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Abstract

The physics of this note is divided into two parts. The first part measures

the Λc → πkp continuum momentum spectrum at a center of mass energy of

10.54 GeV/c. The data sample consists of 15,400 Λc baryons from 9.46 fb−1

of integrated luminosity. With more than 13 times more data than the best

previous measurement, we are able to exclude some of the simpler, one parameter

fragmentation functions.

In the second part, we add the Λc → K0p mode, and look for events with a

Λ+
c and a Λ̄−

c in order to look for “popcorn” mesons formed between the baryon

and antibaryon. We add on-resonance data, with a kinematic cut to eliminate

background from B decays, as well as BaBar run 3 and 4 data to increase the total

data size to 219.70 fb−1. We find 619 events after background subtraction. After

a subtraction of 1.06±.09 charged pions coming from decays of known resonances

to Λc + nπ, we are left with 2.63±.21 additional charged pions in each of these

events. This is significantly higher than the .5 popcorn mesons per bayon pair

∗Work supported by Department of Energy contract DE-AC02-76SF00515
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used in the current tuning of Pythia 6.2, the most widely used Monte Carlo

generator.

The extra mesons we find appear to be the first direct evidence of popcorn

mesons, although some of them could be arising from hypothetical unresolved,

unobserved charmed baryon resonances contributing decay mesons to our data.

To contribute a significant fraction, this hypothesis requires a large number of

such broad unresolved states and seems unlikely, but can not be completely ex-

cluded.
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CHAPTER 1

Introduction

When a quark and antiquark move apart at ultrarelativistic velocities, their

kinetic energies are seen to be converted into new particles. This process is known

as hadronization. The new particles can be classified into two types: mesons,

which contain two quarks, and baryons, which contain three quarks.

Because the sum of the quantum numbers of the constituents of the final

state particles must be the same as in the original quark-antiquark pair, any

newly created quarks must arrive in matter-antimatter pairs. Since quarks are

created in pairs and baryons contain an odd number of quarks, we will always see

an even number of baryons in any hadronization reaction. In fact, we will have

an equal number of baryons and antibaryons.

Reactions resulting only in final state mesons can be described as coming from

a series of newly created quark-antiquark pairs arranged in a string like geometry

along the line of the original quark-antiquark relative velocity. Each member of

a newly created quark-antiquark pair joins up with the quark or antiquark from

a neighboring pair, forming a series of mesons which can be reconstructed from

detector data.

When a baryon-antibaryon pair is formed, the situation is more complicated.

Baryons can form adjacent to each other in the chain, or they can be formed

with one or more mesons in between them. In the second case, the swapping of
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partners inside the chain requires longer flight lengths of virtual quarks, which will

lead to a suppression factor. This will be explained in more detail in chapter 2.

The mesons formed in the middle of the baryon-antibaryon pair are known as

popcorn mesons. Popcorn mesons were originally proposed as a way to explain

the absence of strong flavor correlations in baryon-antibaryons pairs. Studies

attempting to find mesons in the rapidity gap between baryon-antibaryon pairs

however, have not been able to give conclusive results.

In 2001, the CLEO collaboration noticed, in 10.6 GeV electron-positron colli-

sions resulting in a jetlike event with both a Λ+
c and a Λ̄c

−
, that no other baryons

were observed in the event [1]. This is an interesting result because the Λc
∗ are

always seen to move nearly back to back, but the current Monte Carlo generators

are unable to create correlated baryons in opposite jets.

This type of event geometry is the perfect place to look for popcorn mesons,

since we have a baryon-antibaryon pair with a large rapidity difference, and noth-

ing but mesons in the rest of the event. The only background we have to worry

about is the decay products of excited charmed baryons going to a Λc + pions.

Of course, the large rapidity difference of leading Λ+
c and a Λ̄c

−
might bias our

result. We might expect some kind of scaling to occur for more typical events

with smaller baryon-antibaryon rapidity differences.

Before searching for popcorn, we will first measure the momentum spectrum

of individual Λc baryons in jetlike events. This is also a new area of research since

most of the fragmentation functions used to describe the momentum spectrum

were specifically designed to model meson production, and the previous best

measurement of the Λc momentum spectrum used only 1/13 as much data.

This thesis is organised as follows. Chapter 2 reviews quantum chromody-

∗unless stated otherwise, charge conjugation is implied throughout this thesis
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namics and provides an introduction to the various hadronization models, which

are used to describe the Λc momentum spectrum. Unfortunately, none of the

current implementations of the models are able to create events with two Λc and

no other baryons.

Chapter 3 gives a short description of the BaBar detector, where the data for

this analysis were collected. Chapter 4 describes how information from BaBar’s

drift chamber and Cherenkov detector are combined to identify charged particles

over a wide momentum range. It also discusses how neutral Λ and K0
s particles

are identified. Chapter 5 describes how charged pions, kaons and protons are

reconstructed in order to make the continuum spectrum measurement of Λc →
πKp. The actual measurement and various cross checks are made in chapter 6

along with an estimation of the systematic errors. In chapter 7 we compare

our result to the previous CLEO measurement and to the various hadronization

models. Finally in chapter 8, we search for popcorn mesons in events which

contain both a Λ+
c and a Λ̄c

−
, with conclusions in Chapter 9.
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CHAPTER 2

Hadronization

When we collide high energy beams of electrons and positrons, we often see the

reaction e+e− → qq̄. As the quark-antiquark pair move apart, it is believed that

the strong force between them eventually creates a linear potential with an energy

density of the order of 1 GeV per fermi. New quark-antiquark pairs are created

from this energy and rearrange themselves into mesons and baryons which are

concentrated into back to back jets aligned approximately along the original qq̄

flight direction. This process, know as hadronization, is responsible for a large

fraction of the multiparticle events seen in e+e− collisions.

The early stages of hadronization, which determine the topology of the event

— the thrust, planarity etc. of the spatial distribution of final particles — can

be described by perturbative Quantum Chromodynamics (QCD). However, as

more particles are created, the typical momentum transfer drops, increasing the

QCD coupling constant to the point where perturbative calculations are no longer

possible. It is in these later stages of hadronization that the types of final state

particles and their momentum correlations are determined. Here we must rely

on phenomenological models, which will be described in this chapter, along with

the results of some previous hadronization experiments. This thesis is a part of

the programatic progress in understanding this process.
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2.1 QCD

The strong forces responsible for hadronization are described by Quantum Chro-

modynamics (QCD), which, like electroweak theory, is based on gauge invariance

[2]. The force-carrying particles, know as gluons, come about by starting with a

free quark Lagrangian and then adding new terms in a way that makes the total

Lagrangian invariant to special unitary transformations of color. The free quark

Lagrangian is

L0 = q̄(iγμ∂μ − m)q (2.1)

where q is a three component vector describing the red, blue and green compo-

nents of the quark.

q =

⎛
⎜⎜⎜⎜⎜⎝

r

b

g

⎞
⎟⎟⎟⎟⎟⎠

Unitary transformations change the amounts of redness, blueness and greenness

and their phases while keeping |r|2 + |b|2 + |c|2 constant. Special unitary trans-

formations are the set of all unitary transformations except those that globally

change the phases of all three colors by the same amount. They can be written

as

U = eiαa(x)λa

where αa are arbitray angles of rotation and λa are the eight hermitian matrices

shown in table 2.1. The transformations described by these matrices, known as

the Gell-Mann matrices, will correspond to the eight gluons.

Later we will need notation for the commutators of these matrices

[λα, λβ] = 2fαβγλγ

.

10



λ1 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0

1 0 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎠ λ2 =

⎛
⎜⎜⎜⎜⎜⎝

0 −i 0

i 0 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎠ λ3 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0

0 −1 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎠

λ4 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1

0 0 0

1 0 0

⎞
⎟⎟⎟⎟⎟⎠ λ5 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 −i

0 0 0

i 0 0

⎞
⎟⎟⎟⎟⎟⎠ λ6 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0

0 0 1

0 1 0

⎞
⎟⎟⎟⎟⎟⎠

λ7 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0

0 0 −i

0 i 0

⎞
⎟⎟⎟⎟⎟⎠ λ8 = 1√

3

⎛
⎜⎜⎜⎜⎜⎝

1 0 0

0 1 0

0 0 −2

⎞
⎟⎟⎟⎟⎟⎠

Table 2.1: Eight Gell-Mann matrices

Now, lets see how an infinitesimal special unitary transformation changes L0.

The color vector and derivative change in the following ways

q(x) ⇒ [1 + iαa(x)λa]q(x)

∂μq(x) ⇒ [1 + iαa(x)λa]q(x) + iλaq(x)∂μαa(x). (2.2)

The mass term in the free Lagrangian (2.1), is unchanged by this transformation,

but the derivative of αa in (2.2) must be compensated in some way in order to

preserve the invariance of the Lagrangian. This is done by replacing the derivative

in (2.1) by a covariant derivative of the form

Dμ = ∂μ + igλaG
a
μ

11



where Ga
μ are the new gluon fields which transform like

Ga
μ ⇒ Ga

μ − 1

g
+ ∂μαa − fabcαbG

c
μ

and g is a model parameter to be determined by experiment (αs = g2

4π
). These

gluon fields will need to have a kinetic energy term, which, as in the case of the

photon, is proportional to the contraction of the field strength tensor, Ga
μν . The

field strength tensor is defined by

[Dμ, Dν ] = igλaG
a
μν .

Now, our total Lagrangian is

L = q̄(iγμ∂μ − m)q − g(q̄γμλaq)G
a
μ − 1

4
Ga

μνG
μν
a (2.3)

where

Ga
μν = ∂μGa

ν − ∂nuGa
μ − gfabcG

b
μG

c
ν . (2.4)

The fabc term in (2.4) is due to the non-abelian nature of the Gell-Mann ma-

trices. When substituted into (2.3), this term leads to gluon-gluon interactions

which will show up as 3-gluon and 4-gluon vertices in Feynman diagrams. The

non-abelian term causes the gluons exchanged between quarks to confine them-

selves in a narrow tube. This result will be used as the starting point for the

string model of hadronization described in the next section.

The existence of a 3-gluon vertex also means that the Feynman diagrams will

contain gluon loops, which will modify the renormalization procedure which leads

to the running coupling constant. To first order, the coupling constant is

αs(Q
2) =

αs(μ
2)

1 − k log(Q2

μ2 )

12



where μ is a reference momentum, and k is 1
3π

for QED and - 7
4π

for QCD.

The change in sign of k means that for QCD the coupling will be high for low

momentum transfers. The current PDG value for αs at 665 MeV is 1.0 + 0.4 -

0.2. Since the momentum transfers inside of hadrons will be much lower than 665

MeV, we will not be able to use perturbation theory to describe the hadronization

process, and we will have to turn to the phenomenological models described in

the next section.

2.2 Hadronization Models

The transition e+e− → multiple hadrons can be divided into two stages based

on the value of the QCD coupling constant αs(Q
2). In the early stages, gluon

brehmstrahlung and the subsequent splitting of gluons into quark-antiquark pairs

can be described by Alterelli-Parisi type equations. This parton shower stage

typically continues until the virtual masses of the quarks and gluons fall below

about 2 GeV. At this point, perturbative calculations are no longer effective

and we must come up with a way of modeling the soft gluon emissions and the

subsequent coalesecence of the partons into stable hadrons and resonances.

Here, we are guided by lattice QCD results [3] which show that the energy

density of the partons created between the primary quarks is confined to a narrow

tube, or string, of a constant radius of about half a fermi. The hard gluons from

the parton shower are modeled by kinks in the string, which are responsible for the

appearance of 3-jet events and also a component of the final particles’ transverse

momenta with respect to the primary quarks. Our primary concern in this paper,

however, is the flavor and longitudinal momentum of the final particles. The

string phenomenology allows us to concentrate on these two aspects by collapsing

the problem of hadronization into one dimension.
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2.2.1 The Lund Model and Fragmentation Function

One of the challenges for hadronization models is to correctly predict the mul-

tiplicities of hadrons of different flavors. Table 2.4, which gives a summary of

the meson multiplicities at the end of this chapter, shows that the charged kaon

multiplicity in 10 GeV e+e− → multiple hadrons events is less than one seventh

of the charged pion mulitplicity. The Lund model [4], the basis of the most widely

used Monte Carlo program for high energy collisions, explains this as being due

to the tunneling of massive quarks out of the linear potential of the string.

We can calculate the rate of tunneling by considering the time-reverse process,

which will have the same amplitude. A quark and an antiquark, each with total

energy zero approach each other in a linear potential. At any point, the kinetic

energy of each quark is equal to kx−m, where k is the energy density of the string,

about 1 GeV/fermi, and x is the distance from the center of mass. Classically

the quarks will rebound at x = ±m/k, but the quantum WKB approximation

shows that they will annihilate with probability

Pq = exp[−(
πm2

q

k
)] (2.5)

which is identical to the probability of the time reversed process of quarks tun-

neling out of the potential∗. Theoretically, the light quark masses are not well

defined. The Lund model tunes the parameter Ps/Pu to fit the hadronization

data, and we can work backwards from its value of 0.3 to get a strange quark

mass of 275 MeV, which is reasonable, and could be more precisely tuned by

changing k.

Using this approach, the c quark mass of 1100 MeV corresponds to a tunneling

probability of 10−9 of that for a light quark. In practice, c and heavier quarks are

∗It is conventional to leave out the c and h̄ in these equations.
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never created from the string in the JETSET algorithm. We will see in chapter 8

that non-leading c quarks show up very rarely in the data.

In order for tunneling to lead to the production of independent hadrons from

the string, the new quarks must form color singlets ( 1√
3
(rr̄ + bb̄ + gḡ)) with the

original quarks. In this configuration, the new quarks shield the central region of

the event from the color fluxes emanating from the original quark-antiquark pair.

We now have two smaller quark-antiquark color singlet systems which can again

be split by the tunneling of new quark-antiquark pairs. The iterative splitting of

color flux tubes leads to a chain of mesons with local flavor conservation.

In section 2.3 we will see that if the tunneling quarks form a color antitriplet

state with the original quarks, baryon formation may occur. Simple first order

QCD calculations show that the color octet and sextet configurations are repulsive

[5] and will not lead to the formation of hadrons.

Another experimental fact that the hadronization models must account for

is the suppression of vector particles, compared to pseudo-scalar particles. Here

table 2.4 can be misleading because a larger percentage of the pseudoscalar par-

ticles come from the decay of heavier particles and not directly from the string.

We can use decay tables to work backwards and calculate the direct production

rates and we see that vector particles are indeed suppressed. The Lund model

explains this by noticing that adding a spin-spin term to the Hamiltonian will

modify the shape of the wavefunctions in the annihilation region and change the

tunneling probability. Phenomenologically the model uses the following values

Pρ

Pρ + Pπ
= 0.5

PK∗

PK∗ + PK
= 0.6

PD∗

PD∗ + PD
= 0.75 (2.6)

where P is the probability of a particular particle being formed. It is interesting

to note that as Mv/Ms → 1, Pv/Ps → 3 which is what we expect from simple

spin counting.
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The JETSET model has other tunable parameters [4] that we will not need

to discuss here.

Now that we have figured out the probabilities of creating different types

of hadrons, we need to make a procedure for determining their momenta. It

is useful at this point to look at a space-time diagram of the string breaking

process. Figure 2.1 shows the original quark-antiquark pair being created at “a”,

and subsequent pairs tunneling out of the string at “b” and “c”. After these points

the mesons continue on in “yo-yo mode”. The energy of each meson oscillates

between the linear potential of about 1 GeV/fermi of the string, and the kinetic

energies of the quark-antiquark pair. Thus, the energy of the meson in GeV is

equal to the distance, in fermi, between the two widest points in one period and

the momentum is equal to the time difference between these two points. The

mass of the meson is equal to the square root of two times the space-time area

swept out over one period [6].

The interior quarks will almost always be light (u, d or s), and thus will move

at ultra-relativistic velocities represented by 45 degree lines on the space-time

diagram. This means that points “b” and “c” will not be causually connected.

Thus, if we want to describe the breaking of the string as an iterative process,

we must do so in a way that is independent of the time ordering of the breaks.

This requirement leads to the Lund Symmetric Fragmentation Function

f(z) =
1

z
(1 − z)aexp(−bm2

⊥/z) (2.7)

where

z =
(E + Pz)hadron

(E + Pz)quark
(2.8)

and m⊥ is the transverse mass
√

P 2
T + m2, which will usually be referred to

16
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Figure 2.1: A string fragmenting into 3 mesons. Because the energy density is

about 1 GeV/fm it is easy to convert distances into energy and momentum.
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simply as “mass” in the rest of this chapter, and “a” and “b” are phenomenolog-

ical parameters, which will be tuned to the data.

Another interesting feature of this function is that it results in a rapidity space

distibution of particles which is flat except where it drops off near the kinematic

boundaries.

Now we have a complete algorithm for modeling the hadron flavors and lon-

gitudinal momenta in e+e− → qq̄ in an “outside-in” iterative implementation,

beginning with the outermost, primary quark and antiquark pair created by the

virtual photon. First the type of hadron is determined using a set of probabilities

based on the quark content and other properties of the different hadrons. Then

the longitudinal momentum is determined by plugging the hadron mass into the

fragmentation function. The process is then iterated inward, one hadron at a

time.

There is a small implementation problem, however, caused by the requirement

that the last hadron formed must have exactly the energy and mass left over in

the system after the creation of the rest of the event. When the Monte Carlo

generator reaches the point where there is less than about 2 GeV remaining in the

string, a separate algorithm choses the final two central particles in a way that

makes the quantum numbers of the two sides match, while conserving energy

and momenta. An unfortunate consequence of this is that baryon number is

conservered in each jet separately, and thus events of the type seen in chapter 8

cannot be modeled. This will not, however, affect our ability to compare the

model’s quantitative predictions to data, because we know how the model is

supposed to behave in this region.
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2.2.2 Other Fragmentation Functions

A number of other fragmentation functions have been proposed. The different

functions will be tested in chapter 7 by replacing the Lund Symmetric Fragmen-

tation Function inside the Pythia Monte Carlo generator.

The Peterson function [7] is often used instead of the Lund Symmetric Frag-

mentation Function to describe the fragmentation of heavy c and b quarks. It

comes about by simply taking the amplitude for the fragmentation transition to

be proportional to 1
ΔE

.

The transition from a heavy quark of mass MQ and momentum P , to a hadron

of mass MH and momentum zP , plus a light quark of mass Mq and momentum

(1 − z)P is

ΔE =
√

M2
Q + P 2 −

√
M2

H + z2P 2 −
√

M2
q + (1 − z)2P 2

Now, assuming that MQ = MH � zP and including a 1
z

phase space term,

we get the Peterson fragmentation function

f(z) =
1

z
(1 − 1

z
− ε

1 − z
)−2

where ε is predicted to be (Mq/MQ)2, but in practice is fit to the data. It

should be noted that the first assumption (MQ = MH) is not true for the Λc, which

has a mass of 2.285 GeV compared to a mass of ∼1.1 GeV for the charm quark,

and the second assumption (MH � zP ) is not true at BaBar energies. It turns out

that most of the available fragmentation functions were designed specifically for

heavy meson production, as baryon formation is not well understood theoretically.

Therefore, the results of this paper should be thought of as a target for future

models of baryon production, and not simply as a test to see which heavy quark

meson fragmentation function happens to fit the data best.
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A desirable feature for a fragmentation function is that it match the hadron

structure function in the limit of high z. This means that the probablity of a

quark fragmenting into a hadron with just slightly less momentum should be

equal to the probability, in a deep inelastic scattering experiment, of finding a

quark that contains almost all of the momentum of the parent hadron.

f(z) → (1 − z)2Ns−1 as z → 1

where Ns is the number of spectator quarks. We expect the exponent to be 1

for mesons and 3 for baryons, although some theorists believe that an additional

(1−z) suppresion factor might be needed when the fragmentation flips the helicity

[8]. Expanding the Peterson function around z = 1 shows that it has an exponent

of two. The Kartvelishvili fragmentation function [9]

f(z) = zαb(1 − z)

fixes the exponent of (1−z) to one, and fits the exponent of z to the data. Again

this model is specifically designed for fragmentation into mesons. We will also

test a modified Kartvelishvili fragmentation function

f(z) = zαb(1 − z)3

to see if we get a better fit to the Λc data.

In the next section, we will see that the UCLA fragmentation model [14] is

based on the idea that the probability of a particular event occuring is related to

the space time area swept out by the string. For massless quarks, the area of one

period of a yo-yo meson is equal to one half of the mass of the meson squared.

For heavy quarks, which follow hyperbolic paths, this formula is altered. The

Bowler fragmentation function [10]
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f(z) =
1

z(1+bm2
⊥)

(1 − z)aexp(−bm2
⊥/z)

modifies the Lund function by taking this change in area into account. The result

is a softening of the spectra of heavy quark hadrons.

Two more fragmentation functions are based on perturbative QCD. The

Collins and Spiller function [11]

f(z) = (
1 − z

z
+

(2 − z)εb

1 − z
)(1 + z2)(1 − 1

z
− εb

1 − z
)−2

is a first order calculation which, like the Kartvelishvili function, requires a (1−z)

behavior as z → 1.

The function proposed by Braaten, Cheung, Fleming and Yuan (BCFY)[12]

is calculated to next-to-leading order in the heavy-quark mass expansion.

f(z) =
z(1 − z)2

[1 − (1 − r)z]6
[3 +

4∑
i=1

(−z)ifi(r)]

f1(r) = 3(3 − 4r)

f2(r) = 12 − 23r + 26r2

f3(r) = (1 − r)(9 − 11r + 12r2)

f4(r) = 3(1 − r)2(1 − r + r2)

It is not clear how this function or the one by Collins and Spiller should be

modified to model the Λc spectrum, so they will be tested as is.

We will also be testing the HERWIG [13] model, which is completely indepen-

dant from the JETSET/Pythia algorithm. At the end of the parton shower, the

HERWIG model groups the partons into color singlet clusters, which then decay

by phase space into two hadrons. The suppressed rates for baryon production

are controlled by this phase space decay.
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2.2.3 The UCLA Model

If one looks at the main suppression factors in the Lund model — strange quark

suppression, vector suppression and, as will be seen in the next section, baryon

suppression — one is struck by the fact that all of these factors are doing essen-

tially the same thing: namely, suppressing the creation of higher mass particles.

The UCLA fragmentation model tries to find a common origin, related to the

final hadron mass, for all of the various suppression factors in the Lund model.

Going back to the Lund Symmetric Fragmentation Function (2.7), we see

that mass suppression is already built into the formula. In the Lund algorithm,

however, the fragmentation function is only used to find the particle momen-

tum. The mass of the particle has already been determined beforehand and the

suppression of high mass particles is achieved by the various suppression fac-

tors (equations 2.5 and 2.6). The UCLA model combines mass suppression and

momentum determination into a single equation

f(z, mh) = NC2 (1 − z)a

z

(
1 − m2

h

Sz

)a

e−bmh/zeff

where N is a normalization constant, C is a Clebsch-Gordan coefficient for both

spin and flavor, mh is the mass of the created hadron, S is the squared energy of

the string system that fragmented to create the hadron, and zeff is the effective

z, after correcting for the difference in the area swept out by non-ultrarelativistic

heavy quarks. Now f is normalized such that

∫ ∑
known hadrons

f(z, mh) dz = 1

and thus it gives the probability of finding a particular type of hadron at a

particular momentum.

For large S and small quark mass, the shape of the UCLA fragmentation
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function is identical to the Lund function. The difference comes from the fact that

the UCLA model takes the space-time area law literally. That is, the probability

of any event occuring is proportional to e−bA, where A is the total space-time

area swept out by the event.

This idea has its origin in lattice QCD calculations. Lattice QCD is beyond

the scope of this paper, but the basic idea is to discretize equation (2.3) and then

to look for quark paths that minimize the action. It turns out that the gluonic

action dominates. Looking at figure 2.1 one sees that during the hadronization

stage gluons will be present in the shaded region, and it is this region which

defines the space time area A in the following formulas. The coefficient “b” is

related to the coupling strength. In addition, the fermionic action gives rise to

a suppression of events with longer quark path lengths. The sum of the quark

path lengths is equal to the perimeter of the shaded region, and so the fermionic

action term gives a suppression related to the perimeter of the event. This term

is ignored in meson production, but will be seen again in the section on popcorn

mesons between baryons.

Armed with the area law, we can write down the probability of N hadrons

forming with energies Ei, and momenta Pi as being

dP(E1, P1, ...En, Pn) =
e−bA

g(s)
δ(
√

s −
N∑
1

Ei) δ(
N∑
1

Pi) δ(E2
i − P 2

i − m2
i ) dEi dPi

where e−bA is the area law suppression factor and g(s) is a normalization factor

such that the sum of all probabilities for a particular center of mass energy

squared s is equal to one. Changing to the light cone variable z gives

dP(z1, z2...zn) =
e−bA

g(s)

N∑
i=1

1

zi
δ(s −

N∑
1

m2
i

zi
) δ(1 −

N∑
1

zi) dzi (2.9)

Using this expression we can derive a fragmentation function by dividing the
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Figure 2.2: a) the total space-time area swept out by a string fragmenting into 3

mesons. b) the remaining area A’ after the creation of a meson of mass m1.

area A, shown in figure 2.2, into the parts used up by the creation of the outermost

hadron, m2
1/2z, and the remaining area A′. The conversion from area to mass

is done by noticing that, when the yo-yo meson quarks reach their turn around

point, all of the energy is stored in the string, which has an energy density k of

about 1 GeV/fermi. The momentum of a particle is the time difference of the two

widest points, times k. From this, we calculate z using the energy-momentum

relation, resulting in the values in the figure.

dP now divides neatly into two parts

dP(z1, z2...zn) =

⎡
⎢⎣e−

bm2
1

2z

g(s)

dz

z1

⎤
⎥⎦ [g(s′)dP ′(z2...zn)] (2.10)

where
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dP ′(z2...zn) =
e−bA′

g(s′)

N∑
i=2

1

zi
δ(s− m2

1

z1
−

N∑
2

m2
i

zi
) δ(1− z1 −

N∑
2

zi) dz2...dzN (2.11)

Equation (2.11) is equivalent to (2.9) with the energy and momentum of the

first particle removed. We can now calculate the probability of a particular first

fragmentation by integrating (2.10) over all the other zi. This is easy since the

integral of dP ′ is defined to be one. So we have the following fragmentation

function

f(z, mh) =
g(s′)
g(s)

e−
bm2

h
2z

Now, if the fragmentation function changes slowly compared to the number

of possible states at a given s,

df/ds

f
� dg/ds

g

it can be shown [14] that
g(s′)
g(s)

=

(
s′

s

)a

Remembering that s is just twice the area of the yo-yo meson that would form

if no fragmentation occurred, and reading these areas off of figure 2.2, we get the

final form of the UCLA fragmentation function

f(z, mh) =
(1 − z)a

z

(
1 − m2

h

Sz

)a

e−bm2
h/z

The coefficient b has been redefined to get rid of the 1/2. Actually, it goes

away naturally if the space-time area is converted to light cone variable area as

in the original paper.

Once the UCLA fragmentation function is derived, it can be used to generate

Monte Carlo events by putting it inside a modified version of the JETSET code.
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As a result, the UCLA model uses the same parton shower code and “outside-in”

iterative procedure for choosing hadrons.

The effectiveness of the space-time area law as a way of chosing particle flavor

can be seen in Tables 2.4 and 2.5. The UCLA model is able to produce results

similar to JETSET’s, while utilzing only six free parameters, compared to about

17 for JETSET. Readers interested in the Λc spectrum predictions can look ahead

to figure 7.4. Light and heavy meson spectra predictions can be seen in [14] and

[15], respectively.

2.3 Baryon Formation

In order to produce the mesons described in the previous section, we needed to

combine a quark and antiquark in such a way that the colors formed a singlet

state. It was obvious that the way to do this was match a red quark with an

antired antiquark, a blue with an antiblue and a green with an antigreen. In

order to make a baryon, we need to form color singlet states of three quarks, out

of a series of quark-antiquark color singlet pairs. It is not obvious how this will

work, and so we will need a system to keep track of how color is flowing between

each quark.

Lets look at meson formation again in terms of group theory. The original

quark-antiquark pair coming from the virtual photon will be in a singlet state

1√
3
(rr̄ + bb̄ + gḡ). Now a new quark-antiquark pair tunnels out of the string.

Because of the symmetry of the original pair, the relationship between the old

and new quarks on the right side, will be the same as that between the old and

new quarks on the left side. Thus, it is sufficient to look at what happens on one

side only. In order to form a meson we need a quark and an antiquark so we have
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3 ⊗ 3̄ = 8 ⊕ 1

If the tunneling quarks form an octet configuration with the original quarks, a

repulsive force will result and the still virtual new quarks will be pushed back

and eventually recombine. If a singlet state is formed, we now have, on each side,

a system that looks exactly like the original quark-string-antiquark. These will

either form yo-yo mesons or divide again as described in the previous section.

If a quark tunnels out on the side of the original quark, we have

3 ⊗ 3 = 3̄ ⊕ 6

The sextet state is repulsive and, like the octet state will quickly decay. The

anti-triplet state is attractive, but, because only color singlet states can have an

independant existence, it will still send a flux of color to the other side of the

event. The interesting thing to notice is that the quark⊗quark anti-triplet state

has the same color as an antiquark state. Thus, from the point of view of the

central region of the string, it looks as if the endpoints are still a quark-antiquark

pair in a color singlet state.

The flow of color between quarks is much easier to follow when represented

graphically. Casher et al. came up with a system for doing this in the first paper

written on popcorn mesons [16]. In figure 2.3 quarks are labelled R, B and G and

the color flows λ3 and λ8, corresponding to the diagonal Gell-Mann matricies.

Of course, the actual quark states will be superpositions of R, B, and G and

the other 6 gluons will contribute to the forces, but it is easy to verify that this

graphical system corresponds to the properties derived from group theory. The

antiquark in a singlet state absorbs exactly the same colors as those emitted from

the corresponding quark, and the flux coming from two quarks of different colors is
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Figure 2.3: Color flows from quarks, antiquarks and diquarks

the same as that from the antiquark of the third color. Because the quark⊗quark

anti-triplet state is attractive, it is sometimes thought of as a single object known

as a diquark.

These diagrams can also be thought of as the first term of a symmetrized

wave function. For example, the rr̄ color diagram in figure 2.4a corresponds to

the wavefunction 1√
3
(rr̄+bb̄+gḡ) and the rbgḡb̄r̄ diagram in figure 2.5 corresponds

to
1√
6
(rbgḡb̄r̄ + bgrr̄ḡb̄ + grbb̄r̄ḡ − rgbb̄ḡr̄ − gbrr̄b̄ḡ − brgḡr̄b̄)

Let’s use these color flow diagrams to study baryon formation. Figure 2.4

shows a e+e− → 2 baryons in four steps. First the e+e− annihilate, giving rise to

a red-antired pair. Then, a blue-antiblue pair tunnel out of the string. We know

that the color flux from a red-blue pair is the same as that from an antigreen

antiquark. Thus the field in the middle of the event looks like it is created by

an antigreen-green pair. The energy density between an antigreen-green pair is

the same as that between a red-antired pair, the type of field that we see on the

two outer sections of the string. This means that if we were to move the blue

quarks to the right or to the left, we would not change the energy of the system.
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Figure 2.4: Baryon formation from a string. a) a virtual photon decays into rr̄.

b) a bb̄ pair tunnels from the string. c) creation of a gḡ pair blocks the flow of

color from one side of the event to the other. d) the quarks rearrange themselves

in two dimensions forming a baryon-antibaryon pair.

Therefore, there is no net force on the blue quarks.

In the third step, a green-antigreen pair is created. These quarks absorb

the two Λ8 color fluxes in the middle of the event, splitting the string into two

pieces in the same way that was seen before in meson formation. We now have a

baryon-antibaryon pair.

2.3.1 Baryons in the Lund Model

In the Lund model, the probability of a baryon forming can be estimated using

the WKB formula that we used for meson formation. The result is

Pbaryon = exp

(
−4mb(mb + mg) + πmg(mb + mg)

k

)
(2.12)

where mb and mg are the masses of the blue and green quarks in figure 2.4. The

coefficient in front of the blue quark is 4 and not π, as in the case of a meson,
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because the blue quark floats freely between two pieces of string and thus its

creation is more heavily suppressed than that of the green quark, which is pulled

in the direction of the baryon. The (mb + mg)/k term is the distance that the

blue and green quarks need to tunnel in order to come onto the mass shell, and

is proportial to the energy of the portion of string eaten up in order to create the

new quark masses.

One often thinks of the green and blue quarks forming a diquark of mass μ. In

this case the baryon formation probability is identical to that of meson formation

(2.5), with the diquark mass replacing the mass of the second quark in the meson.

Pbaryon = exp

(
−πμ2

k

)

If we think of the 4 and π in (2.12) as being approximately equal, we get an

estimated diquark mass of

μ ∼ (mb + mg)

which is not too unreasonable, although in practice the diquark masses are chosen

such that baryon formation occurs at about 1
10

of the rate of meson formation.

The process shown in figure 2.4 can be continued one step further to create a

baryon - popcorn meson - antibaryon event as shown in figure 2.5. Now the blue

quarks have to tunnel a long additional distance, k
√

M , inside the string in order

to make room for the meson being made from the energy density in the middle.

An additional suppresion factor of

Ppopcorn = exp
(
−2mbM

k

)
(2.13)

is multiplied to (2.12) in order to get the suppression of popcorn baryon systems.

Here the M can stand for the mass of a single meson, or a system of several

mesons. In practice, the popcorn suppresion factor is tuned to the data like the

other parameters. The current Lund algorithm creates baryon-antibaryon pairs
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Figure 2.5: Formation of a popcorn meson. Suppression of these events is caused

by the additional flight length of the antiblue quark compared to figure 2.4.

with no popcorn mesons 50% of the time and one popcorn meson the other 50%

of the time.

It should be noted that if the b̄ and ḡ1 quarks in figure 2.5 were always bound

together into a diquark, the second green quark pair could not appear, and the

baryons would always be created adjacent to each other. At one time it was

believed that baryons were always created from diquarks, but the experimental

results to be summarized in section 2.3.3 seem to contradict this idea.

2.3.2 Baryons in the UCLA model

Unlike the Lund model, the UCLA model allows arbitrarily long popcorn meson

chains between a baryon-antibaryon pair. Figure 2.6 shows the topologies of the

possible space-time area diagrams for zero, one, two and three popcorn mesons.

For simplicity, both quarks and anti-quarks are drawn in the same color. The

number of different color orderings for a particular number of popcorn mesons

increases rapidly with the number of popcorn mesons. We see in figure 2.6 that

there are already four ways of creating three popcorn mesons. Adding together
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the area law predictions for all of these possibilities leads to an overprediction of

the number of baryons. However, looking back at section 2.2.3, we see that we

have left out a perimeter suppression term, which would act to suppress these

long popcorn chains. Looking at figure 2.6 we see an extra virtual quark flight

length between the two baryons when a popcorn meson is present. Sometimes

this flight length is shared by two or more quarks, but it is always equal to
√

2

times the distance between the break points which separate the baryons from the

rest of the string. The mass of the popcorn system M is just this distance times

the energy density k, so we end up with a suppression factor depending on the

popcorn mass

Ppopcorn = exp(−ηM)

where η has been tuned to be 3.5 GeV/c. The form of this equation is identical

to that of the Lund model (2.13), but the UCLA model differs in that it allows

arbitrary popcorn configurations instead of limiting the number of popcorn to

zero or one.

In chapter 8 we will be looking at 10.58 GeV events with two Λc. Because

c quarks are too heavy to be created from the string, we will know that the

Λc baryons are on the outside of the event, unless they decayed from a heavier

charmed baryon. Thus, any mesons in the event, other than those from decays

of charmed baryons, will be popcorn mesons.

Unfortunately, because the Monte Carlo algorithm for matching up the two

sides of the event requires baryon conservation on each side, we are not able to use

the standard UCLA generator for predicting the amount of popcorn. Figure 2.7

gives an estimate of the expected amount of popcorn using the area and perimeter

suppression factors. The red curve shows the amount of mass left over after

applying the UCLA fragmentation function twice to create the two Λc. This
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d)

Figure 2.6: Space-time area diagrams for a) zero, b) one, c) two, and d) three

popcorn mesons.

procedure ignores initial hard gluon radiation, and the transverse momenta of

the Λc, but it still should provide a reasonable estimate of what we would expect

if the Λc particle were a meson, and the extra perimeter suppression were not

applicable. The black curve shows the expected popcorn system mass with the

perimeter suppression. There are still lots of entries with more than a 1 GeV

mass, so the UCLA model seems to be suggesting lots of events with several

popcorn mesons.

2.3.3 Previous Evidence for Popcorn

This section will give a brief summary of some previous experimental searches

for popcorn mesons.

According to the string model, if some kind of popcorn mechanism is not

present, then baryon-antibaryon pairs will always be produced adjacent to each

other and will always share at least two quarks. Since strange quarks are produced
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Figure 2.7: UCLA model estimate of the mass in between two leading Λc, with

and without suppression of virtual quarks with long flight lengths

at a relatively low rate, they can be used as a marker for quark sharing between

baryons.

The OPAL experiment at LEP measured the rates of events with an identified

strange baryon and a strange antibaryon [17]. The results are shown in table 2.2.

With no popcorn, the Ξ− will possess either a ds or an ss diquark meaning that

a strange antibaryon must be present in the event. Comparing the data to the

Monte Carlo with no popcorn, we see that the strange antibaryon is found less

often than predicted. If popcorn mesons are included in the Monte Carlo, the

predicted rate of the strange antibaryon drops because the mesons can be taking

away one or both of the strange antiquarks, leaving a non-strange anti-baryon on

the other side. Including a popcorn meson between 95% of the baryon-antibaryon

pairs fits the OPAL data better, but the result is not very significant statistically.
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probability

tagging tagged OPAL JETSET JETSET

baryon baryon data no popcorn 95% popcorn

Ξ−(dss) Λ̄(ūd̄s̄) .463 ± .099 .589 .412

Ξ−(dss) Ξ̄+(d̄s̄s̄) .037 ± .065 .172 .071

Table 2.2: Probability of finding a strange antibaryon in events that already have

a strange baryon.

Another way of looking for popcorn mesons is to measure the rapidity cor-

relations between strange baryons. Because the UCLA and Lund fragmentation

functions tend to give particle distributions that are flat in rapidity space, the

inclusion of a popcorn meson between two baryons should increase their rapidity

difference. This analysis was done by the DELPHI collaboration [18]. Figure 2.8

shows the rapidity difference between Λ and Λ̄ in Z0 decays. The best fitting

Monte Carlo seems to be the one that includes a popcorn meson 50% of the time.

A third expected consequence of the popcorn model is the observation of

strange mesons with rapidities falling between the rapidities of an observed Λp̄

pair. The strange popcorn meson contains the anti-strange partner of the s quark

in the Λ which is not compensated for in the proton. The results of this Delphi

measurement [19] are shown in table 2.3.

Only closely correlated baron pairs with a rapidity difference of less than one

unit are considered. The data do not show an increase in kaons compared to

the pp̄ and ΛΛ̄ control samples. This is because the decay of unstable particles

smear the correspondance between rapidity and the rank in the string. The

JETSET 7.3 Monte Carlo, with a 50% popcorn probability confirms that the

result is consistant with the model. This experiment shows us that it is very
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Figure 2.8: Rapidity difference between Λ and Λ̄ in Z0 decays.

difficult to directly observe popcorn mesons between closely correlated baryon

pairs. Our search at BaBar, described in chapter 8, is different because we know

that the charmed baryons only appear on the ends of the string, and thus have

a large rapidity difference. Decays of the known heavy charmed baryons are

expected to be symmetric around the daughter Λc particle and so they should be

distinguishable from popcorn mesons, which will tend to appear in the rapidity

range between the ΛcΛ̄c pair. If large numbers of popcorn mesons exist in ΛcΛ̄c

events, they should be easy to observe at BaBar.
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Data Monte Carlo

BB̄ pair fraction of BB̄ pairs with fraction of BB̄ pairs with

one pion one kaon one pion one kaon

pp̄ 0.25 ± 0.02 0.07 ± 0.01 0.25 ± 0.01 0.07 ± 0.01

ΛΛ̄ 0.26 ± 0.03 0.07 ± 0.01 0.24 ± 0.01 0.07 ± 0.01

Λp̄ 0.26 ± 0.02 0.05 ± 0.01 0.25 ± 0.01 0.06 ± 0.01

Table 2.3: Fractions of BB̄ pairs with kaons and pions in the rapidity gap between

the two baryons.

37



Particle Quarks Spin Mass Multiplicity Lund UCLA

π+ ud̄ 0 .140 6.6 ± 0.2 6.47 6.39

π0 (uū − dd̄)/
√

2 0 .135 3.2 ± 0.3 3.69 3.68

K+ us̄ 0 .494 0.90 ± 0.04 1.02 1.04

K0 ds̄ 0 .498 0.91 ± 0.05 0.847 0.916

η (uū + dd̄ − 2ss̄)/
√

6 0 .549 0.20 ± 0.04 0.404 0.281

η′ (uū + dd̄ + ss̄)/
√

3 0 .958 0.03 ± 0.01 0.088 0.051

D+ cd̄ 0 1.869 0.16 ± 0.03 0.178 0.210

D0 cū 0 1.865 0.37 ± 0.06 0.473 0.473

DS cs̄ 0 1.971 0.13 ± 0.02 0.085 0.085

ρ0 (uū − dd̄)/
√

2 1 .770 0.35 ± 0.04 0.457 0.422

ω (uū + dd̄)/
√

2 1 .783 0.30 ± 0.08 0.403 0.336

K∗+ us̄ 1 .892 0.27 ± 0.03 0.387 0.349

K∗0 ds̄ 1 .904 0.29 ± 0.03 0.332 0.321

φ ss̄ 1 1.020 0.044 ± 0.003 0.063 0.062

D∗+ cd̄ 1 2.010 0.22 ± 0.04 0.228 0.197

D∗0 cū 1 2.007 0.23 ± 0.06 0.228 0.200

Table 2.4: Meson Multiplicities at 10.58 GeV. PDG vs. Monte Carlo.
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Particle Quarks Spin Mass Multiplicity Lund UCLA

p uud 1
2

0.938 .253 ± .016 .360 .221

Λ uds 1
2

1.116 .080 ± .007 .112 .092

Σ0 uds 1
2

1.193 .023 ± .008 .0223 .0223

Ξ dss 1
2

1.321 .0059 ± .0007 .0079 .0054

Λc udc 1
2

2.285 .100 ± .030 .054 .0244

Δ++ uuu 3
2

1.197 .040 ± .010 .053 .022

Ξ∗0 uss 3
2

1.526 .0015 ± .0006 .00136 .00168

Ω− sss 3
2

1.672 .0007 ± .0004 .00017 .00017

Table 2.5: Baryon Multiplicities at 10.58 GeV. PDG vs. Monte Carlo
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CHAPTER 3

The BaBar Detector

The BaBar detector is described in great detail elsewhere [20]. This chapter will

only give a short description of each of the parts.

3.1 Detector Asymmetry

BaBar detects particles created in collisions between 9 GeV electrons and 3.1 GeV

positrons, which corresponds to a boosted center of mass frame with a βγ of 0.56.

The experiment is designed asymmetrically in order to optimize the measurement

of the B meson lifetime differences, which are of the order of picoseconds. The

lifetimes are measured by the flight lengths of the B mesons in the direction of

the boosted center of mass frame. This boost causes an acceptance problem for

the current analysis. Figure 5.3 shows that a large percentage of the generated

Λc are booseted out of the front of the detector.

3.2 Υ(4S) and Continuum Events

The data used for this analysis is taken from two center of mass energies, 10.58

GeV, which is the mass of the Υ(4S) resonance, and 10.54 GeV, which is suffi-

cently far below the resonance to consist only of virtual photon decays to quark-

antiquark pairs. This second dataset will be referred to as offpeak, and the quark
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jet events contained therin as continuum events. As the virtual photon cross-

section changes little between 10.54 and 10.58 GeV, continuum events are also

present in the onpeak dataset. The Υ(4S) decays to a pair of B mesons, which

are the subject of most of the physics analyses at BaBar, but we will be primar-

ily interested in the continuum events. In order to increase our data sample in

chapter 8 we will use both the onpeak and offpeak data samples, applying a 2.3

GeV/c center of mass momentum cut to the Λc in order to cut out any possible

decays from B mesons.

3.3 Silicon Vertex Tracker (SVT)

The BaBar detector consists of five subdetectors arranged in concentric cylin-

ders around the collision region. The innermost subdetector, the Silicon Vertex

Tracker (SVT) is made up of five layers of double sided silicon detectors. The

outer sides of each strip measure the φ coordinate of charged tracks, while the

inner side measures z. The resolution of individual hits is around 10 μm, which

allows decay vertices to be measured with a resolution of 80 μm. This allows us

to separate useful physics tracks from those created from interactions with the

beampipe and detector material.

3.4 Drift Chamber (DCH)

The drift chamber consists of 40 layers of small hexagonal cells providing 40

spatial and ionization loss measurements on the charged tracks that traverse it.

Each cell consists of a sense wire and 6 field wires with a potential difference of

1960 V. Information on the z coordiante of the tracks is provided by stereo layers

which are oriented a angles of ∼60 mrad to the axial layers. The gas inside the

41



chamber is a 80:20 mixture of helium:isobutane.

The primary purpose of the drift chamber is to provide precision measure-

ments of the charged particles’ momenta and angles. It is able to locate tracks

with a precision of less than .3 mm and measures the tracks’ transverse momen-

tum with a resolution of

σpt

pt

= .13 + .45 pt %

where pt is measured in GeV/c.

The drift chamber can also be used to calculate a particles velocity, and

therefore mass, by measuring the amount of energy it loses to ionization as it

traverses the gas. Particle identification using the DCH will be described in

detail in the next chapter.

3.5 Detector of Internally Reflected Cherenkov Radiation

(DIRC)

The DIRC utilizes fused silica bars, both as Cherenkov radiators and reflectors,

which transfer the Cherenkov light cones emitted by charged particles from the

detector to a large water filled expansion region called the standoff box. The

standoff box is instrumented with 10,752 photomultiplier tubes. Each photomul-

tipler hit can measure the Cherenkov angle with a resolution of about 10 mrad.

A typical track will produce 20-65 hits allowing a Cherenkov angle measurement

with a resolution of 2.5 mrad. Particle identification using the DIRC will be

described in detail in the next section.
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3.6 Electromagnetic Calorimeter (EMC)

The Electromagnetic Calorimeter measures electromagnetic showers in thallium

doped CsI crystals. This allows the detection of photons from π0 and η decays

and from electromagentic and radiative processes. The energy resolution of the

EMC is
σE

E
=

.23

E(GeV )
1
4

⊕ 1.85 %

It is not used in this analysis.

3.7 Instrumented Flux Return (IFR)

The steel flux return of the solenoid magnet is segmented into 18 plates varying

in thickness from 2 cm in the innermost region to 10 cm at the outermost edge of

the detector. The spaces between the plates are instrumented with resistive plate

chambers (RPCs). When traversing the steel plates, strongly interacting hadrons

will lose a greater amount of energy than muons. The difference in penetration

depth allows the IFR to identify 1 GeV/c and greater muons with an efficiency

of over 80% while misidentifying less than 10% of pions as muons. The IFR is

also not used in this analysis.
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CHAPTER 4

Particle Identification

4.1 Charged Particles

The charged particle identification for this analysis uses information from two

subdetectors; the drift chamber (DCH) and the detector of internally reflected

Cherenkov radiation (DIRC). The drift chamber measures dE/dx with a reso-

lution of 7 percent which gives very good K-π separation below .5 GeV/c and

p-K separation below .7 GeV/c. The DIRC begins to see a sufficient number of

photons for high efficiency identification of kaons and protons at around 1 GeV/c

and 1.5 GeV/c respectively. At intermediate momenta, a linear combination of

cuts from both subdetectors is necessary. This section will describe how these

cuts were chosen.

4.1.1 DCH and DIRC Likelihoods

The drift chamber uses the total charge deposited in each drift cell to measure the

energy loss of charged particles crossing its volume. The Bethe-Bloch formula;

−dE

dx
=

4πnz2e4

mev2
[ln

2mev
2

I[1 − (v/c)2]
− (v/c)2]

where z is the charge of in the incoming particle, n is the electron density in

the gas, and I is its average ionisation energy; gives the theoretical energy loss,

which is plotted for each particle type, along with the data in figure 4.1. This
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Figure 4.1: dE/dX vs. momentum in the drift chamber

plot shows that the dE/dx values are well separated for different particle types

at low momentum.

The DIRC identifies particles by their Cherenkov angle, which is determined

by the velocity of the charged track in the fused silica bars.

cos(θc) =
1

nv
c

where n is the index of refraction for fused silica (1.473).

The theoretical Cherenkov angles for π, K, and p are ploted in figure 4.2 along

with the output of the ring fitting algorithm for data. At low momentum, we

are below the Cherenkov thresholds for kaons and protons, and so are unable to

disinguish these particles. Comparing this to figure 4.1 one sees that the drift

chamber should provide the best particle identification information up to about

.7 GeV/c and that the DIRC should be used for higher momenta. When the

Cherenkov angles begin to converge around 3 GeV/c one could gain additional
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Cherenkov Angle vs. Momentum
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Figure 4.2: Cherenkov angle vs. momentum in the DIRC

information from the drift chamber. However, at the time these selectors were

made, the Monte Carlo/data differences were better understood in the DIRC and

so we chose to use only DIRC information at the highest momenta.

The cuts for particle identification are made on the output of the DIRC global

likelihood algorithm, which looks at photomultiplier hits for the entire event and

tries to determine if they are more likely to have come from a real track or

from machine background, and, in the case of overlapping rings, which track

they came from. The likelihood is defined to be the overall proability of there

being N detected photoelectrons and those photoelectrons being distributed in

the Cherenkov angle and time space as they were found. The input into the

likelihood is the reconstructed Cherenkov angle of each PMT hit and its measured

time. For each track, a likelihood for each of the five particle types is calculated

while holding all other tracks at their current best hypothesis. The tracks are
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looped over a maximum of three times to insure that the backgrounds for each

track have the best hypotheses for each background track. The global likelihood

procedure gives better results than a track by track likelihood in the region just

above threshold, where there are not always enough hits to get a good Cherenkov

angle measurement. We are particularly interested in this region since it is where

one sees the most structure in the efficiency vs. momentum plots.

4.1.2 Optimization Method

Figure 4.3 shows what the DIRC and drift chamber likelihoods look like for Monte

Carlo pions and kaons in the momentum region .4 GeV/c ≤ p ≤ .9 GeV/c. The

x-axis shows the difference in the logs of the DIRC global likelihood for kaons

and pions. The y-axis is the log of the drift chamber likelihood for kaons minus

that for pions. Thus true kaons are expected to show up in the top right corner

of the plot, and pions in the bottom left corner. Particles pass the pion vs. kaon

background cut if they are below the plotted line, which is defined by its slope

and the offset of its intersection with the line x=y.

Plot a) shows particles with momenta .4 GeV/c ≤ p ≤ .45 GeV/c. Most of

the pions appear on the lower edge of the plot (note the log scale in z) and almost

all of the kaons have a postive drift chamber likelihood difference, so it it easy

to separate the two using only drift chamber information. This corresponds to

a horizontal line cutting the DCH/DIRC space. This momentum is below the

kaon Cherenkov threshold, so the DIRC identifies everything as either a pion or

undecided (the line at x=0).

Plot b) shows .55 GeV/c ≤ p ≤ .60 GeV/c. Most of the kaons have moved to

the right edge, but because they are nearer to threshold than the pions and thus

have fewer Cherenkov photons, their distribution has a longer tail. The pions at
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DIRC and DCH Likelihoods for π and K

-40

-20

0

20

40

-50 -25 0 25 50

D
C

H
 l K

π

-40

-20

0

20

40

-50 -25 0 25 50

10 2

10 3

-40

-20

0

20

40

-50 -25 0 25 50
DIRC lKπ

D
C

H
 l K

π

-40

-20

0

20

40

-50 -25 0 25 50

10 2

10 3

DIRC lKπ

Figure 4.3: DCH vs. DIRC log(likelihood) differences for four different momen-

tum regions.
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x=0 are also not creating enough DIRC hits to get a good measurement. Here

we need to use both detectors to optimize efficiency, but, because of the long tails

in the DIRC distribution, the ideal slope for the cut is still very flat.

In c) and d) the particles can be well separated using only information from

the DIRC. Because the distributions in DCH likelihood difference are so much

narrower than those in the DIRC, the actual slope chosen for the cut does not

matter much in this momentum range. However, since the DIRC distributions

will narrow at higher momenta, the absolute value of the slope was chosen to

increase linearly with momentum in this range.

Given a series of plots like those in figure 4.3, cuts were chosen to optimize the

efficiency/misidentification for all momenta. As a first step, the slope of the cut

which optimizes pion efficiency given that less than 1% of kaons are misidentified

as pions was plotted in figure 4.4. Then a piecewise linear function was chosen

to match the points, paying special attention to the region between .7 and 1.1

GeV/c. Above this, the efficiency is not a strong function of slope. Once the slope

of the cut was chosen, the line was offset in varying amounts in order to see what

the efficiency/misidentification tradeoff was in each momentum bin. The result is

shown in figure 4.5, where pion efficiency increases in the positive y direction and

kaon misidentification rate decreases with decreasing y. Again a piecewise linear

function was chosen, giving a result of about 2% kaon misidentification over all

momenta and 95% pion efficiency up to 1.5 GeV/c.

Thus far, only pion efficiency with a kaon background has been considered.

Similar plots were made for all three particle types versus the two backgrounds

for each type. A particle passes the selection only if it passes both background

cuts. In addition, very loose cuts were made to discriminate kaons and protons

from electrons.
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Maximizing π Efficiency with 1% K Background
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Choosing Cut for π Selection with K Background
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Figure 4.5: Offset of cut for different efficiency and missID rates

After optimizing the cuts with a Monte Carlo sample integrated over the entire

theta range, it was found that the kaon and proton efficiencies dropped severely

near cos θ=0, which corresponds to tracks hitting the DIRC bars normally (fig-

ure 4.6). When such tracks are just above the Chernkov threshold, very few of

the photons are internally reflected in the DIRC bars. Thus the cuts needed to

be reoptimized in this region (figure 4.7). The final selectors have different cuts

for large and small cos θ with a linear interpolation between them.

4.1.3 Performance

The MC efficiency matrix for the selectors is shown in figure 4.8 for four different

theta regions in the lab frame. By design there is very little cos θ dependence in

the proton efficiency or in the pion and kaon efficiencies up to 2.5 GeV/c.
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Figure 4.7: Proton efficiency after reoptimizing cuts
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4.2 Neutral Particles

In chapter 8 we will need to identify neutral K0 mesons and Λ baryons. Our

goal is to get a good signal to noise ratio for the decays Λc → K0p and Λc → Λπ

so we will choose our cuts using the two-Λc candidate dataset. In order to find

K0 mesons we first combine all sets of oppositely charged tracks with 10 or more

drift chamber hits. If these tracks happen to be the daughters of a prompt K0

then its flight length will be the distance between the point of closest approach

of the two tracks and the global event vertex. We require that this quantity be

less than 60cm. We also require that the K0 candidate be moving away from

the event vertex, and that the probability that the two charged tracks intersect,

given by the standard BaBar vertexing algorithm, be greater than 1%.

The invariant mass distribution of the K0 candidates meeting these criteria

is plotted as the black curve in figure 4.9. Candidates with a flight length greater

than 2.5 mm are shown in red. In the plot on the right, the candidates which fail

the 2.5 mm cut are also shown in red. Then we measure the cosine of the angle

between the flight length vector and the K0 candidate momentum and require

that it be greater than .97. Candidates passing this cut are shown in green in

the left plot of figure 4.9. Those which fail the cut are shown in the right plot.

The same procedure is carried out for the decay Λ → pπ, with the results

shown in figure 4.10. Unlike in the case of the K0, we use particle identification

on the charged tracks. As a result, the flight length and angle cuts aren’t really

necessary and can take looser values of .1 mm and .9, respectively.
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CHAPTER 5

Reconstruction of Λc’s

This chapter will show how we reconstruct the decay Λc → πkp, which we will be

using for our measurement of the continuum Λc spectrum at 10.54 GeV. We will

estimate the efficiency of the reconstruction using Monte Carlo, and then apply

MC/Data corrections for the particle identification and tracking.

5.1 Event and Track Selection

An inclusive hadronic spectrum measurement will usually use cuts on quantities

like the second Fox-Wolfram moment, total detected energy in the event, or thrust

in order to reduce backgrounds from gamma-gamma collisions, tau decays and

Bhabhas. However, since none of these processes can easily create a charm quark,

they should not be necessary. All of the standard multihadronic event selection

cuts were made on the Λc data, and none were seen to increase the signal to noise

ratio.

A tight track selection has been applied in order to separate issues of particle

identification from other detector questions. In particular, tracks were required

to satisfy these criteria:

• Good angular resolution at the DIRC and a good measurement of dE/dx

in the DCH:
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– The track has more than 3 layers with SVT z information and a total

of at least 5 hits in the SVT.

– The track has at least 20 hits in the DCH.

• The track originates from the primary vertex:

– The distance of closest approach of the track to the beam in the trans-

verse plane is less than 1 mm. The Λc lifetime of .21 ps means that

a particle with maximum transverse momentum will only travel .15

mm.

Lambda C candidates are formed by combining the four-vectors of three tracks

passing the tracking cuts and identified as p, k and π by the algorithm described

in chapter 4. Once a candidate is selected, the momentum of the resulting Λc is

calculated by adding the momenta of the three daughter tracks at their point of

closest approach to the event vertex. Because the Kalman track fitter used by the

standard BaBar code assumes a pion mass for all tracks, a correction algorithm

written by Bill Dunwoodie is used to correct the kaon and proton momenta for

the energy losses they experience when traversing the detector material.

Algorithms have been written to calculate the probability that the three

daughter tracks are coming from a common vertex. However, because of the

assumed pion mass in the fitter, they do not give reliable results at low momen-

tum. Since the continuum Λc’s decay so closely to the event vertex, the distance

of closest approach cut described above should be sufficient for removing back-

grounds associated with material interactions.

In order for one of the daughter tracks to have the required 20 drift chamber

hits it must have more than about 0.12 GeV/c of transverse momentum and fall

in the angular range −.85 ≤ cos θlab ≤ .95. We define this cut as the acceptance
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and plot its efficiency vs. the Λc lab momentum in the first row of figure 5.1 and

vs. the Λc angle in the lab frame in the first row of figure 5.2. The fastest Λc tend

to be boosted towards the front of the detector, which increases the probability

that one of the daughters will not have enough DCH hits. Slower Λc are less likely

to pass the transverse momentum cut. Since the pion takes up a small fraction

of the parent momentum, it is less likely than the heavier particles to follow the

Λc direction and therefore its acceptance efficiency is less strongly correlated to

the Λc momentum vector.

The second row of figures 5.1 and 5.2 shows the tracking efficiency, which is a

combination of the efficiency to match a reconstructed daughter track to the true

tracks used to calculate the acceptance, and the tracking cuts described above.

Because the tracking requirements are less likely to be met near the edge of the

acceptance, the shape of the tracking efficiency curves is similar to that of the

acceptance efficiency curves.

The third row of figures 5.1 and 5.2 shows the particle identification effi-

ciency for tracks that passed the tracking cuts. Fast tracks are more likely to be

misidentified because of overlapping Cherenkov angle distributions. Backwards

moving tracks are slower because of the boost and easily identifiable with the

drift chamber.

5.2 Lab Frame Efficiency Map

The goal of the first part of the analysis is to measure the Λc momentum spectrum

in the center of mass frame, but because the detector efficiencies depend on

variables in the lab frame, the efficiency corrections will be done in the lab frame

and then the corrected number of Λc will be boosted into the center of mass
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Figure 5.1: Acceptance, Tracking Efficiency, and PID efficiency for the daughter

tracks of a Monte Carlo Λc with a particular lab momentum.
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Figure 5.2: Acceptance, Tracking Efficiency, and PID efficiency for the daughter

tracks of a Monte Carlo Λc with a particular lab angle.
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frame. There they will be put into bins of momentum and the invariant mass

distribution will be fit to a sum of gaussians with polynomial background.

The Monte Carlo efficiency correction has two steps. First, Monte Carlo is

used to make an efficiency map as a function of Λc momentum and angle in the

lab frame. This efficiency includes track finding, PID and reconstruction of the

Λc with a mass within 50 MeV of the PDG value.

The second step is to extrapolate the Λc yield to the region outside of −0.8 ≤
cos θCM ≤ 0.3, where the efficiency is too low to get a reliable measurement. This

must be done in bins of momentum, as slower Λc are more likely to have come from

events with a radiated hard gluon, which will smooth the angular distribution

from the 1+cos2 θ seen in more 2-jet like events. This can be seen in figure 5.3,

which shows the Monte Carlo cos θcm distribution for slow and fast Λc. Because

the Monte Carlo calculates the initial stage of the parton shower perturbatively,

it is expected to correctly model the distribution of hard gluons. The effect of

hadronization on cos θcm is small, so no data/MC correction is needed for this

extrapolation. Later we will show that the extrapolation is consistant with data

by doing the analysis separately in 6 bins of cos θcm (figure 6.13).

5.2.1 Making the Efficiency Map

Because we are limited to 473K continuum and 64K B decay Λc Monte Carlo

events we must be sure to make the efficiency map binning large enough to get

sufficient statistics so as not to dominate the other errors in the analysis. At the

same time, care must be taken to reduce the bin size in regions of large curvature,

so as to match the true efficiency as closely as possible. The following procedure

was written in order to optimize the tradeoff between these two sources of error.
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Figure 5.3: CM angular distribution for fast and slow Λc

First, the Monte Carlo was partitioned into a 300x300 matrix with −1 ≤
cos θlab ≤ 1 and 0. ≤ Plab ≤ 8.. The distribution of generated Λc’s is shown in

figure 5.4a. The large effect of the boost is visible in the cos θ asymmetry. Λc

from B decays are visible as a separate distribution peaking around 2 GeV/c. The

black line in the figure 5.4 plots shows the location of the −0.8 ≤ cos θCM ≤ 0.3

cut and the kinematic upper limit for momentum. The rightmost section of the

line shows Λc with 4.75 GeV/c momentum in the center of mass. At the lowest

point, we see that a center of mass momentum of 4.75 GeV/c and cos θCM of -0.8

correspond to 3.2 GeV/c and -0.45 in the lab frame. Following the black line up

and to the left, we see that as the center of mass momentum drops, the particles

are boosted more and more towards the front of the detector until we reach the

point where stationary center of mass particles are boosted to a lab cos θ of one.

The top section of the black line shows a similar behavior for the cos θCM = 0.3
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Figure 5.4: a) distribution of generated Λc in the lab frame. The black line

shows our acceptance cut. b) Reconstruction efficiency. c) Relative error on the

efficiency. d) Efficiency pull distrubution. e) Radius of the circle over which

entries are integrated in order to calculate the efficiency.
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particles. Figure 5.4b shows that the large number of particles with cos θCM ≥ .3

are reconstructed with a very low efficiency which varies rapidly with cos θlab so

we are better off not trying to include them in the analysis.

The first step in calculating the efficiency is to assign a radius of integration for

each of the 90,000 bins. This defines a circular region in the efficiency map, over

which the Monte Carlo entries are integrated, in order to reduce the statistical

error. This radius is initially set to 15 bins and allowed to vary by 10% with each

iteration of the procedure. Bins near the kinematic limits for Λc production have

their radius of integration reduced until it no longer crosses into the unallowed

region. The efficiency and statistical error for each bin is calculated using all

of the generated Λc that fall within the radius of integration of that particular

bin. Secondly, extrapolations to all bins with a statistical error of greater than 7

percent are performed. Looking at figure 5.4c, we see that this is only necessary

for the fastest Pcm bins, and a small number of bins between the continuum

and B decay distributions at high cos(θlab). The direction of extrapolation is

determined by looking at the status of neighboring bins. It is chosen to be in

the direction opposite the neighbor bins which are closest to the kinematic limits

of the Λc distribution. A number of linear extrapolations are performed using

sets of points at a distance of 16, 12, 8 and 4 bins from the current bin, and

within 45 degrees of the calculated extrapolation direction. The results of these

extrapolations and their errors are then averaged.

The efficiency in the extrapolated region is the error weighted average of the

extrapolation and the original value. In order to ensure a smooth transition, the

weights on the extrapolated values are linearly phased in as the statistical error

on the original efficiency goes from 7 to 10%. The final values of the efficiency

and relative errors can be seen in Figure 5.4 b&c.
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After each iteration of the efficiency calculation, the efficiencies of the bins

centered on the edge of the circle defining the integration region of each bin are

compared with that of the central bin. If the average of the absolute value of the

difference is greater than twice the expected statistical fluctuation, then this is a

sign that the efficiency map might have curvature in this region, and the radius

of integration of the bin is reduced by 10%.

After about 20 iterations, the radii of integration reach their optimal values

and a final result is attained. The final values of the radii of integration are shown

in Figure 5.4e. The radii become very small in the high cos θlab region, because

the algorithm is trying to match the curvature of the efficiency by using smaller

bins. The radii are also small in the region around 2 GeV/c because we have

high statistics here, and don’t need to integrate over a large region to get a good

measurement.

As a consistancy check on the size of the reported uncertainties, 500K Monte

Carlo events are generated using the just calculated efficiency map and an input

momentum spectrum similar to that of the data. The efficiency is then recalcu-

lated and compared with the ’true’ values used for the input. The pull of each

bin is plotted, weighted by the number of particles in the bin. The Gaussian

sigma of the resulting plot is 1.2, so the errors on the original efficiency map

are multiplied by this amount in order to give a self-consistant result. The pull

distribution after rescaling the errors is shown in Figure 5.4d along with the best

fitting Gaussian. This plot shows that the calculated efficiency is shifted down

by about .09 standard deviations. The calculated efficiencies are expected to be

slightly lower than the true values because we are integrating over a true effi-

ciency with negative curvature. However, since the effect of this bias on the total

yield is only 0.22%, it is negligable compared to the other normalization errors.
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5.2.2 Data/MC corrections

Data/Monte Carlo differences in particle identification and tracking have been

previously studied at BaBar. This section will show the corrections needed to be

made to our Monte Carlo efficiency.

The efficiency and misidentification rates of the particle identification algo-

rithm described in chapter 4 were studied in detail for the inclusive π K p

spectrum measurements [?]. The following decay channels were used to study

data/MC differences:

• K0
s → π+π−: this is a very clean sample of pions with high statistics at low

momenta;

• D	 → D0πS → KππS: this sample provides a source of both pions and

kaons over a wide momentum range;

• Λ → πp: this yields a clean sample of protons over the entire momentum

range of the analysis, as well as another sample of soft pions;

• τ →1 or 3 charged tracks: this yields a sample that is predominantly pions

and leptons and covers the very high momentum range;

• φ → K+K−: this gives a complementary source of kaons over a wide mo-

mentum range.

The efficiency corrections for the three daughter tracks of the Λc are multiplied

to get the total particle identification correction. This is shown as a function of

Λc center of mass momentum in figure 5.5. The correction is typically less than

5%, but can be larger when one of the daughter tracks has a high momentum in

the lab frame. The uncertainty of the correction, shown in the top left plot, is

around 2%.
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Figure 5.5: Data/MC Corrections and errors on the corrections for PID and

tracking

The result of the standard BaBar tracking corrections and an additional cor-

rection due to missing Δ resonances in the detector material simulation [22] is

shown in the bottom two plots. The error on the correction for each track is

about 0.8% correlated over all momenta. For very soft pions it goes up to 1.3%.

The total tracking error is the sum of the errors for the three daughter tracks.

67



CHAPTER 6

Measurement of the Λc Momentum Spectrum

In this chapter we describe the measurement of the Λc momentum spectrum.

We describe how the invariant mass histograms are fit to extract the Λc signal,

calculate various systematic errors, and check to see that the results are consistant

over different angular regions and data taking times. Finally, we present our

results.

6.1 Signal Extraction

After applying the efficiency and data/MC corrections described in the previous

chapter, the Λc candidates are boosted into the center of mass frame, where they

are divided into 19 momentum bins of 250 MeV/c width. The final bin ends at

4.75 GeV/c which is the kinematic limit. Because an event containing a Λc must

contain another c quark and baryon, the fastest possible Λc would come from

the decay virtual photon → Λ+
c + Λ̄−

c . Although, as we will see in chapter 8 this

exclusive decay mode is never seen, it sets the scale for pmax =
√

s/4 − m2. In

each momentum slice, the π+K+p invariant mass is divided into 420 bins, 2.23 ≤
mass≤ 2.335 GeV/c. Chosing a number of bins with a large number of different

prime factors (420=2*2*3*5*7) allows us to combine bins in several different ways

(24) without rerunning the analysis or changing the size of the sidebands. The

invariant mass bins in each momentum slice are combined until there are at least
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10 raw entires in each mass bin. This number is sufficiently high to allow us to use

symmetric upper and lower error bars for a Poissonian distribution. Each Λc is

weighted by the correction determined in the previous section, and the statistical

error for each invariant mass bin is taken to be the square root of the sum of the

squares of the weights.

In order to calculate the systematic errors, the tracking, particle ID and Monte

Carlo errors are added in quadrature and then added to the signal in each of the

invariant mass bins. The resulting histogram is refit and the difference in the

signal+error and signal only fits are taken as the systematic error.

6.1.1 Full Dataset Study

Our primary interest in the first part of this analysis is to study Λc production in

jets using the 9.460 fb−1 of offpeak data taken at a center of mass energy of 10.54

GeV. We also have 80.753 fb−1 of onpeak data taken at 10.58 GeV. This dataset

was taken just above bb̄ threshold and so is contaminated by non-jet BB̄ events ,

which will be studied in a future analysis, but it will also serve two purposes for

the present study.

First, because Λc from B decays cannot exceed a center of mass momentum of

2.3 GeV/c, we can use the shape of the onpeak momentum spectrum above this

value as a cross check for our offpeak measurement. Secondly, because the onpeak

sample has more statistics, we can use it to study the position and resolution of

the Λc mass peak. By fixing the location and width of the mass peak in the

offpeak fits to the values obtained using the entire dataset, we should be able to

get a better measurement.
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The parameters of the fitting function are chosen by χ2 minimisation

χ2(a, b, c, ...) =
∑

mass bins

(
∫
bin f(a, b, c, ..., m) dm −∑

i wi)
2∑

i w
2
i

where a,b,c,... are the parameters of the fitting function, wi is the weight of

each data entry, which is equal to the reciprocal of the reconstruction efficiency,

and the sum is done over mass bins within 15 MeV of the PDG Λc mass.

For a given detector region, we expect the resolution function to be a Gaussian,

but, because our center of mass momentum bins are actually integrating over large

detector regions, a sum of two or more Gaussians may be necessary. We begin

by fitting the entire dataset with a single Gaussian and 2nd order polynomial

background. The squares in figure 6.1a show the χ2 per degree of freedom. When

the same data is refit using a sum of two Gaussian for the signal (the triangles

in figure 6.1a), the results are improved in the region 1.75 ≤ PCM ≤ 4. Because

we have less statistics outside of this range, we are better off using just a single

Gaussian. The fits using the sum of two Gaussians in this region and a single

Gaussian everywhere else are shown in figure 6.2

Figure 6.1b) shows the value of the center of the Λc mass distribution as a

function of center of mass momentum. Before correcting for the particle energy

loss due to interactions with the detector material, there was about a 5 MeV

shift at low momenta. After the correction there is still a slight slope. There is a

discontinuity in the Monte Carlo at 1.5 GeV/c caused by the difference between

the continuum and B decay Λc distributions. Because the B decays are isotropic

in the center of mass, their boosted momentum distribution in the lab frame

looks different from a jet-like angular distribution of the same center of mass

momentum.

Figure 6.1c) shows the width of the Λc mass fits. The mass distribution is

wider at high momentum because of decreased momentum resolution. Again
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Figure 6.1: Fits using the entire dataset. a) χ2 for one and two Gauss fits.

b) Mass shift vs. momentum. c) Width of the invariant mass distribution vs.

momentum.

there seems to be a difference between the behavior of MC Λc from B and those

from the continuum.

6.1.2 Fitting the Offpeak Data

The continuum Λc measurement is done using only the offpeak data. Because we

now have less statistics, the following changes are made to the fits.

• The background in momentum slices one, eighteen and nineteen is changed

from quadratic to linear.

• The smallest number of raw entries in an invariant mass bin for momentum

slices 17,18, and 19 is 8,3, and 4 respectively. In these slices, the absolute

errors in bins with less than 7 raw entries are scaled up to what they would

be if there were 7 entries with the same efficiency as the existing entries.

The mass and widths of the Gaussians are fixed to the values obtained in the

full dataset study. The results of the fits are shown in figure 6.3. Because of low
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Figure 6.2: All data fits in 19 center of mass momentum bins
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statistics, the fits in the last 4 momentum bins are not very reliable. We would

like to have more bins in the signal region in order to get a better fit, and fewer

bins in the sidebands where we are statistically limited. The offpeak data is refit

in figure 6.4 using variable size invariant mass bins with an equal number of Λc

candidates in each bin. This gives much better results in the last 4 momentum

bins. We will use these fits for our spectrum measurement and use the fixed bin

width fits as a cross check.

In order to study the effects of chosing a particular fitting function, the fits

are redone three times with the following changes.

1) using the mass from each of the momentum slices in the AllData fits, as

opposed to the linear fit in figure 6.1b

2) changing from linear to parabolic background and vice versa

3) increasing the number of entries in each invariant mass bin by about 50%

The spectrum for each of the fitting functions is shown in figure 6.5. The

largest deviation from the standard fit is taken as a systematic fit error.

6.2 Systematic Errors

6.2.1 Reflections

A reflection is an invariant mass peak that is created when either one of the

daughter tracks is incorrectly identified, or when tracks that did not come from

the same mother are combined. In order to look for reflections which might

produce a fake Λc signal, version 6.2 of the Pythia continuum event generator

was used to generate 10 million events. The mass of all possible 3 charged track

combinations was calculated, assigning the proton, pion, and kaon masses to each
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Figure 6.3: Offpeak data fits in 19 momentum bins.
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of the tracks. Only combinations with less than two wrong mass assignments

were kept. Because particle misidentification rates are less than 5%, reflections

resulting from two misidentifications will be about 20 times smaller and can be

safely ignored.

Next, the number of entries within 10 MeV of the Λc mass were recorded for

two types of decays; those in which all three charged tracks come from the same

mother, and those in which two charged tracks have the same mother, and the

mother of the mother particle is also the mother of the third charged track. The

second case covers two body decays to a neutral and a charged particle with the

subsequent decay of the neutral into two charged particles (example D∗ → D0πs

and D0 → Kπ). The subscript s is used to distinguish pions decaying directly

from the grandmother particle from those decaying from the neutral daughter.

In these types of decays the ’s’ particle is usually slower.

All decays with more than 20 entires per 10 million events are shown in

table 6.1. Because Pythia only produces about 60% as many Λc’s as previous

10 GeV/c experiments, and also understates the πKp branching fraction, the

Λc → πKp yield was scaled up to its PDG value of .005 per event. All other

rates are based on the Pythia default settings.

Because most reflections will result in a wide mass distribution that will be

easily distinguishable from the signal, what we really want to know is how the

number of entries in table 6.1 compares with the number of reflections showing

up in the Λc sidebands. This is what is shown in figure 6.6, which is the sideband

subtracted reflection signal versus the Λc candidate center of mass momentum.

The true Λc signal is represented by the triangles in each plot. The sidebands

are defined as the regions 30 to 40 MeV/c higher or lower than the Λc mass. The

reflections are scaled up by a factor of 25, in order to make them visible on the
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Decay Misidentification Number

Λc → πKp none 50,000

D+ → Kππ π as p 8,238

D+ → KKπ K as p 309

D+ → K∗0πs K∗0 → Kπ π as p 320

D+ → K∗0πs K∗0 → Kπ πs as p 705

D0 → Kππ + X π as p 7,509

D0 → K∗0πs + X K∗0 → Kπ πs as p 751

D0 → K∗0πs + X K∗0 → Kπ π as p 766

D∗ → D0πs D0 → Kπ π as p 3,350

D∗ → D0πs D0 → Kπ πs as p 3,761

Ds → KKπ K as p 490

Ds → K∗0πs K∗0 → Kπ πs as p 688

Ds → φπ φ → KK K as p 289

Table 6.1: Number of entries within 10 MeV of the Λc mass per 10 million

generated continuum events

same plot, and assume 100% misidentification of one of the particles, so the true

yields are expected to be about at about 500 times smaller than what is shown.

The only reflection coming close to 1% of the Λc signal is the D∗+ → D0πs,

D0 → Kπ, where the π is identified as p, in the momentum bin 4.50 ≤ p ≤
4.75 GeV/c. This is the second to last momentum bin in figure 6.6. The last

bin is above the Λc kinematic limit. This momentum bin is shown plotted vs.

invariant mass in figure 6.7. This figure assumes a 5% misidentification rate

and so corresponds to what we expect to see in the data. The invariant mass is

smeared with a Gaussian of width 5 MeV in order to simulate detector resolution.
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Figure 6.6: Generator level reflections (squares) compared with Λc signal (trian-

gles). Reflections are scaled up by a factor of 25 (to make them visible on the

plot) and assume 100% misidentification, so the actual rates should be at least

500 times smaller.
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Figure 6.7: The D∗+ reflection assuming 5% missID compared to the Λc signal

in the center of mass momentum bin 4.50 ≤ p ≤ 4.75 GeV/c.

It is clear that the D∗+ reflection is flat across the Λc mass range, and that the

sideband subtracted signal was a result of the dropoff around 2.24 GeV. The

reflection is also about 25 times smaller than the Λc signal, so we do not have to

worry about it.

One might be surprised that none of the decays of heavy charmed baryons

showed up in figure 6.6. Figure 6.8 shows the reflection Σ++
c → π+

s Λ+
c where the

πs and the pion from the Λc decay are swapped, integrated over all momenta.

The number of entries are scaled to match the PDG multiplicities. The invariant

mass of the reflection is almost always less than the Λc mass.
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Figure 6.8: Reflection of Σ++
c → π+Λ+
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6.2.2 Momentum Resolution and Shift

Because the detector has a non-zero momentum resolution, some of the recon-

structed Λc will diffuse into neighboring center of mass momentum bins, distorting

the spectrum. This problem becomes worse as the difference in the number of

entries between adjacent bins increases. Figure 6.9a shows the difference in true

and reconstructed momenta for three center of mass momentum regions. In ad-

dition to smearing the momentum by a few MeV, the reconstruction also shifts it

slightly lower. This is probably due to the incorrect modeling of material interac-

tions, which also caused the slope in the mass vs. momentum plot in figure 6.1b.

The relative number of particles migrating up and down from each momentum

bin is shown in figure 6.9b. Because of the momentum shift, a larger percentage

of particles are migrating towards lower momentum bins. At high momentum,

the momentum shift is less, so we might expect the number of particles migrat-
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Figure 6.9: a) Momentum resolution for 3 different momentum ranges. b) Rela-

tive number of particles migrating to adjacent momentum bins.

ing up and down to be about the same. However, since the spectrum is sloped

downwards at high momentum, a larger number of particles are near the low

momentum edge of each bin, and these are more likely to migrate into the next

bin.

Because the efficiency for finding a Λc with reconstruted momentum x is

defined as

E =
number of particles with reconstructed momentum x

number of particles with true momentum x

this correction is already built into the efficiency map, if the Monte Carlo and

data momentum spectra are the same. In order to cover any data/MC differences,

the error on this correction will be defined as one third of the correction based on

figure 6.9b. The size of the error can be seen in relation to all the other sources

of error in figure 6.16.
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6.2.3 Resonant Substructure of Decays

In the standard BaBar Monte Carlo the momentum vectors of the Λc daughters

are distributed evenly throughout the available phase space, but in reality, the

πKp mode has a resonant substructure. Decays passing through an intermediate

resonant state, for example, a K∗, will result in a different daughter momentum

vector distribution than in the non-resonant decays. Our primary concern is

that the resonant states might have a different reconstruction efficiency, resulting

in a bias in the efficiency calcualtion. The top three plots of figure 6.10 show

the invariant masses of each two-particle combination in Λc → πKp. The black

curves show the Monte Carlo and the red curves are sideband subtracted data

for Pcm ≥ 3. The red line is scaled so that it fits under the black line. We can see

that the structure is different in the data. The most obvious resonances are the

K∗
892 in π + K, the Δ1232 in π + p and the Λ1520 in K + p

The bottom three plots show the efficiencies in bins of invariant mass for

different values of Λc center of mass momentum. The efficiency varies linearly

except for a drop off at low π + p mass and high K + p mass. The efficiency

increases with momentum, but because the shapes of the efficiency curves do

not seem to change very much as momentum increases, we can do one error

estimation, integrating over all Λc momenta. Efficiency tables are made as a

function of invariant mass for each of the three combinations, and these tables

are then used to calculate the average Monte Carlo efficiency. The results are

shown in table 6.2. Then, Monte Carlo events are killed off in order to make the

invariant mass distributions match those seen in the data. The average efficiency

is then recalculated. The changes for the efficiency in the π + p,π +K and K + p

projections are 0.2%, 0.9% and -0.3% respectively. We take the largest deviation,

0.9%, as a systematic error.
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Figure 6.10: Top - Number of Λc vs. invariant mass of any two of the daughters.

Bottom - Reconstruction efficiency as a function of these invariant masses.
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Invariant Original Efficiency with Difference

Mass Efficiency Resonances

π + p .24170 .24213 0.2%

π + K .24173 .24386 0.9%

K + p .24169 .24098 -0.3%

Table 6.2: Effect of resonant substructure on Monte Carlo Efficiency

6.2.4 Proton Helicity Angle

Because Λc → πKp is a weak decay, it is possible that the data would show a

preferential direction for the daughter proton momentum in the Λc rest frame.

Because the Monte Carlo does not include this effect, our efficiency calculation

could be biased by its appearance in the data. Figure 6.11 shows the cosine of

the angle between the proton and Λc momenta in the Λc rest frame. Because

fast Λc are more likely to retain the helicity of the original c quark, any effect

should be more noticable at high momentum. The plot shows efficiency corrected,

sideband subtracted Λc above 3.5 GeV/c in the center of mass frame. The line

is fit to the data, but is also consistant with Monte Carlo, which has been scaled

to have the same area as the data. The downward slope suggests that decays

with a backwards moving K and π are reconstructed with lower efficiency, but,

because the effect is the same in Monte Carlo and data, we do not need to make

a correction.

6.2.5 MC/Data Momentum Spectrum Shift

If the Monte Carlo momentum spectrum is shifted with respect to the data,

this can also cause a bias in the efficiency calculation. In order to measure
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Figure 6.11: Proton helicity angle

the size of this bias, we could create a new set of Monte Carlo with a shifted

spectrum, and then run it through the detector simulation and make a new

efficiency map. However, since this would take a large amount of computer time,

we will substitute our calculated efficiency map and a random number generator

for the detector simulation, and feed in shifted Λc spectra to make new efficiency

maps. We will then correct the original Monte Carlo using the new maps, and

see how much the Λc yield changes. Since we are using signal Monte Carlo there

is almost no background, and we can get the Λc yield simply by subtracting an

equal amount of sideband from the 50 MeV width signal region.

Figure 6.12 shows the effect of shifting the input momentum spectrum up

or down by a half or a quarter of a bin. Because of lower statistics, it is more

difficult to constrain the effect of this bias at low and high momenta. The error

is taken to be the half-width of the yellow band.
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Figure 6.12: Effect of shifting the momentum distribution used to make the

efficiency map on Λc yield

6.2.6 Angular Distribution in Monte Carlo and Data

As described in section 5.2.1, we must extrapolate the Λc yield into regions of

low reconstruction efficiency using the Monte Carlo Λc angular distribution. In

order to test this distribution against the data, we divide it into 6 regions of

center of mass polar angle. We extrapolate each slice using the Monte Carlo and

then compare the result to that obtained from our standard measurement, which

integrates over all six angular bins. A MC/data difference in the number of Λc in

one of the angular slices would cause this extrapolation to be inconsistant with

the others. Problems with the efficiency corrections would also show up as an

inconsistancy.

Because we have lower statistics for each angular slice, we fit the invariant

mass distribution of each momentum bin with just a single Gaussian with a
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linear background. The momentum bins below 1 GeV/c and above 4.25 GeV/c

do not have enough statistics to reveal a peak near the Λc mass and are not used.

In order to make the fits work below 1.5 GeV/c, the center of the Gaussian is

required to be within 30 MeV of the Λc mass in this region.

The results are shown in figure 6.13a. Only statistical errors are shown,

but, since each center of mass angular bin corresponds to a different detector

region, some of the systematic errors should be uncorreleated as well. Therefore,

the errors in the plots are underestimated. To test the consistancy of the 6

measurements we minimise the χ2 for each momentum bin, and plot χ2/DoF for

5 degrees of freedom. In figure 6.13b χ2/DoF is shown for each bin and for the

bins from 1.00 ≤ Pcm ≤ 4.25 combined. The error bars are such that we expect

only 16% of the points to be above one by a distance larger than the error. The

2.25 ≤ Pcm ≤ 2.50 has a large χ2 but we have no reason to believe that this is

not a statistical fluctuation. The total χ2 is consistant, even without including

the systematic errors.

In order to look for changes in the cross section, or shifts in the peak of

the spectrum, we fit a Gaussian to each angle bin spectrum between 1.50 and

4.25 GeV/c. The normalisation and peak location of the 6 Gaussians are shown

in figures 6.13 c&d. If the center of mass angular distribution of Λc is 1 +

a(p) cos2 θcm, the probability density should be independent of ’a’ at cos θ =

±
√

1
3

= .577. This turns out to be at the center of our second (red) angular bin.

Thus, if the Monte Carlo used an incorrect value for ’a’, we would expect the

extrapolation to still be correct in the second bin, and the variation in bin one

to be compensated by the highest four bins. Since the second bin is the lowest

point this is not the case, and we have no evidence that the Monte Carlo has

incorrectly modelled the angular distribution.
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Figure 6.13d, shows that the locations of the peaks of the 6 spectra are con-

sistant. If we were to add another angular bin for the region 0.3 ≤ cos θ ≤ 0.6

we would see that its spectrum was shifted towards higher momenta. Looking

back at figure 5.4, we see that this extra bin would correspond to the region just

above the black line, where the efficiency is quickly varying and thus difficult to

calculate.

6.2.7 Time Dependance

Because detector conditions change over time it is important to check that there

are no systematic effects which lead to changes in the calculated spectrum. Our

efficiency calculations and data/MC corrections were made to be independent of

time in order to decrease the statistical error. We need to check that this time

averaging has not created a bias in our results.

Figure 6.14a shows the shape of the spectrum over 6 time periods of roughly

equal luminosity. The errors are statistical only. The most significant change

over the period of data taking was the voltage on the drift chamber. For time

slice one it was equal to 1900V. For time two it was 1960V. For later times it was

1930V. There does not appear to be a change in the shape of the spectrum.

Figure 6.14b shows a “cross section” for each time period, but because the

different angular distribution of the B decays has not yet been taken into account,

this is not the true cross section. It looks like the first time period may be lower

in the data. The Monte Carlo, which tries to mimic the detector conditions on a

month to month basis, does not drop as much in the first time slice, but, because

the difference is not very significant statistically, we have decided not to add an

additional normalization error.

89



0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4

-0.80 < cos Θcm <-0.65
-0.65 < cos Θcm <-0.50
-0.50 < cos Θcm <-0.33
-0.33 < cos Θcm <-0.15
-0.15 < cos Θcm < 0.06
 0.06 < cos Θcm < 0.30

Pcm

C
or

re
ct

ed
 E

nt
ri

es
 / 

25
0 

M
eV

/c

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4

to
ta

l 1
.2

5 
< 

P
cm

 <
 4

.2
5

Pcm

χ2 /D
oF

650

700

750

800

850

900

950

1000

1050

x 10 2

2 4 6
angle bin

C
or

re
ct

ed
 e

nt
ri

es
 in

 G
au

ss
ia

n 
fi

t

2.7

2.725

2.75

2.775

2.8

2.825

2.85

2.875

2.9

2.925

2.95

2 4 6
angle bin

C
en

te
r 

of
 G

au
ss

ia
n 

fi
t

Figure 6.13: a) Comparison of efficiency corrected spectra from six different center

of mass angle regions. b) the χ2/DoF for each momentum bin in a). c) Number

of entries in a Gaussian fit from 1.5 ≤ Pcm ≤ 4.25 for each angle bin. d) Center

of the Gaussian fits.
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Figure 6.14: Spectrum time dependance. a) shows the shape of the spectrum

over 6 time periods. b) shows a measure of cross section vs. time.

6.3 Results

The final section of this chapter contains tables of all of the previously mentioned

errors and displays our final result. Comparisons with previous experiments and

with the various hadronization models and fragmetation functions will be made

in the next chapter.

Figure 6.15 shows our final result, the momentum spectrum of Λc → πKp at

10.54 GeV. Because of the large uncertainty of the branching fraction of (5.0 ±
1.3)%, we have chosen to plot the cross section for this particular mode only.

The measured spectum is very smooth. None of the individual points appear

to deviate from a reasonable interpolation of the nearest neighbors by more than

the reported errors.

The various errors are shown in figure 6.16 and in the accompanying tables.

91



0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Uncorrelated Errors

Correlated Errors

Pcm(GeV/c)

Pb
 / 

(G
eV

/c
)

Figure 6.15: The continuum spectrum for Λc → πKp. The error bars show the

independant and statistical errors. The shaded region shows the square root of

the diagonal terms of the correlated error matrix.

92



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Statistics
Fitting
MC Efficiency Map
PID
MC/Data Spectrum Shift
Migration

Pcm

R
el

at
iv

e 
E

rr
or

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Figure 6.16: Relative errors on continuum measurement

Not shown are the 0.9% error caused by the data/MC difference in Dalitz struc-

ture, the 1% error on the BaBar integrated luminosity measurement, and the

2.48% tracking error, which are the same in every bin.

We need to address the issue of error correlations between momentum bins.

We classify each error as being one of three types.

Normalization errors are those which are perfectly correlated and the same

relative amount in each momentum bin. These errors do not have any effect

on the shape of the spectrum, and can be ignored except when calculating the

total rate. The BaBar luminosity error of 1% is a normalization error. The

tracking error, which is expected to be perfectly correlated, averages 2.48% with

a maximum deviation of 0.03% can also be considered a normalization error. This
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gives us a total normalization error of 2.67%.

Independent errors are those which have no correlation between momentum

bins. The statistical and fitting errors are completely independent. Particle

identification errors have many different correlations, but since none of them

dominate, we can treat the sum as being independent. The Dalitz, migration

and MC/data shift errors are all less than 1.5%, and any correlations would have

little effect on our result, so they can also be treated as independent.

This leaves the MC efficiency map error, which turns out to be correlated.

As described in section 5.2.1, the statistical error on the MC efficiency could be

reduced in regions of detector space with a small efficiency gradient by integrating

the efficiency over a large area. The result of this was a covariance of the efficiency

between adjacent bins of around 25%. The highest and lowest momentum bins

have covariances extending further, to the forth nearest neighbor, because of

the increased radius of integration used in these low statistic regions. The MC

efficiency matrix can be factored into independent and correlated pieces, which

are shown in tables 6.3 and 6.5. The shaded region in figure 6.15 is the square

root of the diagonal terms of the error matrix.

The three largest errors — the statistical error on the fit, the error caused

by the uncertianty of which function best fits the mass peaks, and the Monte

Carlo efficiency map error — are all statistical in nature, implying that a future

BaBar measurement using more luminosity could improve on our measurement,

especially at low and high momenta. The BaBar integrated luminoisty could be

increased by a factor of four by the end of 2008. So we can expect to be able to

decrease the errors to roughly half of what they are now.

In the next chapter we will see how our measurement compares to the various

hadronization models.
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2 7
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 1.3 1.2 1.2 0.5 0.0 0.0 0.0 0.0 0.0

3 1
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.2 1.1 1.1 0.6 0.0 0.0 0.0 0.0

3 3
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.1 1.2 1.2 0.7 0.0 0.7 0.9

3 5
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 1.2 1.2 1.4 0.8 1.4 2.7

3 7
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 1.4 2.0 2.0 1.8 3.9

4 1
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 2.0 2.0 4.4 4.4

4 3
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 1.4 1.8 4.4 10.6 10.7

4 5
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 2.7 3.9 4.4 10.7 10.8

Table 6.3: Error matrix for the correlated part of the MC efficiency error. The

square root of each term is taken so that the percent error can be read off the

diagonal
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Momentum Spectrum Total Statistical Independent Correlated

Range pb/(GeV/c) Error (%) Error (%) Error (%) Error (%)

0.00-0.25 0.058 58.92 54.61 20.83 7.48

0.25-0.50 0.104 98.98 83.97 52.13 5.32

0.50-0.75 0.313 43.73 38.75 19.75 4.53

0.75-1.00 0.369 35.05 33.59 9.92 1.31

1.00-1.25 0.831 16.92 15.75 5.88 1.92

1.25-1.50 1.157 12.65 11.18 5.58 1.97

1.50-1.75 1.785 11.38 7.82 7.93 2.34

1.75-2.00 2.390 8.78 5.81 6.16 2.32

2.00-2.25 2.955 6.20 4.51 3.71 2.06

2.25-2.50 3.917 5.17 3.52 3.41 1.66

2.50-2.75 4.718 4.72 2.96 3.37 1.48

2.75-3.00 5.505 4.38 2.57 3.33 1.19

3.00-3.25 5.127 4.38 2.57 3.37 1.13

3.25-3.50 4.386 4.79 2.67 3.78 1.21

3.50-3.75 3.045 5.16 3.16 3.90 1.20

3.75-4.00 1.618 5.99 4.33 3.64 1.97

4.00-4.25 0.741 10.09 6.00 7.87 1.95

4.25-4.50 0.249 28.90 10.41 24.77 10.64

4.50-4.75 0.029 61.96 39.88 46.18 10.78

Table 6.4: All errors. The normalization errors - luminosity (1%) and tracking

(2.48%) are the same in every bin
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Momentum Fitting Uncor. MC PID MC/Data Migration

Range (%) Efficiency (%) (%) Shift (%) (%)

0.00-0.25 15.21 14.02 1.66 1.45 .18

0.25-0.50 51.88 4.40 1.86 1.35 .10

0.50-0.75 19.60 0.00 1.91 1.25 .14

0.75-1.00 9.27 2.74 1.69 1.15 .23

1.00-1.25 4.27 3.41 1.61 1.05 .40

1.25-1.50 3.40 3.89 1.55 .95 .59

1.50-1.75 6.69 3.69 1.62 .85 .67

1.75-2.00 4.80 3.25 1.65 .75 .59

2.00-2.25 1.67 2.58 1.67 .65 .59

2.25-2.50 1.13 2.42 1.72 .55 .64

2.50-2.75 1.58 2.04 1.77 .50 .67

2.75-3.00 1.67 1.90 1.82 .50 .59

3.00-3.25 1.86 1.73 1.85 .50 .64

3.25-3.50 2.60 1.64 1.88 .50 .48

3.50-3.75 2.67 1.71 1.94 .71 .27

3.75-4.00 2.33 1.42 1.93 1.12 .17

4.00-4.25 6.67 3.20 2.01 1.54 .12

4.25-4.50 24.58 0.00 2.05 1.95 .46

4.50-4.75 43.81 14.19 2.13 2.37 .79

Table 6.5: Independent errors. The Dalitz structure error (.9%) is the same in

every bin.

97



CHAPTER 7

Comparisons with Previous Experiments and

Models

In this chapter we will compare our momentum spectrum to the prediction of the

BaBar Monte Carlo, a previous measurement made by the CLEO experiment,

and to the fragmentation models discussed in chapter 2.

The BaBar experiment uses the JETSET/Pythia Monte Carlo, tuned to fit

the BaBar data, to generate continuum events. Since our corrections are based

on this Monte Carlo, we would like to see agreement between its prediction and

our measured spectrum. However, if the two are not consistant, we have already

checked the sensitivity of our measurement to shifts in the Monte Carlo spectrum

in figure 6.12.

Figure 7.1 shows our measurement in black and the BaBar Monte Carlo gen-

erator level spectrum in red. As the spectra are normalized to unit area, the

normalization error is not included. The figure shows that the Monte Carlo does

not match the narrow peak seen at 3 GeV/c in the data and also overpredicts

the rate at high momentum. We will see that these features occur in several of

the other hadronization models.

Figure 7.2 shows the previous best measurement of the Λc spectrum from

the CLEO experiment [24]. This measurement was done in 1991 and used only

101 pb−1 of data. The Λc → pK0 (Branching Fraction 2.3 ± 0.6 %) and Λc →
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Figure 7.1: Comparison of Data with the BaBar Monte Carlo

Λπ (Branching Fraction 0.9 ± 0.28 %) modes are included with Λc → πKp

(Branching Fraction 5.0 ± 1.3 %). The CLEO measurement is consistant with

ours, but, due to lower statistics, the errors are much larger.

Now we will compare the various fragmentation models discussed in Chapter 2

with our results. The model spectra are created at the generator level, without

a detector simulation, and compared to our corrected data spectrum. We will

judge the goodness of each model by its χ2/DoF , which, because of the correlated

errors, must be calculated using the full error matrix

χ2 = (D − rM)T 1

σ2
(D − rM)

where D is a column vector of the the number of corrected data entries in each

bin, M is the number of model entries, T is the transposition operator, r is a

scale factor such that the model and data have the same total rate integrated

over momentum, and σ2 is the error matrix.
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Figure 7.2: Comparison of our Data with the previous best measurement, by

CLEO.

The off diagonal terms of the error matrix are shown in table 6.3, measured

in percent of M. The diagonal errors of the correlated error matrix are added in

quadrature to the non-correlated errors to get the diagonal term of σ2.

The calculation of the non-correleated errors, σi, is a bit tricky. The errors

reported on an experimental measurement are the expected variance of the mea-

surement given that the expected mean value is equal to the actual experimental

result. When comparing with a model, however, the expected mean value of the

measurement is equal to the prediction of the model, and the expected variance

must be scaled accordingly. In a simple counting experiment with no systematics,

the errors scale like
√

n. Our error calculation is made more complicated because

of the background subtraction required to extract the Λc signal.

Because we are only testing the models’ ability to reproduce the Λc momentum
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spectrum, we will assume that they generate the same backgrounds as exist in

the data. The only change is the size of the Λc mass peak in each momentum bin.

In order to estimate the statistical error for various signal sizes we first simulate

the expected invariant mass plots by adding or subtracting a randomly generated

Gaussian of appropriate width and center to the data. The signal size is varied by

geometrical factors of 1.2 from ( 1
1.2

)10 to 1.210. The resulting histograms are then

fit using the same procedure as for the data and the systematic errors are put

into a lookup table. The results for four different momentum regions are shown

in figure 7.3. It can be seen that the statistical error is much less sensitive to the

signal size for slow Λc. This is because at low momenta, the statistical error on

the invariant mass fits is dominated by sideband subtraction (figure 6.3). In the

4.25 ≤ Pcm ≤ 4.50 bin, where the background is very low, we see that a four fold

increase in signal size increases the statistical error by a factor of 1.9, which is

close to the factor of 2.0 expected from an experiment with only counting errors.

The point to point systematic errors shown in table 6.5 also need to be scaled

up to what they would have been if the number of observed events were equal to

the model prediction.

σmodel systematic = σdata systematic
rM

D

We also have an additional error due to the statistics of the generated spec-

trum

σgenerator statistics = r
√

M

although, due to the speed of the generator, this can be made much smaller

than the other errors. Summing the three pieces, we get a total non-correlated
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In practice the only case where there is a noticeable difference between the

reported data error and σ is when the model overpredicts the data by a large

fraction above 4 GeV/c. At low momenta the error is dominated by the constant

sideband subtraction error.

The results of the model comparisons are shown in figure 7.4. These models

are described in detail in section 2.2. The first seven models are all created using

the JETSET Monte Carlo program with a modified fragmentation function. The

form of the functions are shown in table 7.1. The remaining models, HERWIG

and UCLA are generated by separate programs. Table 7 shows the χ2/DoF for

each model, along with the values of the parameters giving he best fit, and the

average momentum.
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Four of the five one-parameter models (BCFY, Collins and Spiller, Kartivel-

ishvili, and Peterson) fail to reproduce the narrow peak of the Λc spectrum seen

in the data. The exception, the modified Kartivelishvili function, is the only

one that takes into consideration the extra degree of freedom coming from the

additional spectator quark in baryon formation. It would be interesting to see

how baryon versions of the other three models would compare with data, but

unfortunately, they are not currently available.

The two parameter models - Lund, Bowler and UCLA, do a better job of

fitting the central region of the spectrum. It should be noted that the two pa-

rameters in these models are highly correlated, so that a wide range of correlated

parameter values give similar results. For example changing the Lund model pa-

rameters from a=1.00 and b=.62 to a=.69 and b=.55 only raises the χ2 from 28

to 35.

It is not clear that χ2/DoF is the best way of judging these models. The

HERWIG model is by far the worst in terms of χ2/DoF , because its predictions

at high momentum, where the absolute errors are small, differ by several sigma.

The overall shape of the HERWIG spectrum, however, might be considered to be

better than the models that fail to reproduce the narrowness of the peak.

Figure 7.5 shows a potential source of error in the models’ momentum pre-

dictions. The BaBar Monte Carlo generated spectrum of Λc from string decay

differs noticeably from that of Λc coming from decays of Σc. This is because the

heavier Σc baryon has a lower pmax than the Λc and because additional momen-

tum is carried off by the daughter pion. The current monte carlo generators do

not contain all of the heavy charmed baryons, and their mutiplicities are not well

known. It would be an interesting future exercise to retune the models so that

they get the relative rates of different charmed baryons to match with data and
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Figure 7.5: JETSET prompt Λc spectrum vs. the Λc from Σc spectrum

see how the inclusive Λc momentum spectrum predictions change.
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Model f(z, β) Reference

BCFY
z(1 − z)2

[1 − (1 − r)z]6
[3 +

∑4
i=1(−z)ifi(r)] [12]

Bowler 1
z(1+bm2

⊥)
(1 − z)aexp(−bm2

⊥/z) [10]

CS (1 − z
z +

(2 − z)εb

1 − z )(1 + z2)(1 − 1
z − εb

1 − z )−2 [11]

Kartvelishvili zαb(1 − z) [9]

Modified

Kartvelishvili zαb(1 − z)3 chap. 2

Lund 1
z (1 − z)aexp(−bm2

⊥/z) [6]

Peterson 1
z (1 − 1

z − εb
1 − z )−2 [7]

Table 7.1: c-quark fragmentation models used in comparison with the data.

For the BCFY model, f1(r) = 3(3 − 4r), f2(r) = 12 − 23r + 26r2,

f3(r) = (1 − r)(9 − 11r + 12r2), and f4(r) = 3(1 − r)2(1 − r + r2).
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Model χ2/dof Parameters 〈p〉
JETSET + BCFY 131/18 r = 0.35 2.66

JETSET + Bowler 35/17 a = .63, b = .73 2.76

JETSET + CS 124/18 εb = 0.12 2.69

JETSET + Kartvelishvili et al. 106/18 αb = 3.1 2.73

JETSET + Modified Kart. 29/18 αb = 7.65 2.75

JETSET + Lund 29/17 a = 1.00, b = 0.62 2.76

JETSET + Peterson et al. 50/18 εb = 0.077 2.65

HERWIG 338/19 − 2.59

UCLA 43/17 a = 2.1, b = .53 2.77

Table 7.2: The minimum χ2, number of degrees of freedom, corresponding param-

eter values, and the mean value of the corresponding Λc momentum distribution

are listed.
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CHAPTER 8

Λ+
c |Λ̄−

c Events

In this chapter we will finally look for popcorn mesons in events with both a Λ+
c

and a Λ−
c . If we require each Λc to have a momentum of greater than 2.3 GeV/c

in the center of mass frame, we will see that the cosine of the angle between the

momentum vectors is almost always more negative than -.9. This is what we

expect to see in cc̄ events where the Λc are forming at the ends of the string. The

Belle experiment has recently observed larger than expected numbers of events

with more than one charmonium meson [26], implying that large amounts of

charm can be produced from gluon fusion. However, in order to make a Λ+
c and

a Λ−
c moving back to back with momenta of 2.3 GeV/c, you would need a 6.5

GeV gluon, which we would not expect to see at BaBar energies.

So we have a set of events with a baryon-antibaryon pair separated by a large

rapidity gap. First we will count the number of mesons we see in these events.

Then we will try to put a limit on how many of the mesons could be coming from

decays of excited baryons. Any remaining mesons will be popcorn.

8.1 Selection of Λ+
c |Λ̄−

c Events

Because the Λc → π+k−p branching fraction is so small (5.0 ± 1.3%), and the

rate of detected Λ+
c |Λ̄−

c events is proportional to this branching fraction squared,

we will try adding more Λc decay modes to increase our sample size.
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• Λc → K0p BF=2.3±0.6%

• Λc → Λπ+ BF=0.9±0.28%

• Λc → K0pπ+π− BF=2.6±0.7%

• Λc → Λπ+π+π− BF=3.3±1.0%

In addition to the particle identification cuts for charged and neutral particles

described in chapter 4, we apply the following cuts.

• Charged particle tracks have at least 5 hits in the SVT.

• Charged particle tracks have at least 15 hits in the DCH. This cut is low-

ered from the requirement of 20 hits in spectrum measurement in order to

increase the signal size.

• The probability that the daughters of the Λc come from a common vertex

must be greater than .001% for all modes except Λc → K0p. The Λ+
c |Λ̄−

c

analysis is done with a newer version of the BaBar software, which correctly

accounts for particle energy lost in interactions with the detector material.

The vertexing software was not reliable in the previous version, where this

cut had to be replaced by a cut on the distance of closest approach to the

global event vertex.

• The center of mass momentum of the Λc must be greater than 2.3 GeV/c,

which is the kinematic limit for B decays to Λc. This cut also reduces the

amount of energy available for the creation of extra particles, which is good

because we are interested in finding events without compensating baryons

in each jet. An interesting future study would be to relax the 2.3 GeV/c

momentum cut and see how baryon compensation varies with the available

energy.
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The invariant mass plot for each of the five modes in shown in figure 8.1.

The fits, shown in red, are just a single Gaussian with a linear background. The

width of the peak increases for decays to neutral particles. It decreases for the

five body modes, because each daughter is now slower, and reconstructed with a

better resolution. The plots showing the decays to a Λ have two reflections that

we will have to take into consideration when doing the sideband subtraction. One

is the decay Λ+
c → Σπ+, where the Σ decays to Λγ. The edges of this reflection are

marked with a blue box below the Λc mass. The other is Ξ0
c → Ξ−π+, Ξ− → Λπ−

where the Λ is combined with the π+. This reflection is above the Λc mass, but

the rate is too small to be seen in the plots. The sidebands in the other modes

are very flat, which means that we can estimate the density of background under

the peak by simply averaging the height of the sidebands.

At this point we attempted to optimize the width of our signal region cut

for each of these modes separately in such a way as to minimize the average

statistical error on the popcorn candidate helicity angle plot (figure 8.20). It

was found that the inclusion of all five modes only reduced the statistical error to

96.3% of what it was using the π+k−p and K0p modes only. This does not include

any additional errors that would come from the subtraction of the reflections, so

we decided to do the analysis using only the π+k−p and K0p modes.

Using only these two modes, we search for events containing both a Λ+
c and

a Λ̄−
c . The invariant mass of each Λ+

c Λ̄−
c pair having center of mass momentum

vectors with a negative dot product is plotted in fig 8.2. This cut eliminates events

where an anti-proton locally compensating the Λ+
c baryon number is combined

with two random tracks to make a fake Λ̄−
c in the same hemisphere. A close-up

of the signal region is shown in fig 8.3. The central circle of radius 12 MeV is the

signal region. The circles to each side are used to estimate the one fake rate and
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Figure 8.1: Invariant mass distributions in the region of the Λc mass for five

different combinations of particles known to be Λc modes. The red lines repre-

sent a simple Gaussian fit, and the blue lines show the regions of the reflections

described in the text.
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Figure 8.2: Invariant masses of Λ+
c Λ̄−

c candidate pairs for which the dot product

of the center of mass momenta is negative.

the four off-axis square regions are used to estimate the two fake rate. The change

in signal and background versus the radius of the cut is shown in fig 8.4. The

blue line in this figure shows how the increased statistics will affect the average

error over the ten bins in figure 8.20. The cut of 12 MeV on the radius gets us

close to the minumum statistical error value, without unnecessarily increasing the

amount of background subtraction. This yields 649 signal events after sideband

subtraction with one and two fake rates of 245 and 25. The signal to background

ratio is 2.4.

The particles in each event which do not come from a Λc will be potential

popcorn candidates. The following cuts are applied to these tracks to make sure

they are real and to distinguish them from machine backgrounds. The tracking

cuts applied to these tracks are
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Figure 8.3: Closeup of the invariant masses of Λ+
c Λ̄−

c candidate pairs for which

the dot product of the center of mass momenta is negative.

• at least 5 hits in the SVT

• at least 10 hits in the DCH

• the distance of closest approach of the track to the beam in the transverse

plane is less than 5 mm.

The SVT and distance of closest approach cuts are necessary to reduce the

number of non physics tracks due to beam interactions and photon conversions.

The requirement of 10 DCH hits per track is needed to prevent large numbers of

single real tracks from being reconstructed as two separate tracks. This currently

happens at a rate of once every 246 tracks in the Monte Carlo.

There is a possiblity that there will be Ks popcorn mesons. Since these

particles can have flight lengths of several centimenters, their daughter pions will
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Figure 8.4: Sideband-subtracted signal and background rates vs. the radius of the

cut used in figure 8.3. The blue line shows the corresponding average statistical

error on the helicty angle plot (figure 8.20).

not necessarily pass the tracking cuts mentioned above. We will specifically look

for these cases in section 8.5.

Some interesting event variables are shown in figure 8.5. The background

subtraction for these and all following plots are done by weighting the sideband

events by the ratio of the signal region area to the sideband area. The center of

mass momentum distribution is cut off at 2.3 GeV/c to get rid of B decays and

drops to zero around the kinematic limit of 4.74 GeV/c as expected. The second

plot shows the cosine of the angle between the Λ+
c and Λ̄−

c . The signal Λc are

anticolinear more often than the background, so we could get a cleaner signal by

placing a hard cut on the angle. We have decided not to do this as it might bias

us against events with large amounts of popcorn, which we would expect to have

greater transverse momentum.
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Figure 8.5: Center of mass momentum, Angle between the Λ+
c and Λ̄−

c , Missing

mass and non Λc mass. The sideband-subtracted signal is in black. The sideband

is in red.
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The third plot, the missing mass, shows the mass of the 4-vector momentum

sum of all charged tracks minus the beam momentum 4-vector. This is the

invariant mass of all neutral particles and the charged particles that do not pass

the tracking cuts. Imaginary masses are plotted on the negative real axis. There

appears to be a small peak at zero, representing events that have been fully

reconstructed. The resolution of the missing mass measurement might be as

high as a few hundred MeV, but events with missing masses less than -0.5 GeV

must contain spurious tracks or misidentified or poorly reconstructed tracks and

will be cut out of the final event sample. The fact that the missing mass peaks

below 2 GeV shows that we do not have a large percentage of events with two

neutrons. This, combined with the small number of identified protons that will

be shown in figure 8.6, confirms the CLEO observation that the Λc do not have to

be compensated by a same jet anti-baryon, wheras both the JETSET and UCLA

Monte Carlos are forced to do this by their construction.

The final plot in figure 8.5, the non-Λc mass, shows the mass of the beam

momentum 4-vector minus those of the Λ+
c and Λ̄−

c . The dearth of entries near

zero shows that we do not often find events containing only a Λ+
c and a Λ̄−

c and

nothing else. Again, events corresponding to a value of less than -0.5 GeV must

have a reconstruction problem and so will be thrown out.

Figure 8.6 shows the number of charged tracks per event after sideband sub-

traction not coming from a Λc decay per event. Two interesting features can be

seen in this plot. The first is that there is a very small number of identified pro-

tons (kaons). Of 1,774 charged tracks, 30 (46) are identified as protons (kaons).

If all of these tracks were really misidentified pions, this would correspond to a

missID rate of 1.7% (2.6%). Using the PID corrections from the control samples

used in the inclusive measurement, we would expect a missID rate of .1±.08%
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(.42±.17%). These control samples required 20 DCH hits instead of 10, so they

are probably not very reliable. We will see in the next section that a large fraction

of the tracks identified as protons must be misidentified pions. As mentioned ear-

lier, the fact that there are very few protons is a very interesting result, because

it shows that baryon number does not have to be conserved in each jet separately.

The other interesting feature is the large number of events with four or more

additional pions. These pions can come from one of two sources. Either they are

coming from decays of heavier charmed baryons to Λ+
c + nπ, or they are popcorn

mesons. In section 8.3, we will study the expected number of pions from heavy

charmed baryon decays.

8.2 Four Baryon Events

In this section we will try to estimate how many of our selected events contain two

additional baryons. Since we are interested in measuring the amount of popcorn

between a single baryon-antibaryon pair, we would like to subtract these events

out of our sample. Figure 8.7 a) shows the missing mass in events with one and

two identified protons. Of the 22.4 events with one identified proton, 7.2 of them

have a missing mass of less than 750 MeV. Since another baryon with a mass of at

least 938 MeV would have to be present in these events, the proton identification

must be wrong. When we assign the proton mass to a real pion or kaon, this

lowers the amount of missing mass in the event. This explains why we see events

with negative missing mass. The events with two identified protons have a missing

mass close enough to zero that correct particle identification cannot be ruled out.

If both of the protons in these events were misidentified pions or kaons, we might

end up with a very negative missing mass.
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Now, of the events in figure 8.7 a) with one identified proton and a missing

mass of greater than 750 MeV, 11.3 of the protons are positively charged, and

3.9 are antiprotons. We expect a charge asymmetry in protons due to pion inter-

actions with the positively charged protons in the detector material. So it looks

like the events with one identified proton consist of about four physics protons

and four physics antiprotons, with the rest coming from detector interactions.

If we assume that there are 5 double neutron events, 10 proton-neutron events,

and 5 double proton events and a tracking efficiency of 75% then we would expect

to see about 9.4 events with one proton and 2.8 events with two protons. This is

consistant with what we see, 7.8 events with one proton and 3.1 events with two

protons. In this case there would be 20 real four baryon events, compared to the

10.9 that we observe. This would leave 9.1 unobserved four baryon events that

would need to be subtracted from our data sample. However, since a significant

number of the identified protons in the one-proton events with a missing mass

of greater than 750 MeV are probably also misidentified pions, 9.1 is an overes-

timate. For the purposes of background subtraction, we assume there are 5 ±
5 unobserved four baryon events in our sample, where the first 5 is an educated

guess and the second 5 is a suitably large, arbitrary uncertainty.

Figure 8.7 b) shows the number of identified pions in one-proton events

with more than 750 MeV of missing mass and two-proton events. We only see

.65 ± .21 extra pions in each of these events, compared to 2.65 ± .08 pions in

the events with no observed baryons. We will make a small correction to our

number of pions per two baryon event, in order to compensate for the events

with unobserved extra baryons in section 8.6.

It is reasonable to expect fewer pions in the four baryon events, since there

is less energy available for pion production. This effect is countered by the fact
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Figure 8.7: a) Missing mass in events with one and two identified protons.

b) Number of pions in events where the existence of two baryons cannot be

ruled out

that the popcorn mechanism is no longer required. In higher energy collisions,

we would probably expect the number of pions to increase in four baryon events

for this reason.

8.3 Decays of Heavier Charmed Baryons

In order to count the number of popcorn mesons in each Λ+
c |Λ̄−

c event, we will

first have to identify particles that could have come from the decay of a heavier

charmed baryon. Fig 8.8 gives a summary of all previously seen charmed baryon

decays to Λc. There are two Σc states which decay to Λc + π and four higher

mass Λc states that decay to Λc + 2π. Various Ξc and Ωc states have been seen,

but these have always been seen to decay to strange baryons and not Λc. This

is to be expected because of the much larger available phase space for decays to

the lighter strange baryons and also because of Cabbibo suppression. The only

particle ever seen to decay to a Λc + K is the doubly charmed Ξ+
cc(3519), but we
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Figure 8.8: Previously observed decays to Λc.

do not expect this particle to be created at BaBar.

Figure 8.9 shows the invariant mass plots for Λc + π and Λc + 2π. The

regions between the green bars show the location of six charmed baryons from

figure 8.8. We look for higher mass resonances by extending the invariant mass

range in figure 8.10, but do not find anything. The red plots in figure 8.9 are from

the Λ+
c |Λ̄−

c signal region with the sideband subtraction. In order to get a better

estimate of these rates we would like to use the decays to the higher statistic

sideband single Λc sample (figure 8.2), but, because the efficiency for detecting

pions from these decays depends on the lab momentum and angular distributions

of the detected Λc, we will need to make sure that these are similar in the single

and double Λc events.

This turns out not to be the case, as can be seen in Fig 8.11. Backward
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Figure 8.9: Comparison of the decays to Λc in sideband subtracted Λ+
c |Λ̄−

c events

(red), to the higher statistic Λc sample in the sidebands (black). The green lines

roughly outline the signal regions.

moving Λc are rarely seen in the Λ+
c |Λ̄−

c events, because in this case the other Λc

would have been boosted out of the front of the detector. In order to correct for

this, the single Λc are weighted such that their distribution matches that of the

Λ+
c |Λ̄−

c signal.

Now we can use the single Λc events to estimate the number of decay pions

associated with each Λc. Figure 8.12 shows a closeup of the invariant mass re-

gions near the four excited Λc particles. Because of its proximity to the Σc + π

threshold, the Λc(2593) has an unusual lineshape [28]. We will estimate the num-

ber of Λc(2593) by simply counting the number of entries above the red line and

assigning a 25% error. The Λc(2593) is fit with a sum of two Gaussians, and the

other two particles are fit with a single Gaussian. In order to be conservative

on the estimated rates of the Λc(2765) and Λc(2880), we will double the errors

associated with the fits.

Figure 8.13 shows the Λc + π invariant mass. The black data in the first plot
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has an interesting structure between the Σc(2455) and Σc(2520) peaks. The blue

and red plots are the Monte Carlo feeddowns of the Λc(2625) and Λc(2593). The

Monte Carlo is scaled to the number of Λc found in figure 8.12 and also weighted

to match the momentum vector distribution of the Λc(2285) shown in figure 8.11.

When both of the feeddowns are subtracted, we get the plot in the upper right.

Now we have an unusual structure to the right of the Σc(2455), which is probably

due to the fact that the Monte Carlo Λc(2593) has a Gaussian shape instead of

what we saw in figure 8.12. Since this isn’t working we will only subtract the

Λc(2625) feeddown. The bottom two plots of figure 8.13 show the fits to the

Σc(2455) and Σc(2520) after the Λc(2625) subtraction. Both of these are fit with

the sum of two Gaussians. In order to account for the unknown effect of the

Λc(2593) feeddown, we will double the fit error on the Σc(2455) rate.

Figures 8.12 and 8.13 were made from 32,295 Λc(2285) so now we know the

observed rate of each heavy charmed baryon per observed Λc(2285). We also

need to know the ratio of observed decay pions to observed charmed baryons for

each of these decays. For the excited Λc → Λc + 2π, this number is not simply

two, because sometimes one of the pion daughters will not be found, meaning

that even though we will not see an invariant mass peak, we still will have one

of the daughter pions passing the tracking cuts. The number of found pions per

found Σc is not necessarily one either, because sometimes the pion will not be

reconstructed well enough to show up in the Σc mass region. Again we use Monte

Carlo, weighted to match the distributions in figure 8.11 to give us these numbers.

The results are summarized in table 8.1. The efficiency errors are added as if they

were totally correlated. The fit errors are statistical and are added in quadrature.

Some of the excited Λc → Λc + π+ + π− states might decay through the

intermediate state Σc → Λc+π so we have to be careful not to double count. PDG
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Figure 8.13: (Λc+π) invariant mass plots showing the subtraction of the feeddown

from two Λ∗
c states and closeups of the invariant mass regions near two Σc states.
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reports the CLEO result that 72±15% of Λc(2593) decay through a Σc(2455). If

we assume that the tracking efficiency, E, for both pions is about the same, then

for each real Λc(2593) decaying this way we expect to find E2 Λc(2593) and E

Σc(2455). So the number of observed Σc(2455) per observed Λc(2593) is 1/E. The

pions from the Σc(2455) have already been counted so we have 1/E extra pions

for each reconstructed Λc(2593) decaying in this mode. For this decay E=.81.

The other excited Λc states do not seem to decay through a Σc [27].

Particle number observed per Λc pions per Baryon detected π per Λc

Σc(2455) .0815 ±.0037 .98±.04 .0799 ± .0049

Σc(2520) .0571 ±.0026 1.14±.08 .0650 ± .0054

Λc(2593) .0146 ±.0037 2.47±.10 .0362 ± .0091

Λc(2625) .0355 ±.0011 2.66±.24 .0946 ± .0058

Λc(2765) .0346 ±.0043 2.82±.21 .0977 ± .0142

Λc(2880) .0069 ±.0015 2.76±.14 .0185 ± .0042

correction for Λc(2593) → Σc(2455) -.0130 ± .0027

total .379 ± .028

Table 8.1: Summary of the expected number of observed pions from heavier

charmed baryon decays.

8.4 Efficiency Corrections

In order to calculate the average number of popcorn mesons per event, we need

to know the tracking efficiencies, both for popcorn and for the decay pions. A

table of tracking efficiencies was made for single Λc Monte Carlo using only pions

coming directly from string decay. The relative number of these pions passing
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Figure 8.14: Tracking efficiency of pions in Λ+
c |Λ̄−

c events. The z range is modified

to better show the edge a) and central b) regions. c) shows the distribution of

the pions in the data.

the tracking cuts is shown in figure 8.14 a) and b). The axis labels correspond

to the center point of each bin. Different scales for the z-axis are used to better

show the efficiencies near the edge and in the center of the detector. The actual

distribution of pions in the data is shown in figure 8.14 c) and the left plot of

figure 8.15. Bins with less than 5% tracking efficiency or with a lab momentum

less than 100 MeV/c or outside of the angular region -.90 ≤ cos θ ≤ .94 will not

be used. The number of tracks going into these bins will instead be estimated by

extrapolating from adjacent bins.

Running the popcorn candidate distribution shown in figure 8.14 c) through

the correction table gives us a tracking efficiency of 77.7 ± 3.3 %. Only statisti-

cal errors are considered. We now need to estimate how many tracks fall outside

of the acceptance. The plot on the right of figure 8.15 shows the lab momen-

tum spectrum of the popcorn candidates compared to the true and reconstructed

string decay pions in single Λc Monte Carlo. The Monte Carlo distribution is
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Figure 8.15: The left plot shows the pion momentum distribution in the lab frame.

The right plot shows that at low momenta, the slope of this distribution is similar

in data and MC. The black lines show the limits of the lowest momentum bin.

much harder than the data but it appears that the slopes of the distributions

across the last momentum bin before the edge are similar enough that an ex-

trapolation can be made with an uncertainty of 30%. The extrapolations to the

forward and backward angular regions of the detector are easier because the true

distributions do not vary as much in these regions. The estimate for the number

of data pions in each extrapolated bin of the plots of figure 8.14 is taken to be

the number of data pions in an adjacent bin times the ratio of the number of

true pions in the extrapolated bin to the number of true pions in the adjacent

bin. The result is that we have 175 ± 52 pions in the extrapolation region, which

lowers our previously calculated tracking efficiency to 71.7 ± 3.8%.

Since the pions coming from heavy charmed baryon decays will be distributed

differently than the popcorn mesons, we will need to estimate their tracking

efficiency separately. Using the Monte Carlo to calculate the pion efficiency from
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each of the six heavy charmed baryon decays and then weighting the results in

proportion to the number of each decay seen in data, we get a tracking efficiency

of 71.5 ± 1.1%. This is close enough to the result from the data that we do

not need to consider any biases due to differing tracking efficiencies between the

popcorn and decay pions.

Two adjustments need to be made to the tracking efficiency. One is the

subtraction of electrons coming from photon conversions. Neutral pions decay

into two photons, which can interact with the detector material to make soft

electrons. Our particle identification algorithm was not designed to distinguish

electrons from charged pions but we can estimate the number of electrons from

photon conversions from Monte Carlo. We do this by taking the single Λc Monte

Carlo, and killing off π0 until the spectrum matches that of the observed charged

popcorn pion spectrum from the data (figure 8.15). The spectrum is normalized

to one half of the charged pion spectrum, as predicted by isospin invariance. The

electron grandaughters of these π0 are plotted as a percentage of the total number

of tracks identified as charged pions in the left plot of figure 8.16. The relative

number of electrons in the sample goes up to seven percent in the lowest used

momentum bin, but since the total number of tracks is small at low momentum,

the total correction is small. After taking into consideration the efficiency and

the change in the extrapolation outside the acceptance, we have a correction of

-.052 pions per event. Since this is a small correction, we can afford to assign

a conservative error of 50%. Of course, the π0 which create these electrons are

popcorn mesons themselves, but we are currently only interested in measuring

the charged pions in each event, and so no effort is made to try to include π0 by

reconstucting the photons.

The other tracking correction is charged pion decay into a muon and neutrino.
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Figure 8.16: Percentage of particles passing the tracking cuts which are not

pions. The left plot shows electrons from photon conversions. The right plot

shows muons from charged pion decay.

These pions are counted as being lost by the tracking efficiency, but the daughter

muons often continue on and pass the tracking cuts, so we need to subtract them

to avoid double counting. Again we kill off Monte Carlo particles to match the

charged pion momentum spectrum in the data, and see how many of the daughter

muons end up passing the tracking cuts. The result is seen in the right plot of

figure 8.16. The total correction ends up being -.055 pions per event.

8.5 K0, ρ and ω

The study of neutral popcorn mesons decaying to π+ + π− is interesting for two

reasons. First of all, since K0 can have flight lengths of several centimeters, their

daughters might not pass our tracking cuts, resulting in an underestimation of

the amount of popcorn. Second, the multiplicities of heavier mesons might be
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Figure 8.17: a) Ks candidates in Λ+
c |Λ̄−

c events. b) (π+π−) invariant mass. The

light blue lines show the locations of the Ks, ρ and ω masses.

relatively easily measureable quantities that could be compared with the various

model predictions.

The black points in figure 8.17a show the invariant mass of K0 candidates

satisfying the “initial cuts” corresponding to figure 4.9; two oppositely charged

tracks with more than 10 DCH hits, 0≤ flightlength (cm) ≤ 60, vertex probability

≥ 1%. The red points require the additional cuts of a flight length of greater than

2.5 mm, and a cosine of greater than .97 for the angle between the flightlength

and momentum vectors. There doesn’t appear to be any K0 signal. Isospin

invariance predicts an equal number of charged and neutral kaons. Since we only

observe the Ks we would expect to see about 23, times the Ks/K
+ efficiency

ratio, if all 46 of the observed charged kaons were real. This suggests that a large

number of the observed K+ might be misidentified pions.

The black points in figure 8.17b show the invariant mass of all π+ + π− com-

binations for which both pions pass our tracking cuts. Note that this is different

from the Ks candidates shown in figure 8.17a, where the daughter tracks are not
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required to come from the event vertex. The vertical blue lines mark the masses

of the K0, ρ, and ω. Interference between ρ and ω can create a distribution to the

left of ρ mass, similar to what we see. Fitting this bump with a Gaussian plus a

linear background gives us 32±13 entries, but more statistics will be needed to

get a reliable measurement of the ρ and ω rates. For now we just count these as

two popcorn pions.

The peak near threshold in figure 8.17b is what one would typically expect

from photon conversions. However, given the number of photon conversions pre-

dicted by Monte Carlo (fig. 8.16), we only expect four entries in this peak. In

addition, reducing the required distance of closest approach from 5mm to 1mm

does not reduce the size of the peak, as would be expected if it were due to photon

conversions. It may be that the peak is due to statistical fluctuations.

8.6 Results

This section will give our result for the number of charged mesons, in Λ+
c |Λ̄−

c

events with no extra baryons, which are not daughters of the six heavy charmed

baryon decays described in section 8.3. The possibility of distinguishing popcorn

mesons from the daughters of as of yet undiscovered heavy charmed baryons will

be addressed in the next section.

In order to reduce as much as possible the number of events in our sample

with extra baryons, we have thrown out all events with either an observed proton,

or with a missing mass or non-Λc mass less than -500 MeV. In order to limit the

tracking correction applied to any particular track we throw out any observed

track which hits the detector in a region with less than 5% tracking efficiency,

and also any track which ends up in the first column, or the first or last row, of
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Figure 8.18: Number of kaons and pions per event after all cuts.

the tracking matrix shown in figure 8.14.

These cuts leave us with 1641 pions in 619.3 events - 2.65 pions per event.

There are also 43.6 charged kaons. The number of kaons and pions in each event is

shown in figure 8.18. In order to estimate the uncertainty on the number of pions

per event, we run 10,000 toy Monte Carlos, each with 619 signal events, 3240

background events weighted with a factor of 1/12, and a Poissonian distribution

of pions with mean 2.65 in each event. The width of the resulting pion per event

distribution is .078.

As a cross check we divide the data into 5 regions. We use a circular signal

region with radius 2.5 MeV, and 4 contiguous concentric rings with outer radii of

4, 6, 8.5 and 16 MeV. The result from each of these regions is shown in figure 8.19.

Again the errors are calculated using toy Monte Carlos.

The corrections and uncertainties due to different sources are tabulated in
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table 8.2. First the pions from decays of heavy charmed baryons are subtracted.

Because we expect only 469 decay pions in our sample, a relative counting error

of 1/
√

469 is added in quadrature to the value from table 8.1.

Then an adjustment is made for events with either two neutrons or with

unseen protons. Because these events have fewer pions than the events with no

extra baryons, subtracting them raises our pion per event result slightly. We

estimate that there are 5 ± 5 of these events. We also make a correction for

tracks which are reconstructed twice.

At this point the kaons are added back in with a correction for the large

amount of pion as kaon misidentification. Because we do not expect to see any

baryon decaying to Λc + K, kaons that are believed to be real are all counted

as popcorn mesons. However, a pion misidentified as a kaon has about a 28%

probability of having come from one of the decays described in section 8.3. Based

on the fact that we saw a larger amount of pion as proton misidentification in

the data than in the Monte Carlo, we also expect to see more pion as kaon

misidentification. We therefore estimate that 20 ± 15 of the tracks identified as

kaons are actually pions, and the remaining 23 are kaons.

These corrections give us a subtotal of 1.96 ± .10 charged mesons observed

per event. Dividing by a tracking efficiency of .717 ± .038 and then subtracting

the photon conversions and charged pion decays gives us a final result of 2.63 ±
.21 per event. Statistics account for .08 of this. The largest error is the tracking

efficiency, which is difficult to estimate near the detector edges because of low

statistics.

Isospin invariance predicts that we will see 50% as many neutral pions as

charged pions. This is not exactly right, because for a particular number of

popcorn mesons, only certain charge combinations are possible. For example, if
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we have only one popcorn pion, it must be a neutral π0. Nevertheless, we expect

that there are roughly 1-2 π0 per event, giving a total of about 4 popcorn mesons

per event. This is much larger than the .5 predicted with the current JETSET

tuning.

In the next section, we will try to determine how many of these mesons could

be coming from decays of heavier charmed baryons resonances that have not yet

been discovered.

Source Mesons per Event

Measured Pions 2.651±.078

Pions from Known Decays -.758±.066

4 Baryon Events .016±.016

Double Counted Tracks -.011±.000

Kaons .061±.007

Subtotal 1.959±.104

÷Tracking 71.7±3.8%

2.732±.201

π → μ -.052±.026

γ → e -.055±.028

Total 2.625±.205

Table 8.2: Summary of the number of charged pions and kaons in Λ+
c |Λ̄−

c events

with no extra baryons and which are not daughters of known charmed baryon

resonances.
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8.7 Decays of Undiscovered Charmed Baryons.

In section 8.3 we studied the decays of the previously discovered Σc and Λc states

in order to estimate the amount of background they contributed to our popcorn

measurement. However, there potentially could be a large number of as-of-yet

undiscovered charmed baryons, which may be contributing to our signal.

We would like to come up with a way to distinguish these decays from true

popcorn. One possibility is to look at the helicity angles of the decays. When a

Σc decays strongly to a Λc(2285) + π, we expect that in the rest frame of the Σc,

the distribution of the angle between the pion momentum and the Σc momentum

will be front/back symmetric. The same is true if we combine the Λc(2285) from

a Λ∗
c → Λc(2285) + 2π decay with either of the two daughter pions.

If, however, we calculate the same angle by combining a Λc with a popcorn

pion, we will get a backward sloping distribution. Because popcorn mesons are

created in between the Λ+
c and Λ̄−

c , we expect to see the pion moving backwards,

relative to the Λc.

The plots showing these angular distributions are shown in figure 8.20. The

first plot shows the data. In order to prevent getting an artificially backwards

sloping plot caused by associating a pion with the Λc from the opposite hemi-

sphere, each pion is combined only with the Λc with which it forms the lowest

invariant mass. The black distribution is for all pions which are not Λc daughters

and which pass all the cuts described in the previous section. The red points

represent the pions from all six decay backgrounds, which are shown individually

in the next six plots. As expected, the data is backwards sloping and the back-

ground is close to being flat. The dropoff in the most backward bins is caused by

the fact that the backward moving tracks are slower, and thus less likely to pass
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the tracking cuts.

The bottom center plot shows the background subtracted signal. The sym-

metric part of the distribution appears to be very small, which would suggest that

only a small percentage of these pions could be coming from a charmed baryon

decay that has not yet been discovered. A problem occurs, however, when we

look at the angular distribution of pions from a hypothetical, high mass charmed

baryon. The bottom right plot of figure 8.20 shows that the distribution of helic-

ity angles for the hypothetical decay Λc(3300) → Λc(2285) + 2π has a backward

peaked asymmetry that is similar to what we expect for popcorn, but when we

plot the angle for all generated Λc(3300) in red, we see that the distribution is

flat, as expected. What is happening is that when a pion decays in front of the

baryon, the daughter Λc ends up moving slower, and thus is less likely to pass

the minimum 2.3 GeV/c momentum cut.

If the high mass continua in figure 8.10 actually contain overlapping broad

excited charmed baryons states, they could contribute backward peaked mesons

such as we observe. Two things should be noted, however. First, the asymmetic

helicity angle plots will only occur when the decay pions have a large momentum

relative to the Λc(2285). If the heavy charmed baryon decays in a series of steps,

each of which resulting in a slow daughter pion, or if it decays to several pions

at once in such a way as to limit the probability that any one will have a large

relative momentum, then the helicity angles plots will be flat. Second, since the

known heavy charmed baryons produce on average 0.06 observed decay pions

per observed Λc, and we observe just less than one popcorn meson per Λc, one

would expect that at least 16 such heavy charmed baryons would have to exist

in order to explain our data as being solely due to decays. However, since most

models predict that heavier resonances should be produced at lower rates, we
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would expect the rates to get progressively smaller as we go up in mass, meaning

that many more than 16 of these resonances would be required.

Even if these undiscovered heavy resonances did exist, we still have arguments

leading to the conclusion that at least one popcorn meson would still be present

in each event. In order to get no popcorn, we would have to have the virtual

photon going directly into two charmed baryons, with no additional particles.

These baryons would have masses between about 3.3 GeV, the minimum mass

necessary to produce the asymmetry we see in the popcorn condidates, and 5.2

GeV, the kinematic limit for BaBar. If these baryons were near the upper mass

limit, we would have a situation that kinematically would be very similar to the

Υ(4S) → B0B̄0 events. The heavy baryons would be near rest in the center of

mass frame, meaning that they would decay isotropically. This is clearly not

happening as we see in top right plot of figure 8.5 that the Λc are produced back

to back.

As the heavy charmed baryon-antibaryon pair gets lighter, the events become

more jetlike, making the Λc more and more back to back. However, we expect

the rates for such baryon-antibaryon production to fall with mass. Studies of ex-

clusive proton-antiproton production shows that the cross section for such events

falls rapidly for invariant masses more than 350 MeV above proton-antiproton

threshold[29]. In our data, we see in the bottom right plot of figure 8.5 that we

have no events with a Λ+
c |Λ̄−

c and nothing else. So we do not expect events with

Σ+
c |Σ̄−

c or Λ+∗
c |Λ̄−∗

c and nothing else either.

So, in conclusion:

• We find 2.63 ±.21 additional charged mesons in each event, after subtracting

decay pions from the six known charmed baryon resonances decaying to a Λc
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• We do not see any evidence for new charmed baryons in the invariant mass

plots (figure 8.10).

• If undiscovered resonances existed at the same average rate as the ones we

already see, there would need to be about 16 new states to explain all of

the data.

• All hadronization models predict that production rates should fall with

increased mass, meaning many more than 16 states would be required.

• The fact that exclusive baryon-antibaryon production is very small far

above threshold, and, that production near threshold would not result in

the jet-like events that we see seems to imply that at least one popcorn

meson is present in every event.
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Figure 8.20: Cosine of the angle between the π and (Λc+π) momenta in the

(Λc+π) rest frame for data, and for the six known decays to Λc+Nπ. Also included

are the plots for background subtracted signal and the decay of the hypothetical

particle Λc(3300).
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CHAPTER 9

Conclusion

This analysis was divided into two parts, the first being the measurement of the

continuum Λc momentum spectrum at 10.54 GeV/c, and the second being the

search for popcorn mesons in continuum events with a Λ+
c Λ̄−

c pair.

The continuum spectrum measurement was carried out on a data sample of

9.460 fb−1 at a center of mass energy of 10.54 GeV. After taking into account

acceptance losses, this represents a 13-fold increase in data over the previous best

Λc momentum spectrum at this energy.

Our results were compared to nine different fragmentation models. In general

the two parameter models - Lund, Bowler and UCLA - outperformed the one

parameter models, most of which were unable to reproduce the narrowness of the

peak of the distribution. The exception was the Modified Kartvelishvili function,

which unfortunately was the only function that was easily modifiable to predict

baryon instead of meson spectra. It was found that the rates of charmed baryons

decaying into Λc could change the model spectrum predictions. It would be an

interesting future study to tune each of the models to the best available charmed

baryon multiplicities, in order to see the effect on the Λc momentum spectrum

predictions.

The second part of the analysis looked for events with a Λ+
c Λ̄−

c pair. Very

few of these events contained additional protons or kaons, but a large number
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of additional pions were found. After subtracting the background from the six

particles known to decay to a Λc + pions, we were left with 2.63 ± .21 additional

charged pions and kaons per event. We expect roughly 1-2 more neutral mesons

per event.

The fact that so few additional protons are observed in these events demon-

strates that baryon number does not have to be conserved locally within each jet

as the present implementations of the Monte Carlos require. If JETSET were able

to generate events with long range baryon correlations and the current popcorn

parameter were unchanged, it would generate an average of .5 popcorn mesons

per Λ+
c |Λ̄−

c event. The UCLA model allows for a distribution of popcorn masses,

a large portion of which is above 1 GeV. This approach, if it could be adapted

to long range baryon correlations, would provide a more accurate modeling of

events with multiple popcorn mesons.

We have experimentally established that there are about 2.6 additional charged

mesons per event. If each of these mesons is combined with the Λc that it is clos-

est to, the angle of the meson’s momentum in the rest frame of the combined

object is more likely to be pointing back toward the center of the event. This

seems to suggest that these mesons are popcorn.

An alternative model would be that these mesons are decay products of heavy

charmed baryons and that the asymmetry of this angular distribution is caused

by the large recoil of the forward decaying mesons pushing the Λc daughter back

below our 2.3 GeV/c center of mass momentum cut. It seems unlikely, however,

that enough of these high mass states could exist to be able to increase our

observed number of decay pions by the factor of 2.5 necessary to explain all of

the data.

The jetlike geometry of our events rules out the possibility of the exclusive
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production of a very heavy baryon-antibaryon pair decaying into Λ+
c Λ̄−

c + Nπ .

Since we expect the cross section for lighter exclusive baryon-antibaryon states to

be very low, we have strong evidence that at least one popcorn meson is present

in the vast majority of our events.
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