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i

Abstract

This thesis describes a Dalitz plot analysis of B0 → K+π−π0 decays. The data sample

comprises 213 million Υ (4S) → BB decays collected with the BABAR detector at the

PEP-II asymmetric-energy B Factory at the Stanford Linear Accelerator Center in

California (SLAC). Preliminary results are presented for measurements of the inclusive

branching fraction, quasi-two-body fractions and CP -violating charge asymmetries for

intermediate states including K∗(892)+π− and ρ(770)−K+. Observations of B0 decays

to the Kπ S-wave intermediate states, K∗
0(1430)+π− and K∗

0(1430)0π0, are reported.

Evidence of the decay B0 → K∗(892)0π0 is seen. We set upper limits at 90% confidence

level on branching fractions of the nonresonant and other less significant intermediate

states.
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Chapter 1

Introduction

In the late 1970s, the Standard Model started to serve as a common language for

elementary particle physicists. By 1979, particle physicists have already learned that

the hadrons were composed of more basic building blocks called quarks, held together

by exchanges of gluons. Three interactions, namely the strong, weak, and electromag-

netic interactions, had been successfully described by quantum field theories, and the

last two were unified into a single “electroweak” interaction. New instruments and

techniques have been developed to study interactions between particles. Dedicated ex-

periments were carried out to test predictions by the Standard Model, and to search

for phenomena beyond it. Excitingly enough, since the birth of the Standard Model,

there have been no well-established results in particle physics that explicitly disagree

with this theory. The rise of the Standard Model certainly indicates a great success,

as well as a huge step, in further understanding nature.

Before the early 1950s, the three interactions were generally believed to be in-

variant under the three discrete symmetry operations, namely the charge conjugation

(C), the spatial inversion (or parity, P ), and the time inversion (T ). The discovery

in 1957 that parity is not conserved in weak interactions greatly increased interest in
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understanding the three discrete symmetry operators and searching for other potential

violations. In 1964, violation of the combined CP invariance was first observed in the

decays of neutral kaons [1]. A mechanism for CP violation was introduced in 1973

by Kobayashi and Maskawa [2] which describes the three-generation quark mixing in

weak interactions with a unitary matrix, the so-called Cabibbo-Kobayashi-Maskawa

(CKM) matrix.

The motivation of the analysis presented in this thesis is to search for the CP

violating charge asymmetries in B0
d decays to the three-body final state K+π−π0, by

measuring decay rates of intermediate resonant states. The intermediate decays receive

contributions mainly from tree level processes and one-loop level penguin processes,

where the penguin processes are sensitive to new physics effects beyond the Standard

Model. Therefore, this analysis also searches for new physics effects.

The layout of the thesis is as follows: in this chapter, the relevant theoreti-

cal framework is briefly reviewed, followed by a summary of previous measurements.

Chapter 2 describes the BABAR experiment. Chapter 3 and 4 presents the Dalitz plot

analysis method and the signal model. Details of the data sample, the event selection,

and the maximum likelihood fit approach are discussed in Chapter 5 to 9. The results

and the associated systematic uncertainties are given in Chapter 10 and 11. In Chap-

ter 12, the results are compared to those from previously published measurements,

and some conclusions are drawn.

1.1 Classification of CP Violation

CP violation is usually classified into three categories, in a model-independent

way [3, 4]:
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• CP violation in decay, also called direct CP violation, when the amplitudes for

a decay and its CP conjugate process have different magnitudes.

For a meson M decay to a final state f , if we define Af ≡ A(M → f) and

Af ≡ A(M → f), CP violation in decay means

∣∣∣∣∣
Af

Af

∣∣∣∣∣ �= 1 . (1.1)

Direct CP violation can happen to both charged and neutral meson decays.

• CP violation in mixing, which occurs in neutral meson decays when the two

neutral mass eigenstates are not the CP eigenstates; it is also referred to as

indirect CP violation.

For a neutral meson with its CP eigenstate denoted by M0, the mass eigenstates

are mixtures of M0 and M
0
:

M1 = pM0 + qM
0

, M2 = pM0 − qM
0

, (1.2)

where p and q are complex quantities, and are normalized so that |p|2 + |q|2 = 1.

CP violation in mixing occurs when

∣∣∣∣∣qp
∣∣∣∣∣ �= 1 . (1.3)

• CP violation in the interference between decays with and without mixing, which

occurs in neutral decays into final states that are common to the neutral meson

and its charge conjugate.

In this scenario, both M0 → f and M0 → M
0 → f occur and

Im

(
q

p

Af

Af

)
�= 0 . (1.4)
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CP violation has been experimentally observed in neutral K- and B- meson

decays. Usually, observed CP violation in a specific decay is the mixed effect of

the three types above. All the three types of CP violation have been established in

neutral K → ππ decays, the effects being of the order of O(10−3) or smaller [3]. In

2004, direct CP violation was also observed for the first time in neutral Bd-meson

decays (to K+π−) at BABAR [5] and Belle [6], with much larger effect (of the order

of 0.1). Indirect CP violation was also observed in semileptonic neutral K-meson

decays. CP violation in the interference between decays with and without mixing has

been experimentally established in the neutral Bd-meson decays at BABAR [7] and

Belle [8], using a time-dependent analysis of the decay rates.

1.2 CP Violation in the Standard Model

In the Standard Model, there are three generations of fundamental spin-1
2

par-

ticles (fermions) called quarks and leptons. Each generation of quarks is made of an

up quark U = (u, c, t), of charge +2
3
e, and a down quark D = (d, s, b), of charge

−1
3
e. Each lepton generation is made of a charged lepton l = (e−, μ−, τ−) and a

corresponding neutrino ν = (νe, νμ, ντ ). The strong and the electroweak interactions

between these fermions are mediated by gauge bosons of spin 1 (vector bosons) that

are described by the gauge symmetry group:

SU(3)C × SU(2)L × U(1)Y , (1.5)

where SU(3)C gives the eight gluon (g) fields of the strong interaction between colored

quarks described by quantum chromodynamics (QCD), SU(2)L generates the three

massless gauge bosons W i
μ, i = 1, 2, 3, and U(1)Y has a Bμ generator field to mediate
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the electromagnetic interactions. The coupling constants for the three gauge groups

are denoted by gs, g, and g′, respectively.

Within the Standard Model, CP symmetry is broken by complex phases in

the Yukawa couplings of the Higgs scalar to quarks. After spontaneous symmetry

breaking [9], using the Higgs mechanism and defining θW ≡ tan−1(g′/g), fermions and

three physical gauge bosons, namely W± ≡ (W 1 ∓ iW 2)/
√

2 and Z0 ≡ −B sin θW +

W 3 cos θW , gain masses, while the photon field (≡ B cos θW + W 3 sin θW ) remains

massless. The massive quarks are not the same as their weak eigenstates, and the

matrix relating these quark bases was defined and given an explicit parametrization

by Kobayashi and Maskawa [2] via a dramatic generalization of the four-quark case

that is described by a single Cabibbo angle [10]. The charged current weak interactions

(that is, through exchange of the W± bosons) for quarks (left-handed only, denoted

by the subscript L) are now given by

LW± = − g√
2
uLiVijdLjW

+ + h.c. , (1.6)

where g is the coupling strength of weak interactions, and V is the Cabibbo-Kobayashi-

Maskawa (CKM) quark-mixing matrix.

The CKM matrix V is often expressed in terms of a 3 × 3 unitary matrix V to

transform the charge −e/3 quark mass eigenstates (d, s, and b) to the weak eigenstates

(d′, s′, and b′): ⎛
⎜⎜⎜⎝

d′

s′

b′

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

d

s

b

⎞
⎟⎟⎟⎠ (1.7)

There are several choices of parameterizations of the CKM matrix. A “standard”

one was first introduced by Chau and Keung in 1984 [11] that utilizes three angles
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θ12, θ23, θ13, and a phase, δ13:

V =

⎛
⎜⎜⎜⎝

c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13

⎞
⎟⎟⎟⎠ , (1.8)

with cij = cos θij and sij = sin θij , and δ13 is the complex phase that accommodates

CP violation. There are a few obvious advantages of this parameterization. First, the

unitarity of V is automatically guaranteed. Second, the rotation angles are defined to

describe the mixing of two specific generations, with θ12 being the Cabibbo angle in

the limit θ23 = θ13 = 0. c13 is known to be almost unity with a deviation of the order

of 10−6.

A popular approximation to the CKM matrix was proposed by Wolfenstein in

1983 [12]. This parameterization considers the hierarchy in the size of the angles,

s12 � s23 � s13. Setting λ ≡ s12 � 0.22 and using it as an expansion parameter, the

CKM matrix can be written as:

V =

⎛
⎜⎜⎜⎝

1 − λ2/2 λ Aλ3(ρ − iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

⎞
⎟⎟⎟⎠+ O(λ4) , (1.9)

where A, ρ, and η are real numbers that were intended to be of order unity. This

approximation is widely used for B-physics [4].

The values of the CKM matrix elements can be determined from weak decays

of the relevant quarks. The 90% confidence limits obtained from current experiments

for the magnitude of the elements are (Particle Data Group 2004 [3])

⎛
⎜⎜⎜⎝

|Vud| = 0.9739 ∼ 0.9751 |Vus| = 0.221 ∼ 0.227 |Vub| = 0.0029 ∼ 0.0045

|Vcd| = 0.221 ∼ 0.227 |Vcs| = 0.9730 ∼ 0.9744 |Vcb| = 0.039 ∼ 0.044

|Vtd| = 0.0048 ∼ 0.0014 |Vts| = 0.037 ∼ 0.043 |Vtb| = 0.9990 ∼ 0.9992

⎞
⎟⎟⎟⎠ .

(1.10)
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The unitarity of the CKM matrix leads to various relations between two different

rows and columns, each being called a “unitarity triangle” in the complex plane. All

the unitarity triangles are equal in area [13]. Unitarity applied to the first and third

columns yields the most important “unitarity triangle” in the decays of Bd-meson

(with the quark content bd):

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 , (1.11)

which has a geometrical presentation in the complex plan as shown in Fig. 1.1 a. The

term “unitarity triangle” (UT) is actually reserved for the relation 1.11, because this

triangle is the least squashed one and predicts large CP asymmetries in B-meson

decays.

ρ
γ β

α

Aη

(b) 7204A5
7–92

1

VtdVtb
∗

|VcdVcb|∗
VudVub

∗

|VcdVcb|∗

VudVub
∗

VtdVtb
∗

VcdVcb
∗

α

β

γ

0
0

(a)

Figure 1.1: The Unitarity Triangle.
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The three angles in the UT are defined as

α ≡ arg

(
− VtdV

∗
tb

VudV ∗
ub

)
, β ≡ arg

(
−VcdV

∗
cb

VtdV ∗
tb

)
, γ ≡ arg

(
−VudV

∗
ub

VcdV ∗
cb

)
. (1.12)

As a common practice, a phase convention is chosen so that VcdV
∗
cb is real, and the

VcdV
∗
cb side is normalized to unity. This scaling presents the Wolfenstein parametriza-

tion as shown in Fig. 1.1 b.

The three angles are all physical and can, in principle, be independently mea-

sured by measuring the CP asymmetries in B-meson decays. The CP violation in

interference of decays with and without mixing has been observed in B0
d → J/ΨKS

that gives sin(2β) = 0.731 ± 0.056 [3]. The angle γ is simply the complex phase δ13.

It is intuitive to study the weak-phase structure of the decay amplitudes for

B-meson decays in the CKM picture. The decay amplitude for the quark process

b → qqq′ can always be written as a sum of three terms with definite CKM element

coefficients:

A(qqq′) = VtbV
∗
tq′P

t
q′ + VcbV

∗
cq′(Tccq′δqc + P c

q′) + VubV
∗
uq′(Tuuq′δqu + P u

q′) , (1.13)

where P and T denote contributions from tree and penguin diagrams (the CKM

factors being excluded), and the superscripts t, c and u indicate the internal quark

lines. Fig. 1.2 shows the quark diagrams for the tree, gluonic penguin, and electroweak

penguin contributions. The weak-phase information is implied in the CKM coefficients,

while the strong-phase information is implicitly contained in the P ’s and T ’s.

In the case of b → uus decays, which are of interest in this report, the amplitude

reads

A(uus) = VtbV
∗
tsP

t
s + VcbV

∗
csP

c
s + VubV

∗
us(Tuus + P u

s )
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Figure 1.2: The Quark process diagrams that contribute to b decays. For the process

b → uus, q1 = s, q2 = u, and q3 = u.

= VcbV
∗
cs(P

c
s − P t

s) + VubV
∗
us(Tuus + P u

s − P t
s) , (1.14)

where in the last step the UT relation (Eq. 1.11) is used to remove the VtbV
∗
ts term. Due

to hadronic rescattering, the penguin topology is not well defined, but the weak-phase

structure is not affected.

For the CP conjugate process, the (weak) phases contained in the CKM coeffi-

cients change signs due to the complex nature of the CKM elements, while the strong

phases do not. As one can always use the unitarity relation to remove one term in

Eq. 1.13, it is useful to write the effective decay amplitudes as:

Af = |a1|ei(δ1+φ1) + |a2|ei(δ2+φ2) ,

Af = |a1|ei(δ1−φ1) + |a2|ei(δ2−φ2) , (1.15)
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where δ1, δ1 are the strong phases, φ1, φ2 are the weak phases, and |a1|, |a2| contain

the magnitudes information. With this formulation, the direct CP violation is:

ACP ≡ |Af |2 − |Af |2
|Af |2 + |Af |2

=
sin (δ2 − δ1) sin (φ2 − φ1)

R + cos (δ2 − δ1) cos (φ2 − φ1)
, (1.16)

where R = (|a1|2 + |a2|2)/2|a1a2| ≥ 1. It is obvious that the occurrence of direct

CP violation in the decay requires that there are (at least) two competing diagrams

with different strong phases and different weak phases. The other two types of CP

violation can also be interpreted with this formulation. For details, see the review of

CP Violation in Meson Decays in [3].

1.3 Hadronic B-meson Decays

In this thesis, the B0
d decays to the 3-body final state K+π−π0 are investigated.

These decays receive contributions from quite a few intermediate resonant decays,

e.g., B0
d → K∗(892)+π−, B0

d → ρ(770)−K+, B0
d → K∗(892)0π0, and the charmed

decay B0
d → D

0
π0 etc..

The study of hadronic B decays is inevitably complicated by long-distance strong

interactions that cannot be tackled with perturbative QCD. B-mesons, like all other

color-neutral hadrons, are bound states of the b quarks and light quarks such as u or d.

While understood in principle, the nonperturbative nature of the bound states makes

it hard to precisely extract relevant weak-phase information from experiments on B

mesons, even though the perturbative effects can be predicted with high precision for

electroweak interactions and are under control for strong interactions. This problem

has never been solved in its entirety.

In QCD, the strong interaction gauge coupling αs is energy-scale-dependent, as
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shown in Eq. 1.17:

αs(Q
2) � 12π

(33 − 2nf ) log(Q2/Λ2)
, (1.17)

where Q reflects the energy scale of the interaction, Λ is the energy scale (∼ 200 MeV)

for quark confinement, and nf is the number of quark flavors. For Q2 around m2
W ,

αs is of the order of 0.1 and QCD perturbation theory applies. For Q2 at the quark

confinement level, the strong coupling makes QCD perturbation inappropriate.

In weak decays of B-mesons, three fundamental scales will be involved: the

weak interaction scale MW ∼ 80 GeV, the b-quark mass mb ∼ 5 GeV, and the QCD

confinement scale ΛQCD ∼ 200 MeV. The three energy scales are strongly ordered,

i.e., mW � mb � ΛQCD.

Various theoretical approaches and techniques have been developed to deal with

the problem, with varying levels of reliability. Some are appropriate to some specific

problems, while in some situations the others may work better.

In the Operator Product Expansion (OPE) approach [14], the fact that B decays

involve a wide variety of energy scales enables one to identify the physics at a given

scale and to separate it out explicitly. An effective Hamiltonian can be constructed to

separate the non-perturbative and perturbative contributions. For a renormalization

scale μ of the order of O(mb), low-energy effective Hamiltonians are constructed to

yield the transition matrix elements of the structure

〈f |H|i〉 ∝∑
k

Ck(μ)〈f |Ok(μ)|i〉 , (1.18)

where Ck(μ)’s are the perturbatively calculable Wilson coefficient functions which in-

corporate strong-interaction effects above the scale μ, and the 〈f |Ok|i〉’s are the non-

pertubative hadronic matrix elements of the local operators Oi which contain strong-
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interaction effects below the scale μ. For B decays to two mesons, the amplitude is

given as

A(B → M1M2) =
GF√

2

∑
i

λiCi(μ)〈M1M2|Oi|B〉(μ) , (1.19)

where λi is a relevant CKM element, and Oi’s are local four-quark operators. The

physical amplitude must not depend on the renormalization scale μ, which means the

μ dependence of the Wilson coefficients has to cancel the μ dependence present in the

hadronic matrix elements.

Theoretically, the hadronic matrix elements are the most difficult parts to com-

pute. There exist various treatments for this problem. QCD factorization [15] has

been widely used in heavy-quark physics to deal with the hadronic matrix elements.

Assuming the concept of color transparency [16], the four-quark matrix element is re-

placed with (factorized into) the product of the matrix elements of two currents. This

approach has been used to calculate many hadronic two-body decays, though in some

cases, it is not applicable. Table 1.1 shows the QCD factorization predictions for the

modes B0
d → K∗(892)+π−, B0

d → K∗(892)0π0, and B0
d → ρ(770)−K+ from Ref. [17].

1.4 Isospin Analysis and SU(3) Flavor Symmetry

Strong interactions are nearly invariant under the isospin-SU(2) transformation,

with the u quark and the d quark forming an isospin doublet. The doublet has isospin

I = 1/2, Iu
3 = +1/2, and Id

3 = −1/2. The isospin invariance of strong interactions is

very useful to relate amplitudes of decays that involve final states with same isospin

constituents, typically with contributions from gluonic penguins.

For the decay Bd → K∗(892)π, both the Bd and K∗(892) have isospin I = 1/2,

and π has isospin I = 1. The final state can have a total isospin of 1/2 or 3/2. This
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Table 1.1: Branch fractions and CP violating charge asymmetries for some interme-

diate decays. The predictions are from Ref. [17] (the “combined” scenario) and the

experimental results are from [3] (world average). Theoretical errors on the predictions

come from uncertainties in input parameters, and in the modeling of power corrections.

Details about these errors can be found in [17].

Mode Theory BF (×10−6) Experiment BF (×10−6)

B0
d → K∗(892)+π− 8.1+1.4+1.3+0.8+6.2

−1.2−1.2−0.8−1.6 16+6
−5

B0
d → K∗(892)0π0 2.5+0.1+0.5+0.3+2.6

−0.1−0.4−0.3−0.5 < 3.6

B0
d → ρ(770)−K+ 10.1+1.8+7.1+1.2+10.7

−1.9−3.6−1.1−3.5 7.3 ± 1.8

Theory ACP (×10−2) Experiment ACP (×10−2)

B0
d → K∗(892)+π− −12.1+0.6+8.2+5.1+62.5

−0.7−7.9−5.8−64.2 26 ± 35

B0
d → K∗(892)0π0 1.0+4.0+4.7+2.7+31.7

−3.2−7.0−4.0−35.3 -

B0
d → ρ(770)−K+ 20.0+1.3+4.4+1.9+34.5

−1.4−2.7−1.6−32.7 28 ± 19
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decay receives contributions from ΔI = 0 and ΔI = 1 processes. One may write the

Hamiltonian as H = HΔI=0 +HΔI=1. As shown in Fig.1.2, the QCD penguin diagram

only contributes to ΔI = 0, due to the fact the gluon has I = 0. An isospin analysis

(similar to that for B → πK [19, 4]) gives

A(B+ → K∗(892)+π0) =
2

3
A1,3/2 +

1

3
A1,1/2 −

√
1

3
A0,1/2

A(B0 → K∗(892)0π0) =
2

3
A1,3/2 +

1

3
A1,1/2 +

√
1

3
A0,1/2√

1

2
A(B+ → K∗(892)0π+) =

1

3
A1,3/2 − 1

3
A1,1/2 +

√
1

3
A0,1/2√

1

2
A(B0 → K∗(892)+π−) =

1

3
A1,3/2 − 1

3
A1,1/2 −

√
1

3
A0,1/2 , (1.20)

where the isospin amplitude reads as AΔI,I . Denoting A+− for A(B0 → K∗(892)+π−),

and similarly for the others, we have

A0+ +
√

2A+0 =
√

2A00 + A+− . (1.21)

With some rigorous decomposition of the amplitudes as in Eq. 1.13, one can

use Eq. 1.21 to impose constraints on the involved strong and weak phases, as well

as on the magnitudes of the P ’s and T ’s. Examples can be found for decays such as

B → ππ [18], and B → πK [19].

Under the SU(3) flavor symmetry of strong interactions, u, d, and s form a

triplet, if the mass differences in between are ignored. The SU(3) flavor symmetry is

not an exact one, being broken by the large s quark mass. The symmetry breaking

effects can be usually accounted for by including decay constants of hadrons, with

some theoretical hadronic uncertainties.

Under the flavor SU(3), decays can be represented in terms of five reduced

matrix elements [20]. This decomposition can also be performed in terms of diagrams
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of six different topologies. The leading-order decay diagrams are the color-allowed tree

(T ), the color-suppressed tree (C), the QCD penguin (P ), and the color-singlet QCD

penguin (S). The color-allowed electroweak penguin (PEW ) and the color-suppressed

electroweak penguin (P C
EW ) can be sizable depending on the quark processes [21, 22].

The remaining diagrams come from the non-spectator weak W -exchange (E) and the

weak annihilation (A) diagrams . Given that the electroweak penguin contributions

can be sizable, four modified amplitudes are defined [23], neglecting the E and A

contribution:

t ≡ T + P C
EW , c ≡ C + PEW , p ≡ P − 1

3
P C

EW , s ≡ S − 1

3
PEW . (1.22)

In a flavor SU(3) analysis of experimental data on B decays to a vector meson

and a pseudoscalar meson, as described in [23], a global fit is performed to extract

magnitudes and phases for the flavor SU(3) amplitudes defined in Eq. 1.22, rather

than calculating the hadronic elements. The extracted amplitudes are then used to

make non-trivial predictions for unknown decay modes, including their CP content.

The analysis even has considerable sensitivity to the CKM angle γ.

Table 1.2: Decomposition of the B → K∗(892)π and B → ρ(770)−K+ amplitudes.

Decays Amplitudes

B0 → K∗(892)+π− −(t′P + p′P )

B0 → K∗(892)0π0 −
√

1
2
(c′V − p′P )

B+ → K∗(892)0π+ p′P
B+ → K∗(892)0π+ −

√
1
2
(t′P + c′V + p′P )

B0 → ρ(770)−K+ −(t′V + p′V )

As an example, in Table 1.2, we show the decomposition of the decay amplitudes
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of B → K∗(892)π and B0 → ρ(770)−K+, as is done in Ref.[23]. The primed quantities

indicate that the s quark is involved, in quark processes with strangeness change

|ΔS| = 1. Since these are B decays to a vector (V ) and a pseudoscalar (P ), the

subscript P or V indicates the pseudoscalar or the vector picks up the spectator

quark. The CKM factors are contained in the flavor SU(3) amplitudes and can be

factorized to make the rest the same as defined in Eq. 1.22. From the point of view of a

final analysis, one can always put the CKM factors into the flavor SU(3) amplitudes to

define another set of unknowns. The weak phases and the strong phases are treated as

unknowns and will be determined from a fit to experimental data. For example, taking

the convention that p′P is real and positive, and assuming p′V = −p′P as suggested in

Ref. [23], one can rewrite the amplitudes as

A(B+ → K∗(892)0π+) = |p′P | ,

A(B0 → K∗(892)+π−) = −|p′P | + |t′P |ei(δP +γ) ,

√
2A(B0 → K∗(892)0π0) = |p′P | − |c′V |ei(δV +γ) ,

A(B0 → ρ(770)−K+ = |p′P | − |t′V |ei(δV +γ) , (1.23)

where δV and δP denote the unknown strong phases, and γ is the weak CKM angle

as defined in Eq. 1.12. This makes it feasible to consider relevant experimental inputs

and impose constraints on the unknown magnitudes and phases, including the weak

phase γ.

It should be pointed out that assumptions in using flavor SU(3) and the dia-

grammatic decomposition are not all justified and may be very misleading, as argued

by M. Neubert [24], due to potential final-state rescattering effects.
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1.5 Analysis of B0
d → K+π−π0 Decays

Charmless three-body B decays significantly broaden the study of B meson

decay mechanisms and provide additional possibilities for direct CP violation searches.

The B0
d → K+π−π0 decay1 is known to have contributions from the intermediate

B0 → K∗(892)+π−, K∗(892)+ → K+π0 and B0 → ρ(770)−K+, ρ(770)− → π−π0

decays. Although not yet observed, B0 → K∗(892)0π0 could also contribute, as well

as K∗
0 (1430), K∗

2 (1430), K∗(1680), ρ(1450), and ρ(1700). The B0 → K+π−π0 decay

can also occur via long-lived charmed intermediate states, i.e. , B0 → D
0
π0, and the

doubly-Cabibbo-suppressed B0 → D−K+, D− → π−π0. Intermediate states with

broad resonances are interfering and therefore a full amplitude analysis is required

to extract the amplitudes and relative phases. The amplitudes and relative phases

are used to obtain the branching ratios and CP -violating charge asymmetries for the

intermediate states. The results can be used to probe the penguin contributions and

the weak angle γ ≡ arg [−VudV
∗
ub/VcdV

∗
cb].

For the intermediate modes (B0 → K∗+(K+π0)π− and B0 → ρ−(π−π0)K+

etc.), which involve the b̄ → uūs̄ quark process, the tree diagram contributions are

CKM-suppressed, i.e. ∝ V ∗
ubVus � Aλ4 (Fig. 1.3, left), with λ ≈ 0.22. The decays

receive comparable or even dominant contributions from the gluonic penguin diagram

(Fig. 1.3, right), the amplitude of which is ∝ V ∗
tbVts � Aλ2. Moreover, the electroweak

penguin contribution can be sizable in |ΔS| = 1 decays [21, 22].

Note that using the SU(3) flavor symmetry, the above penguin contribution can

1Unless stated otherwise, charge conjugate is always implied throughout this thesis, and I drop

the subscript d hereafter.
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Figure 1.3: Feynman diagrams for the B0 → K∗+π− and B0 → ρ−K+ decays. Left:

the tree contribution. Right: the penguin contribution.

be trivially related to the one in B0 → ρ+π−, e.g., pB0→ρ+π− = (Vcd/Vcs) pB0→K∗+π− [23].

This provides a sensitive probe on the penguin contribution to charmless B → V P

decays, where V stands for vector meson and P for pseudoscalar meson.

A priori theoretical calculations, based on QCD factorization, have been used to

predict charmless B → V P decay rates and CP asymmetries. Most QCD factorization

models do not provide good predictions of branching fractions (BF) of intermediate

decays with strangeness change |ΔS| = 1 [17, 25, 26]. One set of predicted results are

shown in Table 1.1.

Measurements of some of the branching fractions and charge asymmetries have

been carried out by CLEO [27], BABAR [28] and Belle [29], as shown in Table 1.3 and

1.4. These previous measurements all adopted a quasi-two-body (Q2B) approximation,

e.g. did not investigate the interference patterns among intermediate states. The

decay B0 → ρ−K+ has been first observed by BABAR [28], and the branching fraction
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result later from Belle [29] for this mode is not well accommodated into the SU(3)

flavor symmetry. The well established intermediate B0 → K∗(892)+π− mode has a

significantly larger branching fraction than predicted, suggesting some changes to the

QCD factorization models.

Table 1.3: Previous measurements of branch fractions (×10−6) for some intermediate

decays. For upper limits, central values and errors are quoted in parenthese. Note that

in Belle’s measurement, K∗
X is defined to have 1.1 GeV/c2 < m(K+π−,0) < 1.6 GeV/c2.

The inclusive rate is denoted by “Incl.”, and the nonresonant by “N.R.”.

Channel CLEO Belle BABAR

B0 → K+π−π0 (Incl.) < 40 36.6 ± 4.2 ± 3.0

B0 → K∗(892)+π− 16 ± 6 ± 2 14.8 ± 4.6 ± 1.5 ± 2.4

B0 → K∗(892)0π0 < 3.6 (0.0+1.3+0.5
−0.0−0.0) < 3.5 (0.4 ± 1.9 ± 0.1)

B0 → ρ(770)−K+ 16 ± 8 ± 3 15.1 ± 3.4 ± 1.5 ± 2.1 7.3 ± 1.3 ± 1.3

B0 → K∗0
X π0 6.1 ± 1.6 ± 0.6

B0 → K∗0+
X π− 5.1 ± 1.5 ± 0.7

B0 → K+π−π0 (N.R.) < 9.4 (5.7 ± 2.7 ± 0.5)

For the decay B0 → K∗(892)0π0, the color-suppressed electroweak penguin P c
EW

and the color-suppressed tree C may significantly modify the naive gluonic-penguin-

dominant picture, predicting a very small branching fraction. Both Belle and CLEO

experiments have not observed this mode, which suggests that the gluonic penguin

and the electroweak penguin are comparable in magnitude and destructive in phase

for this decay.

Charmed intermediate modes, such as B0 → D̄0π0 with D̄0 → K+π− (BF =



20

Table 1.4: Previous measurements of charge asymmetry for some intermediate decays

Channel CLEO Belle BABAR

B0 → K+π−π0 (Incl.) 0.07 ± 0.11 ± 0.01

B0 → K∗(892)+π− 0.26+0.33+0.10
−0.34−0.08

B0 → K∗(892)0π0

B0 → ρ(770)−K+ 0.22+0.22+0.06
−0.23−0.02 0.18 ± 0.12 ± 0.02

B0 → K∗0
X π0

B0 → K∗0+
X π−

B0 → K+π−π0 (N.R.)

11.0±1.9 ×10−6 [3]) and B0 → D−π+ with D− → π−π0 (BF = 0.5±0.2 ×10−6 [3]),

also go to the same K+π−π0 final state, but the D’s do weak decays only and thus

do not interfere with the above broad-resonance intermediate modes. The branching

fraction of B0 → D̄0π0 is significantly larger than theoretical expectations based on

naive QCD factorization, and tt is argued that long-distance final state rescattering

should be considered [30].

The decay rate of the non-resonant mode is of some theoretical interests too. The

measurement can be used to check and tune theoretical models. Belle has presented

a large central value of the branching fraction, with a large upper limit as shown in

Table 1.3.
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Chapter 2

The BABAR Experiment

The primary goal of the BABAR experiment is the systematic study of CP asymmetries

in the decays of neutral B mesons. In addition, the CKM matrix element, Vub, can

be measured, as can the branching fractions of a number of rare B meson decays.

These measurements will certainly improve the constraints on the CKM matrix, and

eventually on the fundamental parameters of the Standard Model.

In order to observe the asymmetries, three things need to be measured: the

exclusive final state of one B0 decay needs to be fully reconstructed; the beauty-quark

flavor (beauty or anti-beauty) of the other decaying B0 meson needs to be tagged with

its decay products; and the proper time of the B0 decay with respect to its production

(or the proper-time difference between the vertice of the two B mesons) needs to be

measured. The last issue is very important, because in most cases the CP asymmetries

vanish in time-integrated measurement at e+e− machines.

The BABAR experiment consists of two major parts, i.e., the PEP-II collider and

the BABAR detector.
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2.1 The PEP-II Collider

The PEP-II project is an e+e− colliding beam storage ring complex, as shown

in Fig. 2.1. It is designed to produce a luminosity of at least 3 × 1033cm−2s−1 at

Ecm = 10.58 GeV, the mass of the Υ (4S) resonance. The machine uses the already-

existing SLAC linac as an injector. The high luminosity ensures mass production of

B-mesons, given the 1 nb cross-section for the production of bb pairs at the Υ (4S). The

e+ beam and e− beams are stored in two separate storage rings and are maintained at

different energies, 3.1 GeV and 9.0 GeV, respectively. The asymmetric-energy mode

results in the Υ (4S) with significant momentum in the laboratory frame. In the Υ (4S)

reference system, the two B mesons from the Υ (4S) → BB decay are almost at rest

because there is not much kinematic energy left for them. It is known that the B

mesons have a lifetime of about 1.5 pico second, or a flight distance of 462 microns at

the speed of the light. With this Lorenz boost of βγ = 0.56, the decay lengths of the

B0 mesons are around 250 microns in the laboratory frame. They can be measured in

the laboratory frame and therefore the proper decay times can be inferred to measure

the time-dependence of the decay rates.

The high luminosity of PEP-II is achieved with high beam currents and strong

focusing. The high current must be divided into a large number of low-charge bunches

to avoid the beam-beam tune-shift limit, and the beams must collide only at the

interaction point (IP) to avoid additional tune shift. PEP-II collides the two beams

head on but separates the beams horizontally before the next collision at 62cm from

IP. Strong focusing requires quadruples to be located close to the IP.

The bending near the IP required to separate the beams generates a large syn-
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Figure 2.1: Layout of the PEP-II collider at SLAC

chrotron radiation flux that is not present in more conventional e+e− colliders. The

bending also sweeps off-energy beam particles into the detector. There are also many

more bunch crossings within the detector resolving time than in previous colliders.

Machine-induced detector backgrounds have been considered and minimized in the

PEP-II design.

Machine research and development has been going on all the time. With the

conventional injection mode, PEP-II gradually improved the luminosity over time.

But this mode requires the detector to be in standby mode for a few minutes about

every hour to allow the injection of new bunches of electrons and positions into the

storage rings, and the two new beams take some time to get stabilized to the design

energies. Trickle injection mode was introduced since November 2003, which allows
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the detector to stay in its run mode during injection of additional bunches into the

existing beams. The new injection mode further improved the integrated luminosity.

PEP-II recorded a peak luminosity of 9.213×10−33cm−2s−1 on May 21, 2004, a factor

of 3 compared to the design goal, see Fig.. 2.2. As of January 20, 2005, the integrated

PEP-II delivered and BABAR recorded luminosities are around 250 fb−1, as also shown

in Fig. 2.2.
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Figure 2.2: PEP-II peak luminosity (left) and the integrated luminosities (right)

2.2 The BABAR Detector

The BABAR detector is designed to meet the following stringent requirements:

• A large and uniform acceptance down to small polar angles relative to the boost

direction;

• Detector components can tolerate significant radiation doses and operate reliably
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under high-background conditions;

• Excellent reconstruction efficiency and momentum resolution for charged parti-

cles over the range ∼ 60 < pt < 4 GeV;

• Excellent detection of photons over a wide energy range of about 20 MeV ∼

5 GeV;

• Sufficient identification of e, μ, π, K, and p over a wide kinematic range; partic-

ularly, π − K discrimination at high momenta (2 − 4 GeV) is essential.

• Capability to detect neutral hadrons, especially the KL’s.

Fig. 2.3 shows a longitudinal section through the detector center, and an end

view with the principal dimensions. The coordinate system for the detector is defined

as follows: the z-axis is along the electron beam, while the y-axis is vertically per-

pendicular to the beam and x-axis horizontally perpendicular to the beam to form a

right-hand coordinate system. The BABAR detector utilizes a superconductor magnet

system that provides a 1.5-Tesla field parallel to the z-direction. A complete descrip-

tion of the BABAR detector can be found in Ref. [31].

2.2.1 The Silicon Vertex Tracker (SVT)

The SVT is designed to provide precise reconstruction of charged particle trajec-

tories and B-meson decay vertice near the interaction region, and is the sole tracking

device for very low-energy charged particles with transverse momenta less than 100

MeV/c.
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Figure 2.3: BABAR detector longitudinal section (top) and end view (bottom).
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2.2.1.1 Design of the SVT

Silicon vertex detectors are used to build the SVT. These detectors are double-

sided silicon strip detectors. Six types of detectors (I to VI) are needed with different

configurations. The layout of SVT is shown in Fig. 2.4. It consists of five concentric

cylindrical layers of the silicon detectors. Each layer is divided in azimuth into mod-

ules. The inner three layers have six detector modules and are traditional barrel-style

structures. The outer two consist respectively of 16 and 18 detector modules, and

employ a new arch structure to increase the solid angle coverage. The inner sides of

the detectors have strips oriented perpendicular to the beam direction to measure the

z coordinate, whereas the outer sides, with longitudinal strips, allow the φ coordinate

measurement. In total, the SVT has 340 silicon detectors and around 150,000 readout

channels.

580 mm

350 mrad520 mrad

ee +-

Beam Pipe

Space Frame 

Fwd. support
        cone

Bkwd.
support
cone

Front end 
electronics

Beam Pipe 27.8mm radius

Layer 5a

Layer 5b

Layer 4b

Layer 4a

Layer 3

Layer 2

Layer 1

Figure 2.4: Schematic views of SVT. Left: longitudinal section, the roman numerals

label the six different types of sensors. Right: transverse section.
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2.2.1.2 Performance of the SVT

The SVT efficiency is measured to be 97%. The spatial resolution of SVT hits is

determined by measuring the distance between the track trajectory and the hit, using

high-momentum tracks in two prong events. Fig. 2.5 shows the SVT hit resolution

for z and φ side hits as a function of track incident angle, for each of the five layers.

The measured resolutions are in excellent agreement with expectations from Monte

Carlo simulations. The SVT has been operating efficiently since its installation in the

BABAR experiment in May 1999, with expected and satisfactory performance.
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Figure 2.5: SVT hit resolution in the a) z and b) φ coordinate in microns, plotted as

a function of track incident angle in degrees. Each plot shows a different layer of the

SVT.

2.2.2 The Drift Chamber (DCH)

The drift chamber is the main tracking device of the BABAR detector. Combined

with the SVT, the BABAR tracking system provides excellent spatial and momentum

resolution.



29

For low momentum particles, the DCH is required to provide particle identifi-

cation by measurement of ionization loss (dE/dx). This capability is complementary

to that of the DIRC in the barrel region, while in the extreme backward and forward

directions, the DCH is the only device providing discrimination of particles.

2.2.2.1 Design of the DCH
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Figure 2.6: Longitudinal section of the DCH with principal dimensions.

The DCH is relatively small in diameter, but almost 3 meters long. A longitu-

dinal cross section and dimensions of the DCH are shown in Fig. 2.6. The DCH has

40 layers of small hexagonal cells providing up to 40 spatial and ionization loss mea-

surements for charged particles with transverse momentum greater than 180 MeV/c.

Longitudinal position information is obtained by placing the wires in 24 of the 40

layers at small angles with respect to the z-axis. By choosing low-mass aluminum

field wires and a helium-based gas mixture (80:20 mixture of helium:isobutane), the

multiple scattering inside the DCH is minimized to be less than 0.2% radiation lengths

(X0) of material. The flat endplates are made of aluminum. Since the BABAR events

will be boosted in the forward direction, the design of the detector is optimized to
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reduce the material in the forward end. The forward endplate is made thinner(12mm)

in the acceptance region of the detector compared to the rear endplate (24mm), and

all the electronics is mounted on the rear endplate. The inner cylinder is made of 1

mm beryllium, which corresponds to 0.28%X0. The outer cylinder consists of two 1.6

mm-thick layers of carbon fiber on a 6 mm-thick honeycomb core.

The drift cells are arranged in 10 superlayers of 4 layers each, for a total of

40 layers. Axial (A) and stereo (U, V) superlayers alternate, following the pattern

AUVAUVAUVA as shown in Fig. 2.7. The stereo angle varies from a minimum of 40

mrad in the innermost stereo superlayer, to a maximum of 70 mrad in the outermost

stereo superlayer. The 7104 cells are hexagonal with typical dimension of 1.2×1.8cm2.

Fig. 2.7 shows the 50ns isochrones in a typical cell in a 1.5T magnetic field.

The sense wires are 20 μm gold-plated tungsten-rhenium. The field wires are

120 μm and 80 μm gold-plated aluminum. The chosen gas mixture, helium-isobutane

(80%:20%), provides good spatial and dE/dx resolution and reasonably short drift

time, with minimal multiple scaterring. The gas and the wires total 0.3%X0 for tracks

at 90◦. The total thickness of the DCH at normal incidence is 1.08%X0.

Nominal voltage of 1960 V for the sense wires and 340 V for the filed shaping

wires at the boundaries of the superlayers are supplied by HV assemblies mounted on

the feedthroughs of the rear endplate. Other field wires are connected to the ground

through metal feedthroughs on the rear endplate. The forward endplate carries no

components other than the feedthroughs.
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Figure 2.7: Left: Schematic layout of drift cells for the four innermost superlayers.

Lines have been added between field wires to aid in visualization of the cell boundaries.

The numbers on the right side give the stereo angles (mrad) of sense wires in each

layer. The 1 mm-thick beryllium inner wall is shown inside of the first layer. Right:

Drift cell isochrones, i.e. contours of equal drift times of ions in cells of layers 3 and

4 of an axial superlayer. The isochrones are spaced by 100 ns.
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2.2.2.2 Performance of the DCH

The precision relation between the measured drift time and drift distance is

determined from samples of e+e− and μ+μ− events, as shown in Fig. 2.8. Fig. 2.8,

right, shows the position resolution as a function of the drift distance, separately for

the left and the right side of the sense wire. The resolution is taken from Gaussian

fits to the distributions of residuals obtained from unbiased track fits.

The specific energy loss, dE/dx, for charged particles traversing the DCH is

derived from measurements of total charge deposited in each drift cell. dE/dx per

track is computed as a truncated mean from the lowest 80% of the individual dE/dx

measurements. Various corrections are applied to remove sources of bias that degrade

the accuracy of the primary ionization measurement. Fig. 2.9 shows the distribution of

the corrected dE/dx measurements as a function of track momenta. The superimposed

Bethe-Bloch predictions for particles of different masses have been determined from

selected control samples. The measured dE/dx resolution for Bhabha events is shown

in Fig. 2.9. The rms resolution achieved to date is typically 7.5%, limited by the

number of samples and Landau fluctuations. This resolution will allow π/K separation

up to 700 MeV/c.

As for the charged particle tracking, the reconstruction of charged particle tracks

relies on data from both the SVT and the DCH. Charged tracks are defined by five

parameters(d0, φ0, ω, z0, tan λ) and their associated error matrix. These parameters are

measured at the point of closest approach to the z-axis; d0 and z0 are the distances

of this point from the origin of the coordinate system in the x–y plane and along

the z-axis, respectively. The angle φ0 is the azimuth of the track, λ the dip angle
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Figure 2.8: Left: The drift time versus distance relation for the left and right halves of

a cell. These functions are obtained from the data averaged over all cells in a single

layer of the DCH. Right: DCH position resolution as a function of the drift distance in

layer 18, for tracks on the left and right side of the sense wire. The data are averaged

over all cells in the layer.

relative to the transverse plane, and ω = 1/pt is its curvature. d0 and ω are signed

variables; their sign depends on the charge of the track. The track finding and the

fitting procedures make use of Kalman filter algorithm that takes into account the

detailed distribution of material in the detector and the full map of the magnetic field.

The absolute DCH tracking efficiency is determined as the ratio of the number

of reconstructed DCH tracks to the number of tracks detected in the SVT, with the

requirement that they fall within the acceptance of the DCH. Fig. 2.10 left shows

the tracking efficiency study using multi-hadron events. The standalone SVT tracking

algorithms have a high efficiency for tracks with low transverse momentum (Fig. 2.11),

which is important for the detection of the secondary D∗ decays.

The resolution in the track parameters is monitored using e+e− and μ+μ− pair

events. It is further investigated offline for tracks in multi-hadron events and cosmic
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Figure 2.9: Left: Measurement of dE/dx in the DCH as a function of track momenta.

The curves show the Bethe-Bloch predictions derived from selected control samples

of particles of different masses. Right: Difference between the measured and expected

energy loss dE/dx for e± from Bhabha scattering, measured in the DCH at an operating

voltage of 1900V. The curve represents a Gaussian fit to the data with a resolution of

7.5%.

ray muons. From cosmic ray study, the resolutions for single tracks with transverse

momenta above 3 GeV/c are found to be

σd0 = 23μm σφ0 = 0.43 mrad

σz0 = 29μm σtan λ = 0.53 · 10−3.

The dependence of the resolution in d0 and z0 on the transverse momentum pt

is presented in Figure 2.12 left. The measurement is based on tracks in multi-hadron

events.

While the position and angle measurements near the IP are dominated by the

SVT measurements, the DCH contributes primarily to the pt measurement. Fig-

ure 2.12 right shows the resolution in the transverse momentum derived from cosmic
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Figure 2.10: The track reconstruction efficiency in the DCH at operating voltages of

1900V (open circle) and 1960V(solid circle), as a function of transverse momentum.

The efficiency is measured in multi-hadron events.

muons. The data are well represented by a linear function,

σpt/pt = (0.13 ± 0.01)% · pt + (0.45 ± 0.03)%,

where the transverse momentum pt is measured in GeV/c. These values for the res-

olution parameters are very close to the initial estimates and can be reproduced by

Monte Carlo simulations. More sophisticated treatment of the DCH time-to-distance

relations and overall resolution function are presently under study.

2.2.3 The Detector of Internally Reflected Cherenkov Light (DIRC)

Particle identification (PID) is critical to the study of CP-violation. The PID

system being used in BABAR is a new kind of ring-imaging Cherenkov detector called

the Detector of Internally Reflected Cherenkov light (DIRC). It is expected to be able
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Figure 2.11: Left: Monte Carlo studies of low momentum tracks in the SVT: a) com-

parison of data (contributions from combinatoric background and non-BB events have

been subtracted) with simulation of the transverse momentum spectrum of pions from

D∗+ → D0π+ in BB events, and b) efficiency for slow pion detection derived from

simulated events. Right: Reconstruction of low momentum tracks: the mass difference,

ΔM = M(K−π+π+) − M(K−π+), both for all detected events (data points) and for

events in which the low momentum pion is reconstructed both in the SVT and DCH

(histogram). Backgrounds from combinatorics and fake tracks, as well as non-resonant

data have been subtracted.

to provide π/K separation of ∼ 4σ or greater, for all tracks from B-meson decays

from the pion Cherenkov threshold up to 4.2 GeV/c. Cherenkov radiation is emitted

whenever charged particles pass through matter with a velocity exceeding the velocity

of light in the medium. The charged particles polarize the molecules, which then

turn back rapidly to their ground state, emitting prompt radiation. The emitted light

forms a coherent wavefront. Cherenkov light is emitted under a constant angle with

the particle trajectory, given by cos θc = 1/nβ, where n = 1.473 is the mean index
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Figure 2.12: Left: Resolution in the parameters d0 and z0 for tracks in multi-hadron

events as a function of the transverse momentum. Right: Resolution in the transverse

momentum pT determined from cosmic ray muons traversing the DCH and SVT.

of refraction of fused silica, β = v/c, v is the velocity of the particle, and c is the

velocity of light. The measurement of θc is based on the principle that the magnitudes

of angles are maintained upon reflection from a flat surface.

2.2.3.1 Design of the DIRC

Fig. 2.13 shows a schematic of the DIRC geometry that illustrates the principles

of light production, transport, and imaging. The radiator material of the DIRC is

synthetic, fused silica in the form of long, thin bars with rectangular cross sections.

These bars serve both as radiators and as light pipes. The DIRC is composed of such

144 bars, which are grouped into 12 bar boxes. The bars are 17 mm-thick, 35 mm-wide,

and 4.9 m-long. Within a bar box, the 12 bars are optically isolated by an ∼ 150μm

air gap between neighboring bars, enforced by custom shims made from aluminum foil.

The standoff box, a purified-water-filled expansion region, is made of stainless steel,

consisting of a cone, cylinder, and 12 sectors of fast photomultiplier tubes (PMTs).
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Figure 2.13: Schematic of the DIRC system.

In total, there are 10,752 PMTs each with a diameter of 2.9 cm. The DIRC occupies

80 mm of radial space in the central detector volume, with a total thickness of about

17%X0 at normal incidence. The radiator bars subtend a solid angle corresponding

to about 94% of the azimuth and 83% of the center-of-mass (c.m.) polar angle.

2.2.3.2 Performance of the DIRC

An unbinned maximum likelihood formalism is used to incorporate the space

and time measurements from the DIRC. The emission angle and the arrival time of

the Cherenkov photons are reconstructed from the observed space-time coordinates of

the PMT signals, transformed into the Cherenkov coordinate system. The expected

arrival time is calculated from the track time-of-flight and the photon propagation

time. The measured time resolution (from dimuon events) is 1.7 ns, close to the
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intrinsic 1.5 ns transit time spread of the PMTs. The routine provides a likelihood

value for each of the five stable particle types ( e, μ, π, K, p). The resolution (σC,track)

on the track Cherenkov angle should scale as

σC,track =
σC,γ√
Npe

, (2.1)

where σC,γ is the single photon Cherenkov angle resolution which is 10.2 mrad, and

Npe is the number of photons detected, which is between 20 for small polar angles and

65 at large polar angles for dimuon events. As shown in Fig. 2.14 left, the expected

separation between kaons and pions at 3 GeV/c is about 4.2σ, within 15% of the design

goal. The efficiency for correctly identifying a charged kaon is also shown in Fig. 2.14.
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Figure 2.14: Left: Expected π-K separation in B0 → π+π− events versus track momen-

tum inferred from the measured Cherenkov angle resolution and number of Cherenkov

photons per track in di-muon events. Right: Efficiency and misidentification proba-

bility for the selection of charged kaons as a function of track momentum, determined

using D0 → K−π+ decays selected kinematically from inclusive D∗ production.

2.2.4 The Electromagnetic Calorimeter (EMC)

The electromagnetic calorimeter is designed to measure electromagnetic showers

with excellent efficiency, and energy and angular resolution over the energy range
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from 20 MeV to 9 GeV. This capability allows the detection of photons from π0 and η

decays as well as from electromagnetic and radiative processes. The EMC also helps

to identify electrons.

2.2.4.1 Design of the EMC

11271375
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1555 2295

2359

1801

558

1979

22.7˚

26.8˚

15.8˚

Interaction Point 1-2001
8572A03

38.2˚

External
Support

Figure 2.15: A longitudinal cross section of the EMC (only the top half is shown)

indicating the arrangement of the 56 crystal rings. The detector is axially symmetric

around the z-axis. All dimensions are given in mm.

The EMC consists of a cylindrical barrel and a conical forward endcap, as shown

in Fig. 2.15. The barrel contains 5760 crystals arranged in 48 distinct rings with each

ring containing 120 identical crystals, while the endcap holds 820 crystals arranged

in eight rings. The calorimeter provides full coverage in azimuth and extends in

polar angle from 15.8◦ to 141.8◦. The crystals are 0.1%-Thallium-doped cesium iodide

(CsI(Tl)), which has high light yield and small Moliere radius for excellent energy and

angular resolution, and a short radiation length (1.85 cm) good for compact design and

decent shower containment at BABAR energies. The crystals have tapered trapezoidal
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cross sections. The transverse dimensions of the crystals for each of the 56 rings

vary to achieve the required hermetic coverage. The typical area of the front face is

4.7 × 4.7cm2, while the back face area is typically 6.1 × 6.0cm2. The length varies

from 29.6 cm (16 X0) in the backward to 32.4 cm (17.5 X0) in the forward direction.

Each crystal is wrapped in 2 layers of 165μm tyvek which reflects the scintillation

light. In addition, each crystal is further wrapped in 25 μm thick aluminum foil which

provides a Faraday shield. The scintillation light is read out by two 2 × 1cm2 silicon

photo-diodes installed on the rear face of the crystals.

2.2.4.2 Performance of the EMC

A typical electromagnetic shower spreads over many adjacent crystals, forming

a cluster of energy deposits. Pattern recognition algorithms have been developed to

identify such clusters.

The energy resolution at low energy is measured directly with a radioactive

source yielding σE/E = 5.0 ± 0.8% at 6.13 MeV. The energy resolution is further

studied with Bhabha scattering and other specific processes, as shown in Fig 2.16. A

fit to the energy dependence yields

σE

E
=

(2.32 ± 0.30)%

4
√

E( GeV)
⊕ (1.85 ± 0.12)%. (2.2)

The angular resolution is measured with π0 and η decays to two photons of

approximately equal energy. The result is shown in Fig. 2.16. An empirical fit results

in

σθ = σφ = (
3.87 ± 0.07√

E( GeV)
+ 0.00 ± 0.04) mrad. (2.3)
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Figure 2.16: Left: The energy resolution for the EMC measured for photons and elec-

trons from various processes. The solid curve is a fit to Eq. 2.2 and the shaded area

denotes the rms error of the fit. Right: The angular resolution of the EMC for photons

from π0 decays. The solid curve is a fit to Eq. 2.3.

2.2.5 The Instrumented Flux Return (IFR)

The IFR is designed to detect and identify muons with high efficiency, and to

detect neutral hadrons such as K0
L’s and neutrons. Muons are important for tagging

the flavor of neutral B mesons via semi-leptonic decays, for the reconstruction of vector

mesons such as J/Ψ, and for the study of semi-leptonic and rare decays involving

leptons.

2.2.5.1 Design of the IFR

The IFR uses the steel flux return of the magnet as a muon filter and hadron

absorber. Single-gap resistive plate chambers (RPCs) with two-coordinate readout

are chosen as the active detectors. RPCs detect streamers from ionizing particles via

capacitive readout strips, and have the following advantages: simple, low cost con-
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struction, and the possibility of covering odd shapes with minimal dead space. Large

signals and fast response greatly simplify the front-end electronics and provide good

time resolution, typically 1-2 ns. The position resolution depends on the segmentation

of the readout; a value of a few mm is achievable. A cross-section of a planar RPC

is shown in Fig. 2.17. The RPCs are operated in limited streamer mode, at a high

voltage of around 8 kV.

The RPCs are installed in the gaps of the finely segmented steel of the barrel

and the end doors of the flux return, as shown in Fig. 2.18. Monte Carlo studies have

been used to optimize the steel segmentation. The steel is segmented into 18 plates

with their thicknesses increasing from 2 cm for the inner nine plates to 10 cm for the

outmost plates. The nominal gap between the steel plates is 3.5 cm in the inner layers

of the barrel and 3.2 cm elsewhere. There are 19 RPC layers in the barrel and 18

in the endcaps. In addition, two layers of cylindrical RPCs are installed between the

EMC and the magnet cryostat to detect particles exiting the EMC.

In total, there are 806 RPC modules, with 57 in each of the six barrel sectors,

108 in each of the four half end doors, and 32 in the two cylindrical layers. The IFR

detectors cover an area of about 2000 m2. The readout strips have width varying from

about 2-4 cm, totalling about 53,000 channels.

2.2.5.2 Performance of the IFR

While muon identification relies primarily on the IFR, other detector systems

provide complementary information. A charged track is extrapolated to the IFR to

associate it with an IFR cluster. A few variables are introduced to identify a muon

candidate:
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Figure 2.17: Cross section of a planar RPC.

• the total number of interaction lengths traversed from the IP to the last RPC

layer with an associated cluster;

• the difference between this measured number of interaction lengths and that

predicted for a muon;

• the average number and the rms of the distribution of RPC strips per layer;

• the χ2 for the geometric match between the projected track and the centroids

of clusters in different RPC layers

• the χ2 of a polynomial fit to the two-dimensional IFR clusters.

The performance of muon identification has been tested on muon samples from

μμee and μμγ final states and pions from three-prong τ decays and KS → π+π−

decays. As shown in Fig. 2.19, the muon identification efficiency is close to 90% with

a fake rate for pions of about 6-8%.

K0
L’s and other neutral hadrons that reach the IFR can be identified IFR clusters

that are not associated with any charged tracks. Monte Carlo simulations predict

that about 64% of K0
L’s with momenta above 1 GeV/c give cluster signatures in the
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Figure 2.18: Overview of the IFR: Barrel sectors and forward (FW) and backward

(BW) end doors; the shape of the RPC modules and their dimensions are indicated.

IFR. With the EMC information being combined, the K0
L detection efficiency linearly

increases from 20% to 40% when the momentum changes from 1 GeV/c to 4 GeV/c.

During the first year of operation, a large fraction of the RPC modules have

suffered significant losses in efficiency. The effect appears to be correlated with high

temperatures, but the cause is still under investigation [32]. In some of the affected

RPC modules, it was found that the linseed oil (used to reduce dark current or dis-

charge) had failed to cure and had accumulated at various spots under influence of

the electric field.
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scale) as a function of a) the laboratory track momentum, and b) the polar angle (for

momentum 1.5 < p < 3.0 GeV/c).
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Chapter 3

The Decay Dynamics

The main challenge of the Dalitz plot analysis is the construction of a realistic signal

probability density function (PDF), where both the kinematic and dynamical proper-

ties are modeled to good accuracy.

3.1 Dalitz Plot

We recall here the basic properties of the Dalitz plot as far as it is needed to

motivate the various choices we have made. More information may be found in, e.g.,

Refs. [3, 33, 34].

We consider the decay of a spin-zero B0 with four-momentum pB into the three

daughters K+(p+), π−(p−), π0(p0), with corresponding four-momenta. The original

number of 12 unknowns in the B0 rest frame is reduced to 2, taking advantage of the

known masses of the four particles involved (4), energy and momentum conservation

(4) and the fact that two spatial angles are irrelevant (no direction is preferred) (2).

Using as independent (Mandelstam) variables the invariant masses squared

s+0 = (p+ + p0)
2 , s−0 = (p− + p0)

2 , (3.1)
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the invariant mass of the charged kaon and pion pairs, s+− = (p+ + p−)2, is obtained

from energy and momentum conservation:

s+− = m2
B0 + m2

K+ + m2
π+ + m2

π0 − s+0 − s−0 . (3.2)

Note that in our convention, (+,−, 0) subscripts in the Mandelstam variables

refer to the (K+, π−, π0) daughters respectively, and refer to the (K−, π+, π0) daughters

in the case of B0 decays.

The differential B0 decay width with respect to the variables defined in Eq. (3.1)

(i.e., the Dalitz plot) reads

dΓ(B0 → K+π−π0) =
1

(2π)3

|AB0→K+π−π0 |2
8m3

B0

ds+0ds−0 , (3.3)

where AB0→K+π−π0 is the Lorentz-invariant amplitude of the three-body decay. There

is a similar equation for B
0

decays. Note that a trivial integration over the spatial

angles has been performed prior to Eq. (3.3). We will in the following choose the

notation {DP} for the Dalitz plot coordinates {s+0, s−0}, and, correspondingly, {dDP}
for the Dalitz element {ds+0ds−0}. The boundaries of the Dalitz plot are obtained

when, e.g., for a K∗0 → K+π− resonance, p+ is parallel (minimum mass-squared)

or anti-parallel (maximum mass-squared) to p0. Due to the small mass difference

between charged and neutral pions (as compared with K+ and B0 masses), the Dalitz

plot is almost symmetric with respect to the diagonal. As a function of s+0, the

kinematic boundaries s−0[max] and s−0[min] are given by

s−0[max/min](s+0) = (E∗
− + E∗

0)
2 −

(√
E∗2− − m2

+ ∓
√

E∗2
0 − m2

0

)2

, (3.4)

where

E∗
+ =

s+0 − m2
0 + m2

+

2
√

s+0
, (3.5)



49

E∗
0 =

s+0 − m2
+ + m2

0

2
√

s+0
, (3.6)

E∗
− =

m2
B0 − s+0 − m2

+

2
√

s+0

, (3.7)

are the energies in the K+π0 rest frame. Numerically, the minimum and maximum

masses squared are s−0[max] = (mB0 − m+)2 � 26.465 ( GeV/c2)2 and s−0[min] =

(m+ +m0)
2 � 0.401 ( GeV/c2)2. Due to angular momentum conservation, the spin-one

K∗(892) resonance is polarized in a helicity-zero state. We therefore need to compute

the cosine of the angle between the negative B0 momentum in the K∗+ rest frame

(which is the flight direction of the K∗+ resonance in the B0 rest frame, and the

negative flight direction of the π− in the B0 rest frame) and the momentum p∗
0 of the

π0 in the K∗+ rest frame. It is given by

cos θ+ =
2E∗

+E∗
− + m2

+ + m2
− − s+−

2|p∗
+||p∗−|

, (3.8)

and expansion as a function of the Dalitz variables s+0 and s−0 leads to

cos θ+ =
[
s+0 (s−0 − s+−) −

(
m2

B0 − m2
+

) (
m2

0 − m2
+

)]

×
[
m4

+ +
(
s+0 − m2

0

)2 − 2m2
+

(
s+0 + m2

0

)]−1/2

×
[
m4

B0 +
(
s+0 − m2

+

)2 − 2m2
B0

(
s+0 + m2

+

)]−1/2

, (3.9)

where s+− is obtained from Eq. (3.2). Exchanging s+0 ↔ s−0 in Eq. (3.9) yields the

negative cosine of the helicity angle − cos θ−, and replacing s+0 → s+− together with

m0 ↔ m+ gives − cos θ0. Figure 3.1 illustrates the convention we have adopted for

the helicity angles:

• cos θ+ is defined as the angle between the π0 in the K∗+ rest frame and the

K∗+ flight direction in the B0 rest frame.
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Figure 3.1: Left: convention adopted for the helicity angles. For vanishing relative

strong phases it leads to destructive interference at all points in the Dalitz plot where

at least two of the three mass combinations are equal. See text for a geometrical

definition. Right: the classic Dalitz Plot.

• cos θ− is defined as the angle between the π− in the ρ− rest frame and the ρ−

flight direction in the B0 rest frame.

• cos θ0 is defined as the angle between the π+ in the K∗0 rest frame and the K∗0

flight direction in the B0 rest frame.

For vanishing relative strong phases, each resonance overlap comes with a relative mi-

nus sign so that maximal destructive interference is observed at all points with equal

masses squared.

The amplitude AB0→K+π−π0 contains all the underlying dynamics of the B0 →
K+π−π0 decay. In general, it is the coherent sum of one non-resonant term (ANR),
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which is (assumed to be) constant in the Dalitz plane, and multiple resonant ampli-

tudes i, with different spins J , arbitrary real fractions and phase shifts, ai, φi, and

charge combinations {+0,−0, +−}:

AB0→K+π−π0(DP) = aNReiφNRANR +
∑

κσ∈{+0,−0,+−}

∑
i

aκσ
i eiφκσ

i JAκσ
i (DP) . (3.10)

Each resonant amplitude i can be written as a product of five terms

JAκσ
i (DP) = JFB,i · JFi(sκσ) · JKκσ(DP) · JFR,i(sκσ) · Aκσ

i (3.11)

≡ f (i)
κσ (DP) · Aκσ

i , (3.12)

where JFB,i is a an irrelevant constant form factor for the B0 decay, JFi(sκσ) ≡
JF (sκσ)/JF (m2

i ) is the ratio of Blatt-Weisskopf penetration form factors (see below),

JK(DP) is a kinematic function (see below), and JFR,i(DP) is a relativistic Breit-

Wigner function given by

JFR,i(sκσ) =
1

sκσ − m2
i + imi

JΓi(sκσ)
. (3.13)

The s-dependent (“running”) width is defined by

JΓi(sκσ) = Γ0
i

mi√
sκσ

(
kπ(sκσ)

kπ(m2
i )

)2J+1 JF (Rkπ(sκσ))
JF (Rkπ(m2

i ))
, (3.14)

where mi is the mass of the resonance i, Γ0
i = Γi(m

2
i ) its width, and where

kπ(sκσ) =

√
sκσ

2

(
1 − (ma + mb)

2

sκσ

)1/2 (
1 − (ma − mb)

2

sκσ

)1/2

, (3.15)

is the so-called breakup momentum of the resonance decay particles in the resonance

frame. The functions JF (Rkπ(sκσ)) are the nuclear Blatt-Weisskopf penetration fac-

tors [35]. They are semi-classical and motivated by the potential h̄L(L + 1)/(2mr2)
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occurring in Schrödinger’s Equation, expressed in spherical coordinates, for the scat-

tering of a particle with orbital angular momentum L > 0 in a central field. The

repulsive potential is equivalent to a rotation energy and can thus be denoted a cen-

trifugal barrier. For growing L, or decreasing radial distance r, the centrifugal barrier

increases, which entails decreasing transition probability. One can empirically deter-

mine a radial distance, called interaction radius, R, of the resonance, which separates

an outside region (with respect to the centrifugal barrier), with little interaction, from

an inside region where the interaction between the particles is strong [36]. The trans-

mission coefficients of the centrifugal barrier are the Blatt-Weisskopf factors. They

are derived using spherical Bessel and Hankel functions and for the lowest orbital

momenta (spins) are:

0F = 1 , 1F (x) =
1

1 + x2
, 2F (x) =

1

9 + 3x2 + x4
. (3.16)

We choose R = 1.5 GeV−1 � 0.3 fm in the following for all resonances.

The kinematic function in Eq. (3.11) depends on the spin of the resonance. For

a B decay into a vector resonance {κσ} and a bachelor track {τ}, it is given by

1Kκσ(DP) = (pB0 + pτ )μ

∑
i

εμ
i (pκσ)εν∗

i (pκσ)(pκ − pσ)ν

= sκτ − sστ +
1

sκσ

(
m2

B0 − m2
τ

) (
m2

σ − m2
κ

)

= −4|pκ||pτ | cos θκτ , (3.17)

where all four-momenta pi are given in the resonance frame and θκτ is the helicity

angle, and where we have used the relation

∑
i

εμ
i (p)εν∗

i (p) = −gμν +
pμpν

p2
, (3.18)
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for the sum over the polarization four-vectors. The last two lines of Eq. (3.17) re-

produce the convention for the cosines of the helicity angles defined in Eq. (3.8) and

Fig. 3.1. Note that the occurrence of cos θκτ in the propagator substantially enhances

the interference between the different vector (ρ−, K∗+ etc.) bands in the Dalitz plot.

Equivalently, one obtains for scalar and tensor resonances the kinematic functions

0Kκσ = 1 , (3.19)

2Kκσ(DP) =
8

3
|pκ|2|pτ |2

(
3 cos2 θκτ − 1

)
. (3.20)

The likelihood fit will determine a global signal yield, which multiplies the co-

herent amplitude sum (3.10).

To quantify the sub-yields of the different contributors to the model, we define

the fraction ηi for the amplitude i by

ηi ≡

〈∣∣∣aκσ
i eiφκσ

i JAκσ
i (DP)

∣∣∣2〉〈
|AB0→K+π−π0(DP)|2

〉 , (3.21)

where the expectation values are obtained from high-statistics Monte Carlo integration

of the Dalitz plot (3.3). Due to interference, the sum
∑

i ηi of the fractions for all

components will in general not be unity.

3.2 The Square Dalitz Plot

Due to the generally low final state masses, mresonance � mB0 , signal events

populate the kinematic boundaries of the Dalitz plot. It turns out that due to combi-

natorics, the dominant e−e− → qq̄ (q = u, d, s, c) continuum background also accumu-

lates at the boundaries so that the representation Eq. (3.3) turns out to be technically

inadequate when one wants to use empirical reference shapes in a likelihood fit. We
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Figure 3.2: Nominal (left) and square (right) B0 → K+π−π0 Dalitz plots obtained

from Monte Carlo without detector simulation.

therefore apply the concept of a square Dalitz plot (denoted Square DP or SDP in the

following) [37] and transform

ds+0 ds−0 −→ | det J | dm′ dθ′ , (3.22)

where

m′ ≡ 1

π
arccos

(
2

m+− − m+−[min]

m+−[max] − m+−[min]
− 1

)
, and θ′ ≡ 1

π
θ+− , (3.23)

where m+− is the invariant mass between the charged tracks, m+−[max] = mB0 −m0

and m+−[min] = m+ + m− are the boundaries of m+−, θ+− is the angle between

the positive track and the negative B momentum in the {+−} rest frame, and J is

the Jacobian of the transformation. The new variables vary between 0 and 1. The

determinant of the Jacobian is given by

| detJ | = 4 |p∗
+||p∗

0|m+− · ∂m+−
∂m′ · ∂ cos θ+−

∂θ′
, (3.24)
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Figure 3.3: Projections on the m′ (left plot) and θ′ (right plot) axes of B0 →

K∗(892)0π0 (solid blue lines), B0 → K∗(892)+π− (dashed black lines) and B0 →
ρ−K+ (dotted green lines) decays obtained from MC without detector simulation.

where |p∗
+| =

√
E∗

+ − m2
+ and |p∗

0| =
√

E∗
0 − m2

0, and where the energies E∗
+ and E∗

0

are in the {+−} rest frame. The partial derivatives in Eq. (3.24) read

∂m+−
∂m′ = −π

2
sin(πm′) (m+−[max] − m+−[min]) and

∂ cos θ+−
∂θ′

= −π sin(θ′π) .

(3.25)

Figure 3.2 shows the original (left hand plot) and the transformed (right hand plot)

Dalitz plots for toy Monte Carlo B0 → K+π−π0 events. The plots illustrate the ho-

mogenization of the Dalitz plot obtained after the transformation (3.22). In SDP,

the resonance bands are streched and pulled away a bit from the boundaries. The

interference corners are also expanded. This makes the efficiency parameterization

technically easier than with the classic DP. Projections on the m′ and θ′ axes for the

various signal modes are plotted in Fig. 3.3. The determinant of the Jacobian (3.24)

is shown in Fig. 3.4. It is the distribution one would obtain in the square Dalitz plot

for a uniform (non-resonant) prior in the nominal Dalitz plot (DP).
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Figure 3.4: Jacobian determinant (3.24) of the transformation (3.22). The plot shows

the distribution one would obtain in the square Dalitz plot for a uniform (non-resonant)

prior in the nominal Dalitz plot.

Note that the transformation (3.22) is not symmetric over the Dalitz plot. The

K∗±/ρ∓ overlap region is treated with priority since it corresponds to the most prob-

lematic zone where the π0 energy is small and combinatorial background is enhanced.

3.3 Transition Amplitudes

For each intermediate decay mode, we use one complex amplitude to describe

B0 decays to this mode and another amplitude for B
0

decays to its charge conjugate.
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3.4 Normalization

When using Eq. (3.3) as probability density function (PDF) in a likelihood fit,

one has to normalize it by replacing,

|AB0→K+π−π0|2 + |A
B

0→K−π+π0 |2 −→ 1

〈|N |2〉(|AB0→K+π−π0|2 + |A
B

0→K−π+π0|2)

(3.26)

where

〈|N |2〉 = |N |2B0 + |N |2B̄0 , (3.27)

and

|N |2B0 ≡ 〈|AB0→K+π−π0 |2〉

=
∫

|AB0→K+π−π0 |2dDP , (3.28)

and similarly |N |2
B

0 ≡ 〈|A
B

0→K−π+π0|2〉. The complex expectation values 〈fif
∗
j 〉 are

obtained from high-statistics Monte Carlo integration of the Dalitz plot (Eq.3.3), tak-

ing into account acceptance and resolution effects of the detector.

3.5 Interference Pattern

It is interesting to study the relative strength of the interfering contribution with

respect to the total amplitude. We can check the following quantity

ε ≡
∑

κ<σ∈{+,−,0} 2Re [AκA∗
σ]

|∑κ∈{+,−,0}Aκ|2 = 1 −
∑

κ∈{+,−,0} |Aκ|2
|∑κ∈{+,−,0}Aκ|2 , (3.29)

which is confined within [−1, 1]. A sizable deviation from zero indicates non-negligible

interferences among intermediate states.
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Chapter 4

The Signal Model for B0 → K+π−π0

We have introduced the kinematic properties together with a simple Breit-Wigner

model of the pion form factor in the previous section. We will use this formalism to

describe the concrete signal parameterization adopted in the analysis. It is denoted

nominal signal model in the following.

4.1 Form Factors

There are well-known contributions to the B0 → K+π−π0 amplitude from vector

resonances, namely the B0 → K∗(892)+π− and B0 → ρ(770)−K+. A large number

of parameterizations for ρ(770)− can be found in the literature, most of which are

capable to describe precise data from e+e− → π+π− annihilation or τ+ → ντπ
+π0

decays. K−p scatterring and pp annihilation experiments have managed to describe

Kπ resonances, with a few particular parametrizations for the Kπ S-wave spectra.

We consider three models in this analysis. They represent analytical functions with a

threshold (m++m−)2 for a neutral resonance and (m±+m0)
2 for a charged resonance.

Note that we will apply the empirical Blatt-Weisskopf penetration factor correction

of the s-dependent width given in Eq. (3.14) for systematic studies, since we merely
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deal with low spin resonances.

• We denote by RBW the relativistic Breit-Wigner ansatz for a resonance R

introduced for the vector form factor in Section 3.1,

1FRBW
R (s) =

1

s − m2
R + i mRΓR(s)

, (4.1)

where the s-dependdent width ΓR(s) is given in Eq. (3.14) for J = 1, and the

ratio of the Blatt-Weisskopf factors is studied only for systematic evaluation.

RBW is mainly used for K∗(892), K∗
2(1430) and K∗(1680) resonances. It is

also widely used in D meson three-body decay Dalitz analyses for ρ resonances

and we use RBW to cross check the following GS parametrization (see below).

Parameters are taken from [3] unless stated otherwise.

• We denote by GS another approach used for ρ parametrization in this analysis.

It is the Gounaris-Sakurai (GS) parameterization [38] of the p-wave scattering

amplitude for a broad resonance R, decaying to the final state pions π1π2:

1FGS
R (s) =

1 + d · ΓR/mR

s − m2
R − f(s) + i mRΓR(s)

, (4.2)

where

f(s) = ΓR
m2

R

k3
π(m2

R)

[
k2

π(s)
(
h(s) − h(m2

R)
)
+( m2

R−s) k2
π(m2

R)
dh

ds

∣∣∣∣
s=m2

R

]
, (4.3)

and where kπ(s) is the pion momentum in the R rest frame (3.15). The s-

dependence is as in the RBW model. The function h(s) is defined as

h(s) =
2

π

kπ(s)√
s

ln

(√
s + 2kπ(s)

2mπ

)
, (4.4)
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with

dh/ds|m2
R

= h(m2
R)
[
(8k2

π(m2
R))−1 − (2m2

R)−1
]

+ (2πm2
R)−1 . (4.5)

The normalization condition at 1FGS
R,i (0) fixes the parameter d = f(0)/(ΓRmR).

It is found to be [38]

d =
3

π

m2
π

k2
π(m2

R)
ln

(
mR + 2kπ(m2

R)

2mπ

)
+

mR

2π kπ(m2
R)

− m2
πmR

π k3
π(m2

R)
. (4.6)

As imposed by unitarity, the GS parameterization satisfies the relation [39]

tan δ1
1(s) =

Im1FGS
R (s)

Re1FGS
R (s)

, (4.7)

where δ1
1(s) is the phase shift of the l = 1, I = 1 ππ scattering form factor.

• It is already known that the I = 1/2 S-wave Kπ resonance, which is domi-

nated by K∗
0(1430) below 2 GeV/c2, is not a simple Breit-Wigner. Until the Kη

′

threshold the wave has been observed to be rather elastic. An effective-range

parameterization was suggested [40] to describe the slowly increasing phase as a

function of Kπ mass. We denote this parameterization by LASS. This parame-

terization was tested for the LASS experiment [41]. First, the parameterization

needs to be scaled by m/q for B decays [42], where m is the invariant Kπ mass

and q is the momentum of the daughters measured in the resonance rest frame.

The form factor nows reads:

F LASS
R (s) =

√
s

k(s) cot δB − i k(s)
+ exp(2iδB)

m2
R ΓR/k(m2

R)

m2
R − s − i mRΓR(s)

, (4.8)

where

cot δB =
1

ak(s)
+

1

2
r k2(s). (4.9)
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We use the parameters from a 37-point fit to the LASS data done by [42]: mR =

1415± 3 MeV/c2, ΓR = 300± 6 MeV/c2, a = 2.07± 0.10 and r = 3.32± 0.34. We

also try the 34-point fit to make a conservative estimate of the uncertainty from

the parameters: mR = 1435 ± 5 MeV/c2, ΓR = 279 ± 6 MeV/c2, a = 1.95 ± 0.09

and r = 1.76 ± 0.36.

• We also try the K-matrix parametrization for the I = 1/2 S-wave Kπ reso-

nance.

The K-matrix formalism [43] is an elegant and general way of dealing with

strongly overlapping resonances and multi-channel dynamics. A 1×1 K-matrix [41][44]

is sufficient:

K =
g2

0

m2
0 − m2

+ c1 + c2 · m , (4.10)

where m0 is the resonance mass, g2
0 = m0Γ0/ρ(m0), ρ(m) ≡ 2q/m and q is

the breakup momentum. The parameters from the fit to the LASS data [44]

are: m0 = 1.342 ± 0.010 GeV/c2, Γ0 = 0.400 ± 0.020 GeV/c2, c1 = 1.45 and

c2 = −0.55/GeV. The lineshape reads as |T |2 where

T = ρK(1 − iρK)−1 (4.11)

Fig. 4.1 shows the lineshape and phase shift for K∗
0(1430) from the K-matrix

parametrization and the relativistic Breit-Wigner one for comparison. The reso-

nance mass and width extacted from the T-matrix in the complex energy plane

are m = (1428± 10) MeV/c2 and Γ = (280± 15) MeV/c2 which is in good agree-

ment with LASS [41]. The problem shows up when we have to scale this formfac-

tor by m/q to suit B decay environment: in the low mass region, the magnitude
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Figure 4.1: Line shape (Left) and phase shift (Right) for K∗
0 (1430) with K-matrix

parametrization(solid), also shown is the relativistic Breit-Wigner one with running

width (dashed).

goes up much faster than the one in Eq. 4.8. For this reason, we will not use

this lineshape.

4.2 Higher Resonances

We use the LASS parametrization for K∗
0 (1430), as discussed above. Higher

resonances such as K∗
2(1430) and K∗(1680) also decay to Kπ as well with branching

ratios of (49.9±1.2)% and (38.7±2.5)% respectively. We simply use RBW to describe

them in our signal model. We also try some other lineshapes in model systematics

study.

Higher vector resonances are known to contribute to the ππ final state in e+e−

annihilation and τ decays (see, e.g., [45, 46]). They are introduced into the model

via the coherent amplitude sum using GS form factors and are studied for model
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Figure 4.2: Pion form factor from e+e− → π+π− annihilation (left) and τ+ → ντπ
+π0

decays (right).

systematics. As an example, the e+e− → π+π− form factor can be written as ([46, 47])

Fπ(s) ∝ Fρ(770)(s)

(
1 + aρωeiφρωFω(782)(s)

1 + aρω

)
+ aρ′e

iφρ′Fρ(1450)(s) + aρ′′e
iφρ′′Fρ(1700)(s) ,

(4.12)

where the F functions can be GS form factors (4.2) that must be normalized to

F (0) = 1 due to charge conservation.

Figure 4.2 shows on the left hand side a fit of the model (4.12) to newest e+e− →

π+π− annihilation data, where the most precise measurements are provided by the

CMD2 Collaboration [48]. In these fits, the relative phases between the ρ resonances

have been set to π as expected from simple radial excitation. The complete fit results

are given in Table 4.1. Agreement is observed between the model and the data points.

The shoulder originates from the significant ρ(1450) contribution. The additional peak

at large masses corresponds to the ρ(1700), measured by the DM2 Collaboration [49].
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The sharp cut around 780 MeV/c2 is due to the interference between the ρ(770) and the

ω(782) → π+π− amplitude. The right hand plot in Figure 4.2 shows a fit of the same

model (but without the isoscalar ω(783) amplitude) to the charged ρ+ measured in τ

decays [50]. Again, agreement is observed. Also shown is the form factor (4.12) when

setting aρ′ = aρ′′ = 0. Correcting for small isospin violating effects, like differences

in the charged and neutral pion masses (which affects both the width and the phase

space), ρ − ω mixing, etc, reasonable agreement is observed between the two data

sets [51]. More details can be found in Ref. [52].

4.3 Other Concerns

Small contributions are expected from the following phenomena.

• The κ resonance

An indication of the presence of the neutral scalar κ as a Kπ broad resonance

was reported by the E791 collaboration D+ → K−π+π+ decays [53]. The mass

and width of the scalar were found to be mκ = (797 ± 19 ± 43) MeV/c2 and

Γκ = (410 ± 43 ± 87) MeV/c2. Note that we believe this broad resonance is just

an alternative parametrization for the Kπ S-wave in the low mass range and

is thus already included in the K-matrix parametrization for the Kπ S-wave

contribution.

The κ contribution is reported to be small in Belle’s study of the B+ → K+π+π−

decay [54].
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4.4 The Nominal Signal Model

After the discussion in the previous sections we are set to build the nominal

signal model implemented in the DP fits. Variations to this model will be considered

as systematic uncertainties.

• The various amplitudes are summed coherently according to Eq. (3.10).

• For the charged Dalitz bands, the ρ(770)−, K∗(892)+, K∗
0 (1430)+ resonance are

considered in the nominal signal model.

• For the neutral Dalitz band, we consider the K∗(892)0 and K∗
0(1430)0 resonances.

• We consider the non-resonant contribution which we assume is uniform across

the classic Dalitz plot.

• We use results from τ decays and e+e− annihilation to fix the masses and widths

of the ρ(X) resonances. The fits are performed with the GS parameteriza-

tion (4.2) and the results are given in Table 4.1 and are plotted in Fig. 4.2.

These parameters are strongly correlated among each other so that only the en-

tire set is well defined. Variations of parameters for the purpose of systematic

studies must be performed coherently.

• Sub-dominant contributions such as those discussed in Section 4.3 are not part

of the nominal signal model. The influence of these modes on the results will be

included as systematic error.

• Long-lived modes with the same final states, such as B0 → D−(→ π−π0)K+

and B0 → D0(→ K+π−)π0, are treated as part of the B background model
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(cf. Section 6), since they do not interfere with the strongly decaying signal

resonances.

A complete list of possible contributors can be found in Table 4.2.
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Table 4.1: Results of the charged and neutral Gounaris-Sakurai model (4.2,4.12) fit

to form factor data from τ decays (left) and e+e− annihilation. The relative phases

φρ(′) have been fixed in the fit. Leaving them free leads to compatible results. These

parameters are used in the nominal form factor parameterization of the signal model.

Note that these parameters are strongly correlated among each other so that only the

entire set is well defined. Systematic variations of parameters have to be performed

coherently.

Parameter τ+ → ντ (ρ
+ →)π+π0 e+e− → (ρ0 →)π+π−

mρ(770) 775.5 ± 0.6 773.1 ± 0.5

Γρ(770) 148.2 ± 0.8 148.0 ± 0.9

aρω ≡ 0 0.0020 ± 0.0001

φρω ≡ 0 13.0 ± 2.3

mρ(1450) 1409 ± 12

Γρ(1450) 500 ± 37

aρ′ 0.166 ± 0.005

φρ′ 177.8 ± 5.2

mρ(1700) 1749 ± 20

Γρ(1700) ≡ 235

aρ′′ 0.071 ± 0.006

φρ′′ ≡ 0
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Table 4.2: Intermediate states that may contribute to B0 → K+π−π0 Dalitz Plot. The

first six intermediate modes are included in the nominal signal model while the other

six are considered for model systematics. Masses and widths are in units of GeV/c2.

Mode Resonance Mass Width Spin Form Factor

K∗(892)+π− 0.8917 0.0508 1 RBW

ρ(770)−K+ 0.7821 0.1578 1 GS

K∗(892)0π0 0.8961 0.0507 1 RBW

K∗
0(1430)0π0 1.415 0.300 0 LASS

K∗
0(1430)+π− 1.415 0.300 0 LASS

K+π−π0(N.R.) NA NA NA Uniform

ρ(1450)−K+ 1.439 0.550 1 GS

ρ(1700)−K+ 1.795 0.278 1 GS

K∗
2(1430)0π0 1.4324 0.109 2 RBW

K∗
2(1430)+π− 1.4256 0.0985 2 RBW

K∗(1680)0π0 1.717 0.322 1 RBW

K∗(1680)+π− 1.717 0.322 1 RBW



69

Chapter 5

Data Samples and Event Selection

5.1 Data Samples

The results presented in this thesis are based on BABAR data reprocessed in 2004

and Monte Carlo (MC) samples generated in 2004.

The data sample consists of (the corresponding year during which the data were

collected is indicated in parentheses):

• Run-1(1999): on-resonance - 0.47 fb−1, off-resonance - 0.0 fb−1;

• Run-1(2000): on-resonance - 20.1 fb−1, off-resonance - 2.6 fb−1;

• Run-2(2001): on-resonance - 35.4 fb−1, off-resonance - 3.7 fb−1;

• Run-2(2002): on-resonance - 25.4 fb−1, off-resonance - 3.2 fb−1;

• Run-3(2003): on-resonance - 30.9 fb−1, off-resonance - 2.4 fb−1.

• Run-4(2004): on-resonance - 80.9 fb−1, off-resonance - 4.2 fb−1.

The on-resonance data were taken at the Υ (4S) resonance, while the off-resonance

data were taken 40 MeV below the Υ (4S) resonance. In total, we have 193.2 fb−1
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on-resonance data corresponding to 213 × 106 BB events, and 16 fb−1 off-resonance.

Monte Carlo simulations are required to determine selection efficiencies and

to model fit parameters. The full BABAR detector simulation is performed using

GEANT [55]. Simulation of physics events uses the JETSET [56] and EvtGen [57] pro-

grams. The JETSET generator simulates the inclusive B decays, as well as continuum

events, while the EvtGen is used for B decays to exclusive final states.

The signal MC sample can be found in Table 5.1.

Table 5.1: Signal MC that have been generated. Note that these events are generated

without interference.

Mode Name Generated (K)

B0 → K∗(892)+π−, K∗(892)+ → K+π0 184

B0 → K∗(892)0π0, K∗(892)0 → K+π− 188

B0 → ρ(770)−K+, ρ(770)− → π+π− 568

B0 → (K0(1430)π)0, K0(1430) → K+π 300

B0 → (K2(1430)π)0, K2(1430) → K+π 300

B0 → (K∗(1680)π)0, K∗(1680) → K+π 300

B0 → K+π−π0(non − resonant) 1169

B0 → D−K+, D− → π−π0 240

B0 → D
0
π0, D

0 → K+π− 240

The MC sample for background studies consists of:

• Charmless B background modes: more than 100 exclusive charmless two-, three-

, and four-body events, equivalent to luminosities of more than 10, 000 fb−1 for

those significant modes;
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• generic B0B0 MC (inclusive neutral B decays): 207 × 106 events;

• generic B+B− MC (inclusive charged B decays): 191 × 106 events.

5.2 Event Selection

Data collected at the Υ (4S) resonance are expected to consist of not only

Υ (4S) → BoverlineB events, but also e+e− → qq and e+e− → l+l− events, where

q = (u, d, s, c) and l = (e−, μ−, τ−). The e+e− → qq events are called continuum

events hereafter, and are found to be the dominant background in most non-leptonic

B decays with charmless change |C| = 0 (so called charmless decays, to be compared

with charmed decays with |C| = 1).

The Dalitz plot calculation is very CPU-time-consuming, so the event selection

applied here attempts to reduce the total number of events that enter the likelihood

fit. This goal is achieved without compromising the signal efficiency by sacrificing the

mES and ΔE sidebands. The obvious drawback is that due to the lower background

level, the fit cannot determine all empirical shape parameters of the continuum back-

ground together with the signal parameters. One rather must extrapolate them from

sidebands and off-resonance data, which leads to systematic uncertainties. On the

other hand, getting rid of the sideband events improves rejection of misreconstructed

signal events, where B candidates are reconstructed from one or more wrong parti-

cles. These misreconstructed signal events are referred to as Self-Cross-Feed (SCF)

hereafter. The correctly reconstructed signal events are referred to as Truth-Matched
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(TM) events1.

For practical reasons, the event selection is performed in two stages. The first

stage, preselection, applies very loose selection criteria to skim data into ntuples. Then

a final selection chooses candidate events from the ntuples and dumps the selected

events into ASCII data files.

Two kinematic variables are defined and used for the selection of events:

ΔE ≡ E∗
B −√

s/2 , mES ≡
√

(s/2 + p0 · pB)2/E2
0 − p2

B , (5.1)

where E∗
B is the B meson candidate energy in the center-of-mass (c.m.) system, E0

and
√

s are the total energies of the e+e− system in the laboratory and c.m. systems,

respectively, and p0 and pB are the three-momenta of the e+e− system and the B

candidate in the laboratory frame.

The preselection of an event has the following requirements:

• To form a B candidate that decays to K+π−π0, the event must have at least

two oppositely-charged tracks and one π0 reconstructed from a pair of photons.

• The tracks are required to orginate from the IP (within 1.5 cm in xy-plane

1Another way to achieve better TM selection efficiency would be to build an estimator

E ≡
(

ΔE − 〈ΔE〉
σΔE

)2
+
(

mES − 〈mES〉
σmES

)2
+
(

mπ0 − 〈mπ0〉
σmπ0

)2
+ . . . ,

and to select the candidate with the minimum E . However, this procedure creates small but not

necessarily negligible bumps around the expected values 〈ΔE〉, 〈mES〉, etc. Due to this unwanted

behavior we do not apply such a procedure. As another choice, one may use an estimator that

combines the reconstructed mπ0 and vertexing information of charged tracks. This method has been

investigated without any performance improvement.
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and 10cm in z direction), to have a minimum of transverse momentum (pt) of

100 MeV/c, and to have at least 12 hits recorded in the DCH.

• The photons to form the π0 candidate must have energy larger than 100 MeV

each, and the invariant mass 0.10 GeV < m(γγ) < 0.16 GeV.

• At least one B candidate is found with mES > 5.21 GeV/c2 and |ΔE| < 0.45 GeV,

assuming either pion or kaon mass hypothese for the charged tracks.

• The vertexing of the two tracks must converge using the GeoKin vertexing

algorithm [58], and the inclusive vertexing of the rest of the event (ROE) must

converge as well [58].

The final selection has the further requirements as follows:

• π0 reconstruction:

– 0.01 < LATγ < 0.6. The lateral moment is defined as [31]:

LAT ≡
n∑
1

Eir
2
i

E1R2
0 + E2R2

0 +
n∑
3

Eir2
i

, (5.2)

where n is the number of EMC crystals in the cluste, Ei is the energy of

the ith crystal (arranged with decreasing energy), ri is the radial coordinate

of the center of the ith crystal, and R0 is the average distance between two

crystals.

– Eγ,LAB > 0.05 GeV.

– 0.11 < m(π0 ) < 0.16 GeV/c2.
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Figure 5.1: Distributions of mES (left plot) and ΔE ′ (right plot) for truth-matched

(solid) and misreconstructed ρ(ππ)π events (shaded), and for off-resonance data

(dashed). The arrows indicate the cuts applied.

– Only π0 s constructed from resolved photon pairs are used.

• Particle Identification (PID):

– one track should pass the tight kaon selection [59] with valid DIRC accep-

tance for momentum larger than 0.55 GeV/c. Another track should fail the

loose kaon selection. For signal events, the average efficiency for the tight

kaon selection is around 69% (Table 5.2).

– Both tracks must fail the tight electron, muon, proton selection by using

the standard PID selectors.

• Kinematic cuts:

– mES is required to have 5.27 < mES < 5.2875 GeV/c2. See left hand plot

in Fig. 10.6 for the signal and continuum distributions of mES. Compared

to ΔE, only a slight dependence of mES on the π0 energy is observed. It
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Figure 5.2: Truth-matched ΔE distribution for B0 → K∗(892)+π− events in different

bins of m+− (estimator of the π0 energy) fit with double Gaussians. The quoted widths

are those of the core Gaussians.

is ignored in the selection, but not in the likelihood fit, where, similar to

the ΔE treatment (see next bullet), a m+−-dependent parameterization is

applied.

– Dependent on the π0 energy, the ΔE resolution for TM events varies

strongly across the DP. Due to the three-body kinematics, the K+π− invari-

ant mass, m+−, is a good estimator of this dependency. Figure 5.2 shows

the ΔE distributions for different bins of m+−. The function corresponds

to a fit with a double Gaussian. The width of the core Gaussian varies from

26 MeV (low-energetic π0’s) to 33 MeV (high-energetic π0’s). We account

for this effect by applying linearly m+−-dependent cuts on ΔE:

ΔEmax(m+−) = cmax − cmax − c̄

mmax
+−

· m+− , (5.3)

ΔEmin(m+−) = cmin − cmin + c̄

mmax
+−

· m+− , (5.4)

where we use c̄ = 0.045 GeV, cmin = −0.140 GeV, cmax = 0.080 GeV and
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mmax
+− = 25 GeV/c2. Since variable cuts complicate the treatment of ΔE in

the maximum likelihood (ML) fit, we use the redefined quantity

ΔE −→ ΔE ′ =
(ΔE − ΔEmax) + (ΔE − ΔEmin)

ΔEmax + ΔEmin

=
2 ΔE mmax

+− − (cmax + cmin)(m
max
+− − m+−)

2 c̄ m+− + (cmax − cmin)(mmax
+− − m+−)

, (5.5)

with a validity range after cut of ΔE ′ ∈ [−1, 1].

See right hand plot in Fig. 10.6 for the signal and continuum distributions

of ΔE ′. Since it is a linear transformation, the quasi-linear behavior of the

continuum background is not altered.

• MVA: a description of the dedicated continuum-fighting Multivariate Analyzer

(MVA) is given in Section 5.4. We use a four-variable Neural Network for which

the output is between 0 and 1, and is required to exceed 0.76 in the final selection.

The selection efficiencies relative to the previous cut in the column for signal

MC and for onpeak data are given in Table 5.2.

5.3 Multiple Candidate Selection and Misreconstruction of

Signal Events

Events with multiple B candidates passing the full selection occur in 16.9%

(K∗(892)+π−), 17.0% (ρ−K+), 7.2% (K∗(892)0π0), 3.2% (non-resonant K+π−π0) and

6.2% (onpeak) of the cases on average (see Fig. 5.3). Most of these multi-candidate

events have two B candidates. Due to the specific kinematics of multi-candidate

events, their occurrence strongly depends on the location of the event in the Dalitz

plot.
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Table 5.2: Selection efficiencies relative to the previous cut for signal MC, and onpeak

data. Masses are given in units of GeV/c2.

Cuts Relative Efficiencies (%)

εMC
K∗(892)+π− εMC

ρ−K+ εMC
K∗(892)0π0 εMC

K+π−π0−NR εonpeak

Preselection 63.23 ± 0.11 65.49 ± 0.06 55.82 ± 0.11 55.02 ± 0.05 -

Pt > 100MeV/c 100.0 ± 0.00 99.99 ± 0.00 99.96 ± 0.01 99.99 ± 0.00 99.97 ± 0.00

DCH #hits ≥ 12 99.93 ± 0.01 99.96 ± 0.00 99.53 ± 0.02 99.85 ± 0.00 99.75 ± 0.00

Photon Quality 92.49 ± 0.08 93.50 ± 0.04 96.29 ± 0.06 94.57 ± 0.03 88.23 ± 0.02

0.11< mπ0 <0.16 98.17 ± 0.04 98.18 ± 0.02 97.99 ± 0.04 98.23 ± 0.02 96.26 ± 0.01

Kaon ID 66.57 ± 0.15 70.39 ± 0.08 68.99 ± 0.15 69.14 ± 0.06 30.58 ± 0.03

Electron Veto 98.63 ± 0.04 99.03 ± 0.02 98.05 ± 0.05 98.73 ± 0.02 94.85 ± 0.02

Muon Veto 97.56 ± 0.06 98.52 ± 0.02 99.02 ± 0.04 98.18 ± 0.02 98.53 ± 0.01

Proton Veto 99.11 ± 0.04 99.09 ± 0.02 99.09 ± 0.04 99.12 ± 0.01 81.75 ± 0.04

−1 < ΔE′ < 1 71.16 ± 0.17 71.83 ± 0.09 80.52 ± 0.15 79.71 ± 0.06 22.92 ± 0.05

mes >5.27 92.30 ± 0.12 90.04 ± 0.07 94.31 ± 0.01 96.56 ± 0.03 11.87 ± 0.08

NN>0.76 62.07 ± 0.23 62.97 ± 0.12 63.78 ± 0.02 62.45 ± 0.09 5.57 ± 0.17

Total Efficiency 14.85 ± 0.08 16.65 ± 0.04 16.84 ± 0.08 16.29 ± 0.03 -

• For the K∗+π− and ρ−K+ modes, most multiple candidates arise from mis-

assignment of soft photons that form a low-energetic π0. It thus occurs in the

soft π0 region (lower left corner of the DP).

• For K∗0π0 events, most multiple candidates arise from mis-assignment of soft

tracks. It occurs in the soft-π− and less often in the soft Kaon regions (lower

right and upper left corners of the DP).

• Due to the 3-body kinematics of non-resonant B0 → K+π−π0 decays, soft neu-
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Figure 5.3: Number of candidates per event passing the full selection.

tral or charged pions occur less frequently.

• Multiple candidate events for continuum background are less frequent than for

signal.

Exploiting the information on the number of multiple candidates in a discriminant

variable (e.g., the NN) to suppress background would create correlations between this

variable and the DP. It would require an involved multi-dimensional treatment in the

fit which is not going to be considered here.

To prevent biasing the PDFs of the discriminant variables that enter the ML fit,

we apply the following independent criteria to select a single candidate:

(A) if the multiple candidates have different π0’s, we choose the one with a recon-

structed γγ mass closest to the nominal π0 mass;

(B) use random choice for events without multiple π0’s.



79

Table 5.3 summarizes the selection efficiencies and fractions of misreconstructed signal

events (SCF), obtained for the full B0 → K+π−π0 candidate selection.

After the full selection, a total of 7220 on-peak events enter the ML fit.

Table 5.3: Final signal selection efficiencies (overall and truth-matched) and fractions

of misreconstructed events (SCF) for the different signal modes after full selection.

The errors given are statistical only. Expectations are calculated with world averages

for a data luminosity of 193.2 fb−1. For the K∗
0(1430)π modes, we assume Belle’s

branching fractions of K∗
Xπ.

Decay mode εTM+SCF(%) εTM(%) fscf(%) Nexp

K∗(892)+π− 14.85 ± 0.08 11.34 ± 0.08 23.57 ± 0.26 161.5 ± 41.1

ρ−K+ 16.65 ± 0.04 12.96 ± 0.04 22.19 ± 0.14 319.6 ± 56.8

K∗(892)0π0 16.84 ± 0.08 15.37 ± 0.08 8.74 ± 0.16 14.5 ± 36.0

K+π−π0 (N.R.) 16.29 ± 0.03 15.68 ± 0.03 3.77 ± 0.04 198.0 ± 97.4

K∗
0 (1430)+π− 15.51 ± 0.08 14.11 ± 0.08 8.99 ± 0.16 168.8 ± 54.7

K∗
0 (1430)0π0 17.37 ± 0.12 16.65 ± 0.12 4.17 ± 0.15 226.1 ± 63.3

Total 1088.5 ± 150.7
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Figure 5.4: Output distribution for the Neural Network, using the 4 discriminating

variables defined in the text. Shown are TM signal (solid line), SCF signal (shaded

area), and off-resonance data (dashed line). The arrow indicates the cut applied.

5.4 Multivariate Continuum Suppression

Multivariate Analyzer (MVA) techniques are applied to suppress the dominant

continuum background. A dedicated optimization has been performed. Note that

since the DP information is explicitly exploited in the ML fit, the reconstructed res-

onance mass and helicity cannot be used in the MVA anymore. It is found that the

combination of the following four leads to close-to optimal results, while maintaining

simplicity.

• The monomials Ln, a set of momentum-weighted sums over the tracks in the

rest-of-the-event (ROE) with respect to the B thrust axis TB [60]:

Ln =
∑

i=ROE

pi × |cos(θTB ,i)|n . (5.6)
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Figure 5.5: Background efficiency as a function of the signal efficiency (including both

TM and SCF) obtained from cuts on the NN output.

L0 and L2 are used [61].

• cosθB,z, the cosine of the angle between the c.m. B direction and the z axis.

With full detector acceptance, it follows a sin2θ (uniform) distribution for signal

(continuum background) events.

• cosθTB ,z, the cosine of the angle between the candidate’s thrust axis and the z

axis. With full detector acceptance, it has a uniform for signal and a (1 + cos2θ)

distribution for continuum background.

A non-linear Neural Network (NN) [62] has been studied. This is a MultiLayerPer-

ceptron Neural Network with the following architecture:

• number of input variables: Nvar = 4;

• number of output classes: 2 (signal and background);

• number of layers: 3 (input, output & one hidden layer);
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• number of neurons per layer: 4 (input), 10 (hidden), 1 (output);

• number of training cycles: 1000;

• size of the training samples: 10000 signal MC events and 10000 off-resonance

data events.

Optimization and training of the NN has been performed using off-resonance data

contained in the signal region to reduce residual correlations of the NN with the

kinematic variables used in the ML fit (see also the detailed description in Appendix D

of Ref. [63]). Moreover, the signal sample is restricted to events that match MC-

truth. The exclusion of combinatorial background (SCF) from the training turns out

to be beneficial in fighting B-related backgrounds. In particular, charmless 3-body

background mimics the kinematic distributions of SCF events. The reduced overall

signal efficiency of the NN due to this training procedure (signal SCF events are

treated as ordinary background) is counterbalanced by the improved B-background

suppression.

The NN output distribution for TM signal, SCF signal, and off-resonance data

are plotted in Fig. 5.4. As a qualitative measure of the discriminating power, we depict

in Fig. 5.5 the background efficiency versus the signal efficiency obtained when cutting

on the NN output.

To simplify an empirical fit of the NN output shape for continuum events, one

can transform the MVA so that it is confined within [−1, 1] after selection:

NN −→ NN′ ≡ 1 − arccos (2NN − 1 + offset) , (5.7)
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where we use offset = 0.00135 and NNcut = 0.76 (before transformation). The trans-

formed NN′ is shown in the right hand plot of Fig. 5.5. Because of correlations with

the Dalitz variables – see Sec. 5.5 for details –, the NN output is used for the data

selection but not in the ML fit.

5.5 Correlations

The ML fit applied could use as input all the discriminant variables mES, ΔE,

NN and Δt. Yet, the likelihood model is built upon the assumption that these variables

do not exhibit correlations among themselves. Violation of this assumption leads to

biases in the fit. The effects can be quantified by performing fits to a number of

data-size fully simulated Monte Carlo samples.

The correlation profiles of mES vs. ΔE ′, NN′ vs. ΔE ′ and mES vs. NN′, for truth-

matched and SCF events, and off-resonance events are plotted in Fig. 5.6. Significant

correlations are only observed for TM events between mES and ΔE ′. Their linear

correlation coefficient amounts to −8.6%, which is a known feature and understood to

be dominated by the common uncertainty on the beam energy. It can be approximated

by [64, 65]

ρ(mES, ΔE) ≈ −σ(mES)

σ(ΔE)
= −8.4 10−2 . (5.8)

The correlation coefficient is smaller for K∗0π0 events (−4.3%) and non-resonant

K+π−π0 decays (−7.8%). Correcting ΔE for the error on the beam energy gauged,

by mES [66]

ΔE −→ ΔE + δE∗
beam

≈ ΔE + (mES − 〈mES〉) , (5.9)

with 〈mES〉 � 5.2795, reduces significantly the correlation as indicated in Fig. 5.8. As
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a consequence, the ΔE resolution for corrected TM events slightly improves from an

RMS of 27.0 MeV to 26.8 MeV (cf. Fig. 5.7), which corresponds to a quadratic error

reduction of about 3 MeV, as expected.

As mentionned above in Sec. 5.4, the NN ouput is not used in the ML as it

is correlated with the Dalitz plot variables s+0 and s−0. Indeed, events close to the

borders of the Dalitz plot are more ’jet-like’ than those in the center of the Dalitz plot,

where the three mass-squared are of similar magnitude, so that the event exhibits a

larger sphericity. Since the latter have kinematics closer to a typical multibody B-

decay, they lead to increased (i.e., more signal-like) NN outputs than the former. To

show this, the variable Δdalitz is introduced as a “distance” to the boundaries defined

in the Dalitz plane:

Δdalitz = min (s+−, s+0, s−0) , (5.10)

and as can be seen on Figure 5.9, Δdalitz has maximal values in the center of the Dalitz

plot, and decreases towards its edges. Figures 5.10, 5.11 and 5.12 show the correlation

profiles for mES, ΔE, ΔE ′ and NN along the Dalitz plane, for truth-matched non-

resonance signal, SCF non-resonance and offpeak events, respectively. The correlation

profiles are done in in terms of Δdalitz, as well as the square Dalitz plot m′ and θ

variables.

Note that the last two plots of Fig.5.12 show the correlation profile of NN versus

Δdalitz. On average, NN increases with this variable, which establishes its correlation

with the Dalitz plot. For this reason, NN is not used as a discriminating variable in

ML fit.
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Figure 5.10: Correlation profiles for mES, ΔE, ΔE ′ and NN versus Dalitz variables

for truth-matched signal events. Left (resp. center, right) column profiles corresponds

to the Δdalitz (resp. m′, θ′) Dalitz variable.
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Figure 5.11: Correlation profiles for mES, ΔE, ΔE ′ and NN versus Dalitz variables

for SCF signal events. Left (resp. center, right) column profiles corresponds to the

Δdalitz (resp. m′, θ′) Dalitz variable.
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Figure 5.12: Correlation profiles for mES, ΔE, ΔE ′ and NN versus Dalitz variables

for off-resonance events. Left (resp. center, right) column profiles corresponds to the

Δdalitz (resp. m′, θ′) Dalitz variable. The last row shows the correlation profiles for

the NN variable after relaxing the nominal NN > 0.76 cut.
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Chapter 6

B-Related Background

Since no invariant mass cuts are applied in the DP, and due to the presence of a π0, the

decay B0 → K+π−π0 suffers from large cross-feed from other charmed and charmless

B-decays. Some of these B-background modes have unknown branching fractions.

Moreover, they can exhibit CP-violating asymmetries. The cross-feed from other B

decays are studied using MC simulation. The likelihood-building procedure for signal

and backgrounds is discussed in detail in Section 7. The relevant model parameters

are given in this section.

A similar strategy is followed as in the B0 → ρ±π∓, ρ−K+ quasi-two-body (Q2B)

analysis [28], where a corrective PDF is introduced in the likelihood for classes of major

contaminating modes. An extensive list of exclusive charmless BB modes has been

studied to evaluate the systematics on the event yields and the CP parameters due to

cross-feed from these modes. B background can be categorized into two-, three- and

four-body final states, of which the decay kinematics differ significantly.

• Two-body modes: to reconstruct a B0 → K+π−π0 candidate, one adds an

additional object (charged or neutral) taken from the rest of the event: as a
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Figure 6.1: Enlarged ΔE band. Shown are signal B0 → ρ−K+ events (hatched),

neutral and charged b → c events (full and open circles, respectively), and represen-

tative four-body (solid), three-body (dotted) and two-body (dashed) background modes,

all taken from MC simulation. The shaded band indicates the continuum contribution

taken from off-resonance data.

consequence, these events populate the positive ΔE region. A characteristic

kinematic property is that they consist of 2 tracks (those from the original two-

body decay) oriented back-to-back in the Υ (4S) center-of-mass and the invariant

mass of these 2 tracks is equal to the mass of the B. The rates of the two-body

decays are well-known experimentally.

• Three-body modes: by exchanging (mostly) soft photons or tracks between

the signal B and the rest of the event (ROE), or by picking up fake π0s, one
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Figure 6.2: Enlarged mES band. Shown are signal B0 → ρ−K+ events (hatched),

neutral and charged b → c events (full and open circles, respectively), and represen-

tative four-body (solid), three-body (dotted) and two-body (dashed) background modes,

all taken from MC simulation. The shaded band indicates the continuum contribution

taken from off-resonance data.

can reconstruct a B0 → K+π−π0 candidate from another three-body mode.

This approximately leaves ΔE unaltered, i.e., ΔE (three-body)∼ 0 – albeit

with worse resolution. The kinematics of these processes resembles that of the

B0 → K+π−π0 signal, so that the three-body cross-feed is difficult to sup-

press without compromising the signal efficiency. In particular, three-body

background exhibits similar kinematic properties as B0 → K+π−π0 signal self-

cross-feed. The branching fractions of most of the three-body modes have been

measured, although with mediocre accuracy in some cases.



94

• Four-body modes: by using only 3 particles of a four-body decay, one can

reconstruct a B0 → K+π−π0 candidate, which accumulates in the negative ΔE

region. Most of the four-body decays have not been measured yet.

• Higher multiplicity modes: the rates of modes with five or more particles in

the final state are unknown in general and thus cannot be accounted for in a sys-

tematic way in the analysis. Kinematically, these modes resemble the charmed

background due to the large negative ΔE values. The associated uncertainties

have been estimated in Ref. [63] by means of a fit of the inclusive b → c(X)-

background contribution, using an enlarged ΔE region with increased sensitivity

to high multiplicity background. It was found that the MC predicts the b → c

contribution within approximately 22%, which is sufficient for the purpose of

this analysis.

The ΔE distributions for signal, for the different multi-body backgrounds, and for the

neutral and charged b → c components, are shown in an enlarged acceptance window

in Fig. 6.1. We also show the mES distributions for comparison in Fig. 6.2.

The square Dalitz plot distributions for representative modes are given in Figs. 6.3

and 6.4 (to be compared with signal in Fig. 3.2). Indicated on the plots are the

ρ−, K∗(892)+,0 bands. The last plot in Fig. 6.3 shows the DP for simulated neutral

b → c-background events that pass the event selection. Clustering is observed at the

masses m+− = m(D0) which is due to the color-suppressed B0 → D0(→ K+π−)π0

decay. The last plot in Fig. 6.4 shows the DP for simulated charged b → c-background

events that pass the event selection. Clustering is again observed at the masses

m+− = m(D0) which is due to the B+ → D
0
ρ+ decay, with a soft π0 from ρ+ decay
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Figure 6.3: Square Dalitz plots for representative B0-related background modes.
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Figure 6.4: Square Dalitz plots for representative B+-related background modes.
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being excluded from the signal B reconstruction.

6.1 Branching Fractions

We use the world average branching fractions for the experimentally known de-

cay modes. In cases where only upper limits are given, we translate the limits into

branching fractions using the available information from the related publications. Ed-

ucated guesses are used to deduce the branching fractions for the unknown modes.

This is done using wherever possible similar modes that are known, together with

rules based on isospin symmetry and/or form factor arguments, where naive factor-

ization of the matrix elements is assumed in the latter cases. If not available, we rely

on ad hoc assumptions that consequently entail large systematic uncertainties.

In B decays into two vector mesons the vector-vector state can have L = 0, 1, 2

orbital angular momenta corresponding to longitudinal and transverse polarizations.

Only longitudinally polarized particles create sufficiently fast decay pions and kaons

to produce significant background after selection. We assume in the following in cases

when the polarization is unknown that the corresponding modes be longitudinally

saturated, which is in accordance with recent experimental results [67].

We refer to the extensive mode-by-mode discussion of the branching fractions

given in Ref. [63]. Only those modes where significant changes with respect to Ref. [63]

occur are revisited here.

Individual modes with expected contaminations of one or more events after se-

lection are classified within four classes for charged B decays and six classes for neutral

B decays. The classes regroup modes with similar PDFs and each class represents a
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Table 6.1: Classification of background from neutral B decays. The efficiencies are

obtained from MC simulation. The expected number of events in the selected data

sample correspond to an integrated on-resonance luminosity of 193.2fb−1. Each block

represents a class including modes that contributes at least one event.

Mode BF (×10−6) Eff. (%) Nexpected Ngen(K)

B0 → K+π− 18.16 ± 0.79 0.23 ± 0.00 8.9 ± 0.3 834

B0 → π+π− 4.55 ± 0.44 0.02 ± 0.00 0.2 ± 0.0 340

B0 → π+π−π0(NR) 0.0 ± 5.0 0.57 ± 0.00 0.0 ± 6.0 996

B0 → ρ0π0 1.4 ± 1.0 0.47 ± 0.00 1.4 ± 1.0 453.5

B0 → KS(π+π−)π0 3.8 ± 0.5 0.31 ± 0.01 2.6 ± 0.3 149

B0 → K+K−π0(incl.) < 19 1.89 ± 0.05 < 76.6 66

B0 → K∗−(K+π0)K+ < 19 2.2 ± 0.06 < 90.3 57

B0 → K∗0(K+π−)γ 27.8 ± 1.5 0.82 ± 0.04 48.5 ± 2.6 42

B0 → K∗0(1410)γ < 130 0.06 < 16.3 138

B0 → K∗0(1430)γ 12.4 ± 2.4 0.23 ± 0.1 6.2 ± 1.2 67

B0 → K∗0(1680)(K+π−)γ 5.0 ± 5.0 0.16 ± 0.02 1.7 ± 1.7 132

B0 → ρ±π∓ 24.0 ± 2.5 0.60 ± 0.01 30.8 ± 4.0 470

B0 → ρ(1450)±π∓ 2.0 ± 2.0 0.87 3.6 ± 3.6 126

B0 → K∗+(K+π0)ρ−long 2.0 ± 2.0 0.62 ± 0.02 2.6 ± 2.6 86.5

B0 → K∗+(K+π0)ρ−tran 2.0 ± 2.0 0.0 0.0 ± 0.0 67

B0 → K∗0(K+π−)ρ0
long 1.0 ± 1.0 0.40 ± 0.02 0.9 ± 0.9 81.5

B0 → K∗(1680)+(K+π−)ρ− 2.0 ± 2.0 0.16 ± 0.02 0.7 ± 0.7 37

B0 → ρ+ρ−long 26.6 ± 8.2 0.12 ± 0.00 6.9 ± 2.1 368

B0 → ρ0ρ0
long 0.0 ± 2.1 0.03 0.0 ± 0.2 25

B0 → a+
1 (ρ0π+)π− 35.0 ± 25.0 0.02 0.9 ± 0.7 41

B0 → D
0
π0, D

0 → K+π− 11.0 ± 1.9 16.74± 0.09 392.9± 68.0 144

B0 → D−K+, D− → π−π0 0.5 ± 0.2 16.93± 0.07 18.1 ± 7.2 240

B0 → othercharm inclusive 1.46 ± 0.09 × 10−6 147.1± 44.0 190,936

Subtotal 670.6± 81.4
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Table 6.2: Classification of background from charged B decays. The efficiencies are

obtained from MC simulation. The expected number of events in the selected data

sample correspond to an integrated on-resonance luminosity of 193.2fb−1.

Mode BF (×10−6) Eff. (%) Nexpected Ngen(K)

B+ → K+π0 12.8 ± 1.1 0.56 ± 0.00 15.3 ± 1.2 1124

B+ → π+π0 5.27 ± 0.79 0.04 0.5 ± 0.0 63

B+ → K∗0(K+π−)π+ 8.1 ± 1.7 0.0 0.0 ± 0.0 123

B+ → K∗+(K+π0)π0 4.0 ± 2.0 1.91 ± 0.04 16.3 ± 8.1 101

B+ → K+π+π−(NR) 13.5 ± 6.4 0.17 ± 0.00 5.0 ± 2.4 1262

B+ → K+f0(π+π−) 9.3 ± 2.1 0.85 ± 0.02 16.9 ± 3.8 148

B+ → π+ρ0 9.1 ± 1.1 0.10 ± 0.00 1.9 ± 0.2 150

B+ → π0ρ+ 11.0 ± 2.7 0.12 ± 0.00 2.8 ± 0.7 711

B+ → K∗
0 (1430)π 60.7 ± 7.0 0.135 ± 0.01 17.5 ± 2.1 40

B+ → K∗
2 (1430)π < 15.3 0.23 ± 0.02 < 7.6 37

B+ → K∗+γ 41.8 ± 3.3 0.01 ± 0.00 1.0 ± 0.2 176

B+ → K(1410)∗+γ < 50 0.04 < 4.3 140

B+ → K(1430)∗+γ 14.4 ± 4.2 0.04 1.2 ± 0.3 68

B+ → K(1680)∗+γ 14.4 ± 14.4 0.02 0.0 140

B+ → K∗+K̄∗0(K+π−)long 5.0 ± 5.0 0.09 1.0 ± 1.0 66

B+ → K∗+K̄∗0(K+π−)tran 5.0 ± 5.0 0.01 0.0 66

B+ → K∗0(K+π−)ρ+
long 8.0 ± 4.0 0.41 ± 0.00 7.1 ± 3.4 673.5

B+ → K∗+(K+π0)ρ0
long 3.5 ± 1.3 0.26 ± 0.01 1.9 ± 0.7 85.5

B+ → K∗+(K+π0)ρ0
tran 3.0 ± 3.0∗ 0.0 0.0 ± 0.0 67

B+ → η′(ρ0γ)K+ 21.4 ± 1.7 0.25 ± 0.01 11.2 ± 0.9 84.5

B+ → η′(ρ0γ)π+ 3.0 ± 3.0∗ 0.03 0.2 ± 0.2 85.5

B+ → K∗(1680)ρ 15 ± 15∗ 0.50 16.2 ± 16.2 36

B+ → ρ+ρ0
long 26.4 ± 6.1 0.13 ± 0.00 7.2 ± 1.7 232

B+ → charm inclusive 3.5 ± 0.1 × 10−6 356.3± 106.8 207,326

Subtotal 473.6± 108.4

T otal neutral and charged B backgrounds 1144.2± 135.6



100

corrective term in the likelihood. A summary of their branching fractions, selection

efficiencies and expected number of events, computed for an integrated on-resonance

luminosity of 193.2 fb−1, are given in Table 6.1 and 6.2.

6.2 Background from Charmed B Decays

Charmed neutral B mesons can decay into the K+π−π0 final state via the Q2B

states D0π0 and D−K+ for which the branching fractions have been measured. These

two are treated in two dedicated classes in the B background model. The most im-

portant of them is the decay B0 → D
0
(→ K+π−)π0 from which we expect about 393

events in our selected sample (cf. Table 6.1). Since it is fully reconstructed and due

to its large final state mass, this mode is only marginally affected by continuum back-

ground. We will measure the branching fraction of this mode. In the fit, we float its

yield and use it to better determine the signal shape parameters of the discriminant

variables used. In terms of parametrization, the modeling for the charmless signal

mES and ΔE is used with common shape parameters; a signal Gaussian with floating

mean and width is used for reconstructed D0 mass and a 5th order polynomial is used

for the helicity distribution to take into account the reconstruction and selection ef-

fects. Contributions from other charmed B Decays are inclusively obtained with MC

of generic B decays and are fixed in the fit. (See Table 6.1 and 6.2.)

6.3 Background from Kaon Resonances

The derivation of the background from charmless B decays to Kππ(X) final

states is rather involved, so that we shall discuss it to some detail in this section.

Since for about 15% of the events PID information is much reduced due to absence
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of either or both of the kaons in the DIRC, background from KKπ(X) events is

significant in the B0 → K+π−π0 signal.

6.4 The modes B+ → K+(ππ)0

Belle has performed a Dalitz Plot analysis on B+ → K+π+π− [54]. From this

paper we see:

B(B+ → K∗
0(1430)0π+, K∗

0 (1430)0 → K+π−) = 25.0 ± 1.6+2.4+0.0
−2.1−1.5 × 10−6,

B(B+ → K∗
2(1430)0π+, K∗

2 (1430)0 → K+π−) < 3.4 × 10−6,

B(B+ → K∗(1680)0π+, K∗(1680)0 → K+π−) < 5.3 × 10−6,

B(B+ → K+π+π−(N.R.) = 13.5 ± 1.7+1.3+6.3
−1.1−0.6 × 10−6.

A not-yet published BABAR measurement on B+ → K∗+π0 [68] reports B(B+ →

K∗+π0, K∗+ → K+π0) = 4.0 ± 1.3 ± 0.6 × 10−6 and ACP (B+ → K∗+π0) = 0.24 ±

0.33 ± 0.13.

We use these measured branching fractions in this analysis. Particularly, we derive

B(B+ → (K∗
0 (1430)π)+) = 60.7 ± 7.0 × 10−6 and B(B+ → K∗

2 (1430)π)+) < 15.3 ×

10−6.

6.5 The mode B → K∗K(∗)

The modes B0 → K∗+(→ K+π0)K− leads to the same topology as the B0 →

K+π−π0 signal if one kaon is misidentified as a pion. This background is signal-like

in mES and shifted to low end in ΔE. So far, there is an upper limit on the inclusive

branching fraction of B0 → K+K−π0, which is 19 × 10−6 by CLEO.

An upper limit of 5.3× 10−6 on the branching fraction of B+ → K
∗0

K+ was set
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by CLEO. A not-yet published measurement on B+ → K
∗0

K+ [69] at BABAR brings

the limit down to 1.5 × 10−6. This suggests that the contribution from B → K∗K

should be rather small.

The modes B0 → K∗+(→ K+π0)K∗−(→ K−π0) may also contribute if one kaon

is misidentified as a pion and a soft π0 is dropped. An upper limit of 141 × 10−6 was

set by CLEO. Based on the known limit on B+ → K
∗0

K+, we use 5.0 ± 5.0 × 10−6

instead and do not expect any contribution.

None of the B → K∗K(∗) modes have been observed so far. Thus we expect very

small contamination from these modes. We assume no contributions from these modes

in the nominal model and later assume conservative uncertainties on the branching

fractions to study the systematics.

6.6 Higher Multiplicities B → K
(∗∗)
(X) ρ

B(B+ → K∗+ρ0) has been measured by BABAR [70], giving a branching fraction

of (10.6+3.0
−2.6±2.4)10−6 (with a fraction of longitudinal polarization of 0.96+0.04

−0.15±0.04).

There are also unpublished measurements performed at BABAR on B0 → K∗+ρ− [71]

and B+ → K∗0ρ+ [72]. The former gives B(B0 → K∗+ρ−) = 11.5 ± 3.4 ± 3.2 × 10−6

with a fraction of longitudinal polarization of 0.27 ± 0.31 ± 0.06. The latter gives

B(B+ → K∗0ρ+) = 15.4 ± 2.6 ± 0.7 × 10−6 with a fraction of longitudinal polar-

ization of 0.77 ± 0.08. We expect negligible contribution from the color suppressed

B0 → K∗0ρ0.

We use this as a basis for an estimate with an inflated error: B(B0 → K∗+(K∗+ →

K+π0)ρ−)long � (2.0±2.0)×10−6; B(B+ → K∗+(K∗+ → K+π0)ρ0)long � (3.5±1.3)×
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10−6; B(B+ → K∗0(K∗0 → K+π−)ρ+)long � (8.0 ± 4.0) × 10−6.

To estimate the background from B → K
(∗∗)
X ρ we assume B(B0 → K

(∗∗)
X ρ) =

B(B0 → K
(∗∗)
X π) and B(B+ → K

(∗∗)
X ρ) = B(B+ → K

(∗∗)
X π), and assign an uncertainty

of 100 % to these branching fractions. Only K
(∗∗)
X decays to Kπ final states are taken

into account. All other charge combinations are inferred from this estimate using

isospin symmetry with assumed penguin dominance. The expected backgrounds from

these modes are small.
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Chapter 7

Building the Likelihood

The selected on-resonance data sample consists of signal, continuum-background and

B-background components. The variables mES, ΔE ′, and the DP discriminate signal

from background. The signal likelihood consists of the sum of a correctly reconstructed

(TM) component and a misreconstructed (SCF) component .

The likelihood L for N events is

L = e−N
′ N∏

i=1

{
Nsig

[
(1 − f SCF)Psig−TM,i + fSCFPsig−SCF,i

]

+ Nqq̄
1

2
(1 + qK,iAqq̄)Pqq̄,i

+

NB+

classes∑
j=1

N j
B+f j

B+

1

2

(
1 + qK,iA

j
B+

)
Pj

B+,i

+

NB0

classes∑
j=1

N j
B0f

j
B0

1

2

(
1 + qK,iA

j
B0

)
Pj

B0,i

}
, (7.1)

where,

• N
′
is the sum of all the yields that are involved, ie., Nsig +Nqq̄ +

∑NB+

classes
j=1 N j

B+ +

∑NB0

classes
j=1 N j

B0 ;
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• Nsig is the total number of signal (B0 → K+π−π0 and B
0 → K−π+π0) events

in the data sample;

• f SCF is the fraction of misreconstructed signal events (SCF) averaged over the

Dalitz plot (DP); note that SCF events will be described by convolution in the

DP (cf. Section 7.1);

• P3π−TM,i and P3π−SCF,i are the products of PDFs of the discriminating variables,

for truth-matched (TM) and SCF events respectively;

• N qq̄ is the number of continuum events;

• qK,i is the Kaon charge of the event; we use qK,i = 1 for B0 and qK,i = −1 for

B0;

• Aqq̄ parameterizes possible charge asymmetry in continuum events due to detec-

tion, reconstruction or selection;

• Pqq̄,i is the continuum PDF;

• NB+

classes (NB0

classes) is the number of charged (neutral) B-related background classes

considered (cf. Section 6);

• N j
B+ (N j

B0) is the number of expected events in the charged (neutral) B-related

background class j;

• fB+j (fB0j) is the fraction of charged (neutral) B-related background events of

class j;
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• Aj
B+ ( Aj

B0 ) describes the charge asymmetry in charged (neutral) B background

of class j; this charge asymmetry could come from physics, or detector effect;

• Pj
B+,i is the PDF for B+-background class j;

• Pj
B0,i is the PDF for B0-background class j;

The PDFs PX are the product of the PDFs of the four discriminating variables xk,

k = 1, . . . , 4:

P(j)
X,i ≡ ∏

k

P
(j)
X,i . (7.2)

The individual PDFs in Eq. (7.1) are discussed in the following sections.

7.1 Dalitz Plot PDFs

• DP-dependent selection efficiency and SCF fraction.

Dalitz plot PDFs and DP-averaged quantities, like normalization or SCF frac-

tions, require knowledge of the DP-dependent relative selection efficiency ε =

ε(m′, θ′). It is a decay-dynamics-invariant quantity and is obtained from high

statistics MC simulation. It is shown in the left hand plots of Fig. 7.1 for the

DP (upper) and the square DP (lower), where the symmetric property of the

DP has been used in the latter to effectively double the available statistics. One

observes a rather flat efficiency over the main DP, with an increase along rising

m′ (m+−) values, due to the larger π0 energies. The efficiency drops close to

the extreme corners of the DP, which is where two particles are back-to-back,

while the third is (almost) in rest, and acceptance is necessarily low due to the

minimum pT (tracks) or Eγ (neutrals) requirements.
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Figure 7.1: Selection efficiency of B0 → K+π−π0 events (left plots) and fraction of

misreconstructed events (right plots), in the nominal Dalitz plot (upper plots) and the

square Dalitz plot (lower plots). The plots are made with a sample of 2.7 million signal

MC events.
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Moreover, the DP part in the likelihood component for TM and SCF signal

(cf. Eq. (7.1)) must be expanded to account for a DP-dependent SCF fraction

fSCF = fSCF(m′, θ′). Again, the DP-dependent SCF fraction does not depend on

the decay dynamics. For an event i, we have the PDF (cf. Eq. (7.2)).

P3π−TM,i = εi (1 − fSCF,i) | detJi|
|AB0→K+π−π0 |2 + |A

B
0→K−π+π0|2

〈|NTM|2〉 ,(7.3)

P3π−SCF, i = εi fSCF,i | detJi|
|AB0→K+π−π0|2 + |A

B
0→K−π+π0 |2

〈|NSCF|2〉 , (7.4)

The normalization constants 〈|NTM|2〉 and 〈|NSCF|2〉 are those from Eq. (3.28),

with the difference that now the phase space integration has to take into account

the DP-dependent efficiencies and SCF fractions

|NTM|2 = Re
∑
κ,σ

(AκAσ∗ + A
κ
A

σ∗
)〈ε (1− fSCF) | detJ | fκfσ∗〉 , (7.5)

|NSCF|2 = Re
∑
κ,σ

(AκAσ∗ + A
κ
A

σ∗
)〈ε fSCF | detJ | fκfσ∗〉 , (7.6)

The indices κ, σ run over all resonances of the signal model (cf. Section. 4).

The expectation values occurring in Eqs. (7.5, 7.6) are model-dependent and are

computed with high statistics MC integration over the square DP:

〈ε (1− fSCF) | detJ | fκfσ∗〉 =

∫ 1
0

∫ 1
0 ε (1 − fSCF) | detJ | fκfσ∗ dm′dθ′∫ 1

0

∫ 1
0 ε | detJ | fκfσ∗ dm′dθ′

, (7.7)

and similarly for 〈ε | detJ | fκfσ∗〉, where all quantities in the integrands are DP-

dependent. Note that the integral (7.7) depends on the dynamics (form factors)

assumed for the signal model. If parameters of this model are determined from

a fit to data, the determination of Eq. (7.7) has to be iterative.

The DP-dependent SCF fractions obtained from MC simulation are plotted in
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Figure 7.2: Resolution of the reconstructed ρ− mass in the B0 → ρ−K+ MC for soft

π0 (left plot) and hard π0 (right plot) in TM events. The parameters correspond to a

double Gaussian fit.

Fig. 7.1 (right), for the DP (upper) and the square DP (lower plot). The distri-

bution pattern of the SCF fractions over the DP is a consequence of the same

kinematic property that is responsible for the efficiency drop in the Dalitz cor-

ners. Combinatorial background is high (close to one) in the presence of soft

neutrals or tracks. Misreconstructed signal events are almost absent in the center

of the DP.

• DP-averaged SCF fraction.

Equation (7.1) invokes the quasi-two-body-like phase space-averaged SCF frac-

tion fSCF. As for the PDF normalization, it is decay-dynamics dependent, since

it is obtained from an integral of the decay amplitude-squared over the Dalitz

plot

fSCF =

∫ 1
0

∫ 1
0 ε fSCF | detJi| (|AB0→K+π−π0 |2 + |A

B
0→K−π+π0 |2) dm′dθ′∫ 1

0

∫ 1
0 ε | detJi| (|AB0→K+π−π0|2 + |A

B
0→K−π+π0 |2) dm′dθ′

. (7.8)

It has to be computed iteratively, though the associated systematic uncertainty
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is expected to be small.

• TM resolution.

The intrinsic width of the dominant ρ(770) resonance expressed in standard

deviations of a double Gaussian fit function gives approximately (the form factor

Fρ(770) is expressed as a function of the linear mass here)

σcore(Fρ(770)) ≈ 0.5 Γρ(770) ≈ 75 MeV/c2 , (7.9)

σtail(Fρ(770)) ≈ 2.0 Γρ(770) ≈ 300 MeV/c2 . (7.10)

It can be compared with the mass resolution for TM events plotted in Fig. 7.2

for soft π0’s (left plot) and hard π0’s (right plot). Recall that the soft π0 region

is where the TM efficiency is low and the SCF fraction rises. Even the worst

tail-Gaussian resolution of 20.6 MeV/c2 is more than a factor of three narrower

than the core width of the double Gaussian fit to the ρ(770) form factor. We

therefore do not account for resolution effects in the TM model and do fits to

data-size full MC samples to study the effect on the final results.

• SCF resolution.

Misreconstructed events are concentrated in the corners of the Dalitz plot and

have a mass resolution that dramatically varies across the DP. Figure 7.3 shows

the K∗(892)+ and K∗(892)0 mass resolution for simulated B0 → K∗(892)+π−

and B0 → K∗(892)0π0 events. Unlike for TM events, the resolution effects

cannot be ignored anymore for SCF events. We therefore introduce a 2 × 2-

dimensional convolution function

RSCF(m′
r, θ

′
r, m

′
t, θ

′
t) , (7.11)
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Figure 7.3: Difference between reconstructed and true K∗(892)+ (left) and K∗(892)0

mass (right) in the MC for misreconstructed B0 → K∗(892)+π− (left) and B0 →

K∗(892)0π0 events (right).

which represents the probability to reconstruct at the coordinate (m′
r, θ

′
r) an

event that has the true coordinate (m′
t, θ

′
t). It obeys the unitarity condition

1∫
0

1∫
0

RSCF(m′
r, θ

′
r, m

′
t, θ

′
t) dm′

rdθ′r = 1 , ∀ (m′
t, θ

′
t) ∈ SDP . (7.12)

The RSCF function is obtained from MC simulation and implemented as four-

dimensional smoothed histogram, and is computed only once. Figure 7.4 shows

the resolution function of TM (left) and SCF events (right) for two arbitrary

generated values (m′
t = 0.10, θ′t = 0.25) and (m′

t = 0.72, θ′t = 0.04)

• Parameterization of Signal Dalitz plot:

The reference distribution for the physical Dalitz plot (efficiency and resolution

corrections have been discussed in the previous bullets) is obtained from the

signal model described in Section 4. It depends on the underlying resonance

structure.
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Figure 7.4: Resolution for TM (left) and SCF events (right) for two chosen generated

values in the square DP, indicated by the open stars (see text for the numerical values).

• B-background parameterization.

We use smoothed histograms as parameterization for neutral B backgrounds or

charged B-backgrounds.

• Continuum parameterization.

– The Dalitz plot treatment of continuum events is similar to the one used

for B background. The continuum contribution to the likelihood (7.1)

invokes the parameter Aqq̄, multiplied by the kaon charge QK . It parame-

terizes possible direct CPV in these events and is determined by the fit.

It is the particularity of the approach adopted in this analysis that the

square DP PDF for continuum events is obtained from off-resonance data

using the signal region (SR), and mES sideband(SB) region where mES >

5.20 GeV/c2.

Since the fit does not determine the empirical shape parameters of the
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Figure 7.5: Dalitz plot (left) and square DP (right) distributions for off-resonance

events.

PDFs simultaneously with the signal parameters, we have to worry about

the validity of the SB-to-SR extrapolation. We will come back to this point

in Section 11. Since continuum events are the dominant background, we

also must ensure a high fidelity of the empirical shape parameterization.

This has been the main motivation that led to the development of the

square DP (3.22), since continuum events cluster at low invariant masses

(compared to mB), and thus populate the kinematic borders of the DP (see

Fig. 7.5).

7.2 Energy-Substituted Mass and Energy Difference

Due to the tight cuts on both mES and ΔE ′, correlations between these vari-

ables are small in signal and B background, with the exception being TM events (see

discussion in Section 5.5 and below).
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• Signal parameterization.

– mES. The distribution of TM events is parameterized by the Crystal

Ball function [73], CB(m0, σ, α, n) , where α = 1.25, n = 84.3, σ =

0.0026 GeV/c2, as determined with signal MC, and the parameter m0 is

determined by the fit. A slight dependence of the mass resolution on the

π0 momentum is observed but is neglected.

SCF events are parameterized with nonparametric PDFs [74], where the

m2
+− dependence of the mES shape is also neglected (see left hand plot in

Fig. 10.6).

– ΔE′. The distribution of TM events is parameterized by a double Gaussian

function, where all five parameters depend linearly on m2
+− as described in

Appendix B.

Self-cross-feed events are parameterized by a broad single Gaussian, where

the small m2
+− dependence of the ΔE ′ shape is neglected (see right hand

plot in Fig. 10.6). They do not exhibit correlations between mES and ΔE ′.

• B-background parameterization.

Both mES and ΔE ′ are parameterized by two-dimensional Keys PDFs for all

B-background classes.

• Continuum-background parameterization.

As for the B background, the mES and ΔE ′ PDFs factorize for continuum back-

ground.
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Figure 7.6: Distribution of mES (left) and ΔE ′ (right) for mES-sideband off-resonance

events. The solid lines show the fit projections of the PDF models. The fit parameters

are given in the text.

– The mES PDF is parameterized with an Argus shape function [75]. The

shape parameter ξ is determined simultaneously with the signal parameters

by the fit. The kinematic endpoint is fixed to 5.2897 GeV/c2, and a fit using

mES sideband off-resonance events determines ξ = −17.4 ± 1.6 (see left

hand plot in Fig. 7.6).

– The linear ΔE → ΔE′ transformation (B.1) does not alter the quasi-

linear behavior of the continuum shape around the signal region. A first

order polynomial is used to parameterize ΔE ′ with a slope determined

simultaneously by the fit. (See the right hand plot in Fig. 7.6.) The slope

is found to be −0.10 ± 0.02 using mES and NN sideband off-resonance

events.
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Chapter 8

Studies Using Toy MC Experiments

Toy Monte-Carlo experiments have been carried out to check the fitter, in which events

are generated in terms of discriminating variables, using Monte-Carlo sampling of the

PDFs. The variables used to discriminate signal and background are mES, ΔE ′, m′

and θ′. The probability for a single event is the sum of the probabilities over all

components. For details of the parametrization, see Sec. 7.

8.1 Nominal Toy Experiments

For each toy experiment, a data luminosity of 192.3fb−1 being assumed, the toy

data sample consists of 1230 signal events, 4806 continuum background, 671 neutral

B-background split into 6 classes, and 473 charged B-background split into 4 classes.

The numbers of events of the species are Poissonized and events are generated with the

corresponding component PDFs. The yields for B-background species and the charge

asymmetries for B-background due to reconstruction are fixed at MC expectations

and are varied for systematics studies.

A complete list of fit parameters used in the nominal fit configuration can be

found in Table 8.1 and 8.2. For signal, the fit determines a global signal yield, 11
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amplitudes and 10 phases of six possibly-significant intermediate states (Table ??).

Because there exists an arbitrary normalization in a Dalitz plot analysis, the amplitude

for B0 → ρ−K+ are fixed to 1.4, and the two phases for both B0 → ρ−K+ and

B
0 → ρ+K− to 0.0. Input values of the amplitudes and the phases are obtained

from a fit to data. The average SCF to signal fraction is iteratively determined with

fitted amplitudes and phases from the fits to data and then fixed in the fits; it is

fixed to this obtained value in toy experiments. The continuum background yield is

determined simultaneously with the signal yield and is compared with the expectation

estimated from off-peak and on-peak sideband data. For continuum background, the

Argus slope of the mES PDF and the slope of the ΔE ′ PDF are fixed to the results

from a fit to data which has a relaxed selection mES > 5.23GeV/c2. Charmless and

charmed B-background yields are fixed to the MC expectations.

A total of 500 toy experiments are performed. The distributions of the fitted

parameters are shown in Fig. 8.1 to 8.7. A summary of the results from toy experi-

ments can be found in Table 8.3 and 8.4. We observe some biases in the signal yield

(an 18 events shift) and in the non-resonant amplitudes. Some pull distributions are

not Gaussian-like. When the non-resonant component is removed from the toy exper-

iments, the bias in the signal yield shrinks to only 7.7 events. It is possible that the

biases come from weak constraint on the interference terms due to limited statistics.

It is also tried to choose the intermediate decay B0 → K∗(892)+π− as the

reference mode instead of B0 → ρ−K+. In this case, one of the amplitudes and both

the phases of B0 → K∗(892)+π− are fixed rather than those of B0 → ρ−K+. One key

observation is that the failure rate, which is the ratio of the number of toy experiments
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Table 8.1: Parameters and their input values that are used in the toy experiments.

They are allowed to vary in the fit unless stated fixed. In total, there are 28 floating

parameters in the fit (see also Table 8.2).

Parameter Description Value

NK+π−π0 Number of B0 → K+π−π0 events 1230

mB0 B0 mass 5.2794 GeV/c2

σB0 B0 mass resolution 0.00263 GeV/c2

fSCF the average SCF fraction 12.9% (fixed)

NContinuum Number of continuum events 4806

AContinuum Charge asymmetry in continuum −0.04 ± 0.01

ξ Cont. Argus function slope −17.783 (fixed)

ΔE ′
p1 Cont. ΔE ′ linear term −0.0586 (fixed)

N
B0→D

0
π0 Number of B0 → D

0
π0 → K+π−π0 events 447.3

mD0 the D0 mass in B0 → D
0
π0 → K+π−π0 1.8645 GeV/c2

σD0 the D0 mass resolution in B0 → D
0
π0 0.007 GeV/c2

that fail to converge to the total number of toy experiments performed, goes from 7%

to about 16%. This must be because of statistical effects, e.g., the expected yield of

B0 → K∗(892)+π− is less than a half of that of B0 → ρ−K+. Other intermediate

states have not been experimentally established and are not used as the reference

mode. In the nominal fit, the decay B0 → ρ−K+ is chosen as the reference mode.

8.2 Adding and Omitting a Resonance

Because the total decay amplitude is not known a prioi, there are uncertainties

in assuming contributing amplitudes in the total amplitude. In principle, one can

include and float all possibly contributing amplitudes. However, this is difficult for
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Table 8.2: Parameters and their input values that are used in the toy experiments.

Parameters are allowed to float in the fit unless stated fixed. Continued from Table 8.1.

Parameter Description Value

AB0→ρ−K+ Magnitude of B0 → ρ−K+ 1.4 (fixed)

φB0→ρ−K+ phase of B0 → ρ−K+ 0.0 (fixed)

A
B

0→ρ+K− Magnitude of B
0 → ρ+K− 1.4

φ
B

0→ρ+K− phase of B
0 → ρ+K− 0.0 (fixed)

AB0→K∗(892)+π− Magnitude of B0 → K∗(892)+π− 1.0

φB0→K∗(892)+π− phase of B0 → K∗(892)+π− 0.0

A
B

0→K∗(892)−π+ Magnitude of B
0 → K∗(892)−π+ 1.0

φ
B

0→K∗(892)−π+ phase of B
0 → K∗(892)+π− 0.0

AB0→K+π−π0−N.R. Magnitude of B0 → K+π−π0 − N.R. 15.0

φB0→K+π−π0−N.R. phase of B0 → K+π−π0 − N.R. 0.0

A
B

0→K−π+π0−N.R.
Magnitude of B

0 → K−π+π0 − N.R. 15.0

φ
B

0→K−π+π0−N.R.
phase of B

0 → K−π+π0 − N.R. 0.0

AB0→K∗
0 (1430)0π0 Magnitude of B0 → K∗

0 (1430)0π0 95.0

φB0→K∗
0 (1430)0π0 phase of B0 → K∗

0 (1430)0π0 0.0

A
B

0→K
∗
0(1430)0π0 Magnitude of B

0 → K
∗
0(1430)

0π0 95.0

φ
B

0→K
∗
0(1430)0π0 phase of B

0 → K
∗
0(1430)0π0 0.0

AB0→K∗
0 (1430)+π− Magnitude of B0 → K∗

0 (1430)+π− 90.0

φB0→K∗
0 (1430)+π− phase of B0 → K∗

0 (1430)+π− 0.0

A
B

0→K∗
0 (1430)−π+ Magnitude of B

0 → K∗
0 (1430)−π+ 90.0

φ
B

0→K∗
0 (1430)−π+ phase of B

0 → K∗
0 (1430)+π− 0.0

AB0→K∗(892)0π0 Magnitude of B0 → K∗(892)0π0 0.85

φB0→K∗(892)0π0 phase of B0 → K∗(892)0π0 0.0

A
B

0→K
∗
(892)0π0 Magnitude of B

0 → K
∗(892)0π0 0.85

φ
B

0→K
∗
(892)0π0 phase of B

0 → K
∗(892)0π0 0.0
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Figure 8.1: Distributions of the fitted signal yield, the continuum yield, and the con-

tinuum charge asymmetry. When applicable, the solid line indicates a Gaussian fit.
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Table 8.3: Parameters and their pulls obtained from toy experiments. Around 1% of

the toy experiments fail to converge. Parameters are allowed to vary in the fit unless

stated fixed. Note that the distributions are usually not Gaussian-like. mB0 and σB0

are in units of GeV/c2. See also Table 8.4.

Parameter Input Value Avg. of Fitted Avg. of Error μPull RMSPull

NK+π−π0 1230 1252.7 71.3 0.26 0.929

mB0 5.2794 5.279 0.00014 0.991

σB0 0.00263 0.00263 -0.05 1.020

fSCF 12.5%(fixed)

NContinuum 4806 4787 95.6 -0.23 0.960

AContinuum 0.0 0.0 0.025 -0.011 0.987

ξ −17.783 ± 2.1 (fixed)

ΔE ′
p1 −0.0586 ± 0.017 (fixed)

N
B0→D

0
π0 447.3 446.8 22.7 0.022 0.996

mD0 1.8645 GeV/c2 1.865 0.0005 0.046 1.06

σD0 0.007 GeV/c2 0.007 0.0004 -0.105 1.04

two reasons. First, doing toy experiments with very minor modes biases the fits.

Second, it takes much more CPU time to search the parameter space to constrain

the parameters for the minor modes, and the fit is more likely to pick some local

minima due to fluctuations. This in turn may bias the parameters for the major

modes. As is common practice, for the nominal fit, several modes that are most likely

to be significant are included, while crosschecks are performed by adding or omitting

insignificant modes.

In the nominal fit, six modes are included: the nonresonant K+π−π0, ρ−K+,

K∗(892)+π−, K∗
0(1430)+,0π−,0 and K∗(892)0π0. It is known that the K∗(892)0π0 is
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Table 8.4: Parameters and their pull obtained with 800 toy experiments. Parameters

are allowed to vary in the fit unless stated fixed. Continued from Table 8.3.

Parameter Input Value Avg. of Fitted Avg. of Error μPull RMSPull

AB0→ρ−K+ 1.4 (fixed)

φB0→ρ−K+ 0.0 (fixed)

A
B

0→ρ+K− 1.4 1.421 0.197 -0.02 0.952

φ
B

0→ρ+K− 0.0 (fixed)

AB0→K∗(892)+π− 1.0 1.017 0.173 0.008 0.939

φB0→K∗(892)+π− 0.0 6.66 49.9 0.157 1.142

A
B

0→K∗(892)−π+ 1.0 1.007 0.173 -0.046 0.930

φ
B

0→K∗(892)−π+ 0.0 7.88 49.3 0.160 1.151

AB0→K+π−π0−N.R. 15.0 15.9 4.39 0.231 0.894

φB0→K+π−π0−N.R. 0.0 1.09 42.2 0.015 1.237

A
B

0→K−π+π0−N.R.
15.0 15.9 4.40 0.252 0.895

φ
B

0→K−π+π0−N.R.
0.0 2.75 41.4 0.111 1.28

AB0→K∗
0 (1430)0π0 95.0 96.9 16.9 0.009 0.99

φB0→K∗
0 (1430)0π0 0.0 -2.43 45.3 -0.01 1.18

A
B

0→K
∗
0(1430)0π0 95.0 96.4 16.75 -0.033 0.992

φ
B

0→K
∗
0(1430)0π0 0.0 0.59 44.2 0.066 1.22

AB0→K∗
0 (1430)+π− 90.0 93.0 16.2 0.082 0.935

φB0→K∗
0 (1430)+π− 0.0 3.71 51.9 0.12 1.18

A
B

0→K∗
0 (1430)−π+ 90.0 92.0 16.2 0.01 0.947

φ
B

0→K∗
0 (1430)−π+ 0.0 4.44 51.4 0.09 1.26

AB0→K∗(892)0π0 0.85 0.835 0.163 -0.150 0.963

φB0→K∗(892)0π0 0.0 1.03 45.3 -0.02 1.11

A
B

0→K
∗
(892)0π0 0.85 0.821 0.16 -0.22 0.957

φ
B

0→K
∗
(892)0π0 0.0 4.2 44.7 -0.05 1.22
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ρ-K+ amplitude pull
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Figure 8.2: Distributions of fitted ρ+K− amplitude pull (left) and the error in the

amplitude from the fit (right).

likely a minor mode. Toy experiments are performed with respect to this mode to

study the effect of adding or omitting it in the fit.

The toy experiments are set up as follows: first 500 toy data sets are generated

without the K∗(892)0π0 mode, then two fits are performed to each toy data set, with

and without K∗(892)0π0, respectively.

The first observation is that the fit with K∗(892)0π0 is indeed more likely to

fail, as expected. About 20% of the fits either fail to converge or hit the non-negative

magnitude boundary.

The effects on the five major modes are very small, though. An interesting obser-

vation is that the log-likehood increases by about 2 units on average when K∗(892)0π0

is included in the fit, as shown in Fig. 8.8. This suggests the usual estimate of sig-

nificane defined as
√

2 log ΔL may be biased. This is considered for the significance
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K*(892)+π- amplitude pull
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Figure 8.3: Distributions of fitted amplitudes and phases of K∗(892)+π−
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K+π-π0-N.R. amplitude pull
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Figure 8.4: Distributions of fitted amplitudes and phases of N.R.
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K0
*(1430)0π0 amplitude pull

Mean
RMS

 0.2587
 0.9702

  33.24    /    29
Constant   40.19
Mean  0.2408
Sigma  0.9053

K0
*(1430)0π0 amplitude error

Mean
RMS

  6.571
  2.200

K0
*(1430)0π0 phase pull

Mean
RMS

 0.8261E-01
  1.173

  38.30    /    33
Constant   33.65
Mean  0.1712E-01
Sigma   1.056

K0
*(1430)0π0 phase error

Mean
RMS

  36.45
  11.34

K0
*(1430)0π0 amplitude pull

Mean
RMS

 0.8405E-01
 0.9530

  22.31    /    24
Constant   39.69
Mean  0.9519E-01
Sigma  0.9419

K0
*(1430)0π0 amplitude error

Mean
RMS

  6.270
  1.797

K0
*(1430)0π0 phase pull

Mean
RMS

-0.5840E-01
  1.274

  51.40    /    33
Constant   31.31
Mean -0.2487
Sigma   1.102

K0
*(1430)0π0 phase error

Mean
RMS

  47.09
  14.02

0

20

40

-4 -2 0 2 4
0

20

40

60

5 7.5 10 12.5 15

0

10

20

30

40

-4 -2 0 2 4
0

20

40

60

80

20 40 60 80 100

0

20

40

-4 -2 0 2 4
0

20

40

60

5 7.5 10 12.5 15

0

10

20

30

40

-4 -2 0 2 4
0

20

40

60

20 40 60 80 100

Figure 8.5: Distributions of fitted amplitudes and phases of K∗
0(1430)0π0
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K0
*(1430)+π- amplitude pull
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Figure 8.6: Distributions of fitted amplitudes and phases of K∗
0 (1430)+π−
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K*(892)0π0 amplitude pull
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Figure 8.7: Distributions of fitted amplitudes and phases of K∗(892)0π0
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estimate later.
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Figure 8.8: Toy experiments that assume null K∗(892)0π0 signal in generating but are

fitted with and without K∗(892)0π0. Left plot: distribution of negative log-likelihood

difference between toy fits with and without K∗(892)0π0. Right plot: distribution of

the fitted fraction of K∗(892)0π0 when it’s included in the fit.

8.3 Local Minima Solutions

It is noticed that local minima solutions occur for Dalitz analyses. To study

this phenomenon, we randomize the initial values of the free amplitudes and phases

before starting a MINUIT fit and then repeat the fit. As a result, about one third

to one half of the fits end up with other solutions (local minima solutions) as shown

in the likelihood distributions. Usually the secondary peak is very close to the first

peak, i.e. within less than half a unit, as shown in Fig. 8.9. The behavior can be

studied/predicted with toy experiments, as shown in the right plot in Fig. 8.9.

The fits that are under each narrow likelihood peak give almost identical results
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with negligible spread. Parameters from the two peaks usually give very close values

except for the phases of K∗(892)0 and K∗
0 (1430)0. This is confirmed with toy exper-

iments. Our strategy is to choose the fits that give the largest likelihood to obtain

our nominal results and consider other solutions in the systematic uncertainty unless

stated otherwise.

Genetic Algorithms (GA) have been considered without much of success, the

major reason being too CPU-time consuming. So we will stick to the trivial way, i.e.,

repeat fits with randomized initial values and choose the fits under the first peak to

quote the results.
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Figure 8.9: Distributions of −logL (negitive log-likelihood) with randomized initial

values for fit parameters. Left: fits to the data. Right: toys experiments. Vertical axis

shows number of fits. Note that the likelihood values obtianed with fits to one toy data

set has sizable difference from the data ones, because of Poissonization effect.
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Chapter 9

Validation Studies

9.1 Validation of the Fit Using Offpeak

The offpeak mES sideband (2108 events with mES > 5.20 GeV/c2) is used to check

if we can correctly model the major continuum background. To do this, all amplitudes

and phases are fixed, and B-backgrounds components are removed from the model.

We also turn off the other discriminating variables (mES, ΔE) and use only the two DP

variables. The fit to the offpeak gives Nsignal = 38.0±37.2, Ncontinuum = 2069.9±58.4

and Acontinuum = 0.029 ± 0.022. No significant shifts are found. Including ΔE in the

fit helps to reduce the shifts.

9.2 Validation of the Fit Using Full MC

Data-size fully simulated MC samples are used to check if the model is sufficient

to describe the data. There are two issues of interest to check: first the model must

correctly describe the data given its assumptions; second, the assumptions must be

reasonably good, e.g., residual correlations among discriminating variables must be

small as assumed. Using fully simulated MC samples, one can address these two
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issues in a straightforward way.

To prepare signal events (with any possible interference) for the validation study,

we reweight non-resonant full MC signal events as well as non-interfering resonant full

MC signal events, using coherent sum of the amplitudes of possibly contributing inter-

mediate states. Because there is not enough fully simulated continuum background,

toy continuum events are generated instead. We do the same thing for generic charmed

B-backgrounds, but double check with full generic MC. Events of all components, in-

cluding full MC B-backgrounds, are split into around 7 data-size samples. Nominal

fits are then performed to these samples (mock data) to get distributions of fitted

values of parameters floating in the fit. See Table 9.1 and 9.2 for the validation check

results. We see some fitted values are off by about one sigma of statistical error.

Table 9.1: Pulls of parameters obtained with 7 mock data experiments. Parameters

are let to vary in the fit unless stated fixed otherwise. See also Table 9.2.

Parameter Input Value Avg. of Fitted R.M.S. of fitted Avg. of Error

NK+π−π0 726 757.0 44.1 45.0

mB0 ( GeV/c2) 5.2794 5.280 0.00007 0.00014

fSCF 5.8% (fixed)

NContinuum 2800 2774 32.5 64.3

AContinuum 0.0 0.004 0.02 0.02

ξ −17.783 ± 2.1 (fixed)

ΔE ′
p1 −0.0586 ± 0.017 (fixed)

N
B0→D

0
π0 228.4 214.2 13.1 15.8

mD0 ( GeV/c2) 1.8645 1.865 0.0006 0.0005

σD0 0.007 GeV/c2 0.0068 0.0006 0.0005
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Table 9.2: Pulls of parameters obtained with 7 mock data experiments. Continued

from Table 9.1.

Parameter Input Value Avg. of Fitted R.M.S. of fitted Avg. of Error

AB0→ρ−K+ 1.4 (fixed)

φB0→ρ−K+ 0.0 (fixed)

A
B

0→ρ+K− 1.4 1.37 0.14 0.23

φ
B

0→ρ+K− 0.0 (fixed)

AB0→K∗(892)+π− 1.0 0.79 0.20 0.21

φB0→K∗(892)+π− 0.0 78.9 112.3 70.3

A
B

0→K∗(892)−π+ 1.0 0.84 0.15 0.20

φ
B

0→K∗(892)−π+ 0.0 -34.6 75.5 49.0

AB0→K+π−π0−N.R. 29.0 31.1 3.3 6.4

φB0→K+π−π0−N.R. 0.0 -10.1 49.4 29.2

A
B

0→K−π+π0−N.R.
29.0 32.4 4.1 5.8

φ
B

0→K−π+π0−N.R.
0.0 -8.8 23.5 24.9

AB0→K∗
0 (1430)0π0 41.0 43.2 5.8 9.9

φB0→K∗
0 (1430)0π0 0.0 -6.4 33.6 37.2

A
B

0→K
∗
0(1430)0π0 41.0 45.4 6.7 10.0

φ
B

0→K
∗
0(1430)0π0 0.0 -28.6 29.8 30.9

AB0→K∗
0 (1430)+π− 44.0 34.9 4.4 7.5

φB0→K∗
0 (1430)+π− 0.0 27.3 45.5 38.6

A
B

0→K∗
0 (1430)−π+ 44.0 41.3 15.2 8.7

φ
B

0→K∗
0 (1430)−π+ 0.0 -15.9 31.6 32.4

AB0→K∗(892)0π0 0.85 0.92 0.11 0.19

φB0→K∗(892)0π0 0.0 1.07 120.8 77.5

A
B

0→K
∗
(892)0π0 0.85 0.94 0.13 0.19

φ
B

0→K
∗
(892)0π0 0.0 6.1 158.4 61.4
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9.3 Validation of Variable Shapes and Selection Cuts

In the nominal fit, signal PDF parameters are obtained from large-statistics

B0 → K+π−π0 MC. This section describes validation studies performed on a sample

of fully reconstructed charged B to K+π−π+π0 decays via D0 or D∗0 mesons. This

sample is obtained from on-resonance data, using a selection similar to that discussed

in Chapter 5, and is called control sample hereafter. Corresponding fully simulated

B → K+π−π+π0 Monte-Carlo sample is also generated and is called validation MC

sample hereafter.

As in the nominal selection, a cut on NN < 0.76 is performed, and the efficiency

of this cut is evaluated on both the control sample and the validation MC.

The control sample events with a daughter π0 have a non-negligible background

contamination. To substract the background, the sPlots technique described in Ref. [77]

is used, where each event is given a statistical weight that depends on the PDFs and

covariance matrix from a fit excluding the variable being plotted. A two-species (signal

and background) ML fit is performed using only the mES variable, and the fit results

are used to evaluate the distribution of other event shape variables.

A Crystal Ball function is used to model the PDF for signal mES, with parameters

estimated from the corresponding MC sample (see Fig. 9.1 and Tab. 9.3).

9.4 Evaluation of the NN Selection Efficiency

Figure 9.2 show the distribution of mES on the control sample, before and after

the NN cut is applied. An ARGUS function is used to model the background mES
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Table 9.3: Parameters obtained from a fit to validation MC sample using mES (see

also Fig. 9.1).

SigMesAlpha 1.404 ± 0.009

SigMesMean 5.2794 GeV (error negligible)

SigMesSigma 2.628 ± 0.007 MeV

SigMesN 3.7 ± 0.1
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Figure 9.1: MC distribution of mES for the validation sample, fitted to a Crystal Ball

function (see also Tab. 9.3).

distribution. A mES > 5.22 cut is performed, as a deficit of background events at low

values tends to push the ARGUS shape parameter towards exceedingly large values.

To compensate for a well-known mean shift in the simulation, the mean value of the

signal PDF is allowed to float in the fit to data, and the result is 5.27991±0.00006 and

5.27997±0.00006 GeV on the fits without and with the NN cut, respectively. Similarly,

the ARGUS shape parameter is fitted to −19.7 ± 4.6 and −10 ± 11, respectively.

The fit for no NN cut give 3759.2 ± 74.7 signal events and 2432.2 ± 65.2 back-
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ground events. After the NN cut is applied, the fit give 1997.0±48.6 signal events and

314.7 ± 26.0 background events. The cut efficiency is extracted from these fit results

to be ε = (53.1 ± 0.8)%. Efficiency on the validation MC sample is estimated to be

ε = 59.129 ± 0.079)%.

On the other hand, the efficiency on signal B0 → ρ−K+ MC is ε = (57.7±0.1)%.

With the large MC samples available, statistical errors on the MC efficiencies become

negligible. A possible estimator of systematics on the NN cut could be the data/MC

difference evaluated on the control sample. This would give a ∼ 6% systematic to the

BR estimations. In order to understand this large systematic effect, further studies

are described in the next 9.4.1 section.
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Figure 9.2: Distribution of mES for the control sample, fitted to a Crystal Ball function

for the signal component, and to an ARGUS function for the background. Figure on

the left (right) shows the data sample before (after) the cut on NN > 0.76.

9.4.1 Validation of event shape PDFs

Fig. 9.3 shows the distributions of the L0, L2, cosθB,z and cosθTB ,z event shape

variables obtained on the control sample, both for the data (background-subtracted
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using the sPlots technique) and the MC samples. The sP lot fit was performed only

using the mES variable, and has no a priori knowledge about these variables. Also

shown in Fig. 9.4 are the distributions for the Fisher and |cos(θS)|variables. These

variables are used neither in the selection nor in the fit, and are shown only as further

validation of the NN inputs.

For the cosθB,z and cosθTB ,z event shape variables, good agreement is observed

between data and MC. On the other hand, the variables L0 and L2 are noticeably

shifted in data and MC. This effect has also been oberved elsewhere[61, 76] and reflects

the fact that L0 and L2 are functions of the total “detected” energy. Note that these

shifts are substantively cancelled out when they are combined in a Fisher variable,

which is defined as F = 0.5 − 0.6 × L0 + 1.3 × L2.

Also, this suggests that the NN discriminant spoils the quasi-cancellation of

data/MC mismatch in the linear Fisher, as the NN will exploit the (existing) non-

linear correlations to optimise separation. Neural network MVAs can be then over-

sensitive to the simulation of “detected” energy and are therefore subject to larger

systematics.

9.4.2 Validation of the mES and ΔE PDFs

The fit to the control sample gives a mean mES value of about 1 MeV larger

than the MC value. Also, the width of the gaussian term in the mES shape is slightly

larger in data than in simulation, i.e. 2.6 MeV for MC and 2.75 MeV for data, respec-

tively. These shifts are used as estimators of the systematic uncertainty on the mES

distribution for the signal modes.

The signal ΔE shape can also be studied with the sP lots technique. Figure 9.6
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Figure 9.3: Comparison between the control sample and the corresponding MC dis-

tributions for event shape variables. Background is substracted to the control sample.

Upper plots: Distributions for cosθB,z (left) and cosθTB ,z (right). Overall, good agree-

ment is also observed. Lower plots: distributions for the monomials L0 (left) and L2

(right). As discussed in the text, background-substracted signal and simulated MC

signal do not match well.

shows the distributions of MC signal and background-subtracted data for ΔE and the

π0 energy. Depending on the mode considered, our signal can have daughter π0’s with

harder momentum; nevertheless, since the main concern for neutral simulation relates

to the low-energy EMC measurement, the control sample used will not underestimate

the sensitivity to π0 momentum. The ΔE distribution is both shifted towards more

negative values, and broader, especially on the low-energy side. The differences will

be used to estimate the analysis sensitivity to the ΔE shape.
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Figure 9.4: Comparison between the control sample data and MC distributions for the

Fisher (left) and costtb (right) event shape variables. Good agreement is observed.

Overlaid to the Fisher distributions is also the PDF obtained from signal MC B → ππ

events.

Wnn4v
0.8 0.85 0.9 0.95 1

0

20

40

60

80

100

120

140

160

Wnn4v
0.8 0.85 0.9 0.95 1

0

20

40

60

80

100

120

140

160BReco Data (sPlot) vs. MC (hist)

Figure 9.5: Comparison of the control sample data and MC distributions for the NN

discriminant. As discussed in the text, mismatch arises from the L0 and L2 discrepacy

shown inh Fig.9.3.



140

Des
-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
0

20
40
60
80

100

120
140
160
180
200
220
240

Des
-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
0

20
40
60
80

100

120
140
160
180
200
220
240

BReco Data (sPlot) vs. MC (hist)

ePi0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

50

100

150

200

250

300

ePi0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

50

100

150

200

250

300BReco Data (sPlot) vs. MC (hist)

Figure 9.6: Comparison of the control sample data and MC distributions for ΔE (left)

and π0 energy (right).
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Chapter 10

Results

10.1 Extraction of Physical Parameters

The signal model is built in terms of amplitudes and phases. The physical

parameters of interest are partial yields and CP asymmetries. These parameters are

non-trivial functions of the fit parameters, as can be seen on Figure 10.1, which shows

the correlation matrix obtained from a fit result to a toy MC experiment, generated

and fitted with the nominal six-resonance model. Initial generation values, and fitted

results on this particular toy experiment are shown on Table 10.1.

In order to estimate their mean values and errors out of the fit result, we use

a Lagrange Multiplier approach: call Xi (i = 1, N) the N parameters estimated in

the fit, and f(Xi) the physical parameter one is interested in (i.e. a CP asymmetry).

Then one defines a χ2 function as

χ2(f) =
∑
i,j

(
Xi − Xfit

i

)
C−1

ij

(
Xj − Xfit

j

)
+

(
f − F (Xi)

σf

)2

, (10.1)

where Xfit
i are the fitted values, and C is the fit covariance matrix. The first term in

the R.H.S. is such that χ2 will be minimum (in fact, zero) when the fit parameters

Xi are equal to those obtained from the fit. The second term is a penalty, defined to
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Table 10.1: Initial generation values, and fit results for a specific Toy MC experiment.

Parameter Name Generation Value Fit Result

AcpCont 0 (0.037 ± 0.026)

BBkgNb3 228.4 (248.6 ± 17.1)

Bmass0 5.2796 (5.27957 ± 0.00013)

T-k0st-1430-m 90 (100.2 ± 19.0)

T-k0st-1430-p 90 (93.3 ± 19.7)

T-k0st-1430z-m 95 (77.78 ± 12.49)

T-k0st-1430z-p 95 (95.39 ± 23.35)

T-kst-892-m 1 (0.938 ± 0.165)

T-kst-892-p 1 (0.710 ± 0.182)

T-kst-892z-m 0.85 (0.916 ± 0.153)

T-kst-892z-p 0.85 (1.003 ± 0.153)

T-non-res-m 15 (25.11 ± 3.82)

T-non-res-p 15 (12.57 ± 4.85)

T-rho-770-m 1.4 (1.586 ± 0.189)

contNb 2800 (2690.97 ± 68.75)

mD0 1.8646 (1.8650 ± 0.0006)

mD0-width 0.007 (0.00747 ± 0.00045)

phT-k0st-1430-m 0 (47.3 ± 33.7)

phT-k0st-1430-p 0 (109.69 ± 50.296)

phT-k0st-1430z-m 0 (−34.5 ± 29.76)

phT-k0st-1430z-p 0 (−80.85 ± 57.03)

phT-kst-892-m 0 (38.33 ± 32.09)

phT-kst-892-p 0 (121.91 ± 54.21)

phT-kst-892z-m 0 (−20.05 ± 25.52)

phT-kst-892z-p 0 (−38.55 ± 63.23)

phT-non-res-m 0 (26.9 ± 19.8)

phT-non-res-p 0 (124.07 ± 64.36)

sigNb 726 (808.51 ± 50.40)
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Figure 10.1: Correlation matrix for the six-resonance Toy MC fit from Table 10.1.

ensure that, for a given value of the test parameter f , the χ2 function will be minimal

for the best possible agreement between the f value and the function F (Xi). One can

then scan different values of the parameter f and fit the Xi parameters to evaluate

the variation of χ2(f). The “error” σf is an (arbitrary) small parameter, typically

adapted to the scan step size.

The (unnormalized) likelihood distribution for the parameter f will be given by

L(f) = exp
(
−1

2
χ2
)
, and the confidence level by CL(f) = PROB(χ2, 1). One can then
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infer the 1−σ (2−σ) intervals by looking for the f values for which CL = 32% (5%),

and they take correctly into account the (potentially) non-trivial correlations between

the fit parameters and the physical quantity one is interested in.

The ACP(Ri) parameter for a given resonance Ri is given by:

ACP(Ri) =
|Ti|2 − |Ti|2
|Ti|2 + |Ti|2 , (10.2)

where |Ti| is the fitted module of B0 decay amplitude for this resonance, and |Ti| its

counterpart for the CP-conjugated mode, with resonance Ri. The partial fractions

f(Ri) are defined as

f(Ri) =
|Tie

iθifi|2 + |T ie
iθifi|2

|∑j Tjeiθjfj|2 + |∑j T jeiθjfj|2
, (10.3)

where Ti, θi are the fitted amplitudes and phases for the resonance Ri, and similarly

Ti and θi correspond to the CP-conjugated mode with resonance Ri. The fif
∗
j terms

correspond to the Dalitz phase space normalizations for the interference of resonances

Ri and Rj . The inclusive branching fraction BIncl. and the quasi-two-body (Q2B)

branching ratios B(Ri) are given by

BIncl. =
Nsig

εNBB

, B(Ri) = BIncl. × f(Ri) , (10.4)

where Nsig is the total signal observed in the data, ε is the signal efficiency averaged

over the Dalitz plot, and NBB is the total number of BB pairs produced, respectively.

As an example, we use the the nominal six-resonance signal model on toy data,

with input values as defined in ??, to extract the partial ACP asymmetries, and relative

yields. Figures 10.2, 10.3 and 10.4 shows the confidence levels as functions of the ACP

values, partial quasi-two-body (Q2B) fractions, and partial yields respectively, for the

six contributions to the signal model, and Table 10.2 summarizes the obtained results.
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Table 10.2: Q2B Observables calculated from fitted amplitudes and phases

ρ−K+ ACP (−0.123+0.126
−0.114)

K∗(892)+π− ACP (−0.273+0.260
−0.249)

K∗(892)0π0 ACP (0.092+0.184
−0.188)

K∗
0 (1430)+π− ACP (−0.072+0.259

−0.254)

K∗
0 (1430)0π0 ACP (0.203+0.221

−0.280)

(n.r.) ACP (−0.598+0.264
−0.229)

ρ−K+ Fraction (0.281+0.032
0.029 )

K∗(892)+π− Fraction (0.074+0.022
−0.022)

K∗(892)0π0 Fraction (0.096+0.023
−0.021)

K∗
0 (1430)+π− Fraction (0.216+0.062

−0.053)

K∗
0 (1430)0π0 Fraction (0.174+0.049

−0.045)

(n.r.) Fraction (0.121+0.030
−0.029)

ρ−K+ Yield (227.0+30.3
−26.6)

K∗(892)+π− Yield (59.0+18.6
−17.3)

K∗(892)0π0 Yield (78.9+17.7
−17.7)

K∗
0 (1430)+π− Yield (175.0+50.03

−42.9 )

K∗
0 (1430)0π0 Yield (141.0+41.7

−38.4)

(n.r.) Yield (97.0+27.5
−24.0)
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Figure 10.2: Likelihood (dashed) and Confidence Levels (solid) as functions of partial

ACP values for the six-resonance toy experiment described in Table. 10.1.
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Figure 10.3: Likelihood (dashed) and Confidence Levels (solid) as functions of partial

fractions, as defined in Eq. 10.3, for the six-resonance toy experiment described in

Table. 10.1.
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Figure 10.4: Likelihood (dashed) and Confidence Levels (solid) as functions of partial

yields, as defined in Eq. ??, for the six-resonance toy experiment described in Table.

10.1.
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10.2 Fit Results and Quasi-Two-Body Results

Table 10.3: Parameters and their fitted values obtained from the nominal fit. Pa-

rameters are let to float in the fit unless stated fixed. In total, there are 29 floating

parameters in the fit. See also Table 10.3 for more results.

Parameter Description Value

NK+π−π0 Number of B0 → K+π−π0 events 1230.0 ± 75.4

mB0 ( GeV/c2) B0 mass 5.27997 ± 0.00013

σB0 ( GeV/c2) B0 mass resolution 0.0030 ± 0.0001

fSCF the average SCF fraction 12.9% (fixed)

NContinuum Number of continuum events 4806.0 ± 98.8

AContinuum Charge asymmetry in continuum −0.028 ± 0.021

ξ Cont. Argus function slope −17.783 ± 2.1 (fixed)

ΔE ′
p1 Cont. ΔE ′ linear term −0.0586 ± 0.017 (fixed)

N
B0→D

0
π0 Number of B0 → D

0
π0 events 454.0 ± 23.7

mD0 ( GeV/c2) the D0 mass in B0 → D
0
π0 → K+π−π0 1.8653 ± 0.0004

σD0 ( GeV/c2) the D0 mass resolution in B0 → D
0
π0 0.0075 ± 0.0037

The preliminary results are obtained with a nominal fit to the data sample.

The fitted parameters are shown in Table 10.3 and 10.4. The quasi-two-body results

calculated from Table 10.3 and 10.4 are shown in Table 10.5. The Dalitz plot for the

selected K+π−π0 events is shown in Fig. 10.5, the left hand plot, and the mES and

ΔE ′ projections are shown in Fig. 10.6.

The logL from the nominal fit is 56200.0, which agrees with toy MC expectation

as shown in Fig. 10.5, the right hand plot. We obtain 1230.0 ± 74.3(stat.) charmless

signal events and 454.2± 23.7 B0 → D
0
π0, D

0 → K+π− events from the data sample.
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Table 10.4: Parameters and their fitted values obtained from the nominal fit. Contin-

ued from Table 10.3.

Parameter Description Value

AB0→ρ−K+ Magnitude of the amplitude of B0 → ρ−K+ 1.4 (fixed)

φB0→ρ−K+ phase of the amplitude of B0 → ρ−K+ 0.0 (fixed)

A
B

0→ρ+K− Magnitude of the amplitude of B
0 → ρ+K− 1.60 ± 0.24

φ
B

0→ρ+K− phase of the amplitude of B
0 → ρ+K− 0.0 (fixed)

AB0→K∗(892)+π− Magnitude of the amplitude of B0 → K∗(892)+π− 1.23 ± 0.21

φB0→K∗(892)+π− phase of the amplitude of B0 → K∗(892)+π− 138.4 ± 35.0

A
B

0→K∗(892)−π+ Magnitude of the amplitude of B
0 → K∗(892)−π+ 0.95 ± 0.19

φ
B

0→K∗(892)−π+ phase of the amplitude of B
0 → K∗(892)+π− 174.1 ± 42.4

AB0→K+π−π0−N.R. Magnitude of B0 → K+π−π0 − N.R. 17.8 ± 4.7

φB0→K+π−π0−N.R. phase of the amplitude of B0 → K+π−π0 − N.R. 54.7 ± 28.0

A
B

0→K−π+π0−N.R.
Magnitude of B

0 → K−π+π0 − N.R. 15.7 ± 4.9

φ
B

0→K−π+π0−N.R.
phase of the amplitude of B

0 → K−π+π0 − N.R. 78.8 ± 27.8

AB0→K∗
0 (1430)0π0 Magnitude of the amplitude of B0 → K∗

0 (1430)0π0 46.0 ± 6.9

φB0→K∗
0 (1430)0π0 phase of the amplitude of B0 → K∗

0 (1430)0π0 46.9 ± 40.1

A
B

0→K
∗
0(1430)0π0 Magnitude of the amplitude of B

0 → K
∗
0(1430)0π0 32.1 ± 6.0

φ
B

0→K
∗
0(1430)0π0 phase of the amplitude of B

0 → K
∗
0(1430)

0π0 7.6 ± 42.3

AB0→K∗
0 (1430)+π− Magnitude of the amplitude of B0 → K∗

0 (1430)+π− 54.5 ± 7.9

φB0→K∗
0 (1430)+π− phase of the amplitude of B0 → K∗

0 (1430)+π− 115.1 ± 33.5

A
B

0→K∗
0 (1430)−π+ Magnitude of the amplitude of B

0 → K∗
0 (1430)−π+ 50.5 ± 7.9

φ
B

0→K∗
0 (1430)−π+ phase of the amplitude of B

0 → K∗
0 (1430)+π− 148.5 ± 34.9

AB0→K∗(892)0π0 Magnitude of the amplitude of B0 → K∗(892)0π0 0.82 ± 0.17

φB0→K∗(892)0π0 phase of the amplitude of B0 → K∗(892)0π0 −101.6 ± 48.3

A
B

0→K
∗
(892)0π0 Magnitude of the amplitude of B

0 → K
∗(892)0π0 0.82 ± 0.17

φ
B

0→K
∗
(892)0π0 phase of the amplitude of B

0 → K
∗(892)0π0 −143.5 ± 41.3
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The results obtained with the nominal model are shown in Table 10.5. The total sum

of the fractions obtained with the nominal fit is 98.3%. Table 10.6 shows the results for

less significant modes, which are obtained by adding in turn one mode to the nominal

fit. These results are compatible with those from the nominal fit.

The inclusive charmless signal efficiency is estimated to be 16.6% with the ob-

served Dalitz plot structure. We measure the inclusive charmless branching fraction

to be:

B(B0 → K+π−π0) = (34.9 ± 2.1(stat.) ± 3.9(syst.)) × 10−6 . (10.5)

We find

B(B0 → D
0
π0) = (3.3 ± 0.2(stat.) ± 0.4(syst.)) × 10−4 . (10.6)

The signal significance for B(B0 → K∗(892)0π0), including statistical and sys-

tematic errors, is 4.2σ, so this decay is evident in our data sample.

An upper limit is set on the branching fraction of the non-resonant decay,

B(B0 → K+π−π0 non − resonant) < 4.7 × 10−6, at 90% confidence level, with sys-

tematic error taken into account.

There exists another solution with logL = 56199.6. This solution gives results

that are very compatible with logL = 56200.0 ones, except for a two-sigma effect

on the relative phases of B0 decays to K∗
0 (1430)0 and K∗(892)0. For these phases,

the values corresponding to the largest likelihood value are quoted and half of the

differences are included in the systematic errors.

Projection plots of the invariant mass pairs are shown in Fig. 10.7.

The changes in likelihood and the quasi-two-body observables, when a less sig-

nificant intermediate state is added, are shown in Table 10.7 and 10.8. These results
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show some fluctutations in the CP parameters, and more fluctutations in the frac-

tions of the major modes. We quote the observed difference in the CP parameters

as systematic error. We hesitate to quote the observed difference in the fractions as

systematic error because they are not from a simultaneous fit to data and correlations

between modes are thus not correctly considered. To estimate the systematic errors

in the fractions due to minor modes, fits with all 12 modes included are performed.

Each fit typically takes dozens of CPU hours.
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Figure 10.5: Left: Dalitz plot for the selected K+π−π0 events. The visible narrow

band comes mainly from the B0 → D
0
π0 decays. Right: Distribution of − logL from

nominal toy experiments, in which the parameters are set to the values obtained from

the nominal fit to the data. The arrow indicates the − logL from the nominal fit to

the data.
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Table 10.6: Results obtained for the minor intermediate states when they are added

to the nominal fit in turn. Upper limits (U.L.) are set at 90% confidence level on the

branching fractions, the systematic errors being considered. The last column indicates

the likelihood change.

Mode Fraction (%) BF (×10−6) U.L. (10−6) Δ logL

K∗
2(1430)+π− 3.5+2.0

−1.5 1.3+0.7
−0.6 ± 0.1 2.4 7.3

K∗
2(1430)0π0 1.6+1.7

−1.4 0.5+0.5
−0.4 ± 0.1 1.2 3.4

K∗(1680)+π− 3.9+2.3
−1.7 1.6+1.0

−0.7 ± 0.2 3.0 5.8

K∗(1680)0π0 0.8+1.4
−0.8 0.3+0.5

−0.5 ± 0.0 1.4 1.6

ρ(1450)−K+ 5.0+2.8
−2.7 1.7+1.0

−0.9 ± 0.2 3.1 3.6

ρ(1700)−K+ 2.5+1.8
−1.5 0.8+0.6

−0.5 ± 0.1 1.6 2.1
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Table 10.7: Results obtained with a fit to the data when one intermediate state is added

in turn to the nominal fit. δACP is calculated with respect to the results obtained with

the nominal fit. See also Table 10.8 for more results.

Mode Fraction (%) Phases (φ / φ) δACP

Adding K∗
2(1430)+π−

K∗(892)+π− 10.2 ± 2.1 124.2 ± 41.5 / 154.5 ± 42.2 0.04

ρ(770)−K+ 22.6 ± 3.2 0 (fixed) / 0 (fixed) 0.05

K∗
0(1430)+π− 25.0 ± 3.8 97.3 ± 40.9 / 128.6 ± 35.8 -0.15

K∗
0(1430)0π0 24.9 ± 4.0 153.7 ± 64.1 / 75.5 ± 42.3 -0.20

K∗
0(892)0π0 5.9 ± 1.7 −141.9 ± 65.4 / −143.7 ± 41.1 -0.03

K+π−π0 N.R. 7.3 ± 3.6 96.3 ± 46.4 / 78.9 ± 27.3 0.05

Adding K∗
2(1430)0π0

K∗(892)+π− 10.5 ± 2.1 128.6 ± 35.9 / 164.3 ± 43.3 0.0

ρ(770)−K+ 23.4 ± 3.6 0 (fixed) / 0 (fixed) 0.01

K∗
0(1430)+π− 31.6 ± 3.8 104.6 ± 34.8 / 139.7 ± 37.3 -0.02

K∗
0(1430)0π0 18.1 ± 4.0 −10.4 ± 41.4 / 21.4 ± 38.0 0.07

K∗
0(892)0π0 5.8 ± 1.7 −156.8 ± 42.7 / −127.0 ± 38.3 -0.01

K+π−π0 N.R. 7.1 ± 3.6 42.9 ± 31.9 / 75.0 ± 28.7 -0.01

Adding K∗(1680)+π−

K∗(892)+π− 10.1 ± 2.0 130.9 ± 33.0 / 50.7 ± 48.5 0.04

ρ(770)−K+ 22.4 ± 3.2 0 (fixed) / 0 (fixed) -0.10

K∗
0(1430)+π− 25.4 ± 3.6 114.3 ± 31.2 / 13.1 ± 48.9 -0.16

K∗
0(1430)0π0 22.2 ± 4.0 −2.5 ± 39.2 / 75.3 ± 41.9 0.30

K∗
0(892)0π0 5.7 ± 1.7 −146.7 ± 40.7 / −82.1 ± 49.2 0.0

K+π−π0 N.R. 6.8 ± 3.6 61.3 ± 27.9 / 24.3 ± 29.7 -0.05
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Table 10.8: Results obtained with a fit to the data when one intermediate state is added

in turn to the nominal fit. δACP is calculated with respect to the results obtained with

the nominal fit. Continued from Table 10.7.

Mode Fraction (%) Phases (φ / φ) δACP

Adding K∗(1680)0π0

K∗(892)+π− 10.4 ± 2.1 139.6 ± 36.0 / 179.3 ± 42.5 0.01

ρ(770)−K+ 24.7 ± 3.6 0 (fixed) / 0 (fixed) 0.02

K∗
0(1430)+π− 31.2 ± 3.8 116.0 ± 34.6 / 151.8 ± 34.6 -0.02

K∗
0(1430)0π0 18.1 ± 4.0 −10.2 ± 43.4 / 5.0 ± 36.1 -0.01

K∗
0(892)0π0 5.7 ± 1.7 −155.2 ± 45.5 / −138.1 ± 38.2 -0.02

K+π−π0 N.R. 6.6 ± 3.5 57.5 ± 29.5 / 87.2 ± 29.3 -0.05

Adding ρ(1450)−K+

K∗(892)+π− 10.4 ± 2.1 150.3 ± 41.4 / 19.0 ± 50.0 0.02

ρ(770)−K+ 23.0 ± 3.6 0 (fixed) / 0 (fixed) 0.12

K∗
0(1430)+π− 26.4 ± 3.8 128.9 ± 39.5 / −17.3 ± 52.7 -0.21

K∗
0(1430)0π0 30.1 ± 3.6 130.3 ± 47.5 / 82.9 ± 34.6 -0.01

K∗
0(892)0π0 5.7 ± 1.7 −16.6 ± 53.1 / −79.8 ± 36.4 -0.04

K+π−π0 N.R. 6.8 ± 3.5 67.4 ± 40.6 / 20.6 ± 33.8 -0.02

Adding ρ(1700)−K+

K∗(892)+π− 10.5 ± 2.1 131.4 ± 37.4 / 78.0 ± 67.9 0.01

ρ(770)−K+ 23.1 ± 3.6 0 (fixed) / 0 (fixed) 0.17

K∗
0(1430)+π− 29.0 ± 3.6 111.2 ± 35.7 / 55.0 ± 73.3 -0.10

K∗
0(1430)0π0 29.9 ± 4.2 119.5 ± 46.4 / 73.8 ± 42.2 -0.06

K∗
0(892)0π0 5.9 ± 1.7 −26.9 ± 51.3 / −94.2 ± 44.9 -0.06

K+π−π0 N.R. 6.8 ± 3.6 53.4 ± 37.1 / 39.2 ± 32.7 -0.11
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Figure 10.6: mES (left) and ΔE ′ (right) projections for the selected K+π−π0 events.

The data are the points with error bars. The fit result is the (top) solid line. The

(bottom) dashed line represents the continuum background and the (middle) dotted

line is the B background added on top of the continuum background. Note that the B

backgound includes the B0 → D
0
π0, D

0 → K+π−decays.
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Figure 10.7: Projection plots for the mass pairs. The data are the black points with

error bars (statistical only). The total fit result is the solid (red) line. The continuum

background is the light shaded (yellow) and the B-background is the dark shaded (blue)

added on top of the continuum background.
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Chapter 11

Systematic Uncertainties

The systematic errors in the branching fractions and CP -violating charge asymme-

tries due to assumptions about the total decay dynamics are referred to as “model

systematic uncertainties”. They are obtained by varying the resonance parameters

within their uncertainties. Results that are obtained with the other less significant

(but possibly contributing) resonances added to the nominal model contribute to the

model systematic errors in the CP -violating charge asymmetries. They are dominant

in the model systematic errors.

The other systematic errors in the branching fractions are obtained by adding in

quadrature the systematic uncertainties in the signal yield, the systematic uncertain-

ties in efficiencies of tracking, particle identification, and π0 reconstruction and finally

the systematic uncertainties on the other selection cuts. The other systematic errors

in the ACP measurements are introduced by the uncertainties in the treatment of the

B-background and by possible charge biases of the detector.

The systematic uncertainties in the signal yield are due primarily to the modeling

of the signal, the B-backgrounds and the continuum in the ML fit. They are estimated

by either varying the fixed parameters according to their uncertainties in the fit, or by
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fitting them in the fit. The differences in the signal yield are added in quadrature and

contribute to the systematic uncertainty in the signal yield. Parameters for the signal

mES PDF are left to vary in the nominal fit to data. Parameters for the signal ΔE ′

PDF are allowed to vary in the fit to the data to estimate the corresponding systematic

uncertainty. The expected yields from the background modes are varied according to

the uncertainties in the measured or estimated branching fractions. Biases observed

in toy MC fits are added in quadrature and assigned as a systematic uncertainty of

the fit procedure, which is referred to as the “fitting procedure” error in Table 11.1.

The basis for evaluating the systematic uncertainties on the cuts that are applied

in the selection process is to study the differences in the mES, ΔE ′ and NN distribu-

tions between on-resonance data and Monte Carlo simulation. The corrections and

uncertainties in the signal efficiencies are summarized in Table 11.1. Parameters for

the signal mES and ΔE ′ PDFs are obtained from the fit to data and are used to es-

timate the systematic errors due to the mES cut and the ΔE ′ cut, respectively. The

difference between data and Monte Carlo distributions of the NN is extracted from

fully-reconstructed B+ → K+π−π0π+ decays via intermediate D0 or D∗ mesons, and

is used to estimate the systematic error due to the NN cut.

Since B background modes may exhibit direct CP violation, the corresponding

parameters (ACP ’s) are varied by ±0.5 (absolute) to estimate the uncertainties.

Table 11.1 summarizes the various sources contributing to the systematic errors

in the branching fractions. The dominant systematic errors are due to the neutral

correction, the ΔE ′ cut, and the NN cut. Table 11.2 summarizes the possible sources

contributing to the systematic errors in the charge asymmetries.
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Table 11.1: Breakdown of systematic errors for the branching fraction measurements.

The error from each source varies slightly for each intermediate state and the most

conservative estimate is quoted.

Charmless yield (events) D
0
π0 yield (events)

Continuum mES PDF 4.3 0.0

Continuum ΔE PDF 2.0 0.0

Signal ΔE PDF 50.0 12.4

B backgrounds 2.7 11.2

Fitting procedure 22.7 0.0

Sub-total (relative) 55.2 ( 4.5% ) 16.7 ( 3.7% )

Efficiency and scaling systematics (relative)

Tracking efficiency correction 1.6%

PID for tracks 2.0%

Neutral correction 6.4%

ΔE cut efficiency 4.6%

mES cut efficiency 0.4%

NN cut efficiency 6.0%

N(BB) 1.1%

Sub-total 10.3%

Total 11.2% 10.9%
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Table 11.2: Breakdown of systematic errors for the ACP measurements.

K∗(892)+ ρ(770)− K∗
0 (1430)+ K∗

0 (1430)0 K∗(892)0 N.R.

Detector bias 0.01

B backgrounds 0.02 0.04 0.06 0.07 0.07 0.20

Total 0.02 0.04 0.06 0.07 0.07 0.20
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Chapter 12

Conclusions

Due to lack of knowledge of final state interactions in B → K+π−π0 decays, this

Dalitz analysis assumes uniform phase space for the non-resonant decay amplitude

and utilizes parameterizations obtained from non-B-meson experiments to model in-

termediate resonant states. Non-unique parameterizations of the decay amplitude are

covered in systematic uncertainties.

A comparison with other measurements is summarized in Table 12.1.

The measured branching fraction of B0 → D
0
π0 is (3.3±0.2(stat.)±0.4(syst.))×

10−4, in good agreement with the current world average (2.7 ± 0.8) × 10−4 [3], but

significantly larger than theoretical expectations based on naive factorization.

The measured branching fractions and charge asymmetries of the decay B0 →

ρ(770)−K+ and B0 → K∗(892)+π− are in agreement with the previously reported

measurements [27, 28, 29].

The intermediate S-wave decays B0 → K∗
0(1430)+π− and B0 → K∗

0(1430)0π0

are observed, with the LASS parameterization [41]. No significant direct CP violation

are seen in these two decay modes.
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Evidence of B0 → K∗(892)0π0 decay is observed for the first time with a branch-

ing fraction in agreement with the reported upper limit [29].

The non-resonant decay is measured to be sizable, but because its significance

is marginal, an upper limit is set on the branching fraction at 90% confidence level.

Upper limits are also set on the branching fractions of the other six less significant

intermediate states.

For the intermediate decays that have been theoretically calculated with QCD

factorization approaches, the results are consistent with the predictions (Table 1.1),

given the large uncertainties in the predictions.
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Appendix A

Formulae

We provide a compendium of useful formulae for the Dalitz analysis.

A.1 Kinematic Conversions

Given is m′, θ′. We obtain from Eqs. (3.23)

m+− =
1

2
(1 + cos (π m′)) (m+−[max] − m+−[min]) + m+−[min] , (A.1)

cos θ+− = cos (π θ′) , (A.2)

so that the nominal DP variables s+0 and s−0 are obtained as follows

s−0 =
1

2

(
m2

B0 + m2
K+ + m2

π− + m2
π0 − m2

+−
)

− 2 cos θ+−

[
−m2

π+ +
m2

+−
4

]1/2
⎡
⎣−m2

π0 +

(−m2
B0 + m2

π0 + m2
+−

2m+−

)2⎤⎦
1/2

(A.3)

s+0 = m2
B0 + m2

K+ + m2
π− + m2

π0 − m2
+− − s−0 . (A.4)
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Appendix B

Determine the signal ΔE distribution

The treatment of signal ΔE has been described in the main text. In this appendix,

the technical procedure is discussed.

Signal ΔE is described by the a double Gaussian shape that depends on the

m2
+− linearly on the Dalitz plot, as shown in Eq. B.1 and B.2.

P(ΔE ′) = fcore
1√

2πσcore

e
− (ΔE′−μcore)2

2σ2
core + (1 − fcore)

1√
2πσtail

e
− (ΔE′−μtail)

2

2σ2
tail , (B.1)

where,

fcore = fc,0 + bf,cm
2
+−

μcore = μc,0 + bμ,cm
2
+−

σcore = σc,0 + bσ,cm
2
+− (B.2)

μtail = μt,0 + bμ,tm
2
+−

σtail = σt,0 + bσ,tm
2
+− .

The following parameters need to be determined:

• σc,0 The width of the core Gaussian extrapolated to m2
+− = 0
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• μc,0 The mean of the core Gaussian extrapolated to m2
+− = 0

• σt,0 The width of the tail Gaussian extrapolated to m2
+− = 0

• μt,0 The mean of the tail Gaussian extrapolated to m2
+− = 0

• fc,0 The fraction of the core Gaussian extrapolated to m2
+− = 0

• bσ,c The slope of the core width

• bμ,c The slope of the core mean

• bσ,t The slope of the tail width

• bμ,t The slope of the tail mean

• bf,c The slope of the core fraction

It is worthwhile to point out that the linear dependency on the m2
+− is a crude

approximation. In reality, the ΔE shape is a complicated function of the both Dalitz

plot variables. It is clearly seen with high statistics non-resonance Monte Carlo. There-

fore, the ΔE parameters determined from Monte Carlo slightly depend on which decay

mode of signal Monte Carlo to use. We use all available signal Monte Carlo to deter-

mine the ΔE shape. The determination of the above parameters is not unique. We

use the following approach where the linear dependency is more clear.

• Monte Carlo sample is split into m2
+− bin. A double Gaussian fit is performed

in each bin. Two examples are given in Fig. B.1. The left plot shows that it is

almost sufficient to use a single Gaussian to represent ΔE at the high m2
+− region

of the Dalitz plot, so we get high correlation between the fitted parameters when
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a double gaussian fit is performed. The right plot shows the events in the small

m2
+− region and, obviously, we must use more than one Gaussian in representing

the shape due to the presense of hard π0’s.

• For the five parameters that describe the double Gaussian, we perform linear fit

as a function of m2
+−. They are shown in Fig. B.3 and Fig. B.2.
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Figure B.1: Single Gaussian parametrization for ΔE ′ for events at large m2
+− (left

plot) and double Gaussian parametrization for events at small m2
+− (right plot) from

signal Monte Carlo.



170

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20 25

mKπ
2

ΔE
 f

co
re

  6.856    /    13
P1  0.5549  0.2738E-01
P2  0.4535E-02  0.2952E-02

Figure B.2: Dalitz plot dependence of fraction of the core Gaussian of the signal ΔE

distribution.



171

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

5 10 15 20 25

mKπ
2

ΔE
 μ

co
re

  36.21    /    13
P1  0.3332  0.5025E-02
P2 -0.1390E-01  0.3934E-03

0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25

mKπ
2

ΔE
 σ

co
re

  33.15    /    13
P1  0.3155  0.4331E-02
P2  0.6475E-02  0.4297E-03

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

5 10 15 20 25

mKπ
2

ΔE
 μ

ta
il

  43.67    /    13
P1 -0.3045  0.3208E-01
P2  0.3189E-02  0.3473E-02

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25

mKπ
2

ΔE
 σ

ta
il

  9.250    /    13
P1  0.4925  0.1597E-01
P2  0.7167E-02  0.2075E-02

Figure B.3: Dalitz plot dependence of Gaussian parameters of the signal ΔE distribu-

tion.



172

Bibliography

[1] J.H. Christenson et al., Phy. Rev. Lett. 13, 138 (1964).

[2] M. Kobayashi and T. Maskawa, Prog. Theor, Phys. 49, 652 (1973).

[3] Particle Data Group, S. Eidelman et al.., Phys. Lett. B 592, (2004).

[4] BABAR Collaboration, “The BABAR Physics Book”, (P. Harrison and H. Quinn

eds.) (2002)

[5] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 93, 131801 (2004).

[6] Belle Collaboration, K. Abe et al., Phys. Rev. Lett. 93, 191802 (2004).

[7] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 87, 091801 (2001).

[8] Belle Collaboration, K. Abe et al., Phys. Rev. Lett. 87, 091802 (2001).

[9] S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967);

A. Salam, p.367 of Elementary Particle Theory, ed. N. Svartholm (Almquist and

Wiksells, Stockholm, 1969);

S.L. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D 2, 1285 (1970).

[10] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).



173

[11] L.L. Chau and W.-Y. Keung, Phys. Rev. Lett. 53, 1802 (1984).

[12] L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).

[13] C. Jarlskog and R. Stora, Phys. Lett. B 208, 268 (1988).

[14] G. Buchalla, A. J. Buras, and M. .E. Lautenbacher, Rev. Mod. Phys. 68, 1125

(1996).

[15] M. Beneke, G. Buchalla, M. Neubert, and C. .T. Sachrajda, Nucl. Phys. B 591,

313 (2000).

[16] J. D. Bjorken, Nucl. Phys. B Proc. Suppl. 11, 325 (1989).

[17] M. Beneke, M. Neubert, Nucl.Phys. B 675, 333 (2003).

[18] M. Gronau and D. London, Phys. Rev. Lett. 65, 3381 (1990).

[19] Y. Nir and H. R. Quinn, Phys. Rev. Lett. 67, 541 (1991).

[20] D. Zeppenfeld, Z. Phys. C 8, 77 (1981).

[21] R. Fleischer, Z. Phys. C 62, 81 (1994);

[22] N. G. Deshpande and X.-G. He, Phys. Rev. Lett. 74, 26 (1995).

[23] C.W. Chiang, M. Gronau, Z.L. Luo, J.L. Rosner, D.A Suprun, Phys. Rev. D69,

034001 (2004).

[24] M. Neubert, Phys. Lett. B 424, 152 (1998).

[25] R. Aleksan, P.-F. Giraud, V. Morenas, O. Pene and A.S. Safir, Phys. Rev. D67

094019 (2003).



174

[26] D. Du, J. Sun, D. Yang and G. Zhu, Phys. Rev. D67, 014023 (2003).

[27] CLEO Collaboration (E. Eckhart et al.), Phys. Rev. Lett. 89, 251801 (2002).

[28] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 91, 201802 (2003).

[29] Belle Collaboration (K. Abe et al.), BELLE-CONF-0317 EPS-ID: 535 (2003);

LP03-ID: 284 (2003).

[30] H. Y. Cheng, C. K. Chua and A. Soni, Phys. Rev. D 71, 014030 (2005).

[31] BABAR Collaboration, B. Aubert et al., Nucl. Instrum. Methods A479, 1-116

(2002).

[32] BABAR Collaboration, F. Anulli et al., Nucl. Instrum. Methods A494, 455-463

(2002).

[33] CLEO Collaboration (S. Kopp et al.) Phys. Rev. D63, 092001 (2001).

[34] S.M. Spanier, BABAR Analysis Document #303 (2001).

[35] J. Blatt and V. Weisskopf, “Theoretical Nuclear Physics”, John Wiley & Sons,

New York, (1956).

[36] F. von Hippel and C. Quigg, Phys. Rev. D5, 624 (1972).

[37] W.M. Dunwoodie, “Suggestion for the Parameterization of Dalitz Plot Effi-

ciency”,

http://www.slac.stanford.edu/∼wmd/bbkinematics/dalitz efficiency.note

(2002).



175

[38] G.J. Gounaris and J.J. Sakurai, Phys. Rev. Lett. 21 244, (1968).

[39] S. Gardner and H.B. O’Connell, Phys. Rev. D59, 076002 (1999).

[40] P. Estabrooks, Phys. Rev. D 19, 2678 (1979).

[41] D. Aston et al., Nucl. Phys. B 296, 493 (1988).

[42] W.M. Dunwoodie,

http://www.slac.stanford.edu/∼wmd/kpi swave fit.note, (2002).

[43] E.P. Wigner, Phys. Rev. 70 15 (1946);

E.P. Wigner and L. Eisenbud, Phys. Rev. 72 29 (1947).

[44] A. Abele et al., Phys. Rev. D 57, 3860 (1998).

[45] L.M. Barkov et al. (OLYA, CMD Collaboration), Nucl. Phys. B256, 365 (1985).

[46] ALEPH Collaboration, (R. Barate et al.), Z. Phys. C76, 15 (1997).
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