtained from sidebands of the BABAR data. There are no Monte Carlo–data

differences to consider, but use of a step function to represent the neural network distribution

must be considered as a source of systematic uncertainty. Two effects associated with the use of

the histogram/step function were considered: the somewhat arbitrarily chosen number of bins

or steps and possible fluctuations in the step levels due to the finite statistics of the sideband
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Description B0 → ρ0γ B+ → ρ+γ B0 → ωγ

Fixing of signal parameters

< mES > 0.00+0.10
−0.01 0.00+0.19

−0.08 0.00+0.01
−0.02

σmES
0.00+0.11

−0.02 0.00+0.27
−0.16 0.00+0.04

−0.05

αmES
0.00+0.07

−0.00 0.00+0.15
−0.05 0.00+0.06

−0.07

nmES
0.00+0.08

−0.00 0.00+0.13
−0.04 0.00+0.12

−0.11

< ∆E∗ > 0.00+0.06
−0.00 0.00+0.37

−0.29 0.00+0.05
−0.07

σ∆E∗ 0.00+0.08
−0.00 0.00+0.20

−0.10 0.00+0.00
−0.02

α∆E∗ 0.00+0.07
−0.00 0.00+0.92

−0.73 0.00+0.02
−0.04

n∆E∗ 0.00+0.05
−0.00 0.00+1.11

−0.56 0.00+0.01
−0.02

Total 0.00+0.22
−0.02 0.00+1.54

−0.99 0.00+0.15
−0.16

Binning of histogram

25(30) -0.72 -0.30 +0.15

35(45) -0.38 -0.40 +0.48

45(60) 0.00 0.00 0.00

55(75) +0.20 -0.70 +0.52

65(90) -0.49 -0.20 +0.44

Error. 0.00+0.20
−0.70 0.00+0.00

−0.70 0.00+0.50
−0.00

Fixing of peaking B background yield

B → K∗γ background 0.00+1.58
−1.29 0.00+0.92

−0.81 n/a

(ρ/ω)/(π/η) 0.00+0.56
−0.64 0.00+1.31

−1.20 0.00+0.26
−0.19

Table 10.4: The summary of all systematic uncertainties associated with the likelihood fit for
each decay mode. When changing the binning of the continuum histogram PDF, the default bins
are 45, 60, and 45 for B0 → ρ0γ, B+ → ρ+γ and B0 → ωγ decay respectively. The variation
of bins are the same between B0 → ρ0γ and B0 → ωγ decay mode, shown in the first column,
and the variation for B+ → ρ+γ is shown in the bracket.
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sample. The bin/step width was selected so that the statistical error of each bin/step level

was less than 10%. Uncertainty due to this arbitrary binning was examined with several pure

toy Monte Carlo studies in which the ensemble generated with the default step function PDF

and fit with a likelihood function containing a continuum neural network PDF with a differ-

ent bin/step width. A reasonably wide range of step sizes were examined, and the maximum

mean estimated signal yield deviations from the generated values were adopted as systematic

uncertainties. The various step widths tested and the resulting deviations appear in Table 10.4.

The adopted systematic uncertainties appear as the ‘Binning of histogram PDFs’ line item in

Table 10.3.

The toy Monte Carlo ensembles used to estimate the effects of statistical step level fluc-

tuations were generated using smooth 5th order polynomial functions to represent the continuum

neural network distributions. These 5th order polynomials come from fits to the sideband dis-

tribution. The deviations in signal yield were adopted as the systematic uncertainties appearing

as the ‘Statistics of histogram PDFs’ line item in Table 10.3.

As detailed in Chapter 9.3.3 and 9.3.4, the PDF shapes and yields for the background

sources B → K∗γ and B → (ρ/ω)(η/π0) are fixed in the likelihood fit. The uncertainties of

the fixed yields are the dominant sources of systematic uncertainty associated with these back-

grounds. Monte Carlo studies indicate that uncertainties in background shapes have a negligible

impact on the signal yield. The magnitude of these uncertainties are estimated with embedded

toy Monte Carlo studies. Candidates from the fully simulated BABAR Monte Carlo samples

of these backgrounds are embedded into toy Monte Carlo data sets with all other components

generated from the PDFs fit to data. To study the systematic uncertainty associated with the

fixed B → K∗γ yields, three toy ensembles are generated with embedded B → K∗γ background

events. One ensemble is a control in which the mean expected number of B → K∗γ events are

embedded in each data set. In one of the other two, the number of embedded B → K∗γ events
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is 1σ greater than the mean expected; in the other 1σ fewer B → K∗γ events are embedded. σ is

the estimated statistical error (
√
N) in the B → K∗γ yield based on the Monte Carlo efficiency

of the signal selection criteria on the B → K∗γ background. The ensemble mean deviations

are adopted as systematic uncertainties. The results appear as the ‘B → K∗γ bkg’ line item in

Table 10.3. Note that for the B0 → ωγ analysis this uncertainty appears in addition to a bias

due to the omission of a component representing the B → K∗γ background in the likelihood fit.

The systematic uncertainties associated with the fixed yields of the B → (ρ/ω)(η/π0)

backgrounds are estimated with the same process as that used for the B → K∗γ backgrounds.

The results appear as the ‘(ρ/ω)(π/η) bkg’ line item in Table 10.3.

This procedure is also repeated for the combinatoric B background yield in the

B0 → ωγ analysis. The level of the combinatoric B background is expected to be negligible

in the B0 → ωγ mode, so no bias is assigned, but a systematic uncertainty is assigned based

on an embedded toy Monte Carlo study. Because the combinatoric B background yield is an

independently estimated parameter in the B0 → ρ0γ and B+ → ρ+γ analyses, no systematic

uncertainty is associated with their yields. The B bkg line item in Table 10.3 summarizes these

uncertainties.

10.9 Systematic bias of the best candidate selection

When multiple reconstructed B candidates in an event pass all of the selection criteria,

the one with the smallest value of |∆E∗| is selected for inclusion in the likelihood fit sample; the

others are discarded. This method can bias the ∆E∗ distribution for continuum events, creating

an artificial peak around 0. This hypothetical peak is not modeled in the likelihood fit PDF for

the continuum ∆E∗ distribution; Its possible existence in data may bias the estimated signal

yield.
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Mode signal Monte Carlo on-peak data

B0
→ ρ0γ 1.03 1.02

B+
→ ρ+γ 1.15 1.08

B0
→ ωγ 1.14 1.10

Table 10.5: The average candidate multiplicity for each decay mode. All cuts have been applied
to the events and candidates. Only on-peak data collected in Run 2 is shown in the region
[5.20, 5.29] GeV/c2 × [−0.6, 0.6] GeV in the mES –∆E∗ plane.

The multiplicity of candidates surviving the selection criteria for a subset of the BABAR

data (Run2) appears in Table 10.5. The candidate multiplicity for the B0 → ρ0γ mode is

negligibly different from 1. Additional study is afforded the possible bias in the B+ → ρ+γ and

B0 → ωγ analyses.

The possibility of an artificial ∆E∗ peaking structure in continuum backgrounds is

studied in a subset of real BABAR data set used in the likelihood fit: the set of all on-peak events

passing all of the selection criteria in the ∆E∗ fit range ([−0.3, 0.3] GeV) with mES < 5.26 GeV.

Figure 10.1 shows the ∆E∗ distribution of the best B+ → ρ+γ candidate in the each of the

events of this subset with multiple B+ → ρ+γ candidates. The distribution displays a clear

peak consistent with selection bias. A small Gaussian distribution is added to the continuum’s

polynomial ∆E∗ distribution to model the effect of this bias. The center and width of the

Gaussian are determined with a fit to the best-of-multiple-candidate ∆E∗ distributions for the

B+ → ρ+γ and B0 → ωγ modes (shown in Figure 10.1 for the B+ → ρ+γ mode). In this fit,

the polynomial component is fixed to that estimated in the full likelihood fit to determine signal

yield; the normalizations of the Gaussian and polynomial components (numbers of candidates

belonging to each) are allowed to float.

The proportion of the total continuum background that peaks in this way is estimated

by applying the polynomial+Gaussian to the entire |∆E∗| < 0.3 GeV,mES < 5.26 GeV subset

of real data. The polynomial parameters are fixed to the values produced by the likelihood fit
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Figure 10.1: The on-peak events in the fit region with mES < 5.26 GeV/c2 with multiple
candidates are fitted with a Gaussian plus a second order polynomial. The parameters of the
second order polynomial are fixed to the same values as for the unblinded fit. The parameters
of the Gaussian and the relative normalization of the Gaussian and polynomial distributions are
estimated in the fit. B+ → ρ+γ decay mode.

to data, and the Gaussian shape parameters are fixed to the values from the fit to the best-

of-multiple-candidate subset as determined above. The noramlizations of the two components

are allowed to float in the fit yielding the results depicted in Figure 10.2. This sideband study

indicates (1.3± 1.1)% of the continuum candidates for the B+ → ρ+γ, and (0.6± 2.5)% for the

B0 → ωγ mode, appear in this Gaussian peak. For B0 → ωγ, the peaking yield is negligible and

not considered a significant source of systematic uncertainty.

For the B+ → ρ+γ mode, the bias uncertainty associated with the best candidate

selection is estimated by performing a second likelihood fit to the data. For this second fit,

another candidate type hypothesis is added to the likelihood fit to represent this possible peaking

continuum background. This hypothesis is represented by the same mES , neural network, and

Fisher distributions as the default non-peaking continuum background, with the Gaussian fit

to the sideband representing the ∆E∗ distribution. The yield of this new peaking continuum

background component is fixed to be 1.3% of the total continuum yield in the original fit to

data. The resulting shift in the signal yield estimate is adopted as a systematic uncertainty.

This appears as the ‘Best Candidate Selection’ line item in Table 10.3.
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Figure 10.2: The on-peak events in the fit region with mES < 5.26 GeV/c2 are fitted with a
Gaussian plus a second order polynomial. The parameters of the second order polynomial are
fixed to the same values as for the unblinded fit. The parameters of the Gaussian are fixed to
those determined from the fit to the multiple candidate events in the mES < 5.26 GeV/c2 region.
The relative normalization of the Gaussian and polynomial distributions are estimated in the
fit. Left: B+ → ρ+γ decay mode. Right: B0 → ωγ decay mode.

10.10 Nuclear interaction effects in ACP (B0 → K∗0γ)

Charged particles undergo interactions with the detector before entering the tracking

volume of the DCH. The cross sections for these interactions may be CP asymmetric–the cross

sections for particles may differ from the corresponding cross sections for anti-particles. Because

the tracking asymmetries are only measured in the DCH, such asymmetries are not accounted for

in the analysis of the tracking asymmetry and may induce an artificial observed CP asymmetry

in the measurement.

To estimate the magnitude of such a possible effect, this analysis follows the method

used by [57]. Using a simplified model for the material between the interaction point and

the DCH’s inner edge, the momentum dependent interaction cross sections tabulated by [17]

are integrated over the momentum distributions of the K± and π± from signal decays. The

resulting 0.20% difference between K+π− and K−π+ is adopted as a systematic uncertainty in

the measurement of ACP (B0 → K∗0γ).
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K∗0 → K+π−

Monte Carlo Efficiency 0.257

Descriptions Factor σ

B Counting 1.000 1.1%

Tracking Eff 0.986 1.6%

PID 0.982 1.0%

Neutrals Efficiency 1.000 2.5%

Distance cut 1.000 2.0%

π0(η) veto 1.000 1.0%

Neural network 1.001 3.0%

Cross- and down-feed 1.000 2.2%

Signal eff. 0.978 0.9%

Total Correction 0.949 5.3%

Corrected Efficiency 0.244 5.6%

Sub-Mode BR 0.667

Table 10.6: This table lists the factors needed to correct the Monte Carlo efficiency and their
systematic errors for B0 → K∗0γ, K∗0 → K+π−. The final estimated efficiency is also given.

10.11 Summary of systematics and efficiency

Table 10.6 collects the efficiency corrections and sources of systematic uncertainty

for the B0 → K∗0γ branching fraction analysis. Table 10.8 duplicates this summary for the

B → ργ and B0 → ωγ modes. Table 10.7 shows the systematic uncertainties associated with

the measurement of ACP (B0 → K∗0γ)

10.12 Individual mode measurements

With the conclusion of the analysis of sources of systematic uncertainty, measurements

for the branching fractions of the individual decay modes can be assembled.
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Systematic errors on ACP (%)

Description K+π−

Tracking efficiency 0.35

Charged particle identification 1.00

Nuclear interaction asymmetry 0.20

B-background asymmetry 0.25

Total 1.1

Table 10.7: Fractional systematic uncertainties on the branching fraction B(B0 → K∗0γ(K∗0 →
K+π−)) and absolute systematic uncertainties on CP asymmetry ACP (B0 → K∗0γ(K∗0 →
K+π−)).

B0 → ρ0γ B+ → ρ+γ B0 → ωγ

Description factor error factor error factor error

Multiplicative Efficiencies

Number of B events 1.000 0.011 1.000 0.011 1.000 0.011

Tracking eff. 0.988 0.016 0.996 0.008 0.986 0.016

PID 1.000 0.020 1.000 0.020 1.000 0.020

Photon(π0/γ) eff. 1.000 0.030 0.971 0.060 0.966 0.060

π0, η veto 1.000 0.010 1.000 0.010 1.000 0.010

Photon isolation cut 1.000 0.020 1.000 0.020 1.000 0.020

mππ(π) mass cut 1.000 0.000 1.000 0.000 1.000 0.000

Neural net 1.000 0.046 1.000 0.018 1.000 0.046

MC statistics/bias 1.000 0.102 1.000 0.081 1.000 0.054

and B bkg modeling

Total multiplicative 0.988 0.121 0.967 0.108 0.952 0.100

Additive Corrections to Signal Yield

Description bias error bias error bias error

fit bias/systematic 0.0 +1.7
−1.6 0.0 +2.2

−2.2 -1.05 +1.3
−1.9

Table 10.8: The summary of all systematic uncertainties for each decay mode. For each type of
systematic uncertainty, a correction factor on the signal efficiency and the relative error on the
signal efficiency are calculated. For additive corrections, all numbers are in events.
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10.12.1 B0 → K∗0γ branching fraction

The likelihood fit to data yields Nsig = 583± 30 B0 → K∗0γ, K∗0 → K+π− events

passing the selection criteria (Table 9.7). Table 10.6 gives the cumulative efficiency of the

selection criteria and likelihood fit as ε = 0.244× (1.000± 0.055). The fraction of B0 → K∗0γ

decays in which the K∗0 decays by K∗0 → K+π− is f = 2/3 by isospin arguments. The number

of BB events in the data set is estimated in Chapter 10.1 to be NBB = 88.206×(1.000±0.011)×

106. Assuming that the fraction of Υ (4S) → B0B
0

decays equals the number of Υ (4S) → B+B−

decays, the total number of B0 or B
0

decays occurring in the data is NB0 = NBB . Putting all

of these factors together gives the measurement for the branching fraction

B(B0 → K∗0γ) =
Nsig

εfNBB

= (3.92 ± 0.20(stat) ± 0.22(sys)) × 10−5

. According to the common convention in high energy experimental measurements, the mea-

surement uncertainty has been quoted in two parts: the statistical uncertainty (stat) associated

with the fit estimate of Nsig , and the experimental systematic uncertainty (sys) associated with

ε and NBB . The total measurement uncertainty is understood to be the sum in quadrature of

these two components.

10.12.2 B0 → K∗0γ CP asymmetry

The CP asymmetry ACP (B0 → K∗0γ) requires no efficiency scaling or bias correction

applied to its measured value from the likelihood fit. Adding the total systematic uncertainty

from Table 10.7 gives:

ACP (B0 → K∗0γ) = −0.069± 0.046(stat) ± 0.011(sys).
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10.12.3 B → (ρ/ω)γ branching fraction limits

Measurements of the branching fractions for the modes B0 → ρ0γ, B+ → ρ+γ, and

B0 → ωγ are calculated in the same way. The fit yields for each of the modes Nsig is given in

Table 9.19. Biases on the estimated Nsig , efficiencies ε, and sub-mode decay fractions f appear

in Table 10.8. Chapter 10.1 has the total number of BB events. The measured branching

fractions appear in Table 10.9. The biases are subtracted from the fit yields to get an effective

signal yields which are used in branching fraction calcualations. Note that for none of these

three modes does the central value of the estimated branching fraction exceed 3σ, where σ is

the total uncertainty on the branching fraction. In fact, for each case the number of signal

candidates estimated by the likelihood fit to data is consistent with 0. In such cases, it is

customary, and more useful, to quote a 90% confidence level (CL) upper limit on the branching

fraction B90 implied by the measurement. B90 is a value of the branching fraction for which,

were the measurement repeated independently several times, in 90% of those experiments the

true value of the branching fraction B0 would be less than the estimated B90.

The basic procedure adopted for setting upper limits is that prescribed by the BABAR

Statistics Working Group [58]. Given a measured parameter x and a likelihood function L(x),

the 90% CL upper limit is the value x90 that satisfies:

0.9 =

∫ x90

−∞ L(x)dx
∫ +∞
−∞ L(x)dx

. (10.1)

The maximum likelihood fit procedure for determining the signal yield provides a ready-made

likelihood function for Nsig . However, this likelihood function does not include the systematic

uncertainties of the measurement.

Reference [59] provides a formalism for incorporating systematic uncertainties into an

experimental upper limit determination. Let x be a parameter to be measured by an experiment

with an uncertain sensitivity S. Given a likelihood function L(xS) for the measured product xS
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and the probability density W (S) for S, the likelihood function for x can be found by integrating

L(xS) over the density W (S):

L(x) =

∫

L(xS)W (S)dS (10.2)

In the present case, the efficiency ε of the selection criteria from, e.g., Table 8.3 is the

‘sensitivity’ of the measurement. It is assumed that the true efficiency is normally distributed

about the mean values ε̂sig from Tables 8.3, 8.5, and 8.7 with σε given by the systematic error

on the efficiency from Table 10.8:

W (ε; ε̂, σε) =
1

√

2πσ2
ε

e−(ε−ε̂)2/2σ2
ε .

If Neff is the effective total number of signal decays in the data set, the measured signal yield

Nsig = εNeff , hence the situation is precisely that described by Equation 10.2.

When evaluated as a function of Nsig with the other floated parameters fixed to their

values at the maximum, the likelihood function used in the measurement closely conforms to

a normal distribution (to within a normalization factor) centered at the maximum likelihood

value N̂sig with a standard deviation given by the estimated error on the yield σ2
N

L(Nsig) ∝ e−(Nsig−N̂sig)
2/2σ2

N = e−(εNeff −N̂sig)
2/2σ2

N .

The integral required is:

L(Neff ) ∝
∫

e−(εNeff−N̂sig)
2/2σ2

N e−(ε−ε̂)2/2σ2
ε dε =

2πσεσN

ε̂

√

2π(
N2

eff
σ2

ε

ε̂2 +
σ2

N

ε̂2 )

e

− (Neff −
N̂sig

ε
)2

2(
N2

eff
σ2

ε

ε̂2
+

σ2
N

ε̂2
)
. (10.3)

This is the likelihood that is to be integrated to determine the confidence level in Equation 10.1.

Equation 10.3 has several noteworthy features. First, the form of L(Neff ) is similar

to a Gaussian distribution with mean at the expected estimate of the total number of sig-

nal decays in the complete data set N̂eff = N̂sig/ε̂, and an Neff -dependent standard deviation

σ2
Neff

=
N2

eff σ2
ε

ε̂2 +
σ2

N

ε̂2 . In fact, in the absence of systematic uncertainties (σε = 0), the original
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Figure 10.3: Plot showing Equation 10.3 for several values of σε. ε = 1.0 has been assumed.
Plot taken from [60].

normal distribution is exactly recovered. Further, the terms
Neff σε

ε̂ and σN

ε̂ are easily recognized

respectively as the statistical and systematic contributions to the uncertainty σNeff
.

The magnitude of the systematic uncertainty σε/ε̂ determines by how much L(Neff )

deviates from a Gaussian likelihood. As suggested by Figure 10.3, the Gaussian approximation

is good for systematic uncertainties up to about 20%; the 90% CL differs negligibly from the

Gaussian. In the present case, the systematic uncertainties are about 10%; the Gaussian 90%

CL upper limits (N90
eff ) have been used in lieu of evaluating the integrals:

N90
eff = N̂eff + 1.28× σNeff

.

The resulting 90% CL upper limits for the three decay modes are listed in the last column of

Table 10.9.

222



B(±stat.± sys.) 90%C.L. U.L.

Description Nsig fit sys. ε (×10−6) (×10−6)

B0 → K∗0γ 583± 30 N/A 0.224±0.056 39.2± 2.0 ± 2.2 N/A

B0 → ρ0γ 0.3+7.2
−5.4

+1.7
−1.6 0.158±0.019 0.01+0.22+0.05

−0.16−0.05 0.36

B+ → ρ+γ 25.6+15.3
−13.9

+2.2
−2.2 0.132±0.014 0.92+0.55+0.13

−0.50−0.13 1.76

B0 → ωγ 8.3+5.7
−4.5

+1.3
−1.9 0.086±0.009 0.46+0.31+0.08

−0.25−0.12 0.97

combined B → ργ 269+126
−120

+40.2
−44.5 n/a 0.64+0.32+0.10

−0.28−0.10 1.16

Table 10.9: Summary of the fit yields, systematic errors, signal efficiency, branching fraction,
and the 90% upper limit (U.L.) for B0 → ρ0γ, B+ → ρ+γ, B0 → ωγ, and the combined result.
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Chapter 11

Combined mode measurements

Although the measurements presented in Chapter 10.12 are independently relevant,

when considered in various combinations these measurements acquire even more power to test

details of the Standard Model.

The measurement of B and ACP in the decays B0 → K∗0γ(K∗0 → K+π−) described

in this thesis was carried out in conjunction with similar analyses for the closely related decays

B0 → K∗0γ(K∗0 → K0
sπ

0), B+ → K∗+γ(K∗+ → K+π0), and B+ → K∗+γ(K∗+ → K0
sπ

+). Of

these, B0 → K∗0γ(K∗0 → K+π−) and B0 → K∗0γ(K∗0 → K0
sπ

0) provide largely independent

measurements of B(B0 → K∗0γ) and can be combined for an improved measurement of this

quantity. These measurements can be further combined with the B(B+ → K∗+γ) from the

two charged modes for an improved average B(B → K∗γ), which is theoretically related to the

b→ sγ transition rate. The measurements of ACP can be combined in a similar way.

The B → K∗γ measurements can also be combined into the isospin violation parameter

∆0−:

∆0− =
Γ(B

0 → K
∗0
γ) − Γ(B− → K∗−γ)

Γ(B
0 → K

∗0
γ) + Γ(B− → K∗−γ)

(11.1)

The decay widths Γ(B0 → ρ0γ), Γ(B+ → ρ+γ), and Γ(B0 → ωγ) are related by the
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isospin relation Equation 1.3 (p. 5) repeated below:

Γ(B0 → ρ0γ) = Γ(B0 → ωγ) = 0.5Γ(B+ → ρ+γ). (11.2)

Although insufficient data exist to date to test this relation, a refined upper limit on the theoret-

ical parameters (related to b→ dγ) underlying each of these transition widths can be obtained

by combining the measurements for the three modes assuming the truth of this relation.

Finally, the B → K∗γ and B → (ρ/ω)γ measurements can be combined to estimate

the ration of CKM elements |Vtd/Vts | (see Chapter 1.2):

B(B → (ρ/ω)γ)

B(B → K∗γ)
=

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

2
(

1 −m2
ρ/M

2
B

1 −m2
K∗/M2

B

)3

ζ2|1 + ∆R| , (11.3)

where mρ, mK∗ , and MB are the masses of the ρ, K∗, and B mesons respectively, ζ arises

from flavor-SU(3) symmetry breaking between ρ/ω and K∗, and the correction ∆R accounts for

annihilation diagrams.

11.1 B → K∗γ modes

The analysis of B0 → K∗0γ(K∗0 → K+π−) presented in this thesis was carried out si-

multaneously and with close collaboration to similar analyses of the B0 → K∗0γ(K∗0 → K0
sπ

0),

B+ → K∗+γ(K∗+ → K+π0), and B+ → K∗+γ(K∗+ → K0
sπ

+) decay modes. Tables 11.1

and 11.2 summarize the results of these four analyses. Note that direct CP violating asym-

metry was not measured for the B0 → K∗0γ(K∗0 → K0
sπ

0) mode. The K∗0 → K0
sπ

0 final

state does not unambiguously tag the originating B as B0 or B
0
, unlike the final states of the

other three modes. The CP analysis of this mode must employ time-dependent methods and

has been carried out on BABAR data in the independent analysis [61]. Table 11.3 details the

sources of systematic uncertainty associated with each measurement. Many of these systematic

uncertainties for the various modes are based on the same studies and samples, e.g. the tracking
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efficiency systematics all come from the same study performed by the BABAR Tracking Efficiency

Task Force. Such uncertainties are correlated among the four decay modes. Before interesting

combinations of these results can be constructed, a formalism for dealing with the correlations

among the systematic uncertainties is required.

Isospin BF ± stat ± sys

Description Unblind Yield Efficiency (σsys) factor (×10−5)

K∗0 → K+π− 582.6 ± 29.7 0.244 (5.8%) 0.667 4.06 ± 0.21 ± 0.23

K∗0 → K0
sπ

0 61.8 ± 15.3 0.153 (12.3%) 0.114 4.02 ± 0.99 ± 0.49

K∗+ → K+π0 250.9 ± 22.6 0.174 (9.4%) 0.333 4.89 ± 0.45 ± 0.45

K∗+ → K0
sπ

+ 156.9 ± 15.7 0.221 (6.3%) 0.229 3.52 ± 0.36 ± 0.21

Table 11.1: Unblinded signal yield and the branching fraction for each decay mode on Run1 and
Run2 data.

Description ACP ± stat ± sys (×10−5)

K∗0 → K+π− -0.069 ± 0.046 ± 0.011

K∗+ → K+π0 0.084 ± 0.075 ± 0.007

K∗+ → K0
sπ

+ 0.061 ± 0.092 ± 0.007

Table 11.2: Unblinded ACP for each decay mode on Run1 and Run2 data.

11.1.1 Statistical formalism

The method employed by this analysis for combining the various B → K∗γ measure-

ments is a specialization of a more general method for combining measurements with correlated

uncertainties described in [62]. The formalism is essentially a minimum χ2 method similar to the

standard linear least squares fit. The summary of the method provided in this section will use

the estimate of an ‘average’ branching fraction B(B → K∗γ) from the four modes as a concrete

example to give the method context.

Let ~y be a vector of measurements. In the present case, ~y contains the four branching
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Systematic errors on B(%)

Description K+π− K0
sπ

0 K+π0 K0
sπ

+

Number of B events 1.1 1.1 1.1 1.1

R+/0 2.4 2.4 2.4 2.4

Tracking efficiency 1.6 0.8 0.8

Charged particle identification 1.0 1.0 1.0

Photon efficiency 2.5 7.6 7.6 2.5

Photon isolation cut 2.0 2.0 2.0 2.0

π0, η veto 1.0 1.0 1.0 1.0

Ks efficiency 3.0 3.0

Neural network 3.0 3.5 2.7 2.8

PDF parameterization 2.2 7.3 2.7 1.4

MC statistics/fit bias 0.9 3.2 2.4 1.6

Total 5.8 12.3 9.4 6.3

Systematic errors on ACP (%)

Tracking efficiency 0.35 0.25 0.25

Charged particle identification 1.00 0.55 0.53

Nuclear interaction asymmetry 0.20 0.35 0.15

B-background asymmetry 0.25 0.25 0.25

Total 1.1 0.7 0.7

Table 11.3: Fractional systematic uncertainties on the branching fractions B(B → K∗γ) and
absolute systematic uncertainties on CP asymmetry ACP (B → K∗γ).
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fraction measurements

~y =




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






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...

yn


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
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
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=
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




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
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B(B → K∗γ)[K∗0 → K0
sπ

0]

B(B → K∗γ)[K∗+ → K+π0]

B(B → K∗γ)[K∗+ → K0
sπ

+]



























(11.4)

Let V be the (symmetric, square) covariance matrix of the measurements

V =



























σ2
1 σ2

12 · · · σ2
1n

σ2
12 σ2

2 · · · σ2
2n

...
...

. . .
...

σ2
1n σ2

1n · · · σ2
n



























(11.5)

For the current example, the diagonal elements σ2
i are the total sum squared uncertainties

(statistical plus systematic) for each mode. The off–diagonal elements σ2
ij contain the correlated

parts of the systematic uncertainties. Finally, let ~θ a vector of parameters in a model that

is to be fit to the measurements. Let ~θ be related to the model’s ‘predicted’ values ~f of the

parameters measured in the vector ~y by the linear transform A

~f = A~θ (11.6)

In the example case, ~θ is a single parameter, the branching fraction B(B → K∗γ), and A is a

column vector of ones; each mode gives a measured value for B(B → K∗γ).

The goal is to find the values for ~θ that best account for the measurements ~y. The χ2

difference between the model and measurements is given by

χ2 ≡ (~y −A~θ)TV −1(~y −A~θ) (11.7)

Using the minimum χ2 criteria for the best–fit values of ~θ gives

~θ = (ATV −1A)−1ATV −1~y (11.8)
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The covariance matrix W of the fit values of the parameters ~θ is

W = (ATV −1A)−1 (11.9)

Note that for a diagonal V and a one component ~θ, this method reduces to the standard

method for computing a weighted average of independent measurements with uncertainties.

Instead of the independent weights σ−2
i /

∑

k σ
−2
k , the correlated weight vector ~w is

~w = (ATV −1A)−1ATV −1. (11.10)

It is customary to resolve the variance in derived measurements ~θ into statistical and

systematic parts when quoting them in publication. Two methods have been used in previous

analyses for separating the quoting uncertainties. The first involves repeating the calculation

of Wstat with a diagonal Vstat incorporating only the (independent) statistical uncertainties on

~y. The square root of the resulting variances are quoted as the statistical component of the

uncertainty σstat (θi) =
√

Wstat ,ii. The systematic component completes the total variance Wii

when added in quadrature with σstat (θi), σsyst (θi) =
√

Wii −Wstat ,ii. This seems to be the

most often used method. However, it’s rigorously problematic. Using Vstat instead of the full V

will produce different values for the estimated ~θ. The resulting covariance matrix Wstat solves

a different problem and may not represent the statistical contribution to W . For concision, this

method will be subsequently referred to as the statistical-remainder method of resolving the

uncertainties.

A second method involves performing standard Gaussian error propagation on the

weighted formula for ~θ separately for the statistical and systematic parts of the covariance

matrix V . Specializing the discussion to a single component θ for simplicity, the weight vector

~w is calculated as in Equation 11.10 above using the complete covariance matrix V , with θ = ~w ·~y

by Equation 11.8. The weights ~w are then assumed constants in a linear equation defining θ, and

the uncertainty in θ calculated by a standard Gaussian propagation of errors. The covariance
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matrix V is resolved into a diagonal matrix of statistical uncertainties Vstat ,ii = σstat (yi)
2 and

Vsyst containing the correlated systematic uncertainties:

V = Vstat + Vsyst

The error in θ is then computed from V and the partial derivatives di ≡ ∂θ/∂yi = wi

σ2
θ = ~dV ~dT

= ~dVstat
~dT + ~dVsyst

~dT

= σ2
θ,stat + σ2

θ,syst

For concision, this method will be subsequently referred to as the propagation-of-errors method

of resolving the uncertainties.

Both methods have been applied to the current analysis to check consistency. The

errors quoted in the published results ([1]) come from the second method.

11.1.2 Correlation of systematic branching fraction uncertainties

It remains to identify which sources of systematic uncertainty are correlated among

the B → K∗γ modes and to construct the covariance matrices for the combined branching

fraction calculations. Refer to Table 11.3 for a list of sources of systematic uncertainties, and

Chapter 10.8 for a description of these uncertainties.

The four modes each incur systematic uncertainties related to the high energy photon.

For three of these sources of systematic uncertainty, each mode uses an uncertainty based on

the same study and data set. Thus the uncertainties associated with photon detection efficiency,

the photon isolation cuts, and the π0/η veto must be considered correlated between each pair

of modes.
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The systematic uncertainties associated with B counting come from a standard BABAR

analysis, and must be considered correlated between each pair of mode measurements.

The three modes in which the K∗ decays to a K± or π± each derives its uncertainty

associated with charged candidate tracking efficiency from the same Tracking Efficiency Task

Force study, and hence must be considered correlated between any pair of them.

The uncertainty associated with K0
S efficiency in the B0 → K∗0γ (K∗0 → K0

sπ
0) and

B+ → K∗+γ (K∗+ → K0
sπ

+) are derived from the same Neutrals Working Group study and

must be considered correlated.

And finally, the uncertainty associated with the charged kaon candidate identification

in the B0 → K∗0γ (K∗0 → K+π−) and B+ → K∗+γ (K∗+ → K+π0) come from the same PID

group study, and are correlated. The sources of correlated uncertainties among the four modes

is summarized in Table 11.4.

The contribution to an off-diagonal element of the covariance matrix is the product of

the uncertainties from the given source for the two modes involved. This corresponds to a degree

of correlation equal to the geometric mean of the two uncertainties. For example, the tracking

efficiency gives a 1.6% uncertainty to B0 → K∗0γ (K∗0 → K+π−) and a 0.8% uncertainty to

B+ → K∗+γ (K∗+ → K+π0). The contribution to the off-diagonal element is the product

σ2
trk,ij = (0.016B(B0 → K∗0γ(K+π−))) · (0.008B(B+ → K∗+γ(K+π0)))

= (0.016 · 3.92× 10−5) · (0.008 · 4.90× 10−5)

= 2.46× 10−13

Tables 11.5 and 11.6 show the total covariance matrix V and the systematic covariance

matrix Vsyst thus calculated for the four B → K∗γ analyses.

231



Mode K∗0 → K+π− K∗0 → K0
sπ

0 K∗+ → K+π0 K∗+ → K0
sπ

+

K∗0 → K+π− - Common 4 Common 4 Common 4

Tracking Tracking

Particle ID

K∗0 → K0
sπ

0 - - Common 4 Common 4

K0
s

K∗+ → K+π0 - - - Common 4

Tracking

Table 11.4: Correlated systematics of the four B → K∗γ modes. “Common 4” refers to the
five systematics that are common to all modes (B Counting, Neutrals Efficiency, Distance Cut,
and π0/η veto. Diagonal entries are simply the total systematic for each mode. The matrix is
symmetric, so all entries below the diagonal are omitted

V =




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
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


















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sπ

0 K∗+ → K+π0 K∗+ → K0
sπ

+

K∗0 → K+π− 0.9435× 10−11 0.4115× 10−11 0.5458× 10−11 0.1963× 10−11

K∗0 → K0
sπ

0 0.4115× 10−11 12.29× 10−11 1.256× 10−11 0.4833× 10−11

K∗+ → K+π0 0.5458× 10−11 1.256× 10−11 4.074× 10−11 0.4443× 10−11
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sπ
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Table 11.5: Covariance matrix of the B → K∗γ measurements

Vsyst =
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K∗0 → K+π− K∗0 → K0
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0 K∗+ → K+π0 K∗+ → K0
sπ
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K∗0 → K+π− 0.5064× 10−11 0.4115× 10−11 0.5458× 10−11 0.1963× 10−11

K∗0 → K0
sπ

0 0.4115× 10−11 2.4 × 10−11 1.256× 10−11 0.4833× 10−11

K∗+ → K+π0 0.5458× 10−11 1.256× 10−11 2.052× 10−11 0.4443× 10−11

K∗+ → K0
sπ

+ 0.1963× 10−11 0.4833× 10−11 0.4443× 10−11 0.4386× 10−11
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Table 11.6: Systematic covariance matrix of the B → K∗γ measurements
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11.1.3 Combined branching fractions

All is now prepared for combining the B → K∗γ branching fractions. This section

presents the computation of three ‘average’ branching fractions from a combination of the four

individual branching fraction measurements:

• B(B0 → K∗0γ) from B0 → K∗0γ (K∗0 → K+π−) and B0 → K∗0γ (K∗0 → K0
sπ

0),

• B(B+ → K∗+γ) from B+ → K∗+γ (K∗+ → K+π0) and B+ → K∗+γ (K∗+ → K0
sπ

+),

• B(B → K∗γ) from all four modes.

The computation of B(B0 → K∗0γ) from B0 → K∗0γ (K∗0 → K+π−) and B0 → K∗0γ

(K∗0 → K0
sπ

0) involves only the 2×2 neutral sector in the upper left-hand corner of the covari-

ance matrices in Tables 11.5 and 11.6. Applying the statistical formalism to this sector gives

B(B0 → K∗0γ) = (4.061± 0.303)× 10−5, where the uncertainty is the total uncertainty. The

relative weights for the two neutral modes assigned by the procedure (Equation 11.10):

w0 ≡ w(K∗0 → K+π−) = 0.9571 (11.11)

w1 ≡ w(K∗0 → K0
sπ

0) = 0.0429

(11.12)

The more precise measurement of B(B0 → K∗0γ (K∗0 → K+π−)) dominates. Using the

statistical-remainder method for resolving the total uncertainty into statistical and systematic

parts gives

B(B0 → K∗0γ) = (4.061± 0.205(stat) ± 0.224(syst)) × 10−5 .

Applying the propagation-of-errors method gives

B(B0 → K∗0γ) = (4.061± 0.205(stat) ± 0.224(syst)) × 10−5 .
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In this case, the dominance of one of the modes leads to almost identical results for the two

methods.

Repeating this set of procedures for the B+ → K∗+γ sector in the lower right hand

corner of the covariance matrices gives B(B+ → K∗+γ) = (3.874± 0.373)× 10−5 and relative

weights

w2 ≡ w(K∗+ → K+π0) = 0.2606 (11.13)

w3 ≡ w(K∗+ → K0
sπ

+) = 0.7394.

(11.14)

The statistical-remainder method resolves the uncertainty as

0.373(tot) = 0.280(stat) ± 0.246(syst).

The propagation-of-errors breakdown gives

B(B+ → K∗+γ) = (3.874± 0.290(stat) ± 0.235(syst)) × 10−5

In this case, using only the statistical uncertainties in the statistical-remainder would method

lead to a significantly different weighting of the two modes—(0.3886/0.6114) instead of

(0.2606/0.7394)—and a significantly different estimate for B(B+ → K∗+γ).

Finally, the total average B(B → K∗γ) using all four modes is

B(B → K∗γ) = (3.930± 0.174(stat) ± 0.196(syst)) × 10−5 ,

where the quoted uncertainties come from the propagation-of-errors method. The statistical-

remainder method gives 0.165(stat) ± 0.203(syst, which agrees reasonably well.
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11.1.4 Isospin asymmetry

The isospin violation parameter most often used in literature is

∆0− ≡ Γ(B
0 → K

∗0
γ) − Γ(B− → K∗−γ)

Γ(B
0 → K

∗0
γ) + Γ(B− → K∗−γ)

. (11.15)

It will be calculated in two steps to simplify the treatment of systematic uncertainties. The first

step isolates the terms that rely only the measured branching fractions in an isospin ratio I .

I ≡ B(B0 → K∗0γ)

B(B+ → K∗+γ)
(11.16)

The average values for B(B0 → K∗0γ) and B(B+ → K∗+γ) from Chapter 11.1.3 are used in the

calculation of I . In terms of the individual mode branching fraction measurements and their

relative weights wi in the average branching fraction measurements (Equations 11.12 and 11.14):

I =
w0B(B0 → γK∗0(K+π−)) + w1B(B0 → γK∗0(K0

Sπ
0))

w2B(B+ → γK∗+(K+π0)) + w3B(B0 → γK∗+(K0
Sπ

+))
(11.17)

This relation is taken as defining I , and its uncertainty is calculated from the covariance matrices

in Tables 11.5 and 11.6 by the propagation-of-errors method described in Chapter 11.1.1:

I = 1.048± 0.093stat± 0.055syst (11.18)

The second step relates I to the isospin violation parameter ∆0−:

∆0− =
IR+/0 τ+

τ0 − 1

IR+/0 τ+

τ0 + 1
, (11.19)

where τ+ and τ0 are the B+ and B0 lifetimes respectively, and R+/0 is the B production ratio

defined as

R+/0 ≡ Γ(Υ (4S) → B+B−)

Γ(Υ (4S) → B0B
0
)

The lifetime ratio from [17] is τ+/τ0 = 1.083± 0.017. The uncertainty on this value is classified

as a systematic uncertainty and combined with the systematic uncertainty from I in the quoted

result for ∆0−. The charge production ratio measured at BABAR ([63]) R+/0 = 1.006± 0.048 is
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not significantly different from 1. The uncertainty contributed to ∆0− from R+/0 is quoted as

a separate systematic uncertainty. The end result:

∆0− = 0.063± 0.044(stat) ± 0.028(syst) ± 0.024(R+/0)

This corresponds to a 90% confidence interval of

−0.031 < ∆0− < 0.157

11.1.5 CP asymmetry

An average ACP is computed from the measured ACP for the B0 → K∗0γ

(K∗0 → K+π−), B+ → K∗+γ (K∗+ → K+π0), and B+ → K∗+γ (K∗+ → K0
sπ

+) analyses in

the same way as the combined branching fractions.

The sources of systematic uncertainties in the measurement of ACP are listed in Ta-

ble 11.3. The systematic uncertainties associated with the tracking efficiency asymmetry are

estimated from the same study for each of the 3 modes, and must be considered correlated

for any pair. The uncertainties associated with nuclear interaction asymmetries before the

tracking volume must be considered correlated for modes that share a final state particle.

Thus the B0 → K∗0γ (K∗0 → K+π−) is correlated to the B+ → K∗+γ (K∗+ → K+π0) be-

cause they share a K±, and with B+ → K∗+γ (K∗+ → K0
sπ

+) because of the common π±.

The B+ → K∗+γ (K∗+ → K+π0) and B+ → K∗+γ (K∗+ → K0
sπ

+) nuclear interaction uncer-

tainties are uncorrelated. The uncertainty associated with charged kaon identification asymme-

tries in the B0 → K∗0γ (K∗0 → K+π−) and B+ → K∗+γ (K∗+ → K+π0) modes come from the

same study and must be considered correlated. The uncertainties associated with B-background

asymmetries are determined by independent toy Monte Carlo studies for each mode, and are not

correlated. These correlations are summarized in Table 11.7. The resulting total and systematic

covariance matrices appear in Tables 11.7 and 11.9.
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Mode K∗0 → K+π− K∗+ → K+π0 K∗+ → K0
sπ

+

K∗0 → K+π− Tracking Tracking

- Nuclear interactions Nuclear interactions

Particle ID

K∗+ → K+π0 - - Tracking

Table 11.7: Correlated systematics of the three ACP modes. Diagonal entries are simply the
total systematic for each mode. The matrix is symmetric, so all entries below the diagonal are
omitted
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Table 11.8: Covariance matrix of the ACP measurements
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K∗0 → K+π− K∗+ → K+π0 K∗+ → K0
sπ

+

K∗0 → K+π− 12.25× 10−5 7.075× 10−5 1.175× 10−5

K∗+ → K+π0 7.075× 10−5 5.5× 10−5 0.625× 10−5

K∗+ → K0
sπ

+ 1.175× 10−5 0.625× 10−5 4.284× 10−5
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Table 11.9: Systematic covariance matrix of the ACP measurements
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The relative weights for the three measurements produced by the least- squares proce-

dure:

w(K∗0 → K+π−) = 0.6054

w(K∗+ → K+π0) = 0.2341

w(K∗+ → K0
sπ

+) = 0.1605

and the combined average ACP :

ACP (B → K∗γ) = −0.012± 0.036(stat) ± 0.008(syst)

The quoted uncertainties are the result of the propagation-of-errors method for resolving the

uncertainty into statistical and systematic components. The statistical-remainder method gives

an almost identical segmentation. This corresponds to a 90% confidence interval of

−0.073 < ACP (B → K∗γ) < 0.048

11.2 B → ργ, B0 → ωγ modes

The B → ργ and B0 → ωγ branching fraction measurements are combined at the level

of the likelihood fit, rather than at the post hoc level of the B → K∗γ analyses. A single

likelihood function is fit to candidates reconstructed in all three modes B0 → ρ0γ, B+ → ρ+γ,

and B0 → ωγ. The mechanics of the simultaneous fit to the three populations of candidates is

the same as that applied to the two CP-conjugate populations in the B0 → K∗0γ as described in

Chapter 9.2.1. This likelihood fit produces an estimate of the sum of the number of signal decays

in the three modes—a total signal yield, which is expected to have a smaller relative statistical

error than any of the individual mode measurements. The sizes of the systematic uncertainties

of this combined yield are estimated with toy Monte Carlo studies after the combined fit.
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11.2.1 Combined likelihood fit

The likelihood function fit used in the combined fit is the product of the individual

mode likelihood functions defined in Chapter 9.3

Lcomb = L(B0 → ρ0γ) · L(B+ → ρ+γ) · L(B0 → ωγ)

with an additional constraint on the signal yields. This constraint derives from the theoretical

relationship among the decay widths of the three modes.

Γ(B0 → ρ0γ) = Γ(B0 → ωγ) =
1

2
Γ(B+ → ρ+γ).

In terms of the branching fractions B(mode) and the B lifetime ratio τB+/τB0 this relationship

is

B(B0 → ρ0γ) = B(B0 → ωγ) =
1

2

τB0

τB+

B(B+ → ρ+γ)

The mean number of signal events N̄sig(mode) expected to survive the selection criteria with

efficiencies ε(mode) follow:

N̄sig(B0 → ρ0γ)

ε(B0 → ρ0γ)
=
N̄sig(B0 → ωγ)

ε(B0 → ρ0γ)
=

1

2

τB0

τB+

N̄sig(B0 → ωγ)

ε(B0 → ρ0γ)

To encode this relationship as a constraint in the likelihood fit, the formerly indepen-

dent mode signal yields Nsig are defined in terms of a single total ‘effective signal yield’ Neff ,

which is to be estimated (floated) in the likelihood fit

Neff =
Nsig (B+ → ρ+γ)

ε(B+ → ρ+γ)
+
τB+

τB0

[
Nsig(B0 → ρ0γ)

ε(B0 → ρ0γ)
+
Nsig(B0 → ωγ)

ε(B0 → ωγ)
]

The Nsig are related to Neff by

Nsig(B+ → ρ+γ) ≡ 1

2
Neffε(B

+ → ρ+γ)

Nsig(B0 → ρ0γ) ≡ 1

4

τB0

τB+

Neffε(B
0 → ρ0γ)

Nsig(B0 → ωγ) ≡ 1

4

τB0

τB+

Neffε(B
0 → ωγ)
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B0 → ρ0γ B+ → ρ+γ B0 → ωγ

Description Ncont NB bkg. Ncont NB bkg. Ncont

Individual fit 4269±73 80±36 6850±90 175±40 1378±37

Combined fit 4270±73 73±35 6850±95 181±39 1380±37

Table 11.10: Summary of the continuum background and combinatoric B background yield from
individual fits and the combined fit.

The end result of the procedure is quoted as an ‘average’ combined branching fraction

B(B → (ρ, ω)γ)

B(B → (ρ, ω)γ) ≡ 1

2
· [B(B+ → ρ+γ) +

τB+

τB0

· (B(B0 → ρ0γ) + B(B0 → ωγ))] (11.20)

that is related to the fit effective signal yield Neff and the number of BB events in the data set

NBB by Neff = 2NBBB(B → (ρ, ω)γ).

11.2.2 Fit results

The result of applying the combined likelihood fit described in Chapter 11.2.1 to the

data is an estimated total effective signal yield of Neff = 269+126
−120. Figure 11.1 depicts the fit

functional shapes on the data. The independently estimated background yields are listed in

Table 11.10. As one would expect, the background estimates are in excellent agreement with

their values from the individual likelihood fits.

11.2.3 Systematic uncertainties

Each source of systematic uncertainty afflicting each of the individual mode measure-

ments will also affect the estimation of Neff (Tables 10.8). The sizes of the resulting uncertainties

in Neff are estimated with toy Monte Carlo studies in the same way that the systematic uncer-

tainties associated with the individual fits were determined (Chapter 10.8). First, a ‘control’

toy ensemble is generated from best-fit PDFs from the combined likelihood fit. Then the effect
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Figure 11.1: Projections of the combined fit to B → ργ and B0 → ωγ in the four discriminating
variables: (a) mES , (b) ∆E∗, (c) N , and (d) F . The points are data, the solid line is the total
PDF and the dashed line is the background only PDF. The selections applied, unless the variable
is projected, are: 5.272 < mES < 5.286 GeV/c2, −0.10 < ∆E∗ < 0.05 GeV and N > 0.9; the
selection efficiencies for signal events are 45%, 57%, 70%, and 44% for the mES, ∆E∗, N and
F projections, respectively.
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of a systematic uncertainty is determined by generating a toy ensemble from a PDF with its

relevant parameter varied by ±1σ. The resulting deviations in the mean value of Neff from its

mean value in the control study are adopted as the systematic uncertainty on Neff associated

with the given input systematic uncertainty.

There is no need to perform a toy study for each source of systematic uncertainty.

Uncertainties that all effect the same parameter in the likelihood fit can be aggregated into a

single study. The sources of systematic uncertainty fall into three general categories

1. uncertainties/biases on the individual fit yields due to the PDFs (Table 10.3),

2. uncertainties on the individual mode reconstruction efficiencies ε(mode) that are uncor-

related among the three signal modes (neural network efficiency and MC statistics in

Table 10.8)

3. uncertainties on ε(mode) that are correlated among the three modes (tracking efficiency,

PID systematic, π0/γ efficiency, π0/η veto, and photon isolation cut in Table 10.8).

The first two categories can be treated in a straightforward manner with a pair of toy stud-

ies (+1σ, −1σ) per mode per category. To treat the third category of correlated systematics

properly, the affected parameters (selection efficiencies ε(mode)) must be varied in a correlated

way.

The systematic uncertainties for category 1 on Neff associated with each of the modes

are determined by generating toy Monte Carlo ensembles with the number of signal events in

the mode under study varied by ±1σ from its value determined in the combined likelihood fit.

The resulting deviations are adopted as a 1σ uncertainty on Neff for the given mode. The results

of this procedure are listed in Table 11.12.

Table 11.11 shows the total correlated and uncorrelated uncertainties associated with

ε(mode) expressed as a fraction of ε(mode). The systematic uncertainty on Neff associated with
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Description B0 → ρ0γ B+ → ρ+γ B0 → ωγ

Correlated error. 0.047 0.068 0.070

Uncorrelated error. 0.112 0.083 0.071

Table 11.11: Break down of the per mode systematic uncertainties on the signal efficiency from
Table 10.8 into contributions correlated and uncorrelated among the signal modes.

the uncorrelated part of the systematic uncertainty on ε(mode) for a given mode is determined by

generating toy Monte Carlo ensembles varying ε(mode) by ±1σ. The resulting mean deviations

Neff from the control mean are adopted as 1σ systematic uncertainties on Neff . The results are

listed in Table 11.12.

The toy ensembles for category 3 are generated with all three ε(mode) simultaneously

varied in the same direction (up or down) by their associated 1σ uncertainty. By simultaneously

varying the ε(mode), the correlations in the uncertainties are preserved. The results are adopted

as 1σ uncertainties on Neff and are also listed in Table 11.12.

Summing the systematic uncertainties in quadrature gives a total uncertainty of +40
−45

on Neff .

11.2.4 Combined limit

The total effective signal yield is

Neff = 269+126
−120(stat)+40

−45(syst).

The resulting combined branching fraction is 2.1σ from 0

B(B → (ρ, ω)γ) = (0.64+0.32
−0.28(stat)+0.10

−0.10(syst)) × 10−6

Applying the methods for determining upper limits on branching fractions described in Chap-

ter 10.12.3, the upper limit on B(B → (ρ, ω)γ) at the 90% confidence level is

B(B → (ρ, ω)γ) < 1.16× 10−6
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Input variation (∆Nmode or εmode) Neff output

Description B0 → ρ0γ mode B+ → ρ+γ mode B0 → ωγ mode err.(events)

Signal bias
(category 1)

+1.7
−1.6 - - +10.9

−9.8

- +2.2
−2.2 - +12.9

−12.6

- - +1.3
−1.9

+27.5
−34.6

Uncorrelated error
(category 2)

0.176
0.140 - - +17.2

−16.7

- 0.143
0.121 - +4.6

−5.5

- - 0.092
0.080

+4.0
−4.6

Correlated error
(category 3)

0.165 0.141 0.092 +15.6

0.151 0.123 0.080 −14.3

Total +40.2
−44.5

Table 11.12: Summary of all the systematic uncertainties for the combined effective signal yield.
Each contribution to the systematic uncertainty in the last column is based on a toy Monte
Carlo study. The toy ensemble is generated from the fit PDF with either the number of events
in a given signal mode Nmode (for category 1) or the efficiency of the mode εmode (for categories
2 and 3) varied as indicated in the table. The deviation of the toy ensemble mean fit result
Neff from its data fit value is taken as the 1σ contribution to the systematic uncertainty. For
example, the first line of the table indicates that a toy ensemble was generated with NB0→ρ0γ

varied by +1.7 and with NB+→ρ+γ and NB0→ωγ unchanged producing a change in the fit Neff by
+10.9. The first line of the ”Correlated error” row indicates that a toy ensemble was generated
with εB0→ρ0γ = 0.165, εB+→ρ+γ = 0.141 and εB0→ωγ resulting in a +15.6 deviation in Neff .

244



11.3 |Vtd/Vts|

Equation 11.3 (repeated below) relates the branching fractions B(B → (ρ/ω)γ) and

B(B → K∗γ) to the ratio of CKM elements |Vtd/Vts |.

B(B → (ρ/ω)γ)

B(B → K∗γ)
=

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

2
(

1 −m2
ρ/M

2
B

1 −m2
K∗/M2

B

)3

ζ2|1 + ∆R|.

The parameter ζ is the ratio of transition form factors that involves non-perturbative physics;

∆R parameterizes the calculable small dynamical differences between the B → K∗γ and B → ργ

transitions. The current theoretical determinations of both of these parameters are [10]

ζ = 0.85± 0.10

∆R = 0.10± 0.10.

Of these, the non-perturbative form factor ratio ζ is considered least well known.

The ratio of the central values of the branching fractions from the analyses presented

in this thesis is

B(B → (ρ/ω)γ)

B(B → K∗γ)
=

(0.64 ± 0.34)× 10−6

(3.930± 0.262)× 10−5
= 0.0163± 0.0087 ,

where the quoted uncertainty is obtained by standard propagation-of-errors. The 90% confidence

level upper limit is

B(B → (ρ/ω)γ)

B(B → K∗γ)
< 0.027.

Using the measured central value for the branching fraction ratio and the quoted the-

oretical parameter values the CKM ratio |Vtd/Vts | is estimated to be

|Vtd/Vts | = 0.142± 0.038(exp) ± 0.017(ζ) ± 0.006(∆R) ,

where the contributions to the uncertainty for each of the parameters has been explicitely re-

tained. The total uncertainty is the square root of the quadrature sum of the components
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σ(|Vtd/Vts |) = 0.042. The 90% confidence level upper limit is

|Vtd/Vts | < 0.195.

Ignoring the theoretic uncertainties, as is sometimes done in experimental publications, the 90%

confidence level upper limit is |Vtd/Vts | < 0.190.
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Chapter 12

Summary and conclusions

Table 12.1 summarizes the experimental measurements produced by the analysis de-

scribed in this thesis. For ease of comparison, the theoretical calcualations of the measured

values from Table 1.1 have been reprinted in Table 12.2.

The branching fractions B(B → K∗γ) are the most precisely measured values for any

radiative penguin decay of B mesons. Although they provide an experimental standard among

such measurements, they are not precise tests of the Standard Model. As indicated in Chap-

ter 1.3 and Table 12.2, theoretical calculations of the branching fractions have uncertainties that

are over five times those of experimental determinations. Naively, it may appear significant that

the theoretical values are almost twice the experimental values, but these differences are actually

between 1.1σtheory and 1.4σtheory and should more properly be interpreted as constraining the

uncertain parameter space of the theoretical Standard Model calculations.

The CP ACP (B → K∗γ) and isospin ∆0−(B → K∗γ) asymmetries show more promise

as precision tests of the Standard Model. New physics interactions, most importantly those

supersymmetric models, which may have only a very minor effect on the branching fractions, can

have large asymmetry effects. The experimental values for ACP (B → K∗γ) and ∆0−(B → K∗γ)
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Value

B(B0 → K∗0γ) (3.92 ± 0.20± 0.24)× 10−5

ACP (B → K∗γ) −0.013± 0.036± 0.010

∆0−(B → K∗γ) 0.050± 0.045± 0.037

B(B0 → ρ0γ) < 0.4 × 10−6

B(B+ → ρ+γ) < 1.8 × 10−6

B(B0 → ωγ) < 1.0 × 10−6

B(B → (ρ/ω)γ) < 1.2 × 10−6

|Vtd/Vts| < 0.190

Table 12.1: Collected table of measured results presented in this thesis. Values for B → K∗γ are
quoted as (central value)±(statistical uncertainty)±(systematic uncertainty). The upper limits
for B(B → ργ) and B(B0 → ωγ) are quoted at 90% confidence level.

Calculations

B(B0 → K∗0γ)(×10−5) 7.09+2.47
−2.27 [5] 7.6+3.5

−3.0 [6] 7.0 ± 2.7 [7]

ACP (B → K∗γ) < 1% [5, 8]

∆0−(B → K∗γ) (8.0+2.1
−3.2)% × (0.3/TB→K∗

1 ) [9]

B(B0 → ρ0γ)(×10−6) 0.49± 0.18(th) ± 0.04(ex) [7] 0.66± 0.20 [10] 0.76+0.26
−0.23 [5]

B(B+ → ρ+γ)(×10−6) 0.90± 0.33(th) ± 0.10(ex) [7] 1.35± 0.42 [10] 1.58+0.53
−0.46 [5]

Table 12.2: Reproduction of Table 1.1. Next to leading order theoretical predictions of parame-
ters for the B → K∗γ andB → ργ decays. Columns represent different published calculations for
each observable. The source of each value is referenced in square brackets [] beside it. The value
of B(B0 → ωγ) is theoretically predicted by isospin symmetry to be the same as B(B0 → ρ0γ).
The factor TB→K∗

1 in the prediction for ∆0− is a form factor which is the dominant source of
the theoretical error. Determinations of TB→K∗

1 include 0.32+0.04
−0.02 ([11]), 0.38± 0.06 ([12]), and

0.27± 0.04 ([6]).
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presented in this analysis are consistent with the Standard Model. However, the uncertainties on

these measurements have not yet ruled out the possibility for discovery of new physics effects.

As BABAR continues to accumulate data, these measurements will become more precise and

remain interesting tests of the Standard Model.

While evidence for the flavor changing neutral current transition b→ sγ is now well-

established—indeed spawning precision measurements—evidence for the similar current b→ dγ

remains elusive. Neither in the analysis presented here, nor in the corresponding analysis by

the Belle collaboration [16], is evidence for b→ dγ observed in any of the channels B0 → ρ0γ,

B+ → ρ+γ or B0 → ωγ individually, nor is evidence observed in the sum of these three channels.

The 90% confidence level upper limits presented in this analysis are solidly within the range of

theoretically calculated values (Table 12.2) and are cause, perhaps, for disappointment, but not

for concern about the verity of the Standard Model.

Although the lack of evidence for B → ργ means that there is still no direct mea-

surement for |Vtd/Vts|, and hence the length of the leg of unitarity triangle AB (Chapter 1.2,

Table 1.2), the upper limit of this value is beginning to provide an interesting constraint on

the CKM parameters. Figure 12.1 demonstrates the constraint in the (ρ, η) plane of the 90%

confidence level upper limit on |Vtd/Vts| presented in Chapter 11.3. The constraints presented in

the figure use only the experimental uncertainty, ignoring the uncertainty in the theoretical pa-

rameters ζ and ∆R (see Equation 11.3, p. 11.3). The |Vtd/Vts| limit is consistent with the global

CKM fit. Further, with improved theoretical calculations, it can even add a new constraint to

the allowed (ρ, η) region. The uncertainty in the theoretical parameter ζ significantly affects the

CKM constraint, but it is hoped that lattice calculations soon will lead to a significant reduction

in this uncertainty.

With BABAR and Belle continuing to take data, it is hoped that soon the decays

B → ργ will begin yielding precision measurements, just as the B → K∗γ decays have, providing
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additional tests of the Standard Model through ACP (B → ργ) and ∆0−(B → ργ) and fulfilling

their promise of an independent measurement of |Vtd/Vts|.

Figure 12.1: Limit in the (ρ, η) plane of the BABAR limit on |Vtd/Vts| superposed on the winter
2004 results of the CKMfitter group’s global CKM fit of relevant experimental results to the
unitarity triangle (Figure 1.3). The purple arcs represent two determinations of the |Vtd/Vts|
90% confidence level upper limit calculated with only the experimental uncertainty. The two
arcs use different values of the theoretical parameters (ζ,∆R): (ζ,∆R) = (0.85, 0.10) for the
inner arc and (ζ,∆R) = (0.75, 0.10) for the outer arc. The allowed region of the limits lie inside
the circles, that is, between the point (1, 0) and the purple circles.

250



Appendix A

Functions

A.1 Gaussian function

Most introductory books on statistics, including [62], include a treatment of the Gaus-

sian, or normal, distribution. Its functional form is

FGauss(x; 〈x〉 , σ) = CGauss · exp(− (x− 〈x〉)2
2σ2

) , (A.1)

where 〈x〉 is the mean of the distribution, σ is its or standard deviation, or width, and CGauss

is a normalization constant.

A.2 Novosibirsk function

The Novosibirsk function is a three parameter function describing an asymmetric peak:

FNovo(x; 〈x〉 , σ, τ) = CNovo · exp(−1

2
(
ln(1 + Λ(σ, τ) · τ · (x− < x >))

τ
)2 + τ2) , (A.2)

where Λ(σ, τ) = sinh(τ
√

ln 4)/στ
√

ln 4 and CNovo is a normalization constant. Quali-

tatively, FNovo is similar to a Gaussian function with an enhanced tail on one side of the peak,
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the side of the peak determined by the sign of τ . The parameters 〈x〉 and σ represent the mode

and width of the peak, and |τ | parameterizes the significance of the tail. In the limit τ → 0, the

Novosibirsk function becomes a Gaussian:

lim
τ→0

FNovo(x; 〈x〉 , σ, τ) = FGauss(x; 〈x〉 , σ) .

A.3 Crystal Ball function

The Crystal Ball function [64] is another function meant to represent a Gaussian dis-

tribution with an enhanced tail. This intention is made explicit by defining a cutoff above which

the Crystal Ball function is exactly Gaussian and below which it is an inverse power law:

FCB(x; 〈x〉 , σ, α, n) = CCB ·



















exp(− (x−〈x〉)2
2σ2 ) for x > 〈x〉 − ασ

( n
α )n·e− α2

2
(

〈x〉−x

σ
+ n

α
−α
)n for x ≤ 〈x〉 − ασ .

(A.3)

The parameters 〈x〉 and σ are the mode and width of the distribution and equivalent to the

Gaussian mean and standard deviation in the region x > 〈x〉−ασ. The enhanced tail is defined

by a parameter α defining the position of the cutoff and the power n. The parameters α and n

are both constrained to be ≥ 0. CCB is a normalization constant. The function is defined to be

continuous and smooth at the cutoff.

A.4 Argus function

The Argus function describes a smooth cutoff behavior determined by kinematic con-

straints of a system. It was first used to describe a continuum background in mES by the

ARGUS collaboration [65].

FArgus(x; ξ, EBEAM) = CArgus ·
x

EBEAM
·
√

1 − x2

E2
BEAM

· e
−ξ

(

1− x2

E2
BEAM

)

(A.4)
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The parameter EBEAM is the function’s endpoint and it is uniformly 0 for x > EBEAM. The

parameter ξ affects the shape of the distribution and is usually called the ‘Argus shape param-

eter’, or simply the ‘shape parameter’. In the analyses described in this thesis, the continuum

endpoint EBEAM in mES is half the total CM energy of the e+e− collision (
√

s
2 ).

A.5 KEYS non-parametric distribution

KEYS (an acronym for Kernal Estimating Your Shapes) is an implementation of the

method of Kernal Estimation to obtain an unbinned, non-parametric, empirical estimation of a

probability distribution function (PDF). Kernal Estimation as it is used in particle physics is

fully described in [50].

Like a histogram, Kernal Estimation is an empirical estimation of an underlying PDF

based on a sample of n data points {ti} randomly drawn from that PDF. The sample defines

a discrete empirical probability density function epdf (x) =
∑

i δ(x − ti). A histogram is a step

function estimate of the underlying PDF obtained by integrating epdf (x) over defined intervals

(xj , xj+1]. Kernal Estimation, instead, arrives at a smooth, continuous estimate f̂0(x) of the

underlying PDF f(x) by convolving epdf (y) with a smooth, continuous kernal function K(x−y):

f̂0(x) =
1

nh

n
∑

i=1

K

(

x− ti
h

)

,

where h is the smoothing parameter that is assigned based on the granularity of the sample.

Many choices for the kernal function K(x) exist.

Where KEYS PDFs are used in this analysis, they uniformly employ a simple Gaussian

kernal function:

K(x) =
1√
2π
e−x2/2 .

Further, the analysis uniformly has used a software implementation of the KEYS included in

the RooFit [46] package.
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Kernal Estimation has advantages over the simple histogram as an estimation of a PDF

in that it is smooth and free from systematic effects introduced by the arbitrary choice of bin

intervals end points. However, it requires more computation than a simple histogram and can

significantly increase the time required to perform likelihood fits if implemented inefficiently.
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Appendix B

Acronyms

CKM matrix Cabibbo–Kobayashi–Maskawa quark–mixing matrix

CL Confidence level (p. 220)

CM frame Center of momentum frame (p. 13)

CMS Center of momentum system. Same as CM frame.

CP symmetry Discrete symmetry under a combination of charge conjugation (C) and parity

(P) transformations.

DCH Drift Chamber (Chapter 2.4)

DIRC Detector of Internally Reflected Cherenkov radiation (Chapter 2.6)

DOCA Distance of closest approach to the IP (p. 56)

EMC Electromagnetic Calorimeter (Chapter 2.7)

FW moment Fox–Wolfram moment (p. 51)

GTL Good Tracks Loose charged candidate selection criteria (p. 50)
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IFR Instrumented Flux Return (p. 18)

IP Interaction point (p. 18)

ISR Initial state radiation (p. 67)

KEYS Kernal estimating your shapes (Appendix A.5)

LH Likelihood (p. 57)

MC Monte Carlo, sometimes Monte Carlo data (p. 33)

MSE Mean squared error (p. 100)

NN Neural network (Chapter 6.1)

NLL Negative log likelihood (p. 158)

NLO Next to leading order (p. 7)

OPE Operator product expansion (p. 9)

PDF Probability density function (p. 42)

PEP–II Positron–Electron Project II (Chapter 2.1)

PID Particle identification (Chapter 4.3.2)

PMT Photomultiplier tube (p. 27)

POCA Point of closest approach to the IP (p. 25)

QCD Quantum chromodynamics

RMS Root mean squared

ROE Rest of the event (p. 66)
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SLAC Stanford Linear Accelerator Center (p. 13)

SM Standard Model (p. 1)

SNNS Stuttgart Neural Network Simulator (ref. [38])

SP Simulation production (p. 36)

SVT Silicon Vertex Tracker (Chapter 2.3)
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