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I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

David MacFarlane

Approved for the University Committee on Graduate Studies.

iii



iv



Acknowledgements

Doctoral dissertation research is meant to be an individual endeavor, an original

contribution to the pool of human knowledge. High energy physics in the past twenty

years however has developed into a science where results can come only from the

cooperative efforts of many researchers, and where an individual, especially a graduate

student must rely on the knowledge and help of many colleagues, friends, and fellow

scientists.

First and foremost I thank my adviser, Rafe Schindler, who incessantly tried to

pass on to me his profound knowledge in particle physics, and to make me understand

the important aspects of scientific research. Especially in the last few month, when I

was writing this thesis, I learned to appreciate the always open door to his office and

the experience with which he guided me through this process. I’m most grateful that

I have had the opportunity to work with and learn from him, and I hope that I can

show in the future that his teachings have fallen on fertile soil.

I’d like to express my gratitude to Vera Lüth, JoAnne Hewett, and David MacFar-
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Abstract

The decay constant fDs of the pseudoscalar strange charm meson D+
s is an impor-

tant benchmark test of the theoretical methods that quantitatively describe the non-

perturbative low-energy regime of QCD, the theory of the strong interaction. A

confirmation of the validity of these predictive methods, foremost lattice QCD, in the

sector of heavy-light meson decay constants increases trust in the calculation of fB,

which is an important number for the measurement of the CKM matrix element Vtd

in B0B0-mixing events.

From October 1999 through July 2004, the BABAR experiment, located at the

PEP-II storage ring at the Stanford Linear Accelerator Center, collected 230.2 fb−1

of data in e+e− collision at
√

s = 10.58 GeV. In this thesis, these data are searched

for e+e− → cc events by identifying sets of charged and neutral pions and charged

kaons, consistent with the decay of a charm meson, D0, D+, D+
s , or D∗+. A sample

of 510,000 charmed mesons with a momentum consistent with e+e− → cc events is

identified.

This cc event sample is searched for the decay D∗+
s → γD+

s → γμ+ν in the

recoil of the charm meson tag, utilizing the knowledge of the tag properties to reduce

background in the signal. A total 489 ± 55 decays are found to pass the selection

criteria, which are chosen to maximize the significance of the signal yield. A search

of the same charm-tagged event sample for the decay D∗+
s → γD+

s → γφπ+ resulted

in the isolation of 2093 ± 99 decays, yielding in turn the ratio of the partial decay

widths:

Γ(D+
s → μ+νμ)

Γ(D+
s → φπ+)

= 0.143 ± 0.018stat ± 0.006sys .
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Using the known branching fraction B(D+
s → φπ+) = (4.81±0.64) %, the branch-

ing fraction B(D+
s → μ+νμ), and the pseudoscalar decay constant fDs are calculated:

B(D+
s → μ+νμ) = (6.65 ± 0.81stat ± 0.25sys ± 0.88norm) % ,

fDs = (281 ± 17stat ± 6sys ± 19norm) MeV ,

where the third error is the uncertainty in B(D+
s → φπ+). The precision of this

measurement is of the same size as the current world average. Using this measurement

and the absolute measurement of fD by the CLEO-c collaboration, a good agreement

with the prediction from lattice QCD calculations is found:

fDs

fD

/(fDs

fD

)
lattice

= 1.01 ± 0.11 .

Yet, the uncertainties are still large and strong statements about the validity of the

lattice calculation would be premature.
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Preface

If you ask a person working in particle physics “What is your favourite book?” the

answer will most likely not be “The ‘Review of Particle Physics’.” Yet, probably

no other book has been referenced more often in publications in particle physics as

exactly this one. In its current version it includes the results of 21926 measurement,

reported in 6415 scientific papers, and is hence the foundation of nearly every new

experiment attempted these days.

Some of these (especially the earlier) reported measurements – like the discovery

of P and CP violation, the J/ψ or the τ particle, the quarks as constituents of matter,

or the W± and Z0 as the carriers of the weak and strong force – were very exciting

and gave new insights into the underlying physics.

The majority of papers though might have been of less appeal to the person in a

public relations office, but they are by no means of less importance. Especially in the

last 15 years the emphasis of research has changed. Now it is the fine quantitative

detail, precision measurements of branching ratios and assymetries, enabled by the

availability of larger datasets and higher energies, that is demanded to pinpoint some

of the more challenging open questions of the field.

This does not mean that the subject has turned into merely a boring taxonomic

exercise. On the contrary, great theoretical issues are at stake. While the earlier Born

approximation did not really test the deeper aspects of the underlying field theory,

current measurements and calculations are becoming sensitive enough to do so. In

this thesis, a measurement is presented that is trying to push into this realm where

the theoretical models can be tested.

The thesis describes the determination of the decay rate of the D+
s meson, the
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lowest energy cs̄ bound state, into a muon and a neutrino, D+
s → μ+νμ, with very high

precision. The decay constant fDs of the D+
s meson, which quantifies the amplitude

of the wave-functions of the c and s quark at zero separation, is extracted. A precise

knowledge of fDs enables theorists to validate their methods, such as lattice QCD,

quark potential models, or sum rules, all of which relate basic QCD principles to

obeservable quantities, and to gauge their predictions in the sector of heavy meson

decay constants.

The measurement uses data produced in electron-positron collisions in the PEP-II

storage ring and collected by the BABAR experiment. Located at the Stanford Linear

Accelerator Center, it is the joint adventure of over 600 researchers from 11 countries.

In the first two chapters of this thesis an overview of the Standard Model and of

the theoretical underpinnings of leptonic meson decays are presented. In chapter 3

the BABAR experiment is introduced, starting with the physics of CP violation in

the B meson sector, before describing the accelerator, the PEP-II storage ring, and

the BABAR detector. Chapter 4 gives an overview about the method used in the

D+
s → μ+νμ analysis, which is described in detail in Chapters 5 and 6. The result

and the analysis of the systematic uncertainties follow in chapter 7. In chapter 8 the

thesis concludes with a discussion of the result and its implications in the field of

particle physics.
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Chapter 1

The Building of the Standard

Model

In the Standard Model of Particle Physics 6 quarks in 3 colors (18 quarks) and 6

leptons and their antiparticles make up the fundamental fermionic constituents of

matter. Leptons and quarks appear in three families, which are distinct in their

masses, but nearly identical in their interactions. Three of the four forces that act

between them and that we observe in nature are described in the Standard Model.

The model combines the unified theory of electromagnetic and weak interactions, the

GSW Model (after their inventors Glashow, Salam, and Weinberg); and the theory

of the strong interaction, quantum chromodynamics or QCD.

1.1 The GSW Model of the Electroweak Interac-

tion

The theory of the electroweak interaction is a non-Abelian gauge theory, with the

gauge group SU(2)L × U(1)Y . In it the local phase invariance of the Lagrangian is

spontaneously broken such that the gauge forces acquire a finite range.

In the lightest family the matter fields are two isospin doublets ψL and three

isospin singlets ψR,

3



4 CHAPTER 1. THE BUILDING OF THE STANDARD MODEL

Table 1.1: Charges and isospin of the fermions of the first family in the Standard
Model.

Fermion field Q T T3 Y(
νeL

eL

)
0

−1
1
2

±1
2

−1

eR −1 0 0 −2(
uL

dL

)
2
3

−1
3

1
2

±1
2

−1
3

uR
2
3

0 0 4
3

dR −1
3

0 0 −2
3

ψL =

(
νeL

eL

)
and

(
uL

dL

)
, and ψR = eR, uR, and dR.

The weak-isospin group SU(2)L reflects the experimental fact that only left-handed

fermions and right-handed anti-fermions show up in weak decay spectra. The right-

handed neutrino drops out since it is neutral and assumed within the definition of

the Standard Model to be massless. The left-handed doublets consist of particles of

different charge (Q) within the doublet, making Q not a good quantum number in

SU(2)L (Table 1.1). However, the hypercharge Y = 2(Q − T3), where T3 is the third

component of the isospin T , is a good quantum number; the corresponding operator

is the generator of the U(1)Y group that commutes with SU(2)L. The free (massless)

fermion Lagrangian

L0 =
∑

i

ψ̄i ı�∂ ψi (1.1)

is invariant under a global SU(2)L × U(1)Y transformation

SU(2)L : e−
ı
2
gωiτ

i

U(1)Y : e−
ı
2
g′ωY ,

(1.2)

where the Pauli matrices τ i are the generators for the SU(2)L. The g and g′ are

the electroweak coupling constants, and the w’s are arbitrary parameters. To achieve
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local gauge invariance (w = w(x)), the Lagrangian is replaced by its covariant form

L0 =
∑

i

ψ̄i ı�D ψi + LG, (1.3)

with the covariant derivative

Dμ = ∂μ + ıgWiμ
τ i

2
+ ıg′Bμ

Y

2
. (1.4)

This introduces the bosonic gauge fields that carry the weak and the electromagnetic

force, Wi are the three gauge fields associated with SU(2)L, and B is the U(1)Y gauge

field. LG contains the dynamics of the Wi and B.

Mass is given to the fermions and gauge bosons through the Higgs mechanism.

Two complex scalar fields are added to the theory, which form an isospin doublet

φ =

(
φ+

φ0

)
. (1.5)

Their dynamics and couplings to the fermions are given by

Lφ = (Dμφ)†(Dμφ) − V (φ)

−
∑
ij

Cij

[
ψ̄iR(φ(c)†ψjL) + (ψ̄iLφ(c))ψjR

]
,

(1.6)

where the potential V (φ) = μ2φ†φ + λ(φ†φ)2 depends on two parameters μ2 and λ,

with μ2 < 0 and λ > 0. The Cij are the coupling strengths of the scalar fields to

the fermions. Through the mechanism of spontaneous symmetry breaking the kinetic

term (Dμφ)†(Dμφ) will give rise to masses for the gauge bosons, and the Yukawa

coupling in Lφ to masses for the fermions. That mechanism works on the premise

that the scalar field φ acquires a vacuum expectation value v = 〈0|φ|0〉 =
(

0
v/

√
2

)
,

v =
√

−μ2/λ, as one of the many choices that minimize the potential V (φ). The

selection of a particular ground state breaks the SU(2)L × U(1)Y symmetry, and

only a residual symmetry U(1)Q remains. The gauge field associated with this left

over symmetry is the photon A = sin θW W3 + cos θW B, the massless propagator of
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the electromagnetic force. Here, θW = arctan(g′/g) is the weak mixing angle. The

charged and neutral propagators of the electroweak force, W± = W1 ∓ ıW2 and

Z0 = sin θW W3 − cos θW B, acquire masses MW± = gv
2

and MZ0 = gv
2 cos θW

. Out of the

four components of φ, only one survives, the neutral scalar Higgs field H.

The complete electroweak Lagrangian for one fermion family is

LEW =
∑

i

ψ̄i

(
ı �D − mi −

gmiH

2MW

)
ψi (1.7a)

− g√
2

∑
i

ψ̄iL γμ
(
T+W+

μ + T−W−
μ

)
ψiL (1.7b)

− g sin θW

∑
i

ψ̄iγ
μQψi Aμ − g

2 cos θW

∑
i

ψ̄iγ
μ(giV − giA)ψi Zμ (1.7c)

+
g2v2

2 sin2 θW

ZμZ
μ +

g2v2

4
W †

μW μ + μ2H2 + L′
G, (1.7d)

where T± are the isospin raising and lowering operators, and giV = T3 − 2Q sin2 θW

and giA = T3 are the vector and axial vector couplings of the fermions to the Z0

boson. L′
G contains the dynamics and the self coupling of the Higgs and of the gauge

bosons. The mi = vCi/2 are the fermion masses.

It is noteworthy that the interactions of all gauge fields are determined by the

electric charge e = g sin θW and a single free parameter, the Weinberg angle θW . This

shows beautifully the unification of the weak and electromagnetic interactions.

1.2 The Multigeneration Model

The incorporation of all known leptons and quarks into the theory, is more than a

mere replication of the formulation for a single family. The extension to three fermion

families brings out many novel features of the Standard Model, such as quark mixing,

the suppression of flavor changing neutral currents, and CP violation.

Historically, the discrepancy of the coupling strengths of μ → ν̄μ, d → u and s → u

transitions, measured in muon-decays, β-decays and the decays Λ → pe−ν̄e, lead to

the conclusion that the isospin partner of the u-quark is a linear combination d′ =

d cos θC + s sin θC , where θC is the Cabibbo angle. The Cabibbo angle measures the



1.2. THE MULTIGENERATION MODEL 7

rotation between the weak interaction or flavor eigenstates d′ and s′, which participate

in the electroweak interaction, and the mass eigenstates d and s, which govern the

time evolution of the physical particle. The logical extension of this rotation to three

quark families is the Cabibbo-Kobayashi-Maskawa (CKM) matrix,

VCKM =

⎛⎜⎜⎝
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞⎟⎟⎠ (1.8)

which is commonly given in the Wolfenstein parameterization:

VCKM =

⎛⎜⎜⎝
1 − λ2

2
λ Aλ3

[
ρ − ıη(1 − λ2

2
)
]

−λ 1 − λ2

2
Aλ2(1 + ıηλ2)

Aλ3(1 − ρ − ıη) −Aλ2 1

⎞⎟⎟⎠+ O(λ4) , (1.9)

where the elements are expanded in powers of λ = |Vus| ≈ sin θC . A, ρ, and η are real

numbers. This mixing of mass and flavor eigenstates, which in the Standard Model

appears only in the quark sector, modifies the strength of the charged current in the

electroweak Lagrangian (1.7b) to

− g√
2

∑
q1,q2

ψ̄q1L γμ
(
T+W+

μ + T−W−
μ

)
Vq1q2ψq2L (1.7b’)

The CKM matrix is unitary (V −1
CKM = V †

CKM). It implies

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 , (1.10)

which can be visualized by a triangle in the complex plane (Figure 1.1), called the

Unitarity Triangle. Other triangles that follow from the unitarity condition have a

much shorter third side compared to the other two and are not usually considered.
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ρ
γ β

α

Aη

1

VtdVtb
∗

|VcdVcb|∗
VudVub

∗

|VcdVcb|∗

0
0

Figure 1.1: The rescaled Unitarity Triangle.

The angles of the Unitarity Triangle are given by

α ≡ arg

(
− VtdV

∗
tb

VudV ∗
ub

)
, β ≡ arg

(
−VcdV

∗
cb

VtdV ∗
tb

)
, and γ ≡ arg

(
−VudV

∗
ub

VcdV ∗
cb

)
= π − α − β .

(1.11)

Today it is one of the primary goals of flavor physics to precisely determine the

parameters of the CKM matrix, and, through independent measurements of the three

angles and sides of the Unitarity Triangle, to test the unitarity hypothesis.

1.3 QCD

Quarks have an additional internal quantum number called color. Each quark flavor

is described by a triplet in color space. QCD, the theory of the strong interaction,

is a non-Abelian gauge theory, with an SU(3)C gauge group, that acts on this color

space. Leptons are color singlets and are indifferent to the strong force. Nature is

invariant under color transformation

SU(3)C : e−
ı
2
gsω̃iλ

i

, (1.12)

where λi are the eight 3 × 3 Gell-Mann matrices that generate the SU(3)C color

group, and gs is the strong coupling constant. Invariance under the local gauge

transformation (1.12) is guaranteed by adding another term to the covariant derivative
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(1.4)

Dμ = ∂μ + ıgWiμ
τ i

2
+ ıg′Bμ

Y

2
+ ıgsGiμ

λi

2
, (1.4’)

Here, the Giμ are the eight color gauge fields, the gluons, that carry the strong force.

Because the color symmetry is an unbroken one, gluons are massless.

Quantum chromodynamics with its non-Abelian gauge fields has the property

of being asymptotically free. The effective strong coupling is not a constant but a

function of the energy of the involved particles; it decreases with growing energy. At

small distances, or large energies, the effective strong coupling is small and quarks

behave as free particles. In this regime, perturbative QCD is valid.

On the other hand, the strong interaction becomes strong at distances larger

than the size of hadrons. In this energy regime, below 1 GeV, quarks and gluons are

confined into color-neutral hadrons. The effective coupling becomes unity, rendering

perturbative calculations, by expansion in orders of the coupling constant, useless.

Instead, calculations of hadronic physics rely on phenomenology and effective field

theories, which convert the unknown effects of non-perturbative QCD into parameters

or functions to be determined by experiment. An example of this phenomenological

approach are the meson decay constants, which will be discussed in the next chapter.

A serious candidate for calculating the low-energy properties of QCD exists, the

lattice gauge theory, or LQCD, introduced in 1974 by Ken Wilson [1]. After 30 years

of development it is now supported by an overwhelming agreement with experimental

data to a precision of less than a few percent [2]. Yet, not all LQCD calculations have

reached that level of precision. Decay constants of heavy mesons, for instance, are

calculated with an error of ≈ 10 %. The measurement of some of these constants

would provide an important tool to verify LQCD methods in a regime where mesons

masses are above 1 GeV.



Chapter 2

The Decay Constant of

Pseudoscalar Mesons

2.1 Introduction

Charged mesons may decay weakly into a lepton-neutrino pair. In the case of the π±,

the lightest meson, this occurs exclusively. Figure 2.1 shows the lowest order Feynman

diagram for the leptonic decay of a meson M+ with quark content Qq̄ into a anti-

lepton l+ and its accompanying neutrino νl. The quarks on the left side of the diagram

Q

q

l+

νl

W+

MQq
+

Figure 2.1: Lowest order Feynman diagram for the leptonic decay of a heavy meson
in the Standart Model.

are not free, and the long-distance effects, present in the formation of the bound meson

state (hadronization) cannot be evaluated directly using perturbative QCD. In general

the hadronization effects in hadronic interactions are parameterized with so called

10
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Table 2.1: Expected branching ratios for the leptonic decay modes of the heavy
pseudoscalar mesons D+, D+

s , and B+, expected in the Standard Model. A decay
constant of 250 MeV is assumed for all three meson types.

Meson Lepton Expected
M VQq l branching ratio

e 1.3 × 10−8

D+ 0.224 μ 5.7 × 10−4

τ 1.5 × 10−3

e 1.2 × 10−7

D+
s 0.996 μ 5.2 × 10−3

τ 6.0 × 10−2

e 1.6 × 10−11

B+ 0.004 μ 6.8 × 10−7

τ 1.5 × 10−4

form factors, which are functions of the momentum transfer and polarization states

of the hadrons involved in the interaction. For leptonic decays of pseudoscalar mesons

these parameterization functions are the simplest. The initial state is unpolarized,

and the s-channel momentum transfer is constant, q2 = m2. The form factor becomes

a constant fM , the decay constant of the meson M . The matrix element of the decay

M+ → l+νl can be written as (see Appendix A for a detailed derivation):

M = ı
GF√

2
VQqfMqμν̄lγμ (1 − γ5) l (2.1)

and the partial decay width as:

Γ(M+ → l+νl) =
G2

F

8π
|VQq|2f 2

MmMm2
l

(
1 − m2

l

m2
M

)2

, (2.2)

where mM and ml are the meson and the lepton masses, respectively, GF is the Fermi

constant, and VQq is the CKM parameter from the annihilation of the constituent

quarks. The partial width is governed by two opposing terms containing m2
l . The

first term, m2
l , reflects helicity suppression in the weak decay of the spin-0 meson,

which requires the lepton to be in its unfavored helicity state. The second term,
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(1 − m2
l /m

2
M)2, is a phase space factor. As a result, the ratio of τ : μ : e decays of

the D+
s is 10 : 1 : 0.00002. From (2.2) the branching ratios can be calculated using

the well known heavy meson lifetimes τM ,

B(M+ → l+νl) = τM Γ(M+ → l+νl) . (2.3)

The Standard Model expectation for the branching ratios are listed in Table 2.1,

assuming a decay constant for all three mesons of 250 MeV.

2.2 Theoretical Predictions for fM

Over the years theoretical physicists have developed a large number of tools and

methods to predict the observable properties of elementary particles in nature. Espe-

cially important are those tools that work in the domain of low-energy QCD. Because

of the large number of calculable observables, stringent tests on the validity of these

methods can be performed; the evolution of theoretical predictability of nature goes

hand in hand with the advances in experimental prowess.

Some of the methods work on first principles, like the static quark potential models,

QCD sum rules, or lattice QCD. They need only very basic input from the experi-

ment, such as quark masses or vacuum expectation values. Other methods exploit

symmetries of nature that arise under certain conditions, for instance the heavy quark

symmetry, valid at quark masses much above ΛQCD, or the chiral symmetry, in which

the light quarks are massless. Also mentioned later is the more specific factorization

ansatz, which explores the necessary conditions so that the rate of a hadronic decay

involving a meson M can be used to deduce the decay constant fM .

2.2.1 Static Quark Potential Models

In systems containing at least one heavy quark, such as the charm and bottom mesons,

one of the earliest models created to explain the observed masses uses a non-relativistic
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Schrödinger equation, with a quark potential

V (r) =
4αs(r)

3r
+ κr +

8παsSQ · Sq

3mqmQ

δ3(r) . (2.4)

The first and third term represent the coulomb-like and hyperfine effects of single

gluon exchange, respectively. The linear term is a phenomenological spin-independent

confining potential. In this model, the pseudoscalar decay constant is related to the

amplitude of the meson wavefunction at the origin,

f 2
M =

12

M
|ψ(0)|2 . (2.5)

2.2.2 QCD Sum Rules

QCD sum rules were among the first to predict fB and fD [3–6]. This method was

developed by Shifman, Vainshtein, and Zakharov in 1979 [7]. Sum rules are derived by

representing hadrons by their constituent quark currents. The correlation function of

these currents is treated in the framework of operator product expansion, where short

and long-distance strong interactions are separated. While the former are calculated

using perturbative QCD, the latter are parameterized in terms of universal vacuum

expectation values of the quark and gluon fields. The result of the QCD calculations

is then matched, via a dispersion relation, to the sum over all possible hadronic

states. The set of sum rules obtained this way can be used to relate parameters of

QCD such as quark masses and vacuum expectation values and observable low-energy

parameters such as hadron masses and decay constants to each other. By gauging

the underlying QCD parameters, experimental input from one sector, for instance

the charmonium mass spectrum, can then be used to compute parameters in other

sectors, such as fDs . Using the technique of QCD sum rules, a recent calculation [8]

finds

fDs = (235 ± 24) MeV, fD = (205 ± 20) MeV, and fB = (203 ± 23) MeV . (2.6)



14 CHAPTER 2. THE DECAY CONSTANT OF PSEUDOSCALAR MESONS

2.2.3 Heavy Quark Effective Theory

Heavy Quark Effective Theory (HQET) works in the limit of infinite quark mass,

mQ → ∞. In this limit the heavy quark Q of a hadronic bound state, HQ, decouples

from the light quarks and gluons. In this limit Q acts as a static source of the

gluon gauge field, which is independent of the mass mQ and of the flavor of Q. In

addition, the light quarks and gluons are insensitive to the spin of the heavy quark,

since the chromomagnetic moment of the heavy quark, μQ = gs/2mQ, vanishes in

the heavy quark limit. Hence, the mass splittings of various hadrons H i
Q, where i

indicates different light quarks, are independent of mQ and of the total spin of HQ.

This is called Heavy Quark Symmetry (HQS). It predicts that the pseudoscalar decay

constants scale with the heavy quark mass as fM ∼ m
−1/2
Q .

The HQET formalism turns the qualitative predictions from HQS into quantitative

statements, by systematically calculating the corrections that arise from a finite mass

of the heavy quark. This is done by simultaneously expanding the QCD Lagrangian

in terms of ΛQCD/mQ and αs(mQ) ∼ 1/ ln(mQ/ΛQCD).

Generally, HQET predictions of decay constants are expressed as ratios, rather

than absolute values. That shows the effect of the 1/mQ corrections to the infinite

mass approximation, while the low-energy QCD effects cancel in the ratio. In [9] the

ratio fB

fD
is calculated

fB

fD

=

√
mc

mb

{(
αs(mc)

αs(mb)

)6/25 [
1

+
7

225

(
π2 +

1887

100

)
αs(mc) − αs(mb)

π
+ O
(
α2

s

)]
+ O
(

ΛQCD

mc,b

)} (2.7)

However, with the value of the bare charm quark mass mc being close to ΛQCD,

HQS might break and HQET might not work as well for predicting results in the

charm sector.
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Table 2.2: Theoretical Predictions from lattice QCD for Heavy Quark Decay Con-
stants. The number nf is the number of dynamical quarks included in the calculations.

Method Year fB [MeV ] fDs [MeV ] fD [MeV ]
MILC [11] (nf = 0) 1997 164(+16

−14) 213(+18
−16) 194(+17

−14)
UKQCD [12] (nf = 0) 2001 195(25) 229(+23

−12) 206(+18
−11)

MILC [13] (nf = 2) 2002 190(+28
−18) 241(+29

−27) 215(+19
−17)

MILC/HPQCD [10] (nf = 3) 2005 249(16) 201(17)

2.2.4 Lattice QCD

The most popular and precise method of calculating the effects of the strong interac-

tion at low energies is lattice QCD, where the Minkowski space-time is modeled as a

4-dimensional Euclidean lattice. Matter fields, e.g. the quarks, occupy the coordinates

of the lattice, separated by the lattice spacing, a, typically ≈ O(1 fm). The gauge

fields, e.g., the gluons, sit on the sites of the lattice, connecting the lattice coordinates,

and exchanging four-momentum between the quarks. Observables are calculated by

sampling the configuration space of possible quark-gluon arrangements and taking

statistical averages. The calculations of lattice QCD can be exact only in the limit

of zero lattice spacing a → 0 and an infinitely large lattice volume. Working toward

this limit requires immense computing resources, since the computing time grows as

T ∝ L5(1/a)7, where L is the lattice size. In addition the lattice simulations require a

computationally expensive consideration of the dynamical quarks, or sea-quarks, u, d,

and s. This is avoided in the “quenched” approximation, where the dynamical quarks

are ignored. Table 2.2 summarizes recent results of lattice calculations of the charged

bottom and charm meson decay constants. Reference [10] also provides a value for

the ratio fDs/fD = 1.25 ± 0.07, which has a 5.4 % uncertainty. The calculation of

the ratio fDs/fD benefits from the cancellation of uncertainties from the heavy quark

discretization and the bare quark masses; the ratio has a better precision than the

value of fDs (6.4 %) alone. In [10] the decay constant fD is calculated from fDs and

fDs/fD.

Problems arise when the considered quark masses are larger than one in lattice

units, and the discretization errors are significant. In this case, lattice formulations
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of effective theories, such as HQET, can be used.

2.2.5 Factorization Ansatz

The decay constant fDs can also been determined from the hadronic decay B0 →
D+

s D− [14] [15]. This method requires that in first order the low energy QCD effects

present in the formation of the bound mesons states can be factorized into the B0 →
D− transition and the D+

s formation,

B(B0 → D+
s D−)

1
2 ∝ FBD

0 (m2
Ds

) fDs , (2.8)

and that the contributions of other processes, like penguin transitions, are small or

precisely calculable. A value fDs = (259 ± 74) MeV is calculated in [14].

2.3 Experimental Status

Equation (2.2) can be used to calculate the decay constant fM from the measured

decay width Γ(M+ → l+νl) and CKM parameter VQq. For the light mesons π+ and

K+, where the leptonic branching ratios are high and the matrix elements have small

errors of 0.05 % and 1 %, respectively, this has been done to great precision. The

light meson decay constants have been determined as fπ+ = (130.7 ± 0.37) MeV and

fK+ = (159.8 ± 1.5) MeV.

For the heavy mesons D+, D+
s , and B+, experimental data is much more sparse.

Helicity suppression makes it virtually impossible to detect the decays M → eνe. The

much less suppressed decays M → τντ are difficult to reconstruct because of at least

two undetectable neutrinos in the final state. Further, the decays of D+ and B+ are

Cabibbo suppressed.

No B+ leptonic branching ratio has yet been measured1. The BABAR and BELLE

collaborations have set upper limits on B(B+ → τ+ντ ) which are close to the Standard

Model prediction. The BABAR experiment also quotes an upper limit on fB but

1After this thesis was written BELLE published a measurement B(B+ → τ+ντ ) = 1.06±0.32stat±
0.17sys and fB = 176 ± 25stat ± 20sys.
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Table 2.3: Decay constants for heavy mesons measured by different experiments. The
first and second error are statistical and systematic, respectively. For fDs the third
error, if given, reflects the uncertainty in the branching ratio B(D+

s → φπ+) which
is used to determine the number of produced D∗+

s mesons. The values and errors of
fDs are given as they were quoted in the original publication; they are not adjusted
to the recent measurement of B(D+

s → φπ+) [16]. The limit on fB is at 90 % C.L..

Experiment Year fDs [MeV ] fD [MeV ] fB [MeV ]
MARK-III [17] 1987 < 290
WA75 [18] 1993 232 ± 45 ± 20 ± 48
E653 [19] 1996 194 ± 35 ± 20 ± 14
BES [20] 1996 300+180+80

−150−40

BES [21] 1997 247+108+115
−69−7

L3 [22] 1997 309 ± 58 ± 33 ± 38
CLEO [23] 1998 280 ± 19 ± 28 ± 34
BEATRICE [24] 2000 323 ± 44 ± 12 ± 34
OPAL [25] 2001 286 ± 44 ± 41
ALEPH [26] 2002 285 ± 19 ± 40
CLEOc [27] 2005 222.6 ± 16.7+2.8

−3.4

BES [28] 2005 371+129
−119 ± 25

BABAR [29] 2004 < 480
PDG 2004 [30] 2004 267 ± 33

the extraction from (2.2) includes the large uncertainty of Vub. A measurement of

B(B+ → τ+ντ ) can be expected within the lifetime of the two experiments, however,

it will be difficult to reach a precision on fB of better than 10 %.

The muonic D+ decay has been searched for in e+e− collisions at the Ψ(3770)

resonance, starting with the MARK-III Collaboration, which, in 1987, set the first

upper limit for fD of 290 MeV. Recently, the CLEO-c Collaboration published a

measurement for fD = (223 ± 17) MeV, and is expected to lower the error on fD

to 2 % in the future. The upgraded BES experiment is also expected to reach that

precision, which would give a world combined error of less than 1.5 %.

The leptonic D+
s decays D+

s → μ+νμ and D+
s → τ+ντ have been measured by

a number of experiments in a variety of environments. Their combined average is

267 MeV, with an error of 12.4 %. In order to measure a D+
s meson branching ratio,
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the produced number of D+
s mesons has to be known. This can be accomplished by

producing D
(∗)+
s D

(∗)−
s pairs at an energy slightly above the production threshold. The

identification of one D
(∗)±
s determines the existence of the other. This has been done

by the MARK-III and the BES experiment. All other experiments had higher center-

of-mass energies and needed to measure the number of produced D+
s mesons through

another, known, D+
s decay channel. The D+

s decay which is known most precisely

is D+
s → φπ+, with an error on the branching ratio of 14 %, determined in a single

measurement by BABAR [16]. This uncertainty represents the largest contribution to

the error on the combined fDs .

2.4 Standard Model Extensions

In extensions of the Standard Model one expects small modifications to the D+
s →

μ+νμ branching ratio. In a general (supersymmetric) two-Higgs doublet model, the

decay can occur via a charged Higgs particle [31].

c

s

μ+

νμ

H+

Ds
+

Figure 2.2: Lowest order Feynman diagram for the leptonic decay of a heavy meson
in the Two-Higgs Doublet Model.

The decay through a charged Higgs boson modifies the Standard Model predictions

by a factor rH :

rH =

[
1 +

m2
Ds

m2
H±

(
1 − tan2 β

ms

mc

)]2
, (2.9)

where tan β is the ratio of the two vacuum expectation values of the two Higgs dou-

blets, and ms and mc are the bare masses of the strange and charm quark, respectively.

With m2
Ds

/m2
H± < 0.0007 (obtained from the lower limit mH± > 78.6 GeV/c2 set by
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))
2
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1

Figure 2.3: Enhancement of the Standard Model D+
s leptonic decay branching ratio

in the Two-Higgs-Doublet-Model as a function of tan β/mH± according to (2.10).
ms/mc = 0.1 is used.

the LEP experiments [32]), (2.9) can be simplified:

rH ≈
[
1 − tan2 β

m2
H±

m2
Ds

ms

mc

]2
. (2.10)

rH as function of tan β/mH± is shown in Figure 2.3.

Recently, BELLE has set an upper limit on tan β/mH± < 0.29 (GeV/c2)−1 [33],

using their measured upper limit on B(B+ → τ+νμ). Figure 2.3 shows that with this

limit on tan β/mH± the charge Higgs contribution to B(D+
s → μ+νμ) is less than 1 %.

2.5 The Decay Constant and the Unitarity

Triangle

As mentioned earlier in chapter 1.2, the determination of the angles and sides of the

Unitarity Triangle in Figure 1.1 is one of the primary tasks of flavor physics. Various

groups have taken up the task to compile all available measurements and fit for the

parameters ρ and η. The result of the “CKMfitter” group [34] are shown in Figure 2.4.

Currently all measurements are consistent with each other, confirming the unitarity
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assumption. A more rigid statement could be made if the length of the upper right
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Figure 2.4: The global CKM fit in the ρ̄–η̄ plane. The constraints on Vtd, determined
from the measurements of Δmd and of Δmd/Δms are indicated by the orange and
by the yellow band, respectively.

side of the triangle in Figure 2.4 would have a smaller uncertainty. That length is

given by |(VtdVtb)/(VcdVcb)|, with Vtd having a considerably larger error than the other

three CKM matrix elements. The value of Vtd is directly determined from the mass

difference Δmd of the heavy and the light neutral Bd meson.

The mass difference is the cause of neutral B meson oscillations. In the oscillation

Feynman diagram, which is depicted in Figure 3.1 on page 27, the ΔB = 2 flavor

change happens through intermediate top-quarks that couple to the quarks of the B0

with Vtb and Vtd. The relation between Δmd and Vtd is given by

Δmd =
G2

F

6π2
ηBmBB̂Bf 2

Bm2
W S

(
m2

t

m2
W

)
|VtbV

∗
td|2 , (2.11)

where B̂B = 1.4 ± 0.1 [35] is the so-called bag parameter, calculated in lattice QCD,

and ηB = 0.55 comes from short distance QCD corrections in next-to-leading order.
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S(x) is the result of the calculation of the box diagram,

S(x) = x

(
1

4
+

9

4

1

1 − x
− 3

2

1

(1 − x)2

)
− 3

2

(
x

1 − x

)3

ln x . (2.12)

With Δmd = (0.509 ± 0.004) ps−1 [36] being measured to a precision of 1.4 %, the

uncertainty in Vtd is almost entirely due to that of fB

√
B̂B = 210 ± 24 [37].

With the ratio ξ ≡ fB

√
B̂B/fBs

√
B̂Bs , the ratio of Δmd to Δms, the mass differ-

ence between the heavy and the light Bs meson, can be written as

Δmd

Δms

= ξ2

∣∣∣∣Vtd

Vts

∣∣∣∣2 . (2.13)

In the calculation of ξ most sources of uncertainty vanish, (although some larger

uncertainties remain,) and unquenched lattice QCD computes ξ = 1.21 ± 0.06 [38].

With the current world average, Δms > 16.6 ps−1 at 95 % C.L. [36], a upper limit

can be placed on the value of Vtd, which is tighter than that from Δmd alone2.

It has been said before, that an O(5 %) measurement of fB is not feasible with the

current or near future experiments. It is up to theory to determine a precise value

for fB. It is therefore critical to provide results from high precision measurements,

which can be used by theoreticians to test and gauge their calculation tools. Such an

important measurement is that of the decay constant fDs .

2After this thesis was written CDF published a measurement Δms = (17.33+0.42
−0.21 stat ±

0.07sys) ps−1 and |Vtd/Vts| = 0.208+0.008
−0.007 stat+sys.
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Chapter 3

The BABAR Experiment

3.1 The Physics Case For BABAR

The group of Lorentz transformations includes not only the proper continuous trans-

formations, but also the discrete parity transformation P (the negation of space co-

ordinates), charge conjugation C (the interchange of particle and antiparticle), and

time reversal T . One of the most beautiful properties of quantum field theories, which

was first formulated by E. Noether for continuous transformations, is that, whenever

a physical system is invariant (symmetric) under such a transformation it leads to

a conserved quantity. Nature seems to take advantage of the simple mathematical

representation of symmetry laws. It is only logical, and from an aesthetic viewpoint

desirable, that the discrete transformations P, C, and T also preserve the laws of

physics, and perhaps even lead to the conservation of associated quantities, if they

can be found.

However, P is not a symmetry of Nature. By 1956 empirical evidence had mounted

(the so called θ-τ puzzle) that parity is violated in weak decays. In a Nobel Prize

winning work T.D.Lee and C.N.Yang proposed a number of experiments on β-decays,

and hyperon and meson decays, that would provide the necessary proof for or against

parity conservation in weak interactions. Carried out by C.S.Wu and colleagues in

late 1956, it was found in the study of decays 60
27Co → 60

28Ni + e− + ν̄e that parity is

indeed maximally violated in the weak interaction.

25
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At the same time (in fact even before the experimental results of Wu’s group were

published) it was realized by Landau, that the symmetry could be recovered, if P
was combined with C, the symmetry of charge-conjugation. This satisfactory, but

short lived picture was shattered, when in 1964 in another Nobel Prize winning work

CP violation in neutral K0/K̄0 meson system was discovered. It was found that the

CP -odd long lived component of the neutral kaon system, (|K0〉− |K̄0〉), could decay

into two pions, which are a CP -even state.

Since then no new CP -violating phenomena had been observed although the CKM

mechanism offers a theoretical framework for CP violation outside the K system, in

particular in the bottom sector. But, is this is the only mechanism for CP violation

to appear? Does it occur only in charged currents, as the SM predicts? Could “New

Physics”, induced by loop effects of virtual new particles, appear in CP asymmetries?

The study of B meson decays could help to answer these questions.

In addition, the BABAR physics program comprises an extensive effort in the area

of charm and τ decays.

3.1.1 CP Violation in the B Meson System

In the study of CP violation in the B meson system the oscillation of neutral B

mesons is of particular interest. Neutral B mesons are described by two sets of two

eigenstates:

• Flavor eigenstates, |B0〉 and |B0〉, with well defined quark content, which are

relevant in production and decay processes of the neutral B.

• Mass eigenstates, |BL〉 and |BH〉, with well defined mass and lifetime, which

describe the time development of the system.

The mass eigenstates can be written as linear combinations of the flavor eigenstates

a|B0〉 + b|B0〉, (3.1)
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Figure 3.1: Feynman Diagram describing the oscillation of the B0–B0 meson system.

and evolve according to the Schrödinger equation

ı
d

dt

(
a

b

)
= H

(
a

b

)
≡
(
M − ı

2
Γ
)(a

b

)
, (3.2)

where M and Γ are hermitian 2 × 2 matrices. CPT invariance requires the diagonal

elements H11 and H22 to be identical. The off-diagonal elements describe the mixing

probability of the flavor eigenstates, |B0〉 ↔ |B0〉. The mixing occurs through the

weak interaction according to the box diagrams in Figure 3.1. The mass eigenstates

|BL〉 = p|B0〉 + q|B0〉 and (3.3)

|BH〉 = p|B0〉 − q|B0〉 (3.4)

are found by solving (3.2), giving the ratio:

q

p
= −
(

M∗
12 − ı

2
Γ∗

12

M12 − ı
2
Γ12

) 1
2

= −
2(M∗

12 − ı
2
Γ∗

12)

ΔmB − ı
2
ΔΓB

, (3.5)

where ΔmB ≡ mH − mL and ΔΓB ≡ ΓH − ΓL are the difference in the mass and in

the decay width, respectively, of the heavy and the light mass eigenstates.

Independent of the description in the Standard Model, CP violation in the B

meson system can be established by the BABAR experiment in three different ways:

• CP violation in decay or “direct CP violation”: The amplitude Af of a

decay B → f and that of its CP conjugate B → f̄ , Āf̄ , have different magnitude,

|Āf̄/Af | �= 1. The interference of two or more processes with different weak

and strong phases, contributing to that decay, is necessary for this type of CP
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violation to occur. The contributing processes also have to be similar in the

magnitude of their decay amplitude. Any CP asymmetries in charge B decays,

af =
Γ(B+ → f) − Γ(B− → f̄)

Γ(B+ → f) + Γ(B− → f̄)
, (3.6)

are from CP violation in decay. For this type of CP violation it is difficult to

relate the measured asymmetry af to the underlying Standard Model parame-

ters. It requires knowledge of the strong phase shift between the amplitudes, the

calculation of which introduces larger hadronic uncertainties. The asymmetry

in terms of the amplitudes is given by:

af =
1 − |Ā/A|2
1 + |Ā/A|2 . (3.7)

Although the asymmetries can be large, the effect is rare, since it is suppressed

by small decay rates.

• CP violation in mixing or “indirect CP violation”: The mass eigenstates

p|B0〉± q|B0〉 are different from the CP eigenstates
(
|B0〉 ± eıα|B0〉

)
or, equiva-

lently, |p/q| �= 1. At BABAR, this effect could be observed through asymmetries

in the semileptonic decays of neutral B mesons, which do not exhibit direct CP

violation (AB0→l+νX = AB0→l−ν̄X). The asymmetry is given by

asl =
Γ
(
B0(t) → l+νX

)
− Γ (B0(t) → l−ν̄X)

Γ
(
B0(t) → l+νX

)
+ Γ (B0(t) → l−ν̄X)

, (3.8)

where B0(t) and B0(t) denote the timely evolution of an initially pure B0 and

an initially pure B0 state.

The neutral B meson decay width difference ΔΓB arises from decay channels

common to B0 and B0, whose branching ratios are assumed to be small. With

a measured ΔmB approximately of the same size as ΓB, it is a safe assumption
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that ΔΓB � ΔmB and q/p = −|M12|/M12. Therefore the asymmetry

asl =
1 − |q/p|4
1 + |q/p|4 (3.9)

is expected to be small, O(10−2).

• CP violation in interfering decays with and without mixing: This

manifestation of CP violation occurs in the decays of neutral B mesons into CP

eigenstates, fCP . A neutral B0, for instance, can decay either directly into fCP

or evolve in time into a B0 and then decay into fCP . Both processes interfere.

It is hence possible to observe a time-dependent asymmetry

afCP
=

Γ (B0(t) → fCP ) − Γ
(
B0(t) → fCP

)
Γ (B0(t) → fCP ) + Γ

(
B0(t) → fCP

) . (3.10)

With the introduction of λfCP
= q

p

ĀfCP

AfCP

, which is independent of phase conven-

tions, (3.10) can be written as

afCP
=

(1 − |λfCP
|2) cos(ΔmBt) − 2�(λfCP

) sin(ΔmBt)

1 + |λfCP
|2 . (3.11)

For modes with no direct CP violation, again using the assumption |q/p| = 1,

this simplifies to

afCP
= −�(λfCP

) sin(ΔmBt) . (3.12)

In cases where the decay is dominated by a single decay amplitude, a clean

relationship between the measured asymmetry and the underlying Standard

Model description of CP violation can be obtained.

The observability of this type of CP violation also requires that the lifetime

of the neutral B meson is at least comparable to the oscillation frequency,

ΔmB/ΓB � 1. A ratio ΔmB/ΓB = 0.774 ± 0.009 [30] has been measured.
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An example for the third type of CP violation is the decay B0 → J/ψK0
S . For

this,

λJ/ψK0
S

= −
(

V ∗
tbVtd

VtbV ∗
td

)(
V ∗

csVcb

VcsV ∗
cb

)(
V ∗

cdVcs

VcdV ∗
cs

)
, (3.13)

where the first term is from the B0B0 mixing, the second from the ratio
Āf

Af
and the

third from the K0K0 mixing. Hence,

�
(
λJ/ψK0

S

)
= sin 2β , (3.14)

and, with (3.12), the angle 2β can be directly measured through a time-dependent

comparison of the decay widths of B0(t) → J/ψK0
S and B0(t) → J/ψK0

S .

3.1.2 Time-Dependent Analysis of Neutral B Decays

At the Υ (4S) resonance at 10.58 GeV neutral and charged B-meson pairs are pro-

duced. The B mesons in a B0B0 pair are produced in a coherent state; at any time

one meson is always a B0 and one a B0. Neutral B mesons can decay into final states

that uniquely identify the meson, either as B0 or as B0. The reconstruction of such a

decay at a certain time t0, called “tagging”, precisely determines the identity of the

other B meson at t0. The time evolution and decay of that B can now be studied.

The size of the oscillation wavelength, c/ΔmB, of the CP asymmetry in (3.12)

is ≈ 600 μm. With the B mesons being produced almost at rest, this translates

into ≈ 40 μm in the rest frame of the Υ (4S), a distance that is too small to be

resolved with the available technology of vertex detectors. If, however, the rest frame

of the Υ (4S) is boosted, the oscillation wavelength in the observer’s frame grows. At

βγ = 0.56, for instance, c/ΔmB becomes ≈ 290 μm, well within the resolution of the

silicon strip detectors of today.

This spurred the idea of building asymmetric energy storage rings, which became

the PEP-II. At the interaction point the BABAR detector was constructed, optimized

for the boosted Υ (4S) frame.
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3.2 PEP-II

The Positron Electron Project in its second version, PEP-II, is an asymmetric energy

electron-positron collider, operating at the Υ (4S) resonance at 10.58 GeV. It consists

of two 2.2 km long rings, one storing electrons at 9 GeV, the other positrons at 3.1 GeV.

This asymmetry in the beam energies results in a boost of the Υ (4S) in the laboratory

frame of βγ = 0.56. PEP-II has reached a luminosity of 1.04 × 1034 cm−2s−1 in the

fall of 2005; other parameters are listed in tab. 3.1.

Electrons and positrons are injected into the two rings from the 3 km long SLAC

linac. At the beginning of the linac a thermionic electron gun provides a high intensity

unpolarized electron beam of about 10 MeV. Electrons are emitted from an electrically

heated tungsten filament, grouped into bunches, and, in a first accelerator section,

brought up to an energy of 1.19 GeV. To reduce the lateral spread, the beam is

transferred into the north damping ring, in which the electron bunches are transversly

damped through synchrotron radiation and longitudinal acceleration. The beam is

then re-injected into the main accelerator, where the electrons are accelerated to their

final energy of 9.0 GeV. Positrons are created by using half of the produced electrons

and colliding them with a cooled tungsten target, located two third down the linac.

The positrons in the resulting electron-positron pairs are collimated and sent back to

the beginning of the accelerator structure. After bried storage in the south damping

ring to reduce their emittance they are re-injected into the main accelerator, where

they are brought to their final energy of 3.1 GeV. Both beams are then injected

into the two PEP-II storage ring, electrons clockwise and positrons counterclockwise,

when viewed from above.

The demand for a high luminosity of 3.0 × 1033 cm−2s−1, which is necessary to

achieve the BABAR physics goals, sets new challenges for the design of the PEP-II

storage rings. The luminosity at the interaction point (IP) is given by

L =
N+N−fC

A
, (3.15)

where N+/− are the number of particles in the positron and electron bunches, fC is
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Table 3.1: Design PEP-II parameters and status in May 2005.

Parameter Design May 2005

Beam Parameters

Beam energy (e+/e−) (GeV) 3.1/9.0 3.1/9.0

Beam current (e+/e−) (A) 2.14/1.48 2.45/1.55

Circumference (m) 2199.318 2199.318

Emittance εx (e+/e−) ( nm rad) 96/48 30/50

Emittance εy (e+/e−) ( nm rad) 3.86/1.93 1.25/2.10

Number of bunches 1658 1588

Bunch length ( mm) 10 11

Particles per bunch (×1010) 5.9/4.1 7.1/4.5

Interaction Region Parameters

β∗
x (e+/e−) ( cm) 37/75 50/28

β∗
y (e+/e−) ( mm) 15/30 11/11

σ∗
x (e+/e−) ( μm) 190/190 170/170

σ∗
y (e+/e−) ( μm) 7.6/7.6 7.3/7.3

Crossing angle 0 0

Luminosity (×1033 cm−2s−1) 3.00 9.21
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the collision frequency and A is the overlapping area of the beams. For two head-

on colliding beams with a Gaussian particle distribution in the horizontal (x) and

vertical (y) direction, that area is given by

A = 2π
√

(σ∗2
x,+ + σ∗2

x,−)(σ∗2
y,+ + σ∗2

y,−), (3.16)

where σ∗
x/y,± are the beam sizes in x and y for the positron and electron beam at the

IP. The limitations induced by beam-beam interaction effects are discussed best if

the luminosity is written as a function of the beam-beam tune shift ξ, which is the

perturbation of the transverse phase of one beam due to the influence of the other

beam. It is, for instance for the positron beam and the y coordinate, defined as:

ξy,+ =
re

2π

N−β∗
y,+

γ+σ∗
y,−(σ∗

x,− + σ∗
y,−)

. (3.17)

Here, re = 2.82 × 10−15 m is the classical electron radius, γ+ is the positron beam

energy in units of the positron mass, and β∗
y,+ is the positron beam β-function at the IP

in vertical direction. At the time PEP-II was designed no asymmetric energy colliders

existed and the consequences of beam-beam dynamics for intense beams were not

completely understood. A careful approach was to choose the beam parameters such

that the dynamics closely resembles that of a symmetric-energy, single-ring collider.

This is the so-called transparency symmetry condition, which inter alia includes the

pairwise equality of the tune shifts, ξx/y,+ = ξx/y,−, and of the beam sizes at the IP,

σ∗
x/y,+ = σ∗

x/y,−. For PEP-II all four beam parameters were designed to be equal,

ξx/y,± = 0.03. With the transparency symmetry condition the luminosity can be

written as

L =
1

2ereme

(
EI

βy

)
+/−

ξy

(
1 +

σ∗
y

σ∗
x

)

= 2.17 × 1034 cm−2s−1

(
E [GeV]I [A]

βy[ cm]

)
+/−

ξy

(
1 +

σ∗
y

σ∗
x

) (3.18)
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Figure 3.2: The PEP-II interaction region.

The beam-beam tune shift ξy is not really a free parameter, but depends intrinsi-

cally on the nature of the beam-beam interaction. It has been observed at previous

e+e− colliders [39] that at low currents the luminosity grows according to L ∝ N+N−,

indicating the independence of the beam size from the current and ξ ∝ I. At high

currents the luminosity relates linearly to the beam current, L ∝ N±. The area of

the beam also grows with the beam current, A ∝ I, leaving ξ constant. At previ-

ous colliders this plateau was found between ξ = 0.03 and ξ = 0.05; for PEP-II the

plateau lies between 0.045 and 0.065. This limit on the tune-shift and the saturation

of the beam at high currents prevents an arbitrary increase in luminosity through an

increase in the stored current.

Beam-beam interactions also lead to an increased population of non-Gaussian tails

in the beam density distribution. This is particularly true for the y direction, due to

the absence of bending magnets in the vertical plane. These tails are a limiting factor

in the beam lifetime.

The asymmetry and desired high luminosity of the PEP-II machine have also

resulted in a extraordinary design for the interaction region (Figure 3.2). Instead

of colliding the two beams at an angle, the magnet system bends the beams into a

head-on collision path and separates their paths afterward. This challenging design



3.3. THE APPARATUS 35

Scale

BABAR Coordinate System

0 4m

Cryogenic
Chimney

Magnetic Shield
for DIRC

Bucking Coil

Cherenkov
Detector
(DIRC)

Support
Tube

e– e+

Q4
Q2

Q1

B1

Floor

y
x

z
1149 1149

Instrumented
Flux Return (IFR))

Barrel
Superconducting

Coil

Electromagnetic
Calorimeter (EMC)

Drift Chamber
(DCH)

Silicon Vertex
Tracker (SVT)

IFR
Endcap

Forward
End Plug

1225

810

1375

3045

3500

3-2001
8583A50

1015 1749

4050

370

I.P.

Detector CL

Figure 3.3: Longitudinal view through the BABAR detector. All dimensions are in
mm.

allows greater scalability of the beam currents while keeping the beam backgrounds

manageable. The magnets used in the interaction region are permanent magnets made

of a rare-earth-cobalt alloy, Sm2Co17, which has a high magnetic field, B = 1.05 T.

The quality of the magnets depends critically on their exact magnetization, their

fabrication involved thousands of precisely machined and magnetized blocks of the

alloy.

The choice of the PEP-II beam energies is a compromise that balances two ar-

guments. While the simulations of beam-beam interactions argue for equal damping

times in the two rings, which is more easily accomplished with a reduced energy

asymmetry, the magnetic separation of the beams at the interaction region becomes

easier when the energy asymmetry increases.
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3.3 The Apparatus

The primary goal of the BABAR experiment, the time-dependent measurement of CP

asymmetry in the B0B0 meson system is reflected in the design of the detector. The

necessity for a boosted center-of-mass frame requires the detector geometry to be

asymmetric, such that in the direction of the boost, the angular coverage with active

detector components, needs to be much higher than in the opposite direction. That

design scheme has been followed by all the major subsystems.

In order to introduce some of the terminology and to aid in the understanding of

the detector geometry the definition of the BABAR coordinate system will be given

here. The z-axis of the systems is given by the center axis the cylindrical drift

chamber. The y-axis is pointing up, and, to complete the right-handed coordinate

system, the horizontal x-axis points away from the center of the ring. The direction

of the positive z-axis is also referred to as the forward direction. It coincides with the

direction of the electron beam, and hence with the direction of the event boost. Due

to the layout of the interaction region, there is a 1◦ angle between the beam direction

and the z-axis; beam axis and z-axis are distinct.

The BABAR detector, though optimized for analyzing the neutral B meson sys-

tem, is a multipurpose detector, allowing for a wide variety of analyzes. As such it

follows the classic design of an inner and outer tracker, a Cherenkov device, an elec-

tromagnetic calorimeter, a superconducting coil producing the magnetic field, and a

muon system that also acts as a carrier of the external magnetic flux. As a whole the

detector has been optimized to satisfy the following performance requirements:

• Good vertex resolution with special attention to the z component for a good

separation of the two B meson vertices.

• Maximum geometric acceptance in the center-of-mass system to reconstruct all

the spherically distributed products of the decay of the B mesons.

• Good discrimination of e, μ, π, K, and p to distinguish the different decay

channels of the B± and B0 meson.
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• Tracking and clustering over a wide transverse momentum 60 MeV/c < pt <

4 GeV/c and energy range 20 MeV < Eem < 9 GeV

In the following the detector subsystems are described. They are presented in the

order they would appear to a particle starting at the interaction point (IP) traveling

outward. Special attention is paid to the particular role each subsystem plays in

achieving the performance requirements listed above. In addition, the trigger and

data acquisition systems are described.

3.3.1 The Silicon Vertex Tracker

The main task of the Silicon Vertex Tracker (SVT) is the reconstruction of the primary

decay vertices of the B mesons. To achieve the desired accuracy in the decay time

difference of the two B mesons, a single vertex resolution of 80 μm is required. The

SVT further provides track information for particles of less than 100 MeV/c transverse

momentum, which, due to their bending in the magnetic field, do not reach the main

tracking system. The device consists of five cylindrical layers of double sided silicon

strip sensors. The three inner layers consist of 6 modules, layers 4 and 5 of 16 and 18

respectively. Each module consists of between 4 and 8 individual silicon crystals, or
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wafers, which exist in 6 different sizes. The wafers are 300 μm thick and have readout

strips on both sides. Between the two sides the readout strips have a relative stereo

angle of 90◦, allowing for a reconstruction of both coordinates of the track passing

each layer. The SVT consists of about 150,000 readout channels. The innermost

layer is located at 3 cm distance from the interaction point, the outermost layer at

15 cm. The angular coverage ranges from θ = 17.2 ◦ to θ = 150 ◦, limited by the

geometry of the beam guiding magnets near the interaction region. The three inner

layers of the SVT are designed to precisely measure the impact parameter of the

tracks. They reach a single hit resolution of 10–15 μm, depending on the incident

angle of the track. The limiting factor on the hit resolution is the uncertainty in the

track direction introduced by multiple scattering in the silicon. The two outer layers

main purpose is to track particles with low transverse momentum and to link the

inner SVT hits to the track information provided by the drift chamber. The single

hit resolution of 30–40 μm is sufficient in these modules.

3.3.2 The Drift Chamber
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Figure 3.5: The Drift Chamber. The units are millimeter, IP indicates the interaction
point.

The Drift Chamber (DCH) is the main component for reconstructing charged par-

ticles with transverse momenta above 100 MeV/c. The reconstructed tracks provide

the momentum of the particles and the specific energy loss, along their trajectory,
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through ionization, dE/dx. Because the ionization loss depends on the momentum

p and the mass m of the particle dE/dx(p/m), it is used for identifying the parti-

cle type, in particular at low momentum and in regions where no other means of

identification are available. The DCH endplates are made of aluminum. The inner

cylinder is made of beryllium and the outer of carbon-fiber, minimizing the Coulomb

scattering probability of the tracks. The inner radius of the DCH is 24 cm, the outer

radius is 81 cm.

The volume of the DCH is segmented into 7104 hexagonal drift cells of a length

of 2.80 m. The edges of each drift cell are defined by low mass gold-plated aluminum

field wires. In the center of each cell a gold-plated tungsten-rhenium sense wire is

located. The sense wires are kept at about 1960V. Together with the grounded field

wires they create the electric field. The DCH is filled with a low Z helium-isobutane

gas-mixture (80 %:20 %) at 4 mbar above atmospheric pressure. Charged particles

that traverse the drift chamber ionize the gas molecules. The ionization electrons

are accelerated toward the sense wire, producing secondary ionization. From the

drift time and the electric field the distance at which a particle passes the sense

wire is estimated. The correspondence between drift time and distance is determined

empirically using e+e− → e+e− and e+e− → μ+μ− events.

In the radial direction the drift cells are organized in 40 layers, with groups of 4

layers making up a super layer. The super layers are aligned either parallel to the

z-axis (axial layer A), or at a small angle (stereo layer U , V ), necessary to provide

track information in the z coordinate. The arrangement of axial and stereo layers is

A UV A UV A UV A. The stereo angles range from 45 mrad in the inner super layer

to 75 mrad in the outer super layer.

The DCH covers a polar angle 17 ◦ < θ < 150 ◦. The position resolution achieved

varies between 100 μm and 200 μm, depending on the drift distance. The energy loss

resolution is 7.5 %.
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Figure 3.6: The DIRC principle.

3.3.3 The Cherenkov Device

The Detector of Internally Reflected Cherenkov (DIRC) light is the main device for

particle identification (PID) at the BABAR detector. It provides excellent separation

of charged pions and kaons up to 4.2 GeV/c.

Charged particles passing through matter emit Cherenkov radiation if their speed,

βc, exceeds the speed of light in the material, c/n, n being the refractive index of the

material. Cherenkov detectors work either as threshold detectors, which only detect

the onset of Cherenkov radiation light at β = 1/n, or more sophisticated as ring

imaging Cherenkov (RICH) detectors, which measure β.

The DIRC belongs to this second class of Cherenkov devices. As such it is designed

to measure the angle at which the Cherenkov photons are emitted with respect to the

flight direction of the emitting charged particle. The fundamental relation between

the Cherenkov angle θC , the half angle of the Cherenkov cone, the velocity of the

charged particle, and the index of refraction of the traversed material is

cos(θC) =
1

nβ
(3.19)

Photon detectors determine the position and arrival time of the incident photons.

In order to measure θC , the photons must be projected, “imaged”, onto a detector,

such that the photon angle can be determined. In a novel design the DIRC separates



3.3. THE APPARATUS 41

0

2

4

6

8

10

2 2.5 3 3.5 4

momentum (GeV/c)

π-
K

 s
ep

ar
at

io
n 

(s
.d

.)

B AB A R

Figure 3.7: The DIRC performance.

the two stages of the production of Cherenkov light and the projection of the light

cone, by taking the image of the Cherenkov cone outside the detector and the path

of the particle. In its unique approach it uses fused silica bars (〈n〉 = 1.474 averaged

over the wavelengths of the photons produced) as the radiator for the Cherenkov

light as well as the transmitter that takes the Cherenkov cone image out of the

central detector through internal reflection. The DIRC consists of 144 fused silica

bars (1.7 × 3.5 × 490 cm), located outside the DCH. They cover an azimuthal angle

of about 93% and range from θ = 25.5 ◦ to θ = 141.4 ◦. At the backward end of

the detector the bars meet the so called standoff box, a semi-globe with a radius

of 120 cm equipped with 10,752 photomultipliers. It is filled with purified water to

better match the refractive index of the silica, such that the projected Cherenkov ring

pattern has a smaller diameter than in an air-filled standoff box. The DIRC reaches a

resolution on θC of 2.5 mrad. The π/K separation power, defined as the difference of

the mean Cherenkov angles for pions and kaons at a given momentum, divided by the

resolution, is about 8σ at 2 GeV/c, declining to about 2.5σ at 4.1 GeV/c (Figure 3.7).
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3.3.4 The Electromagnetic Calorimeter

The Electromagnetic Calorimeter (EMC) has three major tasks. The first is the

reconstruction and energy measurement of photons. The dominant source of photons

are π0 mesons, which decay to a photon pair. The second task of the EMC is the

precise measurement of the invariant mass of these photon pairs, so that π0 mesons can

be identified and their momentum be measured. Third, by measuring the energy of

charged particles that is deposited in the EMC, and comparing it to their momentum,

the EMC helps in identifying electrons and positrons. These, unlike charged particles

of any other type, deposit almost their entire energy in the calorimeter.

During the passage through matter, most of the energy loss of high energy elec-

trons and positrons occurs as bremsstrahlung, while high energy photons lose their

energy predominantly through production of e+e− pairs. Through repetition of these

two processes a cascade of pair-produced electrons and positrons, and bremsstrahlung

photons of ever lower energies develops, an electromagnetic shower. The energy of

the particles in the cascade eventually falls below the critical energy, Ec (for most

materials Ec = 10..50 MeV), at which point it is dissipated through ionization and

excitation of the traversed matter. The parameter which governs the energy loss is

the material dependent radiation length X0, which is the mean distance over which

a high-energy electron loses all but 1/e of its energy. Other particles do not form
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electromagnetic showers in the EMC, but dissipate energy only through minimum

ionization or a hadronic shower.

Scintillators are materials which release at least a fraction of the dissipated energy

as photons in the optical spectrum. The amount of produced light is directly propor-

tional to the dissipated energy of the incident particle. Often scintillators are doped

with atoms of a different material, that shift the scintillation light to a wavelength,

more convenient for the light detection.

The BABAR EMC consists of 6580 cesium-iodide crystals doped with thallium.

The length of the crystals in units of X0 varies between 16.0 and 17.5. The angular

coverage of the EMC ranges from θ = 15.8 ◦ to θ = 141.8 ◦. An energy resolution of

σE

E
=

2.32 ± 0.30 %
4
√

E(GeV)
⊕ (1.85 ± 0.12) % (3.20)

and an angular resolution of

σθ,φ =
(3.87 ± 0.07) mrad

2
√

E(GeV)
+ (0.00 ± 0.04) mrad (3.21)

are achieved.

The electron identification efficiency for electrons used in the D+
s → μ+νμ analysis

is above 90 %, with less than 0.2 % misidentification probability for charged pions.

3.3.5 The Superconducting Coil

Located outside the EMC is a superconducting coil, providing a 1.5 T solenoidal

magnetic field. The coil operates at a current of 4596 A, storing an energy of 27 MJ.

3.3.6 The Instrumented Flux Return

The flux of the magnetic field that bends charged particle tracks in the DCH has to

follow a closed loop, preferably guided by a ferromagnetic material. The Instrumented

Flux Return (IFR), the outermost system of the BABAR detector, consists of a large

number of steel plates that provide that guidance. The IFR is also used to identify
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muons and detect neutral hadrons, primarily KL. Hadrons are very likely to interact

in the steel plates of the IFR leaving a detectable hadronic shower. Muons, immune

to the strong interaction, pass through the IFR losing energy primarily through ion-

ization and thus leaving only a single track.

To detect these traces of charged particles Aluminum
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Figure 3.10: Cut view of a RPC.

or hadronic showers, the gaps between the steel

plates are filled with Resistive Plate Chambers

(RPCs) that detect the passing of a charged par-

ticle. The RPCs are made of two 2 mm thick

bakelite (phenolic polymer) sheets, which have a

high resistivity of 1011–1012 Ω cm. The sheets are

separated by a 2 mm gap, filled with a gas mixture that consists of 56.7 % argon,

38.8 % 1,1,1,2-tetrafluoroethane (‘Freon 134a’), and 4.5 % isobutane. The exterior

surfaces of the bakelite are coated with graphite, and a voltage of 8 kV is applied

between the two graphite layers. A charged particle traversing the chamber ionizes
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Figure 3.11: Performance of the muon identification system. Shown is the muon
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function of the muon momentum, in simulation (red triangles) and in data (blue
bullets).

the gas and a discharge occurs across the gap. Due of the high resistivity of the bake-

lite the locally drained charge can not be replenished quickly and the current stops.

Insulated aluminum strips on both sides of the graphite detect the image charge of

the discharge. The strips are oriented with a relative angle of 90 ◦, providing position

information of the track in both coordinates of the RPC plane.

A high purity muon sample is of great importance for the D+
s → μ+νμ analysis.

Figure 3.11 shows the quality of the muon identification. For the muons used in

this analysis the efficiency is between 60 % and 80 %, with a misidentifiation rate of

pions as muons below 3 %. A contributing factor to the performance is the IFR track

finding algorithm using a Kalman filter, which is described in detail in Appendix B.

The performance of the RPCs has declined dramatically since the start of BABAR

in 1999, leading to the eventual replacement with limited streamer tubes in the barrel

portion of the IFR. The reasons for the RPC efficiency loss are not entirely clear,

RPCs which have been replaced in the forward endcap in 2002, show an excellent

performance.

3.3.7 The Trigger System

At the most basic level, the BABAR Trigger system decides, which events observed

by the BABAR detector are to be recorded. Trusted with that important task, its
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performance affects the quality of every single analysis done on BABAR data.

At the design luminosity of 3×1033 cm−2s−1 or 3 Hz/nb, interesting physics events,

such as e+e− → bb, e+e− → qq (q = u, d, s,and c), or e+e− → τ+τ−, occur at a

total rate of about 15 Hz, (Table 3.3). Beam background events contribute at the

much higher rate of 20 KHz and need to be rejected. In addition, a sizable event

rate comes from e+e− → e+e− (Bhabha) events (120 Hz in the detector acceptance)

and e+e− → μ+μ− events (3 Hz). A modest percentage of these must be retained for

calibration purposes. The trigger system is designed to maintain a very high efficiency

for interesting physics events, while keeping the total rate of events to be recorded

and processed below 200 Hz. The precise requirements on the trigger efficiency for

various physics data samples are listed in Table 3.2.

Physics Sample ε [%]

Υ (4S) → BB 99 ± 0.5
e+e− → cc 95 ± 2.0
e+e− → τ+τ− 95 ± 2.0
Two photon events 90 ± 5.0
Continuum qq̄ 95 ± 2.0

Table 3.2: Trigger efficiency requirements for the main BABAR physics data samples.

In addition to the high efficiency and selectiveness for physics events several other

design criteria had to be met. The trigger efficiency needs to be measurable with

high accuracy to allow a precise measurement of various branching ratios. The trigger

system also needs to be stable in the presence of large and varying beam backgrounds,

and, in light of the anticipated increase of the PEP-II luminosity, flexible.

The trigger consists of two stages, a hardware Level 1 Trigger, reducing the event

rate to about 3 kHz, and a software Level 3 Trigger, reducing the event rate to 200 Hz,

at which they are written to storage.

The Level 1 Trigger

Figure 3.12 illustrates the role of the Level 1 Trigger in the BABAR data readout

chain. The raw, digitized data from the detectors subsystems’ front end electronics

(FEE) are continuously stored in the circular time buffers of the FEE of each detector
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Figure 3.12: Data readout chain of the BABAR detector, driven by the Level 1 Trigger.

subsystem, synchronized with the beam-beam interactions, waiting to be read out.

Prior to the buffer read-out Drift Chamber, Calorimeter and IFR FEE send data to

the Level 1 Trigger hardware, which decides whether an event is interesting enough to

be considered further. A positive trigger decision, together with timing information

from the EMC, or if not available from the DCH, is passed on to the Fast Control

Timing System (FCTS). The FCTS sends a L1-Accept signal to the read-out-modules,

which initiates the sequence

• Readout of the circular front-end buffers into an event queue, to guaranty a

smooth data transfer off the detector.

• Collection of the data in the Read Out Modules.

• Feature extraction, the software aided removal of unnecessary information, like

low energy calorimeter noise, etc., and calibration of the data.

• Event building and distribution to the Level 3 Trigger farm, thereby the Level
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1 Trigger decisions are added to the event.

• Level 3 Trigger logging decision and event storage.

The Level 1 Trigger decision is based on information (trigger primitives) from the

DCH and the EMC, which is reconstructed in dedicated subsystem trigger hardware

and assembled in the global trigger (GLT).

The Drift Chamber Trigger (DCT) consists of three components, the Track Seg-

ment Finder (TSF), the Binary Link Tracker (BLT), and the pt Discriminator (PTD).

At a rate of 3.72 MHz (every 64 beam crossings) each of the 7104 cells in the DCH

sends a signal to the DCT, if it has received a hit. The DCT logically arranges the

DCH cells in 1776 segments. A segment is an X-shaped group of eight cells that spans

a superlayer. The TSF uses a lookup table to find the signature of a straight track

passing through the segment. The identified segments are then mapped onto the DCH

geometry in terms of 320 supercells, 10 superlayers, each divided into 32 sectors in

φ. With that map the BLT forms short (long) tracks, moving radially outward from

the IP to superlayer 6(10). In addition the PDT checks the same track segments for

tracks with a high-transverse momentum (pt > 0.6 GeV/c), starting from superlayer 7

and 10 and moving radially inward toward the IP. Finally the DCT passes three types

of trigger primitives to the GLT: 16=bit φ-maps of short, long, and high-pt tracks.

In order to quickly provide trigger information the EMC has been divided into

280 towers, seven-fold along θ and forty-fold along φ. Dedicated hardware on the

EMC front-end electronics sums the energy of all crystals within a tower and with

an energy above a threshold of 20 MeV. The 280 tower energies are the input for

the EMC Trigger (EMT). For the various particle types and event topologies, the

EMT defines clusters primitives with several energy cuts, and for different regions of

the calorimeter. Some clusters span the entire θ range of the EMC, and with energy

thresholds of 120, 160, and 500 MeV, they trigger on minimum ionizing particles, low

energy photons, and high energy photons, respectively. Another cluster primitive

uses only the last two towers in the backward barrel and is sensitive to one prong

Bhabha and γγ events. A fifth type of cluster that uses only the endcap towers is

used only in connection with other clusters and tracks, primarily to veto background.
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The EMT passes five 20-bit φ-maps to the GLT.

The IFR trigger, which detects mainly μ+μ− and cosmic ray events, is not used

in the trigger decision, but stored with the event for diagnostic purposes.

On the Global Trigger board the cluster and track objects are combined to get

additional information about the event topology. The GLT attempts to match the

angular location of DCT and EMT primitives. Based on the result of the matching

the GLT can issue up to 24 different types of trigger, called trigger lines. Those are

passed to the Fast Control and Timing System (FCTS), which can optionally mask

or prescale them. If a valid trigger remains after this step, a L1 Accept is issued, and

the readout chain triggered.

After data are read from the buffers of the FEE, and collected and sparsified by

the Read Out Modules (VersaModular Eurocard (VME) crates), they are routed to a

designated farm processor via the VME backplane. That processor, called the Event

Builder, assembles the event from the various independent sub-detectors. The Event

Builder then directs the event to one of the 32 processors of the Level 3 Trigger farm.

The definition of the GLT triggers is configurable (the definitions can be loaded

into a field programmable gate array (FPGA) at the beginning of data taking), sat-

isfying the criteria of a highly flexible trigger system. Two of the most basic trigger

lines, based on either DCT or EMT information alone, one requiring just two long

DCT tracks, the other just two l60 MeV EMT clusters. This orthogonality of trigger

criteria ensures the measurability of the trigger performance.

The Level 3 Trigger

Of the 2 KHz rate of events, put out by the Level 1 Trigger, 95% are still beam-

induced background. The Level 3 Trigger, with access to the entire event data and

the Level 1 Trigger primitives, comprises detailed event reconstruction and classifica-

tion algorithms, allowing for a sound background rejection, while maintaining a high

efficiency on physics events.

The majority of Level 1 background triggers comes from lost beam particles in-

teracting with the beampipe end flanges at z = ± 20 cm or the synchrotron mask at

z = −50 cm. Hence, it is necessary to have a adequate z resolution for the origin of
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the reconstructed tracks.

The Level 3 tracking algorithm uses Level 1 track segments from the TSF as

seeds for the pattern recognition and timing information from the DCH wires for the

individual drift times. The algorithm consists of three stages, track pattern finding,

event t0 finding, and track fitting. The output is a fitted helix-approximations of the

particle tracks. From the five helix parameters and the magnetic field the track three

momentum is determined.

The Level 3 clustering algorithm uses sparsified information from the EMC, gained

by applying an energy threshold of 20 MeV and a time window of 1.3 μs on the signal

of each crystal. With only a few dozen crystals remaining, neighboring relations are

established. Clusters of neighboring crystals are kept if their total energy exceeds

100 MeV. For those a cluster central position and average time is calculated.

Events are stored for later analysis if they at fullfill a two-DCH-track or a two-

EMC-cluster criteria. In addition, the Level 3 Trigger matches the tracks to cluster

locations, information which is used to identify electrons and to lower the Bhabha

event rate.

The combined efficiency of the Level 1 and Level 3 Triggers is better than 99.9 %

for generic BB events, clearly exceeding the design requirements. About 97 % of

qq and 92 % of τ+τ− events are also retained. Additionally, samples of (radiative)

Bhabha, μ+μ−, and random trigger events for the purpose of calibration, background

diagnostics, and the offline measurement of the luminosity, are accepted.

3.4 Detector Datasets, Monte Carlo Simulated

Data, and Event Reconstruction

Since its start in October 1999 BABAR has recorded more than 320 fb−1 of e+e− data

at a center of mass energy of 10.58 GeV, the peak of the Υ (4S) resonance, and about

25 fb−1 at 10.54 GeV, 3.3 standard deviations below the resonance Υ (4S). These two

modes of data taking are called on-peak and off-peak running. In e+e− collisions at
√

s = mΥ (4S), all types of quark-antiquark pairs, with exception of the top-quark,
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Table 3.3: Production cross-sections at
√

s = 10.58 GeV. The e+e− cross-section is
the effective cross-section, expected within the experimental acceptance.

e+e− → Cross-section [nb]

bb̄ 1.05

cc̄ 1.30

ss̄ 0.35

uū 1.39

dd̄ 0.35

τ+τ− 0.94

μ+μ− 1.16

e+e− ≈ 40

are produced. Lepton-antilepton pairs of all three flavors are also produced, the

production cross-sections are listed in Table 3.3.

Due to periods between data taking, allocated for repair and upgrade of the de-

tector and the accelerator, the dataset has been split into parts, within each of which

the detector and running conditions largely unchanged. Those parts of the dataset

have been dubbed Run 1 through Run 5 ; their sizes are listed in Table 3.4. For this

analysis on-peak and off-peak data from Run 1 through Run 4 are used, a total of

230 fb−1. This data contains about 300 million produced cc pairs.

The extraction of the branching ratio of the decay D+
s → μ+νμ requires detailed

studies of the production and the decay of the signal and various background processes

in e+e− data, using Monte Carlo simulated events. The simulation of BABAR physics

involves two steps, event generation and detector simulation. The event generation is

handled by the software packages Jetset [40] and EvtGen [41]. Jetset simulates

the fragmentation and hadronization process of quark pairs using the Lund string

model. It so, for instance, predicts the production rate and the momentum spectrum

of D∗+
s mesons in e+e− → cc events. EvtGen is an event generator that implements

many detailed models that describe the physics of B- and D-meson decays. EvtGen

also has an interface to Jetset, so it can simulate the decay of D mesons produced

in the fragmentation of cc quark pairs.

The path of simulated long-lived particles through the detector in the presence of
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Table 3.4: Partitioning of the BABAR dataset into run periods of stable detector
conditions.

Luminosity [ fb−1 ]
Label Period

On Peak Off Peak

Run 1 Oct 22nd, 1999 – Oct 28th, 2000 19.29 2.33

Run 2 Feb 10th, 2001 – Jun 30th, 2002 59.40 6.83

Run 3 Dec 8th, 2002 – Jun 27th, 2003 30.63 2.39

Run 4 Sep 17th, 2003 – Jul 31st, 2004 99.41 9.93

Run 5 Jul 31st, 2004 – still in progress 70.97 4.00

the magnetic field, their interaction with the detector material, the development of

hadronic or electromagnetic showers, and the response signal of the active detector

components is simulated by Geant4 [42]. To introduce the beam background –

particles produced in interactions of the beam or of synchrotron radiation with the

beam pipe – into simulated data, the detector response to simulated particles is mixed

with the signal response of the real detector taken without any trigger conditions.

The output of the simulation is such, that the BABAR event reconstruction software

can analyze simulated data identically to real detector data. In simulated data it is

further possible to relate reconstructed event primitives, such as charged-particle

tracks or calorimeter showers, to the true particles produced by the event generators

of EvtGen. This technique, called truth-matching, is enormously useful in the study

of simulated events, since it reveals the true identity of reconstructed particles and

decays.
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Chapter 4

Analysis Overview

The goal of this analysis is the measurement of the branching ratio of the decay

D+
s → μ+νμ. A variety of alternative methods are conceivable:

1. BABAR data contain a considerable number of D+
s and D∗+

s mesons that are

produced in decays of B mesons. These are mainly decays B0 → D(∗)−D
(∗)+
s

with a total branching fraction of about 4 %, and decays B+ → D̄(∗(∗))0D(∗)+
s

with about 9 %. The data contain about 2.7 × 107 such decays, and with an

expected branching ratio B(D+
s → μ+νμ) = 5×10−3 and with B(D∗+

s → γD+
s ) =

94.2± 2.5 % [30], about 130,000 B decays with a subsequent D+
s → μ+νμ decay

are expected be present in the BABAR data. In events in which the opposite B

meson and the accompanying D(∗(∗))0 or D(∗)− meson are fully reconstructed,

the invariant mass of the B–D system should then equal the D+
s meson mass,

and a monoenergetic single muon would indicate the D+
s → μ+νμ decay. Using

this technique, BABAR has published a result for the branching ratio B(D+
s →

φπ+) = (4.81 ± 0.52 ± 0.38) % [16]. Given the ten times lower branching ratio

and the only slightly larger reconstruction efficiency of D+
s → μ+νμ compared

to D+
s → φπ+, the statistical error on a measurement of B(D+

s → μ+νμ) using

this technique would be about 30 %.

2. A large fraction (60 %) of D+
s mesons in the BABAR data originate from the

decay D∗+
s → γD+

s , with the D∗+
s meson produced in the fragmentation of cc

55
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quark pairs. Reconstructing the decay D+
s → μ+νμ from a muon and the miss-

ing four-momentum leads to a very broad D+
s mass peak, due to the errors in the

measured missing energy and momentum. These errors largely cancel in the cal-

culation of the mass difference of the reconstructed D∗+
s and D+

s candidates, im-

proving the resolution of the signal peak. Therefore, the decay D+
s → μ+νμ can

be reconstructed in the decay chain D∗+
s → γD+

s → γμ+ν, with a minimum mo-

mentum requirement on the D∗+
s meson to ensure the D∗+

s mesons are produced

solely in cc-fragmentation. The reference decay D∗+
s → γD+

s → γφπ+ is also re-

constructed, and the partial decay width ratio Γ(D+
s → μ+νμ)/Γ(D+

s → φπ+) is

measured. Using the known branching ratio B(D+
s → φπ+), the branching ratio

of the signal B(D+
s → μ+νμ) is determined. This method was followed by the

CLEO collaboration [23]. One of the weaknesses of the early BABAR detector

was its poor muon detection efficiency and large hadron misidentification rate.

In a previous analysis, it was shown that the high pion misidentification rate

leads to a large background from light-quark qq fragmentation events, which

could not easily be modeled and subtracted.

3. Analogous to method 2, the signal decay D+
s → μ+νμ is again reconstructed

in the decay chain D∗+
s → γD+

s → γμ+ν, and the reference decay D∗+
s →

γD+
s → γφπ+ is used to measure the branching ratio B(D+

s → μ+νμ). The

large background from light quark qq pairs is suppressed by restricting the

search for the signal to events containing an explicitly reconstructed decay of

a charm meson, D0, D+, D+
s , and D∗+, the tag. The correlation of the charm

content of the tag and the signal can be used to suppress random background

events even further.

This analysis follows the course of method 3. The general method is discussed

in more detail in the next section. The backgrounds in this analysis are presented

in the section after. Two further sections describe the special particle identification

efficiency correction method that is applied in this analysis, and the Monte Carlo

simulated event samples.



4.1. THE METHOD OF ANALYSIS 57

4.1 The Method of Analysis

The decay D+
s → μ+νμ has a neutrino in the final state, which is not detectable

in the detector and can only be inferred from the energy and momentum that is

missing in the event after all other long lived particles present in the event have been

reconstructed. Often a number of particles are not measured by the detector, either

because of reconstruction inefficiencies or because of the limited angular detector

acceptance. Other particles may not have their true flavor correctly identified, so

that their energy is wrongly predicted from the momentum measurement. All this

leads to a large uncertainty in the energy and momentum that may be assigned to

the neutrino, and mainfests itself in a the poor mass resolution of the D+
s meson that

is reconstructed using the neutrino four-momentum.

About 60 % of D+
s mesons in the BABAR data originate from the decay D∗+

s → γD+
s

with the D∗+
s meson produced in events e+e− → cc. Because the errors in the

measured missing energy and momentum largely cancel in the calculation of the

mass difference of the reconstructed D∗+
s and D+

s candidates, the resolution of the

mass difference is much better than that of the D+
s mass. Therefore, this analysis is

performed using the decay chain D∗+
s → γD+

s → γμ+ν, which improves the signal to

background ratio.

The analysis is further restricted to events in which the D∗+
s meson is produced

solely in cc-fragmentation. These events are identified using a charm tagging tech-

nique.

The following approach is taken to reduce the non-charm qq events. Events are

initially selected where a charm meson (the tag) is fully reconstructed or tagged in

one of many decay modes. An important property that is common to all tagging

decay modes is that the charm quantum number of the tag can be inferred from

unambiguously the charge of the tag or its decay products. Excluding a small amount

of doubly Cabibbo-suppressed decays of the D0, where kaon charge predicts the wrong

tag charm number, that tag correctly predicts the charge of the muon in the D+
s →

μ+νμ signal decay. The precise makeup of this tag sample, e.g. the charm decay

modes used for reconstructing D meson candidates, is given in the next chapter.
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The presence of a charm meson tag largely eliminates lighter qq events (where

q = u, d, or s), but does not exclude charm production from B meson decays. Re-

quiring the tagged charm meson to have high enough momentum, with the momentum

threshold chosen near the kinematic limit for charm from B decays – such as B → Dlν

– reduces the contribution from B meson decays in a model independent fashion. The

upper momentum limit for a D meson from a two-body B decay is given by

ptag =
M2

B − M2
tag

2MB

, (4.1)

which leads to the momentum limit in the center of mass system

p∗max from B
tag =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2.503 GeV/c if the tag is a D0,

2.502 GeV/c if the tag is a D±,

2.468 GeV/c if the tag is a D±
s ,

2.416 GeV/c if the tag is a D∗± .

(4.2)

In this analysis a lower momentum cutoff of 2.35 GeV/c is chosen for all but the D∗±

tag mode, for which a minimum momentum of 2.30 GeV/c is required. This allows a

very small number of D mesons from B decays to enter the tag sample.

Particle candidates which make up the charm tag will subsequently be referred to

as the “tag side” of the event, while all remaining tracks and neutral clusters belong

to what will be designated the “recoil side”.

The balance of this analysis outline is focused on the recoil side where the photon

from the D∗+
s cascade and the muon candidate from the D+

s decay itself are searched

for. As already stated, the charm of the tag side uniquely determines the charge of

the recoil-side muon. By requiring signal muon candidates to have this charge, the

number of background events in which hadrons are wrongly identified as muons is

reduced by 50 %. Detailed knowledge of the kinematics and the particle content of

the tag side also allows for an improvement in the missing energy and momentum

resolution in the event. The signal for the decay chain D∗+
s → γD+

s → γμ+ν manifests

itself in the classic mass difference (ΔM) between the reconstructed D∗+
s and D+

s ,
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formally,

ΔM = M(γμ+νμ) − M(μ+νμ) . (4.3)

The signature is an excess of events in the vicinity of 144 MeV/c2. The expected

shape of the signal peak is derived from detailed simulation of the decay D∗+
s →

γD+
s → γμ+ν in the BABAR detector. Requirements on the kinematic properties

of the muon, neutrino, and the D∗+
s of reconstructed signal candidates are made.

The precise requirements are selected to optimize the significance of the resulting

branching ratio measurement, where the significance is the measured branching ratio

divided by its statistical uncertainty. The signal detection efficiency is derived from

the BABAR Monte Carlo simulation of the decay D∗+
s → γD+

s → γμ+ν in cc events.

Backgrounds other than from correctly tagged cc events are estimated from the

tag mass sidebands in data. Correctly tagged cc events with a semileptonic charm or a

leptonic tau decay with a final state muon are estimated by replacing the muon iden-

tity requirement with that of an electron and correcting for the difference in muon and

electron detection efficiency. Other backgrounds are estimated from BABAR Monte

Carlo simulation. Section 4.2 details the estimation of the background processes for

this analysis.

The measurement of the branching ratio of the signal ultimately requires a deter-

mination of the number of produced D∗+
s mesons in the parent population. For this

analysis the parent population are the charm tagged events, and the number of D∗+
s

mesons therein is determined by simultaneously reconstructing another D∗+
s decay

chain, D∗+
s → γD+

s → γφπ+, in this set of charm tagged events. The branching frac-

tion of D+
s → φπ+, that is necessary to extract the branching ratio of D+

s → μ+νμ, was

independently measured by the BABAR collaboration to be (4.81±0.52±0.38) % [16].

The 13 % error of this measurement will be part of the error of B(D+
s → μ+νμ), but

will be quoted separately.

Relating the D+
s → μ+νμ and D+

s → φπ+ decays to each other also has the

advantage of minimizing the uncertainties arising from the tag reconstruction, since

the tagging efficiencies largely cancel in the ratio of the two D+
s decays.
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4.2 Background Estimation

Background events from different sources will pass all signal selection criteria. There

are five different sources of background to this analysis, and different strategies are

followed to estimate them. The background categories are described in detail in the

following, and are summarized in Table 4.1.

I. Fake Charm Tag. On the tag side of the event a random combination of

tracks and clusters can pass all criteria for a charm tag, including having a

mass within two standard deviations of the nominal value.

All background events e+e− → qq (q = u, d, s) and e+e− → ττ are necessarily

fake tags. In events e+e− → cc the tag can also be in correctly reconstructed.

Also most bb background events fall into this background category, since real

charm mesons coming from a B decay are otherwise excluded kinematically by

the aforementioned momentum cut, and hence all signatures of a charm meson

must be erroneous, passing the momentum cut only because of the random

combinations of tracks.

These events can produce a non-negligible background on the signal side, mod-

erated largely by the choice of tag purity and tagging efficiency that is desired.

This background circumvents the hadron misidentification suppression obtained

by knowledge of the correct or expected muon charge.

The most suitable method to measure the size and shape of this background

is a sideband subtraction using the charm-tag mass distribution. The validity

of this subtraction method will be demonstrated first using simulated events,

before being applied to data.

II. Correct Charm Tag. Events in this background category have a correctly

reconstructed charm tag, and as a result of the requirement of a minimum

tag momentum of 2.35 GeV/c, must have been produced in cc fragmentation.

On the recoil side, there are several distinct and enumerable backgrounds to

D+
s → μ+νμ through the D∗+

s cascade.
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Table 4.1: Overview of the five different background categories, listing their sources
and the anticipated treatment. The name of the background category, in italic will
be used throughout this thesis.

Bkgd category Event types Treatment
I Fake Tag events with a ran-

domly generated
charm signature –
all light qq, bb, ττ
events, some cc
events contribute

Sideband in charm tag mass distri-
bution used to determine shape and
size

II Real Tag cc events

II(a)i Leptonic μ D+
d/s → μ+νμ Shape and relative size are estimated

from Monte Carlo simulation.

II(a)ii Leptonic τ D+
d/s → τ+ντ ,

and τ+ → μ+νμν̄τ

Lepton universality. Up to a phase
space correction, τ → eνeντ and
τ → μνμντ have the same branch-
ing ratio. Electron substituted, effi-
ciency corrected, signal selection on
data determines background shape
and size.

IIb Semileptonic Dq → Xμνμ Lepton universality. Dq → Xeνe has
the same branching ratio as Dq →
Xμνμ. Electron substituted, effi-
ciency corrected, signal selection on
data determines background shape
and size.

IIc Combinatoric Random combi-
nations on signal
side

Shape and relative size are estimated
from Monte Carlo simulation.
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a) Feed down From True Leptonic Decays in the Recoil. There are

two major contributors to this category.

i. First, there is cc → D+
d/s → μ+ν̄μ where the D+

d/s is a direct fragmen-

tation product rather than the D∗+
d/s cascade but is combined with a

random photon. While this process contributes to the final ΔM dis-

tribution, it is a non-peaking background. For this case, the shape

and relative size of these backgrounds will be determined from Monte

Carlo simulation, while the overall scale is left as a free parameter in

the final fit.

ii. Second are the D∗+
s cascades, where the final leptonic decay goes

through a τ : cc → D∗+
s → γD+

s → τ+ντ , where τ+ → μ+νμν̄τ . These

decays are not strongly helicity-suppressed, making them more preva-

lent, and because only neutrinos are missing, they peak in the final

ΔM distribution. Additionally, the leptonic mode cc → D+
s → τ+ντ ,

with τ+ → μ+νμν̄τ , where the D+
s combines with a random photon,

are also addressed within this background category. The leptonic τ

branching ratios are equal B(τ+ → μ+νμ) = B(τ+ → e+νe), hence

backgrounds in this category are automatically removed by the same

method applied for category IIb.

b) Feed down From Semileptonic Decays in the Recoil. This category

includes all events Dq → Xμνμ, where X can be one of K±, π±, K0, π0,

φ, ω, etc. Lepton universality implies that the branching ratios Dq →
Xμνμ and Dq → Xeνe must be approximately equal. By repeating the

analysis, substituting an identified electron for the muon and correcting

for their relative identification efficiencies, the precise size and shape of

this background can be extracted from the data. This technique does

not subtract the signal D+
s → μ+νμ, since the pure electronic decays,

D+
s → e+νe, are strongly helicity suppressed.
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c) Combinatorics in the Recoil. A sizable portion of the background is ex-

pected to be from events with a correctly reconstructed tag, but a misiden-

tified pion, kaon, or proton on the signal side. Usually these misidentified

particles randomly combined fake a signal that is expected to have no

peaking component. The decay D∗+
s → γD+

s → τ+ντ (branching ratio

6 %) with τ+ → π+(π0)ντ and the π+ wrongly identified as muon is also

listed in this category, despite its signal like appearance. Due to the lack

of a control sample that could be used to simulate these decays, the shape

of this background is estimated from Monte Carlo simulated events.

Ideally all background contributions should be estimated from real data to mini-

mize the dependence on the Monte Carlo simulation and the associated assumptions

about the underlying physics and the behaviour of the detector. This has been largely

accomplished in this analysis and only the Leptonic μ (II(a)i) and the Combinatoric

(IIc) backgrounds are estimated from Monte Carlo simulation. The data derived

elimination of D+
s → τ+ντ decays by subtraction of the electron-substituted sample

is important, because it makes this analysis a pure measurement of D+
s → μ+νμ.

4.3 Particle Identification Correction

The agreement of Monte Carlo simulated data and real data taken with the BABAR

detector is good, but not perfect. The simulation of the detector response to particles

interacting with the detector is only an estimate. Some reasons for the shortcomings

in simulating the detector response are

• the slowly changing performance of various detector components due to aging

and repair,

• the incomplete detector model used by the simulation software, which does not

include all the fine structure and material that is built into the detector, and

• the limitations in the understanding of particle interactions with the detector

material, for instance the shape of electromagnetic or hadronic showers.
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Table 4.2: Partitioning of the BABAR dataset into periods of constant particle selector
performance. In numbers in parantheses are the runs, that mark the beginning and
ending of the period.

Table Period

run1-1900V Oct 22nd, 1999 (9932) – Jul 11th, 2000 (14471)

run1-1960V Jul 11th, 2000 (14472) – Oct 28th, 2000 (17106)

run2-2001 Feb 10th, 2001 (18149) – Dec 23rd, 2001 (25007)

run2-2002 Jan 12th, 2002 (25281) – Jun 30th, 2002 (29435)

run3 Dec 8th, 2002 (32955) – Jun 27th, 2003 (39320)

run4 Sep 17th, 2003 (40228) – Jul 31st, 2004 (50635)

This limited predictability of the detector response also includes the indentification

efficiency and misidentification rate for μ±, e±, π±, K±, and protons. However, it is

crucial to the success of this analysis that the μ±, e±, K±, and π± detection efficiencies

are known at a level that their uncertainties are not the dominating source of the

systematic error on the results. To have the PID efficiencies in Monte Carlo simulated

data resemble those in real data as closely as possible, data derived efficiencies are

applied to simulated events.

In this analysis the method of PID weighting is used. Real data control samples,

in which the true nature of a particle is known with very high probability, are used

to measure the efficiencies of the particle identification tools, the PID selectors . The

efficiencies of the PID selectors are also measured on control samples derived from

Monte Carlo simulated events. The definition of these PID control samples is given

in Section 4.3.1. This section also describes how the PID selector efficiencies are

measured. The measured efficiencies are stored in PID efficiency tables , separate for

Monte Carlo simulation and for real data. The PID efficiency tables are organized by

particle type, charge, and selection criteria. They are split into ranges in time over

which the PID performance was stable (Table 4.2).

Simulated particle efficiencies are corrected to match real data using MC-to-data

PID weights , which are the ratios of real data to Monte Carlo simulated efficiencies,
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found in the corresponding data and Monte Carlo PID efficiency tables. Additionally,

electron-to-muon PID weights are calculated for simulated events and data. These

weights are the ratios of muon to electron efficiencies, found in the PID efficiency

tables corresponding to the muon and electron PID selectors that are used in this

analysis. The weights are used to correct for the different PID selector efficiencies in

the reconstruction of decays, such as D∗+
s → γD+

s → Xμ+νe and D∗+
s → γD+

s →
Xe+νe, which are, up to phase space differences of 3 %, identical in size and shape

due to lepton universality.

In this analysis only the tracks on the signal side from the D+
s → μ+νμ and

D+
s → φπ+ decays are considered for PID efficiency correction. Tracks that make up

the charm tag and other tracks in the events are not adjusted in Monte Carlo events.

That will not influence the result of this analysis, since the tagging efficiency cancels

in the D+
s → μ+νμ to D+

s → φπ+ ratio.

4.3.1 Definition of the PID Control Samples

The PID control samples are defined as follows.

Muon Control Sample

The muon control sample consists of events e+e− → μ+μ−γ extracted from the BABAR

dataset applying the following criteria.

• The event must contain exactly two oppositely-charged tracks, both with a

transverse momentum of at least 100 MeV/c, a minimum of 12 DCH hits, and

an polar angle restricted to 0.41 < θ < 2.54 rad. The point of closest approach

of the track to the IP has to be within 1.5 cm in the xy-plane and within 10 cm

along the z-axis of the IP.

• The event must contain at least one photon candidate. Photon candidates are

neutral EMC clusters with an energy of at least 30 MeV and a maximum lateral

moment of the energy distribution in the EMC, LAT < 0.8.
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The muon mass is assigned to each of the two tracks. For each photon candidate

γ in the event the invariant mass of the two-track-and-photon system (M(μμγ)) is

calculated. The photon candidate γ with M(μμγ) closest to the event mass (
√

s =

M(e+e−)) is considered the signal photon (γ1), and |√s − M(μμγ1)| < 0.5 GeV/c2 is

required. No other photon candidate with an energy of more than 50 MeV is allowed

in the event. The distance of the signal photon γ1 to the nearest track has to be more

than 30 cm.

A kinematic fit is applied to the two-track-and-photon system. In the fit the tracks

are constrained to have a common vertex within the beam spot, the invariant mass

M(μμγ1) is constrained to
√

s, and the momentum p(μμγ1) is constrained to the total

beam momentum. The χ2 probability of the fit is required to be above > 0.01, and

the energy of the fitted photon must be larger than 1.5 GeV.

Muon candidates are selected if the opposing track satisfies the loose muon criteria,

which is based on the traversed interaction length, and the agreement of the measured

track with the minimum ionizing particle hypothesis.

Electron Control Sample

The electron control sample consists of events e+e− → e+e−γ. Two control samples

are defined. The first is based on the following criteria:

• The event must contain exactly two oppositely-charged tracks, one track with

a momentum between 4.0 and 6.0 GeV/c, the other with less then 3.5 GeV/c in

the laboratory frame.

• A neutral calorimeter cluster of at least 0.5 GeV must be present and more than

0.2 rad removed from where the low momentum track enters the EMC.

• The energy-deposit of the high momentum particle in the EMC must be at least

half its momentum.

• The sum of the two track momenta and the energy of all neutral clusters must

be above 11.0 GeV.
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The low momentum track is taken as the electron candidate.

The second control sample is selected by the following requirements:

• The event must contain exactly two oppositely-charged tracks, the highest track

momentum must be below 4.7 GeV/c.

• A neutral calorimeter cluster with 0.0001 < MLAT < 0.8 (5.1) of at least 0.1 GeV

must be present.

Tracks are accepted as electron candidates if the second track has EEMC/p > 0.85.

This sample is used for electrons between 3.5 and 4.7 GeV.

Charged Pion Control Sample

The charged pion control sample consists of τ+τ− events with a 3–1 topology. A τ+

lepton decays with a probability of 99.9 % into a final state that contains either one or

three charged particles, a τ -neutrino, and perhaps a number of other neutral particles.

The decays into three charged particles are dominated by the decay τ+ → π+π+π−ν̄τ .

Identifying events e+e− → τ+τ− with one τ± decaying into a one-charged-particle

final state and the other τ∓ decaying into a three-charged-particle final state results

in a very clean sample of charged pions covering a wide momentum spectrum. About

25 % of all decays of e+e− → τ+τ− events are of this type. An event is selected as a

τ–3–1 event if it has

• a thrust T > 0.925, and

• exactly 4 tracks, satisfying a tight track criterion, with zero total charge, and a

3–1 topology.

The tight track criterion requires that the transverse momentum is at least 100 MeV/c,

and that the track has at least 20 DCH hits. The distance between the tracks point

of closest approach to the IP and the IP itself must be less than 1 cm in the xy-

plane, and less than 3 cm along z. The tracks are required have a CM momentum

p∗ < 4.5 GeV/c. The decision about the event’s 3–1 topology is based on the dot
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products of the CM momentum vectors of the 4 tracks with each other. A track is

considered a 1-prong candidate if the dot products with the three other tracks are all

negative. An event is considered to have a 3–1 topology if it has exactly one 1-prong

candidate. After the single track has been identified, the 3-prong invariant mass is

required to be 0.7 < m3p < 1.6 GeV/c2, and the invariant masses of all two-track

combinations must be larger than 0.15 GeV/c2.

All tracks on the three-prong side are selected as pion candidates.

Charged Kaon Control Sample

The charged kaon control sample is derived from kaons in the decay D∗+ → π+D0 →
K−π+. The D0 candidates are reconstructed from pairs of oppositely-charged tracks.

One track is assigned the kaon mass, the other the pion mass. The invariant mass

of the K±–π∓ pair must be between 1.4 and 2.32 GeV/c2. A mass-vertex-constrained

χ2-fit is applied to the K±–π∓ pair. A charged pion of less than 0.5 GeV/c is added

to the fitted D0 meson candidate to from D∗+ meson candidates. Requirements are

made on

• the mass of the D∗+ candidate, 1.99 < M(D0π+) < 2.03 GeV/c2,

• the D∗–D0 mass difference, 0.14375 < ΔMD∗+−D0 < 0.14715 GeV/c2,

• the kaon helicity angle in the D∗+ frame, cos θhel(D
∗+, K−) < −0.9,

• the angle between the kaon and the pion laboratory frame α(K+, π+) < 0.4,

and

• the angle between the D0 and the soft pion in the laboratory frame α(D0, πs) <

2.0.

The track with assumed kaon mass is selected as charged kaon candidate.

4.3.2 PID Efficiencies and PID Tables

The efficiencies of the PID selectors, which is the percentage of particles of a certain

type (μ±, e±, π±, K±, or proton) that satisfy the PID selector requirements, vary with
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particle momentum and detector region. The functional dependence εy|x(p, θ, φ) of

the selection efficiencies of the certain particle type, x, and a particular PID selector,

y, is not given in a close analytical expression, but in form of a three-dimensional

lookup-table, b → ε
y|x
b , or PID-Table.

The bins b are defined by their boundaries (pmin
b , pmax

b , θmin
b , θmax

b , φmin
b , φmax

b ). They

are disjunct and cover the entire phase space, such that the association B(p, θ, φ) = b

is always existent and unique; exactly one bin b satisfies pmin
b < p < pmax

b , θmin
b < θ <

θmax
b , and φmin

b < φ < φmax
b for any given (p, θ, φ).

The efficiency ε
y|x
b for each bin b for a given particle type, x, and a particular

selector, y, is given by

ε
y|x
b =

N
pass y|x
b

Nx
b

, (4.4)

where Nx
b is the number of particles of type x that fall into the bin b, (B(p, θ, φ) = b),

and N
pass y|x
b is the number among them that fullfill the criteria of the PID selector y.

The muon, electron, and charged pion control samples are very clean, the numbers

Nx
b and N

pass y|x
b , (x = μ±, e±, and π±), are determined by simply counting. The

numbers for x = K± are determined in a χ2 fit of the ΔMD∗+−D0 peak from the

charged-kaon control sample D∗+ → π+D0 → K−π+.

The PID-tables do not only define, for instance, the muon efficiency of a particular

muon selector, (x = μ±, y = μ − selector), but also the misidentification rate of, for

instance, charged pions as muons, (x = π±, y = μ − selector).

4.4 Tracking Efficiency Correction

The track reconstruction efficiency in Monte Carlo simulation agrees well with data,

and only a small MC-to-data correction needs to be applied to simulated events.

The correction is applied on a track by track basis, following the same procedure as

the PID efficiency MC-to-data correction. The tracking efficiency as a function of

momentum, polar angle, and azimuthal angle is determined in simulated events and

in data. The track reconstruction efficiencies in Monte Carlo and in data, are stored

in tracking efficiency lookup-tables. The data to Monte Carlo efficiency ratio, which
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gives the MC-to-data track weights, is also stored in momentum and angle dependent

lookup-tables. The control sample that is used to determine the tracking efficiencies

are e+e− → τ+τ− events with a 3–1 decay topology. These are the same events

as those used for the charged pion control sample, but with a selection that places

requirements on only two out of the three tracks on the 3-prong side. That way, the

reconstruction and selection efficiency of tracks can be studied on the third track.

The control sample is selected from events with between 3 and 5 charged tracks,

which must come within 1 mm in xy and 3 cm in z of the IP. The most isolated track

must be a well-identified electron or muon. The decay of the other τ is partially

reconstructed from two charged pions, The two pions must either form a ρ0 meson

candidate, identifying the decay τ+ → ρ0π+, or they must be both of opposite lepton-

charge identifying the decay τ+ → π+π+π−. The third charged pion to be present in

the decay represents the candidate for the tracking efficiency studies. Because of the

three neutrinos in the event, the momentum and direction of the third pion have to

be estimated from kinematic constraints of the whole event.

4.5 Monte Carlo Samples

In this analysis the following Monte Carlo simulated event samples, summarized in

Table 4.3, are used:

• A sample of signal decays produced in charm fragmentation, e+e− → cc →
D∗+

s → γD+
s → γμ+ν, is used to study the signal distribution of various se-

lection variables, and to optimize the signal selection cuts. This sample is also

used to measure the signal detection efficiency. The charm quark in the recoil of

the signal fragments generically, according to the Jetset fragmentation model.

This sample is referred to as the signal Monte Carlo sample.

• A sample of D+
s → φπ+ decays produced in charm fragmentation, e+e− → cc →

D∗+
s → γD+

s → γφπ+, is used to study the distribution of various variables for

the D∗+
s → γD+

s → γφπ+ selection. This sample is also used to measure the

D∗+
s → γD+

s → γφπ+ detection efficiency. The charm quark in the recoil of the
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D+
s → φπ+ fragments generically. This sample is referred to as the φπ+-signal

Monte Carlo sample.

• The major sources of backgrounds for this analysis are investigated using generic

decay samples. Generic samples are samples of simulated decays in which the

decay mode composition is chosen such that it agrees with nature as far as our

knowledge reaches. This is achieve through applying a mixure of fragmentation

and hadronization models and specific measured decay rates. The fragmentation

process in events e+e− → cc and e+e− → qq, (q = u, d, s), is modeled by

the Jetset program, the subsequent decay of the produced hadrons is done

according various decay models within EvtGen. Production and decay of

B0B0 and B+B− meson pairs produced in the decay of the Υ (4S) resonance

are simulated by EvtGen. Since only a fraction of the B decays are known,

Jetset fills in to simulate the remaining percentage of B decays according to a

generic hadron decay model. The simulation of the decay of τ -pairs is performed

by KK2F [43] and Tauola [44], within EvtGen. KK2F models the τ -pair

production in e+e− events, while Tauola is responsible for the decays of the

τ -meson.

The Monte Carlo samples, their size and luminosity equivalent are listed in Table 4.3.
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Table 4.3: Signal and generic Monte Carlo samples, their size and equivalent lumi-
nosity. The luminosity equivalent for the generic Monte Carlo sample is calculated
using the production cross-sections from Table 3.3, the signal luminosity equivalent
is calculated based on the the current PDG values B(D+

s → μ+νμ) = 5.0 × 10−3 and
B(D∗+

s → γD+
s = 0.95), the e+e− → cc production cross-section, and a D∗+

s pro-
duction rate in c-quark fragmentation of 9 %, estimated from generic cc Monte Carlo
simulation.

Monte Carlo Sample # Events Lumi [ fb−1 ]

D∗+
s → γD+

s → γμ+ν 1,284,786 2188.0

D∗+
s → γD+

s → γφπ+ 2,192,000 790.2

e+e− → cc 415,371,501 319.5

e+e− → qq, q = u, d,s (uds-sample) 673,385,000 320.7

e+e− → BB 530,812,000 1011.1

e+e− → B+B− 564,916,000 1076.0

e+e− → ττ 345,706,000 367.8



Chapter 5

The Charm Tag

In this chapter the formation of a large sample of charm mesons, D0, D+, D+
s , and

D∗+, reconstructed in a hadronic decay mode, is discussed. The identified charm

mesons are subsequently used to identify or tag events e+e− → cc. This chapter

starts by briefly describing a preliminary event selection, applied to suppress QED

background. The reconstruction of the charm meson candidates in their more dom-

inant hadronic decay modes is then detailed. In each event, only one charm meson

candidate is kept and called the tag. The description of the tag selection concludes

this chapter.

5.1 Preliminary Selection

A large number of events in the BABAR dataset are Bhabha, di-muon, and di-tau

events, e+e− → l+l− (l = e, μ, and τ , respectively). These QED background events

have a small number of final state particles which are largely produced back-to-back.

To reduce this background component early on, the following requirements are made

prior to any other:

• The normalized second Fox-Wolfram moment, R2 [45], in the CM frame (a mea-

sure for the collinearity, or back-to-backness of the particle tracks) is calculated

and required R2 < 0.95.

73
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• A minimum of three tracks originating near the IP is required. The distance

between the point of closest approach to the IP of each track and the IP must

be less than 1.5 cm in the xy-plance, and less than 10 cm along the z-direction.

5.2 The Definition of the Tag Sample

Charm mesons D0, D+, D+
s , and D∗+ mesons are fully reconstructed in several

hadronic decay modes. These decay modes make up the charm meson tag sample.

Common to all modes of the tag sample is that they allow an unambiguous deter-

mination of the charm quantum number of the tag. Unless D0–D0 mixing occured

prior to the decay, or the decay proceeded through a doubly Cabibbo suppressed

amplitude, correctly reconstructed tag candidates predict the charge of the D∗±
s on

the signal side, since the tag and the signal are the charm particles that formed in

the fragmentation of cc quark pairs. The decay modes that make up the tag sample,

together with their charm content, are listed in Table 5.1.

5.3 Reconstruction of Tag Candidates

The tag candidates are reconstructed in their weak decay from different daughter

particles; charged and neutral pions and kaons, φ and ρ+ mesons. These particles are

selected by making the following requirements.

Good Charged Tracks The lifetime of the weakly decaying pseudoscalar charm

mesons is between 100 and 300 μm/c, that of the vector meson D∗+, which decays

strongly and electromagnetically, is even shorter. Charged particle tracks from decays

of these mesons originate near the IP. A requirement is made that tracks at their point

of closest approach to the IP must lie within 1.5 cm in the xy-plane and within 10 cm

in the z direction of the IP. An exception is made for charged pions from the decay

of K0
S mesons, which have a larger lifetime of 2.68 cm/c.



5.3. RECONSTRUCTION OF TAG CANDIDATES 75

Table 5.1: The tag sample composition. Listed are the charm quantum number, the
branching fraction (PDG 2004 [30]), and the minimum required momentum in the
CM frame (p∗min reco

tag ) for each tag mode.

Branching Fraction p∗min reco
tag

Index Decay Mode Charm
[%] [GeV/c ]

1 D0 → K−π+ +1 3.80 ± 0.09 2.35

2 D0 → K−π+π0 +1 13.0 ± 0.8 2.35

3 D0 → K−π+π+π− +1 7.46 ± 0.31 2.35

4 D+ → K−π+π+ +1 9.2 ± 0.6 2.35

5 D+ → K−π+π+π0 +1 6.5 ± 1.1 2.35

6 D+ → K0
Sπ+ +1 1.41 ± 0.09 2.35

7 D+ → K0
Sπ+π0 +1 4.4 ± 1.5 2.35

8 D+ → K0
Sπ+π+π− +1 3.6 ± 0.5 2.35

9 D+ → K+K−π+ +1 0.89 ± 0.08 2.35

10 D+ → K0
SK+ +1 3.0 ± 0.3 2.35

11 D+
s → φρ+ +1 6.7 ± 2.3 2.35

12 D+
s → K0

SK+ +1 1.8 ± 0.6 2.35

13 D∗+ → D0π+ +1 67.7 ± 0.5 2.3

13a D0 → K0
Sπ+π− 2.98 ± 0.18 0.0

13b D0 → K0
Sπ+π−π0 5.5 ± 0.7 0.0

13c D0 → K0
SK+K− 0.52 ± 0.05 0.0

13d D0 → K0
Sπ0 1.15 ± 0.11 0.0
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Photons A photon candidate is an EMC cluster – a collection of crystals with a

minimum deposited energy of 10 MeV – or part of an EMC cluster that is consistent

with a single particle shower. The total energy must be higher than 30 MeV and the

lateral moment, MLAT, of the candidates energy distribution must be less than 0.8.

The lateral moment is defined as

MLAT =

n∑
i=2

Ei r
2
i

n∑
i=2

Ei r2
i + 25 cm2(E0 + E1)

, (5.1)

where Ei is the energy of the i-th crystal belonging to the photon candidate and

ri is its distance from the shower center, measured in cm. The crystal indices are

ordered with descending energy. No charged track must be associated with the photon

candidate. The momentum direction of the candidate photon is taken as the vector

pointing from the IP to the shower center.

Charged Pions Good charged tracks with transverse momenta of 100 MeV/c and

at least 12 DCH hits are considered as charged pion candidates. Based on dE/dx

information from the SVT and the DCH, and on the Cherenkov angle and the number

of Cherenkov photons from the DIRC, likelihoods for a particle being a charged pion, a

charged kaon, and a proton are calculated, Lπ, LK , and Lp, respectively. For charged

pions LK/(LK + Lπ) < 0.98 and Lp/(Lp + Lπ) < 0.98 is required.

Soft Charged Pions from D∗+ → D0π+ Good charged tracks with CM mo-

menta of less than 450 MeV/c are considered as charged pion candidates for the D∗+

decay in the tag mode D∗+ → D0 π+.

Charged Kaons Good charged tracks are also candidates for charged kaons. With

the calculated π±, K±, and p± likelihoods, charged kaon candidates are further re-

quired to have LK/(LK + Lπ) > 0.2 or Lp/(Lp + Lπ) > 0.2.
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Primary Event Vertex The primary event vertex (PEV) is a more accurate es-

timate of the e+e− collision point than the nominal center of the interacion region,

the interaction point (IP), which is only determined by the layout of the interaction

region. The PEV is determined by a χ2-fit of good charged tracks to a common vertex

point. If the fit probability is less than 1 %, the track with the highest χ2 contribution

is removed and the fit repeated. The fitted vertex is the PEV.

Neutral Pions Neutral pions are reconstructed from two photon candidates that

are assumed to originate at the PEV. The invariant mass of the photon pair has to be

between 124 and 145 MeV/c2, and the total momentum in the laboratory frame must

be above 200 MeV/c. The four-momentum is then recomputed using a constrained

fit, fixing the invariant mass M(γγ) to the nominal π0 mass.

Neutral Kaons Candidates for K0
S meson are constructed from two oppositely

charged tracks to which the pion mass is assigned. After a loose requirement of

0.3 < M(π+π−) < 0.7 MeV/c2 on the invariant mass, the K0
S candidate is refined

through a vertex constrained fit. A fit probability Pfit > 0.002 is required, and the

distance of the vertex from the events primary vertex must larger than 2 mm in the

r − φ plane. The recomputed mass must be within 9.5 MeV/c2 of the nominal K0

mass of 497.6 MeV/c2 [30].

φ Mesons Candidates for φ mesons are constructed from two charged kaon candi-

dates in the φ → K+K− decay mode. The invariant mass of the kaon pair is required

to be within 40 MeV/c2 of the nominal φ mass of 1019.5 MeV/c2 [30]. A vertex con-

strained fit is then applied to the kaon pair, the fit quality must be above 0.0005.

The refitted mass must be within 18 MeV/c2 of the nominal φ mass.

ρ+ Mesons Candidate ρ+ mesons reconstructed in their dominant decay mode

ρ+ → π+π0. The charged and neutral pion candidates must fulfill the charged and

neutral pion criteria, respectively. The invariant mass of the pion pair is required

to be within 320 MeV/c2 of the nominal ρ+ mass of 768 MeV/c2. A constrained fit
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is then applied to the pion pair, with the events primary vertex as the assumed ρ+

decay vertex. The fit quality is ensured with a requirement on the fit probability,

Pfit > 0.001. The refitted mass must then be within 160 MeV/c2 of the nominal ρ+

mass.

All available candidates of tag decay products are combined to form the tag can-

didates. The four-momenta of tag candidates of the tag modes 1–12 (Table 5.1), are

calculated in a constrained χ2-fit, with all daughter particles constrained to a common

vertex. The probability of the fit is required to be greater than 0.001.

A vertex-constrained fit is also applied to the D0 candidates for the modes 13a–

13d, with an additional mass constraint. No restrictions on the fit probability are

applied. The fitted D0 candidates are combined with soft charged pion to form D∗+

candidates. The mass difference between the D∗+ and the D0 candidates must be

between 120 and 170 MeV, where the nominal mass difference is 145 MeV [30]. A

vertex constrained fit is performed on the π+D0 combination, and a fit probability

Pfit > 0.0001 is required.

As indicated in Table 5.1, tag candidates must have a minimum momentum of

2.35 GeV/c in the CM frame. An exception is the D∗+ tag candidates of tag mode

13 whose CM momentum must be above 2.30 GeV/c. The mass distribution for each

tag mode is shown in Figure 5.1, Figure 5.3, and Figure 5.5 for generic Monte Carlo

simulated events and in Figure 5.2, Figure 5.4, and Figure 5.6 for data events. A

Gaussian distribution on top of a linear function is fitted to each tag mass distribution.

This determines the mean, M
MC/Data
tag , and the width, σ

MC/Data
tag , of the tag mass peak,

as well as the sizes of the signal tag yield above the background. The estimated mean

and width for each tag mode are listed for simulated events in Table 5.2 and for data

in Table 5.3. In addition the tables contain the purity of each mode, which is obtained

from the fit. The purity is defined as

P2σ =
s2σ

s2σ + b2σ

, (5.2)

where s2σ and b2σ are the fitted signal and background yields within 2σ
MC/Data
tag of the
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Figure 5.1: Distribution of the tag meson mass for the tag modes 1–6 in generic
Monte Carlo events (combined cc, bb, uds, ττ). Fitted is a Gaussian distribution on
top of a linear background. The fitted values for MMC

tag and σMC
tag are used to define

the tag signal and sideband regions for Monte Carlo samples.



80 CHAPTER 5. THE CHARM TAG

)
2

 (GeV/c0D
M

1.82 1.831.841.851.86 1.871.88 1.89 1.9 1.91

2
E

nt
ri

es
/0

.0
02

G
eV

/c

0

100

200

300

400

500

310×
+π- K→0   1) D

)
2

 (GeV/c0D
M

1.8 1.82 1.84 1.86 1.88 1.9 1.92

2
E

nt
ri

es
/0

.0
02

G
eV

/c

0

50

100

150

200

250

310×
0π+π- K→0   2) D

)
2

 (GeV/c0D
M

1.84 1.85 1.86 1.87 1.88 1.89

2
E

nt
ri

es
/0

.0
01

G
eV

/c

0

50

100

150

200

250

310×
-π+π+π- K→0   3) D

)
2

 (GeV/c+DM
1.84 1.85 1.86 1.87 1.88 1.89 1.9

2
E

nt
ri

es
/0

.0
01

G
eV

/c

0
20
40
60
80

100
120
140
160
180

310×
+π+π- K→+   4) D

)
2

 (GeV/c+DM
1.82 1.84 1.86 1.88 1.9 1.92

2
E

nt
ri

es
/0

.0
02

G
eV

/c

0

20

40

60

80

100

310×
0π+π+π- K→+   5) D

)
2

 (GeV/c+DM
1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.9 1.91

2
E

nt
ri

es
/0

.0
01

G
eV

/c

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

+π0
S

 K→+   6) D

Figure 5.2: Distribution of the tag meson mass for the tag modes 1–6 in data events.
Fitted is a Gaussian distribution on top of a linear background. The fitted values for
MData

tag and σData
tag are used to define the tag signal and sideband regions for data.
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Figure 5.3: Distribution of the tag meson mass for the tag modes 7–12 in generic
Monte Carlo events (combined cc, bb, uds, ττ). Fitted is a Gaussian distribution on
top of a linear background. The fitted values for MMC

tag and σMC
tag are used to define

the tag signal and sideband regions for Monte Carlo samples.



82 CHAPTER 5. THE CHARM TAG

)
2

 (GeV/c+DM
1.82 1.84 1.86 1.88 1.9 1.92

2
E

nt
ri

es
/0

.0
02

G
eV

/c

0

5000

10000

15000

20000

25000

0π+π0
S K→+   7) D

)
2

 (GeV/c+DM
1.84 1.85 1.86 1.87 1.88 1.89 1.9

2
E

nt
ri

es
/0

.0
01

G
eV

/c

0

5000

10000

15000

20000

25000

30000

-π+π+π0
S K→+   8) D

)
2

 (GeV/c+DM
1.84 1.85 1.86 1.87 1.88 1.89 1.9

2
E

nt
ri

es
/0

.0
01

G
eV

/c

0
10000
20000
30000
40000
50000
60000
70000
80000

+π-K+ K→+   9) D

)
2

 (GeV/c+DM
1.84 1.85 1.86 1.87 1.88 1.89 1.9

2
E

nt
ri

es
/0

.0
01

G
eV

/c

0

1000

2000

3000

4000

5000

+K0
S K→+   10) D

)
2

 (GeV/c
s
+DM

1.94 1.95 1.96 1.97 1.98 1.99 2

2
E

nt
ri

es
/0

.0
01

G
eV

/c

0
1000
2000
3000
4000
5000
6000
7000
8000

+K0
S K→+

s   11) D

)
2

 (GeV/c
s
+DM

1.92 1.94 1.96 1.98 2 2.02

2
E

nt
ri

es
/0

.0
02

G
eV

/c

0

2000

4000

6000

8000

10000

12000

+ρφ →+
s   12) D

Figure 5.4: Distribution of the tag meson mass for the tag modes 7–12 in data events.
Fitted is a Gaussian distribution on top of a linear background. The fitted values for
MData

tag and σData
tag are used to define the tag signal and sideband regions for data.
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Figure 5.5: Distribution of the tag meson mass for the tag mode 13 (D∗+ → π+D0)
and of the D0 mass in the four submodes 13a–13d, in generic Monte Carlo events
(combined cc, bb, uds, ττ). For the D∗+ tag mode a Gaussian distribution on top of a
linear background is fitted. The fitted values for MMC

tag and σMC
tag are used to define the

tag signal and sideband regions for Monte Carlo samples. The submodes are fitted
with a simple Gaussian distribution.
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Figure 5.6: Distribution of the tag meson mass for the tag mode 13 (D∗+ → π+D0)
and of the D0 mass in the four submodes 13a–13d, in data events. For the D∗+

tag mode a Gaussian distribution on top of a linear background is fitted. The fitted
values for MData

tag and σData
tag are used to define the tag signal and sideband regions for

data. The submodes are fitted with a simple Gaussian distribution.
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mean M
MC/Data
tag .

A comparison between simulated and data events shows that the difference in the

mean between simulation and data, MMC
tag − MData

tag , ranges from -2 MeV to 1 MeV.

Tag modes that contain a π0 or a ρ+ have a lower mean in Monte Carlo simulation.

The width of the tag mass peak tends to be smaller in simulation, prominently again

in modes with a π0 or a ρ+ (Figure 5.7).

For each tag mode a signal and two sideband regions in the tag mass distribution

are defined. While the signal region contains a large number of tag candidates that are

correctly reconstructed charm mesons, the sideband should contain almost none. The

purpose of the tag candidates in the sidebands is to simulate those tag candidates in

the signal region that are not charm mesons. These fake tag candidates in the signal

region can than be removed through a sideband subtraction.

The signal region is defined ±2 σ
MC/Data
tag around the fitted mean mass, M

MC/Data
tag .

The sideband regions extend from 3 to 6σ
MC/Data
tag on either side of M

MC/Data
tag . The

width of the sidebands is chosen 50 % larger than the signal region in order to lower

the statistical uncertainty arising from the sideband subtraction. The definitions

of the tag signal and sideband regions for simulated and data events are listed in

Tables 5.4 and 5.5, respectively.

The total number of tag candidates in data disagrees with the Monte Carlo pre-

diction (Figure 5.8 through Figure 5.10). The reasons are:

• The branching fractions of the charm decay used in some tag modes, have an

error of up to 30 %. This would explain the discrepancy in the D+
s meson tag

modes.

• The track multiplicity in simulated events might be different from data, due to

imperfections in the quark fragmentation model, or to the mixing of the beam

background into the simulated events. This would justify the higher random

combinatoric backgrounds in the modes D0 → K−π+π+π−, D+ → K−π+π+π0,

or D+ → K0
Sπ+π+π−, all of which have four or more particles in the final state.

• The PID efficiency correction is not applied to the tag side of the event.
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Table 5.2: Tag mass mean and width, and purity for each tagging modes in Monte
Carlo.

MMC
tag σMC

tag P2σMode
[GeV/c2 ] [MeV/c2 ] [%]

D0 → K−π+ 1.865 7.34 69.3

D0 → K−π+π0 1.863 11.18 40.7

D0 → K−π+π+π− 1.865 5.00 50.9

D+ → K−π+π+ 1.869 5.65 52.8

D+ → K−π+π+π0 1.868 9.40 14.7

D+ → K0
Sπ+ 1.870 6.63 50.8

D+ → K0
Sπ+π0 1.869 10.06 23.1

D+ → K0
Sπ+π+π− 1.870 5.63 30.6

D+ → K+K−π+ 1.869 4.84 17.7

D+ → K0
SK+ 1.870 5.69 32.4

D+
s → K0

SK+ 1.970 6.36 54.1

D+
s → φρ+ 1.968 9.69 49.7

D∗+ → π+D0 → K0
SX 2.010 0.22 87.5

Table 5.3: Tag mass mean and width, and purity for each tagging modes in data.

MData
tag σData

tag P2σMode
[GeV/c2 ] [MeV/c2 ] [%]

D0 → K−π+ 1.864 7.50 68.1

D0 → K−π+π0 1.866 12.75 39.6

D0 → K−π+π+π− 1.864 5.24 42.8

D+ → K−π+π+ 1.869 5.90 49.5

D+ → K−π+π+π0 1.870 11.02 10.0

D+ → K0
Sπ+ 1.870 6.83 52.5

D+ → K0
Sπ+π0 1.871 12.60 26.4

D+ → K0
Sπ+π+π− 1.869 6.07 22.9

D+ → K+K−π+ 1.869 4.97 12.4

D+ → K0
SK+ 1.870 5.89 33.0

D+
s → K0

SK+ 1.969 6.62 45.3

D+
s → φρ+ 1.969 11.45 32.7

D∗+ → π+D0 → K0
SX 2.010 0.26 83.2
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Table 5.4: Definition of tag signal and sideband regions for each tag mode in simulated
events.

Peak Region Sideband Region [MeV ]
Mode

[MeV ] Left Right

D0 → K−π+ 1.850 – 1.879 1.820 – 1.843 1.887 – 1.909

D0 → K−π+π0 1.841 – 1.886 1.796 – 1.830 1.897 – 1.930

D0 → K−π+π+π− 1.855 – 1.875 1.835 – 1.850 1.880 – 1.895

D+ → K−π+π+ 1.858 – 1.881 1.835 – 1.852 1.886 – 1.903

D+ → K−π+π+π0 1.850 – 1.887 1.812 – 1.840 1.897 – 1.925

D+ → K0
Sπ+ 1.857 – 1.884 1.831 – 1.850 1.890 – 1.910

D+ → K0
Sπ+π0 1.849 – 1.889 1.809 – 1.839 1.899 – 1.929

D+ → K0
Sπ+π+π− 1.859 – 1.881 1.836 – 1.853 1.887 – 1.904

D+ → K+K−π+ 1.860 – 1.879 1.840 – 1.855 1.884 – 1.898

D+ → K0
SK+ 1.859 – 1.882 1.836 – 1.853 1.887 – 1.904

D+
s → K0

SK+ 1.957 – 1.982 1.931 – 1.950 1.989 – 2.008

D+
s → φρ+ 1.948 – 1.987 1.909 – 1.939 1.997 – 2.026

D∗+ → π+D0 → K0
SX 2.0095 – 2.0104 2.0086 – 2.0093 2.0106 – 2.0113

Table 5.5: Definition of tag signal and sideband regions for each tag mode in data.

Peak Region Sideband Region [MeV ]
Mode

[MeV ] Left Right

D0 → K−π+ 1.849 – 1.879 1.819 – 1.842 1.887 – 1.909

D0 → K−π+π0 1.840 – 1.891 1.789 – 1.827 1.904 – 1.942

D0 → K−π+π+π− 1.854 – 1.875 1.833 – 1.848 1.880 – 1.895

D+ → K−π+π+ 1.857 – 1.881 1.834 – 1.851 1.887 – 1.904

D+ → K−π+π+π0 1.848 – 1.892 1.804 – 1.837 1.903 – 1.936

D+ → K0
Sπ+ 1.856 – 1.883 1.829 – 1.849 1.890 – 1.911

D+ → K0
Sπ+π0 1.846 – 1.896 1.795 – 1.833 1.909 – 1.947

D+ → K0
Sπ+π+π− 1.857 – 1.882 1.833 – 1.851 1.888 – 1.906

D+ → K+K−π+ 1.859 – 1.879 1.839 – 1.854 1.884 – 1.899

D+ → K0
SK+ 1.858 – 1.882 1.834 – 1.852 1.887 – 1.905

D+
s → K0

SK+ 1.955 – 1.982 1.929 – 1.949 1.989 – 2.008

D+
s → φρ+ 1.946 – 1.992 1.900 – 1.935 2.003 – 2.038

D∗+ → π+D0 → K0
SX 2.0094 – 2.0105 2.0084 – 2.0092 2.0107 – 2.0115
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However, the mismatch between the simulated tag yields and the tag yields found

in data is of no concern in this analysis. Since only the ratio of the decay rates of

D+
s → μ+νμ to D+

s → φπ+ in tagged events is measured, the tagging efficiency itself

can remain unknown.



90 CHAPTER 5. THE CHARM TAG

)
2

 (GeV/ctagM
1.82 1.831.841.851.86 1.871.88 1.89 1.9 1.91

2
E

nt
ri

es
/0

.0
02

G
eV

/c

100

200

300

400

500

310×
+π- K→0

       1) D
 Tagcc

0
B0B

-B+B
cc
ττ

uds
Data

)
2

 (GeV/ctagM
1.8 1.82 1.84 1.86 1.88 1.9 1.92

2
E

nt
ri

es
/0

.0
02

G
eV

/c

50

100

150

200

250

310×
0π+π- K→0

       2) D

)
2

 (GeV/ctagM
1.84 1.85 1.86 1.87 1.88 1.89

2
E

nt
ri

es
/0

.0
01

G
eV

/c

50

100

150

200

250

300
310×

-π+π+π- K→0
       3) D

)
2

 (GeV/ctagM
1.84 1.85 1.86 1.87 1.88 1.89 1.9

2
E

nt
ri

es
/0

.0
01

G
eV

/c

20
40
60
80

100
120
140
160
180

310×
+π+π- K→+

       4) D

)
2

 (GeV/ctagM
1.82 1.84 1.86 1.88 1.9 1.92

2
E

nt
ri

es
/0

.0
02

G
eV

/c

20

40

60

80

100

120
310×

0π+π+π- K→+
       5) D

)
2

 (GeV/ctagM
1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.9 1.91

2
E

nt
ri

es
/0

.0
01

G
eV

/c

2000
4000
6000
8000

10000
12000
14000
16000
18000

+π0
S K→+

       6) D

Figure 5.8: Tag mass distribution in generic Monte Carlo simulated events (his-
tograms) and in data (black markers) for tag modes 1–6. The simulation is normalized
to the data luminosity.
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Figure 5.9: Comparison of the tag mass distribution in simulated events and data for
tag modes 7–12. The simulation is normalized to the data luminosity.
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Figure 5.10: Comparison of the tag mass distribution in simulated events and data
for tag mode 13. The simulation is normalized to the data luminosity.
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5.4 The Tag Selection

Figure 5.11 shows the tag multiplicity distribution, which is the number of tag can-

didates in the signal or the sideband region in an event. While most events with at

least one tag candidate have a tag multiplicity of one, a fraction of events (18 %) has

a tag multiplicity of two or higher. This analysis follows the strategy that in any

event only a single tag candidate is designated as tag, while all others tag candidates

are discarded.

Tags / Event
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Figure 5.11: Tag multiplicity in events with at least one tag candidate. The Monte
Carlo distribution is scaled in size to agree with the data in the first bin.

To determine that single tag, the tag modes are ordered according to their purity,

as it is measured in data, listed in Table 5.3. Only tag candidates that are in the

signal or the sideband regions are considered. The designated tag is selected by

choosing the tag candidate of the purest mode among the available candidates. If

multiple candidates of the same mode qualify as the tag, the one with the highest

vertexing probability among them is taken. For the selection it is not relevant if the

tag is in the signal or the sideband regions. Figures 5.12 through 5.13 show the tag
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mass distribution after the selection of the best tag candidate. This singled out tag

candidate is referred to simply as the tag in the subsequent analysis.

The tag yields in the signal and the sideband regions in generic Monte Carlo

simulation, and in data are compared in Table 5.6. The simulation, scaled to the

data luminosity, predicts 520,000 tags in the signal region after the sidebands are

subtracted, while in data 510,000 tags are obtained.

Table 5.6: Tag yield for MC and data in peak (P ) and sideband (S) region. the
sideband yields are scaled by 2

3
, to accomodate the 50 % larger size of the sidebands.

Monte Carlo DataMode
P S P − S P S P − S

D0 → K−π+ 149810 41037 108772 163962 50586 113376
D0 → K−π+π0 249965 136310 113656 250631 132888 117743
D0 → K−π+π+π− 213990 95525 118465 230878 115975 114903
D+ → K−π+π+ 157940 66134 91806 161599 70627 90972
D+ → K−π+π+π0 96665 79309 17356 104935 91275 13660
D+ → K0

Sπ+ 15138 6486 8653 16957 6905 10052
D+ → K0

Sπ+π0 32425 24205 8220 36649 24883 11766
D+ → K0

Sπ+π+π− 32147 21012 11135 29609 21390 8219
D+ → K+K−π+ 69462 55724 13738 60308 51321 8987
D+ → K0

SK+ 6412 4238 2174 4851 3129 1722
D+

s → K0
SK+ 10323 4651 5673 6259 3029 3230

D+
s → φρ+ 11391 5052 6339 8274 5175 3099

D∗+ → π+D0 → K0
SX 13080 1500 11580 13225 1855 11370

Total: 1058748 541182 517566 1088137 579040 509097
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Figure 5.12: Comparison of the tag mass distribution in simulated events and data
for tag modes 1–6. The simulation is normalized to the data luminosity.
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Figure 5.13: Comparison of the tag mass distribution in simulated events and data
for tag modes 7–12. The simulation is normalized to the data luminosity.
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Chapter 6

Signal Analysis

In this chapter the reconstruction of the decay chain D∗+
s → γD+

s → γμ+ν in the

recoil of a charm tag is described. First, the reconstruction of the signal decay is

described, with particular attention to the reconstruction of the neutrino. Next,

production and decay properties of the signal decay are investigated, to find these

that can be used to set the signal events apart from the background. The optimal

choice of selection variables is tehn evaluated by optimizing the statistical significance

of the final result. With the set of selection cuts so defined, the signal reconstruction

efficiency and the shape of the signal ΔM distribution are determined. Finally, an

extensive discussion of the contributing backgrounds in this analysis, and of how

they are estimated, is presented. In this analysis two different control samples are

employed, whose description follows next. The decay D∗0 → γD0 → γK−π+ is used

to validate the simulated signal efficiency, while the decay D∗+ → π+D0 → π+K−l+νl

checks the PID efficiency correction method, applied to estimate the semileptonic

and the leptonic τ background. At the end of the chapter the analysis of the decay

D∗+
s → γD+

s → γφπ+, which is used to measure the number of D∗+
s mesons in the

tag sample, is discussed.

98
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6.1 Signal Reconstruction

The decay D∗+
s → γD+

s → γμ+ν is reconstructed in the recoil of the tag. Only tracks

and clusters that are not part of the tag decay are considered muons and photon

candidates. The charge of the muon candidate has to be of opposite sign than the

tag charm quantum number.

Muon candidates Candidate muons have to originate near the IP. The distance

between the IP and the point of closest approach of the candidate track to the IP

has to be less than 1.5 cm in the xy-plane and less than 10 cm along the z-direction.

The momentum in the CM frame must be above 1.2 GeV/c. The muon candidate has

to satisfy a neural net based muon PID selector. The neural net classifies particles

based on the following input:

• The energy deposited in the EMC,

• the number of IFR hit layers,

• the measured number of traversed interaction lengths in the IFR, λmeas,

• Δλ, the difference between the number of traversed interaction lengths expected

for a minimum ionizing particle of momentum p and λmeas,

• the χ2/d.o.f. of a third order polynomial fit to the IFR position measurements

in the different RPC layers,

• the χ2/d.o.f. of the IFR position measurements with respect to the track ex-

trapolation,

• the continuity of the track,

• the average multiplicity of hit signal readout strips per IFR layer and the stan-

dard deviation.
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Photon candidates Candidate photons must fullfil the requirements detailed in

Section 5.3. The minimum energy of the photon candidate in the CM frame is

115 MeV.

Neutrino The neutrino four-momentum is calculated from the measured missing

four-momentum in the event. The missing momentum is a good estimate for the

neutrino momentum for three reasons.

• The tag is fully reconstructed in a hadronic decay mode. This eliminates the

important source of high energy neutrinos from semileptonic charm decays.

Except for the decay of charged kaons or pions, which happens rarely inside the

detector, no other neutrinos should be present in the event.

• The fragmentation of cc pairs at the Υ (4S) energy produces mostly two jets

of particles, which are back to back. With the tag direction pointing into the

angular acceptance of the detector, the majority of all particles produced in the

fragmentation process also point into the detectro acceptance.

• Long lived neutral kaons, K0
L, are not easily identified with the BABAR detector.

Since the EMC represents only 0.8 hadronic interaction length, only 50 % of K0
L

decay in the EMC with a typical energy deposit of 30 %. However, since the

tag carries already more than 60 % of the available energy on the tag side, the

contribution of the K0
L to the missing momentum is limited.

To further improve the resolution on the mass difference, ΔM , of the D∗+
s and

the D+
s meson, a special neutrino fitting procedure, described in the next section, is

employed.

6.2 Neutrino Reconstruction

The total four-momentum in the laboratory frame, p̆tot, is calculated by adding the

four-momenta of all good charged tracks, p̆trk, and all photon candidates, p̆phot, in the

event, that are not part of the tag, to the tag four-momentum:
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μ−p∗μ cos θ∗μν

Figure 6.1: Neutrino reconstruction. The drawing plane is defined by the muon and
missing momentum vectors. The parabola is given by (6.3).

p̆tot =
∑

trk,¬tag

p̆trk +
∑

phot,¬tag

p̆phot + p̆tag (6.1)

The track and photon requirements are detailed in Section 5.3. The missing four-

momentum in the laboratory frame, p̆miss, is calculated by subtracting p̆tot from the

four-momentum of the Υ (4S). The missing four-momentum is boosted into the CM

frame to obtain

p̆∗miss ≡ (E∗
miss, �p

∗
miss) (6.2)

The neutrino momentum resolution can be improved if the invariant mass of

the muon-neutrino pair is constrained to the nominal D+
s mass. Compared to the

missing momentum, the muon momentum is measured very precisly. Therefore only

the missing momentum will be adjusted to satisfy the D+
s mass constraint. For the

two body decay D+
s → μ+νμ, given the muon CM momentum, p∗μ, the neutrino CM

momentum, p∗ν , can be written as a function of the muon–neutrino opening angle θ∗μν

in the CM frame:

p∗ν(θ
∗
μν |p∗μ,mμ,mDs) =

m2
Ds

− m2
μ

2
(√

p∗2μ + m2
μ − p∗μ cos θ∗μν

) . (6.3)
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Figure 6.2: Neutrino momentum resolution improvement. Shown is the difference
between a) the missing momentum and b) corrected neutrino momentum and the
neutrino momentum in simulated signal decays. The muon momentum is larger
than 1.2 GeV/c. A correctly reconstructed tag with a momentum above 2.35 GeV/c is
required in the event.

This equation describes a three-dimensional parabola around the muon momentum

vector. The higher the muon momentum, the narrower the parabola. The muon and

the missing momentum vectors span a plane that disects this parabola, as depicted

in Figure 6.1. The momentum vector of the neutrino, �p∗ν , from the D+
s → μ+νμ

decay can lie anywhere on the parabola, but most likely near the missing momentum

vector. Therefore, the neutrino momentum vector that is used in the further analysis

is chosen such that the difference to the missing momentum vector, |�p∗miss − �p∗ν | is

minimized. The improvement in the neutrino momentum is shown in Figure 6.2. The

neutrino CM four-momentum is given by

p̆∗ν = (|�p∗ν |, �p∗ν) . (6.4)

This method of finding the optimal neutrino momentum, does not have a quality

criteria in terms of a fit probability. However the difference of the missing and the

neutrino momentum, pcorr, is a good indicator for signal event. It is defined as

pcorr = |�p∗miss| − |�p∗ν |. (6.5)
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Compared to background events, signal decays typically require only a small correc-

tion to the missing momentum, and pcorr is centered at 0, (Figure 6.7).

All muon candidates are combined pairwise with the neutrino four-momentum

and D+
s candidates are formed. All D+

s candidates, which after the neutrino fitting

procedure have the nominal D+
s mass, are combined pairwise with the photon can-

didates to form D∗+
s candidates. The mass difference ΔM = M(D∗+

s ) − M(D+
s ) is

calculated. The signature of the signal is a narrow peak in the ΔM distribution at

145 MeV.

6.3 Signal Selection

This analysis is a “cut-and-count” analysis. To select the signal and suppress the

background, a number of variables are chosen for which requirements, or “cuts”, are

applied. After the selection the signal yield is fitted for, providing the “count” of

signal events.

The variables that are described in the following sections are based on properties

of the reconstructed muon, neutrino, photon, D+
s , and D∗+

s candidates. They are

chosen due of their potential to separate signal from background.

The cut values (with the exception of the photon energy) are chosen such that

the signal selection and background rejection would result in the highest possible

statistical significance of the signal yield in data. The significance is defined as the

ratio of the signal yield s to its statistical uncertainty, s/
√

s + b, where b is size of the

background under the signal. Both numbers are simulated estimates, scaled to the

data luminosity according to Table 4.3. The optimization procedure is described in a

later section. However, to convey their benefits, the optimized cut values are already

shown in the following discussion of the selection variables.

Photon center of mass energy Requiring a minimum photon energy aids in

reducing the background from random combinations with photons other than the sig-

nal photon. Even in signal events random photons result in a significant background.

The photon energy is required to be above 115 MeV, the reason for this value will be
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given in the cut optimization section. The optimum (with respect to the statistical

significance of the signal yield) photon energy cut would be at 145 MeV. However,

the low photon energy cut directly influences the ΔM distribution at the lower edge.

A shift in the photon energy cut from 115 MeV to 150 MeV would move the low end

shoulder of the photon background from 80 MeV to 130 MeV, near the location of the

signal peak. This would lead to a larger uncertainty in the fitted signal yield. The

cut is set at:

E∗
γ > 115 MeV (6.6a)

The distribution of the energy of single photons in simulated events and in data is

shown in Figure 6.3.
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Figure 6.3: Single photon energy in the CM. The data are represented by black
markers, the various generic Monte Carlo samples are the color coded solid histograms.
The Monte Carlo is scaled to the data luminosity with an additional factor (0.984)
for the difference in tag yield between MC and data. The signal Monte Carlo (green
hashed) is arbitrarily scaled for better visibility. The tag is required to be in the tag
signal region.
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Tag Signal Charge Correlation The modes in the tag sample are chosen such

that the charge of the signal D∗±
s can be predicted. Combinatoric background from

fake hadrons in uds, bb, and cc events shows a much weaker charge correlation, the

desired factor of two in the rejection of these backgrounds can be obtained. Semilep-

tonic charm decays on the signal side will not be affected by this requirement. With

Qc
tag and Qc

signal being the charge of the charm quark on the tag and the signal side,

one can define the charge product QP and require:

QP =
3

2
Qc

tag ∗
3

2
Qc

signal = −1 . (6.6b)

The distribution of QP in simulated events and in data are shown in Figure 6.4.
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Figure 6.4: Product of tag and signal charm quantum number. The data are rep-
resented by black markers, the various generic Monte Carlo samples are the color
coded solid histograms. The Monte Carlo is scaled to the data luminosity with an
additional factor (0.984) for the difference in tag yield between MC and data. The
signal Monte Carlo (green hashed) is arbitrarily scaled for better visibility. The tag
is required to be in the tag signal region.
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Angle Between the Muon in the D+
s Frame and the D+

s in the D∗+
s Frame

Unlike the signal D+
s , a large number of random D+

s combinations have the muon

candidate aligned with the D+
s flight direction. The angle αμ,Ds is defined as the angle

between the muon direction in the D+
s frame and the D+

s flight direction in the CM

frame, and the selection requires

cos �(μ,D+
s ) < 0.90 . (6.6c)

The distribution of cos �(μ,D+
s ) is shown in Figure 6.5.
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Figure 6.5: The cosine of the angle between the muon in the D+
s frame and the D+

s

in the CM frame. The data are represented by black markers, the various generic
Monte Carlo samples are the color coded solid histograms. The Monte Carlo is scaled
to the data luminosity with an additional factor (0.984) for the difference in tag yield
between MC and data. The signal Monte Carlo (green hashed) is arbitrarily scaled
for better visibility. The tag is required to be in the tag signal region.
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Missing CM Energy Due to the existence of a neutrino in the signal decay, the

missing energy, E∗
miss, equation (6.2) in Section 6.2, is higher in signal events than in

background events. It is required

E∗
miss > 0.38 GeV . (6.6d)

The missing energy distribution in simulated events and in data are shown in Fig-

ure 6.6.
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Figure 6.6: Distribution of the missing energy in the CM frame. The data are rep-
resented by black markers, the various generic Monte Carlo samples are the color
coded solid histograms. The Monte Carlo is scaled to the data luminosity with an
additional factor (0.984) for the difference in tag yield between MC and data. The
signal Monte Carlo (green hashed) is arbitrarily scaled for better visibility. The tag
is required to be in the tag signal region.
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Neutrino correction The difference between the missing momentum and the cor-

rected neutrino momentum, pcorr (6.5), is a good indicator of the validity of the

D+
s → μ+νμ hypothesis. The distribution of pcorr is shown in Figure 6.7. While signal

events peak at 0, background events are centered at a much lower value. The selection

requires:

pcorr = |�p∗miss| − |�p∗ν | > −0.06 GeV/c (6.6e)

The distribution of pcorr in simulated events and in data are shown in Figure 6.7.
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Figure 6.7: Distribution of the variable pcorr. The data are represented by black
markers, the various generic Monte Carlo samples are the color coded solid histograms.
The Monte Carlo is scaled to the data luminosity with an additional factor (0.984)
for the difference in tag yield between MC and data. The signal Monte Carlo (green
hashed) is arbitrarily scaled for better visibility. The tag is required to be in the tag
signal region.
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Neutrino CM polar angle Requiring a minimum polar angle for the neutrino

direction in the CM frame, θ∗ν , rejects events where the missing momentum is due to

lost particles along the beam pipe. Simulation indicates that a similar restriction for

the backward direction is not necessary. The neutrino polar angle in the CM frame

is shown in Figure 6.8. The selection requires

θ∗ν > 0.67 rad (6.6f)

The distribution of neutrino polar angle in simulated events and in data are shown

in Figure 6.8.
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Figure 6.8: Distribution of the neutrino polar angle in the CM frame. The data is
represented by black markers, the various generic Monte Carlo samples are the color
coded solid histograms. The Monte Carlo is scaled to the data luminosity with an
additional factor (0.984) for the difference in tag yield between MC and data. The
signal Monte Carlo (green hashed) is arbitrarily scaled for better visibility. The tag
is required to be in the tag signal region.
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D∗+
s center of mass momentum Signal events exhibit a higher D∗

s momentum

than the majority of background events, presumably because of the leading particle

effect in the fragmentation. The two charm quarks in the fragmentation of cc carry

most of the energy from the initial two-body decay at 10.58 GeV. The selection

requires:

p∗
D∗+

s
> 3.55 GeV/c (6.6g)

The distribution of the CM momentum of the D∗+
s candidates is shown in Figure 6.9.
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Figure 6.9: Distribution of the reconstructed CM momentum of the D∗+
s meson can-

didate. The data are represented by black markers, the various generic Monte Carlo
samples are the color coded solid histograms. The Monte Carlo is scaled to the data
luminosity with an additional factor (0.984) for the difference in tag yield between
MC and data. The signal Monte Carlo (green hashed) is arbitrarily scaled for better
visibility. The tag is required to be in the tag signal region.

Rejection of e± from γ → e+e− This requirement is not intended to improve

the signal selection. Rather it is chosen in foresight of the subtraction of the semilep-

tonic and leptonic τ backgrounds (background categories IIb and II(a)ii), for which

the electron-substituted event reconstruction and selection will be used. The major

difference between electrons and muons is their mass and hence QED behavior. While
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the lighter electrons can be produced in the photon conversion process, γ → e+e−,

muons can not.

The electron-positron pair in this process has a zero opening angle at the photon

decay vertex. The decay itself requires the presence of an electromagnetic field to

conserve energy and momentum, hence the conversion process happens in the detector

material, for instance the beam pipe. An electron candidate is considered the daughter

of a converted photon, and thus rejected, if it satisfies any of the following two criteria:

• The difference between the electron polar angle of the polar angle of any other

charged track that does not belong to the tag, |θe − θtrk|, is less than 20 mrad.

• For each charged-track – electron pair, with the charged track not being part

of the tag, two circles are found, that are the projections of the electron and

the charged-track trajectory onto the xy-plane. The distance of the two circle-

centers, �rtrk and �re, must not lie within 2 mm of the sum of the two radii:

||�rtrk − �re| − |�rtrk| − |�re|| > 2 mm for all charged tracks not part of the tag .

Muons are affected by the photon-conversion veto in the same way non-photon-

conversion electrons are. Since the electron substituded background event sample is

designed to closely resemble the muon backgrounds from semileptonic D and from τ

decays, this photon conversion veto is applied also to the muon candidates.



112 CHAPTER 6. SIGNAL ANALYSIS

6.4 Cut Optimization

The measurement of any particular physical quantity, e.g. a branching ratio, is always

accompanied by a statistical uncertainty, which is due to the finite size of dataset that

the result is drawn from. The central value of the measured quantity divided by the

statistical uncertainty is the statistical significance of the measurement. Ideally the

experimenter seeks to maximize the significance of the signal in an unbiased fashion

by adjusting the cuts using simulation in advance of examining the data. For this

purpose the significance as a function of the cut values on the previously described

variables is studied and a set of optimal cuts is obtained. The statistical significance

of a signal S above a background B is given by

NS

σS+B

=
NS√

σ2
S + σ2

B

, (6.7)

where NS is the simulated estimation of the number of signal events in the data, σS

and σB are the statistical uncertainties of the signal and the background, respectively.

The statistical uncertainty on the signal is σS =
√

NS.

In the calculation of the background uncertainty, σB, the contributions from the

tag sideband and the electron-substituted selection sample have to be included. The

four statistically independent samples, μ-tag-signal, μ-tag-sideband, e-tag-signal, and

e-tag-sideband, will be added, with the respective scaling factors (+1,−2
3
,−1, +2

3
).

The factor 2
3

for the samples μ-tag-sideband and e-tag-sideband is due to the 50 %

larger tag sideband compared to the tag signal region. The background statistical

uncertainty is:

σ2
B = σ2

tag signal + σ2
tag sbnd

= N tag signal
bkgd, μ + N tag signal

bkgd, e + N
tag signal (fake)
signal, μ

+
4

9

(
N tag sbnd

bkgd, μ + N tag sbnd
bkgd, e + N tag sbnd

signal, μ

)
.

(6.8)

Here, N∗
∗ is the Monte-Carlo-predicted, luminosity-scaled, number of events that
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Table 6.1: Selection requirements obtained from the cut optimization. These values
are applied in the signal selection; in the remainder of this thesis only rounded values
are quoted.

Variable Cut Value

cos �(μ,D+
s ) < 0.9036

E∗
miss > 0.3847 GeV

pcorr > -0.0574 GeV/c

θ∗ν > 0.668 rad

p∗
D∗+

s
> 3.5514 GeV/c

satisfy certain selection criteria. The superscripts indicate whether the tag is in

the tag signal or the tag sideband region. The subscripts describe, which type of

Monte Carlo data is used (generic background or signal Monte Carlo), and whether

the reconstructed lepton candidate is required to be a muon or an electron. For

N
tag signal (fake)
signal, μ only fake tags are considered, since events with a true tag and a signal

decay are not background.

With (6.8) and σS =
√

NS, the significance (6.7) is maximized. The cuts on the

following variables are varied in a five-dimensional, simultaneous fit [46]. The angle

�(μ,D+
s ), the missing energy, E∗

miss, the neutrino momentum correction, pcorr, the

neutrino polar angle in the CM frame, θ∗ν , and the D∗+
s candidate CM momentum,

p∗
D∗+

s
. Table 6.1 lists the cut values that maximize the significance of the selection.

The significance as a function of the cut value is shown in Figure 6.10 for each of

the five selection variables, as well as for the photon energy. Figure 6.11 shows the

distributions for each variable, after cuts on all other variables have been applied.
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around 150 MeV would distort the background distribution, making it difficult to
separate signal and background cleanly.
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Figure 6.11: Simulated distributions of the selection variable after the all other cuts
are been applied. The simulated signal is represented by black symbols. The blue
solid histogram are the generic Monte Carlo samples, combined according to (6.8).
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Table 6.2: Event-based signal selection efficiency determined for simulated signal
events. The last column gives the estimated number of events in the data. A real tag
is required in the event.

Selection Efficiency

Selection Cut By Cut Cumulative

[%] [%] [Events]

Tag - 100.00 ± 0.00 4783

μ(1.2 GeV/c) + γ(30 MeV) 41.19 41.19 ± 0.23 1970

Eγ > 115 MeV 95.69 39.41 ± 0.23 1885

QP = −1 99.81 39.34 ± 0.23 1882

cos �(μ,D+
s ) < 0.90 94.48 37.17 ± 0.23 1778

E∗
miss > 0.38 GeV 97.48 36.23 ± 0.23 1733

pcorr > −0.06 GeV/c 72.61 26.31 ± 0.21 1258

θ∗ν > 0.7 rad 82.36 21.67 ± 0.19 1037

p∗
D∗+

s
> 3.55 GeV/c 53.70 11.64 ± 0.15 557

No e from γ → ee 99.54 11.58 ± 0.15 554

True Signal 70.23 8.13 ± 0.13 389

6.5 Determination of the Signal Efficiency

The signal selection efficiency is determined using the signal Monte Carlo event sam-

ple; simulated events e+e− → cc → D∗+
s → γD+

s → γμ+ν, where the recoiling charm

fragments generically. The size of the signal Monte Carlo sample represents about 9.5

times the data luminosity (Table 4.3). The efficiency is studied in events, for which

the tag is correctly reconstructed, as confirmed by its truth-match.

To correct for the different muon selection efficiencies in simulated events and in

data, each event is weighted by the candidate muon MC-to-data PID weight, which is

described in Section 4.3. In addition, each event is weighted by the candidate muon

MC-to-data track weight, to correct for the different track reconstruction efficiencies

in simulated events and in data, (Section 4.4). The selection efficiency in correctly

tagged events, εμν , is

εμν = (8.13 ± 0.13) % . (6.9)
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Table 6.3: Event reduction in the selection process in generic Monte Carlo and in
data. The number of events in the generic background Monte Carlo is scaled to
match the data luminosity. A tag in the tag signal region is required.

cc uds bb ττ DataSelection cut
[Events] [Events] [Events] [Events] [Events]

Tag 686394 204990 129555 4776 1088137

μ(1.2 GeV/c) + γ(30 MeV) 616251 187178 118910 3952 1029421

Eγ > 115 MeV 593553 179951 114029 2406 989439

QP = −1 456583 96233 76916 1947 722808

cos �(μ,D+
s ) < 0.90 418060 72159 73122 1778 658103

E∗
miss > 0.38 GeV 355761 47779 68857 1728 546631

pcorr > −0.06 GeV/c 39906 12765 26510 398 92593

θ∗ν > 0.7 rad 26363 7938 21128 353 63099

p∗
D∗+

s
> 3.55 GeV/c 3004 779 231 184 5756

No e from γ → ee 2964 750 231 183 5704

The marginal efficiencies as the selection progresses are listed in Table 6.2, together

with the number of events, expected in the dataset. In Table 6.3, the reductions of

background events in the different generic Monte Carlo samples, with each cut, are

listed. The table also contains the effect of the selection cuts on data.

For simulated candidate decays that satisfy all selection criteria the ΔM = M(D∗+
s )−

M(D+
s ) is shown in Figure 6.12.
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Figure 6.12: ΔM distributions of candidates satisfying the signal selection require-
ments in simulated events. The existence of a real tag in the event is required. Shown
is signal Monte Carlo (green) on top of generic cc (blue) Monte Carlo. A few events
that feed down from B0B0 and B+B− generic Monte Carlo (light and dark brown)
can be seen.
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6.6 Shape of the Signal ΔM Distribution

The yield of signal events in data is extracted from a χ2 fit to the ΔM = M(μνγ) −
M(μν) distribution. The fitted signal shape is determined from thruth-matched sig-

nal decays in the signal Monte Carlo sample. The events must have a correctly

reconstructed tag and the signal candidate must pass the signal selection cuts.

Three different distribution were considered to model the signal shape, a Gaussian,

a Crystal Ball function, and a double Gaussian distribution. The double Gaussian,

((6.10), distribution is found to describe the simulated signal best (Figure 6.13).

PDFμν signal(x|μ1, σ1, Δμ, σ2, f) =
f√
2πσ2

1

e
− (x−μ1)2

2σ2
1 +

1 − f√
2πσ2

2

e
− (x−(Δμ+μ1))2

2σ2
2 (6.10)

The parameters determined in the fit are

μ1 = 143.2 MeV/c2 , σ1 = 8.7 MeV/c2 , Δμ = −2.1 MeV/c2 ,

σ2 = 23.4 MeV/c2 , f = 0.611 .
(6.11)

Simulated signal events that pass the signal selection and have a truth-matched tag

in the signal recoil, always have the muon candidate matched to the true signal muon.

However, in about 60 % the photon candidate is found not be the true signal photon.

The ΔM distribution of this random photon background, (top plot in Figure 6.14),

is described by the function PDFphoton (6.12), which is a function that is often used

to parameterize M(D∗) − M(D) backgrounds.

PDFphoton(x|ΔM0, a, b, c) =
(
1 − e−

x−ΔM0
c

)( x

ΔM0

)a

+ b
x − ΔM0

ΔM0

(6.12)

The parameters of PDFphoton, determined in a χ2-fit, are

ΔM0 = 24.9 MeV/c2 , a = −0.520 , b = 0.003 , c = 0.053 . (6.13)

The combined signal and photon background is shown in the bottom plot of Fig-

ure 6.14.
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Figure 6.13: The signal ΔM distribution in simulated signal events in the recoil of a
real tag. A double Gaussian distribution, PDFμν signal, is fitted.
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Figure 6.14: The ΔM distribution of the random photon background in simulated
signal events (top plot). An empiric background function, PDFphoton, is fitted. The
bottom plot combines the signal and the random photon background from simulated
signal events.
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6.7 Background Estimation

With the identification of a charm particle in the event, the tag, a significant part

of the background rejection is already accomplished. This section explains the de-

tails of how the remaining backgrounds are treated in the analysis. The background

classification was already introduced in Section 4.2, in this section each background

category is described in detail. Table 6.4 gives a summary of the signal candidates

expected, from simulation, to remain in the different background categories, after the

signal selection cuts have been applied. Figure 6.15 shows the ΔM distribution for

these background categories.

Table 6.4: Signal candidates in generic Monte Carlo samples, that pass the selection
criteria, listed by background category. Only candidates are counted with ΔM <
0.35 GeV/c2; the tag is required to lie in the tag signal region. The yield is scaled to
the luminosity. Thus, the numbers reflect the background to be expected in data,
before the tag sidebands are subtracted. Categories II(a)i through IIc sum up to
58.2 %

Background Category # cands %

I Fake charm tag 1602 41.8

II Correct charm tag 2234 58.2∑
3835 100.0

II(a)i Leptonic μ 782 20.4

II(a)ii Leptonic τ 244 6.4

IIb Semileptonic 763 19.9

IIc Combinatoric 444 11.6
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Figure 6.15: Combined ΔM distribution for the different background categories,
scaled to data luminosity. The tag is required to lie in the tag signal region. From
the top to the bottom the backgrounds are: • uds, B0B0, B+B−, and τ+τ− events
(Cat. I), • cc events with a fake tag (Cat. I), • correctly tagged events with com-
binatoric signal background (Cat. IIc), • correctly tagged events with D → Xμ+νμ

signal background (Cat. IIb), • correctly tagged events with τ+ → μ+νμν̄τ signal
background (Cat. II(a)ii), and • correctly tagged events with D∗

(s) → D+
(s) → μ+νμ

signal background (Cat. II(a)i).
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6.7.1 Category I: Fake Charm Tag

Events e+e− → qq, q = u, d, s, and e+e− → τ+τ− cannot contain a charm meson and

therefore belong to this background category. Signal candidates from B0B0 and B+B−

events are also considered part of this category, although about 20 % of the charm

tags reconstructed in BB decays in these events are correctly reconstructed tags.

Fake tag candidates can also be produced in cc events. Figure 6.16 shows the ΔM

distributions of signal candidates in tagged events, which are of this background type.

The tag sidebands are used to evaluate the shape and the size of this background.

The validity of this method is demonstrated using generic Monte Carlo events.

Table 6.5 gives the account of the number of tags in the tag signal and sideband

regions before any signal selection cuts were applied. The signal selection is assumed

to be independent of the tag mass, therefore the tag signal to sideband ratio should

not change with the application of the selection requirements.

Table 6.5: Tag yield peak to sideband ratio in Monte Carlo.

Peak Sideband Peak/Sideband
MC Sample

[Events] [Events] Ratio

uds 204990 205245 0.999 ± 0.004

ττ 4775 4863 0.982 ± 0.028

bb 129555 108808 1.191 ± 0.006

cc (fake tag) 253635 242668 1.045 ± 0.004

For uds and τ+τ− events the tag signal-to-sideband ratio is consistent with 1. For

generic B0B0 and B+B− decays the tag signal region yields 20 % more tags than the

sidebands. This is due to the tag momentum requirement, which does not entirely

eliminate real D-mesons. However, the BB background is small (IBB in Figure 6.16).

After the tag sidebands and the electron-substituted signal candidates are subtracted,

about 3 BB events are expected under the ΔM signal peak. They will be part of the

background fit.

For generic cc Monte Carlo the number of fake tags in the tag signal region is

determined by counting only tags that are not truth matched. For some tag modes
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Figure 6.16: ΔM distribution of signal candidates in simulated uds, BB̄, τ+τ−, and
fake-tag cc events, scaled to the data luminosity. The tag lies in the tag signal region.
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the truth matching algorithm does not work all the time. The mode D∗+ → D0π+

(Figure 5.10) is an example, where the association between true and reconstructed

particle, in this case the slow pion, is not always made. For some modes another decay

exists that has the same set of final particles. For instance the decay D0 → K−π+π0

(Figure 5.8) can proceed through a K∗ resonance. The final state of the decay D+
s →

φρ+ can also be reached in a non-resonant D+
s → φπ+π0 decay (Figure 5.9). In both

cases the truth matching algorithm is inefficient in recognizing these tag candidates

as real tags. This inefficiency leads to an ostensive 4 % higher fake tag yield in the

tag signal than in the tag sideband region. Since this excess is caused by a not truth-

matched real tags, the discrepancy has however no ramifications for the final result.

This study conclusively shows that the tag sidebands can be used to estimate the

background from fake tag events.

The remaining backgrounds are from events that do have a real tag reconstructed,

and which are therefore not removed by the tag sideband subtraction. Those are

discussed in the following.

6.7.2 Categories II(a)ii and IIb: Leptonic τ and Semileptonic

Charm Decays

Witin the Standard Model lepton universality is well established. The electroweak

coupling strength of a lepton to the W± (1.7b) and to the Z0 (1.7c) is the same for all

three families. Lepton universality has been confirmed to a high degree of precision,

for instance by measurements of leptonic τ decays [47]. Differences in decay rates are

due only to the different masses of the electron, the muon, and the τ -meson, which

influences the decay rate:

• Helicity suppression: In the purely leptonic decay of pseudoscalar mesons (Sec-

tion 2.1), the leptons are produced in an unfavoured helicity state. The prob-

ability of a spin flip goes like m2 which enhances the rates of decays to the

heavier leptons (μ and τ -lepton) over that to an electron.
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Table 6.6: Differences in the muonic and electronic decay rates.

Leptonic Decay e/μ Ratio Cause

D+
s → μ+νμ D+

s → e+νe 2.3 × 10−5 helicity suppression

D0 → K−μ+νμ D0 → K−eνe 1.03 phase space

τ+ → μ+νμν̄τ τ+ → eνeν̄τ 1.028 phase space

• Phase space: In decays where the phase space available for the produced lepton

is close to the lepton mass, the decay rate is suppressed compared to the same

decay but with a lighter final-state lepton.

It is fortunate that the decay D+
s → eνe is heavily suppressed, compared to the

signal decay D+
s → μ+νμ, while semileptonic charm and τ+ → l+νlν̄τ decays appear

at a nearly equal rate in the muon and the electron channel, Table 6.6.

For this reason, lepton universality is used in this analysis to determine the size

and shape of background from events in which charm mesons or baryons, (Xc), decay

semileptonically, Xc → Xμνμ, or letonically, Xc → τντ → μν̄μντ . This is accom-

plished by repeating the event reconstruction and signal selection, with an electron

requirement replacing the muon requirement, while retaining the requirement of a

tag, lying in the tag signal region. The reconstruction of the signal proceeds as in the

case of the muon, as described in Section 6.1. The only change is the replacement

of the muon mass mμ in (6.3) with the electron mass, for the neutrino-momentum

fitting procedure. The signal-selection criteria, introduced in Section 6.3, are ap-

plied. Table 6.7 gives a summary of the electron-signal candidates remaining after

the signal selection is applied. Since the electron signal is intended to describe the

background in events with a real tag, the tag sidebands are subtracted. The resulting

sideband-subtracted electron-signal event sample is then used to describe and subtract

the backgrounds of category II(a)ii and IIb. In addition there is a small combinatoric

background of approximately 10 events, after the tag sideband subtraction. Those

events are randomly distributed between ΔM = 50 and 350 MeV. The combinatoric

background fit accounts for that source.
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Table 6.7: Electron-signal candidates in generic Monte Carlo samples, that pass the
selection criteria, listed by background category. Only candidates are counted with
ΔM < 0.35 GeV/c2; the tag is required to lie in the tag signal region. The yield is
scaled to the luminosity. Thus, the numbers reflect the background to be expected
in data, before the tag sidebands are subtracted. Categories II(a)i through IIc sum
up to 57.2 %

Background Category # cands %

I Fake charm tag 477 42.8

II Correct charm tag 639 57.2∑
1116 100.0

II(a)i Leptonic μ 0 0.0

II(a)ii Leptonic τ 153 13.8

IIb Semileptonic 465 41.6

IIc Combinatoric 20 1.8

The detailed requirements on the electron candidate are as follows: The candidate

has to originate near the IP; the distance between the IP and the point of closest

approach of the candidate track to the IP has to be less than 1.5 cm in the xy-plane

and less than 10 cm along the z-direction. The electron candidate has to satisfy a

likelihood based electron PID-selector. The PID-selector decision is based on:

• the energy deposited in the EMC, in units of the track momemtum, Edep/p,

• the lateral moment of the electromagnetic shower in the EMC, MLAT (5.1),

• the azimuthal angular difference between the point where the track enters the

EMC and the reconstructed shower center,

• the Cherenkov angle θC , measured by the DIRC, and

• the specific energy loss, dE/dx, in the DCH.

Two additional requirements are applied, 0.5 < Edep/p < 1.5, and Ncry > 4, where

Ncry is the number of EMC crystals that are part of the EMC shower cluster. Using

these electron candidates, the signal selection is performed.
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The differences between electrons and muons comes from their different detection

efficiencies, and the greater susceptibility of electrons to radiative QED processes.

Crucial to the success of this background estimation method are two requirements:

• The muon and electron detection efficiencies in the data must be precisely

known, and corrected for. Technically, this is achieved by using the electron-

to-muon PID weights (Section 4.3), which are calculated from control samples

derived from data.

• Before the application of the 1.2 GeV/c CM momentum requirement, the energy

loss of electrons through Bremsstrahlung e → γe must be recovered to obtain a

good agreement between the electron and muon momentum distributions. This

is achieved by adding the energy of identified bremsstrahlung photons to the

energy of the electron candidate.

The validity of both methods is tested using the generic cc Monte Carlo event

sample, with a true identified semileptonic charm decay in the recoil of a tag. The

validity of both methods is again verified in data, using the control sample D∗0 →
γD0 → γK−l+ν.

Electron-to-Muon Efficiency Correction Study

The muon and electron efficiencies have been measured in simulated events and in

data using dedicated control samples. The electron-to-muon PID efficiency weights

are calculated as the efficiency ratio, (Section 4.3).

Simulated generic cc events are used to study the electron-to-muon detection effi-

ciency correction. Only events in which a muon or an electron candidate with a CM

momentum above 1.2 GeV/c is reconstructed are considered. By matching the lepton

candidate to its true identity, its origin in a semileptonic charm decay is verified. A

real tag is required in the event.

The electron-to-muon PID weight (Section 4.3) is applied to the electron candi-

dates. The momentum spectrum before and after the PID correction is shown in

Figure 6.17.
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Figure 6.17: Comparison of the muon and electron momentum spectra in semileptonic
charm decays, without and with PID efficiency correction. The detection efficiency for
electrons at BABAR is higher than for muons (left plot). After the application of the
electron-to-muon PID weight, the momentum spectra agree well. The bremsstrahlung
recovery for electrons has been applied in both plots.

Bremsstrahlung Loss Recovery for Electrons

Unlike muons, electrons and positrons radiate a non-negligible fraction of their energy

through the process e± → e±γ, (right plot in Figure 6.18). To conserve energy and

momentum this process requires an external electromagnetic field, provided either

by the nucleii of the traversed matter or by the magnetic bending field. In the

first case the process is called bremsstrahlung, in the second synchrotron radiation.

Electrons of 1 GeV in the BABAR magnetic field of 1.5 T lose about 5 MeV energy

due to synchrotron radiation, while traversing the DCH; this energy loss scales with

E2/GeV2.

Dominant is the energy loss through bremsstrahlung, which happens in the ma-

terial of the SVT and in the beam pipe, and hence before the electron momen-

tum is measured by the DCH. Therefore, prior to applying the minimum CM mo-

mentum requirement on the electron candidates in the electron-signal selection, the

bremsstrahlung energy loss must be recovered.

Electrons emit bremsstrahlung photons at a small angle along their direction of

flight, (left plot in Figure 6.18). Identifying those photons and adding their energy
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Figure 6.18: Properties of bremsstrahlung photons. On the left the angle α between
muons/electrons and nearest photon is shown. The muon sample is scaled to match in
size the electron sample (above 5 ◦). The bremsstrahlung photons at low α are evident.
On the right the energy distribution for real bremsstrahlung photons (identified by
truth-matching) is drawn.

to that of the electron candidate regains most of the lost energy.

For each electron candidate we define a window in the polar and azimuthal angle,

θ and φ, around the electron flight direction (θe, φe) at the IP. All photon candidates,

as defined in Section 5.3, falling within this window are considered bremsstrahlung

photons; their four momentum is added to that of the electron. The window is defined

by

Δθ = θγ − θe± ∈ [−30, 40] mrad (6.14)

Δφe± = φγ − φe± ∈

⎧⎨⎩[−50, X] mrad for electrons,

[X, 50] mrad for positrons,
, (6.15)

where X = φintersect − φe± is the azimuthal angular difference between the e±-track

intersection with the EMC and its direction at the IP. Figure 6.19 shows the Δθ and

Δφe± distribution for real bremsstrahlung photons.

The effect of the recovery of the bremsstrahlung losses is shown in Figure 6.20.

It demonstrates convincingly that with the application of both, the electron-to-muon
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Figure 6.19: Angular difference between the direction of real bremsstrahlung photons
and the parent electron direction at the IP.
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Figure 6.20: Comparison of the muon and electron momentum spectra in semileptonic
charm decays, without (left) and with (right) the recovery of bremsstrahlung energy
losses. After the bremsstrahlung loss recovery, the momentum spectra agree well.
The PID efficiency correction for electrons has been applied in both plots. (On
the left, below 1.2 GeV/c, the distribution consists only of electron candidates that
have a momentum higher than 1.2 GeV/c after applying the bremsstrahlung recovery
procedure. Other electron candidates are not stored in the reduced dataset that is
used for the analysis.)

PID efficiency correction and the bremsstrahlung energy loss recovery, the differences

between electrons and muons can be corrected for, and the tag-sideband-subtracted

events that pass the electron-signal selection can be used to properly describe the

signal backgrounds of the Categories II(a)ii and IIb.

6.7.3 Category II(a)i: Leptonic Charm Decays into a Muon

The remaining two background categories – real tag events with the signal side being

either a charm state decaying leptonically, X+
c → μ+νμ (Category II(a)i), or a random

photon–charged-hadron pair faking a signal (Category IIc). Since no suitable event

samples, that could be used to estimate these two backgrounds, were identified in

data, both backgrounds need to be evaluated from Monte Carlo simulated generic cc

events. The background Category IIc is described in the next section.

The background Category II(a)i, purely leptonic decays of charm mesons or baryons
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into a muon-neutrino pair, consists of about 95 % of events with the decays D∗+
(s) →

π0D+
(s) → μνμ or D+

(s) → μνμ in the recoil of a real tag. The remaining events contain

decays of the higher-excitation charm meson states, D1(2420)0 and D∗
2(2460)0. The

ΔM distribution of these background events exhibits two distinct components. The

first component is from decays D∗+
(s) → π0D+

(s) → π0μ+νμ, where the reconstructed

signal photon comes from the slow π0 of the D∗+
(s) decay. That component is limited

to ΔM values between 40 and 100 MeV, (top plot in Figure 6.21). In addition to

simulated generic cc events, two dedicated Monte Carlo samples are used to study

this component. One sample contains events e+e− → cc → D∗+
s → π0D+

s → π0μ+νμ

and represents about 7.0 times the dataset. The other contains events e+e− → cc →
D∗+ → π0D+ → μ+νμ and is 4.3 times larger than the dataset. In both samples

the other charm quark fragments and decays generically. This component is best

described by a double-Gaussian, (6.16), which satisfactorily accomodates the lower

and upper edge of the distribution.

PDFγ from π0(ΔM |μ1, σ1, Δμ, σ2, f) =
f√
2πσ1

e
− 1

2
(ΔM−μ1)2

2σ2
1 +

1 − f√
2πσ2

e
− 1

2

(ΔM−(Δμ+μ1))2

2σ2
2

(6.16)

The parameters of PDFγ from π0 , determined by the fit, are

μ1 = 74.9 MeV/c2 , σ1 = 13.2 MeV/c2 , Δμ = −20.9 MeV/c2 , and σ2 = 6.1 MeV/c2 .

(6.17)

If the photon is selected from any other source, the distribution of ΔM does not

exhibit any striking feature, (bottom plot in Figure 6.21). The function PDFrandom γ

(6.18), the same function that is used for the random photon background in simulated

signal events (6.12), is used to describe this background.

PDFrandom γ(ΔM |ΔM0, a, b, c) =
(
1 − e−

ΔM−ΔM0
c

)( ΔM

ΔM0

)a

+b
ΔM − ΔM0

ΔM0

(6.18)

The parameters of PDFrandom γ, determined by the fit, are

ΔM0 = 24.2 MeV/c2 , a = −0.724 , b = −0.002 , and c = 1.426 .
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Figure 6.21: Distribution of ΔM of the two components of background Category
II(a)i. The top plot shows candidates in which the selected signal photon is a daughter
of the π0 from the D∗+

(s) → π0D+
(s) decay; it is derived from two dedicated Monte Carlo

samples: cc → D∗+
(s) → π0D+

(s) → μ+νμ. The bottom plot shows the remaining

background, where a reconstructed D+
(s) → μ+νμ decay is paired with a random

photon, (excluding those in the upper plot). It is derived from the generic cc Monte
Carlo sample.
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6.7.4 Category IIc: Combinatoric Background

This background category includes all events which contain a real tag, and where the

signal muon candidate is a misidentified charged pion, charged kaon, or proton. It

also includes events where muons from in-flight decays of charged kaons and pions,

π+/K+ → μ+νμ, fake a signal. In studies of generic cc Monte Carlo events about

12 % of background signal candidates with ΔM < 350 MeV/c2 are found to belong to

this category.

The ΔM distribution of signal candidates consists of two components. The first

component are decays D∗+
s → γD+

s → τ+ντ , with a subsequent τ -decay, τ+ →
ν̄τπ

+(π0), in which the π+ is misidentified as muon. These events have been stud-

ied using a small Monte Carlo sample of cc events in which one charm quark frag-

ments into a D∗+
s meson, which decays like D∗+

s → γD+
s → τ+ντ , and the τ decays

generically. The other charm quark fragments generically. This Monte Carlo sample

represents only 25 % of the dataset, the limited sample size is countered by dropping

the muon identification requirement. The events passing the selection are weighted

by the rate at which pions are misidentified as muons, (Section 4.3.2). The ΔM

distribution of this background is described by a Gaussian, (6.19), shown in the top

plot of Figure 6.22.

PDFfake π from τ (ΔM |μ, σ) =
1√
2πσ

e
(μ−ΔM)2

2σ2 (6.19)

The paramaters of PDFfake π from τ , determined by a χ2-fit, are

μ = 133.3 MeV/c2 and σ = 6.5 MeV/c2 . (6.20)

The other event candidates that contribute to this background exhibit no peaking

feature in the distribution of ΔM and are described by (6.21), shown in the bottom

plot of Figure 6.22. These events are studied using the generic cc Monte Carlo simu-

lated event sample. This background parameterization is already used to describe the

random photon backgrounds in simulated signal events (6.12) and in purely muonic
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Figure 6.22: Distribution of ΔM of the two components of background Category
IIc. The top plot shows candidates from the decays D∗+

s → γD+
s → τ+ντ , with a

subsequent τ -decay τ+ → ν̄τπ
+(π0), in which the π+ is misidentified as muon. It is

determined in simulated cc events in which this mode recoils against a charm tag.
The muon requirement is not applied, the events are weighted by the measured rate
with which pions are misidentified as muons. The bottom plot contains the remaining
background, correctly tagged events in which the signal muon is a misidentified π±

or K±. The events are selected in the generic cc Monte Carlo sample.
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charm decays (6.18).

PDFfake π/K/p(ΔM |ΔM0, a, b, c) =

{(
1 − e−

ΔM−ΔM0
c

)( ΔM

ΔM0

)a

+ b
ΔM − ΔM0

ΔM0

}
(6.21)

The parameters of PDFfake π/K/p, determined by the fit, are

ΔM0 = 28.9 MeV/c2 , a = −0.642 , b = −0.010 , and c = 0.046 . (6.22)

6.7.5 Combined Background PDF

After the tag sideband and the electron-signal candidates are subtracted, different

backgrounds remain. In the previous two sections the ΔM parameterizations of

these different background contribution were introduced. Twice the same background

parameterization was used to describe a random background, (6.18) and (6.21). The

same function also describes the ΔM distribution of the random photon background

in signal Monte Carlo events, given by (6.12). It is appropriate to combine all three

backgrounds described by this same function into one, and describe their distribution

by PDFcomb (6.23).

PDFcomb(ΔM |ΔM0, a, b, c) =
(
1 − e−

ΔM−ΔM0
c

)( ΔM

ΔM0

)a

+ b
ΔM − ΔM0

ΔM0

(6.23)

The parameters of PDFcomb, determined by a χ2 fit (top plot of Figure 6.23), are

ΔM0 = 26.2 MeV/c2 a = −0.417 b = −0.008 c = 0.047 . (6.24)

The entire background in Categories II(a)i and IIc, (bottom plot of Figure 6.23), is

described by

PDFtotal Bkgd = f1PDFγ from π0 + f2PDFfake π from τ + f3PDFcomb , (6.25)

where PDFγ from π0 and PDFfake π from τ are given in (6.16) and (6.19), respectively.
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The parameters f1, f2 and f3 are determined from the size of the three contribu-

tions, as shown in Figure 6.21 (top), Figure 6.22 (top), and Figure 6.23 (bottom).

They are:

f1 = 0.837 , f2 = 0.105 , and f3 = 59.6 . (6.26)

The fi do not add up to one, since the function PDFcomb is not normalized,� 0.35

0
PDFcomb(ΔM) dΔM �= 1.
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Figure 6.23: ΔM background distribution. The top plot shows the combination of
all backgrounds that are described by the same function, as it is shown in Figure 6.14
(top), Figure 6.21 (bottom), and Figure 6.22 (bottom). The χ2-fit of PDFcomb is
applied. The bottom plot shows the combination of all backgrounds of Category II(a)i
and Category IIc.
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6.8 Monte Carlo – Data Comparison

One cannot expect the Monte Carlo and data tagging efficiency to agree very well for

several reasons. As stated earlier, no PID correction on the particles that make up

the tag has been applied. Inclusive charm production and decay is not completely

understood and hence not accurately modeled in our Monte Carlo events. However,

for this analysis the tagging efficiency does not need to be known very precisely; by

taking the ratio of tagged cc → D∗+
s → γD+

s → γμν to tagged cc → D∗+
s → γD+

s →
γφπ event yields, the tagging efficiency cancels in first order.

It is however of importance to understand the manner with which the simulation

of the signal impacts the analysis. For this reason the data control sample D∗0 →
γD0 → γK−π+ is selected and studied. A second control sample is used to validate

the electron-to-muon detection efficiency correction in data. This control sample

consists of identified data events D∗+ → π+D0 → π+K−l+νl, where the symbol l

stands for electrons and muons. Both control samples are selected in the recoil of a

real tag, which implies the application of the tag-sideband subtraction.

6.8.1 Control Sample D∗0 → γD0 → γK−π+

Decays of the type D∗0 → γD0 → γK−π+ are used to study how well the variables

that are used in the signal selection are modeled in the simulation, exploiting the

kinematic similarity of the decays D0 → K−π+ and D+
s → μ+νμ. In this study the

reconstruction of the neutrino momentum from the missing momentum is of particular

interest. Since the reconstruction of the missing momentum involves the entire event,

the study tests the simulation of the charm fragmentation process on the tagging

and the signal side, as well as testing the simulation of the particle reconstruction

efficiency and the detector acceptance. Since the decay widths of the D0 and the D+
s

are small compared to the detector resolution, the conclusions of the Monte Carlo –

data comparisons of the control sample are valid for the signal decay D+
s → μ+νμ.

The study would also reveal any large differences between the signal ΔM distribution

in simulated events and in data.

In the sample of charm tagged events the decay chain D∗0 → γD0 → γK−π+ in



142 CHAPTER 6. SIGNAL ANALYSIS

)
2

 (GeV/c0-D*0D MΔ
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

2
E

nt
ri

es
/0

.0
03

G
eV

/c

0

500

1000

1500

2000

2500

3000

3500

)
2

 (GeV/c0-D*0D MΔ
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

2
E

nt
ri

es
/0

.0
03

G
eV

/c

0

500

1000

1500

2000

2500

3000

3500

Figure 6.24: Selection of D∗0 → γD0 → γK−π+ in generic cc Monte Carlo events
(left) and in data (right). Candidates within 3σ of the peak are selected for the
control sample. Sidebands are defined between 4σ and 7σ on both sides of the peak.

the recoil of a tag is reconstructed. For the decay D0 → K−π+, the almost identical

selection criteria as for the selection of the tag mode D0 → K−π+ (Section 5.3) are

used. The exception is the requirement on the D0 momentum, which is replaced by

a requirement of a minimum kaon momentum of 1.2 GeV/c in the CM frame. This

cut resembles the signal selection more closely, where a requirement on the muon

momentum, (p∗μ > 1.2 GeV/c), but none on the D+
s -momentum, is made.

In events with a reconstructed decay D0 → K−π+, that D0 is not considered a tag

candidate, but a candidate for the control sample; at least one other tag candidate

must be present in the event. That depletes the tag samples of the tag mode D0 →
K−π+, however, because of the independence of the tag from its recoil, this is a

second order effect.

Candidate D0 with a mass within 3 standard deviations of the esimated mean

for the D0 mass in reconstructed D0 → K−π+ decays are selected, (Table 5.3). The

selection of photon candidates is described in Section 5.3. Photon candidates with

a CM energy of more than 100 MeV are added to the D0 candidates to form D∗0

candidates. No mass constraint fit is applied on the D0. Figure 6.24 shows the D∗0–

D0 mass difference, ΔMD∗0−D0 . The estimators for mean and width of the ΔMD∗0−D0

signal peak, determined by a χ2 fit of a Gaussian distribution, are listed in Table 6.8.
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Table 6.8: Estimated yield, mean, and width of the D∗0–D0 mass difference in decays
D∗0 → γD0 → γK−π+, determined in generic Monte Carlo events and in data.

Monte Carlo Events Data

N 10224 ± 113 8916 ± 144

Mean μ (142.3 ± 0.1) MeV/c2 (143.1 ± 0.1) MeV/c2

Standard Deviations σ (4.9 ± 0.1) MeV/c2 (5.5 ± 0.1) MeV/c2

A requirement |ΔMD∗0−D0 − μ| < 3 σ is made. This defines the events that comprise

the control sample. Additionally, ΔMD∗0−D0 sidebands are defined between 4 and

7 σ on either side of μ. These sidebands are used to describe the events that are

background to the control sample.

The nominal muon mass is then assigned to the charged kaon candidate, while the

charged pion is removed from the event. With the kaon assigned the muon identity

and mass, the signal reconstruction is performed.

Figure 6.25 shows the distributions of the variables which are used in the signal

selection, E∗
γ , cos(μ,D+

s ), E∗
miss, pcorr, θ∗ν , and p∗D∗

s
, as they are found in the control

sample in generic Monte Carlo and in data. The ΔMD∗0−D0 sidebands are subtracted

in these distributions to remove events that are background to the control sample.

These distributions are used later to estimate the systematic uncertainty in the signal

selection efficiency.

The signal selection requirements are applied to the control sample events, recon-

structed as a D+
s → μ+νμ signal candidate. The signal ΔM distributions in simulation

and data are compared at each selection step. No subtraction of ΔMD∗0−D0-sideband

sample is applied, since the ΔM and MD∗0−D0 are highly correlated, and the ΔM

distribution of MD∗0−D0-sideband sample does not describe the ΔM distribution of

the control sample background at all. The following PDFCS1 is fitted to the ΔM
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Figure 6.25: Distribution of the signal selection variables in the control sample D∗0 →
γD0 → γK−π+. The solid histograms are generic Monte Carlo events, scaled to the
data luminosity. The black markers are data, scaled to match the simulated events
in area. The events in the ΔMD∗0−D0 sidebands are subtracted.
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distribution:

PDFCS1(ΔM |μ, σ, ΔM0, a, b, c, fbkgd) =

1 − fbkgd√
2πσ

e−
(ΔM−ΔM0)2

σ2 + fbkgd

((
1 − e−

x−ΔM0
c

)( x

ΔM0

)a

+ b
x − ΔM0

ΔM0

)
(6.27)

Table 6.9 and Table 6.10 show the development of the χ2 fitted estimators for the

mean and the width in Monte Carlo and data, as the selection progresses. Data shows

a consistently higher mean (about 1.0 %) and width (about 2.5 %) than simulation.

These values do not change as the selection progresses, until the last selection re-

quirement is applied. With the application of the last requirement, p∗
D∗+

s
> 3.55 GeV/c,

the mean is lowered by 2 MeV/c2 in both, simulated events and data. The width de-

creases by 2 MeV/c2 in simulated events and by 1 MeV/c2 in data. The discrepancy in

width between Monte Carlo and data is 8 %. This artificial mismatch has its origin

in the control sample selection requirements. Since events in the control sample are

required to have a ΔMD∗0−D0 consistent with a D∗0 → γD0 decay, the reconstructed

ΔM distribution is artificially enhanced in the region around 145 MeV/c2. With the

very selective requirement p∗
D∗+

s
> 3.55 GeV/c, that background enhancement becomes

even more pronounced. With the control sample background levels in Monte Carlo

and in data being very different, the width of the ΔM peak is very different, the

higher background level in data causing the wider ΔM distribution. The top plot

of Figure 6.26 shows the fit to the ΔM distributions in Monte Carlo and in data,

after all selection criteria but the last are applied. The bottom plot shows the fit on

ΔM after all selection criteria are applied. With the control sample selection process

being the origin of the sudden change in the mean and width of the ΔM peak, that

effect is considered an artifact of the control sample selection. The estimated mean

and width of the ΔM peak before the application of the cut p∗
D∗+

s
> 3.55 GeV/c are

considered relevant. These values, obtained in simulation and data, will be used in

later studies of the systematic uncertainty related to the simulated shape of the signal

ΔM distribution.
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Table 6.9: The ΔM signal mean μ with progressing selection in the D0 → K−π+

control sample.

Fitted Mean μ [MeV/c2]
Selection Cut

Monte Carlo Data Ratio Data/MC

Eγ < 115.0 MeV 147.9 ± 0.2 149.1 ± 0.2 1.008 ± 0.002

cos(μ,D+
s ) > 0.90 147.6 ± 0.2 148.9 ± 0.3 1.009 ± 0.002

E∗
miss > 0.38 GeV 147.5 ± 0.2 148.8 ± 0.3 1.008 ± 0.002

pcorr > −0.06 GeV/c 147.5 ± 0.3 149.4 ± 0.4 1.013 ± 0.003

θ∗ν > 0.67 147.5 ± 0.3 149.5 ± 0.4 1.013 ± 0.003

p∗
D∗+

s
> 3.55 GeV/c 145.8 ± 0.4 147.0 ± 0.5 1.009 ± 0.004

Table 6.10: The ΔM signal width σ with progressing selection in the D0 → K−π+

control sample.

Fitted Width σ [MeV/c2]
Selection Cut

Monte Carlo Data Ratio Data/MC

Eγ < 115.0 MeV 20.5 ± 0.2 20.8 ± 0.3 1.015 ± 0.018

cos(μ,D+
s ) > 0.90 21.0 ± 0.3 21.6 ± 0.3 1.027 ± 0.019

E∗
miss > 0.38 GeV 21.2 ± 0.3 21.9 ± 0.3 1.033 ± 0.019

pcorr > −0.06 GeV/c 19.1 ± 0.4 19.5 ± 0.4 1.023 ± 0.028

θ∗ν > 0.67 18.7 ± 0.4 19.0 ± 0.4 1.016 ± 0.029

p∗
D∗+

s
> 3.55 GeV/c 16.8 ± 0.4 18.2 ± 0.5 1.082 ± 0.038
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Figure 6.26: χ2-fit of PDFCS1 to the reconstructed signal ΔM distribution in the
control sample D∗0 → γD0 → γK−π+ in simulated generic events (left) and in
data (right). In the top plot all selection criteria but the last, (p∗

D∗+
s

> 3.55 GeV/c),

are applied, in the bottom all selection criteria are applied. The mean and width,
estimated from the fit, are listed in Table 6.9 and Table 6.10. The sudden change in
mean and width from the top to the bottom plot is an artifact of the control sample
selection requirements.
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The study of this control sample shows that the variables used in the signal selec-

tion are well described by the BABAR simulation. The Monte Carlo simulation of the

signal decays can be trusted to predict the shape of the ΔM distribution correctly.

The differences in the estimated mean and width that are found by this study are

used to determine the systematic uncertainty arising from a wrongly modeled signal

distribution.

6.8.2 Control Sample D∗+ → π+D0 → π+K−l+νl with l = μ,

e

This control sample is designed to validate the electron-to-muon detection efficiency

correction method on data, and hence to ensure the correctness of the subtraction of

the background from semileptonic charm decays and from decays τ+ → μ+νμν̄τ .

The selection of the control sample proceeds as follows. In the charm tag sample

the decay D∗+ → π+D0 → K−l+ν with l = μ, e is reconstructed in the recoil of a

charm tag. On the signal side, the kaon and the soft pion candidates are selected

with the same requirements used for particles in the tag reconstruction, (Section 5.3).

The muon candidate has to satisfy the same requirements as for the reconstruction

of the signal, (Section 6.1). The electron candidate must fullfill the electron require-

ments that are mandated for the electron that replaces the muon in the semileptonic-

background-subtraction sample, (Section 6.7.2). Bremsstrahlung recovery is applied

to the electrons.

Kaon-muon and kaon-electron pairs of zero total charge are formed in the CM

frame. The angle between the kaon and the lepton flight direction in the CM frame

must be between 0.35 and 1.5 rad. The missing momentum, �pmiss, whose definition

is described in Section 6.2, is used to define the missing four-momentum, p̆0
miss =

(|�pmiss|, �pmiss), assuming zero missing mass. Boosted into the CM frame, the missing

momentum has to be above 1 GeV/c. The missing CM four-momentum is added to

the kaon-lepton pair to form D0 candidates. The invariant mass M(Klν) is required

to be between 1.8 GeV/c2 and 2.1 GeV/c2. The distributions of the reconstructed D0

mass and of the angle between the kaon and the muon is shown in Figure 6.27.
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A slow pion of opposite charge to the kaon and a CM momentum less than

450 MeV/c is added to form a D∗+. The reconstructed D∗+–D0 mass difference,

ΔMD∗+−D0 , is shown in Figure 6.28. Candidates that fullfill the requirement ΔMD∗+−D0 <

0.155 GeV/c2 define the control sample.
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Figure 6.27: Distribution of the reconstructed D0 mass (left) and the angle between
the muon and the kaon (right) for true decays D∗+ → π+D0 → π+K−μ+νμ.

Simulated events of generic cc, B0B0, B+B−, and uds decays are used to verify the

purity of the control sample – the percentage of D∗+ → π+D0 → π+K−l+νl decays

among the selected candidates. – The simulation predicts a purity of the control sam-

ple of 87.7 % in the muon mode and of 88.2 % in the electron mode, (Table 6.11). Most

of remaining candidates in the control sample are other semileptonic charm decays,

mostly decays D0 → K−l+νl paired with a random slow π+. However, those decays

are equally valid to test the electron-to-muon PID efficiency correction. Therefore,

the semileptonic purity – the percentage of semileptonic charm decays among the

selected candidates – is defined. The semileptonic purity is found to be 96.5 % in the

muon mode and of 98.4 % in the electron mode.

The control sample is selected from data. The data-electron-to-muon PID weights,

as determined from the PID control samples in data, (Section 4.3), are applied to each

candidate decay D∗+ → π+D0 → π+K−e+νe. The control sample is split into four

distinct sets. The tagged-muon-control set contains control sample events with the

tag being in the tag signal region and the control sample lepton being identified as
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Table 6.11: Purity of the control sample D∗+ → π+D0 → π+K−l+νl, determined in
simulated generic cc, B0B0, B+B−, and uds decays.

Decay Muon Electron

D∗+ → π+D0 → π+K−l+νl 87.7 % 88.2 %

Other semileptonic charm decays 8.8 % 10.2 %

Other decays 3.5 % 1.6 %
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Figure 6.28: Distribution of ΔMD∗+−D0 for D∗+ → π+D0 → π+K−μ+νμ (left) and
D∗+ → π+D0 → π+K−e+νe (right), found in generic Monte Carlo in the recoil of a
real tag.
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a muon. In a similar manner the sets tagged-electron-control, tag-sideband-muon-

control, and tag-sideband-electron-control are defined, each depending on the tag and

the identity of signal lepton. The ΔMD∗+−D0 distribution for all four sets is plotted in

Figure 6.29. The tag-sideband sets are then subtracted from the tagged sets for both,

muons and electrons; the resulting ΔMD∗+−D0 distributions are shown in Figure 6.30.

A phase space correction factor of 0.971 is applied to the electron distribution. Be-

cause of lepton universality the muon and the electron ΔMD∗+−D0 distribution should

be equal in shape and size. To compare the two, they are subtracted from each

other, (Figure 6.31), and a good agreement between them is found. The difference is∑
0.14<ΔM<0.152 = 65 ± 75, consistent with 0.

The study of this control sample shows that the electron-to-muon PID efficiency

correction method that is used in this analysis to subtract the semileptonic and τ+ →
μ+νμ background components from the signal, works satisfactorily.
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Figure 6.29: Distribution of ΔMD∗+−D0 in the control sample D∗+ → π+D0 →
π+K−l+νl, with l = μ, e, in data. Shown are the distributions for the four distinct
sets tagged-muon-control (top left), tagged-electron-control (top-right), tag-sideband-
muon-control (bottom left), and tag-sideband-electron-control (bottom right). The
sets consist of control sample events, with the tag being either in the signal or the
tag sideband region, and the lepton in the D0 → K−l+νl being either a muon or a
electron. The data-electron-to-muon PID weights are applied to the electrons.
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Figure 6.30: Distribution of ΔMD∗+−D0 in the control sample D∗+ → π+D0 →
π+K−l+νl, with l = μ, e, in data. Shown are the distributions for l = μ (left) and
l = e (right) after the tag sidebands are subtracted. The data-electron-to-muon PID
weights are applied to the electrons. The total numbers of events are

∑
0.14<ΔM<0.152 =

1690±54 for the muon sample and
∑

0.14<ΔM<0.152 = 1674±52 for the electron sample.
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Figure 6.31: Difference in the ΔMD∗+−D0 distribution between the D∗+ → π+D0 →
π+K−μ+νμ and the D∗+ → π+D0 → π+K−e+νe decay. Before the subtraction the
electron sample was scaled by 0.971 to correct for the larger electron phase space.
The difference of the number of events is is

∑
0.14<ΔM<0.152 = 65±75, consistent with

0.
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6.9 D∗±
s Counting

To calculate the branching ratio B(D∗+
s → γD+

s → γμ+ν), the total number of D∗+
s

opposite the tag in the tag sample is needed. Its direct determination by the means

of double tagging is not possible, since the BABAR experiment operates at an energy

above the D+
s threshold, and the precise correlation between the particle content on

the tag side and the signal side is lost.

The method used in this analysis is to reconstruct another well measured decay of

the D∗+
s meson in the recoil of the tag. The observed rates of this decay, the reference

decay, and the signal decay relate to each other like their branching ratios, after the

different detection efficiencies in both decays are accounted for.

For this analysis the decay D∗+
s → γD+

s → γφπ+, with the φ decaying into a

charged kaon pair, is used as the reference decay. The branching ratio, B(D+
s →

φπ+) = (4.81 ± 0.52 ± 0.38) % [16], is large and known with a combined statistical

and systematic precision of 13 %. The φ is reconstructed in its charged-kaon pair

decay mode, for which the branching is B(φ → K+K−) = 0.491 ± 0.006.

This method has the advantage that most of the tag-related uncertainties cancel.

Well chosen selection criteria for the reference decay potentially help to minimize

the uncertainties from the modelling of the D∗+
s meson in the charm fragmentation

process and the uncertainties related to the photon reconstrcution.

6.9.1 Reconstruction of the Decay D∗+
s → γD+

s → γφπ+

To study the reconstruction and to estimate the selection efficiency of this decay a

dedicated Monte Carlo sample, the φπ+-signal Monte Carlo sample, is used, (Sec-

tion 4.5).

φ-meson candidates are reconstructed in the decay φ → K+K−. φ mesons also

decay into K0
LK0

S pairs, but the K0
L reconstruction is very imprecise. The require-

ments on the kaon candidates are identical to those used for the tag reconstruction,

(Section 5.3). Pairs of oppositely charged kaons are combined in a vertex-constrained

fit, (left plot in Figure 6.32). The fit probability must be above 0.0005. The mass of

the fitted kaon pair, M(K+K−), must be |M(K+K−)− μφ| < 2 σφ, where the mean,
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μφ, and the width, σφ, are estimated from Gaussian fits to the mass peak of K+K−

pairs in simulated D∗+
s → γD+

s → γφ(K+K−)π+ events and in data, Table 6.12. The

fitted kaon pairs that fullfill these two criteria are considered as φ-meson candidates.
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Figure 6.32: Distribution of the mass of φ meson candidates constructed from K+K−

(left) and of the mass of D+
s candidates constructed from φπ+, determined in simu-

lated D∗+
s → γD+

s → γφπ+ events and in generic Monte Carlo.

Charged-pion candidates have to fullfill the same charged-pion requirements used

for the tag reconstruction. Charged-pion candidates are combined with the φ can-

didates and fit with a vertex constraint to form D+
s candidates. A fit probability

requirement PD+
s

> 0.001 is made, (left plot in Figure 6.33). The mass of fitted φ-π+

pairs, M(φπ+), is plotted for simulated D∗+
s → γD+

s → γφ(K+K−)π+ events and

for data, (right plot in Figure 6.32). The estimated mean, μD+
s
, and width, σD+

s
are

determined from a Gaussian fit to the mass peak, (Table 6.12). Pairs with a mass

M(φπ+) within 2 σD+
s

of μD+
s

are considered D+
s meson candidates. Each D+

s meson

candidate is weighted by the product of the MC-to-data PID weights for the two

charged kaons and the charged pion that are used in the reconstruction, (Section 4.3)

In addition, each D+
s candidate is weighted by the product of the MC-to-data track

weights of the three D+
s daughter particles, to correct for the different track recon-

struction efficiencies in simulated events and in data, (Section 4.4).

To form D∗+
s meson candidates, the D+

s meson candidates are combined with pho-

ton candidates that fulfill the same requirements as those used in the reconstruction of
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Table 6.12: Mean and width of the mass distributions of the φ and the D+
s in simulated

events and in data. The error of these values is of the order of 10−2 MeV/c2.

φ D+
s

μφ [MeV/c2 ] σφ [MeV/c2 ] μD+
s

[MeV/c2 ] σD+
s

[MeV/c2 ]

Simulation 1019.39 2.82 1968.65 5.10

Data 1019.53 2.76 1967.72 5.10
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Figure 6.33: Distribution of the fit probabibility of the vertex constraint for the D+
s

meson (left) and of the D∗+
s CM momentum (right), in simulated D∗+

s → γD+
s →

γφπ+ events, in generic Monte Carlo samples, and in data.
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Table 6.13: Selection efficiency for D∗±
s → γD±

s → γφ(K+K−)π

Selection Efficiency

Selection Cut By Cut Cumulative

[%] [%] [Events]

Tag - 100.00 ± 0.00 22286

D∗+
s reconstructed 37.59 ± 0.18 37.60 ± 0.18 8378

Eγ > 115 MeV 95.76 ± 0.17 36.00 ± 0.17 8022

p∗
D∗+

s
> 3.55 GeV/c 42.16 ± 0.13 15.18 ± 0.13 3382

True Signal 65.25 ± 0.11 9.90 ± 0.11 2207

the signal decay D∗+
s → γD+

s → γμ+ν, (Section 6.1). This includes the requirement

on the CM photon energy, E∗
γ > 115 MeV. The D∗+

s meson must have a minimum

momentum in the CM frame, p∗
D∗+

s
> 3.55 GeV/c, (right plot in Figure 6.33). Both

requirement, on E∗
γ , and on p∗

D∗+
s

, are identical to the selection requirement for the

signal decay. This is to minimize the influence of the particular fragmentation model

used in the simulation of the signal the reference decay on the branching ratio mea-

surement. The selection efficiency in correctly tagged events, εφπ, is

εφπ = (9.90 ± 0.11) % . (6.28)

The marginal efficiencies as the selection progresses are listed in Table 6.13.

The signature of the D∗+
s → γD+

s → γφπ+ decay is a peak at 145 MeV in the

distribution of the reconstructed D∗+
s –D+

s mass difference, ΔM . The signal peak is

described best by a triple-Gaussian distribution, PDFφπ signal:

PDFφπ signal(ΔM |μ, σ1, Δμ1, σ2, Δμ2, σ3, f1, f2)

=
f1√
2πσ1

e
− (ΔM−μ)2

2σ2
1 +

f2√
2πσ2

e
− (ΔM−μ−Δμ1)2

2σ2
2 + +

1 − f1 − f2√
2πσ3

e
− (ΔM−μ−Δμ2)2

2σ2
3 (6.29)

The parameters of PDFφπ signal are estimated from a fit to truth-matched D∗+
s →

γD+
s → γφπ+ decays in the recoil of a real tag, using the dedicated Monte Carlo
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Figure 6.34: Signal ΔM distribution of truth-matched decays D∗+
s → γD+

s → γφπ+

in the recoil of a real tag, found in the φπ+-signal Monte Carlo sample.

sample, shown in Figure 6.34. They are

μ1 = 144.3 MeV/c2 , Δμ1 = −4.9 MeV/c2 , Δμ2 = −6.7 MeV/c2

σ1 = 4.7 MeV/c2 , σ2 = 11.2 MeV/c2 , σ3 = 43.1 MeV/c2

f1 = 0.646 , f2 = 0.293

(6.30)

6.9.2 Background Estimation

The reference decay is analyzed to measure the number of produced D∗+
s mesons in

the recoil of a true charm tag. Therefore the tag-sideband is subtracted in events

with a reconstructed D∗+
s → γD+

s → γφπ+ decay. The sideband subtraction removes

all sources of fake-tag backgrounds, but several types of charm decays in the recoil

of a true tag remain as background to the D+
s → φπ+ signal. Those are described in
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Table 6.14: Decays of the D+
s meson into the final state K+K−π+. The middle

column lists the PDG branching ratio. The right column lists the relative size found
in generic cc Monte Carlo events, scaled to the data luminosity. A total of 48 events
of this background are expected.

D+
s Decay Mode Branching Ratio

PDG [30]
Relative

Background Size
D+

s → f0(980)π+, f0(980) → K+K− (4.9 ± 2.3) × 10−3 90 %
D+

s → K+K−π+ (9 ± 4) × 10−3 9 %
D+

s → K+K̄∗(892)0 (3.3 ± 0.9) % 1 %

this section.

Background from D+
s → f0(980)π+ and non-resonant D+

s → K+K−π+ decays

Besides the decay D+
s → φπ+, the D+

s meson can also decay to K+K−π+ through

resonant f0(980)π+ or K+K̄∗(892)0, or non-resonant decay. These three decays ap-

pear as background to the decay D+
s → φπ+. The first column of Table 6.14 lists the

branching ratio of each decay, none of which are well measured.

Since the mass of the reconstructed D+
s meson does not depend on the particular

decay, these backgrounds are indistinguishable from the signal in the ΔM plot, (Fig-

ure 6.35). The requirement on the mass of the charged-kaon pair, to be consistent

with a φ-meson decay, eliminates most of the backgrounds D+
s → K+K̄∗(892)0 and

D+
s → K+K−π+. The decay D+

s → f0(980)π+ poses a significant source of back-

ground, since the f0(980) meson has a width of 40–100 MeV/c2 and is only 40 MeV/c2

lighter than the φ-meson. Using generic cc Monte Carlo the relative size of the three

background decay modes is determined, (last column in Table 6.14), with a total of

48 ± 7stat ± 22sys events to be expected in the data. The systematic uncertainty in

this number comes from the poorly known branching ratio.

This background component is described by the distribution PDFK+K−π, which

is the same distribution that describes the D+
s → φπ+ signal, PDFφπ signal (6.29). For

the extraction of the D+
s → φπ+ yield in data the size of this background component

is fixed at 0. For the extraction of the signal branching ratio, this background receives

special attention, which is described in Section 7.4.
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Other backgrounds

Another source of background with a distinct ΔM distribution is identified as decays

D∗+
s → π0D+

s → π0φπ+, with the reconstructed signal photon candidate originating

in the decay of the π0 from the D∗+
s meson, (Figure 6.36). This background is best

described by a single Gaussian:

PDFπ0(ΔM |μ, σ) =
1√
2πσ

e−
(ΔM−μ)2

2σ2 . (6.31)

The parameters of PDFπ0 are estimated from a χ2 fit of the background, found in

generic cc Monte-Carlo events in the recoil of a real tag:

μ = 74.4 MeV/c2 , and σ = 15.8 MeV/c2 . (6.32)

The remaining background decays do not exhibit any peaking feature in the ΔM

distribution. Their ΔM distribution is described by PDFrndm:

PDFrndm(ΔM |ΔM0, a, b, c) =
(
1 − e−

ΔM−ΔM0
c

)( ΔM

ΔM0

)a

+ b
ΔM − ΔM0

ΔM0

. (6.33)

However, the function fails to describe the left shoulder of the distribution. There-

fore, all three background components are combined and fitted with the combined

background PDF, PDFφπ bkgd (6.31), where the components described by PDFπ0 and

PDFrndm are allowed to vary in size, while the component PDFK+K−π is fixed.

PDFφπ bkgd(ΔM) = fK+K−πPDFK+K−π + N2(f PDFrndm + (1− f)PDFπ0) . (6.34)

The parameters for PDFφπ bkgd, estimated in the χ2 fit, are

ΔM0 = 26.8 MeV/c2 , a = −0.952 , b = 0.006 , c = 0.031 ,

fK+K−π+ = 0.239 , N2 = 22.940 , and f = 0.936 .
(6.35)

in addition to (6.30) and (6.32).
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Figure 6.35: Simulated ΔM distribution from background decays D+
s → f0(980)π+,

D+
s → K+K−π+, and D+

s → K+K̄∗(892)0, where the D+
s originates in a decay

D∗+
s → γD+

s . The cc Monte Carlo is scaled to the data luminosity.
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Figure 6.36: Simulated ΔM distribution from background decays D∗+
s → π0D+

s →
φπ+, with the reconstructed photon candidate originating in the decay the π0 from
the D∗+

s meson. The cc Monte Carlo is scaled to the data luminosity.
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Figure 6.37: Distribution of ΔM for the combined background to the D∗+
s → γD+

s →
γφπ+ signal, determined in generic cc Monte Carlo events. The function PDFφπ bkgd

is used to parameterize this distribution.
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6.10 Tagging Efficiency Correction

The tagging efficiency is defined as the percentage of e+e− → cc events that contain

a correctly reconstructed tag.

To determine the relative branching fraction for the decays D+
s → μ+νμ and

D+
s → φπ+, this analysis measures the ratio of the rates of two decays in the recoil

of a tag.

B(D+
s → μ+νμ)

B(D+
s → φπ+)

=
Nμν, tag/(εμν × εμν

tag)

Nφπ, tag/(εφπ × εφπ
tag)

, (6.36)

where Nμν, tag and Nφπ, tag are the numbers of events with the signal and the reference

decay identified in the recoil of a real tag. εμν and εφπ are the reconstruction and

selection efficiencies of both decays, εμν
tag and εφπ

tag are the tagging efficiencies the two

decays in the recoil. If the tagging efficiency is independent of the decay in the tag

recoil, εμν
tag and εφπ

tag cancel.

A priori the tagging efficiency cannot be assumed to be independent of the recoiling

decay. For example, the existence of two charged kaons in the reference decay D∗+
s →

γD+
s → γφ(K+K−)π+, where the signal decay has none, leads to an increase in

the tag-candidate multiplicity due to random tag combinations. This in turn lowers

the chance of the correctly reconstructed tag candidate being selected as tag, which

results in a lower tagging efficiency. Comparing the tagging efficiency in the two

simulated event samples D∗+
s → γD+

s → γμ+ν and D∗+
s → γD+

s → γφπ+, the size

of this effect is determined. Tables 6.15 and 6.16 show that the tagging efficiency

in events containing a signal decay is (3.54 ± 0.02) %, and in events containing the

reference decay (3.49±0.01) %. This ratio will be applied as a correction factor, Rtag
ε ,

in the calculation of the branching ratio,

Rtag
ε =

εφπ
tag

εμν
tag

=
(3.49 ± 0.01) %

(3.54 ± 0.02) %
= 0.986 ± 0.006 , (6.37)

where the error is of purely statistical nature.
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Table 6.15: Tagging efficiency in cc events containing the decay D∗+
s → γD+

s → γμ+ν,
determined in the signal Monte Carlo sample.

Events Tags True Tags

MC sample 1284786 290403 (22.6%)

Preliminary Selection 1204005 (93.7%) 281351 (21.9%)

Peak or Sideband 110080 (8.57%) 125490 50472 (3.93%)

Best Tag (Peak or Sb) 110080 (8.57%) 110080 47655 (3.71%)

Tag (Peak) 71810 (5.59%) 71810 45463 (3.54%)

Table 6.16: Tagging efficiency in cc events containing the decay D∗+
s → γD+

s → γφπ+,
determined in the φπ-signal Monte Carlo sample.

Events Tags True Tags

MC sample 2192000 496371 (22.6%)

Preliminary Selection 2160599 (98.6%) 492426 (22.5%)

Peak or Sideband 276796 (12.6%) 325131 86054 (3.93%)

Best Tag (Peak or Sb) 276796 (12.6%) 276796 80162 (3.66%)

Tag (Peak) 156234 (7.13%) 156234 76476 (3.49%)
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6.11 Correction for the D∗+
s Momentum Spectrum

The fragmentation mechanism of qq quark pairs is qualitatively understood but still

lacks a good qualitative description, for all energies and quark flavors. The momentum

spectrum of D∗+
s mesons produced in cc events is not well simulated at BABAR,

(Figure 6.38). The effect of this Monte-Carlo-data discrepancy on the measured

branching ratio is studied in this section.

If the selection of signal or the D+
s → φπ+ decay used requirements that are

sensitive to the momentum of the D∗+
s meson, the simulated selection efficiencies

would be very different from reality. Several strategies can be followed to minimize

this effect with the premise that only the ratio of the selection efficiencies, εμν/εφπ

enters in the result.

• The parameters of the fragmentation model that is implemented in JETSET

could be tuned to produce distributions matching the BABAR data. The simu-

lation would then correctly describe the data.

• The selection could rely entirely on quantities that do not depend on the D∗+
s

momentum.

• The selection criteria of D∗+
s → γD+

s → γμ+ν and D∗+
s → γD+

s → γφπ+ decays

could be defined in a way that the uncertainty in the true D∗+
s momentum

distribution does not affect the efficiency ratio εμν/εφπ, and hence the calculated

branching ratio.

In this analysis the third approach of chosing matching selection criteria for the

signal and the reference decay is followed. The signal selection relies on two quantities

that are correlated with the momentum of produced D∗+
s meson, the reconstructed

D∗+
s momentum and the photon energy, both in the CM frame:

p∗
D∗+

s
> 3.55 GeV/c , and E∗

γ > 115 MeV .

Both requirements are applied identically in the selection of the reference decay

D∗+
s → γD+

s → γφπ+. However, other signal selection cuts, like on the muon CM
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momentum and on the missing CM energy, which are correlated with D∗+
s momen-

tum, have no equivalent in the D+
s → φπ+ selection. To estimate how sensitive the

calculated branching ratio is to the simulated D∗+
s meson momentum, the selection

efficiencies for both processes are studied as a function of the hardness of the D∗+
s

momentum spectrum.

First the size of the mismatch between the simulated and the data D∗+
s momen-

tum spectra is determined. Data reconstructed decays D∗+
s → γD+

s → γφπ+ in

tagged events are used to describe the D∗+
s momentum spectrum in data. To re-

trieve the spectrum below 3.55 GeV/c, the D∗+
s momentum requirement is replaced

by a cut on the pion CM momentum, p∗π+ > 0.8 GeV/c. The tag sidebands are sub-

tracted and a sample of D∗+
s → γD+

s → γφπ+ decays recoiling against a real charm

tag is obtained. To further purify the D∗+
s sample, candidates in the sidebands of

the M(γφπ+) − M(φπ+) distribution are subtracted. The resulting D∗+
s meson CM

momentum distribution is corrected for the reconstruction efficiency in a momen-

tum dependent manner. Here, the momentum-dependent reconstruction efficiency,

ε(p∗
D∗+

s
) is determined in simulated D∗+

s → γD+
s → γφπ+ events, p∗

D∗+
s

is the true

D∗+
s momentum. The resulting D∗+

s momentum distribution is compared to the dis-

tribution of the true momentum of D∗+
s mesons in simulated D∗+

s → γD+
s → γφπ+

decays in the recoil of a real tag, (Figure 6.38).

An empirical description of the data distribution, PDFData, is derived from the

simulated spectrum, PDFMC, by shifting the simulated true D∗+
s momentum, p, to a

higher value, p′:

p′ = (cos(0.23p) + 0.6) × p0.1p+0.5 (6.38)

The ratio of the measured to the simulated spectrum, r(p), is defined:

rp(p) =
PDFData(p)

PDFMC(p)
, (6.39)

which is shown in the lower plot of Figure 6.38. The data to Monte Carlo ratio rp

is used to reevaluate the selection efficiencies for the signal and the reference decay

in tagged events, ε′μν and ε′φπ, respectively. This is done using the dedicated Monte
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Figure 6.38: True D∗+
s CM momentum, p∗

D∗+
s

, in simulated D∗+
s → γD+

s → γφπ+

events (solid red line), compared to the reconstructed D∗+
s CM momentum in data

(black marker). An empirical shift is applied to the simulated momentum to obtain
a data-matching momentum distribution (blue dashed line). The bottom plot shows
the ratio r(p∗

D∗+
s

) of the corrected (shifted) spectrum that matches the data, and the

simulated spectrum of p∗
D∗+

s
.
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Table 6.17: Selection efficiency of D∗+
s → γD+

s → γμ+ν and D∗+
s → γD+

s → γφπ+

decays with the simulated and the data-adjusted D∗+
s momentum spectrum, measured

in Monte Carlo events of both decays. Efficiencies are expected to be about 30 % larger
in data. Their ratio, rε, which enters the calculation of the branching ratio, changes
only slightly.

Uncorrected Corrected

D∗+
s → γD+

s → γφπ+ ε = 9.90 % ε′ = 13.09 %

D∗+
s → γD+

s → γμ+ν ε = 8.13 % ε′ = 10.60 %

Efficiency ratio rε = εD+
s →φπ+/εD+

s →μ+νμ
rε = 1.22 r′ε = 1.23

Carlo event samples of the signal and the reference decay. The momentum-spectrum-

corrected efficiencies are calculated according to:

ε′ =

∑
real-tag events
selected signal

rp(p
∗
D∗+

s
)

∑
real-tag events

rp(p∗D∗+
s

)
, (6.40)

where p∗
D∗+

s
is the true momentum of the D∗+

s meson in the simulated D∗+
s → γD+

s →
γμ+ν or D∗+

s → γD+
s → γφπ+ decays in the two Monte Carlo samples. The resulting

shift in the efficiencies and in their ratio, rε, is summarized in Table 6.17. It shows that

the selection efficiencies of each decay by itself depends strongly on the momentum

spectrum, however, the relevant efficiency ratio is almost unaffected. A correction

factor Cp(D∗+
s ) is defined

Cp(D∗+
s ) =

r′ε
rε

=
ε′φπεμν

ε′μνεφπ

= 1.014 (6.41)

and applied in the calculation of the D+
s → μ+νμ branching ratio.
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Chapter 7

Results

In the previous chapter the reconstruction and selection of the signal and the φπ-

reference decay in tagged events were described, and the efficiency of the selection

determined. The backgrounds to both decays were identified, and, if their contribu-

tion is not estimated from data, their ΔM distributions were parameterized.

In this chapter these results are combined to determine the branching ratio of the

decay D+
s → μ+νμ. First, the number of signal and reference decays, Nμν and Nφπ,

in the recoil of a real tag is measured in data. Next, the systematic uncertainties in

this ratio are discussed. In the final section, using the efficiencies for the selection of

the two decays, the tagging efficiency correction, Rtag
ε , and the momentum spectrum

correction, Cp(D∗+
s ), the ratio of the partial widths,

Γ(D+
s → μ+νμ)

Γ(D+
s → φπ+)

=
Nμν/εμν

Nφπ/εφπ

× Rtag
ε Cp(D∗+

s ) , (7.1)

is determined. The branching ratio B(D+
s → φπ+) is used to determine B(D+

s →
μ+νμ) and, given the lifetime of the D+

s meson and the CKM-matrix parameter

Vcs, the decay constant fDs is calculated. The implications of this measurement are

discussed in the next chapter.

171
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7.1 Signal Yield in Data

In data events tag candidates are reconstructed and a tag is identified, either in the

tag signal or the tag sidebands region. Tags in the tag sidebands are weighted by 2
3

to accommodate the larger size of the sidebands. In these tagged events the signal

decay D∗+
s → γD+

s → γμ+ν is reconstructed and selected in the recoil of the tag.

In addition, the signal reconstruction and selection is performed with the electron

requirement substituting the muon requirement. The electron-selected candidates

are weighted by a data-derived data-electron-to-muon PID weights. Another factor

of 0.971 is applied to correct for the differences in the muon and the electron phase-

space in charm and τ decays, (Table 6.6). This defines four exclusive sets, the tagged-

muon, tagged-electron, tag-sideband-muon, and tag-sideband-electron set. The ΔM

distributions for all four sets are shown in Figure 7.1. The tag-sideband sets are

then subtracted from the tagged sets for both, muons and electrons; the resulting

ΔM distributions are shown in Figure 7.2. The ΔM distribution for the sideband

subtracted electron set is then subtracted from that of the muon set. A χ2-fit of the

function PDFμν is performed, (Figure 7.3). The function is

PDFμν(ΔM) = Nμν × PDFμν signal(ΔM) + fbkgdPDFtotal Bkgd(ΔM) , (7.2)

with PDFμν signal given by (6.10) with the parameters (6.11), and PDFtotalBkgd given

by (6.25) with the parameters (6.20), (6.17), and (6.24). The fit yields

Nμν = 489 ± 55 (7.3)

events, where the error is the statistical error, determined in the fit. The fit has a χ2

per degree of freedom of 31.4/22, which corresponds to a fit probability of 8.9 %.
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Figure 7.1: Distribution of ΔM in data for the four signal selection sets tagged-
muon (top left), tagged-electron (top right), tag-sideband-muon (bottom left), and
tag-sideband-electron (bottom right). The events in the electron sets are weighted by
the data-electron-to-muon weights. The sideband sets are scaled by a 2

3
to account

for the tag sidebands being 50 % wider than the signal region.
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Figure 7.2: Distribution of ΔM in data after the tag-sidebands subtraction for muons
(left) and electrons (right).

7.2 Yield of D∗+
s → γD+

s → γφπ+ in Data

In the same data sample of selected tagged events, the decay D∗+
s → γD+

s → γφπ+ in

the recoil of the tag is reconstructed and selected. The reconstructed decay candidates

are divided into two sets, the tagged-φπ and the tag-sideband-φπ set, depending on

whether the tag lies in the tag signal or sidebands region. The sideband set is scaled

by 2
3

to accommodate for the 50 % wider tag-sidebands compared to the width of the

tag signal region. The distributions of ΔM for both sets are shown in Figure 7.4.

The tag-sideband-φπ subtracted from the tagged-φπ set, the resulting distribution of

ΔM is shown in Figure 7.5. The following PDF is fitted to the ΔM -distribution:

PDFφπ = Nφπ × PDFφπsignal(ΔM) + fφπ bkgdPDFφπbkgd(ΔM) , (7.4)

in which PDFφπsignal is given by (6.29) and PDFφπbkgd is given by (6.34). The

parameters for the signal PDF are given by (6.30), and for the background by (6.30),

(6.32), and (6.35).

The following parameters are allowed to float in the χ2 fit; from the signal PDF

μ (6.30), and from the background PDF, ΔM0, a, b, and c (6.35). The contribution

of the non-resonant and f0π
+ background, which peaks under the signal, is fixed at

NK+K−π = 0. The χ2-fit (Figure 7.5) yields
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Figure 7.3: Distribution of ΔM after electron subtraction. The χ2-fit of PDFμν

yields 489 ± 55 signal D∗+
s → γD+

s → γμ+ν events in the recoil of a real tag.
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Nφπ = 2093 ± 99 (7.5)

events, where the error given is statistical. The χ2 per degree of freedom is 42.4/37.

This corresonds to a fit-probability of 25.0 %.
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Figure 7.4: Distribution of ΔM for selected D∗+
s → γD+

s → γφπ+ decays in tagged
events data, for the two sets, tagged-φπ(left) and tag-sideband-φπ (right). The side-
band set is scaled by 2

3
to accomodate for the 50 % wider sidebands region, compared

to the tag signal region.
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Figure 7.5: Distribution of ΔM for selected D∗+
s → γD+

s → γφπ+ decays with the
tag-sidebands subtracted. The χ2 fit of PDFφπsignal yields 2093 ± 99 D∗+

s → γD+
s →

γφπ+ events in the recoil of a true tag.
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7.3 Systematic Uncertainties

The statistical errors on the D∗+
s → γD+

s → γμ+ν and the D∗+
s → γD+

s → γφπ+

event yields are 11.2 % and 4.7 %; a combined statistical uncertainty of 12.2 %. All

remaining sources of uncertainty in the measurement of the branching ratio B(D+
s →

μ+νμ) are systematic uncertainties. Exceptions are the error on the known branching

ratios B(D+
s → φπ+) and B(φ → K+K−), which are errors that are kept separately.

Following the course of this analysis, this section describes the systematic uncertain-

ties that are present in this analysis and the evaluation of their sizes.

7.3.1 Tagging

A systematic shift in the tag reconstruction efficiencies between MC and data, which

would affect the measurement of a single branching fraction, cancels in the ratio

of the event yields of the two decays in the recoil of a real tag. This includes the

cancellation of differences in the tracking and PID efficiencies of charged particles, the

photon reconstruction efficiency, and cuts on the tag-fit quality, the tag momentum

and reconstructed particle masses. Therefore no systematic uncertainty is assigned

to that aspect of the tagging procedure.

The tag efficiency correction factor Rtag
ε = 0.986± 0.006 is calculated using simu-

lated D∗+
s → γD+

s → γμ+ν and D∗+
s → γD+

s → γφπ+ events. A significant difference

in the simulated and measured tag multiplicity would affect Rtag
ε . Repeating the study

of Section 6.10 with the assumption of a 10 % increase in the number of events with

two tag-candidates shows a 0.15 % change of Rtag
ε . Since the tag multiplicity shows

a perfect agreement between simulated generic decays and data, (Figure 5.11), the

uncertainty on the result arising from any tag multiplicity discrepancy is negligible.

The 0.6 % statistical error of Rtag
ε , arising from the limited size of the Monte Carlo

sample, is hence taken as sole contribution to the systematic error, due to the charm

tagging.
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7.3.2 PID Efficiency MC-to-Data Correction

To ensure the accuracy of the prediction of the data selection efficiency of D+
s → μ+νμ

and D+
s → φπ+ decays from Monte-Carlo simulation, the difference of PID efficiencies

of muons, kaons, and pions in simulated events and in data must be corrected for.

This is done by applying mc-to-data weights to the μ±, K±, and π± in simulated

events of the signal and the reference decay.

The weights are derived from PID control samples (Section 4.3), which are selected

in simulated events and in data. This principle of using control samples to measure

the PID efficiency can introduce uncertainties for different reasons.

• The control sample environment is different from the decay of interest. Because

of overlapping signatures from different particles, particle selection efficiencies

are generally not the same in low and high-multiplicity events.

• The limited size of the control sample leads to a statistical uncertainty in the

measured efficiencies, largest in the phasespace which is less populated by the

the control sample. Having a decay process with a momentum and angular

distribution that matches the control PID sample keeps this error small.

• The selection efficiencies vary over a range in momentum or angle. This func-

tional dependence is described by a limited number of points in the p − θ − φ

space. In regions with a rapid change of the efficiency these points must lie res-

onably dense. The granularity of this binning, which is chosen in the tradeoff

between the statistical limitations of the control sample and the rapidness of

change of the efficiency, can also influence the correctness of the PID efficiency

correction.

Muon Efficiency Correction

The muon control sample consists of well identified e+e− → μ+μ−γ events, (Sec-

tion 4.3.1). The muon distributions of momentum, θ, and φ for the signal decay and

the muon control sample are shown in Figure 7.6. The control sample environment

is very similar to that of the D∗+
s → γD+

s → γμ+ν, a single high-momentum track
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standing alone in the recoil of a charm tag. In the signal decay additional tracks

are present from the fragmentation process, but they are of lower momentum and

because of their curvature do not interfere with the muon identification in the IFR.

Because of the similarity of the muon environment in the signal decay and in the

control sample, no error is assigned to the multiplicity effect.

The statistical errors of the MC-to-data PID weights is a source of systematic

uncertainty in the muon efficiency correction. The weights are determined from the

control sample e+e− → μ+μ−γ in simulation and data, and are given in the form

of binned lookup-tables, (Section 4.3). The granularity of the binning is shown in

Figure 7.6. The average weight in selected simulated signal events, w̄, and its error,

Δw̄, is given by:

w̄ =
1

N

Nb∑
b=1

nbwb, (7.6)

Δw̄ =
1

N

√√√√ Nb∑
b=1

n2
b(Δwb)2 , (7.7)

where the sums are over all bins in the PID table. Nb is the number of bins in the

table, wb and Δwb are the weight and the weights’ statistical error in a certain bin,

nb is the number of signal muons in each bin, and N =
∑Nb

b=1 nb the total number of

signal events. The statistical error on w̄ is determined to Δw̄/w̄ = 0.2 %.

Also tested is the effect of a finer granularity of the binning in p and θ. The

effect is studied by introducing a finer momentum binning above 3.5 GeV/c (left plot

of Figure 7.7) and a finer binning in θ between 60◦ and 130◦ (right plot of Figure 7.7).

In these regions the momentum and θ distributions of the signal and the control

sample are significantly different, which is not reflected in the binning. The weight

lookup-tables are reproduced with the finer granularity. A shift in the average weight

w̄ of 0.4 % is found, which is taken as the systematic uncertainty due to binning.
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Figure 7.6: Distributions of the momentum, θ, and φ of muons identified in signal
Monte Carlo (solid green histogram) and in the e+e− → μ+μ−γ control sample in
data (black line). Also shown in each plot is the muon efficiency in data averaged
over runs 1 through 4. The vertical lines indicate the binning for the look-up table
(see text).
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Figure 7.7: The same two plots as in the top row of Figure 7.6, but indicating the
finer binning in momentum and θ of the PID tables, used to study the binning effect.

Charged Kaon and Pion Efficiency Correction

To determine the data selection efficiency of the reference decay D+
s → φπ+, φ →

K+K−, from simulated events, the PID efficiency MC-to-data correction method is

applied on the charged kaons and pion; analogous to that for the muon in the signal

decay. The charged-kaon control sample are well identified decays D∗+ → π+D0 →
π+K−π+, the charged-pion control sample are τ -3-1 decays, (Section 4.3.1). Both

samples have a similar track multiplicity as the reference decay. The MC-to-data

weights are calculated for K± and π± from the control samples. Each candidate decay

D+
s → φπ+ is assigned a MC-to-data weight wφπ = wK+ × wK− × wπ. The average

weight, w̄φπ, and its error Δw̄φπ in simulated truth-matched D∗+
s → γD+

s → γφπ+

decays that fulfill all selection criteria is calculated according to

w̄ =
1

N

N∑
i=1

wi, (7.8)

Δw̄ =
1

N

√√√√ N∑
i=1

(Δwi)2, (7.9)
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Figure 7.8: Distributions of the momentum, θ, and φ of charged kaons identified in
φπ-signal Monte Carlo (solid green histogram) and in the D∗+ → π+D0 → π+K−π+

control sample in data (black line). Also shown in each plot is the kaon efficiency in
data averaged over runs 1 through 4.

where the sums are over all true D∗+
s → γD+

s → γφπ+ events passing the selection.

Equation (7.9) is not entirely correct. It neglects the correlation between events

with one or more kaons or pions in the same bin of the PID-table. However, the

PID-tables are finely binned and the correlation is small. The average weight is

w̄φπ = 1.007 ± 0.001, thus the statistical error of Δw̄/w̄ = 0.1 % is the assigned

systematic uncertainty from the kaon and pion PID efficiency correction.
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Figure 7.9: Distributions of the momentum, θ, and φ of charged pions identified in
φπ-signal Monte Carlo (solid green histogram) and in the D∗+ → π+D0 → π+K−π+

control sample in data (black line). Also shown in each plot is the pion efficiency in
data averaged over runs 1 through 4.
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7.3.3 Tracking Efficiency

The simulated efficiency of reconstructing a charged particle track of a certain mo-

mentum and angle is corrected using MC-to-data track weights, to match the track

reconstruction efficiency in data, (Section 4.4). The weights are determined by a

deticated tracking working group at BABAR. Based on their studies, the group also

recommends to assign a systematic error of 0.6 % per reconstructed signal track. The

signal decay D+
s → μ+νμ contains one track, the reference decay D+

s → φπ+ contains

three. In the calculation of the branching fraction of D+
s → μ+νμ relative to that of

D+
s → φπ+, only the ratio of the two simulated efficiencies appears. In this case the

systematic error from the muon track from D+
s → μ+νμ cancels with that of one of

the three tracks from D+
s → φ(K+K−)π+. A systematic error due to the uncertainty

of the simulated tracking efficiency of 2 × 0.6 % = 1.2 % is hence assigned. .

7.3.4 Charm Fragmentation Model

In Section 6.11 the D∗+
s momentum distributions in simulated D∗+

s → γD+
s → γφπ+

events and in data are compared. A large discrepancy was found, the D∗+
s produced

in data are of higher momentum than predicted in the simulation. Despite the large

shift in the momentum spectrum the associated correction Cp(D∗+
s ) = r′ε/rε = 1.014

on the branching ratio is small, due to the choice of identical selection cuts on p∗
D∗+

s

and E∗
γ for the signal and the reference decay. A 0.7 % systematic error is assigned

to Cp(D∗+
s ), half the size of the correction.

7.3.5 Signal Selection Cuts

The following selection cuts are applied solely in the D∗+
s → γD+

s → γμ+ν and hence

discrepancies between the simulation and the data do not cancel with the D+
s → φπ+

selectio:.

• Muon helicity, cos �(μ,D+
s ) < 0.90

• Missing energy, E∗
miss > 0.38 GeV
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Figure 7.10: ΔM = M(γK−π+) − M(K−π+) distribution in MC and data.

• Neutrino momentum correction, pcorr > −0.06 GeV/c

• Neutrino polar angle, θ∗ν > 0.67 rad

The control sample D∗0 → γD0 → γK−π+ is used to study the different efficien-

cies of these selection requirements in simulated events and in data. The selection

of the control sample and the treatment of the D0 → K−π+ decay to simulate the

signal decay is described in Section 6.8.1.

Simulated generic cc events that pass the control sample requirements and where

the decay candidate is truth-matched D∗0 → γD0 → γK−π+ decay, are used to mea-

sure the simulated efficiencies of the four selection cuts listed above. In data, candi-

date decays that pass the control sample selection requirements, including |ΔMD∗0−D0−
μ| < 3 σ, are identified. Candidate decays that pass all control sample selection

criteria, but have 4σ < |ΔMD∗0−D0 − μ| < 7 σ are identified as decays in the

ΔMD∗0−D0 sideband. In data, ΔMD∗0−D0-sideband subtracted control sample decays
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Table 7.1: Efficiencies of cuts from the signal selection, studied on the control sample
D∗0 → γD0 → γK−π+.

Simulation εMC Data εdata |εMC − εdata|/εMCSelection cut
[%] [%] [%]

pcorr > −0.23 GeV/c 73.0 ± 0.31 72.1 ± 0.37 1.3

E∗
miss > 0.38 GeV 82.5 ± 0.27 82.7 ± 0.31 0.2

θ∗ν > 0.95 rad 96.0 ± 0.14 96.1 ± 0.16 0.1

cos �(μ,D+
s ) < 0.90 94.7 ± 0.16 95.1 ± 0.18 0.4∑

⊕ 1.4

D∗0 → γD0 → γK−π+ are used to measure the cut efficiencies of the four variables.

The distributions of the neutrino polar angle, θ∗ν , and the neutrino momentum

correction, pcorr are different in control sample and in signal decays. Since the neutrino

is represented by the π+ in the control sample, the direction of the neutrino candidate

is restricted to the fiducial region of the DCH. The difference in the pcorr distribution

between signal and control sample decays is due to the different masses of the involved

decay products. For these two variables the selection cuts are adjusted such that the

efficiency of each cut on the control sample matches that on the signal.

The discrepancies between the efficiencies measured in simulated events and in

data are taken as the systematic uncertainties for each cut, Table 7.1. A system-

atic uncertainty of 1.4 % due to the uncertainty in the signal selection efficiency

of these cuts is determined. The distributions of these variables in simulated true

D∗0 → γD0 → γK−π+ decays and in data – with and without ΔMD∗0−D0-sideband

subtraction - are shown in Figure 7.11.
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7.3.6 D∗+
s → γD+

s → γφπ+ Selection Cuts

In the selection of the decay D∗+
s → γD+

s → γφ(K+K−)π+ the cuts on the D∗+
s

momentum and the photon energy are the same as in the selection of the signal

decay. The systematic uncertainty arising from these two cuts in both selections

cancels in the ratio, εμν/εφπ. The only remaining uncertainty lies in the simulation of

the D+
s reconstruction efficiency.

The mass requirements on the φ and D+
s candidates are chosen according to the

width and mean of the particles, estimated in fits to selected (K+K−) and (φπ+)

combinations in simulation of the reference decay and in data, (Table 6.12). There-

fore both mass requirements have the same efficiencies in simulation and data. The

remaining D+
s → φπ+ selection requirements are on the probability of the vertex-

constrained χ2-fit of the φ and D+
s meson candidates, Pφ > 0.0005 and PD+

s
> 0.001.

To study the uncertainty in the efficiency estimate of these two cuts, D∗+
s →

γD+
s → γφπ+ decays in the recoil of a tag are selected in simulated D∗+

s → γD+
s →

γφπ+ events and in data. In simulated events the decay candidates are required to

be true D∗+
s → γD+

s → γφπ+ decays. In data, the decay candidates must have

ΔM = M(γD+
s ) − M(D+

s ) within 3 standard deviations of the estimated mean. A

ΔM sideband between 4 and 7 standard deviations on either side of the estimated

mean is defined; decay candidates in the sideband are subtracted from the signal.

In simulated decays the efficiency of both cuts is determined as ε(Pφ > 0.0005) =

96.6 % and ε(PD+
s

> 0.001) = 93.6 %; the combined efficiency is ε(Pφ > 0.0005, PD+
s

>

0.001) = 93.4 %. To estimate the predictive quality of the vertex fit simulation, the

agreement of Pφ (PD+
s
) between simulation and data is measured in the range above

0.0005 (0.001) and extrapolated to values below the cut. In the region above 0.0005

(0.001) the Monte-Carlo-data agreement of Pφ (PD+
s
) is very good. Both distributions

are flat in the region above 0.1, (top plots in Figure 7.12), which is the expected

behavior if the errors of the track parameters are treated correctly in the fit.

The agreement between simulation and data is poorer in the very low Pφ (PD+
s
)

region. The first bin in the Pφ distribution is about 12.8 % higher in data, and in the

PD+
s

distribution about 7.3 %. Zooming into the first bin in each distribution, (bottom

plots of Figure 7.12), reveals a data-to-Monte-Carlo ratio that is about constant
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Figure 7.12: Vertex fitting probability for the φ (left) and the D+
s (right), for sim-

ulated events (blue lines) and data (black markers). In purple the data/MC ratio
is plotted. The fit probability spectrum for the D+

s has been corrected with the
data/MC mismatch found in the φ fit probability spectrum.

between 0.0005 (0.001) and 0.01. Extrapolating the data-to-Monte-Carlo ratio to

probabilities below 0.0005 (0.001), the efficiency of the combined φ and D+
s vertex-fit

probability cuts is estimated. The efficiency is found to be 0.7 % lower in data than

in the Monte Carlo simulation. The 0.7 % are taken as the systematic uncertainty

associated with the combined cuts Pφ > 0.0005 and PD+
s

> 0.001.
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7.3.7 D+
s → μ+νμ Signal Shape

The signal yield is obtained from a χ2 fit of PDFμν to the data ΔM distribution,

with the parameters fixed to the simulated estimates, (Section 7.1). The study of the

control sample D∗0 → γD0 → γK−π+ showed, that the simulated estimates of the

mean and the width of the signal peak do differ from data, μData/μMC = 1.013±0.003

and σData/σMC = 1.016 ± 0.029, (Section 6.8.1).

In this section the dependence of the fitted signal yield on the estimated mean

and width of the signal peak is determined. For that purpose a toy simulation study

is performed. The inputs of this study are

• The function describing the signal yield PDFμν signal, and the signal yield

Nμν signal = 489.

• The function describing the signal background PDFtotal Bkgd, and the signal

yield Nμν bkgd = 1000.

• The ΔM distribution for the tagged-electron, tag-sideband-muon, and

tag-sideband-electron sample in data, (Figure 7.1). In these three distributions

the statistical fluctuations are smoothed out.

The study proceeds by randomly generating a possible ΔM distribution accord-

ing to Nμν signal ×PDFμν signal + Nμν bkgd ×PDFtotal Bkgd. Since this distribution is to

represent the data, the signal mean μ in the generating PDFμν signal is shifted from

its Monte Carlo estimated value. The statistical uncertainty in each bin of this dis-

tribution is enlarged by the contribution from the three data samples tagged-electron,

tag-sideband-muon, and tag-sideband-electron. This ensures the proper treatment of

the statistical error that arises from the subtraction of the tag-sidebands and the

electron sample. The distribution is then χ2-fitted with the PDFμν , (7.2), the same

that is applied when extracting the signal yield in data.

In repeatedly generated ΔM distributions, 5000 signal yields are obtained. The

yields follow a Gaussian distribution, whose mean is estimated in a χ2-fit. These

means as function of the generating signal mean are shown in Figure 7.13. From
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Figure 7.13: Dependence of the fitted signal yield on the true signal peak position
parameters. The mean of the simulated signal peak is estimated with 143.2 MeV/c2.
Shown in this plot is the variation of the fitted signal yield if the true mean of the signal
peak changes within 1.5 % of the estimated mean. The red arrow at μ/143.2 MeV/c2 =
1.013 indicates the difference in the peak position between Monte Carlo and data, as
found in the control sample D∗0 → γD0 → γK−π+. The largest relative deviation of
the fitted yield from 489 in the range between μ/143.2 MeV/c2 = 1 and 1.013 is 0.2 %,
taken as the systematic error due to the uncertainty in the true peak position.

the control sample a possible shift in the mean position of the signal peak between

simulated events and data of 1.3 % is estimated. Varying the generating mean within

1.3 % of the simulated mean shows a maximum deviation in the signal yield from the

generated number of signal events of 0.2 %. This is the assigned systematic error due

to the uncertainty in the true peak position.

The same study was done on the width σ1 of the signal peak. A variation of σ1 of

generating signal distribution within the 1.6 % as predicted from the control sample

D∗0 → γD0 → γK−π+, shows a maximum yield deviation of 0.3 %, (Figure 7.14),

taken as the systematic uncertainty.



7.3. SYSTEMATIC UNCERTAINTIES 193

 / 8.7 MeV1σ
0.980.9850.990.995 1 1.0051.011.0151.02

Fi
t Y

ie
ld

/4
89

0.994

0.996

0.998

1

1.002

1.004

1.006

1.008

Figure 7.14: Dependence of the fit yield on the signal width. The simulated signal
peak has an estimated width of 8.6 MeV/c2. In the control sample D∗0 → γD0 →
γK−π+ the difference in the peak width between simulation and data is 1.6 %, which,
applied here, leads to an estimated systematic uncertainty in the signal yield of 0.3 %.

7.3.8 Normalization of the Electron Sample

The study of the control sample decays D∗+ → π+D0 → π+K−l+νl with l = μ, e

, (Section 6.8.2), shows that the electron-to-muon efficiency correction works satis-

factorily; the difference between the muon and the electron sample is found to be

64 ± 75, consistent with 0. The study also suggests that a 3.8 % higher average

electron-to-muon PID weight would give a muon-electron difference of 0 ± 75.

The effect of a higher electron-to-muon PID weight is studied using the same

toy-simulation technique as described in the previous section. Instead of modifying

the parameters of the generating function, the size of the tagged-electron and tag-

sideband-electron distribution was varied. A change in the signal yield of 0.4 % is

found, taken as the systematic error due to the electron PID efficiency correction,

(Figure 7.15).
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Figure 7.15: Dependence of the fit yield on the electron-to-muon PID efficiency cor-
rection. Shown is the effect of an extra overall electron-to-muon correction weight on
top of the event by event weight already applied. The study of the control sample
D∗+ → π+D0 → π+K−l+νl suggests that a 3.8 % higher overall weight gives per-
fect agreement between the electron and the muon sample. This plot shows that a
0.4 % shift in the signal yield would be the result, which is taken as the systematic
uncertainty due to the electron-to-muon PID efficiency correction.

7.3.9 Shape of Background PDF

The fit result might be quite sensitive to a change of the parameters of the background

distribution, PDFtotal Bkgd (6.25). This sensitivity is studied employing the same toy-

Monte-Carlo technique as for the study of the signal shape. All parameters of the

PDFtotal Bkgd are varied within limits which are three times the uncertainty of each

parameter as found in the simulation. The maximum change in the signal yield will

be taken as systematic uncertainty due to each parameter.
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Figure 7.16: Dependence of the fit yield on the size of the background from D+
s →

τντ → π(π0) decays. The size of this background is estimated with 31 ± 6, hence f2

is varied by 20 %, leading to an uncertainty in the signal yield of 0.8 %.

Size and Shape from Background Decays D∗+
s → γD+

s , D+
s → τντ →

π(π0)

This background consists of decays D∗+
s → γD+

s , D+
s → τντ → π(π0), with the

charged pion being misidentified as a muon; it is described in Section 6.7.4. The

ΔM distribution of these decays is described by PDFfake π from τ , (6.19). Since the

background peaks under the signal, (top plot in Figure 6.22), its size cannot be deter-

mined by the fit and is therefore fixed; the fraction estimated from the simulation. A

variation of its expected size of 20 % (the statistical uncertainty if this background)

within the simulated expectation leads to a change in the signal yield of 0.8 % , (Fig-

ure 7.16). The mean and the width are also varied within three times their estimated

error, shown in Figure 7.17 and summarized in Table 7.2.
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Figure 7.17: Dependence of the fit yield on the parameters μ (left) and σ (right),
describing the ΔM distribution of background events from D+

s → τντ → π(π0)
decays.

Size and Shape from Background Decays D∗+
(s) → π0D+

(s) → μνμ

This background consists of decays D∗+
(s) → π0D+

(s) → μνμ with the photon candidate

coming from the π0 of the D∗+
(s) decay; it is described in Section 6.7.3. The ΔM distri-

bution of this background is limited to the range between ΔM = 50 and 100 MeV/c2,

(top plot in Figure 6.21), and is described by PDFγ from π0 , (6.16). Although it is

separated from the signal peak, its size influences the background contribution under

the signal peak. Again, the toy-Monte-Carlo study has been performed to determine

the effect of this background estimate on the signal yield. Varying the size of this

background by 9 % leads to a change in the signal yield of 0.9 %. The parameters

describing the shape of PDFγ from π0 are also studied. Figure 7.18 shows the results

of this study.

Combinatoric Background Shape Parameters

The remaining parameters, describing the combinatoric background, are also varied

within their estimated errors, (Figure 7.19). The resulting changes in the signal

yield for these and all previously mentioned parameters are listed in Table 7.2. The

systematic error due to each background parameter is added in quadrature to yield

a total systematic error due to the uncertainty in the describtion of the background
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Table 7.2: Systematic error due to the uncertainty in the describtion of the back-
ground shape for each parameter of PDFtotal Bkgd (6.25). All errors are added in
quadrature.

Parameter Change in Signal Yield

N1 0.9 %

μ1 0.4 %

σ1 0.3 %

μ2 0.4 %

σ2 0.3 %

N2 0.8 %

μ 0.5 %

σ 0.4 %

a 0.4 %

b 1.5 %

c 0.4 %

ΔM0 0.7 %∑
⊕ 2.3 %

shape of 2.3 %.
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Figure 7.18: Dependence of the fit yield on the size and the shape of the background
from D∗+

(s) → π0D+
(s) → μνμ decays. The size of this background is estimated with

170 ± 13, hence f1 is varied by 9 %, leading to an uncertainty in the signal yield of
0.9 %. The parameters μ1, σ1, Δμ, σ2, and f that describe the ΔM distribution of
this background are varied by three times their standard deviation, estimated from
simulation.
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Figure 7.19: Dependence of the fit yield on the background parameters a, b, c, and
ΔM0, as determined in toy-Monte-Carlo studies. The parameters are varied by three
times their standard deviation, estimated from simulation.



200 CHAPTER 7. RESULTS

7.3.10 Summary of Systematic Errors

A summary of all systematic errors on the branching ratio is given in table 7.3. The

total systematic error amounts to 3.7 %, approximately one third of the statistical

uncertainty.

Table 7.3: Summary of the significant systematic errors.

Source of Systematic Uncertainty Size in %

Tagging 0.6

Muon PID 0.2 ⊕ 0.4

Kaon and pion PID 0.1

Tracking 1.2

p∗
D∗+

s
spectrum 0.7

D+
s → μ+νμ selection 1.4

D+
s → φπ+ selection 0.7

Efficiency – MC statistics 1.1

Signal PDF 0.3

Electron Correction 0.4

Background PDF 2.3

D+
s → φπ+ Background PDF 0.3

B(φ → K+K−) 1.2∑
⊕ 3.7
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7.4 The Treatment of Background from Decays

D+
s → f0(980)π+

In Section 6.9.2 it is shown that the decays D+
s → f0(980)π+ and D+

s → K+K−π+

create a peaking background indistinguishable from the D+
s → φπ+ signal decay.

Its size is estimated as 48 ± 7stat ± 22sys events, or (2.3 ± 1.2) % of the anticipated

D+
s → φπ+ yield, using the cuts in the analysis.

For the calculation of the partial width ratio Γ(D+
s → μ+νμ)/Γ(D+

s → φπ+) in

the next section this background estimate is subtracted from the D+
s → φπ+ signal

yield:

N ′
φπ = Nφπ − NK+K−π = (2093 ± 99) − (48 ± 23) = 2045 ± 99stat ± 23sys (7.10)

The calculation of the branching ratio B(D+
s → μ+νμ) depends on the measured

branching ratio B(D+
s → φπ+) = (4.81 ± 0.52 ± 0.38) % [16]. In that analysis the

reconstruction of the D+
s meson candidates is done in the same manner as it is pre-

sented in here. No measures to suppress the background from D+
s → f0(980)π+ and

D+
s → K+K−π+ decays are taken. The only difference, which effects the amount of

background from these decays in the φπ signal, is the requirement on the invariant

mass M(K+K−) of the kaon pair forming the φ candidate. In the D+
s → φπ+-analysis

of Reference [16], the M(K+K−) must lie within 15 MeV/c2 of the nominal φ mass,

whereas in the analysis presented here a 2σ = 10.2 MeV/c2 requirement is made. That

gives an estimated background of

(2.3 ± 1.2) % × 15 MeV/c2

10.2 MeV/c2
= (3.4 ± 1.7) % (7.11)

in the measurement of the branching ratio B(D+
s → φπ+), that is not accounted for.

A background-corrected branching ratio is given by
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B′(D+
s → φπ+) = (1 − (3.4 ± 1.7) %) × (4.81 ± 0.64) %

= (4.65 ± 0.62 ± 0.08) % ,
(7.12)

where the first and second error are from the measurement and from the correction

uncertainty, respectively.

Rather then using a corrected branching ratio B′(D+
s → φπ+) and a corrected

φπ-signal yield, N ′
φπ, a correction factor RKKπ is calculated which shows more clearly

the effect of the uncertainty introduced by this background.

RKKπ =

(
B′(D+

s → φπ+)

B(D+
s → φπ+)

)/(
N ′

φπ

Nφπ

)
=

1 − (3.4 ± 1.7)%

1 − (2.3 ± 1.2)%
= 0.989 ± 0.005 (7.13)

The error on RKKπ of 0.5 % is treated as an additional systematic uncertainty in

the calculated branching ratio B(D+
s → μ+νμ).

7.5 Determination of the Branching Ratio

B(D+
s → μ+νμ) and the Decay Constant fDs

The ratio of the partial widths of the decays D+
s → μ+νμ to D+

s → φπ+ is given by

Γ(D+
s → μ+νμ)

Γ(D+
s → φπ+)

=
Nμν/εμν

N ′
φπ/εφπ

× Rtag
ε × Cp(D∗+

s ) × B(φ → K+K−)

=
(489 ± 55)/(8.13 ± 0.13) %

(2045 ± 99 ± 23)/(9.90 ± 0.11) %
× 0.986 × 1.014 × (49.1 ± 0.6) %

= 0.143 ± 0.018stat ± 0.006sys,

(7.14)

where the first error is from the statistical uncertainty of the signal yields and the

second is systematic.
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The branching fraction B(D+
s → μ+νμ) is given by

B(D+
s → μ+νμ)

=
Nμν/εμν

Nφπ/εφπ

× Rtag
ε × Cp(D∗+

s ) × B(φ → K+K−) × B(D+
s → φπ+) × RKKπ

=
(489 ± 55)/(8.13 ± 0.13) %

(2093 ± 99)/(9.90 ± 0.11) %
× 0.986 × 1.014

× (49.1 ± 0.6) % × (4.81 ± 0.64) % × (0.989 ± 0.005)

= (6.65 ± 0.81stat ± 0.25sys ± 0.88norm) × 10−3

(7.15)

The same result can be obtained using the previously calculated partial width

ratio and the background-corrected branching ratio B′(D+
s → φπ+) = (4.65±0.62) %

ΓD+
s →μ+νμ

ΓD+
s →φπ+

× B′(D+
s → φπ+) = (6.65 ± 0.81stat ± 0.25sys ± 0.88norm) × 10−3 (7.16)

The decay constant of the D+
s meson, fDs , is calculated from the measured branch-

ing ratio, B(D+
s → μ+νμ), the lifetime of the D+

s -meson, τD+
s

= (146.9 ± 2.7) μm/c,

the CKM-parameter, Vcs = 0.9737 ± 0.007, the Fermi coupling constant, GF =

1.17×10−11MeV−2, and the nominal masses of the D+
s meson, mD+

s
= 1968.3 MeV/c2,

and the muon, mμ = 105.6 MeV/c2. It is given by

fDs =

√√√√√ B(D+
s → μ+νμ)/τD+

s

G2
F

8π
V 2

csmD+
s
m2

μ

(
1 − m2

μ

m2

D+
s

)2

= (281 ± 17stat ± 6sys ± 19norm) MeV ,

(7.17)

where the errors are statistical, systematic, and from the uncertainty of the branching

ratio B(D+
s → φπ+). The error on Vcs is part of the systematic uncertainty.

Previous measurements of B(D+
s → μ+νμ) that are anchored on the decay D+

s →
φπ+ use a value B(D+

s → φπ+)PDG = (3.6 ± 0.9) %, which is currently listed in the

PDG review [30]. For reasons of easier comparison of the results obtained by this

analysis with previous ones, the branching ratio B(D+
s → φπ+)PDG is used to give
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the following two results:

B(D+
s → μ+νμ)PDGnorm

=
Γ(D+

s → μ+νμ)

Γ(D+
s → φπ+)

× B(D+
s → φπ+)PDG

= (0.143 ± 0.018 ± 0.006) × (3.6 ± 0.9) %

= (5.15 ± 0.63stat ± 0.20sys ± 1.29norm) × 10−3

(7.18)

and

(fDs)PDGnorm = (248 ± 15stat ± 6sys ± 31norm) MeV (7.19)

The results are summarized in Table 7.4.

Table 7.4: Results for the partial width ratio Γ(D+
s → μ+νμ)/Γ(D+

s → φπ+), branch-
ing ratio B(D+

s → μ+νμ), and decay constant fDs . The branching ratio and the
decay constant are given for two different assumptions on B(D+

s → φπ+). The errors
on the branching ratio and on fDs are statistical, systematic, and from the error on
B(D+

s → φπ+).

Γ(D+
s →μ+νμ)

Γ(D+
s →φπ+)

0.143 ± 0.018stat ± 0.006sys

BABAR PDG

B(D+
s → φπ+) (4.81 ± 0.64) % (3.6 ± 0.9) %

B(D+
s → μ+νμ) (6.65±0.81±0.25±0.88)×10−3 (5.15±0.63±0.20±1.29)×10−3

fDs (281 ± 17 ± 6 ± 19) MeV (248 ± 15 ± 6 ± 31) MeV
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Conclusions

In this analysis the decay D+
s → μ+νμ has been investigated, and the branching ratio

has been measured:

B(D+
s → μ+νμ) = (6.65 ± 0.81stat ± 0.25sys ± 0.88norm) × 10−3 . (8.1)

The third error is from the uncertainty in the branching ratio B(D+
s → φπ+) = (4.81±

0.64) %, measured in BABAR [16]; it is of similar size (13.3 %) as the statistical and

systematic uncertainties combined (12.3 %). The decay constant fDs is determined,

utilizing B(D+
s → μ+νμ):

fDs = (281 ± 17stat ± 6sys ± 19norm) MeV . (8.2)

Using instead the PDG value for the branching ratio B(D+
s → φπ+) = (3.6 ±

0.9) %, the branching ratio and decay constant

B(D+
s → μ+νμ)PDG = (5.15 ± 0.63stat ± 0.20sys ± 1.29norm) × 10−3 , and

(fDs)PDG = (248 ± 15stat ± 6sys ± 31norm) MeV
(8.3)

are determined. These values may be compared to the current world averages (exclud-

ing this measurement), B(D+
s → μ+νμ) = (5.96±1.44)×10−3 and fDs = 267±33 [30],

which (with the exception of the result from BES) are anchored on the same branching

205
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ratio for D+
s → φπ+, ((3.6±0.9) %). Figure 8.1 shows the value of the decay constant

fDs determined by this measurement in comparison with previous measurements and

with their average.

The current world average of B(D+
s → μ+νμ) has a combined statistical and

systematic uncertainty of 12.1 %; the same precision that is reached by the present

measurement. A new world average can be formed, based on this measurement and

the PDG value B(D+
s → φπ+)PDG:

B(D+
s → μ+νμ) = (5.74 ± 1.37) × 10−3

fDs = (261 ± 31) MeV
(8.4)

The errors on the branching ratio and the decay constant are large, 24 % and

12 %, respectively. Dominating is the 25 % uncertainty of the branching ratio B(D+
s →

φπ+). However, the statistical uncertainty of fDs is now at about 4.4 %, in comparison

to 6.1 % from the previous average. The is the major contribution of this analysis.

It is most interesting to compare the measured decay constant fDs with fD, which

was recently measured by the CLEO-c collaboration, fD = (223± 17) MeV [27]. This

measurement uses e+e− → D+D− events at the D-pair production threshold. In such

events the identification of a D+ or D− meson unambiguously asserts the existence

of an oppositely charged D meson; a high-purity sample of charged D mesons can

be constructed. The measured branching ratio B(D+ → μ+νμ) is hence absolute,

independent of any other measurement. The ratio of the measured values fDs to fD,

from BABAR and CLEO-c respectively, is:

fDs

fD

=
(281 ± 26) MeV

(223 ± 17) MeV
= 1.26 ± 0.12 (8.5)

The measured ratio is found to be in good agreement with the prediction from

the lattice QCD simulation, (fDs/fD)lattice = 1.25 ± 0.07 [10]:

fDs

fD

/(fDs

fD

)
lattice

= 1.01 ± 0.11 . (8.6)

In summary, the branching ratio B(D+
s → μ+νμ) and the decay constant of the
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Figure 8.1: Pseudoscalar decay constant fDs in measurement and theory. Shown are
the present result (both, normalized to the BABAR and the PDG value of B(D+

s →
φπ+)), all previous measurement and their average, and three lattice QCD results with
different degrees of freedom of the dynamic quarks (u, u, d, or u, d, s). The yellow band
indicates that previous experimental world average (without this measurement). All
previous measurements (except the BES measurement) are normalized to B(D+

s →
φπ+)PDG and may be compared to the PDG-normalized BABAR measurement. The
central values are marked by black stars. For the measurements the statistical error is
represented by the thick red line, the additional systematic error is represented by the
thinner green line that ends in vertical bars, and the additional normalization error
is represented by the blue line. The absolute BES measurement has no normalization
error, the OPAL and ALEPH measurement do not quote the exact normalization
error.
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D+
s meson have been measured with a precision that has not yet been achieved by a

single experiment. Together with the absolute measurement of fD by the CLEO-c col-

laboration, an excellent agreement with the Standard Model predictions from lattice

QCD simulations is found. However, the calculation and measurement uncertainties

are still large and definite statements about the validity of the lattice calculation

would be premature.

Until the end of 2008 the BABAR experiment is expected to collect 1 ab−1 of data,

more than 4 times the data used in this analysis. Repeating the presented analysis

on this dataset would result in a measurement of fDs with less than 4 % combined

statistical and systematic uncertainty. Moreover, CLEO-c is anticipated to measure

B(D+
s → φπ+) and fD with a precision of about 2 % each. With the combination of

these three results the ratio fDs/fD can be determined to a precision of less than 5 %,

better than the precision of current lattice calculations.
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Appendix A

Calculation of Γ(D+
s → μ+νμ)

c

s

μ+

νμ

W+

Ds
+

q

-p

k

Figure A.1: Feynman diagram for the decay D+
s → μ+νμ with the four momentum

q = p + k.

In this chapter the partial decay width of the decay D+
s (q) → μ+(p)νμ(k), depicted

as a Feynman diagram in Figure A.1, is calculated. Here q, p, and k are the momenta

of the D+
s , μ+, and νμ respectively. The decay amplitude is of the form

M =
−ieVcs(. . .)

μ

2
√

2 sin θW

×
−igμν − qμqν

m2
W

q2 − m2
W

× ū(k)
−ieγν (1 − γ5)

2
√

2 sin θW

v(p), (A.1)

where (. . .)μ represents the weak quark current. In the decay D+
s → μ+νμ the mo-

mentum transfer q = mDs is much smaller than the mass of the W+ propagator

(q � mW ). In this limit the propagator term is just −i gμν

m2
W

, and the decay amplitude

is

M = i
GF√

2
Vcs(. . .)

μū(k)γμ

(
1 − γ5

)
v(p), (A.2)
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where GF =
√

2e2/(8m2
W sin2 θW ) is the Fermi constant.

It is tempting to write the quark current as ūcVcsγ
μ(1 − γ5)vs̄. That, though,

would be incorrect, since the c and s̄ quarks are not free states but bound into a Ds

meson. One knows, however, that

• M is Lorentz-invariant, so (. . .)μ must be a vector or axial-vector, and

• the Ds is spinless, so that q is the only four-vector available to construct (. . .)μ.

The only Lorentz invariant scalar that can be formed from q is q2 = m2
Ds

, which is

constant. One therefore has

(. . .)μ = qμf(q2) ≡ qμfDs , (A.3)

where fDs is the decay constant of the Ds meson. Inserting equation A.3 into equa-

tion A.2 yields

M = i
GF√

2
Vcs (pμ + kμ) fDs

[
ū(k)γμ(1 − γ5)v(p)

]
= i

GF√
2
VcsfDsmμū(k)(1 − γ5)v(p). (A.4)

Here the Dirac equation is used for the muon and the neutrino, (� p − mμ)v̄(p) = 0

and u(k) �k = 0, respectively. In the rest frame of the Ds the partial decay rate is

dΓ =
1

2mDs

|M|2 d3�p

(2π)32E

d3�k

(2π)32ω
(2π)4δ(q − p − k), (A.5)

where E is the energy of the Ds and ω the energy of the neutrino. Because the BABAR

detector is blind to the muon polarization, |M|2 has to be summed over the spin of

the muon and the neutrino, using the completeness relations

∑
s

us(p)ūs(p) =�p + m and
∑

s

vs(p)v̄s(p) =�p − m. (A.6)
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It becomes

|M|2 =
G2

F

2
|Vcs|2f 2

Ds
m2

μTr
[
�k(1 − γ5)(�p − mμ)(1 + γ5)

]
(A.7)

= G2
F |Vcs|2f 2

Ds
m2

μTr
[
�k(1 − γ5)(�p − mμ)

]
(A.8)

= G2
F |Vcs|2f 2

Ds
m2

μTr [�k�p ] (A.9)

= 4G2
F |Vcs|2f 2

Ds
m2

μ(k · p) (A.10)

From (A.7) to (A.8) the relations γμγ5 = −γ5γμ and (1 − γ5)2 = 2(1 − γ5) were

applied. The step from (A.8) to (A.9) uses the fact that the trace over the product

of an odd number of γ-matrices is 0. In the Ds rest frame, (�k = −�p),

k · p = Eω − �k · �p = Eω + k2 = ω(E + ω). (A.11)

Putting these together results in

Γ =
G2

F |Vcs|2f 2
Ds

m2
μ

(2π)22mDs

� d3�p d3�k

Eω
δ(mDs − E − ω)δ(3)(�p + �k)ω(E + ω). (A.12)

The integration of the angular part of �k simply gives 4π, since there is no angular

dependency in |M|2. Integrating over d3�p, taken care of by the δ(3) functional, leads

to

Γ =
G2

F |Vcs|2f 2
Ds

m2
μ

(2π)22mDs

4π

∞�
0

dω ω2

(
1 +

ω

E(ω)

)
δ(mDs − E(ω) − ω), (A.13)

where E(ω) =
√

m2
Ds

+ ω2. With f(ω) ≡ mDs −E(ω)− ω and |f ′(ω)| = 1 + ω/E(ω)

the δ-functional can be written as

δ(f(ω)) =
δ(ω − ω0)

1 + ω0

E(ω0)

, (A.14)

where

ω0 =
m2

Ds
− m2

μ

2mDs

(A.15)
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is the root of f(ω). This simplification uses the property of the Dirac δ-functional

δ(f(ω)) =
∑

ωi, f(ωi)=0

δ(ω − ωi)∣∣ ∂f
∂ω

∣∣
ω=ωi

, (A.16)

The result of the integration in (A.13) is ω2
0, and the partial decay width is

Γ =
G2

F

8π
|Vcs|2f 2

Ds
mDsm

2
μ

(
1 −

m2
μ

m2
Ds

)2

. (A.17)



Appendix B

IFR Tracking Using a Kalman

Filter

B.1 Introduction

In the March 1960 issue of the magazine “Journal of Basic Engineering”, published by

the American Society of Mechanical Engineering, R.E. Kalman1 published a paper

[48], describing a recursive solution to the so called “Wiener problem”, that deals

with the prediction of the response of a linear dynamic system in the presence of

random Gaussian noise. The simplest solution to this problem is called “Wiener

Filter”. One of the obstacles found in earlier works was the often enormous amount

of computing needed for practical filter application, usually growing exponentially

with the measurement complexity. In his now famous paper Kalman describes a new,

recursive, approach in which the number of calculation steps grows linearly with the

number of measurements, opening an enormous range of applications for the “Kalman

Filter”.

In experiments in high energy physics Kalman filters are for instance used for

fitting the trajectory of a particle to the measurements provided by the tracking

system. The dynamic system is the charged particle passing in a magnetic field

1Rudolf Emil Kalman, born in Budapest, Hungary, on May 19, 1930, Professor at Stanford
1964-71
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through the detector, while losing energy through ionization of the traversed material.

The two sources of random noise are the multiple scattering and the fluctuation in

the predicted energy loss.

B.2 IFR Tracking and PID

The IFR of the BABAR detector is used to separate muons from charged pions. Pions

that travel through material undergo a hadronic interaction within a distance L with a

probability of 1−e−L/λ, where λ is the hadronic interaction length, the mean free path

of a particle between two hadronic interactions. Pions that travel straight outward

through the IFR traverse about 5 interaction lengths; the likelihood for a non-elastic

interaction – the decay of the particle – is about 99.3 %. Muons on the other hand

lose their energy mainly through ionization of the material. Energy loss through

photon radiation becomes relevant only at a momentum above 10 GeV/c. Nuclear

losses dominate in the momentum region below 100 MeV/c. A muon traversing the

whole of the IFR typically loses about 250 MeV in energy.

The IFR is equipped with 19 layers of RPC’s, interlaced with the steel plates,

which measure the position of the passing particle in two dimensions. The single

hit resolution is σhit = 1.5 cm. The trajectory of a charged particle in the IFR is

extrapolated from the last known position and direction of the particle in the DCH.

The bending of the particle path through the magnetic field and the energy loss in

the detector material is taken into account during that extrapolation, for which the

forth-order Runge-Kutta approximation is used. Hits, registered in the RPCs, that lie

within four σhit from the extrapolated hit position are associated with the trajectory.

From this hit map a number of variables are calculated, which are used for particle

identification. Two of these variables have a particularly large discrimination power to

separate muons from charged pions. One is the difference Δλ between the measured

number of interaction lengths traversed by the particle and the expected number if

the particle were minimum ionizing,

Δλ = λmeas − λexp. (B.1)
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The other variable is a χ2 variable, measuring the agreement of the associated hits

with the expected trajectory,

χ2
trk =

∑
hits

(xmeas − xexp)
2

σ2
hit

, (B.2)

where xmeas and xexp are the measured and expected hit positions. For muons Δλ

should be zero, and the distribution of χ2
trk, normalized by the degrees of freedom

(d.o.f.), should peak at one. Pions should have a negative Δλ due to their high

likelihood to decay before leaving the detector. Their χ2
trk/d.o.f. should vary over

a large range of values, with only a small excess around 1, originating from pions

traversing large parts of the IFR without a non-elastic interaction.

The initial approach calculated the expected path as an extrapolation from the

DCH; no IFR hit information is used. Multiple scattering, and to a lesser extent

the fluctuation in energy loss, change the true path of a particle from its expectation.

This broadens the χ2
trk distribution for muons and decreases the muon-pion separation

power of this variable.

This can be avoided if the IFR hit information itself, including the effect of multiple

scattering and energy-loss fluctuations, is used to determine the most likely particle

trajectory. This has been implemented using a Kalman Filter. The implementation

however is restricted to multiple scattering, the less significant fluctuations in energy

loss are not considered. The errors and correlation of the parameters describing the

particle trajectory and the measurement errors are taken into account.

B.3 Multiple Coulomb Scattering through small

Angles

The stochastic nature of the Coulomb multiple scattering is that of a Markov process.

A particle passing through material is deflected by many small-angle Coulomb scatters

on the material nuclei. Hadrons also have a small contribution from strong interaction

scatters; in addition a small amount of the scatters have a large deflection angle. Both
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effects are ignored in the following discussion. The small-angle Coulomb scattering

is a three-dimensional process. To treat it mathematically it is sufficient to discuss

the planar projection of the scattering process. After the particle travels a distance

L through the material with a radiation length X0, it is displaced from its original

path by δxθ and its direction changed by δθ. The variance of this angle is

θ0 =
13.6 MeV

βcp

√
L

X0

[
1 + 0.038 ln

(
L

X0

)]
, (B.3)

where p and βc are the momentum and velocity of the incident particle, respectively.

The constants in (B.3) are determined from fits to the Moliere distribution [49–52].

The angular distribution of δθ is given by

1√
2πθ0

e
− (δθ)2

2θ2
0 . (B.4)

B.4 General Kalman Filter Theory

Assume a process is described by an n-dimensional state vector α ∈ Rn and a function

αk = f(αk−1,ωk−1), (B.5)

governing its time development in discrete steps, indexed by k. ωk represents the

process noise present at step k. At each step a measurement of the current state is

available,

zk = h(αk,νk), (B.6)

where the νk represents the measurement error. The covariance matrices of ωk and

νk are Qk and Rk respectively. The exact state α of the process is unknown, only

an estimate α̂ can be made. Also unknown are the size of the process noise ωk and

the measurement error νk at each step k. From the previous estimate α̂k−1, under

a no-process-noise assumption (ωk = 0), the current state ᾱk can be extrapolated.



B.4. GENERAL KALMAN FILTER THEORY 219

Assuming no measurement error (νk = 0), the measurement z̄k can be predicted:

ᾱk = f(α̂k−1,0), (B.7)

z̄k = h(ᾱk,0), (B.8)

The extrapolation ᾱk is not yet the estimate α̂k for step k, which is calculated from the

ᾱk and the measurement zk. Let Δz denote the difference between the measurement

and its prediction,

Δzk = zk − z̄k. (B.9)

The Kalman Filter in its simplest form applies only to linear functions f and h.

If the process or the relationship between the process state and the measurement is

non-linear, the extended Kalman filter must be used. This requires a linearization of

f and h through a first order Taylor expansion. For this the Jacobian matrices of f

and h with respect to α, ω, and ν are calculated. The process Jacobians are

Ak [ij] =
∂fi

∂αj

(α̂k−1,0) and (B.10)

W k [ij] =
∂fi

∂ωj

(α̂k−1,0), (B.11)

and the measurement Jacobians are

Hk [ij] =
∂hi

∂αj

(ᾱk,0) and (B.12)

V k [ij] =
∂hi

∂νj

(ᾱk,0), (B.13)

all evaluated with the estimate α̂k−1. The process Jacobians are used to calculate the

stepwise development of the n × n error covariance matrix of the state parameters,

P k, which is defined as

P k = 〈ΔαkΔαT
k 〉, (B.14)

with Δαk = αk − α̂k. The two equations that describe the extrapolation of the

process state and its error covariance matrix from the previous step k − 1 to the
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current step k are summarized in the time update equations

ᾱk = f(α̂k−1,0) and (B.15)

P̄ k = AkP k−1A
T
k + W kQkW

T
k . (B.16)

In (B.16) the correlated process noise errors add to the state error covariance matrix.

To weight the importance of the measurement of step k, whose error is given by

Rk, relative to all previous measurements, whose errors are accumulated in P k, the

Kalman gain, Kk, is defined,

Kk = P̄ kH
T
k

(
HkP̄ kH

T
k + V kRkV

T
k

)−1
. (B.17)

Using the gain Kk and the measurement zk, the process state and its error covariance

matrix are updated according to the measurement update equations

α̂k = ᾱk + KkΔzk and (B.18)

P k = (I − KkHk)P̄ k. (B.19)

This iterative process repeats until the last measurement is reached, resulting in a set

of state vectors α̂k describing the process in its time development.

B.5 Implementation for the IFR

B.5.1 Definition of the Track and Measurement Representa-

tions

What has been generally described as process in the previous section is, in the concrete

implementation of particle tracking in the IFR, the passing of a charged track through

the layers of the IFR. The 6-dimensional state vector (n = 6) is composed of the
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position and the momentum of the particle,

α =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x

y

z

px

py

pz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B.20)

Each RPC layer measures the track position in two dimensions, whose orientations

are, with the exception of the innermost RPC, orthogonal to each other. The 2-

dimensional measurement vector (m = 2) depends on the orientation of the RPC

plane within the IFR,

z =

(
zu

zv

)
= zu û + zv v̂, (B.21)

where û = (ux, uy, uz) and v̂ = (vx, vy, vz) are unit vectors that span the RPC plane,

and that point along the two directions of the RPC strips in each layer. The mea-

surements of the position in the two dimensions are independent of each other. The

measurement error covariance matrix is

Rk =

(
σ2

m 0

0 σ2
m

)
, (B.22)

with σm = 1.5 cm.

The process noise ω is the multiple Coulomb scattering. It is described by two

variables, the previously introduced scatter angle δθ and the spatial offset δxθ, now

normalized to the thickness of the traversed material,

ωk =

⎛⎝ δxθ/L

δθ

⎞⎠ . (B.23)



222 APPENDIX B. IFR TRACKING USING A KALMAN FILTER

B.5.2 The Process Covariance Matrix

From (B.4) follows immediately

〈
(δθ)2

〉
=
〈(

δθ − 〈δθ〉
)2〉

= θ2
0. (B.24)

The scatter angle δθ is the sum of a number of independent small angle single scatters,

δθ =
∑

i θi. Each of those single scatters contributes to the final displacement δxθ =∑
liθi, where li is the distance of the i-th single scatter point from the point where

the displacement is measured. For the remainder of the covariance matrix Qk two

terms are calculated,

〈δxθδθ〉 =
〈∑

liθi

∑
θi

〉
=

〈
l̄
(∑

θi

)2
〉

=
〈
l̄
〉 〈

(δθ)2
〉

=
L

2
θ2
0

(B.25)

and

〈
(δxθ)

2
〉

=

〈(∑
liθi

)2
〉

=

〈(∑
li

)2 (∑
θi

)2
〉

=

〈∑
l2i

(∑
θi

)2
〉

= 〈 l2 〉
〈
(δθ)2

〉
=

L2

3
θ2
0,

(B.26)

where the independence of the scatter angles θi and the scatter locations li has been

used. The process covariance matrix is

Qk =

〈(
δxθ

L
, δθ

)T (
δxθ

L
, δθ

)〉
= θ2

0

⎛⎜⎜⎝
1

3

1

2
1

2
1

⎞⎟⎟⎠ . (B.27)
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B.5.3 The Process Jacobians

The process Jacobians Ak and W k are difficult to calculate, since the process of a

particle traversing the IFR has no closed analytic expression. Rather the particle

trajectory is extrapolated from the previous estimate αk−1 to ᾱk using the detector

model and the magnetic field information, a method dubbed swimming of the particle.

Ak 6 × 6 Hk 2 × 6
W k 6 × 4 V k 2 × 2

Table B.1: Dimensions of Jacobians

The Jacobian Ak

The 6×6 matrix Ak relates the previous estimate αk−1 with the current extrapolation

ᾱk.

ᾱk = f(α̂k−1) = α̂k−1 + Δα

= (I6 + Ak(px, py, pz)) α̂k−1

(B.28)

where I6 is the six-dimensional identity matrix. The matrix Ak depends only on the

particle momentum but not on the particle position. The increment Akα̂k−1 is the

output of the steps algorithm, the swimmer. The swimmer is stepping through the

IFR from layer k − 1 to layer k using Runge-Kutta approximation of the equations

describing the motion of a charge particle in a magnetic field. The precision of this

method is of the order 10−10. For each of these steps the average momentum p̄ and

the distance L between the start and end point of the step are calculated. The matrix

Ã, relating the states before and after a single step, is

Ã =

⎛⎝ I3
L

p
I3

03 M

⎞⎠ , (B.29)
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with the 3×3 matrix M describing the rotation the track direction undergoes during

this step. The matrix M is given by

M = cos φ I3 + (1 − cos φ)

⎛⎜⎜⎜⎝
a2

1 a1a2 a1a3

a1a2 a2
2 a2a3

a1a3 a2a3 a2
3

⎞⎟⎟⎟⎠+ sin φ

⎛⎜⎜⎜⎝
0 −a3 a2

a3 0 −a1

−a2 a1 0

⎞⎟⎟⎟⎠
= cos φ I3 + (1 − cos φ) âT â + sin φ â ×

(
êx êy êz

)
, (B.30)

where â is the axis of the track rotation and φ is the rotation angle. Assuming N is

the number of steps involved to swim a particle trajectory from region k−1 to region

k the matrix Ak can be written as

Ak = ÃN ÃN−1 · · · Ã2 · · · Ã1 (B.31)

=

⎛⎜⎝ I3
L1

p1

+

(
· · ·
(

LN−1

pN−1

+
LN

pN

MN−1

)
· · ·
)

M 1

03 MNMN−1 · · ·M 2M 1

⎞⎟⎠ . (B.32)

The calculation of Ak is the task of the swimmer.

The Jacobian W k

The Jacobian W k, the derivative of the process dynamics f(α,ω) with respect to the

process noise ω can be written as the product of Ak and a matrix T k that transforms

ωk into the state coordinate system,

W k [ij] =
∂fi

∂ωj

(α̂k−1, 0)

=

(
∂fi

∂αl

∂αl

∂ωj

)
(α̂k−1, 0)

= Ak [il]
∂αl

∂ωj

(α̂k−1, 0)

= Ak [il]T k [lj] = (AkT k)[ij].

(B.33)
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Thus (B.16) can be written as

P̄ k = Ak

(
P k−1 + T kQkT

T
k

)
AT

k . (B.16’)

In order to calculate the 6 × 4 matrix T k, the process noise ωk is extented to four

dimensions,

ωk =

⎛⎜⎜⎜⎜⎝
δxθt/L

δxφt/L

δθt

δφt

⎞⎟⎟⎟⎟⎠ , (B.34)

describing the multiple scattering in the two perpenticular planes n̂t × θ̂t and n̂t × φ̂t.

In (B.34) δxθt , δxφt , δθt, and δφt are the displacements and the deflection angles in

the two planes. The orthogonal unit vectors

n̂t =

⎛⎜⎜⎝
px

py

pz

⎞⎟⎟⎠ /
√

p2
x + p2

y + p2
z =

⎛⎜⎜⎝
sin θt cos φt

sin θt sin φt

cos θt

⎞⎟⎟⎠ , (B.35)

θ̂t =

⎛⎜⎜⎝
cos θt cos φt

cos θt sin φt

− sin θt

⎞⎟⎟⎠ , and (B.36)

φ̂t =

⎛⎜⎜⎝
− sin φt

cos φt

0

⎞⎟⎟⎠ (B.37)
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form a right handed system. Writing Δαk = T k ωk down explicitly,

Δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x

y

z

px

py

pz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L cos θt cos φt −L sin φt 0 0

L cos θt sin φt L cos φt 0 0

−L sin θt 0 0 0

0 0 p cos θt cos φt −p sin φt

0 0 p cos θt sin φt p cos φt

0 0 −p sin θt 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
δxθt/L

δxφt/L

δθt

δφt

⎞⎟⎟⎟⎟⎠

(B.38)

leads to

T k =

(
L C1 0

0 p C1

)
, where C1 =

⎛⎜⎜⎝
cos θt cos φt − sin φt

cos θt sin φt cos φt

− sin θt 0

⎞⎟⎟⎠ (B.39)

The noise covariance matrix Qk, extended to a 4×4 matrix, transforms into the state

coordinate system according to

T kQkT
T
k = θ2

0 T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
3

0 1
2

0

0 1
3

0 1
2

1
2

0 1 0

0 1
2

0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
T T = θ2

0

⎛⎜⎝
1

3
L2 C2

1

2
Lp C2

1

2
Lp CT

2 p2 C2

⎞⎟⎠ , (B.40)
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where

C2 =

⎛⎜⎜⎜⎜⎝
1 − sin2 θt cos2 φt − sin2 θt sin φt cos φt − sin θt cos θt cos φt

− sin2 θt sin φt cos φt 1 − sin2 θt sin2 φt − sin θt cos θt sin φt

− sin θt cos θt cos φt − sin θt cos θt sin φt sin2 θt

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
1 − d2

x −dxdy −dxdz

−dxdy 1 − d2
y −dydz

−dxdz −dydz 1 − d2
z

⎞⎟⎟⎟⎟⎠ , with �d = �p/p

(B.41)

B.5.4 The Measurement Jacobians

The measurement Jacobians Hk and V k are easier to calculate then the process

Jacobians, since h has a simple analytic expression. The function h relates the

coordinate system of the RPCs (û, v̂, û× v̂), in which the measurements z are taken,

with the global BABAR coordinate system (x̂, ŷ, ẑ) in which the state vector α is

described.

The Jacobian Hk

The 2 × 6 matrix Hk transforms the error of the state vector Δαk into the local

two-dimensional coordinate system of the current RPC plane, which is defined by

two orthogonal unit vectors û and v̂. The RPC plane has an offset vector �rp, which

points from the origin of the global coordinate system into the plane, so that the

points in the plane can be described by

�rp + β�u + γ�v, (B.42)

where β and γ are the local coordinates of the point. The state vector can be written

as

α = (x, y, z, px, py, pz) = (�rt, pn̂t) . (B.43)
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The intersection between a line, the approximation of the trajectory in the vicinity

of the RPC, and a plane is given by

�rt + αn̂t = �rp + β�u + γ�v (B.44)

which gives the relation between the local coordinates β and γ and x, y, and z.

Equation (B.44) can be rewritten as⎛⎜⎜⎝
ax ux vx

ay uy vy

az uz vz

⎞⎟⎟⎠
⎛⎜⎜⎝

α

β

γ

⎞⎟⎟⎠ =

⎛⎜⎜⎝
x − rp x

y − rp y

z − rp z

⎞⎟⎟⎠ , (B.45)

or ⎛⎜⎜⎝
α

β

γ

⎞⎟⎟⎠ = B(�rt − �rp) (B.46)

The partial derivatives of h with respect to x, y, and z can now be calculated as

∂h1

∂xi

=
∂β

∂xi

= B2i (B.47)

∂h2

∂xi

=
∂γ

∂xi

= B3i (B.48)

The matrix Hk is

Hk =

⎛⎜⎜⎝
∂h1

∂x

∂h1

∂y

∂h1

∂z
0 0 0

∂h2

∂x

∂h2

∂y

∂h2

∂z
0 0 0

⎞⎟⎟⎠ =

(
B21 B22 B23 0 0 0

B31 B32 B33 0 0 0

)
(B.49)
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More elegantly the elements of B can be written as

B2i =
(v̂ × n̂t)i

(v̂ × n̂t) · û
(B.50)

B3i =
(û × n̂t)i

(û × n̂t) · v̂
, (B.51)

simplifying

Hk =
1

(û × v̂) · n̂t

(
(v̂ × n̂t)

T �0

(n̂t × û)T �0

)
(B.52)

The Jacobian V k

The 2× 2 matrix V k is just the identity matrix I2, since the measurement errors are

already in the RPC local coordinate system,

V k =

(
1 0

0 1

)
. (B.53)

B.5.5 Calculation of χ2

As previously mentioned, a variable χ2
trk is used to quantify the agreement of the

measured hits with the predicted trajectory. Each RPC layer contributes toward the

χ2 with its measurement zk according to

χ2
trk =

∑
k

χ2
k =
∑

k

(Δzk)
T R−1

k

(
I − HkP kH

T
k R−1

k

)
(Δzk) , (B.54)

where the first term comes from the measurement uncertainty and the second term

from the error in the track parameters.

B.6 Results

The most important aspect of an improved tracking algorithm is the effect it has

on the muon identification. The identification of muons in the BABAR detector is
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performed by neural net based muon selectors with different efficiencies. It is desired

that the pion rejection power of the selectors goes up, while the muon selection

efficiency stays constant. The selector performance is evaluated using a muon and a

charged pion control sample, (Section 4.3.1).

Distribution of
√

χ2
trk/d.o.f. and Muon Selector Performance

The variable that changes with the employment of the Kalman filter, and that under-

lies the muon selection, is χ2
trk, Figure B.1 compares the distribution of

√
χ2

trk/d.o.f.

for muons from before and after the Kalman filter algorithm was implemented. The

Kalman filter improves
√

χ2
trk/d.o.f., resulting in a narrower distribution for muons,

with a peak centering at one. The
√

χ2
trk/d.o.f. distribution of pions looks distinctly
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Figure B.1: The distribution of
√

χ2
trk/d.o.f. for muons (left) and pions (right) before

(red) and after (blue) the Kalman filter was implemented. The data are taken from
Run 1 through Run 3.

different from that of muons with the Kalman filter employed. The small excess

around 1 includes pions that traverse the IFR for some distance before they decay.

After the Kalman filter algorithm had been implemented, the neural nets of the

muon selectors were retrained. The muon and pion selection efficiencies of the tight

neural net based muon selector, which is used in this analysis to select the signal

muons, are shown in Figure B.2 as a function of the particle momentum. With an

only slightly lower muon efficiency the pion selection rate has decreased by at least

30 % over the entire momentum range.
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Figure B.2: Selection efficiency of the tight neural net based muon selector as a func-
tion of the particle momentum for muons (left) and pions (right). The red histograms
show the performance before the Kalman filter implementation, the blue histograms
thereafter. The data are taken from Run 2.

In order to fulfill the demands that the broad spectrum of BABAR physics analysis

has on the efficiency and purity of the muon selection, four different neural net based

muon selectors were defined. Figure B.3 shows the performance of each selector in the

forward and the central region of the detector, for low and high momentum muons

and pions. Plotted is the pion rejection rate versus the muon efficiency. The closer

that a selector approaches the upper right corner, the better is its performance. With

the Kalman filter implemented the selectors perform consistently better.

Conclusion and Remarks

The employment of the Kalman filter technique within the IFR tracking algorithm

has been a great success. Especially in the high-momentum region, which is most

important for this analysis, the pion rejection rate increased, in absolute terms, by

0.5 % to 2 %, while keeping the muon efficiency constant. This translates to a drop

in the pion misidentification rate of 15 % to 30 % for the tight selectors, which are

characterized by a lower muon efficiency and a higher pion rejection rate.

There will always be a small amount of charged pions that traverse the IFR

without any inelastic interaction. Exactly like muons they only lose their energy

through minimum ionization. Due to the similar masses of charged pions (140 MeV)

and muons (106 MeV) the difference in energy loss has negligible effect on the particle
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Figure B.3: Performance curves – pion rejection versus muon efficiency – for differ-
ent momentum and theta ranges. The red curves show the performance before the
Kalman filter implementation, the blue curves thereafter. The data are taken from
Run 2.
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trajectory within the position resolution of the IFR. For that reason it is not possible

to determine the true nature of these pions and a small rate of pions faking muons

will remain.

Multiple scattering has a non-Gaussian contribution at large scattering angles.

This part of the scatter spectrum can not be handled by the Kalman filter, resulting

in a large tail to the right side of the χ2
trk/d.o.f. spectrum, or even the loss of the

particle trajectory. This was already the case in the IFR tracking algorithm before

the Kalman filter was implemented, hence there is no loss in performance after the

Kalman filter was employed.
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