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Abstract

We present measurements of branching fractions and CP -violating asymmetries

in B-meson decays to ρ+π0, ρ0π+ and ρ0π0. The data sample comprises 89 × 106

Υ (4S) → BB decays collected with the BABAR detector at the PEP-II asymmetric-

energy B Factory at SLAC. We find the charge-averaged branching fractions B(B+ →

ρ+π0) = (10.9± 1.9(stat)± 1.9(syst))× 10−6 and B(B+ → ρ0π+) = (9.5± 1.1± 0.9)×

10−6, and we set a 90% confidence-level upper limit B(B0 → ρ0π0) < 2.9 × 10−6. We

measure the charge asymmetries Aρ+π0

CP = 0.24 ± 0.16 ± 0.06 and Aρ0π+

CP = −0.19 ±

0.11 ± 0.02.

We also present the preliminary measurement of CP -violating asymmetries in

B0 → (ρπ)0 → π+π−π0 decays using a time-dependent Dalitz plot analysis. The

results are obtained from a data sample of 213 million Υ (4S) → BB decays, collected

by the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. This

analysis extends the narrow-ρ quasi-two-body approximation used in the previous

analysis, by taking into account the interference between the ρ resonances of the three

charges. We measure 16 coefficients of the bilinear form factor terms occurring in the

time-dependent decay rate of the B0 meson with the use of a maximum-likelihood fit.

We derive the physically relevant quantities from these coefficients. We measure the

direct CP -violation parameters Aρπ = −0.088±0.049±0.013 and C = 0.34±0.11±0.05,

where the first errors are statistical and the second systematic. For the mixing-induced



ii

CP -violation parameter we find S = −0.10 ± 0.14 ± 0.04, and for the dilution and

strong phase shift parameters respectively, we obtain ΔC = 0.15 ± 0.11 ± 0.03 and

ΔS = 0.22 ± 0.15 ± 0.03. For the angle α of the Unitarity Triangle we measure

(113+27
−17 ± 6)◦; only a weak constraint is achieved at the significance level of more

than two standard deviations. Finally, for the relative strong phase δ+− between the

B0 → ρ−π+ and B0 → ρ+π− transitions we find (−67+28
−31 ± 7)◦, with a similarly weak

constraint at two standard deviations and beyond.
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Chapter 1

Theory

1.1 Introduction

According to the Standard Model of particle physics, matter is made up of six

leptons and six quarks. These particles interact by exchanging bosons associated with

the three fundamental forces: the strong force, the electromagnetic force, and the

weak force. We believe that these interactions can be beautifully understood as con-

sequences of gauge symmetries. Some relevant concepts are explained in Appendix A.

The Standard Model has been tremendously successful in describing experi-

ments, apart from the Higgs boson still to be discovered. However, there are strong

indications that we should not be satisfied with the theory. The main reasons are

that there are conceptual indications for physics beyond the Standard Model. Unifi-

cation of the strong and electroweak interactions has been achieved in the Standard

Model. However, the gravitational interaction is not included in the Standard Model.

Attempts to unify four interactions have proven unsuccessful. It is considered highly
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implausible that the origin of the eletro-weak symmetry breaking can be explained by

the standard Higgs mechanism without accompanying new phenomena. New physics

should be manifested at energies in the TeV domain. This conclusion follows from

the consideration of the validity of the Standard Model at very high energies. The

structure of the Standard Model can not naturally explain the relative smallness of the

weak scale of the mass, set by the Higgs mechanism. This so-called hierarchy problem

is related to the presence of fundamental scalar fields in the theory with quadratic

mass divergences and no protective extra symmetry.

In addition to theoretical consideration, there are many indication of physics be-

yond the Standard Model from experiments as well. Recent experiments have provided

solid evidence for neutrino oscillations. Neutrino oscillations imply that neutrinos have

mass. The smallness of any neutrino mass in comparison to quark and charged lepton

masses indicates a different nature of neutrino masses. It is generally believed that

neutrino masses provide a window into physics at the very large energy scale.

Interestingly, much of the evidence which show that new physics must exist

comes not from studying the smallest composites of matter in the accelarators, but

from studying the largest structures of the universe. Our visible universe itself contains

a wealth of information. For example, most of the radiation in the universe that

we observe today is in the form of an almost isotropic blackbody spectrum with a

temperature of approximately 2.7K, and known as the cosmic microwave background

radiation or CMB. It is believed to be a relic from the era of recombination when
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protons and electrons combined into atoms and the universe became transparent to

photons. The small angular fluctuations in the temperature of the CMB reveal a great

deal about the constituents of the universe. Recent results from WMAP [7] show our

universe to be made of approximately 73% dark energy and 23% dark matter by

measuring the anisotropy in the CMB spectrum. Only less than 5% of the mass of the

universe is made of our familiar luminous baryons. Unfortunately, the Standard Model

does not provide viable candidate particles for either dark energy or dark matter.

Another unexplained mystery is baryogenesis, the formation of baryons. It could

occur at the weak scale but not in the Standard Model. For baryogenesis one needs

the three Sakharov conditions [1]: Baryon number violation, CP violation and no

thermal equilibrium. The first requirement is based on a rather theoretical point of

view. We believe that our universe is made of large number of baryons but few or no

anti-baryons. Without introducing baryon number violation processes outside of the

Standard Model, we would be forced to believe that the baryon number was established

when the universe was created, and nothing in the present framework of physics gives

us a clue about how to understand such a number. Without the second requirement of

CP violation, equal numbers of baryons and antibaryons would be created or destroyed

in any baryon number violation process if we started with equal numbers of baryons

and antibaryons. The third requirement of baryogenesis is based on the fact that the

particle density is a time-independent quantity once the equilibrium is established.

Quantitative analysis shows that baryogenesis is not possible in he Standard Model
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because there is not enough CP violation.

1.2 CP violation

CP violation was first discovered in the neutral kaon system in 1964 [4]. From

appendix A, we see that CP violation can be accommodated in the framework of

renormalizable theory of weak interaction. However, even forty years after the first

discovery of CP violation, its origin remains unclear. On the one hand, an increasing

number of experimental results from accelerators are consistent with the picture that

CP violation is a result of the irreducible phase in the CKM matrix. On the other hand,

the weak scale of CP violations in the Standard Model is difficult to explain the large

matter and antimatter asymmetry in the universe. It is crucial to fully understand the

origin of CP violation and to find other sources of CP violation beyond the Standard

Model. In this process, the study of matrix elements involving the third generation of

quarks provides a source of key information for understanding not only CP violation

but the physics of flavor, and possibly new physics beyond the Standard Model as

well.

In the many years following the discovery of CP violation, CP violation mea-

surements are mostly performed in the kaon system. The asymmetric B-factories

at SLAC and KEK opened a brand new chapter in the study of CP violation in

the B meson decay. One of the great achievements of the B-factories at SLAC

and KEK was the measurement of sin2β to great precision where β is one angle

of the Unitarity Triangle. The latest measurement by BABAR collaboration yields
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sin2β = 0.722 ± 0.040(stat) ± 0.023(syst) [16], obtained using a sample of recon-

structed charmonium and neutral kaons from the neutral B decay. The other two an-

gles in the Unitarity Triangle need to be measured independently in order to test the

Standard Model prediction. As the B-factories continue to run above their designed

luminosities, an increasing number of different B-decay modes become accessible for

investigation. Many of these modes carry interesting information on CP -violating

interactions. One such example is the Cabbibo suppressed charmless modes with a

contribution from b→ uud which would be the subject of this dissertation.

The current knowledge at 90% confidence level of the magnitude of the quark

mixing matrix, the CKM matrix 1, is summarized here [12]

⎛
⎜⎜⎜⎜⎜⎝

0.9741 − 0.9756 0.219 − 0.226 0.00025 − 0.0048

0.219 − 0.226 0.9732 − 0.9748 0.038 − 0.044

0.004 − 0.014 0.037 − 0.044 0.9990 − 0.9993

⎞
⎟⎟⎟⎟⎟⎠ (1.1)

The salient features are that the diagonal terms are much bigger than the rest. The

weak transitions in the heavier quark sector are much more suppressed than those

in the lighter quark section and the transition between the first generation and third

generation is the weakest of all. The original parameterization of the CKM matrix in

equation A.16 reduces to the Glashow-Iliopoulos-Miani model in the limit θ1 = θC ,

sin θ2, sin θ3 → 0, and δ → 0. But the matrix elements can have large imaginary parts.

1Introduced in Appendix A.
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These large imaginary parts do not give appreciable CP -nonconservation effects since

a redefinition of top and bottom quark fields can make all the matrix elements real

up to order of O(10−3) if one considers the hierarchy of the matrix elements above.

One commonly used parametrization, written as an expansion of Vus, is given by

Wolfenstein [8]

⎛
⎜⎜⎜⎜⎜⎝

1 − λ2/2 λ Aλ3(ρ+ iη)

−λ 1 − λ2/2 Aλ

Aλ3(1 − ρ− iη) −Aλ2 1

⎞
⎟⎟⎟⎟⎟⎠+ O(λ4) (1.2)

where the A, ρ and η are all of order one. The Wolfenstein parametrization has proven

to be very useful in the study of heavy flavor physics.

1.2.1 Mixing and time evolution of neutral mesons

A feature that is crucial to our study of the heavy meson system is the mixing

phenomenon. That is to say there are flavor changing neutral currents induced by

the box diagrams shown in figure 1.1. The evolution of a neutral heavy meson state

can be described by a hermitian mass matrix M and a hermitian damping matrix Γ,

which are the hermitian and anti-hermitian parts of the energy matrix, Λ = M−i/2Γ.

CPT invariance guarantees that Λ11 = Λ22. Using B meson as an example, we write

the time-dependent amplitudes ψ as linear combinations of B0 and B0 fields. They

are detemined by the Schrödinger equation. In the simple case where we ignore the

mixing, Λ is diagonal. We restore the free propogation of the decaying fields. In reality,
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B0 B
– 0
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u
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, c
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, t
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d
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– 0

b
–

W + d
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d W - b

W + W -
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–
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–
, t

–
u, c, t

Figure 1.1: Leading order B0B0 mixing diagrams

the off diagonal terms in Λ are non-zero due to the mixing diagrams. In particular,

they contain complex numbers from the CKM matrix. The general solution is given

by the mixture of flavor eigenstates. To analyze the problem more easily, one can go

to a basis that diagonalize the matrix Λ. Its eigenstates, defined by

(M − iΓ)ψ± = λ±ψ± (1.3)

are

ψ± =
1√|p|2 + |q|2

⎛
⎜⎝ p

±q

⎞
⎟⎠ (1.4)
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Note that the new eigenstates need not to be orthogonal to each other. In the new

basis, the state function can be expressed in terms of these two eigenstates ψ± as

ψ(t) =
1√

a′2 + b′2
[
a′ψ+e

−iλ+t + b′ψ−e−iλ−t
]

(1.5)

where a′ and b′ provide the initial state of the system. Let’s calculate the probability

that a pureB0 produced at time zero is found to be aB0 at time t. From equation 1.4, a

pure B0 is made of (ψ++ψ−) and pure B0 is made of (ψ+−ψ−). Based on equation 1.5,

we have

ψ(t)K0 =
1√
2

[
ψ+e

−iλ+t + ψ−e−iλ−t
]

=
1√
2

p√
p2 + q2

[
g+(t)ψK0 +

q

p
g−(t)ψK0

]
(1.6)

where

g±(t) =
1

2

(
e−iλ+t ± e−iλ−t

)
(1.7)

And immediately, we have the probability

|〈ψB0 |ψ(t)B0〉|2 =
|q|2

2(p2 + q2)

(
e−iλ+t − e−iλ−t

)2
(1.8)

Similarly, we can write down the probability for the CP conjugate process. If CP

were a perfect symmetry, one would expect that the two probabilities to be identical

which would imply that |p| = |q| or that the mass eigenstates ψ± coincide with the
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CP eigenstates. If |p| �= |q|, CP is violated and we call this type of CP violation CP

violation in mixing. Note that if the mass matrix and the damping matrix are real,

p = ±q. Thus, no CP violation could occur in the mixing process.

1.2.2 Heavy neutral-meson systems

After understanding how a neutral meson can evolve with time, we can consider

the production and decay of a pair of heavy mesons such as D0D̄0, B0
dB̄

0
d . The

production of the mesons is dominated either by the strong interaction, as in pp̄

collisions, or by the electromagnetic interaction, as in the process e+e− → Υ (4S) →

B0B0. Throughout this section, we use B0B0 as an example. Υ (4S) is a bb bound state

with spin 1 and C-parity ηc = −1. The initial pair of B0B0 produced from Υ (4S) is

in a p wave state

|Φ〉 =
1√
2

[
|B0(�k)〉 ⊗ |B0(−�k)〉 − |B0(�k)〉 ⊗ |B0(−�k)〉

]
(1.9)

If the meson with momentum �k decays at time t1 into final state f , and the meson with

momentum −�k decays at time t2 into final state g. Using equation 1.6, the amplitude

for this process would be

A(t1, t2) = Ce−(Γ/2+iM)(t1+t2)ζ(t1, t2) (1.10)

{cos

(
Δmd

2
(t1 − t2)

)
(A1Ā2 − Ā1A2) −

i sin

(
Δmd

2
(t1 − t2)

)
(
p

q
A1A2 − q

p
Ā1Ā2)}
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where Ai is the amplitude for a B0 to decay to the state fi, Āi is the amplitude for a

B0 to decay to the same state fi. The ζ function returns ±1 depending on which B

decay first. Here an integral over all directions for either B has been performed, so the

angular dependence has dropped out of the expressions, and an overall normalization

factor C appeared.

To study of CP violation in such a system, one often needs to determine the

flavour of a decaying neutral meson and this process is usually called tagging. When

the inital B0 meson evolves in time, it oscillates back and forth into and from B0. The

same occurs with the inital B0. But the anti-symmetry of the correlated wave function

under the change �k → −�k is preserved by the linearity of the evolution. Hence, if at

some instant t2 the right-moving meson is found to be B0 from its flavour-tagging

decay g, then the left-moving meson at that instant must be a B0. And decay rate is

proportional to

R(ttag, tfCP
) = Ce−Γ(ttag ,tfCP

)|Ātag|2|ACP |2 (1.11)

{1 + |λ|2 + cos [Δmd(tfCP
− ttag)] (1 − |λ|2) −

2 sin [Δmd(tfCP
− ttag)] Im(λ)}

where

λ =
q

p

ĀfCP

AfCP

(1.12)
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1.2.3 Three types of CP violation

We have seen that CP violation can occur during the mixing processes of neutral

mesons. In fact, CP violation can manifest itself in two other ways as well.

CP violation in decay

Complex parameters in any Lagrangian term that contibutes to the amplitude

will appear in a complex conjugate form in the CP conjugate amplitude. In the

Standard Model these phases occur only in the CKM matrix which is the electroweak

sector of the theory. Hence these are often called weak phases. A second type of phase

can appear in scattering or decay amplitudes even when the Lagrangian is real. Such

phases do not violate CP , since they appear in CP conjugate states with the same

sign. Their origin is the possible contribution from intermediate on-shell states in the

decay process, that is an absorptive part of an amplitude that has contributions from

coupled channels. The dominant rescattering is usually due to strong interactions, so

the designation strong phases for the phase shifts so induced.

It is convenient to write each contribution to a decay process A in three parts: its

magnitude Ai, its weak-phase eiφi and its strong phase term eiδ. Writing the amplitude

of B0 decay final state f Af and the amplitude for its CP conjugate process explicitly,

we have

Af =
∑

i

Aie
i(δi+φi), Āf̄ = e2iε

∑
i

Aie
i(δi−φi) (1.13)

where the additional phase ε accounts for the phase differences between |B0〉 and

CP |B0〉 and between f̄ and CP |f〉. If CP is conversed, all the weak phases φi should
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be equal. Thus the sufficient condition of CP violation in this case is |Āf̄/Af | �= 1.

The CP violating asymmetry is defined as

ACP ≡ |Af |2 − |Āf̄ |2
|Af |2 + |Āf̄ |2

= −
∑

i,j sin(φi − φj) sin(δi − δj)∑
i,j cos(φi − φj) cos(δi − δj)

(1.14)

Clearly, we need at least two amplitudes with both different weak phases and different

strong phases in order to have non-zero CP violation in decay. It is worthwhile noting

that this asymmetry is the largest when both amplitudes are the same and both

the weak-phase and strong-phase differences are 90◦. In reality, none of the above

conditions are easily satistifed in certain decay modes. In order to find above criteria

to be satisfied, one sometimes looks at rare decay modes, which by themselves are

challenging to measure. In particular, due to the presence of a strong phase differences,

it is hard to predict the amount of CP violation in decay for any mode.

CP violation in the interference between mixing and decay

Consider neutral meson decays into final CP eigenstates, fCP . Let us consider

the B decay as an example. We have a model-independent estimation that ΔΓB 


ΔmB. This implies that λ± ≈ m11 − i
2
Γ11 ∓m12. When CP is conserved, |q/p| = 1,

|Āf̄/Af | = 1 and furthermore, the relative phase between them vanishes. Therefore,

λ �= ±1 =⇒ CP violation (1.15)

It is possible that, to a good approximation, |q/p| = 1 and |Āf̄/Af | = 1, yet
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there is CP violation. In this case the phase of λ does not equal to zero. This type

of CP violation is called CP violation in the interference between mixing and decay.

For the neutral B system, CP violation in the interference between decays with and

without mixing can be observed by comparing decays into final CP eigenstates of a

time-evolving neutral B state that begins at time zero as B0 to those of the state that

begins as B0:

afCP
=

Γ (B0(t) → fCP ) − Γ
(
B̄0(t) → fCP

)
Γ (B0(t) → fCP ) + Γ

(
B̄0(t) → fCP

) (1.16)

Using equation 1.11, the above asymmetry is given by:

afCP
=

1 − |λ|2
1 − |λ|2 cos(Δmdt) − 2Imλ

1 − |λ|2 sin(Δmdt) (1.17)

1.2.4 Unitarity Triangle

(0,0) (1,0)

(ρ,η)

Vub
*Vud

|VcdVcb
*|

Vtb
*Vtd

|VcdVcb
*|

γ β

α

Figure 1.2: The rescaled Unitarity Triangle

The unitarity of the CKM matrix implies various relations among its elements.

Three of them are extremely useful for understanding the Standard Model predictions



14

of CP violation

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0 (1.18)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0 (1.19)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (1.20)

Each of these three relations requires the sum of three complex quantities to vanish

and so they can be geometrically represented in the complex plane as triangles. These

are “the unitarity triangles”. And the term “Unitarity Triangle” is reseved for the last

of the three relations. A drawing of the Unitarity Triangle is shown in Figure 1.2. All

three unitarity triangles have the same area J/2 where J is the Jarlskog parameter [9]

defined in the following equation

Im
[
VijVklV

∗
ilV

∗
kj

]
= J

3∑
m,n=1

εikmεjln (1.21)

The zero area of J will immediately imply CP conservation in the Standard Model.

The three angles of the Unitarity Triangle as defined in Figure 1.2 are denoted α, β

and γ:

α ≡ arg

[
− VtdV

∗
tb

VudV
∗
ub

]
, β ≡ arg

[
−VcdV

∗
cb

VtdV
∗
tb

]
, γ ≡ arg

[
−VudV

∗
ub

VcdV
∗
cb

]
(1.22)
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1.3 b→ uud Decays

�Vud
W+

d

b

d

u

d

u

V ∗
ub �

W+

q = u c t

d

b

d

u

u

d
V ∗

qb Vqd

Figure 1.3: Tree (left) and penguin (right) diagrams for the b → uud decay.

In principle, any b → uud decay is a possible source for measuring the angle

α of the Unitarity Triangle. Candidates include B0 → π+π−, B0 → ρ±π∓, and

B0 → ρ+ρ−. All of them share the same Feynman diagrams at the quark level.

Figure 1.3 shows the dominant diagrams that contribute to the final states containing

charged particles. Their differences come in the final state interaction where different

mesons are formed. In the case where the B0 decays into two neutral particles, the

tree digrams are color suppressed, as shown in Figure 1.4. In this case, the electroweak

penguin and annihilation diagrams could play an important role. Contrary to the clean

determination of β, the determination of α is complicated by the presence of penguin

contributions in such decays. Appendix B shows how the weak phase α is entangled

with the strong phase and penguin amplitude in the simple case of B0 → π+π−.

The quantitative analysis of B decays is currently based on “effective” theory

calculations. In this approach, heavy degrees of freedom in EW and QCD Hamiltoni-

ans are integrated out. That allows separation of the short and long-range interactions
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�Vud

W+

d

b

d

d

u

uV ∗
ub

�W
d

b

d

u

u

d

Figure 1.4: Color suppressed tree (left) and annihilation (right) diagrams for the b→
uud decay.

in the effective Hamiltonian. Non-leptonic, two-body B-meson decays, although sim-

ple as far as the underlying weak decay of the b quark is concerned, are complicated

on account of strong interaction effects. Weak decay of heavy mesons involve three

fundamental scales, the weak interaction scale MW , the b-quark mass mb and the QCD

scale ΛQCD, which are strongly ordered: MW � mb � ΛQCD. The underlying weak

decay being computable, all theoretical work concerns strong interaction corrections.

The amplitude for the two-body decay B →M1M2 is given by:

A(B → M1M2) =
GF√

2

∑
i

λiCi(μ)〈M1M2|Oi|B〉(μ), (1.23)

where GF is the Fermi constant. Each term in the sum is the product of a CKM

factor λi, a coefficient function Ci(μ), which incorporates strong-interaction effects

above the scale μ ∼ mb, and a matrix element of an operator Oi in the weak effective

Hamiltonian. For a long time, the matrix elements have been estimated in the “naive”

factorization approach, which replaces the matrix elements of a four-fermion operator

in a heavy-quark decay by the product of the matrix elements of two currents, for



17

example,

〈π+π−|(ub)(du)|B0〉 −→ 〈π−|(du)|0〉〈π+|(ub)|B0〉 (1.24)

This assumes that the exchange of “non-factorizable” gluons between the π− and the

(B0 π+) system can be neglected, if the virtuality of the gluons is below μ ∼ mb.

The non-leptonic decay amplitude reduces to the product of a form factor and a de-

cay constant. In many cases this approach provides the correct order of magnitude of

branching fractions, but it cannot predict direct CP violation due to the assumption of

no strong rescattering. It is therefore no longer adequate for a detailed phenomenolog-

ical analysis of B-factory data. Naive factorization has now been superseded by QCD

factorization (QCD FA) [18]. The QCD FA predicts that in the limit mb � ΛQCD,

the same matrix elements can be represented in the form

〈π+π−|(ub)(du)|B0〉 = 〈π−|(du)|0〉〈π+|(ub)|B0〉

×
[
1 +

∑
n

rnα
n
S + O(ΛQCD/mb)

]
(1.25)

Neglecting power corrections in ΛQCD and radiative corrections in αS, the original

matrix elements return to the conventional factorization. At higher order in αS this

simple factorization breaks down, but the corrections can be calculated systematically

in terms of short-distance coefficients. If this limit works well, QCD FA allows us to

calculate strong phases systematically; CP violating weak phases can then be disen-

tangled. It is important to measure all possible decay final states in order to test the
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validity of the QCD FA scheme.

1.4 B → ρπ Decays

As in the case of B → ππ modes, the B → ρπ channels provide an independent

means of extracting the CKM phase α and another test ground for phenomenological

models such as QCD FA. The penguin operator is expected to be suppressed for

decays into vector mesons, like ρ. B → ρπ also has a larger branching fraction than

B → ππ. However, unlike the case of B0 → π+π−, the ρ±π∓ final states are not CP

eigenstates. This further complicates the extraction of α. BABAR recently reported

the measurement of the branching fraction as well as the time-dependent CP violating

asymmetries in B0 → ρ±π∓ [37]. Although B± → ρ0π± have been measured by both

CLEO [38] and Belle [39], B± → ρ±π0 and B0 → ρ0π0 have not been observed before.

To understand in particular the CP properties of such decays, it is convenient

to represent the complex Standard Model amplitudes of the relevant processes as the

sum of tree (T ) and penguin (P ) amplitudes with different weak and strong phases.

The transition amplitudes are given by2

A+− = T+−e+iγ − P+−e−iβ , A+− = T−+e−iγ − P−+e+iβ ,

A−+ = T−+e+iγ − P−+e−iβ , A−+ = T+−e−iγ − P+−e+iβ ,

A00 = T 00e+iγ − P 00e−iβ , A00 = T 00e−iγ − P 00e+iβ ,

(1.26)

2The first superscript stands for the charge of the ρ and the second superscript stands for the
charge of the π. And the bar stands for the flavor of the B, e.g. A+− ≡ A(B0 → ρ+π−). The same
convention apply to B+ decay as well.
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where we have absorbed the modules of the CKM elements |VudV
∗
ub| � Aλ3

√
ρ̄2 + η̄2

and |VtdV
∗
tb| � Aλ3

√
(1 − ρ̄)2 + η̄2| in the effective tree (T κσ) and penguin (P κσ) am-

plitudes, respectively. The T κσ and P κσ are unknown complex numbers which must

be determined from data. We have used the O(λ5) unitarity relation Rue
iγ +Rce

iπ +

Rte
−iβ = 0 to remove the c quark loops in the penguin amplitudes. The effective tree

and penguin amplitudes used in Eqs. (1.26) are then given by T ≡ Tu + Pu − Pc and

P ≡ Pt − Pc, where the indices denote the quark flavor involved.

Using π − α = β + γ, multiplying by a global phase ei(π+β), including the B0B0

mixing phase arg[q/p] � e−2iβ in the A amplitudes, and factorizing the tree amplitude,

one arrives at3

A+− = |T+−|eiδ+−
T

(
e−iα + r+−eiδ+−

r

)
, A+− = |T−+|eiδ−+

T

(
e+iα + r−+eiδ−+

r

)
,

A−+ = |T−+|eiδ−+
T

(
e−iα + r−+eiδ−+

r

)
, A−+ = |T+−|eiδ+−

T

(
e+iα + r+−eiδ+−

r

)
,

A00 = |T 00|eiδ00
T

(
e−iα + r00eiδ00

r

)
, A00 = |T 00|eiδ00

T

(
e+iα + r00eiδ00

r

)
,

(1.27)

where we defined the ratios rκeiδκ
r ≡ P κ/T κ. Equations (1.27) define the amplitude

conventions that are used in this analysis.

3Note that the equality arg[q/p] = e−2iβ is only valid to the Wolfenstein order O(λ5), since Vcd,
entering the definition of β has a small phase, which is not present in B0B0 mixing. Along the same
line, charmless b→ u transitions only approximately measure α, which is of course academic for the
current experimental accuracy.
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1.4.1 Isospin Anlaysis of B → ρπ

While it is not sufficient to extract α from only B0 → ρ±π∓ decays, one way

in which α can be extracted is the extended version of the isospin analysis of the

B → ππ [19], which is briefly explained in Appendix B. In this approach, one works

in the limit of SU(2) flavor symmetry (neglecting electro-weak penguins) and in a

quasi-two-body framework which treats ρ as a narrow resonance. It requires the

measurement of the decay rates and CP violating asymmetries of all B → ρπ decays.

The isospin decompositions of five B → ρπ amplitudes are given by [19]:

A+0 = 1
2

√
3
2
A3/2,2 − 1

2

√
1
2
A3/2,1 +

√
1
2
A1/2,1

A0+ = 1
2

√
3
2
A3/2,2 + 1

2

√
1
2
A3/2,1 −

√
1
2
A1/2,1

A+− = 1
2

√
1
3
A3/2,2 − 1

2
A3/2,1 + 1

2
A1/2,1 −

√
1
6
A1/2,0

A−+ = 1
2

√
1
3
A3/2,2 + 1

2
A3/2,1 − 1

2
A1/2,1 −

√
1
6
A1/2,0

A00 =
√

1
3
A3/2,2 +

√
1
6
A1/2,0

(1.28)
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where a detailed derivation of the decomposition of A+− is given below4. Notably, there

are ΔI = 1/2 components in the charged B decay into ρπ final states, which implies a

possible penguin contribution. Therefore, there is possible direct CP violation in the

charged B decay. It is clear from Equation 1.28 that there are only two independent

penguin contributions,

P+0 = −P 0+ =
1√
2
(P+− − P−+) (1.30)

P 00 = −1

2
(P+− + P−+) (1.31)

A construction similar to the isospin triangle for ππ can be made in the ρπ case. From

the above, one has the following equation:

√
2
(
A+0 + A0+

)
= A+− + A−+ + A00 (1.32)

4The isospin decomposition of A+− is given by,

A+− = 〈ρ+, π−|Heff |uud, d〉
= (〈1, 1| ⊗ 〈1,−1|)Heff (|3/2, 1/2〉 ⊗ |1/2,−1/2〉) +

(〈1, 1| ⊗ 〈1,−1|)Heff (|1/2, 1/2〉 ⊗ |1/2,−1/2〉)
=

(
1√
6
〈2, 0| + 1√

2
〈1, 0| + 1√

3
〈0, 0|

)
Heff

(
1√
2
〈2, 0|3/2 +

1√
2
〈1, 0|3/2

)
+(

1√
6
〈2, 0| + 1√

2
〈1, 0| + 1√

3
〈0, 0|

)
Heff

(
1√
2
〈2, 0|1/2 +

1√
2
〈1, 0|1/2

)

=
1
2

√
1
3
〈2, 0|Heff |2, 0〉3/2 +

1
2
〈1, 0|Heff |1, 0〉3,2 +

1
2
〈1, 0|Heff |1, 0〉1,2 +

√
1
6
〈0, 0|Heff |0, 0〉1,2

=
1
2

√
1
3
A3/2,2 +

1
2
A3/2,1 +

1
2
A1/2,1 +

√
1
6
A1/2,0 (1.29)

In the derivation, we use explicitly that the effective Hamiltonian Heff conserves strong isospin. The
subscripts label the change in isospin ΔI in the b-quark decay.
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A similar relation holds for the charge conjugate states. The relative phase between

the amplitudes

A+− + A−+ + 2A00 and A+− + A−+ + 2A00 , (1.33)

is then −2α. The geometric figures to be contstructed in the case of B → ρπ are

pentagons rather than triangles. In order to get α, one has to effectively solve a number

of higher-order algebraic equation for this system. Thus the solution can be obtained

only up to multiple discrete ambiguities. In the absence of penguin contributions, only

the combinations sin(2α ± δ̂) are observed, where δ̂ = arg[A−+A+−∗]. Eight mirror

solutions for α and δ̂ are identified

α → π/4 − δ̂/2 π/2 + α 3π/4 − δ̂/2 π/4 + δ̂/2 π/2 − α 3π/4 + δ̂/2 π − α

δ̂ → π/2 − 2α π + δ̂ 3π/2 − 2α −π/2 + 2α −δ̂ −3π/2 + 2α π − δ̂

(1.34)

Given the effect of experimental errors and the multiple ambiguities, we can at best

hope to get a constraint on α.

1.4.2 Dalitz Plot Analysis of B0 → π+π−π0

So far, we have been working under the assumption that ρ is a stable narrow

resonance. In reality, ρ-mesons have non-negligible decay width and decay dominantly

into two pions. Several other hadronic resonances and non-resonant B0 → 3π may
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contribute to the same final states. It was first shown by Snyder and Quinn [20] that

a time-dependent Dalitz plot analysis of B0 → π+π−π0 decay can over-constrain the

a priori unknown parameters of the various complex amplitudes by exploiting the in-

terference between the amplitudes of intermediate states dominated by B0 → ρ+π−,

B0 → ρ−π+ and the color-suppressed and yet unmeasured B0 → ρ0π0, using SU(2)

flavor symmetry. With sufficient statistics, this leads to an unambiguous determina-

tion of the angle α of the Unitarity Triangle. The full Dalitz plot analysis is thus the

natural extension of the narrow-ρ-approximation, quasi-two-body analysis, performed

with smaller data samples.

Time Dependence

To develop the time-dependent formalism, we will use in the following the zeroth-

order assumption that the amplitude A3π and its complex conjugate A3π are domi-

nated by the three resonances ρ+(770), ρ−(770) and ρ0(770). All other contributions

including non-resonant ones are neglected for simplicity. We can then write [20]:

A3π = f+A
+− + f−A−+ + f0A

00 , (1.35)

A3π = f+A
+− + f−A−+ + f0A

00 , (1.36)

where the fi are functions defined in equation (C.12), incorporating the kinematic

and dynamical properties of the B0 decay via vector resonances5. The amplitudes

with tree and penguin contributions are defined in Eq. (1.27). Due to SU(2) flavor

5Note that neglecting the mass difference between the final state pions, and using Eq. (1.27) and
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symmetry (penguins are ΔI = 1/2 transitions only), and neglecting SU(2)-breaking

electro-weak penguins, we can use the relation [19]

P 00 = −1

2

(
P+− + P−+

)
. (1.37)

Assuming CP violation in B0B0 mixing is absent (|q/p| = 1), and assuming ΔΓBd
= 0

as well as CPT invariance, the time-dependent decay rate is given by

|A±
3π(Δt)|2 =

e−|Δt|/τB0

4τB0

[
|A3π|2 + |A3π|2 ∓

(|A3π|2 − |A3π|2
)
cos(ΔmdΔt)

± 2Im
[A3πA3π

∗] sin(ΔmdΔt)

]
.(1.38)

Inserting the amplitudes (1.35) and (1.36), one obtains for the terms in Eq. (1.38)

|A3π|2 ± |A3π|2 =
∑

κ∈{+,−,0}
|fκ|2U±

κ + 2
∑

κ<σ∈{+,−,0}

(
Re [fκf

∗
σ ]U±,Re

κσ − Im [fκf
∗
σ ]U±,Im

κσ

)
,

Im
(A3πA�

3π

)
=

∑
κ∈{+,−,0}

|fκ|2Iκ +
∑

κ<σ∈{+,−,0}

(
Re [fκf

∗
σ ] I Im

κσ + Im [fκf
∗
σ ] IRe

κσ

)
,(1.39)

(C.17), leads to the following symmetric form of Eq. (1.35)

A3π = (s−0 − s+−) 1Fρ+(s+0)A+− + (s+− − s+0) 1Fρ− (s−0)A−+ + (s+0 − s−0) 1Fρ0 (s+−)A00 .
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with

U±
κ = |Aκ|2 ± |Aκ|2 , (1.40)

U±,Re(Im)
κσ = Re(Im)

[
AκAσ∗ ±AκAσ∗] , (1.41)

Iκ = Im
[
AκAκ∗] , (1.42)

IRe
κσ = Re

[
AκAσ∗ − AσAκ∗] , (1.43)

I Im
κσ = Im

[
AκAσ∗ +AσAκ∗] , (1.44)

where we used the short-hand notation A+ ≡ A+−, A− ≡ A−+ and A0 ≡ A00, respec-

tively. Eqs. (1.40-1.44) correspond to 27 interdependent observables representing 11

unknowns. Removing the arbitrary global phase reduces to 10 the minimum number

of unknowns that are determined by the fit. A few observations can be made:

• the occurence of sin(2α) and cos(2α) terms in the observables provides the reso-

lution of the eight-fold ambiguity on α obtained in the quasi-two-body analysis

in the absence of penguin contributions; the resolution is however not complete,

since the replacements α→ π/2 − α and α→ −π + α lead to identical results;

• the α→ π/2−α ambiguity can be resolved either if the phase difference δκ
T − δκ

T

is non-zero, and/or if penguin contributions are present;

• penguins lead to terms proportional to sin(α) and cos(α), which resolve both

α→ π/2 − α and α→ −π + α ambiguities.
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Interference Pattern

B0 ρ+π-

ρ-π+ π+π-π0

B0(t)
B0 → ρ+π-

B
– 0 → ρ-π+ π+π-π0

B0(t)
B0

B
– 0 ρ+π- π+π-π0

δ

sin(2α)

sin(2α+δ)

Figure 1.5: A representation of interference terms in B0 → ρ±π∓.

The master equation (1.38) is said to lead to sufficient observables to determine

the 10 fit unknowns. Figure 1.5 shows the origin of the most important phase depen-

dence in the system. More specifically, equation (1.38) gives rise to four categories of

terms:

1. |fκ|2U±
κ : in absence of penguin amplitudes, these squares are independent of

the weak and strong phases. They are similar to the Q2B cosine coefficients

describing direct CPV.

2. |fκ|2Iκ: these terms are entirely due to B0B0 oscillation and are similar to the

Q2B sine coefficient describing mixing-induced CPV.

3. Re
[
fκf∗

σ

]
U±,Re

κσ and Im
[
fκf∗

σ

]
IRe

κσ : the real parts of the amplitude bilinears
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are due to the interference between the ρ bands and not due to B0B0 oscilla-

tion. In the absence of penguin amplitudes, they have no information on α, but

measure the relative phase between the tree amplitudes.

4. Im
[
fκf∗

σ

]
U±,Im

κσ and Re
[
fκf∗

σ

]
IIm

κσ : these terms arise from interference be-

tween B0B0 oscillation and different ρ bands.

The Nominal Signal Model

Parameter τ+ → ντ (ρ
+ →)π+π0 e+e− → (ρ0 →)π+π−

mρ(770) 775.5 ± 0.6 773.1 ± 0.5
Γρ(770) 148.2 ± 0.8 148.0 ± 0.9

aρω ≡ 0 0.0020 ± 0.0001
φρω ≡ 0 13.0 ± 2.3

mρ(1450) 1409 ± 12
Γρ(1450) 500 ± 37
aρ′ 0.166 ± 0.005
φρ′ 177.8 ± 5.2

mρ(1700) 1749 ± 20
Γρ(1700) ≡ 235
aρ′′ 0.071 ± 0.006

φρ′′ ≡ 0

Table 1.1: Result of the charged and neutral Gounaris-Sakurai model (C.27,C.37) fit to
form factor data from τ decays (second column) and e+e− annihilation (third column).
For the parameters belonging to both columns we assume that isospin invariance holds
exactly. The parameters are used in the nominal form factor parameterization of the
dominant charged and neutral amplitudes of the signal model. Note that some of these
parameters exhibit strong correlations among each other so that only the entire set is
well defined. The relative amplitude fractions aρ(′′) given here are defined according to
Ref. [45] with a m2

ρ(′′) in the nominator.

Details of the resonance description are given in Appendix C. The nominal
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signal model implemented in the DP fit is given below. Variations to this model will

considered as systematics uncertainties.

• The various amplitudes are summed coherently according to Eq. (C.10).

• For the charged Dalitz bands, only the three ρ resonances of Eq. (C.37) are

considered in the nominal signal model. We make the assumption that the

relative phases between the charged rho resonances are CP -conserving.

• For the neutral Dalitz band, we consider the ρ resonances of Eq. (C.37). We

do not take into account ρ(770) ↔ ω(782) mixing, and the established isoscalar

resonances f0(980), f0(1370) and f2(1270) because they are expected to be small.

• We use results from e−e− annihilation and τ decays to fix the masses and widths

of the neutral and charged ρ(X) resonances, respectively. The fits are performed

with the GS parameterization (C.27) and the results are given in Table 1.1

and are plotted in Fig. C.4. Perfect agreement between data and the model is

observed. Note also that these parameters are strongly correlated among each

other so that only the entire set is well defined. As an example, reducing the

ρ(770) mass can be covered by a simultaneous reduction of the ρ(1450) mass, or

an increase of its relative amplitude. Variations of parameters for the purpose

of systematic studies must be performed coherently.

• Sub-dominant contributions as those discussed in Section C.3.4 are not part of

the nominal signal model. Also neglected is a possible contribution from the
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ρ3(1690) resonance to both, the charged and neutral form factors. It is broad

and almost degenerate with the ρ(1700) and decays in (23.6±1.3)% of the cases

into a ππ final state. Since it is spin three, its helicity distribution will differ

from the one of the other ρ resonances. The influence of these modes on the

results will be studied for systematics.

• Long-living modes with the same final states, like B0 → D−(→ π−π0)π+, B0 →

D0(→ π+π−)π0 or B0 → K0
S(→ π+π−)π0 are treated part of the B background

model since they do not interfere with the strongly decaying signal resonances.
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Chapter 2

PEP-II B Factory and BABAR Detector

The primary goal of the BABAR experiment is the systematic study of CP asymmetries

in the decays of B mesons. To observe the time-dependent CP asymmetries in B0

decay, three things need to be measured: the exclusive final state needs to be fully

reconstructed; the flavor of the decaying particle needs to be tagged; and the proper

time of the B0 decay with respect to its production needs to be measured, as the

asymmetry in most cases cancels to zero in time-integrated measurements of e+e−

machines. The BABAR experiment is designed and optimized to achieve the goals

specified above. The PEP-II B Factory is designed to deliver the B mesons to the

experiment.

Figure 2.1 shows a longitudinal section of the detector center. The inner de-

tector consists of a silicon vertex tracker, a drift chamber, a ring-imaging Cherenkov

detector, and a CsI calorimeter. These detector systems are surrounded by a super-

conducting solenoid that is designed for a magnetic field of 1.5T. The steel flux return

is instrumented for muon and neutral hadron detection.
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Figure 2.1: BABAR detector longitudinal cross section.

2.1 PEP-II Asymmetric B Factory

PEP-II is an e+e− storage ring system designed to operate at a center of mass en-

ergy of 10.58 GeV, corresponding to the mass of the Υ (4S) resonance. The parameters

of these energy asymmetric storage rings are presented at Table 2.1.

The bunches collide head-on and are separated magnetically in the horizontal

plane by a pair of dipole magnets (B1), followed by a series of offset quadrupoles, as

shown in figure 2.1. The tapered B1 dipoles, located at ±21 cm on either side of

the interaction point (IP), and the Q1 quadrupoles are permanent magnets made of
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Parameters Design Typical
Energy HER/LER( GeV) 9.0/3.1 9.0/3.1
Current HER/LER(A) 0.75/2.15 0.7/1.3
Number of bunches 1658 553-829
Bunch spacing( ns) 4.2 6.3-10.5
σx (μm) 110 120
σy (μm) 3.3 5.6
σz ( mm) 9 9
Luminosity(1033 cm−2 s−1) 3 6
Luminosity( pb−1/d) 135 500

Table 2.1: PEP-II beam parameters

samarium-cobalt placed inside the field of the BABAR solenoid, while the Q2, Q4 and

Q5 quadrupoles, located outside or in the fringe field of the solenoid, are standard

iron magnets. The collision axis is off-set from the z-axis of the BABAR detector by

about 20 mrad in the horizontal plane to minimize the perturbation of the beams by

the solenoidal field.

The interaction region is enclosed by a water-cooled beam pipe of 27.9 mm outer

radius, composed of two layers of beryllium (0.83 and 0.53 mm thick) with a 1.48 mm

water channel between them. To attenuate synchrotron radiation, the inner surface

of the pipe is coated with a 4 μm thin layer of gold. In addition, the beam pipe is

wrapped with 150 μm of tantalum foil on either side of the IP, beyond z = +10.1 cm

and z = −7.9 cm. The total thickness of the central beam pipe section at normal

incidence corresponds to 1.06% of a radiation length. The beam pipe, the permanent

magnets, and the SVT were assembled and aligned, and then enclosed in a 4.5 m-long

support tube which spans the IP. The central section of this tube is fabricated from a
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carbon-fiber epoxy composite with a thickness of 0.79% of a radiation length.

2.2 Silicon Vertex Tracker

580 mm

350 mrad520 mrad

ee +-

Beam Pipe

Space Frame 

Fwd. support
        cone

Bkwd.
support
cone

Front end 
electronics

Figure 2.2: Schematic view of SVT: longitudinal section. The roman numerals label
the six different types of sensors.

The SVT is designed to provide precision reconstruction of charged particle

trajectories and decay vertices near the interaction region. As shown in figure 2.2

and figure 2.3, the BABAR silicon vertex tracker consists of five concentric cylindrical

layers of double-sided silicon detectors. Each layer is divided in azimuth into modules.

The inner three layers have six detector modules and are a traditional-barrel-style

structure. The outer two consist respectively of 16 and 18 detector modules, and

employ a new arch structure in which the detectors are electrically connected across

an angle. The bend in the arch modules increases the solid angle coverage and avoids

very large track incidence angles.

The inner sides of the detectors have strips (z strips) oriented perpendicular
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to the beam direction to measure the z coordinate, whereas the outer sides, with

longitudinal strips (φ strips), allow the φ coordinate measurement.

The inner modules are tilted in φ by 5◦, allowing an overlap region between

adjacent modules, a feature that provides full azimuthal coverage and is advantageous

for alignment. The outer modules cannot be tilted, because of the arch geometry.

To aviod gaps and to have a suitable overlap in the φ coordinate, layers 4 and 5 are

divided into two sub-layers and placed at slightly different radii (see figure 2.3).

The total active silicon area is 0.96 m2 and the material traversed by particles is

∼ 4% of a radiation length. The geometrical acceptance of SVT is 90% of the solid

angle in the center of mass system.

Beam Pipe 27.8mm radius

Layer 5a

Layer 5b

Layer 4b

Layer 4a

Layer 3

Layer 2

Layer 1

Figure 2.3: Schematic view of SVT: transverse section.
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2.3 Drift Chamber

The principal purpose of the drift chamber (DCH) is the efficient detection of

charged particles and the measurement of their momenta and angles with high preci-

sion. The reconstruction of decay and interaction vertices outside of the SVT volume,

for example the K0
S

decays, relies solely on the DCH. At low momenta, the DCH is

required to provide particle identification by measurement of ionization loss, dE/dx.

A resolution of about 7% allows π/K separation up to 700 MeV/c.

The BABAR DCH is relatively small in diameter, but almost 3 m long, with

40 layers of small hexagonal cells providing up to 40 spatial and ionization loss mea-

surements for charged particles with transverse momentum greater than 180 MeV/c.

Longitudinal position information is obtained by placing the wires in 24 of the 40

layers at small angles with respect to the z-axis. The chosen gas is a 80:20 mixture

of helium:isobutane. This mixture has a radiation length that is five times larger

than commonly used argon-based gases. The smaller Lorentz angle results in a rather

uniform time-distance relationship and thereby improved spatial resolution.

A longitudinal cross-section and dimensions of the DCH are shown in figure 2.4.

The DCH is bounded radially by the support tube at its inner radius and the DIRC

at its outer radius. The device is asymmetrically located with respect to the IP. The

forward length of 1749 mm is chosen so that particles emitted at polar angle of 17.2◦

traverse at least half of the layers of the chamber before exiting the front endplate. In

the backward direction, the length of 1015 mm means that particles with polar angles
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Figure 2.4: Longitudinal section of the DCH with principal dimensions; the chamber
center is offset by 370 mm from the interaction point.

down to 152.6◦ traverse at least half of the layers.

The DCH consists of a total of 7104 small drift cells, arranged in 40 cylindrical

layers. The layers are grouped by four into ten superlayers, with the same wire orien-

tation and equal numbers of cells in each layer of a superlayer. Sequential layers are

staggered by half a cell. This arrangement enables local segment finding and left-right

ambiguity resolution within a superlayer, even if one out of four signals is missing.

The stereo angles of the superlayers alternate between axial (A) and stereo (U,V)

pairs, in the order AUVAUVAUVA, as shown in figure 2.5. The stereo angles vary

between ±45 and ±76 mrad; they have been chosen such that the drilling patterns

are identical for the two endplates.

The drift cells are hexagonal in shape. Each cell consists of one sense wire

surrounded by six field wires, as shown in figure 2.5. While the field wires are at
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Figure 2.5: Schematic layout of drift cells for the four innermost superlayers. Lines
have been added between field wires to aid in visualization of the cell boundaries. The
numbers on the right side give the stereo angle of sense wires in each layer. The
1 mm-thick beryllium inner wall is shown inside of the first layer.
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ground potential, a positive high voltage is applied to the sense wires. An avalanche

gain of approximately 5× 104 is obtained at a typical operating voltage of 1960V and

a 80:20 helium-isobutane gas mixture.

2.4 Detector of Internally Reflected Cherenkov Light

BABAR uses a new kind of ring-imaging Cherenkov detector called DIRC to

achieve particle identification in a wide momentum range, in a small radial dimension

and with high tolerance of background.

The DIRC is based on the principle that the magnitudes of angles are main-

tained upon reflection from a flat surface. Figure 2.6 shows a schematic of the DIRC

geometry, which illustrates the principles of light production, transport and imaging.

The radiator material of the DIRC is synthetic, fused silica in the form of long, thin

bars with rectangular cross-sections. These bars serve both as radiators and as light

pipes for the portion of the light trapped in the radiator by total internal reflection.

For the particles with β ≈ 1, some photons will always lie within the total

internal reflection limit, and will be transported to either one or both ends of the bar,

depending on the particle incident angle. To avoid instrumenting both ends of the bar

with photon detectors, a mirror is placed at the forward end, perpendicular to the bar

axis, to reflect incident photons to the backward, instrumented end. Once photons

arrive at the instrumented end, most of them emerge into a water-filled expansion

region, called standoff box. A fused silica wedge at the exit of the bar reflects photons

at large angles relative to the bar axis. It thereby reduces the size of the required
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Figure 2.6: Schematics of the DIRC fused silica radiator bar and imaging region.

detection surface and recovers those photons that would otherwise be lost due to

internal refelction at the fused silica water interface. The photons are detected by an

array of densely packed photomultiplier tubes (PMTs), each surrounded by reflecting

light catcher cones to capture light which would otherwise miss the active area of the

PMT. The PMTs are placed at a distance of about 1.2 m from the bar end.

The DIRC bars are arranged in a 12-sided polygonal barrel. Because of the beam

energy asymmetry, particles are produced preferentially forward in the detector. The

principal components of the DIRC are shown schematically in figure 2.7. The bars

are placed into 12 hermetically sealed containers, called bar boxes, made of very thin

aluminum-hexcel panels. Each bar box contains 12 bars, for a total of 144 bars.

Within a bar box the 12 bars are optically isolated by a ∼ 150 μm air gap between
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neighboring bars, enforced by custom shims made from aluminum foil.

Figure 2.7: Exploded view of the DIRC mechanical support structure.

The bars are 17- mm-thick, 35- mm-wide, and 4.9- m-long. Each bar is assembled

from four 1.225 m pieces that are glued end-to-end. Each bar has a fused silica wedge

glued to it at the readout end. The wedge, which is made of the same material as

the bar, is 91- mm-long with very nearly the same width as the bars and a trapezoidal

profile. The 12 wedges in a bar box are glued to a common 10- mm-thick fused silica

window, that provides the interface and seal to the purified water in the standoff box.

The standoff box is made of stainless steel, and consists of a cone, cylinder and

12 sectors of PMTs. It contains about 6000 liters of purified water. A steel shield,

supplemented by a bucking coil, surrounds the standoff box to reduce the field in the

PMT region to below 1T. The PMTs at the rear of the standoff box lie on a surface
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that is approximately toroidal. Each of the 12 PMT sectors contains 896 PMTs with

29- mm-diameter, in a closely packed array inside the water volume.

2.5 Electromagnetic Calorimeter

The electromagnetic calorimeter (EMC) is designed to measure electromagnetic

showers with excellent efficiency, and energy and angular resolution over the en-

ergy range from 20 MeV to 9 GeV. The BABAR EMC is a hermetic, total-absorption

calorimeter, composed of a finely segmented arrary of thallium-doped cesium iodide

crystals. The crystals are read out with silicon photodiodes that are matched to the

spectrum of scintillation light.

Figure 2.8 shows a longitudinal cross section of the EMC. The EMC consists of

a cylindrical barrel and a conical forward endcap. It has full coverage in azimuth and

extends in polar angle from 15.8◦ to 141.8◦ corresponding to a solid-angle coverage of

90% in the center of mass system. The barrel contains 5760 crystals arranged in 48

distinct rings with 120 identical crystals each. The endcap holds 820 crystals arranged

in eight rings. These crystals have a tapered trapezoidal cross section. The length of

the crystals increases from 29.6 cm in the backward to 32.4 cm in the forward direction

to limit the effects of shower leakage from increasingly higher energy particles.

The crystals are made of the thallium-doped CsI. The high light yield and small

Moliere radius allow for excellent energy and angular resolution, while the short radi-

ation length allows for shower containment at BABAR energies with relatively compact

design. Furthermore, the high light yield and the emission spectrum permit efficient
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Figure 2.8: A longitudinal cross section of the EMC (only the top half is shown)
indicating the arrangement of the 56 crystal rings. The detector is axially symmetric
around the z-axis. All dimensions are given in mm.

use of silicon photodiodes which operate well in high magnetic fields. The transverse

size of the crystals is chosen to be comparable to the Moliere radius achieving the re-

quired angular resolution at low energies while appropriately limiting the total number

of crystals.

The photon detector consists of two 2 × 1 cm2 silicon PIN diodes glued to a

transparent 1.2- mm-thick polysterene substrate that, in turn, is glued to the center of

the rear face of the crystal by an optical epoxy to maximize light transmission. The

surrounding area of the crystal face is covered by a plastic plate coated with white

reflective paint. The plate has two 3- mm-diameter penetrations for the fibers of the

light pulser monitoring system. Each of the diodes is directly connected to a low-noise

preamplifier. The entire assembly is enclosed by an aluminum fixture. This fixture is
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electrically coupled to the aluminum foil wrapped around the crystal and thermally

coupled to the support frame to dissipate the heat load from the preamplifiers.

2.6 Instrumental Flux Return

The Instrumented Flux Return (IFR) is designed to identify muons with high

efficiency and good purity, and to detect neutral hadrons over a wide range of momenta

and angles. The IFR uses the steel flux return of the magnet as a muon filter and

hadron absorber. Single gap resistive plate chambers (RPCs) with two coordinate

readout have been chosen as detectors. The RPCs are installed in the gaps of the

finely segmented steel of the barrel and the end doors of the flux return, as illustrated

in Figure 2.9. The steel is segmented into 18 plates, increasing in thickness from 2 cm

for the inner nine plates to 10 cm for the outermost plates. The nominal gap between

the steel plates is 3.5 cm in the inner layers of the barrel and 3.2 cm elsewhere. There

are 19 PRC layers in the barrel and 18 in the endcaps. In addition, two layers of

cylindrical RPCs are installed between the EMC and the magnet cryostat to detect

particles exiting the EMC.

RPCs detect streamers from ionizing particles via capacitive readout strips.

They offer several advantages: simple, low cost construction and the possibility of

covering odd shapes with minimal dead space. Further benefits are large signals and

fast response allowing for simple and robust front-end electronics and good time res-

olution, typically 1-2 ns. The position resolution depends on the segmentation of the

readout; a value of a few mm is achievable.
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Figure 2.9: Overview of the IFR: Barrel sectors and forward and backward end doors;
the shape of the PRC modules and their dimensions are indicated.

The IFR detectors cover a total active area of about 2000 m2. There are a total

of 806 PRC modules, 57 in each of the six barrel sectors, 108 in each of the four half

end doors, and 32 in the two cylindrical layers. The size and shape of the modules are

matched to the steel dimensions with very little dead space. More than 25 different

shapes and sizes were built. Because the size of a module is limited by the maximum

size of the material available, two or three PRC modules are joined to form a gap-size

chamber. The modules of each chamber are connected to the gas system in series,

while the high voltage is supplied separately to each module.
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2.7 Trigger

The basic requirement for the trigger system is the selection of events of interest

with a high, stable, and well-understood efficiency while rejecting background events

and keeping the total event rate under 120Hz. At design luminosity, beam-induced

background rates are typically about 20kHz each for one or more tracks in the drift

chamber with pt > 120 MeV/c or at least one EMC cluster with E > 100 MeV. The

rates for the principal physics processes are typically much lower than that at a few

hertz level. The total trigger efficiency is required to exceed 99% for all BB events and

at least 95% for continuum events. It must also be able to operate in an environment

with dead or noisy electronics channels. The trigger should contribute no more than

1% to dead time.

The trigger is implemented as a two-level hierarchy, the Level 1 (L1) in hardware

followed by the Level 3 (L3) in software. During normal operation, the L1 is config-

ured to have an output rate of typically 1kHz. Triggers are produced within a fixed

latency window of 11-12 μs after the e+e− collision and delievered to the Fast Control

and Timing system (FCTS). The L3 receives the output from L1, performs a second

stage rate reduction for the main physics sources, and identifies and flags the special

categories of events needed for luminosity determination, diagnostic and calibration

purposes. At design luminosity, the L3 filter acceptance for physics is ∼90Hz, while

∼30Hz contain the other special event categories.

The L1 trigger decision is based on the presence of charged tracks in the DCH
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above a preset transverse momentum, showers in the EMC, and tracks detected in the

IFR. The trigger data are processed by three specialized hardware processors. The

drift chamber trigger (DCT) and electromagnetic trigger (EMT) both satisfy all trigger

requirements independently with high efficiency, and thereby provide a high degree of

redundancy, which enables the measurement of trigger efficiency. The instrumented

flux return trigger (IFT) is used for triggering μ+μ− and cosmic rays, mostly for

diagnostic purposes.

The L3 trigger software comprises event reconstruction and classification, a set

of event selection filters, and monitoring. The filters have access to the complete event

data for making their decision, including the output of the L1 trigger processors and

FCTS trigger scalers. L3 operates by refining and augmenting the selection methods

used in L1. The L3 trigger has three phases. In the first phase, events are classified

by defining L3 input lines, which are based on a logical OR or of any number of the

32 FCTS output lines. Any number of L3 input lines may be defined. The second

phase comprises a number of scripts. Each script executes if its single L3 input line is

true and subsequently produces a single pass-fail output flag. Internally, a script may

execute one or both of the DCH and EMC algorithms, followed by one or more filters.

The algorithms construct quantities of interest, while the filters determine whether

or not those quantities satisfy the specific selection criteria. In the final phase, the

L3 output lines are formed. Each output line is defined as the logical OR of selected

script flags.
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Chapter 3

Analysis Overview

3.1 Signature of the Charmless Three-body B Decay

B mesons decay dominantly through the Cabbibo favored b → c transition.

Therefore, the charmless B decay, which involves b → u transition, is naturally sup-

pressed by the |Vub/Vcb|2. The typical branching fraction of charmless three-body

B-decays is at the order of 10−6. Notice that the cross section for light quark produc-

tions e+e− → qq(continuum) is of the same order as the bb cross section at the Υ (4S)

resonance. As a result, the continuum background ought to be suppressed by roughly

a factor of 106 in order to study charmless B decays. To achieve this goal, one often

exploits both B decay kinematics and event shape difference in different decays.

3.1.1 Decay Kinametics

The most commonly used kinematic variables to separate B decay from contin-

uum production are:

• mES ≡√E2
c − P 2

B, where Ec = (s+ 2PΥ (4S) · PB)/(2EΥ (4S)), and s = E2
CM .



48

• ΔE ≡ E∗
B − ECM/2, where E∗

B is the energy of the reconstructed B meson

evaluated in the center of mass frame.

The variable mES is the beam-energy-substituted-mass. The typical resolution of mES

for fully reconstructed B decay is about 2.5 MeV and is limited by our knowledge of the

e+e− beam energy and direction. The distribution ofmES for continuum background is

parametrized empirically by the ARGUS function [23] which simply shows the phase

space behavior. The variable ΔE is the difference between the energy of the fully

reconstructed B meson and the expected energy of the B meson, both evaluated in the

center-of-mass frame. The resolution of ΔE varies dramatically from mode to mode,

depending on how many particles in the final states as well as the type of particles.

Normally, the ΔE resolution is much worse if there is one or multiple π0s in the final

state compared with final states involving only charged tracks. The distribution of

ΔE for continuum background is commonly described by low order polynomials. The

distributions of mES and ΔE for some typical processes are shown in Figure 3.1.

Some other kinematic variables related to B decays include cosθB,z , which is the

cosine of the angle between B momentum z-axis and cosθTB ,z, which is the cosine of

the angle between B thrust and the z-axis, both evaluated in the center of mass frame.

3.1.2 Decay Topology

Event shape variables further exploit the topologicial difference between B decay

and the light quark decays. The spinless B mesons are produced with little momentum

in the Υ (4S) frame, thus the decay is rather isotropic. It is schematically shown in
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Figure 3.1: Distributions of mES (left plot) and a normalized ΔE (right plot) for truth-
matched (solid) and misreconstructed ρ(ππ)π events (shaded), and for off-resonance
data (dashed). The arrows indicate the cuts applied in the Dalitz plot analysis.

Figure 3.2. On the contrary, the light quark pairs are produced with a large boost. The

decay products are formed by fragmetation and it has a jet-like topology. Additionally,

the correlation between the direction of the signal B decay and the rest-of-event (ROE)

is very powerful to separate B decays from continuum events for the same reason. The

commonly used topological variables are:

• The monomials Ln, a set of momentum-weighted sums over the ROE tracks with

respect to the B thrust axis TB, are defined as:

Ln ≡
∑

i=ROE

pi × | cos (θTB ,i) |n (3.1)

Typically, several monomials are used in the analysis simultaneously. It’s a common

practice to combine topological variables as well as other kinematic variables into one

Multivariate Analyzer (MVA), such as a Neural Network, to best separate signal from
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Figure 3.2: Drawings of decay topology of the a generic signal event in the center of
mass frame. The black cones around signal decay directions are commonly used to
separate signal from background.

the background.

Two MVA techniques, a linear Fisher discriminant (FI) [54], and a non-linear

Neural Network (NN) [55], have been studied. Optimization and training of the MVAs

has been performed using off-resonance data contained in the signal region to reduce

residual correlations of the NN with the kinematic variables used in the Maximum

Likelihood fit (which will be discussed in Section 3.6). The FI and NN distributions

for truth matched (TM) signal, combinatorial signal (SCF) and off-resonance data

are plotted in Figure 3.3. As a qualitative measure of the discriminating power, we

depict in Figure 3.4 the background efficiency versus the signal efficiency, obtained

when cutting on the respective MVA outputs. We observe similar performance, with

a slight advantage for the NN, so that it is adopted in the following analyses.



51

0

0.05

0.1

-4 -3 -2 -1 0 1 2 3 4

B0 → π+π–π0  (shaded is SCF)
Off-resonance

Fisher discriminant

N
or

m
al

iz
ed

0

0.1

0.2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

B0 → π+π–π0  (shaded is SCF)
Off-resonance

NN output

N
or

m
al

iz
ed

Figure 3.3: Output distributions for the Fisher discriminant (left plot) and the Neural
Network (right plot), using the 4 discriminating variables defined in the text. Shown
are TM signal (solid line), SCF signal (shaded area), and off-resonance data (dashed
line). The arrow indicates the cut applied.

3.1.3 Suppression of B Related Background

Compared to charmless two-body B decays, charmless three-body B decays

suffer from additional background from other charm and charmless B-decays, par-

ticularly due to the large decay width of the broad ρ resonance. Since some of these

B-background modes can exhibit CP -violating asymmetries, and because their branch-

ing fractions are not always well-known, the ’peaking’ B-related background is poten-

tially more dangerous than the continuum background. We investigated the cross-feed

from other B-decays and evaluated the systematic biases they can introduce in our

measurements. The general strategy to deal with such background is to study the

dominant contributions exclusively and introduce fixed terms in the likelihood fit that

correspond to each contribution.

Charmed B-background Modes

Using generic B+B− and B0B0 Monte Carlo simulation, we select b → c events
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Figure 3.4: Left: background efficiency as a function of the signal efficiency (including
both TM and SCF), obtained from cuts on the MVA outputs. Right: normalized NN
output for truth-matched (solid) and misreconstructed ρ(ππ)π events (shaded), and
off-resonance data (dashed line). The arrow indicates the cut value applied.

at the generator level, i.e. at least one of the final state particles of both the tag and

the CP sides, are required to originate from a charmed mother or grandmother. In

general, charmed B decays have high multiplicity. Thus, for the kinematic variables

mES and ΔE, these events do not peak in the signal region. On the other hand, their

NN distribution does exhibit a peaking structure. Figure 3.5 also demonstates the

ΔE distribution for the charmed B-background of B0 → ρ±π∓ decay processes.

Charmless B-background Modes

An extensive list of charmless BB modes has been studied for each decay mode

to evaluate the systematic uncertainties on the event yields and CP parameters. These

modes can be categorized as 2-, 3- or 4-body final states, the decay kinematics of which

all differ significantly:

• 2-body modes: to reconstruct a B → ρπ candidate from pairs of pions or

kaons, one adds an additional track taken from the ROE: as a consequence,
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Figure 3.5: Enlarged ΔE band. Shown are neutral and charged b→ c events (full and
open circles, respectively), signal ρ±π∓ events (hatched region), and representative four
(solid), three (dashed) and two-body (dotted) modes, all taken from MC simulation.
The shaded band indicates the continuum contribution taken from off-resonance data.

these events populate the positive ΔE region. The rates of the 2-body decays

are well-known experimentally.

• 3-body modes: by exchanging charged tracks between the signal B and the

ROE, or by picking up fake soft charged πs, one can reconstruct a B → ρπ

candidate from another 3-body mode. This approximately leaves ΔE unaltered,

i.e., ΔE, (3 − body) ∼ 0 – albeit with worse resolution. The kinematics of

these processes resemble that of signal, so that the 3-body cross-feed is difficult

to suppress without compromising the signal efficiency. In particular, 3-body

background exhibits similar kinematic properties as the mis-reconstructed B →
ρπ signal. The branching fractions of most of the 3-body modes have been
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measured, although in many cases less accurately than those of most 2-body

modes.

• 4-body modes: by using only 3 objects of a 4-body decay, one can reconstruct

a B → ρπ candidate, which accumulates in the negative ΔE region. Recently,

there have been extensive efforts in the current B-factories to measure such

decays.

Natually the topological variables are not powerful to separate B-background

from the signal. In this case ΔE is the most powerful variables to reject such back-

grounds. Figure 3.5 shows the ΔE distributions for signal and for typical multi-body

backgrounds for the B0 → ρ±π∓ analysis. We use the measured branching fractions

for the experimentally known decay modes. In cases where only upper limits are given,

we translate the limits into branching fractions using the available information from

the related publication. For all the other modes, not yet measured, educated guess-

work is used to deduce their branching fractions. This is done using similar, known

modes and, wherever possible, rules based on isospin symmetry and/or form factor

arguments, usually assuming naive factorization of the matrix elements. If we must,

we rely on ad hoc assumptions that consequently entail large systematic uncertainties.

For B decay into two vector mesons the vector-vector state can have L = 0, 1, 2

orbital angular momenta correspoding to longitudinal and transverse polarizations.

Only longitudinally polarized particles create sufficiently fast decay pions and kaons

to produce significant background after selection. We conservatively assume that these

unmeasured modes are longitudinally saturated.



55

3.2 Vertexing and Δt Determination

In a time-dependent CP -violation measurement, it is crucial to determine the

time difference between the two B decays in the Υ (4S) frame, as schematically shown

in Figure 3.6. The SVT provides excellent spatial resolution for determining the decay

vertices which are separated by the boost of the initial e+e− system. In this section,

we describe the method of determining the Δt.

We use the same vertexing algorithms and the same Δz reconstruction tech-

nique as previous time-dependent analyses of B decays, namely the lifetime and mix-

ing analyses [14, 13] using fully reconstructed B mesons, the sin2β measurements [15]

and the B → h+h− analysis [17]. Specifically, the vertex of the fully reconstructed

B → ρπ candidates is determined using the GeoKin algorithm. The decay vertex of

the “other B” in the event is then determined using the VtxTagBtaSelFit algorithm

including full beam-constraints (the so-called “pseudo-track”). We use a Δz → Δt

conversion that is different from the one in the previous analyses cited above. The pre-

vious analyses use the average τB approximation. This Δz → Δt conversion includes

a correction for the small boost of the B mesons in the Υ (4S) rest frame. In contrast

to, e.g., the sin2β analysis using J/ψK0
S

or the lifetime measurement using fully recon-

structed B decays, the present analyses deal with an event sample that is dominated

by continuum background. For continuum events the average τB approximation does

not make sense as there is no B flight in the Υ (4S) rest frame to be corrected for. This

“correction” then introduces a smearing that results in correlations between the per-

event error σ(Δt) and Δt which are not simple to model. We avoid this by using the

boost approximation. This simpler Δz → Δt conversion results in a slightly (� 4 %)
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worse Δt resolution for signal events than the average τB approximation. We use the

same Δt resolution function parameters as the sin2β analysis (i.e. measured in data

using the average τB approximation), and apply a small correction estimated from

Monte Carlo. This correction depends on the B lifetime and relativistic kinematics

which are both well modeled in the Monte Carlo.

Υ(4S)

Tag B
σz ≈ 180 μm

CP B
σz ≈ 70 μm

Δz
Δt ≅ Δz/γβc, γβcτB ≅ 250 μm

Figure 3.6: Schematics of the determination of the decay time difference.

3.3 B-Flavour Tagging

Another important ingredient in a time-dependent CP -violation measurement is

to determine the flavor of the other B meson. Even for a branching fraction measure-

ment for a charged B decay mode where tagging is in principle not necessary, tagging

often provides additional sensitivity to the measurement by exploiting the content

from the other B decay. In this section, we review the tagging algorithm.

For these analyses, the ElbaTagger algorithm is used to tag the flavour of the

other (non-ρπ) B meson in the event. The algorithm searches for prominent charge-
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carrying features of B-decays and uses them to determine the charge of the bottom-

quark.

The ElbaTagger is a hybrid of two tagging algorithms: a cut-based tagging algo-

rithm, N.O.T., and a neural network-based algorithm, NetTagger. Events with clearly

identified leptons or kaons are used by N.O.T. to tag the B-flavour; the remaining

events are passed to NetTagger, which exploits lower-momentum or unidentified lep-

tons and soft pions to tag the flavour. Since each individual algorithm has strengths

over the range of all events, they are combined into a single algorithm.

The ElbaTagger classes events into one of 4 mutually exclusive categories: Lepton,

Kaon, NT1, or NT2. Events with a high-momentum identified electron (p∗ > 1.0 GeV/c)

or muon (p∗ > 1.1 GeV/c) fall into the Lepton category, and the sign of the lepton

is used to tag the flavor of the B-meson. Events that do not have such a lepton, but

which contain one or more identified Kaons are tagged by the sum of the Kaon charges

and fall into the Kaon category.

If an event cannot be classed as either Lepton or Kaon then it is passed to the

NetTagger. If the output for the event is at very low (high) values of the NetTagger

output, 0.0-0.25 (0.75-1.0), then it is classed as a B0 (B0) in the NT1 category. If the

output is in the range 0.25-0.4 (0.6-0.75), then it is classed as a B0 (B0) in the NT2

category.

While the ElbaTagger enjoys reasonable data and Monte Carlo agreement, its

tagging efficiency for signal events is measured using the TagMix method on BReco

data. For mis-reconstructed signal events and B-background modes mistaken for our

signal due to picking a track from the tag side, the tagging properties can be modi-
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fied compared to the signal case. In particular, tagging efficiencies for each tagging

category are affected. For example, the Lepton category owes less tracks to the tag

side than do other hadronic categories, leaving less room for combinatorial effects with

the CP side. This leads to a lower tagging efficiency in this category for the back-

ground modes. Specific B-background tagging efficiencies are thus obtained from MC

simulations.

3.4 Data Sample and Event Processing

The results presented in this thesis are based on data collected between 1999

and 2002 with the BABAR detector. The data sample consists of:

• Run-1(1999): on-resonance - 0.5 fb−1, off-resonance - 0.0 fb−1;

• Run-1(2000): on-resonance - 20.3 fb−1, off-resonance - 2.6 fb−1;

• Run-2(2001): on-resonance - 35.6 fb−1, off-resonance - 3.8 fb−1;

• Run-2(2002): on-resonance - 25.6 fb−1, off-resonance - 3.1 fb−1;

For the study of the B0 → π+π−π0 Dalitz plot analysis, we also include the data taken

in the first half of year 2004:

• Run-3(2003): on-resonance - 31.4 fb−1, off-resonance - 2.4 fb−1.

• Run-4(2003): on-resonance - 80.9 fb−1, off-resonance - 4.2 fb−1.

Fully simulated samples of Monte Carlo events are used to study the signal and

background properties as well as the selection efficiencies. Imperfect simulation of

shower leakage and neutral energy resolution in the EMC is corrected by applying the
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“killing, smearing and scaling” procedure. Note, that these additional corrections are

applied only to the B-decays with one or more π0s in the final states. Energy scaling

effects are corrected separately for Run-1, Run-2 and Run-3, and weighted into the

final Monte Carlo samples according to the integrated luminosities in these runs.

The preselection is designed to screen out apparently unrelated background

events while keeping signal efficiencies as high as possible. The preselection begins by

looping over all the combinations of either charged GoodTracksLoose tracks and/or

pi0LooseMass candidates depending on what the final states are, and combining

them into a list of B-candidates. The event is accepted if at least one B-candidate

passes the following requirements:

• mES > 5.1 GeV/c2

• |ΔE| < 0.45 GeV

Tracks (GoodTracksLoose) and neutrals (CalorNeutral, Eγ > 100 MeV) which

do not contribute to the B-candidate reconstruction, are used for the calculation of

event shape variables and B-flavor tagging.

The selection is subsequently designed to further improve the signal to noise

ratio, e.g. by cutting on the continuum fighting MVA. Also used is the information

of other kinematic variables, e.g. the mass and helicity structure of the intermediate

resonance particles. The selection also cleans up the sample employing the particle

identification (PID) information. And finally, selection cuts remove regions of the dis-

criminating variables where modelling is difficult, e.g. the tail of the Δt distribution.
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3.5 Misreconstruction and Multiple Candidates

Selected signal events are divided broadly into two categories: truth matched

(TM) signal events and self-cross-feed (SCF) signal events. Truth matched signal

events refer to those events where the correct final-state particles are identified in the

reconstruction. The self-cross-feed signal events, also called misreconstructed signal

events, are signal events where at least one particle not from the signal B decay is

used in the reconstruction.
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Figure 3.7: Number of candidates per event passing the full selection. Shown are
B0 → ρ±π∓ (solid line), B0 → ρ0π0 (dashed line), B0 → π+π−π0 (dotted line), and
continuum background events (dashed-dotted line), represented in a linear (left plot)
and logarithmic (right plot) scale.

One problem related to the signal misreconstruction is that a given event can

have multiple candidates that pass all the selections. Multiple candidates can occur

both in background events and in good signal events due to combinatorics. Figure 3.7

shows the distributions of the number of candidates per event after all the selection

cuts for the B0 → π+π−π0 Dalitz plot analysis. In general, the average candidate

multiplicity for continuum events is slightly lower that that of signal events. This is
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due to the fact that continuum events have lower track multiplicity and continuum

events are distributed more uniformly in the Dalitz plot than the signal events.

In the analysis, events with more than one candidate in the fitting region will

be counted only once, i.e. the normalization is given by the number of events which

have at least one candidate in the fitting region. The method to determine the best

candidate varies among different analyses.

3.6 Maximum Likelihood Fit

The selected on-resonance data sample is assumed to consist of signal, continuum

background and B-background components. The event yields for signal and continuum

background, the time-dependent CP -violating parameters, as well as time-independent

charge asymmetries are measured simultaneously by means of a Extended Maximum

Likelihood (ML) fit. The fit exploits the topological variable and the kinematic vari-

ables to separate signal from background. The fit also exploit the time difference

between the B decays to measure the time-dependent asymmetries. Explicit back-

ground contributions are also considered for background from charmed and charmless

B decays. The probability density Pi, c for a single event i in tagging category c is the

sum over the probability densities of all components, namely

Pi, c = Nρπf
ρπ
c

1

2
Pρπ

i, c +N c
qρπPqρπ

i, c + Ξρπ
c , (3.2)

where:

• Nρπ is the number of signal events of type ρπ in the entire data sample.

• f ρπ
c is the fraction of signal events of type ρπ that are tagged in category c.
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• N c
qρπ is the number of continuum background events that are tagged in cate-

gory c.

• Pρπ
c = Pρπ(mES) · Pρπ(ΔE) · Pρπ(NN) · Pρπ

c (Δt),

• Ξρπ
c denotes the B-background contributions.

To avoid potential bias on the signal yields, we split the signal PDFs into two

parts: truth matched events and self-cross-feed events. The signal piece of Eq. (3.2)

is therefore modified as follows:

NρπPρπ
i, c −→ Nρπ

{
(1 − fscf)Pρπ

i, c, TM + fscfPρπ
i, c, scf

}
, (3.3)

where fscf is the fraction of misreconstructed events in the signal. In the case of a

charged B decay, one has to take into account the further complication that the charge

of the B could be misreconstructed as well, thus introducing dilution to the charge

asymmetry measurement. The extended likelihood over all tagging categories is given

by

L =

5∏
c=1

e−N ′
c

Nc∏
i

Pi, c , (3.4)

where N ′
c is the number of events expected in category c. Including this term allows for

the direct fitting of event yields rather than fractions. The dominant background to

B → ρπ decay is from continuum production. Due to the large continuum background

over signal excess in our fitting sample, it is crucial to get a perfect description of

the continuum events. The strategy adopted is to include sideband events in the

fit and determine all the continuum related yields and PDF parameters from data
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simultaneously with the signal parameters.

3.7 Correlations
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Figure 3.8: Correlation profiles of mES versus ΔE ′, NN′ versus ΔE ′, and mES versus
NN′, for correctly reconstructed ρ±π∓ signal events (upper line), mis-reconstructed
(center line) events, and off-resonance events (lower line).

The ML fit designed is a multi-dimensional fit which uses the discriminant vari-

ables mES, ΔE, NN and Δt as input. Yet, the likelihood model is built upon the

assumption that these variables do not exhibit correlations among themselves. Viola-
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tion of this assumption leads to biases in the fit. Using the B0 → π+π−π0 Dalitz plot

analysis as an example, some of the correlation profiles, for correctly reconstructed

signal events and mis-reconstructed ρ±π∓ events, and off-resonance events are plotted

in figure 3.8. Significant correlations are only observed for TM events between mES

and ΔE ′. Their linear correlation coefficient amounts to −8.6%, which is a known

feature and understood to be dominated by the common uncertainty on the beam en-

ergy. The effect of the residual correlation among discriminant variables is estimated

from Monte Carlo simulation and is assigned as systematic uncertainty.
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Chapter 4

Study of B± → ρ±π0 Decays

4.1 Introduction

The B± → ρ±π0 has not been previously observed although a branching fraction

of the order 10−5 is expected. The difficulty in this analysis is the presence of multiple

π0s in the final state. CLEO reported an upper limit of 4.3× 10−5 on this decay [38].

It is clear that the observation of this mode is beyond their search sensitivity. In

particular, they noticed that it is impossible for them to distinguish a decay dominant

by the ρ resonance from a non-resonant π+π0π0 decay.

4.2 Candidate Selection

In order to reconstruct the ρ±π0 final state, we loop over all the combinations of

one charged GoodTracksLoose track, two pi0LooseMass candidates, and combine

them into a list of B-candidates. To further improve the signal-to-background ratio,

candidates which pass the preselection must satisfy additional requirements.

• 5.20 < mES < 5.29 GeV/c2.

• −0.15 < ΔE < 0.10 GeV. See Fig. 4.1 for ΔE versus mES scatter plots for
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Figure 4.1: CM energy difference, ΔE, versus the energy-substituted-mass, mES, for
the various signal contributions and background processes. Indicated by the arrows are
the selection cuts applied on ΔE.

various signal contributions and background processes.

• To exploit the information of the intermediate resonance ρ, candidate events

should have invariant massesm(π±π0) within the following ranges: 0.4 < m(π±π0) <

1.3 GeV/c2.

• The helicity angle (the polar angle of the charged pion in the ρ frame) of the ρ+

and ρ− candidates is required to satisfy |cosθH(ρ)| > 0.25. Here we exploit the
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fact that since ρ is a vector particle, it is longitudinally polarized in the B → ρπ

decay.

• The charged track must fail the tight electron ID, the tight Kaon ID and the

tight proton ID.

• The continuum-fighting Neural Network (xNN) output is required to be larger

than 0.6. The NN is built using the six discriminating variables: m(ρ), cosθH(ρ),

L0, L2, cosθB,z and cosθTB ,z.

All cut efficiencies for signal B± → ρ±π0 Monte Carlo, data, and udsc MC and τ+τ−

samples are shown in Table 4.1.

In case of more than one candidates pass the selection criteria for a single event,

we choose the candidate with the ρ invariant mass closest to the PDG value. If there

is more than one candidate with the same ρ invariant mass, we use the first one. The

final selection efficiencies, mischarge (ωQ) and combinatorial background rates (fscf)

are summarized in Table 4.2. The fractions of misreconstructed signal events vary

significantly in different tagging categories and they are summarized in Table 4.3.

4.3 Backgrounds from B Decay

Table 4.4 gives the branching fractions and efficiencies for some of the cross-feed

modes considered. Several other background modes were examined and only the ones

that have more than one event expected after final candidate selection are included. An

asterisk indicates the modes which are not known experimentally and whose branching

fractions have been inferred from theoretical arguments, this is presented in ref. [37]

in detail.
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Cut description εMC
ρπ [%] εDat

on εDat
off εMC

uds εMC
cc εMC

τ+τ−
Reconstruction 44.8 - - 2.4 1.1 0.8
−0.15 < ΔE < 0.10 GeV 82.5 45.6 45.0 47.9 47.6 39.7
5.20 < mES < 5.29 GeV/c2 97.6 74.5 76.1 74.5 72.5 76.8
Photon quality (π0

1) 96.5 91.0 91.7 90.2 91.1 93.1
Photon quality (π0

2) 90.7 78.6 80.4 79.9 84.2 78.4
0.11 < mπ0

1
< 0.16 GeV 98.6 95.8 95.7 95.7 94.5 96.9

0.11 < mπ0
2
< 0.16 GeV 97.5 94.0 94.0 94.1 93.2 95.0

electron veto 99.0 97.2 97.2 98.4 97.3 91.1
muon veto 98.6 98.2 98.2 98.2 96.6 92.1
kaon veto 98.2 82.3 82.6 87.3 70.2 96.4
proton veto 99.7 94.6 94.4 91.8 95.4 99.6
m(π+π0) < 5.14 GeV 99.6 99.8 99.9 99.7 99.8 99.9
m(π0π0) < 5.14 GeV 99.9 100 100 100 100 100
0.4 < mρ < 1.3 GeV 93.0 54.2 54.7 56.6 52.5 67.9
|cosθH(ρ)| > 0.25 98.3 79.4 79.6 80.7 80.0 74.3
xNN > 0.6 66.7 4.3 4.2 4.1 3.2 8.3
Total efficiency 17.6 0.0079 0.0021 0.0058

Table 4.1: ρ±π0 analysis: Summary of cut efficiencies for signal MC, data and udsc
MC samples. The efficiencies for each individual line of the table are given relative to
the number of events retained after passing the skim cuts, they don’t include the loss
of events from the other cuts. Signal Monte Carlo includes any event that passes the
selection.

It is difficult to distinguish a π+π0π0 non-resonant contribution from signal

events. Currently no branching fraction measurement exists for this non-resonant

decay. We try to estimate how significant the non-resonant contribution can be. We

perform a search similar to that for signal, but for non-resonant events in the center

of the π+π0π0 Dalitz plot. The non-resonant signal efficiency in this search is 7.7%;

we find the following yield:

Nnon−res = −14.8 ± 9.6(stat.) ± 8.8(syst.) (4.1)

Given that the non-resonant efficiency in the nominal ρ±π0 analysis is 2.7% we make



69

Mode ε(%) 〈fscf〉(%) ωQ(%)
ρ±π0 17.6 ± 0.1 38.6 ± 0.3 20.9 ± 0.3

Table 4.2: Summary of the final selection efficiency, the averaged misreconstruction
rate and the fraction of misreconstructed signal that has the wrong charge assigment
for B± → ρ±π0 events. Errors given are statistical only.

Lepton Kaon NT1 NT2 NoTag
fscf(%) 27.7 ± 0.7 38.9 ± 0.4 31.9 ± 1.0 39.3 ± 0.8 42.8 ± 0.5

Table 4.3: Summary of fraction of misreconstructed signal events for B± → ρ0π±

events in different tagging categories. Errors given are statistical only.

the reasonable assumption that the number of non-resonant events in the ρ±π0 signal

region is negligible. A measurement of the non-resonant branching fraction is not

attempted here. Instead, we estimate only the possible number of events in the signal

region. In the final result it is stated that all the signal π±π0π0 events are assumed to

contain a ρ resonance.

No attempt is made to group other B-related background into 2,3 and 4-body

modes in the likelihood fit; rather, most modes are treated individually. ΔE and mES

correlations in various B-background modes are accounted for by using 2-dimensional

non-parametric shapes. In the nominal fit we assumed a charge asymmetry of zero

for both charged and neutral B-background modes. This is a reasonable assumption

since the measured values that exist are statistically compatible with zero and none

of the modes is expected to have a significant charge asymmetry. A possible non-

zero asymmetry is taken into account when the B-background systematic errors are

estimated.
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# Mode BR (10−6) ε (%) Nexp

1 B0 → ρ+ρ− long. 40.0+50∗
−35 1.84 65.4+82

−57

2 B0 → ρ+ρ− tran. 40.0+50∗
−35 0.05 1.8+2.2

−1.3

3 B+ → ρ+ρ0 long. 31.7+8.1
−9.8 0.61 17.2+4.4

−5.3

4 B0 → ρ±π∓ 22.5 ± 4.0 2.31 46.2 ± 8.2
5 B0 → ρ−K+ 7.3+2.6

−2.5 0.38 2.5 ± 1.0
6 B0 → K∗(Kπ)π0 8.7 ± 5.0 0.50 3.9 ± 2.2
7 B0 → K∗(Ksπ

0)π0 7.5 ± 5.0 0.58 3.9 ± 2.6
8 B+ → K∗+(Kπ0)π0 4.4 ± 2.5 1.57 6.1 ± 3.5
9 B+ → ρ+γ 2.3 ± 2.3 0.65 1.3 ± 1.3

10 B0 → π0π0 1.6 ± 1.6 3.40 4.8 ± 4.8
11 B+ → π+π0 5.2 ± 0.8 1.24 5.7 ± 0.9
12 B+ → K+π0 12.7 ± 1.2 0.44 5.0 ± 0.5
13 B+ → K∗∗+π0 40 ± 40 0.42 15 ± 15
14 B+ → (K∗∗ρ)+ 20 ± 20 0.07 1.2 ± 1.2
15 B0 → K∗∗0π0 72 ± 72 0.36 23 ± 23
16 B0 → (K∗∗ρ)0 20 ± 20 0.09 1.8 ± 1.8
17 B+ → a+

1 π
0 35 ± 35 0.80 25 ± 25

18 B+ → K0
S(→ π0π0)π+ 4.1 ± 0.4 1.47 5.4 ± 0.4

Total charmless 235 ± 80

18 B0 → charm – – 73 ± 22
19 B+ → charm – – 134 ± 40

Total 442

Table 4.4: Classification of background frm charged and neutral Bs. Efficiencies and
expected event yields are obtained from Monte Carlo. The asterisk corresponds to
modes where the branching fraction has been estimated from theoretical argument. Only
the modes that have a non-insignificant contribution are listed. The number of expected
events correspond to a data sample of 81.9 fb−1.
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4.4 Systematic Uncertainties due to B-background

To evaluate of the systematic error due to B-background we vary the branching

fractions and CP parameters within a chosen range and check how the measured

quantities are affected. Details of the estimated systematic uncertainties are presented.

Uncertainty on the Branching Fractions

BR-variation ACP -variation

Mode ΔN sig ΔAsig
CP ΔN sig ΔAsig

CP

B0 → ρ+ρ− 10.2 0.003 - -
B+ → ρ+ρ0 long. 0.7 0.013 0.03 0.019
B0 → ρ±π∓ 1.2 0.002 0.17 0.011
B0 → ρ−K+ 0.3 0.001 - -
B0 → K∗π0 0.3 0.000 0.26 0.006
B+ → K∗+(Kπ0)π0 1.3 0.001 1.60 0.023
B+ → ρ+γ 0.5 0.001 - -
B0 → π0π0 1.1 0.002 - -
B+ → π+π0 0.3 0.001 0.00 0.002
B+ → K+π0 0.1 0.000 0.00 0.001
B+ → K∗∗+π0(K∗∗+ρ0) 1.2 0.001 0.30 0.014
B0 → K∗∗0π0(K∗∗0ρ0) 2.0 0.002 0.51 0.022
B+ → a+

1 π
0 1.8 0.001 0.59 0.023

B+ → K0
Sπ

+ 0.1 0.000 0.13 0.004
Other Modes 1.4 0.002 - -
B → charm 1.5 0.000 - -

Total 11.1 0.015 1.8 0.048

Table 4.5: B-background systematic errors due to branching fraction and ACP vari-
ations. The Other Modes category refers to the charmless modes that are nominally
negligible (< 1 event) but the uncertainty in their branching fractions yields an expec-
tation above 1 event.

For the study of the systematics related to the uncertainty on the branching

fractions of the B-background components, we consider two cases:

• If the branching fraction is measured, we vary the branching fraction within the
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uncertainty of the measurement.

• If the branching fraction is not measured (i.e. modes with an asterisk in Ta-

ble 4.4), we vary the branching fraction within the estimated range and we di-

vide the change in the ρ±π0 signal yield by
√

3 to take into account the smaller

RMS of a uniform prior compared to that of a Gaussian standard deviation.

Some of the modes have branching fractions that are correlated (modes 1-2, modes

6-8, modes 13-14, modes 15-16); and the systematic uncertainties from these modes

are added linearly. The resulting values are then added in quadrature with each other

and the other non-correlated modes. The largest effect due to the branching ratio

uncertainties is observed for the determination of the signal yield.

Systematics Related to B-background ACP

In addition, we have determined the uncertainty on the measured charge asym-

metry due to the possible direct CP violation in the B-background modes. For each

B-background mode, we determine the range of variation of ACP as reconstructed in

this analysis according to whether or not there has already been a measurement of its

physical charge asymmetry, A∗
CP . If there is a measurement, we quote the measured

uncertainty as the range of variation for A∗
CP . If there is no measurement, we consider

the maximum CP violation scenario for the computation of the systematic error. We

also take into accout the possible difference between ACP and A∗
CP for every mode.

This is the dilution effect D ≡ ACP/A
∗
CP and for each B-background mode, ACP is

varied from −DA∗
CP to +DA∗

CP .

The charm contribution is conservatively varied by 30%. For the B0 → ρ±π∓

analysis [37] extensive analyses are carried out to accurately estimate the charm con-
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tribution [37], it is determined that the uncertainty on estimating the charm contam-

ination is 24%. The charm ACP is expected to be zero and is not varied. A summary

of the systematic errors related to B backgrounds is given in table 4.5.

4.5 The Maximum Likelihood Fit

We use the likelihood function defined in equation 3.2, but in addition we fit

for the charge asymmetry. Thus we further split the SCF PDFs into two parts: mis-

reconstructed events with correct ([Qρ]) and incorrect ([−Qρ]) charge assignments.

The signal piece of equation (3.2) is therefore modified in the following way:

(1 +QρA
ρπ
CP )Pρπ

i, c −→ (1 +QρA
ρπ
CP )

[
(1 − fscf)Pρπ

i, c, tru + fscf(1 − ωQ)Pρπ
i, c, scf[Qρ]

]
+ (1 −QρA

ρπ
CP ) fscfωQPρπ

i, c, scf[−Qρ] . (4.2)

4.6 Fit Results

The result of the final fit to the data of 81.9 fb−1 is shown in Table 4.6. After

correcting for the expected bias of 14.4 events obtained from the Monte Carlo fits,

we find 169.0 B± → ρ±π0 events in the selected data set with a statistical error of

28.7 events. The statistical significance of this previously unobserved signal amounts

to 9.2σ, which we calculate by looking at the difference in the − ln(L) values when

the signal yield is fixed to zero and when it is fixed to the bias corrected value. To

calculate the total significance, the signal yield is fixed to 21.1 instead of zero, which

corresponds to the systematic uncertainty. This yields a signal significance of 7.3σ.
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Parameter Description Value

Nsignal Number of B± → ρ±π0 events 183 ± 29

Asignal
CP CP -violating charge asymmetry in B± → ρ±π0 −0.24 ± 0.16

ξ Continuum ARGUS slope parameter −16.8 ± 1.1
〈mB〉 mean of the mES PDF GeV/c2 5.2813 ± 0.0007
ΔEp1 Slope of the continuum ΔE PDF −1.10 ± 0.13
β1 Continuum NN parameter 1.38 ± 0.08
β2 Continuum NN parameter 1.63 ± 0.28
β3 Continuum NN parameter −1.16 ± 0.11
Acont

CP Charge asymmetry in continuum events 0.005 ± 0.009
NLepton

cont Num. of continuum events in Lepton category 36.3 ± 7.8
NKaon

cont Num. of continuum events in Kaon category 2971 ± 57
NNT1

cont Num. of continuum events in NT1 category 523 ± 24
NNT2

cont Num. of continuum events in NT2 category 1975 ± 46
N

NoTag
cont Num. of continuum events in NoTag category 7053 ± 86

Table 4.6: Summary of the final ρ±π0 fit prior to signal yield bias correction.

Figure 4.2 shows the distribution of mES and ΔE, enhanced in signal content by

cutting on the signal-to-continuum likelihood ratios of the discriminating variables.

There is clearly a signal present in the data. The agreement between data and Monte

Carlo expectation is fairly good, but the statistics is still low.

To check in an unbiased way whether the observed signal events are consistent

with ρπ signal or not, the analysis is repeated without using the ρ related information

(i.e. m(ρ) and cosθH(ρ)) in the selection. The neural network is replaced by a two-

variable one (L0, L2), and in the case of multiple candidates the one with the best soft

π0 mass was selected. A PDF for the m(ρ) was added to the likelihood, parametrized

as a double Gaussians for truth matched signal and continuum events. The parameters

of the continuum double-Gaussian were floating in the fit to data while the signal ρ-

parameters were fixed to values determined from Monte Carlo. The resulting ρ mass
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Figure 4.2: Distributions of mES, ΔE, enhanced in signal content for B± → ρ±π0

analysis. The solid curve represents a projection of the maximum likelihood fit re-
sult. The dashed curve represents the contribution from continuum events, and the
dotted line indicates the combined contributions from continuum events and B-related
backgrounds.

distribution, enhanced in truth matched signal content by cutting on the signal-to-

background likelihood ratio of other discriminating variables, are shown in Figure 4.3.

The signal in the data is perfectly consistent with B± → ρ±π0 events.

4.7 Study of the Systematic Uncertainties

The nominal value of the efficiency for B± → ρ±π0 selection is calculated using

fully simulated Monte Carlo events. All the fits in this analysis are done with no con-

straints applied to the absolute number of ρ±π0 events. One could use this information

to calculate corresponding branching fraction, but first the following corrections have

to be taken into account.

• To take tracking efficiency corrections into account, the Monte Carlo efficiency

has to be scaled by an average factor of 0.99. Since there is only one charged

track in this channel, according to the BABAR tracking recipe a 0.8% systematic

error should be assigned.
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Figure 4.3: Distribution of mρ, enhanced in the signal content in B± → ρ±π0 analysis.
The solid curve represents a projection of the maximum likelihood fit result. The dashed
curve represents the contribution from continuum events, and the dotted line indicates
the combined contributions from continuum events and B-related backgrounds. The
dash-dotted curve shows the true-signal plus SCF contributions whereas the shaded
area represents the true-signal contribution only. To make this plot the fit was repeated
after all removing ρ-related information from the NN and the selection.

• π0 killing and smearing is applied by default to every Monte Carlo sample. The

systematic uncertainties are taken from the standard BABAR recipe.

• The total of BB events is obtained using BABAR B-counting procedure and

equals to: 88.9 ± 0.2 million.

• PID killing for the tracks is performed according to the BABAR recipe. It results

in 1.7% relative change in the signal Monte Carlo efficiency, which is assigned

as a systematic error.

• All other systematic errors will be discussed in detail in the rest of this section.

Study of the Fit Systematic Uncertainties

• Tagging: To determine the tagging fraction systematic uncertainty, we used the

statistical errors on these numbers from Breco [15]. Fits were re-done by varying
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the tagging fractions conservatively. The difference observed with respect to the

nominal fit is taken as systematic error.

• Self cross feed: The uncertainty in the SCF fraction was determined from

fully reconstructed B0 → D−ρ+ events, and the assumption was made that

both channels have the same SCF uncertainty. The study of the Dρ control

sample shows that the uncertainty is ±5%, and to be conservative we doubled

this value.

• Mischarge rate: In the case when the charged track is soft, the wrong charge

might be assigned to the ρ. This occurs among the events that are classified as

SCF. Since the SCF uncertainty is ±10%, the mischarge rate was also varied by

the same amount for the systematic uncertainty.

• Neural network: The NN PDF systematic uncertainty was evaluated using the

correction function from BReco validation. This correction was again obtained

from the D−ρ+ control sample. Very little discrepancy between the data and

Monte Carlo was found for the ρ±π0 NN output. The data was refit with the

observed difference in the NN shape and the resulting difference is taken as the

systematic uncertainty.

• mES: The systematic uncertainty due to the mES PDF was obtained after com-

paring D−ρ+ events in data and generic Monte Carlo. It was observed that there

is a 7.1% difference in the resolution between the data and generic Monte Carlo.

Since the mean of this PDF is allowed to float, only the resolution can introduce

a systematic effect. The events were fit with a ±7.1% smearing of the mES PDF
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and the largest difference was taken as the systematic uncertainty.

• ΔE: The uncertainty in the ΔE distribution is dominated by the hard π0 in the

decay. To determine this systematic uncertainty, we chose a direct comparison

between the data and signal MC. We use a control sample of the K+π0 that

contains a hard pion, to evaluate this uncertainty. Since in the ρ+π0 sample

there are two π0s, these two shifts were added linearly to obtain a total possible

shift. This is a conservative estimate since we do not expect the same large

discrepancy for the soft pions as for the hard ones.

• B-background: The B-background modeling is the main source of systematic

uncertainty in this analysis, and a conservative estimation of this uncertainty is

described in section 4.4.

We perform fits on the large Monte Carlo samples with the measured propor-

tions of signal, continuum and B-backgrounds. Biases observed in these tests are due

to imperfection in the likelihood model, e.g., correlations between the discriminating

variables of the signal and B-background PDFs. The observed signal yields are cor-

rected for these fit biases and the full correction is assigned as a systematic uncertainty.

The effect of these systematic uncertainties on the signal yield and charge asymmetry

can be found in tables 4.7 and 4.8.

Study of the Efficiency Systematic Uncertainties

It is necessary to know the systematic uncertainty on the signal selection effi-

ciency if a branching fraction is to be calculated. The basis for evaluating the system-

atic uncertainties on the cuts that are applied in the selection process is a comparison

between data and Monte Carlo. We use the B0 → D−ρ+ validation sample to look
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at the differences in the mES and mρ shapes. For ΔE a B+ → K+π0 sample is used.

To smear the ΔE shape, we employ the same method as when evaluating the ΔE fit

uncertainty. The procedure to evaluate the NN cut systematic uncertainty is more

involved. It uses the validation data and Monte Carlo samples. The fitter is changed

such that the D−ρ+ yield can be fit directly. Two fits are performed, one without

a NN cut and one with the nominal cut. The yields from these two fits provide a

measure for the data efficiency. This is compared to the Monte Carlo efficiency and

the difference is taken as the systematic uncertainty. The systematic uncertainties on

the various cuts are summarized in Table 4.7.

4.8 Summary

We have measured the B± → ρ±π0 branching ratio and its direct CP violating

asymmetry, ACP using a maximum likelihood analysis. The result is obtained from a

data sample of a total integrated luminosity of 81.9 fb−1 collected at the Υ (4S) res-

onance and 9.5 fb−1 taken 40 MeV below the Υ (4S) resonance in the (2000–2002)

period by the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC.

The measured branching fraction is (10.9 ± 1.9(stat.) ± 1.9(syst.)) × 10−6, and the

CP -violating charge asymmetry is 0.24 ± 0.16(stat.) ± 0.06(syst.). To obtain this re-

sult, the assumption is made that the π±π0π0 non-resonant decay is negligible and

all the signal events observed contain the ρ± resonance. The total significance for the

observed signal yield corresponds to 7.3σ.
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B± → ρ±π0 Comments
Signal yields and efficiencies

Nsignal 183.4 fit to data
Corrected Nsignal 169.0 corrected for the fit bias
εrawsignal 17.6 ± 0.1% smeared signal MC
εsignal 17.5 ± 0.1% tracking correction
Statistical Error on Nsignal 28.7 parabolic error from fit

Relative efficiency and scaling systematics
Tracking 0.6% per-track-corrections
PID for tracks 1.7% PID killing AWG recipe
π0-correlated 10.0% smearing/scaling/killing
π0-uncorrelated 2.0% smearing/scaling/killing
ΔE cut 2.6% BReco-MC PDF cut diff.
mES cut 0.0% BReco-MC PDF cut diff.
mρ cut 0.3% BReco-MC PDF cut diff.
cosθH(ρ)cut 1.5% BReco-MC PDF cut diff.
NN cut 4.0% BReco-MC PDF cut diff.
N(BB) 1.1% B-counting
Sub-total: 11.6%

Fit systematics
B Tagging 3.7 parameters from BReco
Fraction of SCF(±10%) 5.9 parameter variation
Mischarge Fraction(±10%) 0.1 parameter variation
ΔE PDF 7.1 PDF shift and shape
mES PDF 2.5 PDF shift and shape
NN PDF 3.0 PDF shift and shape
B-background 11.2 variation of fractions
Fitting procedure 14.4 bias observed in full MC fits
Sub-total: 21.1 events

Total Systematic Error 17.0%

Branching Fraction (10.9 ± 1.9 ± 1.9) × 10−6

Table 4.7: The breakdown of systematic uncertainty for B± → ρ±π0 branching fraction
measurement.
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ACP 0.24 fit to data and sign-flip
Statistical Error on ACP 0.16 parabolic error from fit

Fit systematics
B Tagging 0.004 parameters from BReco
Fraction of SCF(±10%) 0.006 parameter variation
Mischarge Fraction(±5%) 0.002 parameter variation
ΔE PDF 0.021 PDF shift and shape
mES PDF 0.003 PDF shift and shape
NN PDF 0.0 PDF shift and shape
B-background 0.050 variation of fractions
Total Systematic Error: 0.06 Charge asymmetry

ACP (0.24 ± 0.16 ± 0.06)

Table 4.8: The breakdown of systematic uncertainty for B± → ρ±π0 charge asymmetry
measurement.
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Chapter 5

Study of B± → ρ0π± Decay

5.1 Introduction

Both CLEO [38] and Belle [39] have previously published observations of the

B± → ρ0π± decay. We will present an updated measurement with higher precision

on the branching fraction and will investigate the CP -violating charge asymmetry.

From a theoretical point of view, it is interesting for us to probe direct CP violation

in B± → ρ0π± decays [31, 32, 33]. Reference [33] points out that the direct CP

asymmetry in B± → ρ0π± could be as large as 30%−50% if the effect of ρ-ω mixing is

included and the invariant mass of the π+π− pair is in the vicinity of the ω resonance.

In addition, it is well known that the ratio of branching fractions, R, as defined in

Equation 5.1, is particularly interesting because the theoretical prediction varies over

a wide range depending on the assumptions made in its calculation [34, 35, 30, 36].

The latest result from Belle shows [39]:

R ≡ Br(B0 → ρ±π∓)

Br(B+ → ρ0π+)
= 2.6 ± 1.1 (5.1)
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This is consistent with values obtained by CLEO [38]. Theoretical calculations done

at tree level including factorization for the hadronic matrix element give R ≈ 6 [30].

Calculations that include penguin contributions, off-shell B∗ excited states or addi-

tional ππ resonances [36] yield better agreement with the measured value of R. So

a precise measurement of the branching fraction will help us to clarify this puzzle

and to constrain the magnitude of the various form factors needed in the theoretical

calculations in B decays.

5.2 Candidate Selection

In order to reconstruct the ρ0π± final state, we loop over all the combinations

of three charged GoodTracksLoose track candidates, and combine them into a list

of B-candidates. To further improve the signal-to-background ratio, candidates which

pass the preselection must satisfy additional requirements:
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Figure 5.1: ΔE distributions (left) and π+π− invariant mass (right) in the B± → ρ0π±

analysis for the various signal contributions and background processes. Indicated by
the two arrows are the selection cuts.
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• 5.23 < mES < 5.29 GeV/c2.

• −0.05 < ΔE < 0.05 GeV. The left plot in Figure 5.1 shows ΔE distributions

for the signal and various background processes.

• Candidate events should have at least one invariant mass combination, m(π+π−)

within the following range: 0.53 < m(π+π−) < 0.9 GeV/c2. The right plot in

Figure 5.1 shows the π+π− mass for the various signal and background processes.

• The helicity angle of the ρ candidates must satisfy |cosθH(ρ)| > 0.25.

• The absolute time interval cut, |Δt| < 20 ps.

• The error on Δt must satisfy σΔt < 2.5 ps.

• All of the three signal tracks must fail the tight electron ID, the tight Kaon ID

and the tight proton ID.

• The continuum-fighting Neural Network (NN) cut, 0.6 < NN < 1.0. The NN is

built using the six discriminating variables: m(ρ), cosθH(ρ), L0, L2, cosθB,z and

cosθTB ,z.

• The number of signal photons in the DIRC associated with the track of the

bachelor hadron(the one which is not used for ρ0 reconstruction) should be no

less than 5. This requirement implies the restriction to the DIRC geometrical

acceptance.

• In order to remove B → D0X, D0 → Kπ or ππ background, the invariant mass

mKπ or mππ should be outside [1.844, 1.884] GeV.
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All cut efficiencies for signal B± → ρ0π± Monte Carlo, data, uds MC samples are

shown in Table 5.1.

Cut description εMC
ρπ , [%] εData

on εData
off εMC

uds εMC
cc εMC

τ+τ−

Reconstruction 78.2 - - 5.1 5.9 1.7
−0.05 < ΔE < 0.05 GeV 78.2 18.3 18.1 18.9 17.5 15.9
5.23 < mES < 5.29 GeV/c2 98.6 44.5 45.7 45.7 42.7 45.7
electron veto 98.2 88.5 88.6 94.9 90.7 75.5
kaon veto 95.9 58.4 58.5 66.5 39.6 90.6
proton veto 99.2 86.2 86.2 77.9 87.7 98.7
NDIRC

γ ≥ 5(Bachelor) 86.3 81.2 80.5 80.7 77.4 83.3
Δt < 20 ps 99.6 97.4 97.4 97.9 97.0 97.5
σ(Δt) < 2.5 ps 97.0 89.5 92.4 92.4 89.1 80.9
0.53 < mρ < 0.9 GeV/c2 76.5 31.8 32.1 31.1 27.0 50.6
|cosθH(ρ)| < 0.25 98.2 73.8 74.1 76.0 73.2 72.4
NN Cut 85.3 11.6 11.4 14.9 15.6 1.0
D0 veto 97.4 98.1 97.7 97.8 98.1 100

Total(%) 29.0 - - 5.4·10−3 2.7·10−3 1.9·10−4

Table 5.1: ρ0π± analysis: Summary of cut efficiencies for signal MC, data and udsc
MC samples. The efficiencies for each individual line of the table are given relative to
the number of events retained after passing the skim cuts; they don’t include the loss
of events from the previous cuts.

Approximately 7% of selected signal events have more than one candidate after

full selection, and the average number of candidates per event is 1.1. The multiple

candidates in ρ0π± are mainly due to the soft charged track in the B to vector pseudo-

vector type of decays. The candidate is chosen with the reconstructed ρ0 invariant

mass closest to the PDG value. If there is more than one candidate with the same ρ0

invariant mass, we select the first one.

In Table 5.2, we summarize the selection efficiencies, fraction of combinatorial

background and mischarge rate obtained from Monte Carlo after the candidate selec-

tion as described in the preceding sections.
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Decay mode ε(%) fscf(%) ωQ(%)

ρ0π± 29.04 ± 0.016 7.149 ± 0.024 0.227 ± 0.053

Table 5.2: Signal efficiency, fraction of misreconstructed signal events (SCF) and
mischarge rate of the candidate selection. The numbers are obtained from B± → ρ0π±

signal MC. The mischarge rate is to be understood as relative to the fraction of SCF
so that the overall mischarge rate is 1.6%. The errors given are statistical only.

5.3 Validation of ΔE and mES

B+ → D0(K+π−)π+ events can provide important information for the study of

B± → ρ0π± decays. Like B0 → D−ρ+ events, it has a large branching fraction, and

more importantly, it has exactly three charged tracks in the final state as does B± →
ρ0π±. This feature enables us to measure the distributions of B-related quantities,

such as mES and ΔE, precisely from the data. The selection of D0π± events is similar

to the selection of ρ0π± events with the following D mass cut instead of the ρ mass

cut:

• |mD − 1.864| < 0.02 GeV/c2,

where 1.864 is the nominal D0 mass from the PDG. A likelihood fit was performed

on the D0π+ sample using mES, ΔE, Δt with both signal and continuum components

floating and B-background fixed to the Monte Carlo expectation.

Table 5.3 shows some fit results from D0π+ data and Monte Carlo, compared

with the fitted results from ρ0π± Monte Carlo. All of them are consistent each other.

We find the relative shift of −3.63 MeV for ΔE between data and Monte Carlo in
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B+ → D0(K+π−)π+, the ratio of the width of ΔE between data and MC is 1.01, and

the ratio of the width of mES between data and MC is 0.98. The summary of the

data-MC difference can be found in Table 5.4. The assumption is made that these

shifts can be related to ρ0π± data and Monte Carlo. These numbers will be used in

the evaluation of systematic uncertainties on the fitted ρ0π+ yield.

Parameters D0π+ data D0π+ MC ρ0π+ MC

〈ΔE〉 MeV −5.03 ± 0.33 −1.40 ± 0.13 −1.15 ± 0.14
σ(mES) MeV/c2 2.47 ± 0.03 2.52 ± 0.01 2.42 ± 0.01
σ(ΔE) MeV 18.77 ± 0.28 18.51 ± 0.09 20.53 ± 0.10

Table 5.3: Summary of the results extracted from the D0π+ fit.

Parameters σ(mES)data/σ(mES)MC δ〈ΔE〉( MeV) σ(ΔE)data/σ(ΔE)MC

B± → D0π± 0.98 ± 0.01 −3.63 ± 0.35 1.01 ± 0.02

Table 5.4: Summary of the validation on the kinematic variables extracted from D0π+

fit.

5.4 Backgrounds from B Decays

The number of expected events from dominant B-background modes is obtained

from Monte Carlo simulation and can be found in Table 5.5.

The branching fractions for various B-backgrounds have been described in chap-

ter 4. For B+ → π+f0(980) → π+π−π+ decay mode, the branching ratio has not been

measured and there are no reliable theoretical arguments that could be used to infer it

from other measurements. Although a tighter cut on mπ+π− will remove most of them,

the selection efficiency of this mode is still 1.2%. Of primary concern is the possible

interference between this channel and our signal. An independent branching fraction
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measurement B+ → π+f0(980) → π+π−π+ is performed. The resulting upper limit

is given in Table 5.5. Here, we neglect this contamination because of the production

rate of π+f0(980) is tiny in this analysis. The possible interference effect between ρ0

and f0(980) will be discussed in detail in section 5.8 in detail.

Another possible contamination is from B+ → σ0π+, where σ0 is a very broad S-

wave resonance with a mass around 500 MeV, with a width of about 300-400 MeV [41],

and which decays into a π+π− final state. Since we know very little about the σ

resonance, a 2-variable NN fit is performed in order to understand the contamination

from B+ → σ0π+. In this new fit, we remove the ρ information from the neural

network, and use only event shape variables, L0 and L2 as input variables to the

neural network. Two fits were done. One fit to the onpeak data sample with mES,

ΔE and 2-variable NN, the other fit to onpeak data with an additional discriminant,

mρ. We found only 6.2 events difference between the two fits. There is no significant

change on the signal yield after we add the ρ information. So we can conclude that

the signal events from onpeak data fit is consistent with pure ρ resonance. Hence, we

assume that the contamination from this mode is negligible.

The non-resonant contribution can in principle occur for all pionic and kaonic

B →3/4-body final states. The selection efficiency in this analysis is very small (2.3%)

due to cuts on the π+π−π+ Dalitz plot. At the same time, the branching fraction of

inclusive B+ → π+π−π+ decay has been measured at BABAR [40] to be (10.9± 3.9)×

10−6. The current word-average-value of the branching fraction of B+ → ρ0π+ is

9.0 × 10−6, it can be concluded that the inclusive B+ → π+π−π+ decay is dominated

by ρ0π+ decays. Additionally, the same 2-variable NN test results indicate that there
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is no significant S-wave contribution from other sources to the fitted signal yield. Thus

we assume the measured signal events contain only ρ0 resonance.

No attempt is made to group B-backgrounds into 2, 3 and 4-body modes as the

total number of contributing modes are not enormous. Instead all of them are treated

individually. The ΔE,mES and NN distributions were parametrized by empirical PDF.

ΔE and mES correlation in B-background is investigated by using a 2-dimensional

PDF. No significant difference is observed by switching two one dimensional PDFs to

one two dimensional PDF, therefore, for the purpose of simplicity, one dimensional

PDFs are used for B-background throughout this analysis.

In Table 5.5, we list the various background modes and the number of expected

events corresponding to a data sample of 81.9 fb−1. In the nominal fit we assumed

a charge asymmetry of zero for both charged and neutral background modes. A

possible non-zero asymmetry is taken into acount when the systematic errors from the

uncertainties of B-background charge asymmetries are estimated.

5.5 Systematic Uncertainty due to B-background

The principle and detailed procedure of the evaluation of the B-background

systematic error is described in Chapter 4. The systematic errors due to imperfect

B-background modeling are summarized in Table 5.6.

5.6 Maximum Likelihood Fit

The likelihood function is similar to the one used in Chapter 4. It is found

that tagging category information does not bring addition sensitivity to this analysis

due to the clean signal in the data. Thus for simplicity no tagging category related
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Cl Mode BR(10−6) Eff.(%) Nexp

0 B+ → ρ+ρ0 long 30.1 ± 9.0 0.296 7.9 ± 2.4
0 B+ → η′(η′ → ρ0γ)K+ 21.4 ± 1.7 0.035 0.7 ± 0.1
0 B+ → η′(η′ → ρ0γ)π+ 3.0 ± 2.0∗ 0.838 2.2 ± 1.5
1 B+ → K∗0(Kπ)π+ 10.3 ± 2.6 1.228 11.1 ± 2.8
1 B+ → K+ρ0 3.9 ± 1.2 1.439 4.9 ± 1.5
1 B+ → K0

S
(π+π−)π+ 9.0 ± 0.9 0.668 5.3 ± 0.5

1 B+ → K+f0(980) 11.7 ± 4.0 0.108 1.1 ± 0.4
1 B+ → π+ω(π+π−) 0.14 ± 0.04 29.0 3.6 ± 1.0
1 B+ → π+f0(980) 1.2∗ 1.170 1.8
2 B0 → ρ+ρ− long 40+50∗

−35 0.179 6.3+7.8
−5.5

2 B0 → ρ0ρ0 long 3.5 ± 3.5∗ 0.537 1.7 ± 1.7
2 B0 → a+

1 π
− 35 ± 35∗ 0.173 5.3 ± 5.3

3 B0 → ρ±π∓ 22.6 ± 2.8 1.435 29.3 ± 5.2
3 B0 → ρ+K− 7.3 ± 1.8 0.174 1.1 ± 0.3
3 B0 → K∗+(K+π0)π− 8.7 ± 5.0 0.185 1.4 ± 0.8

4 B+ → (K
(∗∗)
X π)+ 40 ± 26∗ 0.082 2.9 ± 1.9

4 B0 → (K
(∗∗)
X π)0 72 ± 54∗ 0.117 7.4 ± 5.5

Total Charmless 92.2 ± 11.3

5 B+ → charm - - 54.1 ± 7.4
6 B0 → charm - - 19.2 ± 4.4

Table 5.5: Classification of background from charged and neutral Bs. The branching
fractions were obtained from ref. [37], efficiencies and expected event yields are ob-
tained from MC. The errors on the event yields mainly reflect the uncertainties on the
branching fractions. The asterisk corresponds to modes where the branching ratio is
estimated from theoretical argument in ref. [37]. Only the modes that have at least one
event in either channel are listed.



91

BR-variation ACP -variation

Mode ΔNsig ΔAsig
CP [%] ΔN sig ΔAsig

CP [%]

B+ → ρ+ρ0long 0.17 0.03 0.04 0.23
B+ → η′(η′ → ρ0γ)K+ 0.00 0.00 0.00 0.00
B+ → η′(η′ → ρ0γ)π+ 0.31 0.05 0.05 0.23
B0 → ρ+ρ−long 0.19 0.03 0.04 0.00
B0 → ρ0ρ0long 0.04 0.01 0.01 0.00
B+ → K∗0(Kπ)π+ 1.80 0.13 0.53 1.75
B+ → K+ρ0 0.87 0.19 0.16 0.72
B+ → K0

S
(π+π−)π+ 0.13 0.01 0.03 0.29

B+ → K+f0(980) 0.11 0.01 0.01 0.07
B0 → ρ±π∓ 0.94 0.10 0.31 0.00
B0 → ρ+K− 0.06 0.00 0.01 0.00
B0 → a±1 π

∓ 0.18 0.04 0.04 0.21
B0 → K∗+(K+π0)π− 0.32 0.02 0.01 0.00
B+ → (K∗∗

X π)+ 0.19 0.04 0.02 0.19
B0 → (K∗∗

X π)0 0.06 0.02 0.03 0.21
B+ → charm 0.29 0.02 0.13 1.15
B0 → charm 0.15 0.01 0.01 0.15

Total 2.3 0.27 0.66 2.2

Table 5.6: Systematic errors due to the uncertainties of B-background branching frac-
tions and possible charge asymmetries in B± → ρ0π± analysis.

information is used in likelihood fit.

5.7 Fit Results

The result of the final fit to the data of 81.9 fb−1 is shown in Table 5.7. Figure 5.2

and Figure 5.3 show the distributions of mES, ΔE and NN for data samples that are

enhanced in signal, using cuts on the signal-to-continuum likelihood ratios of the

discriminating variables that are not being plotted.

Due to the possible existence of a scalar contribution to the same final state,

additional care is taken in this analysis. One way of looking at the problem is to repeat
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Parameter Description Value

Nsignal Number of fitted B± → ρ0π± events 243.1 ± 26.5

Asignal
CP CP asymmetry in fitted B± → ρ0π± sample −0.19 ± 0.11

μ(ΔE) Mean of core gaussian in signal ΔE PDF GeV −0.001 ± 0.003
μ(mES) Center of CB function in signal mES PDF GeV/c2 5.2803 ± 0.0003
Ncont Number of continuum events 8141.8 ± 93.3
ξ Continuum Argus shape parameter −30.8 ± 1.9
ΔEp1 Slope of continuum ΔE distribution −0.89 ± 0.39
β1 Continuum NN parameter 5.49±0.81
β2 Continuum NN parameter 0.75±0.17
β3 Continuum NN parameter 1.45±0.03

Table 5.7: Summary of the final B± → ρ0π± fit result.

the analysis without making any assumption about the intermediate resonance, and

then look at the distribution of signal on the Dalitz plot, i.e. m(ρ) and cosθH(ρ).

A detailed study that does not use any ρ related information was carried out.

In addition the mES and ΔE which are still kept in the analysis, the six-variable-NN

is replaced with a two-variable-NN that contains only the event shape varibles, L0

and L2. The new fitted signal yield is compatible with the nominal fit result where

the ρ related quantities are used. The ρ mass and helicity distributions in the signal

enhanced region can be adequately described by a B± → ρ0π± signal, as shown in

Figure 5.4.

5.8 Study of the Systematic Uncertainties

Corrections and Uncertainties on Signal Efficiency

Corrections and uncertainties that we need to apply for each component of the

signal efficiency are:

• Following the BABAR recipe, we find that tracking efficiency in Monte Carlo needs
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Figure 5.2: Distributions ofmES, ΔE distributions for samples enhanced in ρ0π± signal
using likelihood ratio cuts. The solid curve represents a projection of the maximum
likelihood fit results. The dashed curve represents the contribution from continuum
events, and the dotted line indicates the combined contributions from continuum events
and B-backgrounds. For demonstration purpose, we loosened the ΔE cut from −0.05 <
ΔE < 0.05 GeV to −0.1 < ΔE < 0.1 GeV, and repeat the fit to get ΔE distribution.

to be scaled by an average factor of 0.975. We also assign a 0.8% systematic

error for each track, which gives a total systematic error of 2.4%.

• PID killing for the tracks is performed according to the standard BABAR recipe.

It results in a 5.2% relative change in the signal Monte Carlo efficiency which is

assigned as a systematic error.

• Uncertainties on the ΔE and mES cuts is evaluated by comparing the difference

between data and MC from Breco data sample (see Section 5.3).

• The uncertainty on the NN cut is similarly obtained from control samples. Due

to the use of ρ related information in NN we use B0 → D−ρ+ as the control

sample.

Uncertainties in the Signal Yield and Charge Asymmetry
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Figure 5.3: Distribution of NN output for sample enhanced in ρ0π± signal using like-
lihood ratio cut.

The final state of this channel consists of three charged tracks. The sources of

the systematic uncertainties are listed below:

• SCF fraction: The SCF fraction is very small(7.1%) in this analysis. It is

varied by 5% to take into account the uncertainty of this quantity due to data

and Monte Carlo difference. The variation on the signal yield and ACP was taken

as the systematic error.

• Mischarge rate: Also varied by 5%.

• mES and ΔE PDFs: Uncertainties taken from Section 5.3 is used to smear the

ΔE and mES PDFs. The fit is redone with the smeared PDF and the difference

in the fit result gives the uncertainty related to mES and ΔE.

• NN PDF: Systematic uncertainty due to the NN PDF can be evaluated using

the correction function from the same B0 → D−π+ sample.

• B-background: The B-background modeling is one of the main sources of
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Figure 5.4: Distributions of m(ρ) and cosθH(ρ)for samples enhanced in ρ0π± signal
using likelihood ratio cuts.

systematic in the B± → ρ0π± analysis. An estimation of this uncertainty is

described in detail in Section 5.5.

To find the total systematic uncertainty on the signal yield and ACP , these

individual contributions are added in quadrature. The effects of these systematic

uncertainties can be found in Table 5.8 and Table 5.9 respectively.

Uncertainties from Interference Effect

Besides ρ0, a few other resonances, namely, f0(980) and σ0, also decay dom-

inantly into π+π− final states. The inteference between these resonances and ρ0

may cause a considerable effect on the B± → ρ0π± branching fraction measure-

ment. Fortunately, the intrinsic inteference between vector particles(ρ0) and scalar

particles(f0(980), σ0) is zero if one integrates over the entire helicity angle. There-

fore, we only take into account the direct contribution from other resonances as if no

interference ever happened.
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5.9 Summary

We have measured the B± → ρ0π± branching fraction and its direct CP violating

charge asymmetry ACP using a maximum likelihood method. The results are obtained

from a data sample with a total integrated luminosity of 81.9 fb−1 collected at the

Υ (4S) resonance and 9.5 fb−1 taken 40 MeV below the Υ (4S) resonance in the (2000-

2002) period by the BABAR detector at the PEP-II asymmetric-energy B factory at

SLAC. The measured braching fraction is (9.5±1.1(stat.)±0.8(syst.))×10−6 and the

CP violating charge asymmetry is −0.19 ± 0.11(stat.) ± 0.02(syst.). No evidence for

direct CP violation in B± → ρ0π± decays is found.
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B+ → ρ0π+ Comments
Signal yield and efficiencies

Corrected Nsignal 237.9 fit to data
εraw
signal (29.0 ± 0.1)% Signal MC
εsignal (28.3 ± 0.1)% tracking eff. correction
Statistical Error 26.5 Parabolic error from fit

Efficiency and scaling systematics, [%]
Tracking 2.4 per-track-corrections
PID for tracks 5.2 PID killing AWG recipe
ΔE cut eff. 1.0 BReco-vs-MC
mES cut eff. 0.0 BReco-vs-MC
NN cut eff. 4.0 BReco-vs-MC
NDIRC

γ > 5 cut eff. 1.0 PIDReco-vs-MC
N(BB̄) 1.1 B-counting
Sub-total 7.2%

Fit systematic
Fraction of SCF(±5%) 1.3 parameter variation
Mischarge Fraction(±5%) 0.1 parameter variation
ΔE PDF 0.7 PDF shift and shape
mES PDF 1.6 PDF shift and shape
NN PDF 3.2 PDF shift and shape
Fitting procedure 8.2 Bias in MC fits
B-Background 2.3 variation of B-bkg parameters
Sub-total 9.3 absolute systematic from fit
Total Systematic error 19.5 total absolute systematic error
Branching fraction (9.5 ± 1.1 ± 0.8) × 10−6

Table 5.8: Summary of the systematic errors on the fitted signal yield in B± → ρ0π±.

ACP −0.19 fit to data
Statistical Error 0.11 Parabolic error from fit

Fit systematic
Fraction of SCF(±5%) 0.0012 parameter variation
Mischarge Fraction(±5%) 0.0001 parameter variation
ΔE PDF 0.0004 PDF shift and shape
MES PDF 0.0016 PDF shift and shape
NN PDF 0.0028 PDF shift and shape
B-background 0.0222 variation of fractions and CP parameters
Detector Charge Bias 0.009 estimate
Sub-total 0.024

Table 5.9: Summary of the systematic errors on the fitted charge asymmetry in B± →
ρ0π± analysis.
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Chapter 6

Study of B0 → ρ0π0 Decay

6.1 Introduction

The channel B0 → ρ0π0 itself is of interest for many reasons: it is a charmless

color-suppressed mode, and thus there is little experimental data which could high-

light the underlying processes of such decays. Naive color-counting arguments lead

one to expect the branching fraction of a color-suppressed mode to be 1/9 that of a

corresponding non color-suppressed mode. Final state interactions, or the presence of

normally sub-leading diagrams, can dramatically modify this naive picture. Comput-

ing the branching fractions as a function of some dynamical parameter N eff
c or effective

number of colors, one finds the ratio of the branching fraction of B0 → ρ±π∓ to the

branching fraction of B0 → ρ0π0 to be between 3.5 and 70 [42]. More importantly, if

B0 → ρ0π0 is found to be less suppressed than expected, it will be a key component

in the π+π−π0 Dalitz plot analysis [20]. Even if it cannot be used in the Dalitz plot

analysis, the B0 → ρ0π0 branching fraction can be used to constrain |αtrue − αeff |,

where αeff is measured in the Dalitz plot analysis with B0 → ρ±π∓ [21].

Only 90% CL upper limits have been set on B0 → ρ0π0 by CLEO [38], 5.1×10−6



99

(on 9.7 × 106 BB pairs) and by Belle [39], 5.3 × 10−6 (on 31.9 × 106 BB pairs).

Technically speaking, the difficulties induced by small branching fractions are

are mainly two-fold. First, the signal to continuum background ratio, is much smaller

than in the other B → ρπ analyses. Second, the signal will be highly polluted by

other intermediate states leading to the same π+π−π0 final state.(B0 → ρ±π∓ is one

such channel, but other intermediate states such as B0 → f0π
0 also contribute.) B-

related modes leading to other final states will also contaminate the signal, as in other

B → ρπ analyses.

In the present analysis, we choose to not look at the interfering parts of the

π+π−π0 Dalitz plot. To study these interference regions requires a more involved

analysis that will be described later. This analysis studies only the central region of

the ρ0 band. The ρ polarization feature depopulates this region, which decreases the

analysis’ sensitivity. Still, we may have enough sensitivity to discover an enhanced

B0 → ρ0π0 signal outside the interfering region.

The analysis proceeds in two steps. We first measure the B0 → ρ0π0 yield to

obtain its branching fraction. If the signal is significant enough we perform a time-

dependent CP analysis. B0 → ρ0π0 is a CP eigenstate; its time-dependent probability

density function (PDF) is given by:

fB0 tag =
e−|Δt|/τ

4τ

[
1 +

ΔDctag

2
+ 〈D〉ctag (S sin(ΔmdΔt) − C cos(ΔmdΔt))

]
(6.1)

fB0 tag =
e−|Δt|/τ

4τ

[
1 − ΔDctag

2
− 〈D〉ctag (S sin(ΔmdΔt) − C cos(ΔmdΔt))

]
(6.2)

where ctag is the tagging category of the tagging B, 〈D〉ctag and ΔDctag are the average

dilution factor and tag-asymmetry dilution in the tagging category ctag. CP violation
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would be established if C �= 0 (direct CP violation) or S �= 0 (CP violation induced

by the interference between decay with and without mixing). This latter parameter

is linked to sin2α.

6.2 Selection

The following event selection is performed in order to select B0 → ρ0π0 events.

• 0.01 < LATγ < 0.6

• Eγ,LAB > 0.05 GeV

• Only π0 s constructed from resolved γγ are used, 0.11 < m(π0)< 0.16 GeV/c2

• 0.53 < m(π+π−) < 0.9 GeV/c2

• |cosθH(ρ)| > 0.25

• Veto of B0 → ρ±π∓ events, i.e. we reject the candidate if it passes: 0.4 <

m(π+π0) < 1.3 GeV/c2 or 0.4 < m(π−π0) < 1.3 GeV/c2

• Two body veto to remove B+ → π+π0 andB+ → K+π0: m(π±π0) < 5.14 GeV/c2

• 5.23 < mES < 5.2875 GeV/c2

• −0.15 < ΔE < 0.10 GeV

• PID cuts: both tracks must fail the Tight electron, proton and kaon IDs

• Time cut: |Δt| < 20 ps and σΔt < 2.5 ps

• Continuum-fighting NN cut. The NN is built using the six disciminant variables:

m(ρ), cosθH(ρ), L0, L2, cosθB,z, cosθTB ,z.
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Table 6.1 summarizes the efficiency of each cut when applied to signal Monte

Carlo, continuum Monte Carlo, off-peak data and on-peak “sideband” data. The

tables show good agreement between continuum Monte Carlo, off-peak and on-peak-

“sideband”.

Cut description εMC,Corr
ρ0π0 [%] εMC,Uncorr

ρ0π0 εdata
off εdata

on(SB) εMC
udsc

skim 52.9 58.1 4.0
track quality 99.8 99.8 99.7 99.7 99.7
0.01 < LAT(γ) < 0.6 97.2 97.7 92.3 92.1 92.4
Eγ > 0.05 GeV 98.4 98.7 95.7 96.2 96.0
0.11 < m(π0) < 0.16 97.9 98.1 96.1 96.4 96.3
0.4 < m(ρ0) < 0.9 73.6 73.9 21.6 22.1 22.1
0.25 < |cosθH(ρ)| 98.4 98.4 80.9 81.4 82.1
−0.15 < ΔE < 0.1∗ 81.1 82.3 23.3 48.0 23.1
5.23 < mES < 5.29∗ 99.4 99.4 44.3 60.3 42.4
|Δt| < 20 ps 98.9 98.9 94.1 93.0 93.5
σ(Δt) < 2.5 ps 95.3 95.3 92.1 90.6 91.4
ρ± veto 96.6 96.6 98.3 97.6 98.5
Two Body veto 99.9 99.9 100. 97.1 100.
electron veto 98.4 98.4 92.6 93.1 94.5
kaon veto 97.1 97.2 76.5 75.1 69.6
proton veto 99.5 99.5 94.1 94.6 92.0
NN Cut 81.1 81.2 6.97 7.61 6.89

Table 6.1: Cut efficiencies for signal MC with π0 killing and smearing corrections
applied,signal MC without π0 corrections, offpeak data, onpeak sidebands data (mES <
5.23 or mES > 5.29, and ΔE < −0.15 or ΔE > 0.1, as indicated by the “*”), and
udsc MC. The table gives efficiences for a cut relative to the previous cut. Note that
MC tracking correction has not been applied.

Approximately 8% of signal events that pass the selection have multiple B can-

didates, and on average, there are 1.1 candidates per event. Most (>90%) of these

multi-candidate events have two B candidates. In case of such multiple candidates

the candidate with ρ mass closest to the PDG value is selected.
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Table 6.2 summarizes the final signal efficiency and background contamination

in the data sample. The selection efficiency for signal is 20.2%, with a relative SCF

fraction of 9.1%. For 1999, 2000, 2001 and 2002 data set(81.9 fb−1), there are 7048

events that pass the selection and enter the likelihood fit.

Mode ε (%) fSCF (%)

B0 → ρ0π0 20.2 ± 0.1 9.1 ± 0.2

Table 6.2: Summary of the selection efficiency of B0 → ρ0π0.

6.3 Backgrounds from B Decays

In total, we expect 73.6 charmless B-related background events and 59.0 charmed

B-background events in the 81.9 fb−1 data sample after the full selection.

The criterion to retain a mode is that more than one event remains after the

selection: according to this, 17 charmless modes plus generic charmed modes are

retained. Those modes are classified according to their PDF shapes and CP properties.

The classes are summarized in table 6.3.

6.4 Maximum Likelihood Fit

Since we are looking for a decay into CP eigenstate, we do not have the charge

of the B decay included in the likelihood. We use the likelihood function defined in

Equation 3.2 for this analysis.
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Class Mode BR (×10−6) Nexp

9 B+ → ρ+ρ0
long 30.1 +8.3

−9.9* 15.7 +4.4
−5.2

0 B0 → ρ+ρ−long 40.0 +50
−35* 10.1 +12.6

−8.8

1 B0 → η
′
(ρ0γ)π0 0.0 ± 1.0* 0.0 +2.0

−0.0

2 B0 → π0K∗0(K+π−) 0.0 ± 1.4 0.0 ± 2.1
11 B+ → ρ+π0 15.0 +15

−10* 15.0 +15.0
−10.0

3 B0 → K∗(→ (Kπ)0)γ 40.2 ± 2.7 1.7 ± 0.1
18 B0 → K0

S(→ π+π−)π0 3.5 ± 0.5 1.7 ± 0.2
4 B0 → ρ+π− 11.3 ± 1.4 7.6 ± 0.9
5 B0 → ρ−π+ 11.3 ± 1.4 8.6 ± 1.1
6 B0 → ρ−K+ 7.3 ± 1.8 0.7 ± 0.2
12 B+ → K+π0 12.7 ± 1.2 0.8 ± 0.1
13 B+ → π+π0 5.8 ± 1.0 1.4 ± 0.2
14 B+ → (K∗∗π)+ 40 ± 26* 2.2 ± 1.4
15 B0 → (K∗∗π)0 72 ± 54* 3.1 ± 2.3
10 B+ → a+

1 (→ (ρπ)+)π0 35.0 ± 25.0* 5.1 ± 3.6
7 B0 → f0π

0 0.0 ± 3.0* 0.0 +2.9
−0.0

8 B0 → π+π−π0(non − res) 0.0 ± 5.0* 0.0 +3.7
−0.0

Sub-total B → charmless - 74 ± 22

16 B0 → charm - 21.0 ± 6.3
17 B+ → charm - 38 ± 11

Total 132 ± 25

Table 6.3: Classifications of major B-background modes. A “*” indicates that the
branching fraction is estimated.

6.5 Fit Results

This section discusses the result of the final fit on data. There are 7048 data

events that pass the selection and enter the final fit. In the nominal fit, 18 parameters

are floated; their fitted values are shown in Table 6.4. The signal yield is found to be

24.9± 11.5(stat.), with a significance of 2.8σ (computed as
√−2 ln(Lnull/Lmax)). The

total fitted continuum yield is 6892.6 ± 83.9 which agrees reasonably well with that

estimated from off-peak data (6691 ± 340).
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Parameter Description Value

Nρπ Number of B0 → ρ0π0 events 24.9 ± 11.5
NLepton

Bρπ Number of continuum events in Lepton tag. cat. 24.3 ± 5.4
NKaon

Bρπ Number of continuum events in Kaon tag. cat. 1616.5 ± 40.9
NNT1

Bρπ Number of continuum events in NT1 tag. cat. 331.3 ± 18.4
NNT2

Bρπ Number of continuum events in NT2 tag. cat. 1110.9 ± 33.6

NNoTag
Bρπ Number of continuum events in NoTag tag. cat. 3809.6 ± 62.2

ξ Cont. ARGUS function slope −23.3 ± 2.1
ΔEπ

p1 Cont. ΔE linear term −0.67 ± 0.17
a2 Cont. NN polynomial coefficient order 2 −0.058 ± 0.023
a3 Cont. NN polynomial coefficient order 3 0.085 ± 0.022
a4 Cont. NN polynomial coefficient order 4 −0.116 ± 0.020
a5 Cont. NN polynomial coefficient order 5 0.081 ± 0.014
μ(Δt)1 Cont. 1st Gaussian mean of Δt Res. 0.043 ± 0.010
σ(Δt)1 Cont. 1st Gaussian sigma of Δt Res. 1.089 ± 0.036
σ(Δt)2 Cont. 2nd Gaussian sigma of Δt Res. 2.313 ± 0.301
σ(Δt)3 Cont. 3rd Gaussian sigma of Δt Res. 12.339 ± 1.363
f(Δt)1 Cont. 1st Gaussian fraction of Δt Res. 0.157 ± 0.048
f(Δt)2 Cont. 2nd Gaussian fraction of Δt Res. 0.032 ± 0.005

Table 6.4: The full B0 → ρ0π0 fit result on data.

Figure 6.1 shows distributions of mES and ΔE enhanced in signal content by

cuts on the signal-to-continuum likelihood ratios of the discriminating variables that

are not being plotted. The agreement between data and Monte Carlo expectation is

acceptable. No significant B0 → ρ0π0 signal is seen.

6.6 Systematic Uncertainties on the Signal Yield

Systematic Uncertainties Related to B-backgrounds

Two approaches are used to study the systematics on the yield due to uncertain-

ties related to B-backgrounds. One is conventional: contributions to the systematic

error by each B-background mode, obtained by varying its yield by one standard de-
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Figure 6.1: Distributions of mES (left) and ΔE (right) for samples enhanced in ρ0π0

signal content using cuts on the signal-to-continuum likelihood ratio. The solid curves
represent projections of the fit result. The dashed curves represent the contribution
from continuum events, and the dotted lines indicate the combined contributions from
continuum events and B backgrounds.

viation. Table 6.5 shows the contribution from major B-background modes to the

systematic uncertainty on the signal yield. The total error calculated with this ap-

proach is +2.0
−3.3. All contributions are added quadratically. For unknown modes with

only estimated branching fractions, the uncertainties are divided by
√

3 and taken as

the standard deviations.

The other approach is used as a crosscheck. It is as follows:

1. Generate events according to PDF. In each generation, randomize B-background

yields simultaneously. For a known branching fraction, we take the measured

mean and uncertainty as the mean and width of a Gaussian randomization. For

an estimated branching fraction, we take the mean and range to define a flat

distribution.

2. Use these yields together with the rest of the nominal inputs, then fit back on

this data set with the modified branching fraction and get a new signal yield.
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Channel ΔN

B+ → π+π0 +0.03 / − 0.03
B+ → K+π0 +0.02 / − 0.02
B0 → ρ+π− +0.16 / − 0.11
B0 → ρ−π+ +0.17 / − 0.12
B0 → ρ−K+ +0.01 / − 0.03
B+ → ρ+π0 +1.02 / − 1.43
B0 → KSπ

0 +0.04 / − 0.04
B0 → K∗0(K+π−)π0 +0.00 / − 1.44
B0 → K∗0(K+π−)γ +0.03 / − 0.05
B0 → (K∗∗π)0 +0.16 / − 0.10
B+ → (K∗∗π)+ +0.05 / − 0.05
B0 → η

′
(ρ0γ)π0 +0.00 / − 0.76

B0 → f0(980)π0 +0.00 / − 0.33
B0 → π+π−π0 (non-res) +0.00 / − 1.91
B0 → ρ+ρ−long +0.51 / − 0.67
B+ → ρ+ρ0long +1.07 / − 0.77
B+ → a+

1 π
0 +0.35 / − 0.31

B0 → charm +1.11 / − 1.00
B+ → charm +0.31 / − 0.31

Total +2.00 / − 3.26

Table 6.5: Contributions to the signal yield uncertainty from each involved B-
background mode. The positive contribution comes from varing a yield down by one
standard deviation and the negative from varing up by one standard deviation. The
results are obtained from fits to data.

3. Use the unmodified nominal parameter set to fit on the same toy set again and

get a signal yield.

4. The difference between results obtained in 2) and 3) has a distribution, of which

the RMS (or width if Gaussian-like) is taken as the systematic uncertainty on

signal yield due to uncertainties in B-background branching fractions.

With this approach, the systematic uncertainty due to B-background branching frac-

tion uncertainties is found to be 4.5 events, in good agreement with the previous
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approach.

Other Systematic Uncertainties from Likelihood Fit

Other sources of systematic uncertainties have been studied and the results are

shown in table 6.6. The total contribution from these sources is 3.5 events.

Sources Variation ΔN

B0 lifetime 1σ according to PDG 0.17
B+ lifetime 1σ according to PDG 0.07
mES PDF corrected according to BReco Dρ 1.29
ΔE PDF corrected according to BReco Dρ 0.96
Tag. cat. efficiencies 1σ according to BReco or MC 0.15
Signal Δt resolution 1σ according to BReco measurements 0.34
Signal NN PDF BReco Dρ used to correct the PDF 2.21
SCF fraction Varied by 5% relative 0.05
B-bkg tag. fractions Statistic Uncertainties from MC 0.80
Fitting procedure Fits to data-size MC chunks 2.02

Total 3.53

Table 6.6: Contributions to the B0 → ρ0π0 signal yield uncertainty from sources other
than B-background branching fractions.

Systematics due to Interferences

Interferences between B0 → ρ0π0 and B0 → f0(980)π0 or σ(400− 1200)π0 occur

at the level of decay amplitudes. While the decay B0 → ρ0π0 is S → V P , the decays

B0 → f0(980)π0 or σ(400 − 1200)π0 are both S → SP . To conserve total angular

momentum, the orbital angular momentum of SP must be L = 0 while that of V P

must be L = 1. The total wave function of V P then has Y1 (the spherical harmonic

function) for the orbital angular momentum part and the total wave function of SP has

Y0. Therefore the total wave functions of V P and SP are orthogonal when integrated

over the whole phase space. With the above argument, it is expected the interferences
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between B0 → ρ0π0 and B0 → f0(980)π0 or σ(400 − 1200)π0 are very small.

Interference between B0 → ρ0π0 and B0 → ρ±π∓ is negligible since we cut away

the interference corners in the Dalitz plot.

Total Systematic Uncertainty

The total systematic uncertainty on yield is +4.1
−4.8 events according to the previous

studies. Since it is not too asymmetric, we simply take 4.8 as the total systematic

uncertainty on the observed signal yield. The systematic uncertainties are summarized

in Table 6.7.

6.7 Setting the Upper Limit on the Branching Fraction

Given the current levels of expected signal yield and background in this analysis,

the final fit is not sensitive enough to actually measure the branching fraction for

B0 → ρ0π0. In this case, an upper limit on the branching fraction is set, using an

approach similiar to [43]. The method used for this analysis is outlined as follows:

1. Generate toy Monte Carlo with the nominal expected number of background

events and a signal hypothesis, μinput
s = μexpected

s . This is done multiple times,

and each toy Monte Carlo experiment is fitted for the signal yield, μ′
s. The

collection of μ′
s forms a distribution, Ds+b(μ

′
s, μ

input
s ), for the original signal hy-

pothesis.

2. Many toy Monte Carlo samples with a signal hypothesis of zero events and with

the expected number of background events are also generated. Again, each data

sample is fitted and we obtain the distribution of the fitted signal yield, Db(μ
′
s, 0).

3. For a particular data sample, a fit is first performed using the likelihood function
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B0 → ρ0π0 Comments
Signal yields and efficiencies

Nsignal 24.9 fit to data
εrawsignal 20.2 ± 0.1% smeared signal MC
εsignal 20.0 ± 0.1% tracking correction
Statistical Error 11.5 parabolic error from fit

Efficiency and scaling systematics
Tracking 1.6% per-track-corrections
PID for tracks 4.0% PID killing AWG recipe
π0-correlated 5.0% smearing/scaling/killing
π0-uncorrelated 0.8% smearing/scaling/killing
ΔE cut 0.1% data-vs-MC shift
mES cut 0.0% data-vs-MC shift
NNcut 1.0% data-vs-MC
Br(ρ→ π+π−) 1.6% Γ(π+π−)/Γ(Total) err.
N(BB) 1.1% B-counting
Sub-total: 7.0%

Fit systematics
τB0 ± 0.016 ps 0.17 parameter variation
τB+ ± 0.016 ps 0.07 parameter variation
Δt Resolution 0.34 parameters from BReco
B Tagging of signal 0.15 parameters from BReco
B-bkg tagging fractions 0.8 Statistic Errors from MC
Fraction of SCF(±5%) 0.05 parameter variation
ΔE PDF 0.96 PDF shift and shape
mES PDF 1.29 PDF shift and shape
NN PDF 2.21 PDF shift and shape
B-background +2.00

−3.26 variation of fractions
Fitting procedure 2.02 bias observed in full MC fits
Sub-total: 4.8 events

Systematics error 19.3% After unblinding

Branching ratio (1.40 ± 0.64 0.27)× 10−6

Table 6.7: The breakdown of systematics for measurements of B0 → ρ0π0 Branching
Ratio.
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to obtain the number of signal events in the sample, μfitted
s . The confidence level

(CL) for this measurement, given a signal hypothesis μexpected
s , is:

CL(μfitted
s , μexpected

s ) ≡ Ds+b(μ
′
s ≤ μfitted

s ;μexpected
s )

Db(μ′
s ≤ μfitted

s , 0)
(6.3)

4. The 90% confidence limit corresponding to this fitted signal yield, μfitted
s , is

defined by the requirement:

CL(μfitted
s , μ90

s ) = 1 − 0.90 (6.4)

A scan is performed over signal hypotheses until the minimum signal hypothesis

which satisfies the requirement is determined. This signal hypothesis is μ90
s .

The above procedure yields a relationship between μ90
s and μfitted

s , which is deter-

mined from toy Monte Carlo studies. From this curve one can get the corresponding

upper limit at a 90% confidence level. To get the upper limit on the branching fraction,

however, one must consider all the systematic uncertainties, including those on the

fitted yield, on the event selection efficiency and on scaling factors such as the number

of B mesons and the ρ decay width. To be conservative, the upper limit on the yield

is shifted up by one standard deviation of the systematic error, and the efficiency and

number of B mesons are shifted down by one standard deviation.

The upper limit on the uncorrected signal yield is obtained to be 42.1 with the

method described above.
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6.8 Summary

All nominal fits and cross-checks on toy Monte Carlo, fully simulated Monte

Carlo and data show consistent results. The measurement on the full data set of

years (1999-2002) corresponding to 81.9 fb−1 gives a signal yield of 24.9±11.5(stat.)±

4.7(syst.). The corresponding branching fraction is (1.4±0.6(stat.)±0.3(syst.))×10−6.

We set a 90% confidence-level upper limit of B < 2.8 × 10−6 for the color-suppressed

mode B0 → ρ0π0.
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Chapter 7

B0 → π+π−π0 Dalitz Plot Analysis

The main challenge of the B0 → π+π−π0 Dalitz plot analysis is the construction of a

realistic signal probability density function, where both the kinematic and dynamical

properties as well as their time dependence are modeled to good accuracy. Some basic

properties of the Dalitz plot are discussed in appendix C.

7.1 Event Selection

The candidate selection applied here differs in one fundamental aspect from the

one used in the previous quasi-two-body analyses: due to the rather involved time-

dependent fit, with at minimum 9 physical observables, we attempted to reduce the

total number of events entering the likelihood fit. Without compromising the signal

efficiency, this goal can only be achieved by sacrificing the mES and ΔE sidebands.

The obvious drawback is that not all empirical shape parameters of the continuum

background can be determined by the fit together with the signal parameters. One

rather must extrapolate them from sidebands and off-resonance data, which leads to

systematic errors. On the other hand, tighter selection requirements lead to improved

rejection of poorly constructed self-cross-feed (SCF) events, thus increasing the effi-
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ciency of truth-matched (TM) events.

The main part of the B0 → π+π−π0 event selection is similar to the one de-

scribed in the previous quasi-two-body analyses. Details on the ntuple preselection,

the vertexing and flavor tagging are given therein.
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Figure 7.1: Left: distributions of m+− for B0 → ρ0π0 (solid line for TM and shaded
for SCF) and B0 → K0

Sπ
0 events. The arrow indicates the minimum requirement

applied. Right: background from B0 → J/ψπ0 → μ+μ−π0 events in m+−. The
shaded regions indicate different tight-muon PID requirements, of which the second
one (medium shaded) is adopted in the analysis. Also shown is the distribution of the
B0 → ρ±π∓ signal component.

• Dalitz plot (DP): We remove B0 → K0
Sπ

0 events, of which the Δt distribution

is distorted due to the long K0
S

lifetime. Since they represent a δ (plus resolution)

peak in m+− (see left hand plot in Fig. 7.1), we require m+− > 0.52 GeV/c2,

which is equivalent to m′ < 0.857. We also remove the center of the Dalitz plot,

where no signal is expected, by requiring that either one of the three invariant

masses (m+0, m−0, m+−) be lower than 1.5 GeV/c2.

• PID: both tracks must fail the tight electron, proton and kaon flags of the
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standard Micro selectors. To suppress B0 → J/ψπ0 → μ+μ−π0 events (branch-

ing fraction 1.3×10−6), we require that at least one of the charged tracks not to

be flagged as a tight muon (see right hand plot in Fig. 7.1). This removes about

45% of the background events without affecting the signal efficiency.

• Kinematic cuts:

– mES: 5.272 < mES < 5.288 GeV/c2. See left hand plot in Fig. 3.1 for the

signal and continuum distributions of mES. Compared to ΔE, only a slight

dependence of mES on the π0 energy is observed.
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Figure 7.2: Truth-matched ΔE distribution for ρ±π∓ events in different bins of m+−
(estimator of the π0 energy) fit with double Gaussians. The quoted widths are those
of the core Gaussians.
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– ΔE: Dependent on the π0 energy, the ΔE resolution for TM events varies

strongly across the DP. Due to the three-body kinematics, the π+π− invari-

ant mass, m+−, is a good estimator of this dependency. Figure 7.2 shows

the ΔE distributions for different bins of m+−. The function corresponds

to a fit with a double Gaussian. We account for this effect by applying

linearly m+−-dependent cuts on ΔE:

ΔEmax(m+−) = cmax − cmax − c̄

mmax
+−

·m+− , (7.1)

ΔEmin(m+−) = cmin − cmin + c̄

mmax
+−

·m+− , (7.2)

where we use c̄ = 0.045 GeV, cmin = −0.140 GeV, cmax = 0.080 GeV and

mmax
+− = 25 GeV/c2. Since variable cuts complicate the treatment of ΔE in

the maximum likelihood (ML) fit, we use the redefined quantity

ΔE −→ ΔE ′ =
(ΔE − ΔEmax) + (ΔE − ΔEmin)

ΔEmax + ΔEmin

=
2 ΔEmmax

+− − (cmax + cmin)(m
max
+− −m+−)

2 c̄ m+− + (cmax − cmin)(mmax
+− −m+−)

, (7.3)

with a validity range after cut of ΔE ′ ∈ [−1, 1].

See right hand plot in Fig. 3.1 for the signal and continuum distributions

of ΔE ′. Since it is a linear transformation, the quasi-linear behavior of the

continuum background is not altered.

• Δt: we require |Δt| < 20 ps and σΔt < 2.5 ps.
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• MVA: Since we explicitly exploit the DP information in the ML fit, the ρ mass

and helicity cannot be used in the MVA anymore. We find the combination

of the four variables, L0, L2, cosθB,z , cosθTB ,z, leads to close-to optimal results,

while maintaining simplicity. The NN output is required to exceed 0.3 on a scale

from −1 to +1.

The selection efficiencies relative to the previous cut for signal B0 → (ρπ)0 MC

of all charges, and for non-resonant B0 → π+π−π0 are given in Table 7.1.

Cuts Relative efficiencies for all signal
εMC
ρ+π− εMC

ρ−π+ εMC
ρ0π0 εMC

π+π−π0

Preselection 0.6723 0.6677 0.5904 0.5731
Track Quality 0.9997 0.9996 0.9988 0.9993
−1 < ΔE ′ < 1 0.7482 0.7487 0.7880 0.7771
5.2 < mES < 5.288 0.9843 0.9843 0.9862 0.9888
m+− > 0.52 0.9992 0.9992 0.9747 0.9909
|Δt| < 20 ps 0.9921 0.9920 0.9874 0.9928
σ(Δt) < 2.5 ps 0.9655 0.9658 0.9555 0.9662
Photon Quality 0.8886 0.8873 0.9675 0.9469
0.11 < m(π0) < 0.16 0.9771 0.9766 0.9860 0.9882
Electron, Muon Vetoes 0.9873 0.9876 0.9826 0.9893
Kaon Veto 0.9458 0.9421 0.9557 0.9527
Proton Veto 0.9904 0.9900 0.9942 0.9923
NN > 0.3 0.7566 0.7604 0.7652 0.7657
mES > 5.272 & DP cut 0.8195 0.8263 0.8209 0.3765

Total Efficiency 0.2359 0.2362 0.2357 0.1055

Table 7.1: Selection efficiencies relative to the previous cut for signal B0 → (ρπ)0 MC
of all charges, and non-resonant B0 → π+π−π0. Masses are given in units of GeV/c2.

Events with multiple B candidates passing the full selection occur on average in

16% (ρ±π∓), 9% (ρ0π0), 3% (non-resonant π+π−π0) and 5% (continuum background)
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of the cases (see Fig. 3.7). Most of these multi-candidate events have two B candidates.

Due to the specific kinematics of multi-candidate events, they occur mostly in the

corners of the Dalitz plot. To prevent biasing the PDFs of the discriminating variables

that enter the likelihood fit, we apply the following independent criteria to select a

single candidate:

(A) if the multiple candidates have different π0’s, we choose the one with a recon-

structed γγ mass closest to the nominal π0 mass;

(B) use random choice for events without multiple π0’s.

The SCF fractions are tagging category dependent: their value for each category is

given in table 7.2.

fscfMode
Lepton Kaon NT1 NT2 NoTag

ρ+π− 13.15 ± 0.42 22.48 ± 0.30 17.49 ± 0.59 23.74 ± 0.47 24.83 ± 0.32
ρ−π+ 14.90 ± 0.44 23.31 ± 0.30 19.76 ± 0.62 23.26 ± 0.46 25.72 ± 0.32
ρ0π0 7.48 ± 0.32 13.00 ± 0.25 9.89 ± 0.47 13.82 ± 0.40 14.42± 0.27

Table 7.2: Misreconstructed event fractions in each tagging category.

7.2 Backgrounds from B Decay

We follow a similar strategy as in the previous analyses, where we study the

cross-feed from other B-decays using Monte Carlo simulation. A corrective PDF is

introduced in the likelihood for classes of major contaminating modes. An extensive

list of exclusive charmless BB modes has been studied to evaluate the systematics

on the event yields and the CP parameters due to cross-feed from these modes. B-

backgrounds are categorized into two-, three- and four-body final states. Individual
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modes with expected contaminations of two or more events after selection are classified

within six classes for charged B decays and eleven classes for neutral B decays. The

classes group modes with similar PDFs, and each class represents a corrective term in

the likelihood. Their branching fractions, selection efficiencies and expected number

of events, computed for an integrated on-resonance luminosity of 209 fb−1, are given

in table 7.3.

Charmed neutral B mesons can decay into the π+π−π0 final state via the Q2B

states D−π+ and D0π0 for which the branching fractions (including their decays into

ππ) have been measured. Due to misidentified kaons or muons, background also

includes the Cabibbo-enhanced B0 → D0(→ K+π−)π0 decays, and B0 → J/ψ (→

μ+μ−)π0. Whereas all charmed B+ decays, and the other charmed B0 decays, not

reaching the π+π−π0 final state, are treated in two dedicated classes in the B back-

ground model, we attribute individual classes to each of the three modes mentioned

above.

Parameters for B-background Δt Models

Two processes can modify the nominal Δt distribution function in B-background

decays:

• tracks are exchanged between the CP and tag side, and the Δt distribution

function becomes narrower than for signal;

• In the presence of long-lived particles (like the K0
S

or D’s), the Δt distribution

becomes broader.

We use dedicated Δt lifetime and resolution parameters for B background to account

for these effects.
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Class Id Mode BR [10−6] Efficiency (%) Nexp

0 5013 B+ → ρ+ρ0
[long] 15.0 ± 10.0 0.88 ± 0.02 29.4 ± 19.6

0 6000 B+ → a+
1 (→ (ρπ)+)π0 20.0 ± 15.0 0.37 ± 0.03 16.4 ± 12.2

0 6001 B+ → a0
1(→ ρ+−π−+)π+ 20.0 ± 15.0 0.34 ± 0.02 15.1 ± 11.3

0 42 B+ → η′(→ ρ0γ)K+ 22.9 ± 1.4 0.04 ± 0.01 2.1 ± 0.1
1 5058 B+ → π+ρ0 9.2 ± 1.2 2.53 ± 0.04 52.0 ± 6.8
1 53 B+ → ρ0K+ 4.1 ± 0.9 0.38 ± 0.02 3.4 ± 0.8
1 57 B+ → f0(980)(→ π+π−)K+ 9.9 ± 1.9 0.15 ± 0.01 3.4 ± 1.8
2 55 B+ → π+K0

S(→ π+π−) 7.5 ± 0.5 0.43 ± 0.02 7.2 ± 0.5
3 5051 B+ → π0ρ+ 12.0 ± 1.9 1.77 ± 0.02 47.6 ± 7.5
3 5110 B+ → π+K0

S(→ π0π0) 3.4 ± 0.2 1.16 ± 0.01 8.8 ± 0.5
4 1072 B+ → π+π0 5.2 ± 0.8 0.77 ± 0.03 9.0 ± 1.4
4 1071 B+ → K+π0 12.5 ± 1.1 0.21 ± 0.00 5.8 ± 0.5

5 1286 B+ → (K(∗∗)(1430)π)+ → (K+ππ)+ 29.0 ± 5.4 0.12 ± 0.02 7.8 ± 1.5
5 1299 B+ → K+π−π+

[nonres] 13.5 ± 6.7 0.05 ± 0.01 1.5 ± 0.8

6 44 B0 → π−K�+(→ K0
Sπ

+) 5.1 ± 1.4 0.17 ± 0.01 1.9 ± 0.5

7 1015 B0 → ρ+ρ−[long] 30.0 ± 6.0 0.81 ± 0.01 54.3 ± 10.9
7 1056 B0 → (a1π)0 40.0 ± 15.0 0.36 ± 0.01 32.4 ± 12.1
8 69 B0 → K+π− 18.2 ± 0.8 0.15 ± 0.00 6.0 ± 0.3
9 1045 B0 → π−K�+(→ K+π0) 5.1 ± 1.4 2.17 ± 0.03 24.8 ± 6.8
9 1289 B0 → K(∗∗)(1430)π → Kππ0 11.2 ± 2.2 2.18 ± 0.03 54.5 ± 10.7

10 5111 B0 → γK�0(892, 1430)(→ K+π−) 27.4 ± 1.5 0.18 ± 0.02 10.6 ± 0.6
10 5048 B0 → π0K�0(→ K+π−) 0.5 ± 2.0 2.09 ± 0.03 2.3 ± 9.5
10 5041 B0 → η′(→ ρ0γ)π0 0.3 ± 0.5 3.76 ± 0.06 2.5 ± 4.2
11 1075 B0 → ρ−K+ 9.0 ± 1.6 3.29 ± 0.02 66.2 ± 11.8
12 64 B0 → K+π−π0

[nonres] 5.7 ± 2.7 1.13 ± 0.01 14.5 ± 6.9

13 5107 B0 → π0K0
S(→ π+π−) 4.0 ± 0.5 0.66 ± 0.02 6.0 ± 0.7

14 5109 B0 → D−(→ π−π0)π+ 7.5 ± 2.3 3.98 ± 0.06 32.1 ± 14.7

15 5113 B0 → D0(→ K+π−)π0 11.0 ± 3.2 0.48 ± 0.02 11.7 ± 3.4

16 5213 B0 → D0(→ π+π−)π0 0.4 ± 0.1 3.98 ± 0.06 3.6 ± 1.9
17 5112 B0 → J/ψ(→ e+e−, μ+μ−)π0 2.6 ± 0.5 0.92 ± 0.03 5.3 ± 2.3

18 − B0 → X0
c − (0.80 ± 0.06) × 10−4 89.0 ± 6.7

19 − B+ → X+
c − (1.76 ± 0.09) × 10−4 196.9 ± 9.9

Table 7.3: Classification of backgrounds from B decay.
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Figure 7.3: Left: simulated B+ → π+K0
S
(→ π+π−) events and the fit Δt model (see

Eq. 7.24) in which the effective lifetime and the tail Gaussian width were let free to
vary. Right: simulated B+ → π+ρ0 events and the fit Δt model in which only the
effective lifetime was let free to vary.

Effective lifetimes for charged B decays

Figure 7.3 illustrates one of the two effects listed above that can modify the

Δt distribution: the presence of a long-lived particle (here a K0
S
) in the decay. The

Δt distribution becomes broader than the signal Δt distribution. To account for

these effects, we introduce an effective lifetime, different from the nominal charged

B lifetime, for the Δt distribution given in Eq. (7.24). In some cases the fit remains

unsatisfactory and in that case the width of the tail Gaussian in the resolution function

is individually adjusted. The other parameters in the resolution function are obtained

from fits to Breco MC events [15]. The effective lifetimes and widths of the tail

Gaussian are determined by a fit to B background MC events with relaxed ΔE and

mES requirements to increase the available statistics. The results of two such fits are

shown in Fig. 7.3. The per-class parameters used in the likelihood model are obtained

from weighted averages of the contributing modes.

For charmed charged B background, we use the default Breco parameters.
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Effective resolution functions for neutral B decays

Due to B0B0 mixing, the B lifetime cannot be used anymore as effective res-

olution parameters for neutral B background. Instead, we determine individual Δt

resolution parameters for each mode. We find that most neutral B background modes

are correctly described by the default Breco parameters, except for the following

modes:

• B0 → π0K0
S
(→ π+π−), due to the presence of the K0

S
. The Δt distribution is

showed on the left part of Figure 7.4.

• decays containing a D meson: B0 → D−(→ π−π0)π+, and B0 → D0(→

K+π−)π0. In particular, the first mode is important for validation purposes

because of its large statistics (see Table 7.3). The Δt distribution of this mode

is shown on the right part of Figure 7.4. The resolution function parameters for

the two decays are extracted from Monte Carlo simulation.

For charm neutral B background, we use the default Breco parameters.

7.3 Building the Likelihood

The signal likelihood consists of the sum of a correctly reconstructed (TM) com-

ponent and a mis-reconstructed (SCF) component. Tests with toy Monte Carlo show

that with respect to the statistical sensitivity on α, 1 TM event has approximately

the same weight as 2.5 SCF events. For an average SCF fraction of about 20%, the

expected error on α is improved by approximately 4% when including the SCF events

in the fit.

The probability density Pc
i for a single event i in tagging category c is the sum



122

Reconstructed time (ps)
-20 -15 -10 -5 0 5 10 15 20

E
ve

n
ts

 / 
( 

0.
4 

p
s 

)

0

10

20

30

40

50

60

70

80

90

Effective lifetime fitEffective lifetime fit

Reconstructed time (ps)
-20 -15 -10 -5 0 5 10 15 20

E
ve

n
ts

 / 
( 

0.
4 

p
s 

)

0

100

200

300

400

500

600

Effective lifetime fitEffective lifetime fit

Figure 7.4: Left: overlay of the modified Δt model (using Stail = 12.871 ± 0.42 and
ftail = 0.25 ± 0.01 to parameterize the resolution function) and the B0 → π0K0

S(→
π+π−) MC simulation data. Right: overlay of the modified dt model (using and the
B0 → D−(→ π−π0)π+ MC simulation data.

of the probability densities of all components, namely,

Pc
i ≡ N3πf

c
3π

[
(1 − f

c

SCF)Pc
3π−TM,i + f

c

SCFPc
3π−SCF,i

]

+ N c
qq̄

1

2
(1 + qtag,iAqq̄, tag)Pc

qq̄,i

+

NB+

class∑
j=1

NB+jf
c
B+j

1

2
(1 + qtag,iAB+, tag,j)Pc

B+,ij

+

NB0

class∑
j=1

NB0jf
c
B0jPc

B0,ij , (7.4)

where,

• N3π is the total number of π+π−π0 signal events the data sample;

• f c
3π is the fraction of signal events that are tagged in category c;

• f
c

SCF is the fraction of misreconstructed signal events (SCF) in tagging category
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c, averaged over the Dalitz plot (DP);

• Pc
3π−TM,i and Pc

3π−SCF,i are the products of PDFs of the discriminating variables

used in tagging category c, for truth-matched (TM) and SCF events respectively;

• N c
qq̄ is the number of continuum events that are tagged in category c;

• qtag,i is the tag flavor of the event; we use qtag,i = 1 for B0-tag and qtag,i = −1

for B0-tag;

• Aqq̄, tag is the tag asymmetry, parameterizing a possible charge asymmetry in

continuum events;

• Pc
qq̄,i is the continuum PDF for tagging category c;

• NB+

class (NB0

class) is the number of charged (neutral) B-related background classes

considered (cf. Section 7.2);

• NB+j (NB0j) is the number of expected events in the charged (neutral) B-related

background class j;

• f c
B+j (f c

B0j) is the fraction of charged (neutral) B-related background events of

class j that are tagged in category c;

• AB+, tag,j describes the tag asymmetry in charged B-background of class j; this

parameterizes eventual charge asymmetry; note that the tag-charge correlation

is absorbed in the tag flavor-dependent DP PDFs;

• Pc
B+,ij is the B+-background PDF for tagging category c and class j;
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• Pc
B0,ij is the B0-background PDF for tagging category c and class j; the time-

dependent PDF is non-trivial as neutral B background can exhibit direct and

mixing-induced CPV;

The PDFs Pc
X are the product of the PDFs of the five discriminating variables xk,

k = 1, . . . , 5:

Pc
X,i(j) ≡

∏
k

P c
X,i(j)(xk) . (7.5)

Finally, the extended likelihood over all tagging categories is again given by

L ≡
5∏

c=1

e−N
c
′

Nc∏
i

Pc
i , (7.6)

where N
c

is the number of events expected in category c.

Here we give the details of how to construct the combined time and Dalitz plot

PDFs. The connection of time and DP dependence leads to rather involved PDFs both

conceptually and technically. They are discussed below for the signal and background

components of the likelihood (7.4). The signal resonance model assumed in the DP

and entering the time- and DP-dependent PDF (1.38) is discussed in Section 1.4.2.

• Amplitude dependent normalization.

When using Eq. (1.38) as a PDF in the likelihood fit, one has to normalize it,

i.e., one must replace [20],

|A±
3π(Δt)|2 −→ 1

〈|N |2〉 |A
±
3π(Δt)|2 (7.7)
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Figure 7.5: Selection efficiency of B0 → π+π−π0 events (left plot) and fraction of
misreconstructed events (right plot), in square Dalitz plot. The symmetric property of
the DP has been used for the square DPs to double the available statistics. The plots
are made with a sample of 1.40 million signal MC events.

where

〈|N |2〉 = |N |2 + |N |2 , (7.8)

and

|N |2 ≡ 〈|A3π|2〉 =

∫ ∫ ∫
|A3π|2 dm2

+0dm
2
−0dΔt (7.9)

and similarly for |N |2 ≡ 〈|A3π|2〉.

• DP-dependent selection efficiency and SCF fraction.

Dalitz plot PDFs and DP-averaged quantities, like normalization or SCF frac-

tions, require the knowledge of the DP-dependent relative selection efficiency

ε = ε(m′, θ′). It is a decay-dynamics invariant quantity and is obtained from

high statistics MC simulation. It is shown in the left plot of Fig. 7.5 for the

square DP. One observes a rather flat efficiency over most regions of the Dalitz
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plot, with an increase along rising m′ (m+−) values, due to the larger π0 energies.

Close to the extreme corners of the DP the efficiency drops, which is where two

particles are back-to-back, while the third is (almost) at rest, and acceptance is

necessarily low due to the minimum pT (tracks) or Eγ (neutrals) requirements.

Moreover, the DP part in the likelihood component for TM and SCF signal

(cf. Eq. (7.4)) must be expanded to account for a DP-dependent SCF fraction

fSCF = fSCF(m′, θ′). For an event i, we have the PDF (cf. Eq. (7.5)).

P3π−TM,i = εi (1 − fSCF,i) | detJi| |A
±
3π(Δt)|2

〈|NTM|2〉 , (7.10)

P3π−SCF, i = εi fSCF,i | detJi| |A
±
3π(Δt)|2

〈|NSCF|2〉 , (7.11)

The normalization constants 〈|NTM|2〉 and 〈|NSCF|2〉 are those from Eq. (7.9),

with the difference that now the phase space integration has to take into account

the DP-dependent efficiencies and SCF fractions

|NTM|2 = Re
∑
κ,σ

AκAσ∗〈ε (1 − fSCF) | detJ | fκfσ∗〉 , (7.12)

|NSCF|2 = Re
∑
κ,σ

AκAσ∗〈ε fSCF | det J | fκfσ∗〉 , (7.13)

and similarly for |NTM|2 and |NSCF|2. The indices κ, σ run over all resonances

of the signal model. The expectation values occurring in Eqs. (7.12, 7.13) are

model-dependent and are computed with high statistics MC integration over the
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Figure 7.6: Resolution of the reconstructed ρ+ mass in the MC for soft π0 (left plot) and
hard π0 (right plot) in TM events. The parameters correspond to a double Gaussian
fit, where “1” is the core Gaussian and “2” the tail Gaussian.

square DP:

〈ε (1 − fSCF) | detJ | fκfσ∗〉 =

∫ 1

0

∫ 1

0
ε (1 − fSCF) | detJ | fκfσ∗ dm′dθ′∫ 1

0

∫ 1

0
ε | detJ | fκfσ∗ dm′dθ′

, (7.14)

and similarly for 〈ε | det J | fκfσ∗〉, where all quantities in the integrands are DP-

dependent. Note that the integral (7.14) depends on the dynamics (form factors)

assumed for the signal model. If parameters of this model are determined from

a fit to data, the determination of Eq. (7.14) has to be iterative.

The DP-dependent SCF fractions obtained from MC simulation are plotted in

Fig. 7.5 (right), for the square DP. The distribution pattern of the SCF fractions

over the DP is a consequence of the same kinematic property that is responsible

for the efficiency drop in the Dalitz corners. Combinatorial background is high

(close to one) in the presence of soft neutrals or tracks. Misreconstructed signal

events are almost absent in the center of the DP.
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• DP-averaged SCF fraction.

Equation (7.4) invokes the Q2B-like phase space-averaged SCF fraction fSCF. As

for the PDF normalization, it is decay dynamics-dependent, since it is obtained

from an integral of the decay amplitude-squared over the Dalitz plot

fSCF =

∑
tag

∫ ∫ ∫
ε fSCF | det Ji| |A±

3π(Δt)|2 dm′dθ′dΔt∑
tag

∫ ∫ ∫
ε | detJi| |A±

3π(Δt)|2 dm′dθ′dΔt
. (7.15)

It has to be computed iteratively, and the associated systematic uncertainty is

expected to be small.

• TM resolution.

The intrinsic width of the dominant ρ(770) resonance expressed in terms of

standard deviations of a double Gaussian fit function, gives approximately (the

form factor Fρ(770) is expressed as a function of the linear mass here)

σcore(Fρ(770)) ≈ 0.5 Γρ(770) ≈ 75 MeV/c2 , (7.16)

σtail(Fρ(770)) ≈ 2.0 Γρ(770) ≈ 300 MeV/c2 . (7.17)

It can be compared with the mass resolution for TM events plotted in Fig. 7.6

for soft π0’s (left plot) and hard π0’s (right plot). Recall that the soft π0 region

is where the TM efficiency is low and the SCF fraction is high. Even the worst

tail-Gaussian resolution of 20.6 MeV/c2 is more than a factor of three narrower

than the core width of the double Gaussian fit to the ρ(770) form factor. Toy MC

fits have shown that the systematic bias from neglecting the resolution effects
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Figure 7.7: Resolution for TM (left) and SCF events (right hand plot) for two cho-
sen generated values in the square DP, indicated by the open stars (see text for the
numerical values).

in the fit model is below 0.1◦ for α. We therefore do not account for resolution

effects in the TM model.

• SCF resolution.

Misreconstructed events are concentrated in the corners of the Dalitz plot and

have a mass resolution that dramatically varies across the DP. Figure 7.7 shows

the resolution function of TM (left) and SCF events (right) for two arbitrarily

generated values. In contrast to TM events, the resolution effects cannot be

ignored for SCF events. We therefore introduce a 2× 2-dimensional convolution

function

RSCF(m′
r, θ

′
r, m

′
t, θ

′
t) , (7.18)

which represents the probability to reconstruct at the coordinate (m′
r, θ

′
r) an
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event that has the true coordinate (m′
t, θ

′
t). It obeys the unitarity condition

1∫
0

1∫
0

RSCF(m′
r, θ

′
r, m

′
t, θ

′
t) dm

′
rdθ

′
r = 1 , ∀ (m′

t, θ
′
t) ∈ SDP . (7.19)

The RSCF function is obtained from MC simulation and implemented as four-

dimensional smoothed histogram.

• Signal parameterization of Δt and Dalitz plot:

The reference distribution for the physical Dalitz plot (efficiency and resolution

corrections have been discussed in the previous section) depends on the under-

lying resonance structure and is connected to Δt via the matrix element (1.38),

which serves as the PDF.

Since the PDF deals with measured quantities, the physical time-dependent

matrix element is extended to include mistag probabilities and convolved with

the Δt resolution Rsig. For an event with a tag-flavor qtag, this leads to:

|A±
3π(Δt, σΔt)|2 =

[
1 + qtag

ΔDc

2
− qtag〈D〉c |A3π|2 − |A3π|2

|A3π|2 + |A3π|2
cos(ΔmdΔt

′)

+ qtag〈D〉c 2Im
[A3πA∗

3π

]
|A3π|2 + |A3π|2

sin(ΔmdΔt
′)

]
e−|Δt′|/τB0

4τB0

⊗ Rsig(Δt
′ − Δt, σΔt) , (7.20)

where 〈D〉c and ΔDc are the tagging-category-specific average and difference of
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the tagging dilutions given by

〈D〉c = 1 − (ωc + ωc) ,

ΔDc = −2(ωc − ωc) , (7.21)

with the (tagging category-dependent) mistag rates ωc and ωc for B0 and B0

tags, respectively.

The resolution model that incorporates the finite vertex resolution follows the

standard recipe used in similar time-dependent analyses (cf. Ref. [15]). The

resolution function is modeled using a triple Gaussian, which consists of a core

and a tail Gaussian which have biases and widths scaled the event-by-event error

σΔt, and a non-scaled, broad Gaussian to neutralize outlier events:

Rsig(Δt, σΔt) = (1 − ftail − fout)G
(
Δt, sb

coreσΔt, s
σ
coreσΔt

)
+ ftailG

(
Δt, sb

tailσΔt, s
σ
tailσΔt

)
+ foutG

(
Δt, sb

out, σtail

)
,(7.22)

where G(x, x0, σ) is a Gaussian with bias x0 and standard deviation σ. We use

the biases and relevant scale factors measured in BReco events [15].

• B-background parameterization.

The DP- and Δt-dependent PDFs factorize for the charged B-background modes,

but not for the neutral B background due to B0B0 mixing.

The charged B-background contribution to the likelihood (7.4) invokes the

parameter AB+, tag, multiplied by the tag flavor qtag of the event. In the presence
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Figure 7.8: Square DPs for the decay B± → ρ±π0 where the other B is tagged as B0

(left) and as B0 (right).

of significant tag-“charge” correlation (denoting an effective tag-versus-Dalitz co-

ordinate correlation), AB+, tag parameterizes possible direct CPV in these events.

It is primarily introduced for systematic studies and is set to zero for the nom-

inal fit. We also use distinct square DP PDFs for each reconstructed B flavor

tag, and a tag-averaged PDF for untagged events. This parameterizes the tag-

“charge” correlation, denoted Aπ in the Q2B analysis. See Fig. 7.8 for the decay

B+ → π0ρ+, which exhibits strong tag-“charge” correlation. The DP-dependent

PDF (from which the time dependence factorizes) reads

P c
B+(DP) = (1 + qtag,iAB+, tag,j) (1 − ωc)P c

B+(DP, qtag)

+ (1 − qtag,iAB+, tag,j)ω
cP c

B+(DP,−qtag) , (7.23)

where ωc are the tagging-category-specific mistag probabilities defined in Eqs. (7.21).
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We use the BReco values [15], while the tagging efficiencies are obtained from

Monte Carlo simulation. The PDFs P c
B+(DP,±qtag) are obtained from MC sim-

ulation requiring the true B flavor. We parametrize with smoothed histograms.

Since the tag-“charge” correlation is implemented in the DP PDF, the Δt PDF

for B+ background class j is simply given by the exponential decay rate

PB+(Δt) = e|Δt|/τj ⊗ Rsig(Δt
′ − Δt, σΔt) , (7.24)

where τj is an effective lifetime, which is mostly equal to τB+ . The resolution

function R is similar to the one used for the signal (see (Eq. 7.22)). In cases

where secondary vertices occur, e.g., in D or K0
S

decays, the effective lifetime

and/or resolution can be significantly altered. We determine these parameters

individually for each B-background class j from Monte Carlo simulation.

Neutral B-background contributions in Eq. (7.4) are parameterized using

tag-dependent PDFs as done for the charged B-background modes. In the case

of CP eigenstates, correlation between the tag and the Dalitz coordinate are of

detector/reconstruction origin and expected to be small. Non-CP eigenstates,

such as a±1 π
∓, may exhibit tag-“charge” correlation. Moreover, both types of

decays can have direct and mixing-induced CP violation. A third class of de-

cays involves charged kaons and does not exhibit mixing-induced CP violation,

but usually a strong tag-“charge” correlation, because it consists of B-flavor

eigenstates.

Since neutral Bs oscillate, using effective lifetimes as part of the resolution model,
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as done for charged B background, is not permitted. We therefore apply indi-

vidual resolution parameters. And the following combined Δt and DP PDF for

an event with tag qtag is built:

P c
B0,j(Δt, σΔt,DP) =

(|AB0,j|2 + |AB0,j|2
) · e−|Δt′|/τj

4τj

×
[
1 + qtag

ΔDc
j

2
+ qtag〈D〉cj (Sj + ΔSj) sin(ΔmdΔt

′)

− qtag〈D〉cj
(
Cj +

|AB0,j|2 − |AB0,j|2
|AB0,j|2 + |AB0,j|2

ΔCj

)
cos(ΔmdΔt

′)]
⊗ Rsig(Δt

′ − Δt, σΔt) , (7.25)

where the 〈D〉cj and ΔDc
j are the tag dilutions in category c and B-background

class j (cf. Eq. (7.21)), and are obtained from MC simulation.

It is used to introduce possible “charge” asymmetry and “charge”-dependent

mixing-induced CPV into the PDF model. The parameters Cj, Sj amd ΔSj

in class j are unknown in general and set to zero in the nominal model. They

are varied for the purpose of systematic studies. The situation is different for

the tag-”charge” correlation parameter ΔCj . For most of the modes, tag-charge

correlation in the Dalitz plot can be relatively reliably taken from the MC simula-

tion, via the coefficient in front of the ΔCj , where the amplitude moduli-squared

are simply the normalized DP distributions in B0 and B0 decays. The DP PDFs

are obtained from smoothed histograms of MC-simulated events.

Note that the physical parameters in the time-dependent PDF are diluted by

the (mostly) incomplete reconstruction of the B-background events.
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• Continuum parameterization.

The Dalitz plot treatment of continuum events is similar to the one used for

charged B background. In particular, the DP and Δt PDFs factorize. The

continuum contribution to the likelihood (7.4) invokes the parameter Aqq̄, tag,

multiplied by the tag flavor qtag of the event. It parameterizes possible charge

asymmetry in these events and is determined by the fit to data. We also use

distinct square DP PDFs for each reconstructed B flavor tag, and a tag-averaged

PDF for untagged events.

It is the particularity of the approach adopted in this analysis that the square

DP PDF for continuum events is obtained from off-resonance data using signal
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shows the fit projection of the PDF model (7.27).

region (SR) and grand sidebands (GSB), where the GSB corresponds to

mES > 5.200 GeV/c2 and − 0.4 < ΔE < 0.4 GeV . (7.26)

Since the empirical shape parameters of the PDFs are not determined simul-

taneously with the signal parameters by the fit, we have to worry about the

validity of the GSB-to-SR extrapolation. We will come back to this point in

Section 7.5. Since continuum events are the dominant background, we must also

ensure a high fidelity of the empirical shape parameterization. This has been the

main motivation for the development of the square DP (C.22), since continuum

events cluster at low invariant masses (compared to mB), and thus populate the

kinematic borders of the DP (see Fig. 7.9).

The continuum Δt PDF is parameterized as the sum of three Gaussian distribu-
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tions with a common mean (which has the unit of a time), two relative fractions,

and three distinct widths (without units) that scale the Δt event-by-event error,

σΔt, yielding six free parameters:

Pqq̄,i(Δt, σΔt) = (1 − ftail − fout) ·G (Δt, μ, scoreσΔt)

+ ftail ·G (Δt, μ, stailσΔt)

+ fout ·G (Δt, μ, soutσΔt) . (7.27)

The model is motivated by the observation [37] that the mean of Δt is indepen-

dent of σΔt, and that the Δt RMS depends linearly on σΔt. Figure 7.10 shows

off-resonance data and the fit result using the model (7.27).

7.4 Fit Results

The result of the fit to the data set as of the summer of 2004 is given in Table 7.4.

The Q2B parameters extracted from Us and Is are given in Table 7.5. The projections

of each individual variable are shown in Figure 7.11.

Floating the B0 lifetime floating gives τB = (1.549±0.080) ps, and floating Δmd

gives Δmd = (0.57 ± 0.11) ps−1. Both are in good agreement with the PDG values.

Leaving the B-background overall scale factor free gives (0.986±0.099)% and in good

agreement with the expected value of 1.

Scans on α and δ̂

In a second step, the fitted Us and Is can be used to separately constraint the

two angles α and δ̂ ≡ arg[A−+A+−∗]. In both cases, the procedure is the following: the

physical range of the angle ([0◦; 180◦] for α due to the fit symmetry for α and α+180◦;
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Parameter Description Value

Nρπ Number of B → ρπ events 1184 ± 58

aRes(1450) Amplitude of ρ(1450) 0.87 ± 0.15
aResPh(1450) Phase of ρ(1450)(◦) 199 ± 14

f(Δt)1 1st Gaussian fraction of continuum Δt distribution 0.115 ± 0.019
f(Δt)2 2nd Gaussian fraction of continuum Δt distribution 0.0280 ± 0.0038
μ(Δt)1 Mean of continuum Δt distribution (ps) 0.0264 ± 0.0064
σ(Δt)1 1st Gaussian sigma of continuum Δt distribution 1.073 ± 0.017
σ(Δt)2 2nd Gaussian sigma of continuum Δt distribution 2.60 ± 0.25
σ(Δt)3 3rd Gaussian sigma of continuum Δt distribution 10.39 ± 0.84

N
Lepton
cont Number of continuum events in Lepton category 25.1 ± 7.5

NKPIorK
cont Number of continuum events in KPIorK category 910 ± 33

NKorPI
cont Number of continuum events in KorPI category 2481 ± 53

NInclusive
cont Number of continuum events in Inclusive category 2450 ± 52

N
Untagged
cont Number of continuum events in Untagged category 9225 ± 99

I− Coefficient of |f(ρ−)|2 sin(ΔmdΔt) −0.19 ± 0.11
I+ Coefficient of |f(ρ+)|2 sin(ΔmdΔt) 0.06 ± 0.11
U+

0 Coefficient of |f(ρ0)|2 0.159 ± 0.046
U−
− Coefficient of |f(ρ−)|2 cos(ΔmdΔt) 0.22 ± 0.16

U+
− Coefficient of |f(ρ−)|2 1.19 ± 0.12

U−
+ Coefficient of |f(ρ+)|2 cos(ΔmdΔt) 0.50 ± 0.17

U−,Im
+− Coefficient of Im[f(ρ+)f(ρ−)∗] cos(ΔmdΔt) 0.25 ± 1.4

U−,Re
+− Coefficient of Re[f(ρ+)f(ρ−)∗] cos(ΔmdΔt) 2.0 ± 1.2

U+,Im
+− Coefficient of Im[f(ρ+)f(ρ−)∗] 0.16 ± 0.70

U+,Re
+− Coefficient of Re[f(ρ+)f(ρ−)∗] −0.26 ± 0.65

IIm
+− Coefficient of Im[f(ρ+)f(ρ−)∗] sin(ΔmdΔt) −5.2 ± 1.9
IRe
+− Coefficient of Re[f(ρ+)f(ρ−)∗] sin(ΔmdΔt) −0.3 ± 2.0
U+,Im

+0 Coefficient of Im[f(ρ+)f(ρ0)∗] 0.25 ± 0.35
U+,Re

+0 Coefficient of Re[f(ρ+)f(ρ0)∗] −0.34 ± 0.39
U+,Im
−0 Coefficient of Im[f(ρ−)f(ρ0)∗] 0.34 ± 0.43

U+,Re
−0 Coefficient of Re[f(ρ−)f(ρ0)∗] −0.98 ± 0.44

Table 7.4: Result after convergence of Run1-4 data fit. The arbitrary parameter U+
+

is fixed to 1.
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Parameter Description Value

ACP Charge asymmetry in B0 → ρ±π∓ −0.088 ± 0.049
C Average of cosine coefficients in B0 → ρ+π− and ρ−π+ 0.34 ± 0.11
ΔC Half of difference betw. cos coeff. in B0 → ρ+π− and ρ−π+ 0.15 ± 0.11
S Average of sine coefficients in B0 → ρ+π− and ρ−π+ −0.10 ± 0.14
ΔS Half of difference betw. sin coeff. in B0 → ρ+π− and ρ−π+ 0.22 ± 0.15

Table 7.5: Q2B parameters extracted from Us and Is coefficients from Run1-4 data
fit.

[−180◦; 180◦] for δ̂) is covered by a set of K discrete values whose compatibility with

data is tested one by one with a constrained fit.

For the α-’scan’, T s and P s are floated; with α = {αk}k=1,..,K as additional

input, the values of Us and Is (UIscan) are computed according to Equations 1.40 and

the minimized chi-square is the following:

χ2
α scan ≡

∑
i,j

[
UIdata

i − UIscan
i

] (
Cdata

)−1 [
UIdata

j − UIscan
j

]
(7.28)

where the sum is over the Us and Is parameters free in the data fit (UIdata). Accord-

ingly, Cdata is the covariance matrix computed by the fit to the data. The normaliza-

tion condition U+
+ = 1 is used as an additional constraint.

For each value of k between 1 and K, the fit provides a minimum chi-square

χ2
min(k). Then one takes the minimum of these values χ2

min and computes the χ2-

difference: Δχ2
min(k) = χ2

min(k) − χ2
min. The confidence level is finally obtained by

computing the probability that this value is exceeded for a χ2-distribution with one

degree of freedom.

The left plot in Figure 7.12 shows the α-scan, performed with an extended
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correlation matrix, taking into account both statistical and systematic correlations –

see Section 7.5 for details on systematics. It gives α =
(
113+27

−17 ± 6
)◦

with the errors

computed at a confidence level of 32%.
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Figure 7.12: Confidence level functions for δ+− (right) and α (left), including both
statistics and systematic covariance matrices. Indicated by the dashed horizontal lines
are the C.L. values corresponding to 1σ and 2σ, respectively.

For the δ̂-scan, the procedure is very similar; the constraint is now that δ̂ must

be equal to the discrete scan value at each step. In order to use all the information

available, all fitted parameters are included in the chi-square and one uses the relation

δ̂ = arg (A+−∗A−+). The chi-square function is

χ2
δ̂ scan

≡
∑
i,j

[
UIdata

i − UIscan
i

] (
Cdata

)−1 [
UIdata

j − UIscan
j

]
+

(
δ̂discrete − δ̂scan

ε

)2

(7.29)

where ε is chosen to be small compared to the bin size of the scan.

The right plot in Figure 7.12 shows two δ̂-scans using the fit results and tak-

ing into account both statistical and systematic uncertainties. The most constrain-

ing one is clearly given by the solid line which includes an additional SU(2)-based
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relationship between the penguin contributions P 00 = −(P+− + P−+)/2. It gives

δ+− =
(−67+28

−31 ± 7
)◦

, where the first errors are statistical and the second one system-

atic. Only a marginal constraint on δ+− is obtained for C.L. < 0.05.

7.5 Study of the Systematic Uncertainties

Since no attempt is made to re-measure the branching fractions in this analysis,

the study of the systematic uncertainties concentrates on the CP measurement. The

systematic effects are summarized in Table 7.6 for the U and I coefficients.

Vertex Resolution Function, Tagging and Signal Reconstruction

• Δmd and τB0: the systematic errors are obtained by varying incoherently the

values of the B0 oscillation frequency Δmd = (0.502 ± 0.007) ps−1 and the B

lifetime τB0 = (1.536 ± 0.014) ps [53] within their experimental uncertainties.

• Δt resolution function: the parameters of the signal Δt resolution function

are obtained from fits to fully reconstructed B decays. We determine the as-

sociated systematics by varying incoherently each parameter of the resolution

model (scale factors, biases, fractions of tails, etc) by one standard deviation.

Since the incoherent variation neglects the (mostly anti-) correlations that are

present between the fit parameters, it is a conservative procedure.

• Tagging: the tagging efficiencies, mistag rates and mistag biases are obtained

from fits to fully reconstructed B decays to flavor eigenstates. We determine the

associated systematics by varying incoherently each parameter by one standard

deviation of its experimental error.
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I− I+ U+
0 U−

− U+
− IIm

+− IRe
+− U+,Im

+0

Δmd 0.003 0.001 0.000 0.004 0.000 0.009 0.041 0.001
Δt signal model 0.004 0.003 0.001 0.005 0.000 0.043 0.028 0.003
Signal tagging fractions 0.000 0.001 0.001 0.000 0.000 0.015 0.010 0.002
Misreconstructed signal 0.002 0.001 0.001 0.001 0.000 0.082 0.015 0.003
Mistag probabilities 0.003 0.002 0.001 0.010 0.001 0.061 0.040 0.003
NBackground 0.002 0.002 0.007 0.004 0.003 0.089 0.036 0.006
B-bkg CP parameters 0.011 0.013 0.001 0.028 0.015 0.075 0.163 0.009
τB background modes 0.000 0.000 0.000 0.000 0.000 0.004 0.002 0.000
Signal mES and ΔE PDF 0.003 0.001 0.000 0.010 0.013 0.056 0.054 0.012
B-bkg tagging fractions 0.001 0.001 0.001 0.002 0.001 0.109 0.065 0.006
ρ mass and width 0.001 0.002 0.003 0.002 0.001 0.038 0.072 0.014
ρ′ mass and width 0.001 0.004 0.001 0.001 0.002 0.061 0.230 0.026
Continuum PDF 0.004 0.003 0.003 0.002 0.012 0.009 0.071 0.016
Float class 10 −0.000 0.002 −0.040 −0.000 0.000 0.097 0.070 −0.010
Fixing 10 ρ0π0 parameters 0.003 0.003 0.025 0.019 0.007 0.024 −0.004 −0.110
ρ′′ phase +8◦ 0.001 −0.000 −0.009 −0.009 −0.003 0.018 −0.023 0.122
ρ′′ amplitude +30% 0.001 −0.002 −0.004 0.009 0.002 0.624 −0.212 −0.029
Non-resonant +1σ −0.003 −0.001 0.005 −0.002 −0.001 −0.037 0.085 −0.005
Fit Bias 0.015 0.014 0.006 0.022 0.015 0.221 0.240 0.051
Sum 0.021 0.021 0.050 0.046 0.029 0.704 0.467 0.179

U−
+ U−,Im

+− U−,Re
+− U+,Im

+− U+,Re
+− U+,Re

+0 U+,Im
−0 U+,Re

−0

Δmd 0.001 −0.002 0.005 0.001 0.001 0.000 0.000 −0.001
Δt signal model 0.003 0.018 0.042 0.002 0.003 0.005 0.003 0.008
Signal tagging fractions 0.002 0.012 0.005 0.005 0.006 0.002 0.004 0.003
Misreconstructed signal 0.000 0.007 0.029 0.005 0.006 0.002 0.004 0.003
Mistag probabilities 0.010 0.040 0.018 0.007 0.009 0.006 0.003 0.006
NBackground 0.010 0.021 0.024 0.029 0.017 0.014 0.007 0.012
B-bkg CP parameters 0.033 0.020 0.053 0.041 0.024 0.037 0.037 0.036
τB background modes 0.000 0.003 0.005 0.001 0.001 0.001 0.001 0.001
Signal mES and ΔE PDF 0.010 0.037 0.022 0.012 0.042 0.028 0.048 0.013
B-bkg tagging fractions 0.004 0.114 0.041 0.042 0.023 0.007 0.007 0.005
ρ mass and width 0.002 0.036 0.047 0.018 0.014 0.030 0.008 0.043
ρ′ mass and width 0.004 0.094 0.056 0.052 0.052 0.045 0.021 0.064
Continuum PDF 0.004 0.026 0.029 0.005 0.018 0.051 0.005 0.028
Float class 10 −0.002 −0.008 −0.012 −0.031 0.029 −0.031 −0.011 0.002
Fixing 10 ρ0π0 parameters 0.039 0.042 −0.022 −0.019 0.010 0.069 0.102 0.000
ρ′′ phase +8◦ −0.011 −0.122 −0.054 0.018 0.064 0.045 0.078 0.113
ρ′′ amplitude +30% 0.002 −0.029 −0.106 0.053 0.098 0.064 0.070 0.076
Non-resonant +1σ −0.016 −0.122 −0.065 0.008 0.048 −0.012 −0.001 0.035
Fit Bias 0.020 0.177 0.161 0.078 0.076 0.048 0.055 0.047
Sum 0.061 0.303 0.244 0.135 0.171 0.149 0.170 0.175

Table 7.6: Summary of systematic uncertainties on the Us and Is coefficients.
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• Fraction of misreconstructed events: misreconstructed events mainly arise

due to combinatorial background in the presence of soft photons or tracks at the

formation of a signal candidate. The DP-averaged fraction of misreconstructed

events has been verified for the Q2B analysis [37] with control samples of fully

reconstructed B → Dρ events. It was found to be in good agreement with the

Monte Carlo prediction:

fSCF(data-fitted)/fSCF(MC-counted) = 1.04 ± 0.05 (7.30)

B-background

• Branching fractions: The expected event yields are varied incoherently for

each B background class according to the expectation in Table 7.3.

• CP parameters: For each class of B-background, the relevant parameters de-

scribing CP violation are varied separately, taking into account measured values

and their errors where available. In cases where no measurements are available,

we vary the parameters by ±0.3.

• PDFs: We vary the effective lifetime for charged B decays by the errors obtained

from Monte Carlo simulation.

• Tagging parameters: The tagging fractions for the background classes are

obtained using MC simulation. For each class, the tagging fractions are varied

incoherently by one standard deviation of the statistical uncertainties to obtain

the associated systematic uncertainties.
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Resonance Model

• Mass and width of ρ and ρ′: The mass and the width of ρ(770) are varied

by 2 MeV. The mass of the ρ′ is varied by 15 MeV, and the width of the ρ′ is

varied by 50 MeV.

• Contributions of ρ′′: The contribution of the resonance ρ(1700) to the di-

pion mass spectrum is varied by ±30%. Its phase relative to the ρ(770) is varied

by 8◦, which is two times the error we obtain when allowing this parameter to

float in the fit.

Fit Model

• Parameters for ρ0π0: In the nominal fit we set the ten U and I coefficients

that are related to the cosine and sine terms in the time dependence of the ρ0π0

contribution to zero. To estimate the systematic error of this assumption, we

use high statistics toy Monte Carlo and an estimated ρ0π0 branching fraction of

1.9 × 10−6 to compare fits where these ten coefficients are fixed (to zero) and

allowed to float freely.

• Continuum parametrization using sideband: The PDFs describing the

qq̄ continuum in the Dalitz plot are obtained from mES sidebands of theon-

resonance data, corrected for residual contributions from B decays. To estimate

the systematic effect of the extrapolation from the mES sideband into the signal

region, we use high-statistics offpeak data with loose cuts on NN and ΔE. For

the mES sideband and the signal region, we compare the DP variables and find

no significant differences but only statistical fluctuations. These fluctuations are
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parameterised, and the DP reweighted accordingly. We re-fit with this new DP

shape to obtain the systematic uncertainties.

• Non-resonant contribution: A search for the non-resonant decay is performed

in the center of the Dalitz plot. No significant signal is observed. We increase the

non-resonant contribution by the observed statistical uncertainty and evaluate

the associated error using Monte Carlo.

Fitting Incomplete Set of U ’s and I’s

To assess the dependence of the results on whether all 27 parameters are free in

the fit, or only the 16 most significant ones, we generate toy MC events using U ’s and

I’s that are consistent with the Q2B observable set and with a true value of α = 94◦.

At the maximum CL we find a difference of about 2◦. The observed shift depends

strongly on the amount of ρ0π0 in the sample. We use a B0 → ρ0π0 branching fraction

of 10−6 in the estimation.

Correlation Matrix

The full correlation matrix for the systematic uncertainties considered above is

shown in Tab. 7.7.
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7.6 Conclusions

We have presented the preliminary measurement of CP -violating asymmetries

in B0 → π+π−π0 decays dominated by the ρ resonance. The results are obtained

from a data sample of 213 million Υ (4S) → BB decays. We extend the previous

quasi-two-body approach to a full time-dependent Dalitz plot analysis. From the

measurement of the coefficients of 16 form factor bilinears, we determine the three

CP -violating and two CP -conserving quasi-two-body parameters. We find evidence of

direct CP violation at the level of 2.9σ. We measure the direct CP -violation parameters

Aρπ = −0.088 ± 0.049 ± 0.013 and C = 0.34 ± 0.11 ± 0.05, where the first errors are

statistical and the second systematic. For the mixing-induced CP -violation parameter,

we find S = −0.10 ± 0.14 ± 0.04. For the dilution and strong phase shift parameters,

we obtain ΔC = 0.15 ± 0.11 ± 0.03 and ΔS = 0.22 ± 0.15 ± 0.03 respectively.

Taking advantage of the interference between the ρ resonances in the Dalitz

plot, we derive constraints on the relative strong phase between B0 decays to ρ+π−

and ρ−π+, and on the angle α of the Unitarity Triangle. For the angle α we measure

(113+27
−17 ± 6)◦, while only a weak constraint is achieved at more than two standard

deviations. Finally, for the relative strong phase δ+− between the B0 → ρ−π+ and

B0 → ρ+π− transitions we find (−67+28
−31 ± 7)◦, with a similarly weak constraint at

two standard deviations and beyond. These measurements are consistent with the

expectations from the CKM fit.
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Appendix A

The theory of Standard Model

A.1 The Standard Model

According to the Standard Model of particle physics, matter is made up of six

leptons and six quarks. These particles interact by exchanging bosons associated with

the three fundamental forces: the strong force, the electromagnetic force and the weak

force. We believe that these interaction can be understood as consequences of gauge

symmetries.

Electromagnetic interaction

Quantum electrodynamics (QED) is the theory of electromagnetic interactions,

which is a simple gauge theory. The theory can be formulated with a postulate of the

invariance of the wave function under local phase rotation. The quantum mechanical

equations of motion always involve derivatives of the wave function. In order for the

derivatives to be also invariant under a local phase rotation, a vector field must be

introduced. This vector field is called gauge field, and is refered to as the photon

field in QED. Thus by using local gauge invariance as a dynamical principle, we have

arrived at the conclusions that the electromagnetic field is necessary, and that the form
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of interaction between the gauge field and matter prescribed by the gauge covariant

derivative. Note that a mass term of the gauge field in the Lagrangian violates the

gauge invariance. Therefore, that the photon is massless is a direct consequence of

gauge invariance.

Strong interaction:

In the original work of Yang and Mills in 1954 [2], the non-Abelian gauge group

was taken to be the SU(2) group of isotopic spin rotations, and the vector fields were

interpreted as the fields of strongly-interacting vector mesons of isotopic spin unity.

Their proposal immediately encountered the obstacle that these vector mesons would

have zero mass, like photons. Their ideas, however, proved fundamental. The modern

version of the strong interactions, quantum chromodynamics (QCD), is another non-

Abelian gauge field theory, based on a local color gauge group SU(3)c. Similarly to

QED, the theory can start with the postulate of SU(3) invariance. The composite

spinor is the color triplet quarks. Again gauge fields have to be introduced, and the

SU(3)c gauge boson is the massless gluon.

Unlike in QED, the term in the Lagrangian that describes the interacting gauge

field involves not only the bilinear terms of the gauge field but the trilinear and

quadrilinear terms as well. These additional terms create three- and four-gauge-boson

vertices, which is the consequence of the non-Abelian structure of the gauge group. The

theory has a distinctive feature of asymptotic freedom. Asymptotic freedom implies

that the interaction gets large at large distances which accounts for the fact that no free

quark has been observed. Recently, there has been tremendous interest to understand

quark confinement in the context of string theory where the confinement is achieved
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by connecting quarks with strings in the extra dimensions, but this is outside the

scope of this dissertation.

Weak interaction:

The weak interactions get their name from their intensity. Weak interactions at

low energies are well described by an effective Lagrangian given by a sum of products

of vector and axial vector charged currents. In 1973 the first discovery of neutrino

events of the type ν̄μe
− → ν̄μe

− showed that there is a weak neutral current in addition

to the charged weak current. Note here that unlike the charged current, the neutral

current is not pure vector and axial vector current and has right-handed components.

The complete theory to describe the weak interaction is achieved with its unification

with the eletromagnetic interaction.

Spontaneous symmetry breaking and electroweak theory:

Scalar fields φ play a fundamental role in the unified theories of the weak, strong,

and electromagnetic interactions. Although mathematically simpler than spinor fields

that describe fermions and vector fields that describe gauge bosons, the scalar field

can experience spontaneous symmetry breaking. Some basic features of such fields can

be found in the simplest theory of a one-component real scalar φ with the Lagrangian

Lφ =
1

2
(∂μφ)2 − m2

2
φ2 − λ

4
φ4 (A.1)

where m is the mass of the scalar field and λ is the coupling constant. If the coupling

λ 
 1 and for small φ, we can ignore the interaction term in A.1. Thus the field

satisfies the Klein-Gordon equation. The general solution of such equations can be

expressed as a superposition of plane waves, corresponding to the propagation of
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particles of a certain mass and momentum. It’s clear that the field φ(x) will oscillate

about the the point φ = 0 which is the minimum of the potential-energy density of

the field φ. Now let’s examine the same Lagrangian but with an opposite sign in front

of the mass term.

Lφ =
1

2
(∂μφ)2 +

μ2

2
φ2 − λ

4
φ4 (A.2)

Instead of oscillations about φ = 0, the solution gives modes that grow exponentially

near φ = 0 due the negative mass at φ = 0. It suggests that the real minimum actually

occurs at some other place, i.e. φc = ±μ/√λ. Thus, even if the field φ is initially at

zero, it soon undergoes a transition to a stable state with φ = φc and this phenomenon

is called spontaneous symmetry breaking.

The theory that correctly describes the experimental facts about the weak in-

teraction was introduced by Glashow, Weinberg and Salam. It is a spontaneously

broken gauge theory and this model gives a unified description of weak and electro-

magnetic interactions. The theory is based on the gauge group SU(2)×U(1). To break

the SU(2) symmetry spontaneously, we introduce the scalar Higgs field in the spinor

representation of SU(2), and this theory will lead to a system with no massless gauge

bosons. When the U(1) symmetry is imposed and the scalar field is assigned a charge

+1/2 under this U(1) symmetry, the complete gauge transformation is

φ =

⎛
⎝φ+

φ0

⎞
⎠ , φ→ εiα

aτa

eiβ/2φ. (A.3)
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If the Higgs field φ acquires a vacuum expectation value of the form

〈φ〉 =
1√
2

⎛
⎝0

v

⎞
⎠ , (A.4)

the theory will now contain one massless gauge boson, corresponding the gauge trans-

formation with α1 = α2 = 0, α3 = β which leaves 〈φ〉 invariant. The remaining three

gauge bosons will acquire masses from this Higgs mechanism.

The masses of the gauge bosons can be worked out when the Lagrangian is eval-

uated at the scalar field vacuum expectation value. It is not possible to introduce

the ordinary mass terms of the fermions into the Lagrangian because the left- and

right-handed components of the various fermion fields have different gauge quantum

numbers and such simple mass terms violate gauge invariance. However, the fermion

mass terms can be introduced by invoking again the mechanism of spontaneous sym-

metry breaking. For the leptons, we can write the gauge-invariant coupling linking

eL, eR and φ as the following:

ΔLe = −λeĒL · φeR + h.c. (A.5)

This is the Yukawa coupling. Indices L and R denote the left- and right-handed parts

of the quark fields. Here the SU(2) indices of the doublets EL and φ are contracted.

The parameter λe is a new dimensionless coupling constant. If we replace φ in this

expression by its vacuum expectation value in equation A.4, we obtain

ΔLe = − 1√
2
λevēLeR + h.c.+ . . . , me =

1√
2
λev (A.6)
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Note that the way to construct the lepton mass automatically assures that the neu-

trinos are massless. There are strong indications that neutrinos do have tiny but

non-zero masses. But for the purpose of the dissertation, we can safely ignore the

masses of neutrinos. On the other hand, all the quarks are massive. The mass term

of the quark fields can be written in the similar way but we have to consider that all

the quarks are massive particles:

ΔLq = −λdQ̄L · φdR − λuε
abQ̄Laφ

†
buR + h.c. (A.7)

Again substituting the vacuum expectations value of φ from equation A.4, these terms

become

ΔLq = − 1√
2
λdvd̄LdR − 1√

2
λuvūLuR + h.c.+ . . . , mu,d =

1√
2
λu,dv (A.8)

A.2 Discrete symmetry transformation

Symmetries play an important role in physics. For example, invariance of physics

under time or space translations leads to the conservation of energy and momentum,

invariance under space rotation gives conservation of angular momentum. In addition

to continuous Lorentz transformations, there are two other spacetime operations that

are potential symmetries of the Lagrangian: parity and time reversal. They are discrete

transformations and cannot be achieved by a series of infinitesimal transformations

from the identity. There is another discrete operation: charge conjugation, which is not
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a space-time transformation. Parity, denoted by P , sends (t,x) → (t,−x), reversing

the handedness of space but leaves spin and time unchanged. Time reversal, denoted

by T , does the opposite, sending (t,x) → (−t,x). Charge conjugation, denoted by C,

interchanges particles and antiparticles without changing their spin orientation.

Although any relativistic field theory must obey Lorentz invariance, it need not

be invariant under P , T and C. In 1956, T.D. Lee and C.N. Yang [3] investigated the

validity of the parity conservation in elementary particle interactions and concluded

that in the realm of weak interactions parity conservation was “only an extropolated

hypothesis unsupported by experimental evidence.” Subsequent experiments have

unequivocally supported the idea that weak interactions in general do not convserve

parity. Although parity conservation was found to be violated in weak interactions,

the joint transformation CP remained an unbroken symmetry until 1964 when the

first evidence for CP violation was found in the neutral kaon system [4]. As we shall

soon see the Standard Model introduced in the previous section can account for CP

violation, and also explain why the CP violating effect is so much weaker than the

weak interactions, there is no convincing evidence that the origin of CP is indeed in

the Standard Model. The work presented in this dissertation constitute part of the

effort to explore the orgin of CP violation.

Discrete symmetries in the Standard Model

If we ignore the Higgs scalar field and mass terms of the quarks, leptons and

gauge bosons, the Lagrangian of the theory of quarks and leptons is entirely specified
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by gauge invariance and renormalizaility. We have

L = −1

4

∑
i

(
F α

iμν

)2
+
∑

J

ψ̄J (iγμDμ)ψJ (A.9)

where the index i runs over the three factors of the gauge group and the index J

runs over the various multiplets of chiral fermions. The couplings of the QCD gauge

bosons are invariant to P , C and T separately. However, the couplings of SU(2) gauge

bosons violate P and C maximally. Remember that SU(2) gauge bosons only couple

to left-handed fermions and right-handed antifermions. P and C converts a particle

that couples to SU(2) gauge bosons to one that does not. The combined operation

CP interchanges left-handed particles with right-handed antiparticles, therefore, is a

symmetry of A.9. Now let’s put in the Higgs sector which will be responsible for the

spontaneous breaking of SU(2)×U(1). The simplest but renormalizable model with

one Higgs scalar field is

Lφ = (Dμφ)2 + μ2φ†φ− λ
(
φ†φ
)2
. (A.10)

This Lagrangian respects P , C and T .

Finally, we add the terms that couple the Higgs field to the quarks and leptons.

Let’s assume again here that the neutrinos are massless and generalize the A.5 to

include more generations. When additional generations of leptons are introduced to

the theory, there can be additional terms that mix generations,

ΔLl = −
∑
i,j

λij
l Ē

i
L · φej

R + h.c. (A.11)
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where λij
l are general, and not necessarily symmetric or Hermitian. In order to di-

agonalize the coupling matrix λl, recall the general theorem that for any matrix m,

it is always possible to choose unitary matrices A and B such that AmB is real and

diagonal. After choosing unitary matrices Ul and Wl we can diagonize the matrix

λl to the real matrix Ul, λl = UlDlW
†
l . Using the freedom to redefine the lepton

field, e′L = U †
l eL, ν ′L = U †

l νL and e′R = W †
l eR, we can easily see that in the matrix

representation the Yukawa coupling is completely diagonal.

ΔLl = −(ĒL · φ)λeR + h.c.

= −(Ē ′
L · φ)U †

l (UlDlW
†
l )We′R + h.c.

= −
∑

i

DiiĒi′
L · φei

R
′
+ h.c. (A.12)

Notice our special choice of the redefined lepton field, where the left-handed fields of

electrons and neutrinos are rotated by the the same matrix Ul. The mixing matrix

Ul cancels out in both the neutral current ēLγ
μeL → ē′LU

†
l γμUleL

′ = ē′Lγ
μeL

′, and the

charged current ν̄Lγ
μeL → ν̄ ′LU

†
l γμUleL

′ = ν̄ ′Lγ
μeL

′. Therefore, the mixing matrices Ul

and Wl disappear from the theory and the mass eigenstates of the leptons coincide

with their flavor eigenstate. There is no way to produce CP violation in the lepton

sector in the current framework.

The situation is a bit more complicated when quarks are involved. As in equation

A.7, two independent couplings have to be introduced in order to generate mass for

both up- and down-type quarks. The gauge invariant and renormalizable interactions
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of the scalar doublets φ with the quarks take the form

ΔLq = −
∑
ij

λij
u Q̄

i
L · φdj

R +
∑
ij

λij
d Q̄

i
L · φ†uj

R + h.c., (A.13)

where λij
u and λij

d are unknown constants. The vacuum expectation values of φ then

produce quark mass terms similar to equation A.8. Again, the matrices λu and λd

are not constrained in any way unless there is additional symmetry imposed on the

Lagrangian. Using the same trick to diagonize the Higgs coupling in the lepton sector,

we define matrices U ’s and W ’s such that λu = UuDuW
†
u and λd = UdDdW

†
d and

matrices D’s are real and diagonal. After redefining the right handed quark fields by

their corresponding W ’s, i.e. d′R = W †
ddR and u′R = W †

uuR, we find immediately that

the matrices W ’s are eliminated from the Higgs coupling A.13. Although the right

handed quark fields also couple to the neutral gauge fields, different families of quarks

share the same coupling to the these gauge fields. Thus, the mixing induced by W ’s

commute with the corresponding covariant derivatives and we have

∑
i

ūi
R(iγμD

μ)ui
R =

∑
i,j,k

ū′jRW
†ji
u (iγμD

μ)W ik
u u

k
R

=
∑
j,k

ū′jR(iγμD
μ)

(∑
i

W †ji
u W ik

u

)
uk

R =
∑
j,k

ū′jR(iγμD
μ)δj,ku

k
R

=
∑

i

ū′iR(iγμD
μ)ui

R (A.14)

Similarly, Wd also drops out from the neutral coupling. Finally, both M ’s disappear

from the theory. We can also make an analogous transformation on the left-handed

quark fields, i.e. d′L = U †
ddL and u′L = U †

uuL. In the new mixed basis of quark fields,
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U ’s cancel in A.13. By the same logic as A.14, U ’s drop out from the neutral gauge

coupling with left-handed quarks fields. However, in this new basis for quark fields

which diagonalizes the Higgs coupling, the flavor changing weak current takes the form

Jμ+
W =

1√
2
ūi

Lγ
μdi

L =
1√
2
ū′iLγ

μ
(
U †

uUd

)ij
d′jL =

1√
2
ū′iLγ

μV ijd′jL (A.15)

where the quark mixing matrix V is a unitary matrix. In general, CP violation could

happen if the matrix V is complex but in certain cases the matrix can be made real

by rotation of individual quark fields. It’s instructive to understand what happens

when there are only two generations of quarks, i.e. u, d, c, s. Remember that we have

achieved the diagonalization of the Higgs coupling by introducing mixing matrices

between generations, so we don’t have the freedom to further mix quarks of different

generations when we try to make the element of the mixing matrix real. But we are

still allowed to introduce arbitrary phases for each individual quark field in the new

mass basis. There are four quark fields in two generations. A generic 2 × 2 unitary

matrix contains four parameters, one rotation angle and three phases. We can try to

remove those phases by redefining three quark fields as qi
L → exp(iθi)qi

L. A fourth

such rotation for the fourth quark field has no effect as only the phase difference

between quark fields matters. Therefore, a mixing matrix with two generations of

quarks can always be made real and no CP violation is allowed in such theory. The

only remaining free parameter in the mixing matrix is then the mixing angle θc, which

is called the Cabibbo angle [5]. In reality, there are three families of fermions, and

the quark mixing matrix contains 6 phases in addition to three rotation angles. This

mixing matrix is called the Cabibbbo-Kobayashi-Maskawa (CKM) matrix [6]. Using
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the above trick on the CKM matrix, one can remove only five of the six phases. It is

possible that the quark coupling to the W gauge boson contains an irreducible complex

coupling constant from the CKM matrix. Paramtrizing V , as done by Kobayashi and

Maskawa [6], we have

V =

⎛
⎜⎜⎜⎜⎝
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

c1 −s1c3 −s1s3

s1c2 c1c2c3 − s2s3e
iδ c1c2c3 + s2c3e

iδ

s1s2 c1s2c3 + c2s3e
iδ c1s2s3 − c2c3e

iδ

⎞
⎟⎟⎟⎟⎠ (A.16)

where ci(si) = cos θi(sin θi), i = 1, 2, 3. If the phase δ does not vanish, CP is not

a conserved symmetry in the weak interaction. Since CP violation requires both

the weak interaction and the presence of a third generation of fermions, its effect is

expected to be quite small in the Standard Model.
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Appendix B

Isospin analysis of B → ππ

In order to understand how α can be extracted from decays involving b → uud tran-

sitions, we briefly investigate the simplest case of B0 → π+π−. B0 → π+π− is a CP

eigenstate with eigenvalue +1. If only a single weak decay amplitude contributes,

that is if penguin contributions are negligible, then λ(B → ππ) is a pure phase and

Imλ = sin2α. There is strong experimental evidence that penguins are significant in

B → ππ, most noticably the large branching fraction of B0 → K+π− [17]. In the

presence of penguin contributions, the phase of λππ is modified by the relative strong

phase δππ ≡ arg(PT ∗) between the penguin and the tree amplitudes. We can define

the effective angle αeff that incorporates the phase shift

λππ = e2iα 1 − re−i(α−δ)

1 − re+i(α+δ)
≡ |λππ|e2iαeff (B.1)

where r is modulus of the penguin over tree ratio. We see that the imaginary part

of the λππ does not directly probe α in the presence of gluonic penguins. The tool to

separate the tree and penguin contributions is an isospin analysis [19]. In the basis

of isospin I and the projection of isospin I3, isospin doublets |B0〉 and |B+〉 can be
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denoted as:

|B+〉 = |1
2
,+

1

2
〉, |B0〉 = |1

2
,−1

2
〉 (B.2)

And the relevant final states are

〈π+π0| =

√
1

2

(〈π+
1 π

0
2| + 〈π0

1π
+
2 |
)

= 〈2, 1|

〈π+π−| =

√
1

3
〈2, 0| +

√
2

3
〈0, 0|

〈π0π0| =

√
2

3
〈2, 0| −

√
1

3
〈0, 0| (B.3)

Note that because of Bose statistics, the J = 0 two-pion state produced in B decay

has no I = 1 contribution. Isospin amplitudes IΔI,If
can be labeled by the ΔI value of

the b-quark decay and by the If of the final state, which includes the spectator quark.

The key observation is that a gluon is pure I = 0, so that the dominant gluonic b→ d

penguins are pure ΔI = 1/2. On the other hand, the tree-level b → uūd decays have

both ΔI = 3/2 and ΔI = 1/2 components. Thus, if the ΔI = 3/2 piece can be

isolated, then the tree contribution, which contains the weak phase to be measured,

is thereby also isolated. The isospin decomposition for B → ππ is given by

A+0 ≡ A(B+ → π+π0) =

√
3

2
A3/2,2 (B.4)

A+− ≡ A(B0 → π+π−) =
1√
12
A3/2,2 −

√
1

6
A1/2,0 (B.5)

A00 ≡ A(B0 → π0π0) =
1√
3
A3/2,2 +

√
1

6
A1/2,0 (B.6)
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Thus the three two-pion decay amplitudes depend only on two isospin amplitudes,

hence there is one relationship,

1√
2
A+− + A00 = A+0 (B.7)

between them. They form a triangle on the complex plane. The amplitude for the

CP -conjugate processes is obtained from the A amplitudes by simply changing the

sign of the CKM phases; the strong phases remain the same. These amplitudes also

form a triangle:

1√
2
Ā+− + Ā00 = Ā+0 (B.8)

The measurements of the total rates and time-independent CP asymmetries in both

B± and B0 decays determine the shapes of the two isospin triangles. The key ob-

servation is that, since the penguin diagram is purely ΔI = 1/2, the A+0 amplitude

recieves contribution from only tree diagram. This means that A+0 = e2iαA−0. This

relation fixes the relative orientation of the two triangles up to an eight-fold discrete

ambiguity. As a consequence, the complex ratio, κ = e2iαĀ+−/A+− is determined up

to a eight-fold ambiguity. The CP asymmetry in B0 → π+π− is given by

Imλπ+π− = Im
[
e−2iακ

]
.

The quantity κ gives the penguin effect on the relationship between the angle α and

the measured asymmetry. The angle α can in principle be extracted cleanly, even in

the presence of penguins.
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Appendix C

Dalitz plot

C.1 Introduction

We recall here the basic properties of the Dalitz plot as far as it is needed to

motivate the various choices we have made. More detailed information is found, e.g.,

in Ref. [22].

We consider the decay of a spin-zero B0 with four-momentum pB into the three

daughters π+(p+), π−(p−), and π0(p0), with corresponding four-momenta. The origi-

nal number of 12 unknowns in the B0 rest frame is reduced to 2, taking advantage of

the known masses of the four particles involved (4), energy and momentum conserva-

tion (4) and the fact that two spatial angles are irrelevant (no direction is preferred)

(2). Using the invariant-masses-squared as independent (Mandelstamm) variables

s+0 = (p+ + p0)
2 , s−0 = (p− + p0)

2 , (C.1)

the invariant mass of the positive and negative pion, s+− = (p+ + p−)2, is obtained
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from energy and momentum conservation:

s+− = m2
B0 + 2m2

π+ +m2
π0 − s+0 − s−0 . (C.2)

The differential B0 decay width with respect to the variables defined in Eq. (C.1) (i.e.,

the Dalitz plot) reads

dΓ(B0 → π+π−π0) =
1

(2π)3

|A3π|2
8m3

B0

ds+0ds−0 , (C.3)

where A3π is the Lorentz-invariant amplitude of the three-body decay. Note that a

trivial integration over the spatial angles has been performed prior to Eq. (C.3). We

now choose the notation {DP} for the Dalitz plot coordinates {s+0, s−0}, and, cor-

respondingly, {dDP} for the Dalitz element {ds+0ds−0}. The symmetric boundaries

of the Dalitz plot are obtained when, e.g., for a ρ+ → π+π0 resonance, p+ is paral-

lel (minimum mass-squared) or anti-parallel (maximum mass-squared) to p0. As a

function of s+0, the kinematic boundaries s−0[max] and s−0[min] are given by

s−0[max/min](s+0) = (E∗
− + E∗

0)
2 −

(√
E∗2− −m2

π+ ∓
√
E∗2

0 −m2
π0

)2

, (C.4)

where

E∗
+ =

s+0 −m2
π0 +m2

π+

2
√
s+0

, (C.5)

E∗
0 =

s+0 −m2
π+ +m2

π0

2
√
s+0

, (C.6)

E∗
− =

m2
B0 − s+0 −m2

π+

2
√
s+0

, (C.7)
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are the energies in the ρ+ rest frame. Numerically, the minimum and maximum

masses squared are s−0[max] = (mB0 − mπ+)2 � 26.418 ( GeV/c2)2 and s−0[min] =

(mπ+ +mπ0)2 � 0.075 ( GeV/c2)2. Due to angular momentum conservation, the spin-

one ρ resonance is polarized in a helicity-zero state. We therefore need to compute the

cosine of the angle between the negative B0 momentum in the ρ+ rest frame (which

is the flight direction of the ρ+ resonance in the B0 rest frame, and the negative flight

direction of the π+ in the B0 rest frame) and the momentum p∗
0 of the π0 in the ρ+

rest frame. It is given by

cos θ+ =
2E∗

+E
∗
− + 2m2

π+ − s+−
2|p∗

+||p∗−|
, (C.8)

and an expansion as a function of the Dalitz variables s+0, s−0, leads to
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Figure C.1: Convention adopted for the helicity angles. For vanishing relative strong
phases it leads to destructive interference at all points in the Dalitz plot where at least
two of the three mass combinations are equal. See text for a geometrical definition.
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cos θ+ =
[
s+0 (s−0 − s+−) − (m2

B0 −m2
π+

) (
m2

π0 −m2
π+

)]
×
[
m4

π+ +
(
s+0 −m2

π0

)2 − 2m2
π+

(
s+0 +m2

π0

)]−1/2

×
[
m4

B0 +
(
s+0 −m2

π+

)2 − 2m2
B0

(
s+0 +m2

π+

)]−1/2

, (C.9)

where s+− is obtained from Eq. (C.2). Exchanging s+0 ↔ s−0 in Eq. (C.9) yields

the negative cosine of the helicity angle of the ρ−, − cos θ−, and replacing s+0 →

s+− together with mπ0 ↔ mπ+ gives − cos θ0 for the ρ0. Figure C.1 illustrates the

convention we have adopted for the helicity angles:

• cos θ+(ρ+) is defined as the angle between the π0 in the ρ+ rest frame and the

ρ+ flight direction in the B0 rest frame.

• cos θ−(ρ−) is defined as the angle between the π− in the ρ− rest frame and the

ρ− flight direction in the B0 rest frame.

• cos θ0(ρ
0) is defined as the angle between the π+ in the ρ0 rest frame and the

ρ0 flight direction in the B0 rest frame.

For vanishing relative strong phases, each resonance overlap comes with a relative

minus sign so that maximal destructive interference is observed at all points with

equal masses squared.

The amplitude A3π contains all the underlying dynamics of the B0 → π+π−π0

decay. In general, it is the coherent sum of one non-resonant term (ANR), which is

(assumed to be) constant in the Dalitz plane, and multiple resonant amplitudes i,
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with different spins J , arbitrary real fractions and phase shifts, ai, φi, and charge

combinations {+0,−0,+−}:

A3π(DP) = aNRe
iφNRANR +

∑
κσ∈{+0,−0,+−}

∑
i

aκσ
i eiφκσ

i JAκσ
i (DP) . (C.10)

Each resonant amplitude i can be written as a product of five terms

JAκσ
i (DP) = JFB,i · JFi(sκσ) · JKκσ(DP) · JFR,i(sκσ) · Aκσ

i (C.11)

≡ f (i)
κσ (DP) · Aκσ

i , (C.12)

where JFB,i is a an irrelevant constant form factor for the B0 decay, JFi(sκσ) ≡
JF (sκσ)/JF (m2

i ) is the ratio of Blatt-Weisskopf penetration form factors (see below),

JK(DP) is a kinematic function (see below), and JFR,i(DP) is a relativistic Breit-

Wigner function given by

JFR,i(sκσ) =
1

sκσ −m2
i + imi

JΓi(sκσ)
. (C.13)

The s-dependent (“running”) width is defined as

JΓi(sκσ) = Γ0
i

mi√
sκσ

(
kπ(sκσ)

kπ(m2
i )

)2J+1 JF (Rkπ(sκσ))
JF (Rkπ(m

2
i ))

, (C.14)

where mi is the mass of the resonance i, Γ0
i = Γi(m

2
i ) its width, and where

kπ(sκσ) =

√
sκσ

2

(
1 − (ma +mb)

2

sκσ

)1/2(
1 − (ma −mb)

2

sκσ

)1/2

, (C.15)
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is the momentum of the resonance decay particles in the resonance frame. The func-

tions JF (Rkπ(sκσ)) are the nuclear Blatt-Weisskopf penetration factors [24] 1.

The kinematic function in Eq. (C.11) depends on the spin of the resonance. For

a B decay into a vector resonance {κσ} and a bachelor track {c}, it is given by

1Kκσ(DP) = (pB0 + pc)μ

∑
i

εμi (pκσ)εν∗i (pκσ)(pκ − pσ)ν

= sκτ − sστ +
1

sκσ

(
m2

B0 −m2
τ

) (
m2

σ −m2
κ

)
= −4|pκ||pτ | cos θκτ , (C.17)

where all four-momenta pi are given in the resonance frame and θκτ is the helicity

angle, and where we have used the relation

∑
i

εμi (p)εν∗i (p) = −gμν +
pμpν

p2
, (C.18)

for the sum over the polarization four-vectors. The last two lines of Eq. (C.17) re-

produce the convention for the cosines of the helicity angles defined in Eq. (C.8) and

1They are semi-classical and motivated by the potential �L(L + 1)/(2mr2) occurring in
Schrödinger’s Equation, expressed in spherical coordinates, for the scattering of a particle with or-
bital angular momentum L > 0 in a central field. The repulsive potential is equivalent to a rotation
energy and can thus be denoted a centrifugal barrier. For growing L, or decreasing radial distance r,
the centrifugal barrier increases, which entails decreasing transition probability. One can empirically
determine a radial distance, called interaction radius, R, of the resonance, which separates an outside
region (with respect to the centrifugal barrier), with little interaction, from an inside region where
the interaction between the particles is strong [25]. The transmission coefficients of the centrifugal
barrier are the Blatt-Weisskopf factors. They are derived using spherical Bessel and Hankel functions
and read for the lowest orbital momenta (spins):

0F = 1 , 1F (x) =
1

1 + x2
, 2F (x) =

1
9 + 3x2 + x4

. (C.16)

We choose R = 1.5 GeV−1 � 0.3 fm in the following for all resonances.
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Fig. C.1. Note that the occurrence of cos θκτ in the propagator substantially enhances

the interference between the different ρ bands in the Dalitz plot, and thus increases

the sensitivity of this analysis [20]. Equivalently, one obtains for scalar and tensor

resonances the kinematic functions

0Kκσ = 1 , (C.19)

2Kκσ(DP) =
8

3
|pκ|2|pτ |2

(
3 cos2 θκτ − 1

)
. (C.20)

The likelihood fit will determine a global signal yield, which multiplies the co-

herent amplitude sum (C.10).

To quantify the sub-yields of the different contributors to the model, we define

the fraction ηi for the amplitude i by

ηi ≡
〈∣∣aκσ

i eiφκσ
i JAκσ

i (DP)
∣∣2〉〈|A3π(DP)|2〉 , (C.21)

where the expectation values are obtained from high-statistics Monte Carlo integration

of the Dalitz plot (C.3). Because of interference, the sum
∑

i η of the fractions for all

components will in general not be one.

C.2 The Square Dalitz Plot

Due to the low final state masses, mρ 
 mB0 , signal events populate the kine-

matic boundaries of the Dalitz plot. It turns out that due to combinatorics, the

dominant e−e− → qq̄ (q = u, d, s, c) continuum background also accumulates at the

boundaries so that the representation Eq. (C.3) turns out to be inadequate when one
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Figure C.2: Nominal (left) and square (right) B0 → π+π−π0 Dalitz plots obtained
from toy Monte Carlo without detector simulation. The generating amplitudes are
T+− = T−+ = T 00 = 1 and P+− = P−+ = P 00 = 0. The hatched areas indicate the
main overlap regions between the different ρ bands, which are removed in the quasi-
two-body analyses. The destructive interference at equal ρ masses appears clearly. The
contour lines correspond to the cuts 0.4 < mρ+,−,0 < 1.3 GeV/c2.

wants to use empirical reference shapes in a likelihood fit. We therefore apply the

concept of a square Dalitz plot (denoted square DP or SDP in the following) [26] and

transform

ds+0 ds−0 −→ | det J | dm′ dθ′ , (C.22)

where

m′ ≡ 1

π
arccos

(
2

m+− −m+−[min]

m+−[max] −m+−[min]
− 1

)
, and θ′ ≡ 1

π
θ+− , (C.23)

where m+− is the invariant mass between the charged tracks, m+−[max] = mB0 −mπ0

and m+−[min] = 2mπ+ are the boundaries of m+−, θ+− is the angle between the

positive track and the negative B momentum in the {+−} rest frame, and J is the
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Figure C.3: Jacobian determinant (C.24) of the transformation (C.22). The plot
shows the distribution one would obtain in the square Dalitz plot for a uniform (non-
resonant) prior in the nominal Dalitz plot.

Jacobian of the transformation. The new variables have validity ranges between 0 and

1. The determinant of the Jacobian is given by

| detJ | = 4 |p∗
+||p∗

0|m+− · ∂m+−
∂m′ · ∂ cos θ+−

∂θ′
, (C.24)

where |p∗
+| =

√
E∗

+ −m2
π+ and |p∗

0| =
√
E∗

0 −m2
π0 , and where the energies E∗

+ and

E∗
0 are in the {+−} rest frame. The partial derivatives in Eq. (C.24) read

∂m+−
∂m′ = −π

2
sin(πm′) (m+−[max] −m+−[min]) and

∂ cos θ+−
∂θ′

= −π sin(θ′π) .

(C.25)

Figure C.2 shows the original and the transformed Dalitz plots for toy Monte Carlo

B0 → π+π−π0 events generated according to Eqs. (1.35) and (1.36). The hatched areas
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indicate the main overlap regions between the different ρ bands, which are removed

in the quasi-two-body analyses. The plots illustrate the homogenization of the Dalitz

plot obtained after the transformation (C.22). The determinant of the Jacobian (C.24)

is shown in Fig. C.3. It is the distribution one would obtain in the square Dalitz plot

for a uniform (non-resonant) prior in the nominal Dalitz plot (DP).

Note that the transformation (C.22) is not symmetric over the Dalitz plot, the

ρ+/ρ− overlap region is treated with priority since it corresponds to the most prob-

lematic zone where the π0 energy is small and combinatorial background is enhanced.

C.3 The Signal Model for B0 → π+π−π0

We have introduced the kinematic properties together with a simple Breit-

Wigner model of the pion form factor in the previous Section. We will use this for-

malism to describe the concrete signal parameterization adopted in the analysis. It is

denoted nominal signal model in the following.

C.3.1 Vector Form Factor

The dominant contribution to the B0 → π+π−π0 amplitude stems from vector

resonances, namely the ρ(770) and its radial excitations. A large number of parame-

terizations can be found in the literature, most of which are capable to describe precise

data from e−e− → π+π− annihilation or τ+ → ντπ
+π0 decays. We consider two mod-

els in this analysis. Both represent analytical functions with a branch cut along the

real axis beginning at threshold (4m2
π+ for a neutral resonance and (mπ+ +mπ0)2 for

a charged resonance). Note that we will apply the empirical Blatt-Weisskopf pene-

tration factor correction of the s-dependent width given in Eq. (C.14) for systematic
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studies, since we merely deal with low spin resonances.

• We denote by RBW the relativistic Breit-Wigner ansatz for a resonance R

introduced for the vector form factor,

1FRBW
R (s) =

1

s−m2
R + imRΓR(s)

, (C.26)

where the s-dependdent width ΓR(s) is given in Eq. (C.14) for J = 1, and

ignoring the ratio of the Blatt-Weisskopf factors.

• We denote by GS the main approach used in the analysis. It is the Gounaris-

Sakurai (GS) parameterization [27] of the p-wave scattering amplitude for a

broad resonance R, decaying to the final state pions π1π2:

1FGS
R (s) =

1 + d · ΓR/mR

s−m2
R − f(s) + imRΓR(s)

, (C.27)

where

f(s) = ΓR
m2

R

k3
π(m2

R)

[
k2

π(s)
(
h(s) − h(m2

R)
)

+ (m2
R − s) k2

π(m2
R)
dh

ds

∣∣∣∣
s=m2

R

]
,

(C.28)

and where kπ(s) is the pion momentum in the R rest frame (C.15). The s-

dependence is as in the RBW model. The function h(s) is defined as

h(s) =
2

π

kπ(s)√
s

ln

(√
s+ 2kπ(s)

2mπ

)
, (C.29)
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with

dh/ds|m2
R

= h(m2
R)
[
(8k2

π(m2
R))−1 − (2m2

R)−1
]

+ (2πm2
R)−1 . (C.30)

The normalization condition at 1FGS
R,i (0) fixes the parameter d = f(0)/(ΓRmR).

It is found to be [27]

d =
3

π

m2
π

k2
π(m

2
R)

ln

(
mR + 2kπ(m

2
R)

2mπ

)
+

mR

2π kπ(m2
R)

− m2
πmR

π k3
π(m2

R)
. (C.31)

As imposed by unitarity, the GS parameterization satisfies the relation

tan δ1
1(s) =

Im1FGS
R (s)

Re1FGS
R (s)

, (C.32)

where δ1
1(s) is the phase shift of l = 1, I = 1 ππ scattering form factor.

C.3.2 Scalar Form Factor

As pointed out by many authors (see, e.g., Refs [28, 29, 30]), the experimental

smallness of the ratio

R ≡ B(B+ → ρ0π+)

B(B0 → ρ±π∓)
= 2.38+0.49

−0.40 , (C.33)

compared with the naive expectation from form factor arguments, could be due to

significant scalar contributions to the decay B± → ρ0π±, which due to experimental

cuts must be either broad - or in the close vicinity of the ρ resonance. Though scalar

contributions are expected to be significantly smaller in B0 → π+π−π0 than they are
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in B± → ρ0π± (about a factor of up to hundred [29, 30]), we must consider a possible

contribution in the signal amplitude. Their relative fractions will be treated as free and

unbound parameters in the fit. Note that scalar contributions are potentially harmful

since they violate the isospin relation (1.37), if not properly taken into account.

For the resonances of the scalar, isoscalar f family, f0(980), f0(1370) . . . , a

simple Breit-Wigner shape parameterization is inappropriate because of the opening

of the KK threshold (and the ηη threshold, which is however neglected here). We

therefore use a coupled-channel Breit-Wigner (CCBW) propagator, following the pa-

rameterization of the WA76 and E791 Collaborations [50, 51],

0FCCBW
f0

(s+−) =
1

s+− −m2
f0

+ imf0(Γπ(s+−) + ΓK(s+−))
, (C.34)

and using s-dependent widths according to Eq. (C.14),

Γπ(s+−) = Γf0,π
mf0√
s+−

kπ(s+−)

kπ(m2
f0

)
, (C.35)

ΓK(s+−) = Γf0,K
mf0√
s+−

kK+(s+−) + kK0(s+−)

kπ(m2
f0

)
, (C.36)

where the kπ/K(s) function is defined in Eq. (C.15). The E791 Collaboration de-

termines the model parameters in fits to D+
s → π+π−π+ decays [51]. They find

mf0(980) = (977 ± 4) MeV/c2, and gπ = 0.09 ± 0.01 and gK = 0.02 ± 0.05, where it has

been absorbed into a constant gπ = Γf0,πmf0/(s+−
√
m2

f0
/4 −m2

π+) (and correspond-

ingly for π ↔ K). With these values, the alteration of the form factor via (C.36),

introduced by the opening of the KK branch, is hardly distinguishable from the π+π−-
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only form factor, both for modulus and phase in the Argand diagram. More massive

scalar f resonances can be parameterized with the nominal Breit-Wigner propaga-

tor (C.13) using the RBW model.

C.3.3 Higher Resonances

Higher vector resonances are known to contribute to the ππ final state in e−e−

annihilation and τ decays (see, e.g., [44, 45]). They are introduced into the model via

the coherent amplitude sum (C.10). As an example, the e−e− → π+π− form factor

can be written as ([45, 46])

Fπ(s) ∝ Fρ(770)(s)

(
1 + aρωe

iφρωFω(782)(s)

1 + aρω

)
+ aρ′e

iφρ′Fρ(1450)(s) + aρ′′e
iφρ′′Fρ(1700)(s) ,

(C.37)

where the F functions can be GS form factors (C.27) that must be normalized to

F (0) = 1 due to charge conservation.
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Figure C.4: Pion form factor from e+e− → π+π− annihilation (left) and τ+ → ντπ
+π0

decays (right).
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Figure C.4 shows on the left hand side a fit of the model (C.37) to newest

e−e− → π+π− annihilation data, where the most precise measurements are provided

by the CMD2 Collaboration [47]. In these fits, the relative phases between the ρ

resonances have been set to π - as expected from simple radial excitation. The complete

fit results are given in Table 1.1. Agreement is observed between the model and the

data points. The shoulder originates from the significant ρ(1450) contribution. The

additional peak at large masses corresponds to the ρ(1700), measured by the DM2

Collaboration [48]. The sharp cut around 780 MeV/c2 is due to but the interference

between the ρ(770) and the ω(782) → π+π− amplitude. The right hand plot in

Figure C.4 shows a fit of the same model (but without the isoscalar ω(783) amplitude)

to the charged ρ+ measured in τ decays [49]. Again, agreement is observed. Also shown

is the form factor (C.37) when setting aρ′ = aρ′′ = 0.

C.3.4 Killer modes

Small contributions are expected from the following phenomena.

The σ resonance

Not only the apparently small ratio (C.33), but also indirect observation in fits

to the D+ → π+π−π+ Dalitz plot, performed by the E791 Collaboration [52], point

towards the existence of a light broad scalar and isoscalar resonance denoted σ (or

f0(400-1200) [12]). E791 performs two DP fits, one without and another one with a free

varying σπ+ contribution. Both fits also determine a non-resonant amplitude. While

the first fit finds a non-resonant amplitude fraction of 0.39 ± 0.10 (no σπ+ allowed),

the second fit reduces it to 0.08 ± 0.07 while it yields a σπ+ fraction of 0.46 ± 0.09,

and a greatly improved χ2. The parameters of this “σ(500)” state are determined to
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be mσ(500) = (478+24
−23 ± 17) MeV/c2 and Γσ(500) = (324+42

−40 ± 21) MeV/c2. Theoretical

tree-level calculations within factorization [29] suggest a σ contribution to the decay

B+ → π+π−π+ of the order of 2-4 10−6, and a B+ → ρ0π+ branching fraction of the

order of 3.5-4.0 10−6, depending on the width of the σ resonance and the form factor

model used. The combined branching fraction B+ → (ρ0 + σ)π+ is predicted to be

6-1110−6, in agreement with BABAR’s recent B+ → ρ0π+ measurement. However, one

has to consider that a (possible) σ contribution would not be efficiency corrected in the

measurement, so that an inclusive (ρ+ σ) measurement would have lower efficiency.

The σ contribution is expected to be significantly smaller in neutral B decays2.

The same authors [29] predict the B0 → ρ0π0 branching fraction to be of the order

of 0.5-1.0 10−6, and a 10-20 times smaller σ contribution to the decay B0 → π+π−π0.

Similar results are obtained in Ref. [30].

Heavy B mesons

Again triggered by the small ratio (C.33), the authors of Ref. [28] (see also

Ref. [30]) advocate that, in addition to the broad σ resonance, off-shell heavy-meson

resonances like the axial-vector B∗ (or a scalar B0) could enhance the B+ → ρ0π+

branching fraction. Since the B∗ is almost mass-degenerate with the B0 meson, it is

argued that tails of the resonance could give rise to sizable effects in B0 decays into

light final states. Moreover, this may be enhanced since it is expected that the strong

coupling between a B, a B∗ and a pion may be large. The decay picture is as follows:

for the B∗ intermediate state, there is a strong emission of a pion, followed by the

2In the charged decay B+ → (σ → π−π+)π+, the amplitudes from the exchange of the π+ add
coherently due to the presence of two identical pions in the final state. This leads to the enhancement
of the branching fraction with respect to the neutral decay B0 → (σ → π+π−)π0 [29].
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weak decay of a virtual B∗ into a pion pair; for the ρ intermediate state there is a

weak decay of B → ρπ followed by the strong decay ρ→ ππ [28].

In disagreement with the results of Ref. [28] it is pointed out in Ref. [30] that

taking into account the off-shellness of the intermediate resonances, reduces signif-

icantly their contribution ot B0 → ρ0π0. The numerical analysis of Ref. [30], per-

formed within QCD factorization, leads to the small B(B0 → ρ0π0) = 0.03 10−6 when

taking into account the off-shellness of the B∗ meson, and to the ten times larger

B(B0 → ρ0π0) = 0.39 10−6 when neglecting the off-shell suppression.
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