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ABSTRACT OF DISSERTATION

Branching ratio measurements of B → J/ψηK and B± → D0K± with

D0 → π+π−π0

Results are presented for the decays of B → J/ψηK and B± → DK±, respectively,

with experimental data collected with BABAR detector at PEP-II, located at Stanford

Linear Accelerator Center (SLAC).

With 90×106 BB̄ events at the Υ (4S) resonance, we obtained branching fractions

of B(B± → J/ψηK±) = [10.8±2.3(stat)±2.4(syst)]×10−5 and B(B0 → J/ψηK0
S) =

[8.4±2.6(stat)±2.7(syst)]×10−5; and we set an upper limit of B[B± → X(3872)K± →

J/ψηK±] < 7.7 × 10−6 at 90% confidence level.

The branching fraction of decay chain B(B± → DK± → π+π−π0K±) = [5.5 ±

1.0(stat) ± 0.7(syst)] × 10−6 with 229 × 106 BB̄ events at Υ (4S) resonance, here D

represents the neutral D meson. The decay rate asymmetry is A = 0.02±0.16(stat)±

0.03(syst) for this full decay chain. This decay can be used to extract the unitarity

angle γ, a weak CP violation phase, through the interference of decay production of

D0 and D̄0 to π+π−π0.
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Department of Physics
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Fort Collins, CO 80523
Summer 2005
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Chapter 1

Introduction

This dissertation documents two analyses the author has performed with the

BABAR collaboration during 2002-2004. Both analysis topics are related to B decay

branching ratio measurements involving the beauty quark to charm quark transition.

The first topic is about the decay B → J/ψηK, the part the author contributed

uses the neutral kaon meson channel. It was finished in the middle of 2003 and

published in Physics Review Letter [1]. This decay can be used to elucidate the

nature of a new particle, denoted as “X”, discovered by Belle [2] and confirmed by

CDF II, D0 and BABAR collaborations.

The X is a new narrow mass width state with a mass of 3.872 GeV/c2, and is

produced in the decay of B± → X(3872)K±, X(3872) → π+π−J/ψ . This new state

could be a JPC = 2−− 13D3 charmonium state; a “molecule” state formed with

charmed D and D∗ mesons; a hybrid charmonium state formed of cc̄ + gluon through

exclusive B decay; or a diquark-antidiquark state. Details can be found in chapter 2.
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1. Introduction

If the X is a conventional charmonium state, like ψ(2S) that decays to J/ψπ+π−

and J/ψη, the exclusive decay channel B → J/ψηK can be used to search for the

X(3872) through the two-body invariant mass of J/ψ and η.

This analysis was performed before 2004, with BABAR 89 fb−1 on-peak data, an

upper limit for this exclusive B → X(3872)K → J/ψηK was set. For the direct

channel B → J/ψηK, for both charged and neutral kaon channels, we are the first

to measure these exclusive B decay branching ratios. The method for extracting the

branching ratio and upper limit measurements is straight forward, using a cut and

counting method.

The second analysis topic is about a rare decay chain of B± → D0/D̄0K± with

D0/D̄0 → π+π−π0, which can be used to extract the weak phase γ through the

interferences of D0 and D̄0 decay to a common final state π+π−π0. It was submitted

to Physics Review D. The theory and the methods used to extract this weak charge

conjugation and parity violation phase γ will be discussed in detail in chapter 2.

As this analysis involves the π0 → γ γ decay and many radiation processes of

charge particles produce low energy photons, the decay chain is not clean as a D0

decay involving a kaon. The background, which has contributions from continuum

and BB̄, is a challenge for this analysis and prevents the extraction of γ. However to

demonstrate the feasibility of this decay chain, an essential first step is to develop the

necessary techniques to control the background, and to measure the branching ratio
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and the decay rate asymmetry of this decay chain.

To suppress the background while preserving the signal, a nonlinear multidimen-

sional neural network is used, which incorporates many discrimination variables into

a single, more powerful, variable. Two neural net variables were used, one to sep-

arate signal and BB̄ events from continuum background, and the other to separate

signal from BB̄ and continuum background. To get better sensitivity for this high

background analysis, the extended maximum likelihood fit method is adopted.

As these two analyses are quite different in their methodology, to make each

analysis self-contained, this document is divided into four parts. Part I contains

an introduction (chapter 1), physics overview (chapter 2), BABAR detector overview

(chapter 3) and an analysis methods overview (chapter 4). Part II contains a de-

scription of the analysis process for B → J/ψηK, including the physics motivation,

event selection, background estimation, data fit results, systematic error and physics

results (chapter 5). Part III describes all parts of the analysis of B± → DK± with

D0/D̄0 → π+π−π0, which has a brief description of the physics motivation, event

selection, parameterization for maximum likelihood fit, validation of the parameter-

ization, data fit results, systematic error and physics results (chapter 6). Part IV

contains a concluding comment for both analyses (chapter 7).

In chapter 2, a brief description for the nature of X particle, CP violation weak

phase γ measurement methods are introduced. For this newly discovered particle
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X, several theoretical proposals have been proposed: hybrid state [6], charmonium

state [7], molecular meson state [8] or diquark and antiquark state [9]. The nature of

X particle is still a mystery, the properties of X remains to be confirmed.

CP violation in quark physics was first discovered in the neutral kaon system [12].

A second independent test may be derived from the properties of the B mesons [13].

A standard parameterization of the CKM (Cabibbo-Kobayashi-Maskawa) matrix [14]

introduces a complex quantity such that CP violation has a natural place in this

theory. The weak phase γ is just one of the three angles of a unitary triangle that

can be derived from the CKM matrix columns one and three that are most related

to the bottom quark.

In chapter 3, the BABAR detector is introduced [16]. The basic components of the

detector consists of a five-layer silicon vertex detector (SVT); a forty-layer drift cham-

ber (DCH); a Cherenkov ring imaging detector (DIRC); an electromagnetic calorime-

ter (EMC); and an instrument flux return detector. The SVT provides the colliding

position of the beams, the vertex point of a B meson; and is used with the DCH

to provide the tracking and momentum information of the charged particles. The

DCH and DIRC provide high performance particle identification of kaon and pion

over the essential particle momentum region (0.7 - 4.0 GeV/c); The EMC provides

the photon and neutral hadrons information through the energy deposition pattern.

The IFR provides information on muons and some long-lived neutral hadrons, such
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as K0
L. The author was a commissioner for DIRC for approximately fourteen months,

helping to maintain the daily operation of this sub-system with good performance.

A short description of positron and electron storage ring (PEP-II) is also included in

this chapter.

In chapter 4, analysis methods and some general terminologies for the analysis

topics are introduced. The B → J/ψηK analysis, a “cut and counting method” is

used, while for the B± → DK± analysis an extended maximum likelihood method [18]

is used.

In chapter 5, a complete analysis chain for the mode B → J/ψηK is described.

Data samples, event selection criteria, background estimation, data fit results and

systematic errors are listed. A search for X → J/ψη is also included in this chapter.

In chapter 6, all the steps for the analysis B± → DK± are discussed. These

include: data samples; event selection criteria; fit method; parameterization of the fit

input variables; validation of the input variable shapes; Monte Carlo fit; data fit and

systematic errors.

Chapter 7 contains a brief conclusion for both analyses.
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Chapter 2

Physics overview

In this chapter the nature of the X particle, charge parity (CP) violation and the

method to extract the CP violation weak phase γ are introduced.

2.1. Nature of the X particle

In 2003, the Belle Collaboration reported a 10.3σ discovery of a new particle, now

denoted X(3872), in its decay X(3872) → J/ψπ+π−, via the decay B± → K±X(3872)

[2]. The particle has a resonance mass 3872.0 ± 0.6 ± 0.5 MeV/c2 with a width less

than 2.3 MeV/c2. This state has since been confirmed by the CDF II [3], the D0 [4]

and BABAR [5] collaborations, but still remains something of a mystery. The X(3872)

mass is very near the D0D∗0 threshold of 3871.5 ± 0.5 MeV/c2, which may indicate

something important in the structure of X. Several ideas for the nature of this mystery

particle have been suggested:
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1. A charmonium hybrid state [6];

2. A 1D charmonium state [7];

3. A weakly bound state of two mesons, chiefly D0D̄∗0 [8];

4. A hidden and open charm diquark-antidiquark state [9].

2.1.1. Hybrid charmonium meson state

Hybrid mesons consist of a qq̄ (q = u, d, s, ...) pair with an excited gluonic degree of

freedom. A hybrid charmonium meson (ψg) could be produced in B−meson decays.

Different theoretical models [19] predict that the low lying states of charmonium

hybrid have a mass of 4.0 - 4.5 GeV/c2 with JPC = 0±∓, 1±∓, 2±∓, and 1±±, where J

is the angular momentum quantum number, C is the charge conjugation, P is space

parity. Of these states, the 0+−, 1−+, and 2+− have exotic quantum numbers that are

not consistent with the constituent quark model (P = (−1)l+1, C = (−1)l+s, where l

is the orbital angular momentum quantum number, and s is the spin of the particle).

There are three decay modes that can be used to search for charmonium hybrids:

1. a Zweig-allowed fall-apart mode, such as ψg → D∗D̄∗;

2. a cascade decay to conventional cc̄ states, of the type ψg → (cc̄)(gg) → (cc̄)+(light

hadrons), and ψg → (cc̄) + γ;

3. decays to light hadrons via intermediate gluons, ψg → (ng) → light hadrons.
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2. Physics overview

Of these modes, ψg with exotic JPC quantum numbers offer the most unambiguous

signal to search for the hybrid charmonium states. The possible decays ψg → D∗D∗,∗∗,

ψg(0
+−, 2+−) → J/ψ + (π+π−, η, η′), and ψg → (cc̄)γ can be used for this purpose.

The reported properties of X(3872) are consistent with the expectations for 2+−

and 0+− hybrids [6], as the lowest lying hybrid charmonium state has a mass above

4.0 GeV/c2, which is much higher than the mass of X(3872), and the calculation based

on the models for hybrid states has a large uncertainty, these states can only be used

as a guidance for this X particle.

2.1.2. 1D charmonium states

The predictions for 1D charmonium states [7] are derived mostly from quark

potential models. These models assume a color Coulomb potential plus a linear

confining interaction. The expected mass mean value for 1D charmonium multiplets

is about 3.8 GeV/c2, Table 2.1 gives the average mass value of the quark model 1D

and 2P cc̄ states from several theoretical predictions [20].

Table 2.2 shows a summary of the strong and electromagnetic partial width cal-

culated for all possible 1D states [21]. The total widths listed in this table imply that

the most plausible cc̄ assignments for X(3872) would be 1 3D2 and 1 1D2. Both states

have no allowed open-charm decay modes due to the parity violation and hence should

have narrow decay widths. The 1 3D2 state has a large branching fraction for the
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State Experiment Average mass value

(MeV) (MeV)

1 3D3 3841(22)

1 3D2 3827(24)

1 3D1 3770 3803(25)

1 1D2 3821(32)

2 3P2 3990(25)

2 3P1 3957(28)

2 3P0 3903(40)

2 1P1 3964(20)

Table 2.1: Quark model cc̄ masses (see Ref. [8]). The number in parenthesis is the
error.

radiative decay, which is contrast to Belle limit on the radiative decay of X(3872) [2],

B(X(3872) → χc1γ)

B(X(3872) → J/ψπ+π−)
< 0.89, 90% C.L. (2.1)

As there is a large uncertainty on these measurement, the state of 1 3D2 is not ruled

out yet. For 1 3D3 state, though it has allowed open-charm decay, it is suppressed

with high orbital quantum number, it still has a small width. As for the uncertainty in

this theoretical prediction, this state might be still a possible assignment for X(3872).
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Initial state Final state Width (MeV) BF(%)

13D3 DD 4.04 84.2

ggg 0.18 3.8

J/ψππ 0.21±0.11 4.4

χc2(1
3P2)γ 0.37 7.7

Total 4.80 100

13D2 ggg 0.08 10.8

J/ψππ 0.21±0.11 4.4

χc2(1
3P2)γ 0.09 12.2

χc1(1
3P1)γ 0.36 48.6

Total 0.74 100

13D1 DD 184 98.9

ggg 1.15 0.6

J/ψππ 0.21±0.11 0.1

χc2(1
3P1)γ 0.20 0.1

χc1(1
3P0)γ 0.44 0.2

Total 186 100

11D2 DD 0.19 22.2

ηcππ 0.21±0.11 0.1

hc(1
1P1)γ 0.46 53.5

Total 0.86 100

Table 2.2: Partial widths and branching fractions (BF) for strong and electric tran-
sitions with the initial cc̄ state of a mass of X(3872) (see Ref. [8]).
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2.1.3. Weakly bound state of two mesons

From Table 2.1, we see that the mass of X(3872) is between 1D and 2P states

but with a discrepancy of 60-100 MeV for either of these two possible states. As the

mass of X(3872) is near the threshold of D0D̄∗0/D∗0D̄ and D±D∗±, it fits Törnqvist’s

prediction of two weakly bound DD̄∗ 0−+ and 1++ states, which have an invariant

mass close to 3870 MeV [8,22]. While Swanson argued that it is a state of JPC = 1++

D0D̄∗0 hadronic resonance, stabilized by an admixture state of ωJ/ψ and ρJ/ψ [8].

If X(3872) really is a weakly bound state of D0D̄∗0 as Törnqvist predicted, its

properties should be

1. JPC = 0+−/1++, for other quantum numbers, the potential is either repulsive

or so weak that bound states are not expected;

2. a pure isosinglet with a mass very close to the DD∗ threshold;

3. with a width determined mostly by the instability of its components or the D∗

width (< 2.1 MeV).

All these properties are based on a pion exchange model.

As branching ratio of X(3872) → J/ψππ is small, Swanson argued that this may

imply a small isovector ρJ/ψ component in X(3872) wave function. He suggested that

the wave function of X(3872) may be coupled with six possible decay channels with

a threshold close to X(3872). These six channels are
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1. ρJ/ψ at 3.8679 GeV/c2,

2. 1√
2
(D0D̄∗0 + D̄0D∗0)S at 3.8712 GeV/c2,

3. 1√
2
(D0D̄∗0 + D̄0D∗0)P at 3.8712 GeV/c2,

4. 1√
2
(D+D̄−∗ + D̄−D+∗)S at 3.8793 GeV/c2,

5. 1√
2
(D+D̄−∗ + D̄−D+∗)P at 3.8793 GeV/c2,

6. ωJ/ψ at 3.8795 GeV/c2

where S (P) stands for S (P) wave for orbital quantum number l = 0(1). Fig. 2.1

shows the wave function coefficients (defined as
∫ |ϕα|2d3x, α is a channel index) as a

function of binding energy. From Fig. 2.1, if X(3872) is really a weakly bound state

Figure 2.1: Component strength vs. binding energy.

of mesons, D0D̄∗0 is the main component.
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2.1.4. Diquark-antidiquarks

As the X(3872) does not fit in a cc̄ assignment very well, Maiani et al. [9] argued

that it might be a 4-quark bound state: a JPC = 1++ state with the symmetric spin

distribution [cq]S=1[c̄q̄]S=0 + [cq]S=0[c̄q̄]S=1, where q = u, d quarks.

In ref. [9], they studied two aspects of diquark-antidiquark state, constituent di-

quark mass and spin-spin interaction. For hadrons, the mass of a particle originates

from: quark composition, constituent quark masses and spin-spin interactions. The

mass Hamiltonian can be written as

H =
∑
i

mi +
∑
i<j

2κij(SiSj), (2.2)

where i, j are the indices of the constituent quarks, Si, Sj are the spins for quarks i

and j, and the coefficients κij depend on the flavor of the constituents i, j and on the

particular color state of the pair. Fig. 2.2 shows the mass spectrum for the X particles

with X(3872) mass set to 3.872 GeV/c2. The 2++ state is a possible assignment for

the observed X(3940) state through e+e− → J/ψX(3940), X(3940) → DD̄∗ [10] or

the resonance of J/ψω with decay channel B → J/ψωK [11]. The search for 1+−

state can be done through the channels J/ψ + π(η) and ηc + ρ(ω). The particle X

might be a mixture of two neutral mass eigenstates Xu = [cu][c̄ū] and Xd = [cd][c̄d̄]

(cc̄uū(cc̄dd̄) = 1√
2
cc̄
(
uū+dd̄√

2
+ (−)uū−dd̄√

2

)
= 1√

2
(|IS = 0 > +(−)|IS = 1 >), IS is the

13
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Figure 2.2: Full spectrum of the X particles.

spin). This would lead to isospin breaking in their mass eigenstates and strong decays.

With this assumption, a heavy Xh and a light Xl, both may decay into J/ψω.

With this diquark-antidiquark model, there is no limitation on the X charged

partner (X+, [cu][c̄d̄], X−, [cd][c̄ū] ). Maiani et al. predicted that if particle Xu (Xd)

dominates final production of B+, Xd (Xu) will dominate the neutral B0. A precise

measurement of the X mass in B+ and B0 decay should reveal the mass difference

between Xh and Xl.

2.2. Charge conjugation and parity violation

Charge conjugation(C), space parity(P) and time reversal (T) are three discrete

symmetries in the universe. For a particle with momentum �p, charge Q, spin �S and

14
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Energy E, Charge conjugation operation changes this particle to its corresponding

anti-particle that has charge -Q. Space-parity operation changes the position �x of the

particle to −�x. Time reversal operation leads to the interchange between the initial

state and the final state. The combined CP transformation changes a particle to its

antiparticle and flips its momentum and helicity (basically it is the inner product of

the spin and momentum of the particle). The product transformation CPT , in any

order, is an exact symmetry for a local field that is a Lorentz invariant and meets the

spin-statistics requirement (boson fields obey commutation rules and fermion field

obey anti-commutation rules).

The earliest discovery of CP violation was found in neutral K-meson system [12]

by Cronin, Fitch and co-workers. They observed that there is a small but finite

probability for the decay K0
L → π+π−, in which the final state has CP = +1, while

K0
L also decays into 3 pions state which is CP = -1. All these are due to that K0

L is

a mass eigenstate but not a CP eigenstate.

For the origin of the CP violation in hadronic physics, the Standard Model of the

electroweak interaction provides a good explanation.

In the Standard Model, there are three generation of quarks:

⎛
⎜⎜⎜⎜⎜⎜⎝
u

d

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝
c

s

⎞
⎟⎟⎟⎟⎟⎟⎠

,

15



2. Physics overview

⎛
⎜⎜⎜⎜⎜⎜⎝
t

b

⎞
⎟⎟⎟⎟⎟⎟⎠

. The flavor of the quarks involve in the weak interaction. As the flavor

eigenstate is not a physics quantity, such as mass, the weak transitions of the states

(d, s, b) to (u, c, t) obey mixing rules that can be described by the Cabibbo-Kobayashi-

Maskawa (CKM) mixing matrix [14] to get physics measurement. The CKM matrix

in general can be written as:

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Uud Uus Uub

Ucd Ucs Ucb

Utd Uts Utb

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.3)

where Uij is the quark coupling constant between quark i and quark j. Usually the di-

agonal term is Cabibbo-favored and the non-diagonal terms are Cabibbo-suppressed.

This is a unitary 3 × 3 matrix which can be fully parameterized by 3 real and

1 imaginary parameters. An instructive parameterization of the CKM matrix is

16



2. Physics overview

Wolfenstein expression [23]

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − λ2/2 λ λ3A(ρ− iη)

−λ 1 − λ2/2 λ2A

λ3(1 − ρ− iη) −λ2A 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.4)

where λ = sin θc � 0.22, and θc is the Cabibbo angle.

The amplitude for a process ab→ cd is [24]

M ∝ J μ
caJ †

μbd

= (ūcγμ(1 − γ5)Ucaua)(ūbγμ(1 − γ5)Ubdud)
† (2.5)

= UcaU
∗
db(ūcγμ(1 − γ5)ua)(ūdγμ(1 − γ5)ub),

where charge current Jμca = ūcγμ(1 − γ5)Ucaua.

The CP -transformed amplitude is

MCP ∝ (J μ
ca)CP (J †

μbd)CP

= UcaU
∗
db(ūaγμ(1 − γ5)uc)(ūbγμ(1 − γ5)ud). (2.6)

if we find MCP = M†, then CP is conserved, otherwise CP is violated. From Eqn. 2.5
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amplitude M† is then

M† ∼ U∗
caUdb(ūcγμ(1 − γ5)ua)(ūdγμ(1 − γ5)ub). (2.7)

Due to the two complex elements of matrix (see Eqn. 2.4), it is easy to show that for

some processes,

MCP �= M†. (2.8)

then CP symmetry violation in the SM model is mainly due to the complex coupling

constants that can not be removed by any choice of phase redefinition.

2.3. Charge conjugation and parity violation in B physics

B meson decays provide a second and independent set of tests of the Standard

Model’s CP violation mechanism [13]. The best determination of CP violating pa-

rameters in the Standard Model comes from neutral B mesons with a mixing between

B0 and B̄0 [25]. Also with a large data sample, it is possible to explore the CP

violation without B mixing [26].

In the neutral B0− B̄0 system, the mass eigenstates are not flavor eigenstates. As

CP is not a good symmetry, the mass eigenstates are also not CP eigenstates. The

mass eigenstate of a neutral B is a mixture of the two flavor states, |B0 > and |B̄0 >,
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can be written as:

|BL > = p|B0 > +q|B̄0 > (2.9)

|BH > = p|B0 > −q|B̄0 >

where H(L) stands for the Heavy(Light). p and q are complex coefficients, and gov-

erned by the time-dependent Schrödinger equation

i
d

dt

⎛
⎜⎜⎜⎜⎜⎜⎝
p

q

⎞
⎟⎟⎟⎟⎟⎟⎠

= H

⎛
⎜⎜⎜⎜⎜⎜⎝
p

q

⎞
⎟⎟⎟⎟⎟⎟⎠

= (M − i

2
Γ)

⎛
⎜⎜⎜⎜⎜⎜⎝
p

q

⎞
⎟⎟⎟⎟⎟⎟⎠
. (2.10)

Here M and Γ are 2 × 2 Hermitian matrices, −iΓ describes the exponential decay

of the B0 − B̄0 system, M is the mass matrix of this Bd system. CPT invariance

guarantees H11 = H22, and the non-diagonal terms are crucial for CP violation

Defining M = (MH +ML)/2, Γ = (ΓH + ΓL)/2 and Δu = ΔM − iΔΓ = (MH −

ML) − i(ΓH − ΓL), with Eqn. 2.10, the ratio of q/p is

q

p
=

−Δu

2(M12 − i
2
Γ12)

= −2(M∗
12 − i

2
Γ∗

12)

Δu
. (2.11)
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The amplitudes for B0(B̄0) decays into a CP eigenstate f are

A =< f |H|B0 >, Ā =< f |H|B̄0 > . (2.12)

Defining

r(f) =
q

p

Ā

A
, (2.13)

the time-dependent rates for initially pure |B0 > or |B̄0 > states to decay into a

final CP eigenstate at time t can be written as

Γ(B0(t) → f) = |A|2e−Γt × (
1 + |r(f)|2)

2
(2.14)

+
1 − |r(f)|2

2
cos(ΔMt) − Im[r(f)] sin(ΔMt))

Γ(B̄0(t) → f) = |A|2e−Γt × (
1 + |r(f)|2)

2
(2.15)

− 1 − |r(f)|2
2

cos(ΔMt) + Im[r(f)] sin(ΔMt))

The time-dependent CP asymmetry is then defined

af (t) ≡ Γ(B0(t) → f) − Γ(B̄0(t) → f)

Γ(B0(t) → f) + Γ(B̄0(t) → f)
. (2.16)
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2.3.1. Prototypical CP violation mechanisms in B decay

There are three prototypical conditions by which a process may exhibit CP vio-

lation in the BB̄ system.

(i) CP violation in decay

In general, amplitude A (Ā) can be factorized to three parts: the absolute value

of A (Ā), a strong phase shift δ (CP invariant), and a weak phase φ (CP violating).

If several amplitudes contribute to the decay B → f ,

A =
∑
i

Aie
iδieiφi , Ā =

∑
i

Aie
iδie−iφi (2.17)

∣∣∣∣∣ĀA
∣∣∣∣∣ =

∣∣∣∣∣
∑
iAie

iδie−iφi∑
iAieiδieiφi

∣∣∣∣∣ . (2.18)

When CP is conserved, the weak phases φi are all equal. Therefore, CP violation

implies ∣∣∣∣∣ĀA
∣∣∣∣∣ �= 1 (2.19)

(ii) CP violation in mixing

Considering Eqn. 2.11, if CP is conserved the relative phase between M12 and Γ12

vanishes, So that CP violation implies

|q
p
| �= 1. (2.20)
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(iii) CP violation in the interference of mixing and decay

In this case |q/p| = 1 and |Ā/A| = 1, but (p/q) �= 1, i.e., p/q has a CP -violating

phase.

Potentially, CP violation can be found in the neutral B system through any of

these three types. As in charged B mesons, there is no mixing, CP violation may be

discovered only through the type (i) processes.

2.4. The unitarity triangle

As the CKM matrix is a unitary matrix, there are three useful relations among

its elements:

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0, (2.21)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0, (2.22)

VtdV
∗
tb + VcdV

∗
cb + VudV

∗
ub = 0. (2.23)

In the complex plane, the above three relations can be represented as triangles. The

Unitarity triangle, which represents Eqn 2.23, is shown in Fig. 2.3. The three angles

of this triangle are given by:

α = arg(− VtdV
∗
tb

VudV
∗
ub

) (2.24)
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β = arg(−VcdV
∗
cb

VtdV
∗
tb

) (2.25)

γ = arg(−VudV
∗
ub

VcdV ∗
cb

). (2.26)

One of the analyses described in this thesis will ultimately lead to the measurement

of the angle γ, as described in the next section.

VtdV
*
tb

|VcdV
*

cb|

VudV
*

ub

|VcdV
*

cb|

η
A

α

γ
0

0 ρ 1

β

Figure 2.3: Unitarity triangle.
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2.5. Measurements of the angle γ with charged B mesons

In this section we give an overview of γ measurements using charged B decays.

More detail about these measurement methods is given in the subsequent subsections.

The first proposal to extract γ by using charged B meson decays, suggested by

Gronau and Wyler (GW) [27], is to use the interference of two b quark transitions,

B− → D0K− and B− → D̄0K− with D0/D̄0 decaying into common CP eigenstates.

B− → D0K− (b → cūs transition) is flavor favored decay, which includes two decay

processes, color allowed and color suppressed. For B− → D̄0K− (b→ uc̄s transition),

it is a color and Cabibbo suppressed decay. Due to the color and Cabibbo suppression

of transition involving in the decay B− → D̄0K−, the interference magnitude between

these two decay channels is at a level of 10%, determined by the ratio of the decay

amplitudes of these two transitions [28]. With the GW method, the measurement

of γ is also dependent on all the transition branching ratios. As Atwood, Dunietz

and Soni (ADS) [29] pointed out, the GW method has some difficulty in measuring

the branching ratio of B− → D̄0K−. The contribution from B− → D0K− with D0

undergoing a doubly Cabibbo suppressed decay into the same final state is at the

same order as the amplitude of B− → D̄0K− with a Cabibbo allowed D̄0 decay,

and these two channels interference. Therefore, it is hard to distinguish these two

contributions.

The ADS method makes use of the full interference of these two channels, i.e.,
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B− → D0K− with the D0 undergoing a doubly Cabibbo suppressed decay to final

states, such as K+π−, B− → D̄0K− with D̄0 undergoing Cabibbo favored decay into

the same final states. The full rates of these two process are similar, and they can

interfere at a level of O(1).

To circumvent the color suppression of b → uc̄s transition in the GW and ADS

methods, Aleksan et. al. have suggested using 3-body B decays, B− → DK−π0,

which have color-allowed b → uc̄s contributions [30]. Despite this advantage, the

sensitivity of this method is limited by “Dalitz plot suppression”, in which the b→ cūs

and b→ uc̄s amplitudes populate mostly different regions of the Dalitz plot, reducing

the level of interference between them.

With the data accumulated with BABAR (about 210 fb−1) to date , the statistics is

still not enough to get a good measurement on γ with above introduced methods. To

make maximal use of the current data, many variants of the ADS and GW methods

have been developed [31]. One of the most promising methods is to use multi-body

D decay with full D Dalitz analysis [35].

There are also proposals to use neutral B mesons to extract γ. Dunietz suggested

to use the so-called self-tagging Bd modes Bd → D0/D̄0K∗0 with K∗0 → K+π−

(which tags the B flavor) [33]. Gronau et. al. suggested using untagged B0 → DKS

modes [34].

In the following several sections, we focus on the use of charged B decay modes.
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2.5.1. Gronau-Wyler method

The decay modes B− → D0K−, B− → D̄0K−, B± → D0
1,2K

±, together with their

charge-conjugate counterparts can be used to determine the value of γ, with 8-fold

discrete ambiguity. Here D0
1(D

0
2) = (D0 + (−)D̄0)/

√
2 is a CP -even(odd) state,

Let us first consider the decay B± → D0
1(D

0
2)K

±. This decay can be identified

by the CP decay products of the D0
1/D

0
2. For instance, Ksπ

0, K0
Sρ

0, and K0
Sφ can

be used to identify the CP -odd state D0
2, while π+π−, K+K− indicate the CP -even

state D0
1.

The decay amplitudes of the charged B decay, B± → D0
1K

± can be written as

√
2A(B+ → D0

1K
+) = |A|eiγ+iδ + |Ā|eiδ̄,

√
2A(B− → D0

1K
−) = |A|e−iγ+iδ + |Ā|eiδ̄. (2.27)

where A and Ā are the two weak amplitudes, with CKM factor V ∗
ubVcs and V ∗

cbVus, re-

spectively. |A| = |A(B+ → D0K+)| = |A(B− → D0K−)|, |Ā| = |A(B+ → D̄0K+)| =

|A(B− → D̄0K−)|. δ and δ̄ are the final state interaction phases; generally δ �= δ̄. The

expression for D0
2 are obtained by replacing the “+” signs with “-” signs in Eqn. 2.27.

Eqn. 2.27 also can be written as

√
2A(B+ → D0

1K
+) = A(B+ → D0K+) + A(B+ → D̄0K+),

26



2. Physics overview

√
2A(B− → D0

1K
−) = A(B− → D0K−) + A(B− → D̄0K−). (2.28)

Eqn. 2.27 and 2.28 can be pictured as two triangles in the complex plane (Fig. 2.4).

Note here

A(B+ → D̄0K+) = A(B− → D0K−)

A(B+ → D0K+) = e2iγA(B− → D̄0K−)

|A(B+ → D0
1K

+)| �= |A(B− → D0
1K

−)| (2.29)

In Eqn. 2.29, γ �= 0, δ �= δ̄ are assumed. We may define a partial decay rate asymmetry

by

acp =
|A(B+ → D0

1K
+)|2 − |A(B− → D0

1K
−)|2

|A(B+ → D0
1K

+)|2 + |A(B− → D0
1K

−)|2

=
2rB sin γ cos(δ̄ − δ)

1 + r2
B + 2rB cos γ cos(δ̄ − δ)

(2.30)

where

rB =
|A(B− → D̄0K−)|
|A(B− → D0K−)| , (2.31)

it is expected to be around 0.1. Measuring the magnitudes of the six amplitudes in
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δ-γ-δ
−

2γ
A(B− K− D

− 0 )

A(B− D0
1K

−)2

A(B+ K+ D0 )

A(B+ K+ D0 )

A(B+ D0
2K

+)2

A(B+ D0
1K

+)2

A(B+ K+ D
− 0) = A(B− K− D0 )

(a)

2γ

A(B− K− D
− 0 )

A(B− D0
1K

−)2

A(B+ K+ D0 )

A(B+ D0
1K

+)2

A(B+ K+ D
− 0) = A(B− K− D0 )

(b)

Figure 2.4: Representation of Eqns. 2.27 and 2.28 in the complex plane: (a) and (b)
describe two possible solutions for γ.

28



2. Physics overview

Eqn. 2.29, sin γ is given by

sin γ =
1

4|A||Ā|{±
√

[(|A| + |Ā|)2 − 2|A+
1 |2][2|A−

1 |2 − (|A| − |Ā)2]

±
√

[(|A| + |Ā|)2 − 2|A−
1 |2][2|A+

1 |2 − (|A| − |Ā)2]}, (2.32)

where A+
1 = A(B+ → D0

1K
+), A−

1 = A(B− → D0
1K

−). The value for γ has an 8-fold

discrete ambiguity [36] due to invariance of the measured decay rates under the three

operations:

exchange : (γ, δ − δ̄) → (δ − δ̄, γ)

sign : (γ, δ − δ̄) → (−γ,−δ + δ̄)

π : (γ, δ − δ̄) → (π + γ, π + δ − δ̄) (2.33)

This can be seen from Eqn. 2.32, which involves cos(γ ± (δ − δ̄)) in A+
1 /A

−
1 .

The amplitudes of the six processes (see Eqn. 2.29) are needed in order to extract

γ. But experimentally, it is difficult to measure the branching ratios of B− → D̄0K−

and its charged partner. Experimentally, there are only two possible ways to tag the

flavor of a D̄0: a) through semi-leptonic decays; b) through hadronic decays.

Using the semi-leptonic decay c̄ → l−s̄ν̄l to tag the D flavor in the decay B− →

D̄0K− suffers from an overwhelming combinatoric background

For hadronic D decay, one would detect the decay of B− → D̄0K− through a
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Cabibbo-allowed D̄0 decay into a state with a K+. However B− → D0K− can also

decay into a state with a K+ through a double Cabibbo-suppressed D0 decay. As

rB ∼ 0.1, λ2 ∼ 0.05, the final production rates from the above two contributions

are of same order and they interfere quantum mechanically, it is not easy to identify

whether one had a D0 or a D̄0.

2.5.2. Atwood-David-Soni method

ADS method makes use of the interference of the same D final states of B− →

D0K− through a double Cabbibo-suppressed D decay and B− → D̄0K− through a

Cabibbo-allowed D decay. Let us define this D final state to be X, where X is a

non-CP eigenstate of D.

Let us take the conventions of ref. [29], using the same definition of the branching

ratios.

a(k) = Br(B− → K−D0), ā(k) = Br(B+ → K+D̄0),

b(k) = Br(B− → K−D̄0), b̄(k) = Br(B+ → K+D0),

c(X) = Br(D0 → X), c̄(X) = Br(D̄0 → X),

c(X̄) = Br(D0 → X̄), c̄(X̄) = Br(D̄0 → X̄),

d(k,X) = Br(B− → K−[X]), d̄(k, X̄) = Br(B+ → K+[X̄]), (2.34)
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In the Standard Model, a(k) = ā(k) = |A|2, b(k) = b̄(k) = |Ā|2 and c̄(X) = c(X̄).

Now write d(k,X) and d̄(k, X̄) in terms of a, b and c

d(k,X) = a(k)c(X) + b(k)c(X̄)

+ 2
√
a(k)b(k)c(X)c(X̄) cos (ζk + δX + γ),

d̄(k, X̄) = a(k)c(X) + b(k)c(X̄)

+ 2
√
a(k)b(k)c(X)c(X̄) cos (ζk + δX − γ), (2.35)

where ζk = δ − δ̄, δX is the strong phase difference between D → X and D → X̄. In

general, if γ �= 0, d(k,X) �= d(k, X̄).

Let us consider the case where b(k) is not known (hard to get a measurement)

and d(k,X1,2), d̄(k, X̄1,2), a(k), c(X1,2) and c(X̄1,2) are known, where X1,2 is two

different final non-CP state from D decay. There are four unknowns to solve for:

{b(k), ξ1, ξ2, γ}, where ξi ≡ ζk + δXi
.

Here the quantities defined in ref. [29] are used:

ui =
b(k)c(X̄i)

a(k)c(Xi)
; yi =

d(k,Xi) − d̄(k, X̄i)

2a(k)c(Xi)
;

zi =
d(k,Xi) + d̄(k, X̄i)

2a(k)c(Xi)
− 1;

ρ =
c(X1)c(X̄2)

c(X̄1)c(X2)
=
u2

u1
;

ς = z2
1 − z2

2/ρ− 2(z1 − z2)u1 + (1 − ρ)u2
1;
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ϑ = y2
1 − y2

2/ρ; (2.36)

here yi, zi, ϑ and ρ can be measured directly from experiment, ui is unknown. It is

easy to derive

4u1ςϑ = (ϑ− ς)(y2
1ς − (z1 − u1)

2ϑ). (2.37)

This equation in general is a quartic equation of u1 (ς is second order in u1) which

may have up to 4 real roots. sin2 γ is then given by

sin2 γ =
ϑ

ϑ− ς
. (2.38)

As sin2 γ can’t distinguish between the solutions {±γ, π ± γ}, each u1 solution has

4-fold ambiguities, observations of at least 3 modes of D0 decay are needed to reduce

these 16 possible ambiguities to 4.

2.5.3. Multi-body D decay with full Dalitz analysis

As the sensitivity of the γ measurement is severely limited by the available statis-

tics, it is important to develop new methods that use as many modes as possible.

Grossman et al. [32] developed the idea of using Non-CP eigenstate D decay modes

that have singly Cabibbo-suppressed amplitudes for both D0 and D̄0 decays. They

suggested to use the decays D → K±K∗∓ or D → ρπ. The idea is that both D0
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and D̄0 decay into these final states with similar yet unequal amplitudes. In this

way, the final states like K±K∗∓ serve as two separate states and provide enough

observables to extract a solution for cos2 γ. This requires that the branching ratios

Br(D0 → K+K∗−) and Br(D̄0 → K+K∗−) be known. Since both have the same final

state, they interfere, it is hard to distinguish without a full D Dalitz plot analysis.

Aware of this problem, Giri et al. [35] developed a new way to extract γ by a full D

Dalitz plot analysis. This approach allows D decay mode with enough statistics, can

be used to extract γ.

Similarly, for the decay of D → π+π−π0, there are two contributions, one from D0

and another from D̄0, the amplitude of this decay to a point (s12, s13) in the Dalitz

plot (see Fig. 2.5) is

AD(s12, s13) = A12,13e
iδ12,13

= A(D0 → π0(p1)π
+(p2)π

−(p3))

= A(D̄0 → π0(p1)π
−(p3)π

+(p2)), (2.39)

where sij = (pi + pj)
2, and p1, p2, p3 are the momenta of the π0, π+ and π−, respec-

tively. A12,13 is defined to be real and positive, and δ takes any value between 0 and

2π.
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The amplitude for B− → D(π+π−π0)K− with spin J = 0 D final state is

A(B− → (π+π−π0)DK
−) = A(B− → D0k−)A(D0 → π+π−π0)

+ A(B− → D̄0K−)A(D̄0 → π+π−π0)

= ABPD(AD(s12, s13) + rBe
i(ζk−γ)AD(s13, s12)), (2.40)

where rB is the ratio between A(B− → D̄0K−) and A(B− → D0K−), AB = |A(B− →

D0K−)|, PD is the D meson propagator, which may very accurately be set to 1, given

the narrow width of the D meson. The reduced partial decay width is

dΓ̂(B− → (π+π−π0)K−) = |A(B− → K−(π+π−π0)D)|2dp

∝ {A2
12,13 + r2

BA
2
13,12 + 2rBRe[AD(s12, s13)A

∗
D(s13, s12)e

−i(ζk−γ)]}dp,(2.41)

where A12,13 = |ABA(s12, s13)|, dp is the phase space term, and the product of

AD(s12, s13)A
∗
D(s13, s12) is symmetric under the exchange s12 ↔ s13 followed by a

complex conjugation. The last term of Eqn. 2.41 can be written as

Re[AD(s12, s13)A
∗
D(s13, s12)e

−i(ζk−γ)]

= A12,13A13,12[cos (δ12,13 − δ13,12) cos(ζk − γ)

+ sin (δ12,13 − δ13,12) sin(ζk − γ)]. (2.42)
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Now, it is necessary to extract γ with Eqn. 2.41 and 2.42. The Dalitz plot is

partitioned into n bins with identical division on both sides of the s12 ↔ s13 symmetry

axis. Define quantities integrated over the phase space of the jth bin:

cj =
∫
j
dpA12,13A13,12 cos(δ12,13 − δ13,12), (2.43)

sj =
∫
j
dpA12,13A13,12 sin(δ12,13 − δ13,12), (2.44)

Tj =
∫
j
dpA2

12,13. (2.45)

The variables cj and sj contain the difference of strong phases and are unknown in

the analysis, while Tj can be measured through flavor tagged D decays, which are

achieved by using the charge of the soft pion in the decay D∗+ → D0π+. The cj

is unchanged with the exchange s12 ↔ s13, while the sj undergoes a sign flip. In

a Daltiz plot with variables s12 and s13, as the D decay is ρ-like decay, there must

be a line which makes ci symmetric and sj anti-symmetric (see Fig. 2.5). Let us

define this symmetry axis and consider a case of n = 2k bins, the k bins on one side

above the axis (denoted by the index j) and the remaining k bins lying under the

axis (denoted by j̄), so cj̄ = cj and sj̄ = −sj , while there is no relation between Tj

and Tj̄. Considering these special bins j and j̄, we can get the decay rates for bin j:

Γ̂−
j =

∫
j
dΓ̂(B− → (π0π+π−)DK

−)

= Tj + r2
BTj̄ + 2rB[cos(ζk − γ)cj + sin(ζk − γ)sj ], (2.46)

35



2. Physics overview

Figure 2.5: The partitions of the Dalitz plot as discussed in the text. The dashed line
is the symmetry axis.

Γ̂−
j̄ =

∫
j̄
dΓ̂(B− → (π0π+π−)DK

−)

= Tj̄ + r2
BTj + 2rB[cos(ζk − γ)cj − sin(ζk − γ)sj], (2.47)

Γ̂+
j =

∫
j
dΓ̂(B+ → (π0π+π−)DK

+)

= Tj + r2
BTj̄ + 2rB[cos(ζk + γ)cj − sin(ζk + γ)sj], (2.48)

Γ̂+
j̄ =

∫
j̄
dΓ̂(B+ → (π0π+π−)DK

+)

= Tj̄ + r2
BTj + 2rB[cos(ζk + γ)cj + sin(ζk + γ)sj ], (2.49)

From Eqn. 2.46 to 2.49, we can see that the five unknown variables are cj, sj, rB,

ζk and γ. Increasing one more bin only adds two more unknown variables: cj and

sj, but four more equations like Eqn. 2.49. So there will be 4j equations and 2j + 3
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unknown variables. If 4j >= 2j + 3, all these unknown parameters can be solved.

In other words, The determination of γ without hadronic uncertainties only needs a

partition of the D meson Dalitz plot to four or more bins (k >= 2). In this method,

γ is obtained with a 4-fold ambiguity.

Also, if using the properties of the symmetry axis and combining j and j̄ into one

bin j′, then sj′ = 0, the 4j equations will reduce to 2j equation. To determine γ in

this case requires j′ ≥ 3, and there is an 8-fold ambiguity.

As three-body D decays involve many resonances, cj = 0 or sj = 0 are not

expected for all j. Therefore γ can be extracted even if ζk = 0, if some of the cj or sj

are measured independently at a charm factory.

If we know a functional dependence of both the moduli and the phases of the

D0 meson decay amplitudes AD(s12, s13), there are only 3 unknown variables, rB,

δB, and γ, but this will introduce model dependence. As most of D0 → π+π−π0

decay proceeds via ρ resonances [56], the decay amplitude can be fitted to a sum of

Breit-Wigner functions plus a constant term:

AD(s12, s13) = A(D0 → π0(p1)π
+(p2)π

−(p3))

= a0e
iδ0 +

∑
r

are
iδrAr(s12, s13), (2.50)

where the first term is the non-resonant term and the second is the resonant contri-
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butions. the Breit-Wigner function is

Ar(s12, s13) = MJ
r × F r

BW , (2.51)

where r represents one resonance in any two of these three pions, MJ
r accounts for

the angular distribution that depends on the spin J of the r resonance (M0
r = 1,

M1
r = −2�p1 · �p3, where �p1, �p3 are, respectively, the momentum of one of the particle

from the rth resonance and of the remaining particle.). F r
BW is the relative Breit-

Wigner function

F r
BW (s) =

1

s−M2
r + iMrΓr(

√
s)
, (2.52)

where Mr is the mass of the rth resonance and Γ(
√
s) is the mass dependent width,

with s being the square of the invariant mass of the resonance.

2.5.4. Effect of D0-D̄0 mixing on the measurement of γ

In the discussion of the methods used to extract γ, we neglect all the effects due

to the mixing of D0 and D̄0. In this section, only the final results will be given, the

detail can be found in ref [37].

In general, the mixing in the D0 − D̄0 system can be parameterized by two vari-

ables: xD = ΔmD/ΓD and yD = ΔΓD/(2ΓD), where ΔmD is the difference between

two mass eigenstate of the D, ΓD is the average width of two D states, and ΔΓD
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2. Physics overview

is the difference between them. In the Standard Model, xD ∼ yD ∼ 10−2 (upper

bound). The effect on extraction of γ is proportional to xD/rB, yD/rB, xD/rD or

yD/rD, which is expected to be at order of at most 10% for the expected value of

rB ∼ 0.1 or rD ∼ 0.1. However, this effect can be eliminated by incorporating D0−D̄0

mixing in the formalism, using mixing parameters measured in D decay.

2.5.5. Existing results on γ

With the ADS method, the BABAR collaboration uses the decay of B± → D0K±

with D0 → K±π∓ to set the upper limit, rB = |A(B−→D̄0K−)|
|A(B−→D0K−)| < 0.22 (90% C.L.) [38],

which is consistent with the value rB = 0.118+0.093
−0.092 given by BABAR’s full Dalitz plot

anlysis of B− → DK− with D → K0
Sπ

+π− [39] and with the value rB = 0.26+0.11
−0.15

given by Belle [40].

Both BABAR and Belle conducted the full Dalitz analysis on D0 → K0
Sπ

+π−

from B± → D(∗)K±, where D∗ → D0γ or D0π0 by using the method introduced in

ref. [35]. For the weak phase γ, Belle’s result [40]: γ = (77+17
−19(stat.) ± 13(syst.) ±

11(model))◦, the corresponding two standard deviation interval is 26◦ < γ < 126◦;

BABAR’s result [39] is γ = (70 ± 31(stat)+12
−10(syst.)

+14
−11(model))

◦, the two standard

deviation interval is 12◦ < γ < 137◦.
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Chapter 3

BABAR Detector

The primary motivation for the BABAR experiment is to study CP asymmetries in

the decays of neutral B mesons [15]. If the Standard Model holds, a large asymmetric

effect is expected in B meson decays and many different B decay modes can be used.

Besides the CP study, BABAR also can be used to precisely determine the value of the

CKM matrix elements and search for rare B decay processes when a high integrated

luminosity is available.

The BABAR detector is located at one of the intersection regions of the PEP-II B

Factory, which is an asymmetric e+e− energy collider designed to operate at a center-

of-mass energy of 10.58 GeV, the mass of Υ (4S) resonance. The data collected on the

Υ (4S) resonance is called the on-peak data, while the data collected about 40 MeV

below the resonance peak is called the off-peak data. The 9.0 GeV e− beam collides

head-on with the 3.1 GeV e+ beam at an interaction point (IP) inside BABAR detector.
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3. BABAR Detector

The asymmetric beam energy results in a Lorentz boost to the Υ (4S) resonance of

βγ = 0.56. This enables the decay times of the B mesons to be inferred from their

measurable decay lengths, thus to measure the time dependence of their decay rates.

3.1. Electron and positron storage rings

A schematic representation of the PEP-II storage ring is shown in Figure 3.1.

An electron gun is used to create two bunches of electrons that are accelerated to

about 1 GeV before entering one of the damping rings, whose purpose is to reduce

the dispersion of beams. These electrons are accelerated in the linac and one of the

bunches is diverted to collide with a tungsten target to create a position beam, which

in turn passes through the damping ring and is accelerated in the linac. At the end of

the linac, they are fed into the PEP-II storage rings. There these two beams collide

at IP head-on.

Figure 3.1: The schematic view of PEP-II.
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3. BABAR Detector

The design luminosity is 3×1033 cm−2s−1, now the peak luminosity is above 8×1033

cm−2s−1, with a high (low) energy ring current 1.3A (2.2A), and 1034 bunches. Some

parameters of these energy asymmetric storage rings are summarized in Table 3.1.

Table 3.1: PEP-II beam parameters.

Parameters Design Typical

Energy HER/LER(GeV) 9.0/3.1 9.0/3.1

Current HER/LER(A) 0.75/2.15 1.3/2.2

# of bunches 1658 1034

Bunching spacing (ns) 4.2 6.3-10.5

σLx (μm) 110 120

σLy (μm) 3.3 5.6

σLz (μm) 9 9

3.2. Interaction region

Figure 3.2 shows the IR layout. The bunches collide head-on and are separated

magnetically in the horizontal plane by a pair of dipole magnets (B1), followed by a

series of offset quadrupoles, which are used to focus the beam. The collision axis is

off-set from z-axis of the BABAR detector by about 20 mrad in the horizontal plane

to minimize the perturbation of the beams by the solenoidal field.

The interaction region is enclosed by a double-layer beryllium beam pipe of about

2.8 cm outer radius. The pipe is cooled by water flowing between these two layers.

The beam pipe, some focusing magnets and the silicon vertex detector (SVT) were
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3. BABAR Detector

Figure 3.2: The interaction region, X and Y axes are with different scales.

assembled and aligned as one unit, and enclosed in a 4.5 m long support tube that

spans the IP.

3.3. Detector overview

The BABAR detector was designed and built by a large international team of scien-

tists and engineers including members of the high energy physics group at Colorado

State University. Figure 3.3 shows a longitudinal section through the detector center.

The detector surrounds the PEP-II interaction region. To maximize the geometric

acceptance for the boosted Υ (4S) decays, the whole detector is offset relative to the

beam-beam IP by 0.37 m in the direction of the lower energy beam.

The inner detector consists of a silicon vertex tracker, a drift chamber, a ring-
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3. BABAR Detector
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Figure 3.3: BABAR detector longitudinal section (dimension in mm).

imaging Cherenkov detector, and a CsI (cesium iodide) calorimeter. These detectors

are surrounded by a superconducting solenoid that is designed to produce a field of 1.5

T in the central region of the apparatus. the steel magnetic flux return is instrumented

for muon and neutral hadron detection. The detector polar angle acceptance is 17o <

θlab < 150o in the laboratory frame (−0.95 < cos θCM < 0.87 in the center mass

frame).

The charged particle tracking system is made of two components, the silicon vertex

tracker (SVT) and the drift chamber (DCH). The SVT has been designed to measure

angles and positions of the charged particles precisely just outside the beam pipe.
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3. BABAR Detector

The role of the DCH is to measure the momentum of the charged particles and also

supplies information for the charged particle trigger and particle identification.

The DIRC, the Detector of Internally Reflected Cherenkov light [67], is a novel

particle identification device providing powerful separation of pions and kaons from

about 500 MeV/c to the kinematic limit of 4.5 GeV/c.

The electromagnetic calorimeter (EMC) is designed to detect electromagnetic

showers, associated with incident electrons, positions, and photons, with excellent

energy and angular resolution over the energy range from 20 MeV to 4 GeV. This

coverage allows the detection of low energy π0s and ηs from B decays and higher

energy photons and electrons from electromagnetic, weak, and radiative process.

The instrumented flux return (IFR) is designed to identify muons and to detect

neutral hadrons.

In the following sections, we provide a short description of the major detector

sub-systems. The details can be found in Ref. [16].

3.4. Silicon vertex tracker

The SVT is composed of five layers of double-sided silicon strip detectors that

are assembled from modules with readout at each end (see Fig. 3.4). The inner

three layers primarily provide position and angle information for the measurement

of the vertex position. This is critical for the measurement of the time-dependent
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3. BABAR Detector

CP asymmetry. They are mounted as close to water-cooled beryllium beam pipe as

practical. The outer two layers are at a bigger radii, providing coordinate and angle

measurements needed for linking SVT and DCH tracks and for pattern recognition.

For a full reconstructed B decay, the mean vertex resolution along z-axis is better

than 80 μm, in the x-y plane, it is about 100μm. For the analysis B− → DK−, the

variable Δz is used, which is the distance between the vertex point of the signal B

meson and the vertex point of the rest of the event.

The SVT can provide standalone tracking for particles that cannot reach the

central tracking device (DCH), i.e. a particle with transverse momentum pt less than

120 MeV/c .

As the SVT is the closest device to the beam pipe, the tolerance of ionizing

radiation is critical for long term operation; it must withstand 2 Mrad dose life time.

Also due to the inaccessibility during the normal operation, a high level of reliability

and robustness are essential.

The SVT has a combined hardware and software reconstruction efficiency of 97%,

calculated for each half-module by comparing the number of associated hits to the

number of tracks crossing the active area of the module. This number excludes the

defective readout sections (9 out of 208).

The double-sided sensor provides up to ten measurement of dE/dx per track. The

SVT provides a 2σ separation between the kaons and pions up to momentum of 500
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3. BABAR Detector
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Figure 3.4: Schematic view of SVT: longitudinal section.

MeV/c, and between kaons and protons beyond 1 GeV/c.

3.5. Drift chamber

The DCH is a 276.4 cm long concentric cylinders with a relative small diameter

(inner radius is 23.6 cm and outer radius is 80.9 cm). A longitudinal cross-section

and dimensions of the DCH are shown in Fig 3.5. It is asymmetrically located with

respect to the IP, the forward-backward coverage is −1.01 < z < 1.75 m along the

z axis. It is full of a gas mixture of helium and isobutane at one atmospher and

operated at high voltage.

It has 40 layers of small hexagonal cells. Each drift cell contains one gold-plated

tungsten-rhenium sense wire surrounded by six gold-plated aluminum field wires (see

Fig. 3.6). 1900-1960 V high voltage is applied on the sense wire, while the field wire

is grounded. An avalanche gain of approximately 5× 104 is obtained at an operation
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Figure 3.5: Longitudinal section of the DCH with principal dimensions.

voltage of 1600 V and a 80:20 helium:isobutane gas mixture.

Two guard wires are added at the inner or outer boundary of a superlayer to

improve the electrostatic performance of the cell and to match the gain of boundary

cells to those of cells in the inner layers. At the innermost boundary of layer 1 and

the outmost layer 40, two clearing wires have been added per cell to collect charges

created through photon conversion in the material of walls.

The DCH provides up to 40 spatial and ionization loss measurements for charged

particles with pt > 180 MeV. The ionization energy loss dE/dx is obtained from the

measurement of total charge deposited in each drift cell and for a single track the

energy loss is computed as a truncated mean from the lowest 80% of the individual

dE/dx measurement. Fig 3.7 shows the distribution of dE/dx measurements as a

function of track momenta after all corrections. The resolution for dE/dx is about

7.5% This dE/dx measurement of ionization loss provides useful particle identifica-

tion.
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Figure 3.6: Schematic layout of the drift cells for the four innermost superlayers.
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Figure 3.7: Measurement of dE/dx in the DCH as a function of track momenta. The
curves show the Bethe-Bloch predictions.

For the spatial measurements, they help to complement the measurements of

vertex for the decay and interaction outside of the SVT volume.

The DCH tracking efficiency is determined as the ratio of the number of recon-

structed DCH tracks to the number of tracks detected in the SVT within the ac-

ceptance of the DCH. Fig 3.8 shows the track reconstruction efficiency as a function

of transverse momentum and polar angle. At the operating voltage of 1960 V the

efficiency averages 98±1% per track above 200 MeV/c and polar angle θ > 500 mrad.

For transverse momentum measurement, the resolution can be obtained from a
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linear function (Fig 3.9)

σpt/pt = (0.13 ± 0.01)% • pt + (0.45 ± 0.03)% (3.1)
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Figure 3.9: Resolution in the transverse momentum pt determined from cosmic ray
muons transversing the DCH and SVT.

3.6. Detector of internally reflected Cherenkov light

DIRC is the acronym for Detector of Internally Reflected Cherenkov light. It is

a subtype of Ring Imaging Cherenkov counter, which uses the Cherenkov light cone

from a radiator to deduce the velocity of a charge particle [67]. With this property

and combined with the high precision momentum measurement of DCH, the mass of

the particle can be obtained.
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3. BABAR Detector

As shown in Fig 3.10, this sub-system is a 12-sided polygon around PEP-II in-

teraction region with a total 144 long fused silica bars (1.7 × 3.5 × 490 cm3). These

bars are coupled to a ∼ 11, 000 photomultiplier tubes (PMTs) array through a 120

cm standoff region filled with purified water in the backward side.

Figure 3.10: Exploded view of the DIRC.

Figure 3.11 shows the principle of light production, transport, and imaging of the

DIRC and geometry with a single bar. The bar is assembled from four 1.225 m pieces

that are glued end-to-end, and has a fused silica wedge glued to it at the readout end

and mirror attached at the forward end. The PMTs at the rear of the standoff box

(SOB) lie on a surface is approximately toroidal. They are grouped into 12 sector

associated with these 12 bar box. Each sector contains 896 PMTs, in a closely packed

array inside the water volume.
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Figure 3.11: Schematics of the DIRC fused silica radiator bar and imaging region.

The DIRC is intrinsically a three-dimensional imaging device: the position (two

cherenkov emission angles, θc, φc) and arrival time of the PMT signals. This redun-

dancy is extremely useful to reject backgrounds and ambiguities, and perhaps put

constraints on the Cherenkov angle measurement.

The single photon angular resolution (σC,γ) obtained from di-muon event is about

10.2 mrad. The track Cherenlov angle resolution can be scaled as σC,track = σC,γ/
√
Npe,

where Npe is the number of photons detected. For a β(v/c) = 1 particle entering nor-

mal to the surface at the center of the bar, Npe is about 28.

Fig 3.12 shows the kaon selection efficiency and pion misidentification as a function

of track momentum from a particle selection criteria based on DIRC information.

The DIRC provide up to 4σ separation between pion and kaon with momentum

range from 700 MeV/c to 4.2 GeV/c. This is very important to clean the background
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Figure 3.12: Efficiency and misidentification probability for the selection of charged
kaons as a function of track momentum, determined using Do → K−π+ decays se-
lected kinematically from inclusive D∗ production.

for the charged kaon from the charged pion.

3.7. Electromagnetic calorimeter

The electromagnetic calorimeter (EMC) used by BABAR detector is a hermetic,

total-absorption calorimeter. It was composed of a finely array of 6580 pieces of

thalium-doped cesium idiode (CsI(Tl)) crystals. These crystals have short radiation

length, high light yield and small Moliére radius. This sub-system has excellent

energy and angular resolution and is compact.

Pattern recognition algorithms are used in EMC to identify a shower whether it is

caused by a neutral or charged particle. It is capable to detection of photons, which

are from π0 and η decays as well as electromagnetic and radiative processes, and

electrons.
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3. BABAR Detector

EMC consists of a cylindrical barrel and conical forward endcap. The barrel has

48 distinct rings and the endcap holds eight rings (see Fig. 3.13).
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Figure 3.13: A longitudinal cross-section of the EMC (top half). All dimensions are
given in mm.

The EMC has 90% solid angle coverage in the c.m. system with full coverage in

azimuth and from 15.8o to 141.8o in polar angle.

The EMC in BABAR detector has a good performance in the energy range from

20 MeV to 9 GeV. At low energy the resolution (σE/E) is 5.0 ± 0.8% at 6.13 MeV

(measured from radioactive source). At high energy, the resolution is 1.9 ± 0.07% at

7.5 GeV (measured from Bhabha scattering). The resolution as a function of energy

is:

σE/E = (2.32 ± 0.03)%/
4
√
E
⊕

(1.85 ± 0.12) (3.2)

Fig 3.14 shows the angular resolution as function of photon energy. It is based on
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the analysis of π0 and η decays to two photons of approximately equal energy. The

resolution can be parameterized as

σθ = σφ = (3.87 ± 0.07/
√
E + 0.00 ± 0.04) mrad (3.3)
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Figure 3.14: The angular resolution of the EMC for photons from π0 decay.

3.8. Instrumented flux return

The main purpose of this sub-system is to identify muons with high purity and

neutral hadrons with wide momentum range.

The IFR uses the steel flux return of the magnet as muon filter and hadron

absorber. Single gap resistive plate chambers (RPCs) with two coordinate readout
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are used as detectors. They are operated in limited streamers and the signals are

read out capacitively.

Fig 3.15 shows overview of the IFR. It consists of a barrel and two end doors. 19

RPC layers are in the barrel, 18 are in the endcaps. Two more layers of cylindrical

RPCs are between EMC and magnet cryostat. The total active area is about 2000 m2

Figure 3.15: Overview of the IFR: Barrel sectors and forward and backward end
doors; the shape of the RPC modules and their dimensions are indicated.

In the momentum range of 1.5 < p < 3.0 GeV/c, the efficiency of detecting of a

muon is close to 90% with 6 − 8% pion misidentification (Fig 3.16).

This sub-detector plays a specific role in the reconstruction of J/ψ with J/ψ →

μ+μ−.
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Figure 3.16: Muon efficiency (left scale) and pion misidentification probability (right
scale) as a function of (a) the laboratory track momentum, and (b) the polar angle
(for 1.5 < p < 3.0 GeV/c momentum), obtained with loose selection criteria.
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Chapter 4

Analysis Methods

Two analysis methods are introduced, a cut and counting method and a maximum

likelihood fit method. The first of these methods is straightforward to implement and

understand, the second is significantly more complicated but gives a better sensitivity

for low signal, high background analysis. In this chapter, we also included some

general terminologies to help establish the concepts needed in the following chapters.

4.1. General terminology

4.1.1. Event thrust angle

The thrust axis of an event, T̂ , is defined to be the direction that maximizes thrust

T =

∑
i |T̂ · �pi|∑
i |�pi|

. (4.1)
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where pi is the longitudinal momentum of the ith particle [17]. The allowed range

for T is [0.5 1.0].

The thrust angle θT is defined as the angle between the thrust axis of a recon-

structed B and the thrust axis of the rest of event. For signal-type events, the distri-

bution of | cos θT | is flat, while for continuum events the distribution is more piled up

near 1. Fig. 4.1 shows the distribution of |cosθT | from the decay of B0 → J/ψηK0
S.

Figure 4.1: Distribution of | cos θT | for B0 → J/ψηK0
S, the top plot is for signal Monte

Carlo, the bottom plot is for continuum Monte Carlo.

4.1.2. Helicity angle

Generally, helicity angle is used as a discriminant in two-body decays. For exam-

ple, a decay chain of X → Y + · · ·, Y → a + b. The helicity angle θH of particle a is
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defined as the angle between the direction of itself and the direction of grandparent

particle X in the rest frame of the parent particle Y. The shape of cos θH is dependent

on angular momentum of particle Y, a and b. Fig. 4.2 shows the cosine distribution

of the helicity angle between the direction of photon and the direction of B0 in the

rest frame of η. In this case, the distribution of signal Monte Carlo is flat, however it

peaks near ±1 for continuum Monte Carlo.

Figure 4.2: Distribution of cos θγη in the decay B0 → J/ψηK0
S, the helicity angle θγη

between the direction of photon and the direction of B0 in the rest frame of η. The
top plot is for signal Monte Carlo, the bottom plot is for continuum Monte Carlo.

4.1.3. Fox-Wolfram moments

These moments are mainly used to distinguish continuum and BB̄ events. Con-

tinuum events are more like jet like, while BB̄ events are more spherical. The l-th
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Fox-Wolfram moment [41] is defined by the charged tracks as

Hl =
∑
ij

|�pi||�pj|
s

Pl(cosφij) (4.2)

here �pi, �pj is the momenta of the ith and the jth in the event and φij is the angle

between them. Plcos φij is the Legendre polynomial and
√
s is the center-of-mass

energy. The ratio of the second order to the zeroth order of Fox-Wolfram moments,

used frequently in the B decay analyses, is defined as

R2 =
H2

H0
(4.3)

4.1.4. Fisher discriminant

Fisher discriminant uses a linear function to maximally distinguish two popula-

tions or categories based on the same quality measurements [42].

Let two populations have k measurable characteristics: x1,2
1 , x1,2

2 , · · ·, x1,2
k and

linear function, X1,2 =
∑
i λix

1,2
i , λi is the coefficient. Define D =

∑
i λidi, where

di = x1
i − x2

i , S
j =

∑
p

∑
q λpλq(< xjpx

j
q > −x̄jqx̄jp), j = 1, 2. The particular linear

function, X, which best discriminates the two populations will be one for which the

ratio of D2/S is greatest, by variation of the coefficients, λi. The coefficient can be
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found

λi =
k∑
j=1

(U1
ji + U2

ji)
−1 × (x̄2

i − x̄1
i ), (4.4)

where U1,2
ij and x̄1,2

i are the covariant matrices and average value for population 1(2)

input variables vector x1,2 and x1,2
i , respectively.

In the B → DK analysis, we use four measurable quantities

1. | cos θC |, the unsigned cosine of the angle between the chosen B candidate thrust

axis and the beam axis(z),

2. | cos θT |, the unsigned cosine of the thrust angle,

3. 0th (L0) and 2nd (L2) oder of Legendre moments, which are

L0 =
∑
itrack

∑
n=0

Pn(cos θitrack
),

L2 =
∑
itrack

∑
n=0

Pn(cos θitrack
)p2
itrack

.

(4.5)

From these measurable quantities, we generate the Legendre-based Fisher discrimi-

nant function:

FLGD = 0.367×(1.60287| cos θC |+1.89495| cos θT |+0.66531L0+2.6685L2)−1.3. (4.6)

64



4. Analysis Methods

4.1.5. Vertexing

Vertexing is the process of finding the best estimate of the three-dimensional point

of intersection of a number of tracks. In this subsection, general principle of vertexing

is described, the details can be found in ref. [43].

A vertex usually is reconstructed by minimizing the sum of the squares of the

distance of closest approach of a set of tracks to a point. BABAR takes a track in a

magnetic field as a helix and uses kinematic fitting – a process of using kinematic

constraints, such as masses, and energy and momentum conservation, to improve the

knowledge of an event – to find a vertex.

Definition of the distance of Δz between two Bs

In the B− → D0K− analysis, we used the variable of Δz, which is the distance

difference in z direction between one full reconstructed B (signal B) and the other B.

The full reconstructed B meson is kinematically reconstructed and the decay vertex

position can be measured using all the particles of the decay chain. The other B vertex

is reconstructed with the remaining charged tracks in the event. By convention, Δz

is defined as

Δz = zsig − zother, (4.7)

where zsig (zother) is the coordinate of signal B (other B) in z-axis of laboratory system.
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4.1.6. B flavor tagging

The purpose of b quark flavor tagging is to identify whether the decay product

from B0 or B̄0, by using the correlation between the charge of the b quark and signed

characteristics of the decay products. Leptons and kaons are the main sources for

B flavor tagging in BABAR. Here only the basic principle and lepton tagging are

introduced. The details can be found in Ref. [44].

Fig. 4.3 shows correlation between the charge of the b quark and the charge of the

lepton from a semi-leptonic decay of the B meson. If the lepton stems from a semi-

leptonic decay of the B meson (see Fig. 4.3a), the sign of the charge of the lepton is

identical to the sign of the b quark. A lepton may originate from a cascade, in which

case the sign of its charge may be opposite to the sign of the b quark (see Fig. 4.3b)

or may be have the same sign as the b quark (see Fig. 4.3c). In this example, the

distinction between the two cascade leptons and a direct lepton lies in the momentum

in the rest frame of Υ (4S). The momentum spectrum of the direct lepton is harder

than the spectrum of the lepton from a cascade decays. The final value are based on

the probability.

4.1.7. Particle identification

Most of the final decay products of a compound particle, like B meson, D meson

and J/ψ meson, are some detectable relatively long-lived charged particle such as
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Figure 4.3: (a) Direct production of a lepton. (b) Cascade production of a lepton
with a reversed sign. (c) Cascade production of a lepton with direct sign.

kaon, pion, electron, muon and proton, and neutral particles like photon. Exclusively

reconstruction of an initial or an intermediate state out of these particles benefits from

good particle identification with good efficiency within the fiducial detector volume

(for charged tracks, the polar angle 20.6o < θlab < 135.9o).

Electron

Here a cut-based electron identification is introduced [45]. This identification is

base on the information from subdetectors of EMC, DIRC, and energy loss measure-
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ments dE/dx from the tracking devices. Different criteria from subdetectors forms

different cut selectors. Tab. 4.1 shows the cut selectors and their efficiencies. There

are five selectors, denoted as NoCal, VeryLoose, Loose, Tight and VeryTight. The

numbers in parentheses are for a range.

Selector E/p LAT A42 Ncry φ Nγ > 9 dE/dx efficiency

NoCal - - - - - - (540, 860) -

VeryLoose (0.50, 5.0) (-10.0,10.0) (-10.0,10.0) 3 no no (500,1000) >97%

Loose (0.65,5.0) (-10.0,10.0) (-10.0,10.0) 3 no no (500,1000) >97%

Tight (0.75,1.3) (0.0,0.6) (-10.0,10.0) 3 no no (500,1000) 95%

VeryTight (0.89,1.2) (0.0,0.6) (-10.0,0.11) 3 yes yes (540,860) 88%

Table 4.1: The selectors and efficiencies of the cut based electron identification. Col-
umn headings are defined in the text.

The details of the criteria from the subdetectors are listed as following.

1. the ratio E/p of the measured energy E of a shower deposited in EMC crystals

and measured momentum p of the corresponding charged track. For electrons

and positrons, E/p is centered at 1 with a width of 0.02 ∼ 0.03 after calibration,

while for other charged particles, E/p is centered far below 1 with a long tail.

2. Lateral shower shape (LAT). This shape will compensate E/p for those hadrons

that have hadronic showers. The shape (LAT) is defined as [46]

LAT =

∑N
i=3Eir

2
i + E1r

2
0 + E2r

2
0∑N

i=4Eiri
, E1 > E2 > · · · > EN , (4.8)

here r0 is the average distance between two neighbor crystals front-face (about
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5 cm for BABAR calorimeter), ri is the distance between ith crystal and the

shower center. In general, LAT for electrons is smaller than LAT for hadrons

that shower.

3. Zernike-Moment A42. The Zernike-moment [47], is a polynomial function of

ratio of ri and corresponding polar angle φi. It is used to describe the shape

variation of the EMC shower. For hadronic shower, A42 is more irregular com-

pare to the one caused by electron shower.

4. Ncry, number of EMC crystals associated with a shower.

5. DIRC photon number (Nγ) for a charged track.

6. the average range of DCH dE/dx value ( generally dE/dx has a Gaussian dis-

tribution that peaks at about 650 with a width about 50, with arbitrary unit)

7. φi, it is the polar angle for the shape of EMC shower.

To reconstruct the intermediate state J/ψ in the decay B → J/ψηK, both electron

and positron from J/ψ are required to have a “Tight” selector.

Muon identification

Here also a cut-based muon identification is used [48]. BABAR uses the IFR and

EMC system to identify muons and reject pions. Table. 4.2 shows the muon cut

selectors and their efficiencies.
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Selector Ecal NL Δλ λ χ2
trk χ2

fit Tc m̄ σm efficiency

MIP < 0.5 - - - - - - - - 100%

VeryLoose < 0.5 ≥ 2 < 2.5 > 2 - - > 0.1 < 10 < 6 92%

Loose < 0.5 ≥ 2 < 2 > 2 < 7 < 4 > .2 < 10 < 6 86%

Tight (0.05,0.4) ≥ 2 < 1 > 2.2 < 5 < 3 > 0.3 < 8 < 4 70%

VeryTight (0.05,0.4) ≥ 2 < 0.8 > 2.2 < 5 < 3 > 0.34 < 8 < 4 67%

Table 4.2: The criteria for cut-based muon identification and efficiency, MIP stands
for minimum ionizing particle.

The detailed variables associated with Tab. 4.2 are

1. Ecal, the total energy deposited in the showered EMC crystals for a muon.

2. NL, the number of hit layers in IFR for a cluster.

3. λ, the number of interaction lengths traversed in BABAR.

4. Δλ, the difference between λ and the expected number of interaction lengths

traversed in BABAR.

5. χ2
trk, the χ2/d.o.f of the IFR hit strips in the cluster with the track extrapolation

fit.

6. χ2
fit, the χ2/d.o.f. of the IFR hit strips with a three order polynomial fit.

7. Tc, a function of NL, Fh(first hit layer) and Lh(last hit layer).

Tc =

⎧⎪⎨
⎪⎩
NL/(Lh − Fh + 1), if no hit in the inner RPC

NL/(Lh − Fh), if a hit in the inner RPC
(4.9)
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8. m̄, the average multiplicity of hit strips per layer.

9. σm, the standard deviation of m̄, σm =
√
< m >2 −m̄2, where m is the multi-

plicity of hit strips per layer.

For the J/ψ → μ+μ− process, both tracks are required to satisfy the “Tight”

muon selector.

Kaon and pion identification

To identify a charged kaon, information from subdetectors SVT, DCH and DIRC

is needed. BABAR uses two different kaon identification selectors called PidKaonSMS-

Selector and PidKaonMicroSelector [49]. Both selectors use dE/dx from these two

tracking devices (for those particles, whose momentum does not reach the threshold of

DIRC), but different approaches on the information from DIRC. PidKaonSMSSelector

uses relative likelihood ratio of kaon and pion strategies; PidKaonMicroSelector uses

hit-by-hit global likelihood algorithm with a neural network based approach. Both

selectors give comparable performance concerning efficiency and misidentification for

hadrons.

PidKaonSMSSelector is used as a cut-based selector. The criteria used by this

selector are the momentum of particle and the relative likelihood ratio of kaon and

pion which is based on the Cherenkov angle from DIRC.
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For a particle i ∈ {e, μ, π, k, p}, The DIRC likelihood li is defined as

li = gi · pi/
p∑
i=e

gi · pi, (4.10)

and assumes that the Gaussian probability part gi and Poisson probability part pi are

uncorrelated. Here gi = e
− (θ−θi)

2

2σθ√
2πσθ

. θ, δtheta and θi are the measured angle, its error,

and the expected angle for particle i, respectively.

The DIRC Poisson probability pi is

pi = Poisson(Ns +Nb, N
i
exp +Nb), (4.11)

where Ns, Nb and N i
exp are signal photons, background photons and expected number

of photons for particle i, respectively. Both pi and gi are normalized independently.

To separate particle i and j (j ∈ {e, μ, π, k, p} and j �= i), a relative likelihood ratio

rij is used and defined as

rij = li/lj (4.12)

Tab. 4.3 shows the summary of requirements on the likelihood ratio and the par-

ticle momentum. Generally, for tracks with lab momentum less than 3 GeVc, the

efficiency is about 70 - 90% for all the criteria except for NotApion, which is > 90%.

For PidKaonMicroSelector, a single continuous variable is used to quantify the

kaon. This variable is the output of a track-based neural net K-Net after combined
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Momentum p range(GeV/c)
Selector

SVT DCH DIRC
Likelihood cut

NotAPion < 0.5 < 0.6 > 0.6 rKπ < 0.1 if p ≤ 0.5

rKp > 1;

VeryLoose < 0.6 < 0.6 > 0.6 rKπ > 3 if p < 2.5,

rKπ > 20 if 0.4 < p < 0.7

rKp ≥ 1 or no DIRC;rKπ > 1 if p < 2.7,

Loose < 0.7 or > 1.5 < 0.7 or > 1.5 > 0.6 rKπ > 80 if p > 2.7,

rKπ > 15 if 0.5 < p < 0.7

rKp > 1; rKπ > 1 if p < 2.7,

Tight < 0.7 < 0.7 > 0.6 rKπ > 80 if p > 2.7,

rKπ > 15 if 0.5 < p < 0.7

rKp > 1; rKπ > 3 if p < 2.5,

VeryTight < 0.6 < 0.6 < 0.6 rKπ > 200 if p > 2.5,

rKπ > 20 if 0.4 < p < 0.7

Table 4.3: The criteria for cut-based kaon identification.

input variables (limited to kaons and pions)

1. Lx = LKx+Lπx

LKx
, x ∈ {SV T,DCH,DIRC},

2. track laboratory momentum Plab.

For x ∈ {SV T,DCH}, likelihood Lix is obtained from dE/dx as for the Pid-

KaonSMSSeletor, where i ∈ {K, π}. While for DIRC, Li is obtained from a global

likelihood, which is based on the photomultiplier tube hit and all the tracks in an

event and the machine background.

Analogous to PidKaonSMSSelector cut-based criteria, veryTight, Tight, Loose,

veryLoose and notApion are set as selectors based on a cut on this single output

variable at > 0.68, > 0.62, > 0.50, > 0.45 and > 0.06 respectively.

For charged pions, there is no dedicated selector. Usually, the pion selector is just
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to reverse the kaon selector, i.e., a logical NOT.

For the B → J/ψηK analysis, a cut-based selector is used. For the B → DK

analysis, both selectors are used, for the pions from D decay, a cut-based logic Not

Loose kaon is used, for the bachelor kaon, which is directly from B meson, a neural

network based Loose kaon is used.

4.1.8. Signal region

The signal region is used in the cut and counting method, which will be described

later. For reconstructed B meson, there are two minimally correlated variables that

help to isolated it from the background, the energy and momentum of B meson.

Based on the energy and momentum of the reconstructed B meson, two signature

variables, ΔE and mES, can be used to identify a B meson. The energy difference is

defined as

ΔE = E∗
B −E∗

beam, (4.13)

where E∗
B and E∗

beam are the energy of reconstructed B meson and the energy of each

e+e− beams in center mass frame, respectively. E∗
beam is half of the total energy of

e+e− beam system in the center mass frame, conventionally, it is called beam energy.

Energy substitute mass (also known as the beam constrained mass) mES is defined

as

mES =
√
E∗2
beam − P ∗2

B (4.14)
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where P ∗
B is the momentum of reconstruct B in the center mass frame.

For signal B mesons, ΔE is a Gaussian distribution with a mean at ∼ 0.0 and a

width dependent on decay mode, mES is also a Gaussian distribution with a mean

around 5.279 GeV/c2 and a width about 3 MeV.

The signal region is defined with these two B meson signature variables, typically

mES > 5.2725 GeV/c2 and |ΔE| < 0.04 GeV for the B → JψηK analysis.

4.1.9. Best B candidate selection

As a B meson is reconstructed from all possible measured charged tracks and neu-

ral photons of one colliding event, different combinations of these tracks and photons

cause one event to have several versions of reconstructed B candidates, but a B candi-

date only has one “true” reconstruct B candidate. To select this “true” reconstructed

B candidate, there are several common methods used in BABAR.

1. Select the B candidate with a minimum ΔE in all the reconstruction of one B

event.

2. Random selection, randomly select one of B candidates.

3. Least χ2 selection, combined several selection criteria ŝc = {sc1, sc2, · · · , sck}

and use

χ2 =
k∑
i

(sci − scexpi )2

σ2
mci

(4.15)
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here σmci and scexpi are the error and expectation value for selection criteria i,

respectively.

In fact, after all selection criteria have been applied to the reconstructed B candidates,

a big fraction of B events have only one reconstructed B candidate.

4.2. Extended maximum likelihood definition

4.2.1. Maximum likelihood principle

Joint-likelihood function for an observation x = (x1, x2, · · · , xn) for a given θ is

defined as

L(x|θ) =
n∏
i=1

f(xi; θ), (4.16)

where f(xi; θ) is a probability density function (p.d.f) for xi at given θ. f(xi; θ) is a

p.d.f properly normalized to one, therefore the likelihood function is also normalized

to one.

According to the maximum principle [50], there is a particular θ̂, for all values of

θ, it satisfies

L(x|θ̂) ≥ L(x|θ). (4.17)

This principle requires the first derivative of eq. 4.16 to be 0 and the second

derivative to be negative with respect to the variable θ.

Since L and logarithm of L attain their maximum for the same value of θ, from
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the principle of maximum theory

∂

∂θ
lnL(x|θ) =

∂

∂θ

n∑
i

ln f(xi|θ) = 0, (4.18)

∂2

∂θ2
lnL(x|θ)|θ=θ̂ =

∂2

∂θ2

n∑
i

ln f(xi|θ)|θ=θ̂ < 0. (4.19)

For a general case, while there are several parameters θ = {θ1, θ2, · · · , θk}, a set of

logarithm likelihood equations

∂

∂θj
lnL(x|θ) = 0, j = 1, 2, · · · , k, (4.20)

can be used to find maximum likelihood estimates θ̂ = {θ̂1, θ̂2, · · · , θ̂k}. The definite

negative of the quadratic matrix U(θ̂) with elements

Uij(θ̂) =
∂2 lnL

∂θi∂θj
|θ=θ̂ (4.21)

will affirm that the θ̂ are for the absolute maximum of the likelihood.

4.2.2. Extended maximum likelihood

From Eq. 4.16, f(xi; θ) is properly normalized to one. For the extended maximum

likelihood [18], this requirement is not that strict, but is normalized to a number.
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This extended maximum likelihood function is defined as

L(x|θ) =
N∏
i

P (xi; θ)
e−N

N !
(4.22)

with P (xi; θ) = Nf(xi; θ).

To find the estimates θ̂,

〈∂lnL
∂θi

〉 = 0, (4.23)

〈(∂lnL
∂θi

)(
∂lnL

∂θi
)〉 = −〈 ∂

2lnL

∂θi∂θj
〉, (4.24)

are required.

4.3. Cut and counting method

This method is very straightforward; all the criteria of the cuts are applied to

select the B candidate in a data sample, then the number remaining left in the signal

region is accounted.

The procedure is essentially as follows: for a branching ratio measurement, the

cuts are optimized with a maximum ratio of

R =
NSig√

NSig +NBk

, (4.25)
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where NSig and NBk stand for the number for signal events and the number for

background events, and usually in signal region. For an upper limit, the cuts are

optimized with a maximum ratio of

R =
NSig√
NBk

. (4.26)

Usually, NSig and NBk are estimated from Monte Carlo (MC) samples. For NBk

if the number is too small in the signal region, it may cause a big fluctuation in the

maximization of R. In this case, the region out of signal region (the sideband region)

is used and scaled to the signal region to get an more accurate estimate of NBk.
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Chapter 5

Analysis of B → J/ψηK

In this chapter, the whole analysis process for B → J/ψηK is introduced, in-

cluding data samples, event selection, background estimation, data fit and physics

results.

5.1. Physics motivation

Fig. 5.1 shows the Feynman diagram for decay B → J/ψηK. From the two body

resonance (a), we can use it to search for the X(3872) through X → ηJ/ψ . Also if

the mass of X is heavy enough (above 4.0 GeV/c2), it is possible to be used to search

for the hybrid charmonium state (cc̄g).

5.2. Data samples

Data samples used for B → J/ψηK are Monte Carlo (MC) samples and collected

e+e− beam colliding experimental data. These MC samples, generated by Geant4
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Figure 5.1: The Feynman diagrams for B → J/ψηK. (a) two body resonance, (b)
sea quark and (c) gluon coupling.

simulation package and used to estimate the yield and shapes of the signal and back-

ground, are MC signal, generic B+B−, generic B0B̄0, continuum cc̄ and continuum

uds samples; the beam colliding data are on-peak data and off-peak data samples.

Off-peak data is about 10% of the on-peak data.

The analysis B → J/ψηK mainly used the colliding data before 2003, and SP3

and SP4 MC samples (SP stands for MC simulation production, 3 or 4 is just the

number for SP cycle).
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The numbers of total integrated luminosity L (L = number of events
cross section

) of all the

samples are listed in Table 5.2 except MC signal samples. For signal MC samples,

B → J/ψηK has 30,000 events for charged kaon channel and 24,000 events for neutral

kaon channel.

Data Sample B → J/ψηK( fb−1)

B+B− 62.9

B0B̄0 62.8

cc̄ 62.9

uds 61.8

Inclusive J/ψ 86.2

on-peak data 81.9

off-peak data 9.8

Table 5.1: Data samples used for the analysis B → J/ψηK.

5.3. Event selection

Two decay channels are used in this analysis, charged and neutral B mesons. My

work is mainly on neutral B, which will be described in more detail in the following

sections.

5.3.1. Reconstruction of B candidate

We reconstructed the neutral (charged) B meson from particles like J/ψ, η and

K0
S (charged kaon) with secondary decay of J/ψ → e+e−/μ+μ−, η → γγ and K0

S →
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π+π−.

1. J/ψ, which is reconstructed from e+e− or μ+μ− pairs. As the electron (positron)

is a light lepton, it will have Bremsstrahlung radiation loss while it travels inside

the detector. A calculation procedure is taken to estimate energy loss, and the

invariant mass of J/ψ reconstructed from a e+ and e− pair is low due to the

loss, thus has a long tail in the low mass band. The criteria to identify electron

and muon, which is described in section 4.1.7, were used here.

2. η, which is reconstructed from a photon γ pair. The main background for this

photon pair is from the decay of π0. A specific π0-veto is developed to eliminate

this background. This π0-veto is used to eliminate photon pair combinations

for which one of the photons forms an invariant mass with any other photon in

the event within some range of the nominal π0 mass, i.e., 135 MeV/c2. In this

analysis, the range of ±10 MeV/c2 (±17 MeV/c2) is used for neutral (charged)

kaon mode; the energy of each photon to form η is require to be greater than 150

MeV/c2. Another useful tool to reject continuum background, is the helicity

angle θγη of photon in the η frame. The distribution of | cos θγη | is flat for signal

MC, while is more peaking around ±1 for continuum (see Fig. 4.2).

3. K0
S, which is reconstructed from a π+π− pair. As the K0

S is a relative long life

time particle, the flight length of K0
S (cτ ∼ 2 cm) can be used to reject fake

particles.
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4. B meson, which is reconstructed from the reconstructed J/ψ, η, and kaon candi-

dates. The momentum and energy of this B meson in the e+e− machine central

mass frame are used to construct the B signature variables of mES and ΔE

(defined in section 4.1.8). Also the thrust angle of this colliding beams event is

used to reject jet-like continuum event.

5.3.2. Cuts optimization

The procedure of optimization of cuts is based on maximizing the ratio of
NSig√

NSig+NBk

by varying all possible the criteria used to get a clean B meson signal. The criteria

(cuts) involved in neutral B are:

1. Invariant mass of J/ψ, η, K0
S (J/ψ mass range is fixed);

2. Decay length of K0
S (this cut is fixed);

3. Identification of electron, muon (kaon for charged B meson channel);

4. Helicity angle and π0-veto of η candidate;

5. Thrust angle of the event.

The branching ratio for the charged mode is estimated to be 5 × 10−5 [68] as the

quark components in the mesons φ and η are similar. The neutral mode is expected

to be half of this value since half of K0s decay into K0
S.
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The signal box is defined in the plane of mES and ΔE. Both channels consist of

common ΔE window which is |ΔE| ≤ 0.04 GeV and a common mES window:

1. B± → J/ψη(γγ)K±, 5.272 ≤ mES ≤ 5.289 GeV/c2;

2. B0 → J/ψη(γγ)K0
S, 5.272 ≤ mES ≤ 5.289 GeV/c2.

In the signal region, for events with multi-reconstructed B candidates, only one

candidate is chosen, that with the smallest |ΔE|.

In the plane of ΔE and mES, all the region excluding the signal region is defined

to be a sideband. This region is used to get an accurate number of events to estimate

the background when the estimated background events number from the signal region

has a big fluctuation.

Table 5.2 shows the detail of all the optimized cuts used for B → J/ψηK.

Table 5.3 shows the raw efficiency and the optimized ratio for these two channels.

Fig. 5.2 and 5.3 show the the signal region (with a rectangle box) and the projection

on each B meson signature variables for these B → J/ψηK channels.
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Figure 5.2: B± → J/ψη(γγ)K± signal MC: plot of ΔE vs. mES with a signal region
box overlaid (top left); the ΔE projection of mES signal band (top right); the mES

projection of ΔE signal band (bottom left).
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Figure 5.3: B0 → J/ψη(γγ)K0
S signal MC: plot of ΔE vs. mES with a signal region

box overlaid (top left); the ΔE projection of mES signal band (top right); the mES

projection of ΔE signal band (bottom left).
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Criteria B± → J/ψη(γγ)K± B0 → J/ψη(γγ)K0
S

J/ψ:

e+e− channel PID: Tight, Loose PID: Tight, Tight

mass (GeV/c2) 2.95 < MJ/ψ < 3.14

μ+μ− channel PID: Loose, Loose PID: Loose, Loose

mass (GeV/c2) 3.06 < MJ/ψ < 3.14

η:

|Mη − 0.547| ≤ 0.023 GeV/c2 0.023 GeV/c2

π0-veto if |M(γηγ) − 0.135| ≤ 0.017 GeV/c2 0.010 GeV/c2

Kaon: PID: Loose |MK0
S
− 0.489| ≤ 0.09 GeV/c2

K0
S decay length ≥ 0.1 cm

Helicity: | cos(θγη )| ≤ 0.93 0.81

Thrust: | cos(θT )| ≤ 0.8 0.9

Table 5.2: Optimized cuts for B → J/ψηK.

Channel Efficiency
NSig√

NSig+NBk

B± → J/ψη(γγ)K± 14.1% 2.0

B0 → J/ψη(γγ)K0
S 9.8% 1.1

Table 5.3: Raw efficiency and and the optimized ratio for B → J/ψηK channels.
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5.4. Background overview

The background forB → J/ψηK is estimated with MC, off-peak and on-peak data

samples, including background from continuum, BB̄ without a J/ψ (all B candidate

whose decay product contains a J/ψ is removed), inclusive B → J/ψX (X stands

for other non-signal particles). The background is categorized into two types, for

example in the frame of mES:

1. “flat background”, the shape is described by an Argus function [51];

2. “peaking background”, the shape is described by a Gaussian function with a

mean around the mass of the B meson

The method used to estimate the backgrounds is based on an exclusive charmonium

model [52]. In this model, the flat background is from continuum (Ncont), from

B → J/ψX non-peaking events (NJ/ψArg) and from non-J/ψ BB̄ events (NBB̄); the

peaking background is from inclusive B → J/ψX peaking part (NJ/ψGauss).

There are six flat background quantities that need to be determined from MC

samples and on-peak data,

1. Monte Carlo continuum (uds and cc̄), NMC
cont ;

2. the Argus-shape component of the Monte Carlo generic BB̄ with a J/ψ → l+l−

(l = e+orμ+), NMC
J/ψArg;

3. Monte Carlo generic BB̄ without a J/ψ → l+l−, NMC
BB̄ ;
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5. Analysis of B → J/ψηK

4. Off-peak data, Noff−peak
cont ;

5. On-peak data J/ψ mass sideband, Non−peak
J/ψside ;

6. the Argus-shape component of on-peak data ΔE sideband, Non−peak
ΔEside .

These six quantities satisfy

1. NMC
cont = Ncont;

2. NMC
J/ψArg = NJ/ψArg;

3. NMC
BB̄ = NBB̄;

4. Noff−peak
cont = Ncont;

5. Non−peak
J/ψside = Ncont +NBB̄;

6. Non−peak
ΔEside = Ncont +NBB̄ +NJ/ψArg.

Based on these six quantities, the three flat background types are determined with a

minimum χ2 fit with associated errors.

Another method used to estimate background is with the experimental on-peak

and off-peak data, which used the sideband of some variables, for our case, like η

mass, ΔE. In this way, we scaled the background level we got from the sideband to

signal region to get the level or shape of the background.

In our analysis, we first tried the exclusive charmonium model and found that the

inclusive J/ψ background is not fit very well and is mode dependent. Subsequently
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5. Analysis of B → J/ψηK

we used the second method to estimate our background and use the first as a cross

check except inclusive J/ψ background.

5.5. Inclusive charmonium model

In our analysis, the mES distribution is used to estimate the background. The

procedures to get the background for inclusive charmonium model are

1. First to get the Argus shape fit parameters from a “fake”J/ψ sample in the

mES distribution within signal region. A fake J/ψ candidate is constructed by

using the identical selection criteria except for logically reversing the lepton PID

which is used for a “true” J/ψ candidate. This will provide a sufficient statistics

to do the background fitting most of the time.

2. Second the shape parameters for the Argus function (except the normalization)

are used to fit the sample with corrected lepton PID. The number of background

events are calculated as the integral of the Argus function defined by this fit in

the mES signal region.

5.5.1. Continuum MC, NMC
cont

About 61.8 fb−1 uds and 62.9 fb−1 cc were used. Fig. 5.4 shows the plots of the

uds (left-hand column) and cc̄ (right-hand column) backgrounds. The numbers of

the continuum background NMC
cont from the fit function are 4.23±0.87 and 1.16±0.41
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5. Analysis of B → J/ψηK

for B± → J/ψηK± and B0 → J/ψηK0
S, respectively. All numbers are scaled to the

total on-peak data luminosity.

5.5.2. Off-peak data, Noff−peak
cont

About 9.8 fb−1 off-peak data was used. The expected background Noff−peak
cont are

1.09±1.02 and 1.22±1.08 for B± → J/ψη(γγ)K± and B0 → J/ψη(γγ)K0
S, respec-

tively. Fig. 5.5 shows mES distribution from off-peak data for both channels.

5.5.3. Generic BB̄ MC without J/ψ, NMC
BB̄

About 62.8 fb−1 B0B̄0 and 62.9 fb−1 B+B− MC samples are used. The expected

backgrounds for this source are 2.67±0.74 and 1.48±0.48 for B± → J/ψη(γγ)K±

and B0 → J/ψη(γγ)K0
S, respectively. Fig. 5.6 shows the mES distributions for both

channels from generic BB̄ background.

5.5.4. Inclusive J/ψ, NMC
J/ψArg

About 86.2 fb−1 inclusive J/ψ MC sample was used. In this sample, the sig-

nal modes were removed. As the fake J/ψ sample for this background has lower

statistics than the real sample, we did not use “fake” J/ψ reference shape to ex-

tract the background, instead, we extracted the background from the direct fit on

the real J/ψ sample with an Argus function plus a Gaussian function centered at
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Figure 5.4: Continuum background estimate from uds (left column) and cc (right
column) Monte Carlo samples. The two signal modes are B± → J/ψη(γγ)K± (top)
and B0 → J/ψη(γγ)K0

S (bottom).

93



5. Analysis of B → J/ψηK

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

0

0.2

0.4

0.6

0.8

1

5.2 5.22 5.24 5.26 5.28 5.3

mES(GeV/c2)

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

5.2 5.22 5.24 5.26 5.28 5.3

mES(GeV/c2)mES(GeV/c2)mES(GeV/c2)

Figure 5.5: Off-peak data background estimate. The two signal modes are B± →
J/ψη(γγ)K± (right) and B0 → J/ψη(γγ)K0

S (left).

B mass. The fit results for flat background are 38.69±12.70 and 25.93±4.61, while

for peaking background are 56.35±16.30 and 0.2 ± 0.8, for B± → J/ψη(γγ)K± and

B0 → J/ψη(γγ)K0
S, respectively. Fig. 5.7 shows the mES distribution for both chan-

nels from inclusive J/ψ background.

5.5.5. J/ψ mass sideband, Non−peak
J/ψside

On-peak data sample was used for this source. The number of events with J/ψ

mass falling into the following region is counted:

1. J/ψ → e+e− channel, 3.156 < mJ/ψ < 3.300 GeV/c2;
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Figure 5.6: Generic BB̄ without a J/ψ candidate background from B+B− (left col-
umn) and B0B̄0 (right column) Monte Carlo samples. The two signal modes are
B± → J/ψη(γγ)K± (right) and B0 → J/ψη(γγ)K0

S (left).
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Figure 5.7: Inclusive J/ψ background from inclusive J/ψ Monte Carlo samples. The
two signal modes are B± → J/ψη(γγ)K± (right) and B0 → J/ψη(γγ)K0

S (left).

2. J/ψ → μ+μ− channel, 2.980 < mJ/ψ < 3.024 GeV/c2 or 3.156 < mJ/ψ <

3.300 GeV/c2.

Two scaling factors were used, 1.42 and 0.46 for J/ψ → e+e− and J/ψ → μ+μ−

respectively. A fit to J/ψ invariant mass from inclusive J/ψ data sample with a

one-order linear function plus a Gaussian is used to estimate the scaling factor. The

background is modeled by a linear function, the events for background in the two

sidebands and signal region are counted. The scaling factor is just the ratio between

the two numbers in sideband and signal region. The expected background event num-

bers are 5.14±0.88 and 2.57±0.46 for B± → J/ψη(γγ)K± and B0 → J/ψη(γγ)K0
S,

respectively. Fig. 5.8 shows the mES distributions for both channels from J/ψ mass
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sideband.

5.5.6. ΔE sideband, Non−peak
ΔEside

On-peak data sample was used. The sideband region for ΔE is defined as

1. 0.10 < |ΔE| < 0.14 GeV for B± → J/ψη(γγ)K±;

2. 0.04 < |ΔE| < 0.30 GeV for B0 → J/ψη(γγ)K0
S.

Since we assumed that the distribution for background in ΔE is one order poly-

nomial, the background in signal region can be scaled with the ratio of ΔE sideband

region to the signal region. The factors used are 1.0 and 0.154 for B± → J/ψη(γγ)K±

and B0 → J/ψη(γγ)K0
S, respectively. The numbers of the background of this source

are estimated to be 27.10 ± 7.3 and 16.12 ± 0.57 for B± → J/ψη(γγ)K± and

B0 → J/ψη(γγ)K0
S, respectively. Fig. 5.9 shows the mES distributions for both chan-

nels from ΔE sideband.

5.5.7. Summary of the six correlated backgrounds results.

Table 5.4 shows the fit results with the six inputs from Sections 5.5.1 - 5.5.6,

using the χ2 fit method. The background is dominated by the inclusive J/ψ back-

ground type. By checking the numbers from continuum background (section 5.5.1)

and from off-peak data (section 5.5.2), they agree well; as so does the number from
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Source B± → J/ψη(γγ)K± B0 → J/ψη(γγ)K0
S

Ncont 2.51 ± 0.61 1.13 ± 0.35

Nbb 2.79 ± 0.57 1.37 ± 0.45

NJ/ψArg 26.00±6.34 13.8±0.68

Total 31.29±6.33 16.31±0.57

Table 5.4: Summary of the background fit results

on-peak data J/ψ sideband (section 5.5.5) and the sum of background from MC con-

tinuum (section 5.5.1) and MC generic BB̄ without J/ψ (section 5.5.3). There is

more than one sigma difference between the sum of background event numbers from

Sections 5.5.1, 5.5.3 and 5.5.4 and the estimated background from ΔE sideband (sec-

tion 5.5.6). This difference most comes from inclusive J/ψ sample. As the inclusive

J/ψ sample depends on the input from different analysis needs, it has strong model

dependence.

5.6. Model dependent background in J/ψ inclusive

In the previous sections, we showed that the main background is from inclusive

J/ψ , and there is about one sigma difference on the background between data and

MC. The difference indicates the inclusive J/ψ background Monte Carlo model does

not fit well for this analysis, and it is likely due to large correlated J/ψ backgrounds.

We studied the backgrounds by identifying the direct parent of the J/ψ , such as

χ1, χ2, ψ
′ and B meson, using the inclusive J/ψ background samples.
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Fig. 5.10 shows the distributions of the two-body invariant mass of J/ψη and

ηK0
S, using the events satisfying our optimized cuts. The top three plots are for

the J/ψ events whose direct parent was a χ1, χ2, or ψ′, by using the MC truth.

Compared to the distribution of signal MC events, these backgrounds tend to have a

J/ψη mass below 4 GeV/c2. The lower three plots are for the J/ψ events whose direct

parent is B; these backgrounds tend to have a ηK0
S invariant mass > 1.5 GeV/c2. For

B± → J/ψη(γγ)K±, the two-body invariant mass of J/ψη tend to be below 4 GeV/c2

and the invariant mass of ηK tend to below 1.5 GeV/c2, too.
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Figure 5.8: Background estimate from data using the J/ψ sidebands in the ee (left col-
umn) and μμ (right column) channels. The two signal modes are B± → J/ψη(γγ)K±

(right) and B0 → J/ψη(γγ)K0
S (left).
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Figure 5.9: Background estimate from data using the ΔE sideband. The two signal
modes are B± → J/ψη(γγ)K± (right) and B0 → J/ψη(γγ)K0

S (left).
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Figure 5.10: Reconstructed Monte Carlo B0 → J/ψη(γγ)K0
S events in which the J/ψ

parent is a χ1, χ2 or a ψ′ (upper three plots) and those in which the J/ψ parent is a
charged or neutral B meson (lower three plots). The three plots in each group consist
of the Dalitz plot for J/ψη (vertical axis) and ηK (horizontal axis) combinations,
along with the corresponding mass distributions.
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5.7. Data fit procedure

The signal region is slightly modified to accommodate all the bins without crossing

the edge, |ΔE| < 0.04 GeV and 5.2725 < mES < 5.2875 GeV/c2. The data is fitted in

the mES distribution in forty 2.5 MeV/c2 bins in the range of 5.2 − 5.3 GeV/c2. The

fit function is the sum of Gaussian (signal) and a background line shape determined

from the fits to the mES distributions from two different background parameteriza-

tions: (1) |ΔE| sidebands from data and (2) η sidebands from data. In the fits to

these sidebands, the free parameters are the Argus shape parameter, the Argus nor-

malization, the Gaussian normalization, the Gaussian mean and the Gaussian width.

For the data fit, we fixed the signal Gaussian width which is determined from the

signal MC and the Argus shape parameter from the sideband fits.

5.8. Data fit

The data was fitted with the shape parameters determined from the ΔE and η

sidebands.

The η sideband region is defined in invariant mass of η, 0.47 < M(η) < 0.49

GeV/c2 or 0.59 < M(η) < 0.62 GeV/c2 (the region is limited by the initial cut for η

mass region).

The two background shapes were initially found with an Argus function and a

Gaussian (peaking background). Fig. 5.11 shows the background fit and data fit for
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mode B0 → J/ψη(γγ)K0
S, here we did not give the plots for charged kaon. The fit

results are shown in Table 5.5 (B0 → J/ψη(γγ)K0
S) and 5.6 (B± → J/ψη(γγ)K±).

These tables includes the data fit result with J/ψ inclusive shape parameters, which

is used as a comparison. From these fit results, we found that the |ΔE| sideband

Figure 5.11: Data fit with Argus + Gaussian for B0 → J/ψη(γγ)K0
S, the Argus shape

parameters are got from ΔE and η sidebands, which are fitted with Argus function
+ Gaussian. top row, ΔE sideband (left), data fit (right); bottom row, η sideband
(left, the peaking bin is due to fluctuations), data fit (right).

and η sideband shapes are similar and the resulting number of signal events are close.
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Bkgd vary Fit results

MB(MeV/c2) σ(MB) χ2 Nbkg σ(Nbkg) Nsig σ(Nsig)

η SB MB 5281.1±1.27 2.82 1.54 21.7 1.94 17.3 6.54

ΔE SB MB 5278.0±1.22 2.82 1.67 16.8 1.52 22.2 6.43

J/ψ incl MB 5278.1±1.30 2.82 1.56 19.8 1.87 19.2 6.49

Table 5.5: Data fits for B0 → J/ψη(γγ)K0
S with Argus+Peaking background using

η sideband, ΔE sideband and J/ψ inclusive background shapes. The signal width is
fixed and the mass of B meson is allowed to vary.

Bkgd vary Fit results

MB(MeV/c2) σ(MB) χ2 Nbkg σ(Nbkg) Nsig σ(Nsig)

η SB MB 5279.9±0.72 2.8 1.30 57.7 3.5 41.3 10.5

ΔE SB MB 5279.9±0.66 2.8 1.08 51.5 3.1 47.5 10.4

J/ψ incl MB 5279.9±0.79 2.8 1.37 69.1 4.2 29.9 10.8

Table 5.6: Data fits for B± → J/ψη(γγ)K± with Argus+Peaking background using
η sideband, ΔE sideband and J/ψ inclusive background shapes. The signal width is
fix and the mass of B meson is allowed to vary.

For the η sideband, there are some restrictions on the mass region, we have chosen

the ΔE sideband to represent the background shape. In both modes, we find that the

Gaussian or peaking background is very small relative to the Argus flat background,

therefore the background shapes used were only with the Argus function on the ΔE

sideband.

Fig. 5.12 shows the final data fit without and with Dalitz plot cuts, Fig. 5.13

shows the data fit without and with Dalitz plot cuts. These fit results with and
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without Dalitz cuts are listed in Table 5.7. How Nsig is determined will be discussed

Figure 5.12: Data fit on B0 → J/ψη(γγ)K0
S with Argus + Gaussian function, Argus

shape parameters are got from ΔE sideband, which is fitted only with Argus function.
Top row is without Dalitz plot cuts, ΔE sideband (left), data fit (right); bottom row
is with Dalitz plot cuts, ΔE sideband (left), data fit (right).

later (section 5.10.1).
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Figure 5.13: Data fit on B± → J/ψη(γγ)K± with Argus + Gaussian function, Argus
shape parameters are got from ΔE sideband, which is fitted only with Argus function.
Top row is without Dalitz plot cuts, ΔE sideband (left), data fit (right); bottom row
is with Dalitz plot cut, ΔE sideband (left), data fit (right).
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mode Fit results

MB(MeV/c2) σ(MB) χ2 Nbkg σ(Nbkg) Nsig σ(Nsig)

K+ 5279.9±0.57 2.8 1.15 50.3 3.0 48.7 10.4

K+ Dalitz 5277.8±0.9 2.8 0.79 11.1 1.3 15.9 5.3

K0
S 5278.0±1.18 2.82 1.59 18.53 1.66 20.47 6.46

K0
S Dalitz 5277.9±0.97 2.82 1.22 9.95 1.21 15.05 5.14

Table 5.7: Data fits with only Argus background shape from ΔE sideband for B± →
J/ψη(γγ)K± and B0 → J/ψη(γγ)K0

S without and with Dalitz plot cuts. The signal
width is fix and the mass of B meson is allowed to vary.
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5.9. Systematic Errors

In this section, the systematic errors on the branching ratios are discussed. In-

cluded in this study are the uncertainties on the number of BB̄ pairs, the branching

ratios of the secondary particles, MC efficiency, π0-veto, mass cut of the η candidate

and background parameterization.

5.9.1. Number of BB̄ pairs

The total integrated luminosity used for B → J/ψηK (Table 5.2) is 81.87 fb−1,

which corresponds to 89,956,344 BB events with statistical, systematic and combined

errors of 22,806, 989,520 and 989,782, respectively. This gives a fractional error of

1.10%.

5.9.2. Secondary branching fraction uncertainties

The secondary particle like J/ψ and η in the decay B → J/ψηK, has its own

uncertainty in its decay branching ratio. This uncertainty should be propagated

into the branching ratio measurement of B → J/ψηK. The uncertainty due to the

J/ψ leptonic decays are about 1.68% for electrons and about 1.70% for muons; it is

about 0.66% on the decay of η → γγ; on the decay of K0
S → π+π−, the uncertainty

is about 0.39%. So the combined systematic error for B± → J/ψη(γγ)K± and

B0 → J/ψη(γγ)K0
S are 2.48% and 2.52%, respectively.
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5.9.3. Monte Carlo statistics

For signal MC, the largest uncertainty is from the limited statistics of recon-

structed events from the total signal MC. For B± → J/ψη(γγ)K±, 3114 (1723)

events were reconstructed without (with) Daltiz plot cuts, which gives about 1.79%

(2.41%) fractional uncertainty. For B0 → J/ψη(γγ)K0
S, 2114(1558) events were re-

constructed without (with) Dalitz plot cuts, this gives about 2.17% (2.53%) fractional

uncertainty.

5.9.4. Tracking and particle ID

Table 5.8 shows the systematic errors due to the lepton selection of J/ψ taken

from Ref. [53], the combined error for both channels is about 1.8%. Table 5.9 shows

the systematic errors due to the charged kaon selection following the BABAR PID

group procedure, the systematic error is about 1.5%. The neutral kaon systematic

errors, shown in Table 5.10, are determined by the BABAR track efficiencies presented

by the track efficiency task force for K0
S [54]. The systematic error is about 3.0%.

5.9.5. η detection systematics

The η detection systematics are determined from the neutral killing procedure

presented on the tools group web page [55], the systematic error is 5.0%. The track-

ing systematic errors are determined by the track efficiencies presented by the track

110



5. Analysis of B → J/ψηK

efficiency task force, a workgroup of BABAR, a flat correction factor 0.8% was applied

per charged track. For B± → J/ψη(γγ)K±, 3 tracks give a systematic error of 2.4%,

while for B0 → J/ψη(γγ)K0
S, it is about 1.6% for the two tracks.

Lepton (PID selection) Systematic Error

J/ψ η K+: ee (tight-loose) 2.0%

J/ψ η K+: μμ (loose-loose) 1.6%

J/ψ η K+: Combined 1.8%

J/ψ η Ks: ee (tight-tight) 1.9%

J/ψ η Ks: μμ (loose-loose) 1.6%

J/ψ η Ks: Combined 1.75%

Table 5.8: J/ψ -Lepton PID systematics.

Systematic Systematic Error

Fitting/counting correction 0.8%

MC truth difference 1.1%

MC statistics 0.2%

Background subtraction 0.56%

Control sample statistics 1.0%

Total K± mode PID systematic 1.48%

Table 5.9: Charged Kaon PID systematics.
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Systematic Systematic Error

Tracking error, no DCH hit cut 2.6%

Difference between momentum ≥ 1 GeV/c and no momentum cut 1.5%

Total K0
S mode PID systematic 3.0%

Table 5.10: Neutral Kaon PID systematics.

5.9.6. π0-veto

The η candidates are identified by their decay into two photons. π0-veto is the

most effective cut to remove backgrounds to the η selection by eliminating photon pair

combinations for which one of the photons forms an invariant mass with any other

photon in the event within some range of π0 nominal mass, 0.135 GeV/c2. A range of

± 10 MeV/c2 (± 17 MeV/c2) is used for B0 → J/ψη(γγ)K0
S (B± → J/ψη(γγ)K±).

Each photon from η is required to have energy > 150 MeV.

Inclusive η with a J/ψ candidate on-peak data (13 fb−1) and Monte Carlo (238,000

events) samples were used to investigate the systematic effects on the π0-veto cut.

For this study the details can be found in Ref. [58].

The procedure used here is:

1. Momentum of the η candidate is divided into 3 bins, (0.3 - 0.6) GeV/c, (0.6 -

0.9) GeV/c and (0.9 - 1.5) GeV/c

2. Each momentum bin, the range cuts of 2, 5, 10, 17, 20 and 25 MeV/c2 are

applied. η signal events number (N i
η, i = MC, data), its error (σiη, i = MC, data)
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are extracted by a fit for each veto mass range cut with both on-peak data

and Monte Carlo samples. Then these numbers are normalized by the number

of events without π0-veto for mid and high momentum ranges, while for low

momentum range, it is normalized by 2 Mev/c2 mass range cut. The numbers

of signal and background were extracted by a Gaussian plus polynomial fit in

the η mass range of 0.48-0.60 GeV/c2, The η signal part is extracted only from

the Gaussian part of the fit.

3. The ratio of signal events from on-peak data and Monte Carlo sample for each

mass range cut is CF =
Ndata

η

NMC
η

, and it is used as a correction factor for this cut.

The error is CFErr = CF ×
√∑

i (
σi

η

N i
η
)2. Fig. 5.14 shows CF as function of

mass range cuts.

4. Signal MC of B → J/ψηK is divided into three η momentum bins and each

bin holds a fraction (fj , j = 1, 2, 3) for the whole signal sample. The total

correction factor is
∑
j fj × CFj ±

√∑
j (fj × CFErrj)2. The systematic error

is just its error over its center value.

The fractions are 20% (18%), 33% (33%), and 46% (48%) for the low, middle,

high momentum ranges for charged kaon mode (neutral kaon mode). Table 5.12

(Table 5.11) shows particular CF for the π0-veto used for B± → J/ψη(γγ)K±

(B0 → J/ψη(γγ)K0
S). The overall correction factor is 1.01 ± 0.08 (0.96 ± 0.08).

The systematic error is about 0.8% for both modes.
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Figure 5.14: Relative signal ratio as a function of the π0-veto range cut for η candi-
dates in the low (left), middle (middle) and high (right) momentum ranges. middle
and high momentum ranges are normalized to non π0-veto signal event, while for low
momentum range, it is normalized to 2 MeV/c2 cut range.

Momentum Range Relative signal Correction Factor

MC data

Low(0.3 - 0.6 GeV/c) 0.512±0.066 0.600±0.120 0.85±0.20

Mid(0.6 - 0.9 GeV/c) 0.642±0.051 0.712±0.091 0.90±0.14

High(0.9 - 1.5 GeV/c) 0.595±0.044 0.565±0.042 1.05±0.11

Table 5.11: Relative ratio of η number in MC and data and correction factor for
B0 → J/ψη(γγ)K0

S.

5.9.7. η mass cut

Table 5.13 shows the Gaussian mean and width of η mass from above inclusive η

with a J/ψ study. η mass mean value and width does not agree between Monte Carlo

and data.

The procedure to extract the systematic error of η mass cut is (a.) divide the
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Momentum Range Relative Signal Correction Factor

MC data

Low(0.3 - 0.6 GeV/c) 0.314±0.040 0.313±0.050 1.00±0.20

Mid(0.6 - 0.9 GeV/c) 0.453±0.038 0.485±0.060 0.93±0.14

High(0.9 - 1.5 GeV/c) 0.414±0.032 0.393±0.030 1.05±0.11

Table 5.12: Relative number of the η in MC and data and correction factor for
B± → J/ψη(γγ)K±.

Momentum Range mean width mean width

Data(GeV/c2) MC(GeV/c2)

0.6 - 0.9 GeV/c 0.5451 0.0147±0.007 0.5473 0.0120±0.007

0.9 - 1.5 GeV/c 0.5429 0.0175±0.017 0.5475 0.0127±0.008

Table 5.13: Fit parameters for two-photon invariant η mass, which was obtained from
a Gaussian plus a polynomial fit on η different momentum ranges.

signal MC into two η momentum ranges, 0.0 - 0.9 GeV/c and 0.9 - 1.5 GeV/c; (b.)

varying the width of η invariant mass by one sigma with the on-peak data parameters

to get the cut efficiency for each momentum range.

Table 5.14 shows the cut efficiency with the on-peak data fit parameters. The sys-

tematic error is determined by a ratio of the half of the difference between efficiencies

with ±1 standard deviation on the η mass cut over the efficiency without a variation

on the η mass cut. From Table 5.14, the systematic error is 2% for η momentum

range of (0.0 - 0.9) GeV/c, and 5% for rest of the η momentum range.
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η mass width (MeV/c2) fraction

14.7 0.881

14.7 + 0.7 0.864

14.7 - 0.7 0.899

17.5 0.810

17.5 + 1.7 0.854

17.5 - 1.7 0.77

Table 5.14: Fraction of η candidates in the analysis with ± 23 MeV/c2 mass cut
window as the η mass width is varied.

5.9.8. ΔE cut

The systematic errors on the ΔE cut are estimated using the cut variation studies.

The cut is varied from 25 MeV to 40 MeV for the charge kaon mode, for the neutral

kaon is from 26 MeV to 54 MeV.

The procedure is as the following: a). vary the applied cut and recalculate signal

MC efficiency; b). refit the background and data distributions to extract the number

of signal events. The systematic error is just half of the maximum difference of ratios

of the signal events over signal efficiency divided by the ratio without a variation.

The systematic error for the charged kaon mode is about 7.4%, for the neutral kaon

mode is about 8.5%. Table 5.15 (Table 5.16) shows the results of the cut variation

with ΔE cuts for charged (neutral) kaon.
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ΔE cut (MeV) Nbkg Nsig eff. Nsig/eff

40 50.7 59.3 0.129 458.7

35 45.7 50.3 0.126 397.7

30 40.0 48.0 0.123 391.6

25 32.3 45.7 0.117 390.8

Table 5.15: Results of the cut variation for ΔE cut for B± → J/ψη(γγ)K±.

ΔE cut (MeV) # in Sig. Region Nsig eff(%) Nsig/eff

54 47.0 23.7 10.0 237.0

47 45.0 25.1 9.9 253.5

40 40.0 22.4 9.7 230.9

33 37.0 20.6 9.6 214.6

26 35.0 21.0 9.5 221.1

Table 5.16: Results of the cut variation for ΔE cut for B0 → J/ψη(γγ)K0
S.

5.9.9. Background parameterization

The uncertainty on the background parameterization was estimated with two

different data sidebands sources. For ΔE sideband, the parameter that controls the

Argus function shape was varied by ±1 standard deviation. The resulting number of

the signal events is determined by this new Argus plus a Gaussian fit on the data.

Table 5.17 shows the signal events change and systematic error due to this variation

of the Argus shape.

For the second one, the background shape is determined by using an Argus func-
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Mode Nsig ΔNsig syst. err.

B± → J/ψη(γγ)K± 48.7±10.4 3.3 6.8%

B± → J/ψη(γγ)K± w/Dalitz 15.9±5.2 1.5 9.4%

B0 → J/ψη(γγ)K0
S 20.5±6.5 1.2 5.7%

B0 → J/ψη(γγ)K0
S w/Dalitz 15.1±5.1 0.9 6.4%

Table 5.17: Signal events change on the data fit with a standard deviation on the
Argus shape parameter using ΔE sideband.

tion fit to an η sideband and refit the data mES distribution to extract the signal

events. The difference between the numbers of signal events with the fits from ΔE

sideband Argus shape and η sideband Argus shape is assigned as an additional sys-

tematic error. Table 5.18 shows the data fit results, the Argus shape parameter and

the systematic error using η sideband.

Mode Nsig Nbkg Argus shape syst. err.

Charged Kaon 41.3 57.7 ± 3.1 -60.1±6.1 15.3%

Neutral Kaon 15.1 23.9 ± 2.1 -52.1±9.0 26.4%

Table 5.18: Data fit results using η sideband Argus background shape parameter and
the systematic error.

5.9.10. Systematic error from J/ψ polarization and two-body resonance

The MC modeling assumed phase space decay for the three body decay of B →

J/ψηK. We do not know if the decay is polarized or if there are quasi-two body
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resonances in this decay. Since the reconstruction efficiency is likely to vary with a

different model, we estimate this uncertainty in the section by calculating the raw

efficiency for two different lepton polarizations and the three different Dalitz plot

regions. The following situations are considered:

1. 3 body phase space;

2. sin2 θl for the decay J/ψ → l+l− polarization, l = e or μ;

3. 1 + cos2 θl for the decay J/ψ → l+l− polarization, l = e or μ;

4. 20 < M2(J/ψη) < 22 (GeV/c2)2, 1.5 < M2(ηK) < 2.5 (GeV/c2)2;

5. 14 < M2(J/ψη) < 16 (GeV/c2)2, 2.0 < M2(ηK) < 3.0 (GeV2/c2)2;

6. 16 < M2(J/ψη) < 18 (GeV/c2)2, 3.5 < M2(ηK) < 4.5 (GeV/c2)2;

These three different regions of the Dalitz plot are shown in Fig. 5.15. The effi-

ciency of each of these three regions are listed in Table 5.19. The systematic uncer-

tainty is estimated as the difference between the minimum and maximum efficiencies

divided by two. The fractional uncertainty is the ratio of the above difference over

the phase space efficiency. Table 5.20 shows the systematic errors due to these two

sources.
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Figure 5.15: Dalitz plot of phase space for the three body decay of B → J/ψηK
showing three regions used for efficiency calculations.

5.9.11. Summary of the systematic errors

Table 5.21 summarized all the above systematic error we discussed above. The

errors are assumed to be uncorrelated and they all are added in quadrature.

5.10. Analysis results for branching fraction

5.10.1. Data event yields

The signal events yields are counted as

Nsig = N0 −Nbkg (5.1)
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Model B± → J/ψη(γγ)K± B0 → J/ψη(γγ)K0
S

Phase Space(flat angle) 13.49 ± 0.21% 9.38 ± 0.20%

20 < M2
J/ψη < 22, 1.5 < M2

ηK < 2.5 12.54 ± 0.74% 9.03 ± 0.70%

14 < M2
J/ψη < 16, 2 < M2

ηK < 3 12.96 ± 0.77% 9.52 ± 0.73%

16 < M2
J/ψη < 18, 3.5 < M2

ηK < 4.5 13.88 ± 0.78% 10.82 ± 0.79%

sin2θJ/ψ→ll 13.61% 9.41%

(1 + cos2θJ/ψ→ll)/2 13.43% 9.31%

Table 5.19: Model-dependent efficiency.

Syst.Err. B± → J/ψη(γγ)K± B0 → J/ψη(γγ)K0
S

J/ψ Pol. 1.3% 0.5%

2-body res. 5.0% 9.5%

Table 5.20: J/ψ polarization and two-body resonance systematic.

where the variables in Eq. 5.1 are defined as,

• Nsig = number of signal events

• N0 = number of events in the signal box

• Nbkg = number of events integrated over an Argus fit to mES in the signal region

The error on Nsig is

σ(Nsig) =
√
N0 + σ2(Nbkg). (5.2)

Nbkg and its error (σ(Nbkg)) are determined by following the procedure listed in sec-

tion 5.7 and all the fit results and data yields are tabulated in Table 5.7.
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sources/mode K± K± w/Dalitz K0
S K0

S w/Dalitz

No. B decays 1.10 1.10 1.10 1.10

Prod.BF 2.48 2.48 2.52 2.52

MC stat. 1.77 2.40 2.17 2.53

Lepton PID 1.75 1.75 1.75 1.75

Charged K PID 1.79 1.79

Neutral K PID 3.0 3.0

η(2γ) detection 5.0 5.0 5.0 5.0

π0 veto 8.1 8.1 8.3 8.3

Charged tracking 2.4 2.4 1.6 1.6

J/ψ pol. 1.3 1.3 0.5 0.5

2 body res. 4.9 0 9.5 0

η mass cut 3.40 3.40 3.14 3.14

Argus param. var.-ΔE 6.8 9.4 5.7 6.4

Argus param. diff.-η SB 15.3 - 26.4 -

ΔE cut 7.4 7.4 8.5 8.5

TOTAL(quadrature) 22.0 16.5* 32.0 15.7*

Table 5.21: Tabulation of systematic errors (%) for theB± → J/ψη(γγ)K± andB0 →
J/ψη(γγ)K0

S modes ( * The Dalitz total does include an η sideband contribution).

5.10.2. Efficiency correction

The signal efficiency is determined by the signal Monte Carlo events left after the

selection criteria are applied. As the data and Monte Carlo events are slight different,

these differences are assigned as a correction factor on the signal efficiency. Table 5.22

(Table 5.23) shows the possible sources for the correction factor for charged (neutral)

kaon mode. The final signal efficiencies for both modes are in Table 5.24
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Optimized cuts Optimized + Dalitz cuts

correction factor

PID killing 0.88 0.90

Neutral smearing 0.93 0.93

Tracking killing 1.00 1.00

π0-veto 1.01 1.01

total correction factor 0.83 0.85

Table 5.22: Efficiency correction for B± → J/ψη(γγ)K±.

Optimized cuts Optimized + Dalitz cuts

correction factor

PID killing 0.98 0.98

Neutral smearing 0.91 0.91

K0
S efficiency correction 1.05 1.05

Tracking killing 1.02 1.02

π0-veto 0.96 0.96

total correction factor 0.92 0.92

Table 5.23: Efficiency correction for B0 → J/ψη(γγ)K0
S.

5.10.3. Branching fractions and upper limits

The branching fraction and its statistical error are determined from

BF =
Nsig

NBB̄ × ε× f
,

σ(BF ) =
σ(Nsig)

NBB̄ × ε× f
. (5.3)
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Optimized cuts Optimized + Dalitz cuts

final efficiency(%)

B± → J/ψη(γγ)K± 10.75 6.00

B0 → J/ψη(γγ)K0
S 8.53 6.34

Table 5.24: Final Monte Carlo efficiency after all the correction factors.

where ε is the Monte Carlo final efficiency (see Table 5.24) and f is the product

of secondary branching fractions. For B± → J/ψη(γγ)K±, fK+ = 0.04657, which

consists of J/ψ lepton decays and η → 2γ; for B0 → J/ψη(γγ)K0
S, f = 0.03194,

which comes from the secondary decay of K0
S → π+π− and the other two secondary

decays like charged modes. Table 5.25 shows the branching fraction for each mode of

B → J/ψηK. The upper limit on the branching fraction is defined in the presence

BF (10−5)

B± → J/ψη(γγ)K± 10.81 ± 2.31(stat.) ± 2.37(syst.)

B± → J/ψη(γγ)K± w/Dalitz cut 6.31 ± 2.11(stat.) ± 1.04(syst.) *

B0 → J/ψη(γγ)K0
S 8.35 ± 2.64(stat.) ± 2.67(syst.)

B0 → J/ψη(γγ)K0
S w/Dalitz cut 8.26 ± 2.82(stat.) ± 1.30(syst.) *

Table 5.25: Measured branching fractions for B → J/ψηK (* The Dalitz total does
include an η sideband contribution).

of background and with a confidence level. If the total number of events observed in

the signal box is N0 and the estimated error on the background is σb (combining both

statistical and systematic error), then the number of signal events, N , that represents
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a (1 − ε) upper limit confidence level, is determined from

ε =

N0∑
n=0

1√
2πσN

∞∫
0

∞∫
0
e−(ñb+ñs) (ñb+ñs)

n

n!
e
−(Nbkg−ñb)

2

2σ2
b e

−(N−ñs)
2

2σ2
N dñbdñs

n0∑
n=0

∞∫
0
e−ñb

(ñb)
n

n!
e
−(Nbkg−ñb)

2

2σ2
b dñb

, (5.4)

where σN is the total fractional systematic error (see Table 5.21) ×N . This assumes

the statistical and systematic errors are Gaussian and the upper limit is formed

by convoluting the Poisson distribution of the number of observed events with two

Gaussians that represent the background and acceptance uncertainties.

We also calculate the probability for a null hypothesis (P-value), which is defined

as the Poisson probability that the estimated number of background events fluctuates

to the observed number of events N0 or greater,

P =
∞∑

n=N0

(Nbkg)
ne−Nbkg

n!
(5.5)

Table 5.26 shows a P-Value range with a variation of background (σ(Nbkg)) and

at 90% confidence level (ε = 0.1), the signal events number N and its upper limit for

each mode of B → J/ψηK.

125



5. Analysis of B → J/ψηK

N0 Nbkg ± σ(Nbkg) P-value N 90% C.L.

upper limit

B± → J/ψη(γγ)K± 99 50.3 ± 3.0 (0.09 - 1.42)×10−8 70.0 15.5 × 10−5

B0 → J/ψη(γγ)K0
S 39 18.5 ± 1.7 (0.23 - 1.3)×10−4 34.5 14.1 × 10−5

Table 5.26: The P-value for null hypothesis, the number of signal events N and its
branching fraction upper limit at the 90% confidence level for each mode of B →
J/ψηK.

5.11. X particle search

In this section, search for X → J/ψη is performed by using the same dataset and

selection criteria as the decay B → J/ψηK.

X particle search is conducted with charged and neutral B → J/ψηK channels

with decay of X(3870) → J/ψη(γγ). Fig. 5.16 shows the invariant two body mass of

J/ψη for each mode, and Fig. 5.17 shows the summary plot for both modes. These

plots are made without a Dalitz plot cut and are plotted in 6 MeV/c2 bins.

From Fig. 5.17, there is no evidence for X(3872). Also since there are very few

events for neutral channel in X(3872) mass region, only the charged mode is used to

set the upper limit for B− → X(3872)K−, X(3872) → J/ψη.

5.11.1. Monte Carlo efficiency

10,000 Monte Carlo signal events were generated, with all the cuts listed in Ta-

ble 5.2 and 3.850 < M(J/ψη(γγ)) < 3.890 GeV/c2, about 1417 are left in the signal
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ψη Mass (GeV/c2)

ψη Mass (GeV/c2)

Figure 5.16: The J/ψη distribution of the charged (upper) and neutral (lower) B
modes.
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Figure 5.17: The summed J/ψη mass distributions from the charged and neutral B
modes.

region. This results in the raw efficiency of (14.17±3.8)%. Fig. 5.18 shows the distri-

bution of signal MC two-body invariant mass of J/ψη. With the efficiency correction

factor from Table 5.22 the final Monte Carlo efficiency is (11.73 ± 3.8)%.

5.11.2. Fit results

The procedure used here is the same as the analysis B → J/ψηK. We fit the

mES distribution of on-peak data with an Argus plus a Gaussian function, and the

Argus shape parameters are determined from the ΔE sideband. Fig 5.19 shows

Argus shape overlaid with ΔE sideband (left) and a fit with on-peak data (right)

with shape parameters from ΔE sideband. The background events are estimated to

be 3.066 ± 0.704 and in the signal box there are only 3 events.
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ψη Mass (GeV/c2)

Figure 5.18: The Monte Carlo J/ψη mass distributions for X(3872) → J/ψη(γγ).

5.11.3. Systematic error

Compared to the main B → J/ψηK analysis, only the J/ψη signal mass region is

used in the search of X(3872) analysis. Due to the similarities, the systematic error

for X(3872) analysis should be almost the same as for analysis B± → J/ψη(γγ)K±,

the only difference for these two analyses appears in the signal Monte Carlo events.

The final total systematic error is 22.3%.

5.11.4. Upper limit for X(3872) → J/ψη

Followed the procedure introduced in section 5.10.3, at 90% confidence level,

the number of signal events is about 3.77 with a systematic error 22.3%, N0 = 3

and Nbkg = 3.07 ± 0.70. The resulting 90% C.L. branching fraction upper limit is
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Figure 5.19: The mES distributions for ΔE sideband (left) and on-peak data (right)
for the events in the X(3872) mass region, both with fit overlaid.

7.67 × 10−6.

5.11.5. Some cross checks with two body invariant mass of ηJ/ψ

Check of ψ(3680) → ηJ/ψ

Signal Monte Carlo of B± → ψ(3680)K± with ψ(3680) → ηJ/ψ is used to estimate

optimized cuts efficiency. The raw Monte Carlo efficiency is about 17% with an

additional M(ηJ/ψ ) < 3.71 GeV/c2 cut. With the correction factors, the final Monte

Carlo efficiency is about 14%. This results in about 12.1 signal events expected in the

two body mass region M(ηJ/ψ ) < 3.71 GeV/c2 with optimized cuts. We observed

about 15 events in the signal box. Data and Monte Carlo expectation are in good

agreement.

We also check the yields of ψ(3680) from inclusive J/ψ Monte Carlo sample. The
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total inclusive J/ψ Monte Carlo yield is about 347 events. As data luminosity is

about half of the inclusive J/ψ Monte Carlo sample, the yield on the data is expected

to be half of the 347 events. In data, we only observed 99 events in data. This might

be due to mode dependence as discussed in section 5.6.

Check of JPC = 1−−ηJ/ψ

To search for JPC = 1−−ηJ/ψ states and to verify the existence ofB± → ψ(3680)K±,

ψ(3860) → ηJ/ψ , the helicity angle cuts are applied. These can exactly determine a

parity conserving decay of a JPC = 1−− resonance into ηJ/ψ and a J/ψ decay into

leptons. The square of the amplitude is,

|M |2 = (sin θJ/ψ )2(cos2(φe/μ) + cos2 θe/μ sin2(φe/μ)), (5.6)

where θJ/ψ is the helicity angle of the J/ψ in the rest frame of ψ(3680) and (θe/μ, φe/μ)

are the helicity angles of the lepton in the J/ψ rest frame. As the acceptance of the

cosJ/ψ and sinJ/ψ for vector 1−− component is flat, non-1−−ηJ/ψ vector background

can be reduced by using the cuts of | cos θe/μ| > 0.8 and | cos θJ/ψ | < 0.8. Fig 5.20

shows the distribution of two body invariant mass of ηJ/ψ after these two helicity

angles cuts (combined with the helicity angle cut of photon in η frame (upper plot)

and lepton ID requirements cut (bottom plot for both cuts applied), other regular

cuts are removed). From Fig. 5.20, there are some ψ(3680) events, but few events are
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ψη Mass (GeV/c2)

ψη Mass (GeV/c2)

Figure 5.20: The distribution of two body invariant mass of ηJ/ψ with helicity angle
cuts. The upper plot is combined with only photon helicity angle cut, the bottom
one is combined with photon helicity angle cut and lepton PID cut.

above ψ(3680).
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5. Analysis of B → J/ψηK

5.12. Some additional studies

5.12.1. Removing B → ψ′K events

In this study, ψ′ → J/ψη events (the intermediate resonance of two body mass of

ηJ/ψ ) are removed. An additional cut of M(ηJ/ψ ) > 3.75 GeV/c2 is applied to both

channels along with other optimized cuts. We refit the mES plots using backgrounds

shape determined by ΔE sideband. The results are shown in Table 5.27.

mode K± K0
S

N0 84 35

Nbkg 45.4 ± 2.9 18.5 ± 0.5

Nsig 37.5 16.5

P-Value 2.0 × 10−6 5.6 × 10−5

Significance 4.75σ 4.1σ

Table 5.27: Data fit results for B → J/ψηK without intermediate two body resonance
of ψ′.

The number of signal events for both modes decreases about 20%, which is consis-

tent with the PDG value. For the neutral mode, the statistical significance increases,

in fact this is due to its low statistics.

5.12.2. η signal check

To make sure η → 2γ signal events exist after final selection for B → J/ψηK,

we used a logic “NOT” on the η mass sideband. We know there are not many η

133



5. Analysis of B → J/ψηK

signal events in the mass sideband of η. If we can verify that there are not many

B → J/ψηK signal events left with η sideband, then the signal events appearing with

η signal region are really true η signal events.

As the mass region for an η candidate is limited (0.470 < M(2γ) < 0.620 GeV/c2),

two very narrow η mass region are used, 0.470 < M(2γ) < 0.493 GeV/c2 and 0.597 <

M(2γ) < 0.620 GeV/c2. With these two sideband regions, the total area used to

estimate the background is approximated to the area used for the background under

the signal region |M(2γ) − 0.547| < 0.023 GeV/c2. Fig. 5.21 and 5.22 shows the

results got from the these two sideband windows for ΔE and mES. We observed the

signal events peak disappears when the η mass sidebands were used.
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5. Analysis of B → J/ψηK

Figure 5.21: The charged decay mode plots for mES (both upper plots) and ΔE (both
lower plots) with the 2γ invariant mass in the η signal region (both left plots) and
sideband region (both right sideband plots).
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Figure 5.22: The neutral decay mode plots for mES (both upper plots) and ΔE (both
lower plots) with the 2γ invariant mass in the η signal region (both left plots) and
sideband region (both right sideband plots).
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Chapter 6

Analysis of B± → DK±

In this chapter, the analysis of the decay B± → DK± with D0/D̄0 → π+π−π0 is

described. Data samples, event selection criteria, parameterization of the maximum

likelihood fit, data fit, and systematic errors are included.

6.1. Physics motivation

This decay mode can be used to measure CP angle γ (see chapter 2), due to the

interference between b → cūs and b → uc̄s decays into a common final state. As

this mode has a high background, an essential first step is to develop the techniques

necessary to suppress the background, and to get the branching ratio and decay rate

asymmetry of this decay chain.
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6. Analysis of B± → DK±

6.2. Data samples

Table 6.2 shows the data and Monte Carlo samples used in this analysis. The

signal MC events are generated according to the measured D0 Dalitz plot distribution

[56]. In addition, about 70,000 signal MC events are generated with flat phase space

distribution for the D0 decay. The analysis procedure was developed using BABAR’s

Event sample B± → DK±

B+B− 509.2 fb−1

B0B̄0 513.0 fb−1

cc̄ 165.9 fb−1

uds 170.0 fb−1

On-peak data 207.3 fb−1

Off-peak data 21.1 fb−1

B± → DK± signal 80,000

Table 6.1: Data samples used for B → DK with D → π+π−π0.

first 168.3 fb−1. Additional dataset of 39.0 fb−1 was added later, for which the whole

data was refitted. but the systematic errors used were obtained only from the 168.3

fb−1 sample.

6.3. Event selection

We first started with four D decay modes: D → K±π∓K0
S, D → K+K−π0 and

D → π+π−π0, however the first three modes have very low statistics, we only focus
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6. Analysis of B± → DK±

on the last one. Although this mode has more statistics, it also has more background

due to the fact that most e+e− events are dominated by pions, as well as the high

combinatoric background associated with π0 reconstruction.

6.3.1. Reconstruction of B candidate

Of the particles involved in this analysis, the π0, D0/D̄0 and B± are composite

particles that need to be reconstructed from their decay products. The π0 is recon-

structed from its decay to two photons. A D0/D̄0 candidate is reconstructed from

two charged pion tracks and a reconstructed π0. These two charged tracks must not

be identified as loose kaons and must be in the fiducial volume of the BABAR detector.

A B candidate is reconstructed from a reconstructed D0/D̄0 particle and a charged

kaon track. This track must satisfy the fiducial volume and loose kaon ID criteria.

6.3.2. Event pre-selection

To reduce the size of the raw data sample, we apply some initial cuts which keep

most of the signal but remove a large fraction of the background. The cuts we apply

are:

1. | cos θT | < 0.8;

2. R2 < 0.5;

3. 5.2 ≤ mES ≤ 5.3 GeV/c2;
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6. Analysis of B± → DK±

4. −0.07 < ΔE < 0.14 GeV;

5. 1.805 < mD < 1.924 GeV/c2, where mD is the D0/D̄0 candidate’s invariant

mass;

6. all tracks are in the fiducial volume of the detector;

7. the bachelor kaon track has at least 5 DIRC photons;

8. the bachelor kaon candidate passes loose kaon criteria;

9. neither of the D0/D̄0 daughter tracks meets the loose kaon criteria of the cut-

based kaon identification.

In events with multiple B candidates, we select one candidate at random. With all

the pre-selection criteria and best candidate selection, about 74% of the events of

signal MC, 67% of the BB̄ generic MC, 77% of the continuum MC, and 77% of the

on-peak data sample, respectively, have only one reconstructed B candidate.

6.4. Analysis strategy

The challenge of the mode D0/D̄0 → π+π−π0 is to separate a small number of

the signal B events from a much larger background. With a rough study of this

mode, we find that the background is mostly dominated by events associated with

badly reconstructed π0. The biggest contribution is the continuum background. To

suppress this background, we use a nonlinear multidimensional neural network to

140



6. Analysis of B± → DK±

combine several variables that have separation power between BB̄ and continuum

events into a new variable that maximizes the separation of these two populations.

We called this variable N1.

We also developed another neural network variable (N2) to distinguish fake π0/D0

candidates from well-reconstructed ones.

With these two variables providing strong separation power to suppress the back-

ground, we further maximize the signal sensitivity by using a maximum likelihood fit

as the final stage of the analysis.

6.5. Neural network

6.5.1. General principle of neural network

The basic building block of the Neural Network is referred to as a “neuron”, in

analogy with the human brain. A single neuron j is associated with N input variables

xk and a response, the output zj . The N inputs are linearly combined according to

some weights wjk, giving a signal Zj that will activate the neuron:

Zj =
N∑
k=1

wjkxk + θj , (6.1)

where θj is the threshold (bias) of the neuron j. The activation is simulated by a
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6. Analysis of B± → DK±

nonlinear function which is generally given by the sigmoid function

zj =
1

1 + e−Zj
. (6.2)

We use a multilayer perceptron architecture, where the neurons are put into three

layers: an N -node input layer, an Nh-node hidden layer, and a 1-node output layer.

The weights giving the strengths of the connections between neurons of adjacent

layers are determined by minimizing the error function

E =
1

2n

n∑
p=1

(XNN −Xp
1 )2 (6.3)

where n is the number of patterns (events in our case), Xp
1 is the desired value of the

output,

Xp
1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 background

1 signal

, (6.4)

and XNN is the output, which is defined as a function of the input xk:

XNN =
1

1 + e−
∑Nh

j=1
w1jzj+θ1

. (6.5)

Here θ1 is the bias of the output layer.
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6. Analysis of B± → DK±

The analysis uses the neural net implementation of the SNNS package [57].

6.5.2. Continuum background suppression

As described in section 6.4, the neural net output variable N1 is used to separate

continuum background from the signal. The input variables used for N1 all provide

such separation to some degree. These variables are

1. Legendre Fisher discriminant FLGD (see Fig. 6.1 (left)),

2. log(|ΔZ|) (see Fig. 6.1 (right)),

3. | cos(θT )| (see Fig. 6.2),

4. log(lDOCA) (see Fig. 6.2),

5. An integer variable T based on electron and muon B flavor tagging. For 	 =

{e, μ} we calculate the B0 flavor probability P �
B0 in the events in which a tagging

lepton was found. T is defined as

T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 |P �
B0 + 0.5| > 0.4

2 0.1 < |P �
B0 + 0.5| < 0.4

1 |P �
B0 + 0.5| < 0.1

0 no lepton was found

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (6.6)

where the condition must be satisfied for either 	 = μ or 	 = e. When more

than one lepton is found, the largest value of T is used. See Fig. 6.3.
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Figure 6.1: The Legendre polynomial Fisher discriminant (left) and log(Δz) (right)
distributions of signal (dotted), BB background (dashed), and continuum background
(solid).

About 13,500 MC signal events and 13,700 continuum events (5700 cc̄, 8000

uū/dd̄/ss̄) were used to train this continuum suppression neural work. Fig. 6.4 shows

the N1 distribution for all MC samples. Fig. 6.5 shows the efficiency variation by

adding the N1 variables one by one. These plots are obtained with test samples,

which consist of about 3000 MC signal events and about 12,000 events continuum

MC samples .

6.5.3. Combinatoric background suppression

The variables used forN2 provide separation between badly and well reconstructed

π0 and D0 candidates, providing separation between signal and background. These
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Figure 6.2: | cos θT | (left) and log(lDOCA) (right) distributions of signal (dotted), BB
background (dashed), and continuum background (solid). All plots are normalized to
unit area.

variables are

1. the invariant mass, laboratory momentum and helicity angle θγπ0 of π0 (see

Fig 6.6), where θγπ0 is the angle between the direction of a photon and the

direction of the center-mass-frame in π0 frame (see Fig. 6.6);

2. the invariant mass mh of a π0
h, which is a reconstructed “π0-like” candidate with

a higher energy photon γh from the π0 and any other photons from this event

(except the lower energy photon γs comes from this π0) (see Fig. 6.7 and 6.8);

3. the invariant mass ms of a π0
s (which is calculated similarly to π0

h (see Fig. 6.7

and 6.8);
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Figure 6.3: Signal (dotted), BB background (dashed), and continuum background
(solid, blue) distributions of (P �

B0 +0.5) multiplied by the reconstructed B charge for
	 = μ (left) and 	 = e (center), and the integer variable T (right) constructed from
P �
B0 + 0.5. All plots are normalized to unit area.
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Figure 6.4: The distributions for MC signal (dotted), BB background (dashed), and
continuum background (solid). All plots are normalized to unit area.
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Figure 6.5: The efficiency plot for N1 obtained by adding discrimination variables
one by one from Fisher (solid circle), ΔZ (empty circle), cos θT (solid square), lDOCA
(empty square), B flavor tagging T (triangle).
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4. two cosine values of helicity angles (θh,θs) from the reconstructed (π0
h,π

0
s) can-

didates (see Fig. 6.9);

5. | cos θD| and | cos θBD| (see Fig. 6.10);
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Figure 6.6: π0 invariant mass (left), lab momentum (middle) and cosine of the π0

“helicity angle” (right) distributions of signal (dotted), BB background (dashed),
and continuum background (solid). All plots are normalized to unit area.

N2 is trained with about 13,000 signal MC events, 3000 B+/B− MC events and

10,000 continuum MC events. Fig 6.11 shows a complete MC result, and Fig 6.12

shows the efficiency by adding additional variables to the first six variables. The test

samples are described in section 6.5.2.

6.6. Unbinned maximum likelihood fit

The purpose of this fit is to extract the signal yield with the highest possible

sensitivity despite the high background. The fit was performed using the standard

148



6. Analysis of B± → DK±

Best2gmaMass1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Best2gmaMass2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Figure 6.7: mh (left) and ms (right) distributions of signal (dotted), BB back-
ground(dash), and continuum background (solid). All plots are normalized to unit
area.

BABAR fit package RooFit [59], which uses Minuit [60] to perform the maximization

of the likelihood function numerically.

6.6.1. Event types for maximum likelihood fit

Ten event types were used for categorizing the events. Doing this helps to under-

stand the background and estimate the systematic error.

The ten types are:

1. “DKD”: B− → DK− signal event with a good (correctly reconstructed) D

candidate. These are the only events that are useful for the γ measurement,

and hence are the only ones we consider as our true signal.
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background (dashed), and continuum background (solid). All plots are normalized to
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Figure 6.10: | cos θD| (left) and cos θBD distributions of signal (dotted), BB back-
ground (dashed), and continuum background (solid). All plots are normalized to unit
area.
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Figure 6.11: The N2 distributions for MC signal (dotted), BB background (dashed),
and continuum background (solid). All plots are normalized to unit area.
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2. “DK �D”: B− → DK− signal with a bad D. About 16% of all generated signal

events end up in this category, usually due to a badly reconstructed π0.

3. “DπD”: B− → D0π− with a good D0.

4. “Dπ�D”: B− → D0π− where the D0 decays to 3 pions, but is badly recon-

structed. This constitutes about 42% of all D0π−, D0 → π+π−π0 events. The

bachelor candidate is usually a true kaon picked at random from the other B.

5. “DKX”: B− → D(∗)0K(∗)− and B0 → D(∗)±K(∗)∓ where the D0 decays to

modes other than π+π−π0. Most of these events have a badly reconstructed

D0 (although sometimes the decay mode is K−π+π0 and all the daughters are

correctly reconstructed, but with a wrong PID hypothesis for the kaon), and

the bachelor kaon candidate is usually selected correctly.

6. “DπX”: B− → D∗0π− or D0ρ− and B0 → D(∗)±π∓ or D(∗)±ρ∓. Most of this

background has a badly reconstructed D0 (although sometimes the decay mode

is K−π+π0 and all the daughters are correctly reconstructed, with a wrong PID

hypothesis for the kaon), with the bachelor kaon candidate picked at random

from the event.

7. “BBCD”: Combinatorial BB background with a correctly reconstructed D.

8. “BBC �D”: Combinatoric BB background with a badly reconstructed D.
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9. “qqD”: Continuum background with a good D0. This constitutes about 0.561%

of all continuum background.

10. “qq�D”: Continuum background with a bad D0.

We do not include the charmless four-body decay B+ → K+π−π+π0 decays as

a type in this categorization scheme (where all four daughters of the B+ are recon-

structed, and the π−π+π0 invariant mass happens to fall within our D0 mass cut).

The total branching ratio for this type is about 6 × 10−6 (from the PDG values),

so after the all the cuts it would contribute only 1 − 4 events in 180 fb−1, which is

confirmed by a D0 sideband study.

6.6.2. Choice of final event selection and fit variables

Our initial intention was to do a 5-dimension fit with the fit variables mES, ΔE,

mD and the two neural network output variables. However, we found that correlations

between these fit variables in the BB̄ background event types with the pre-selection

criteria (see section 6.3.2) caused biases in the signal yield coming out of the fit. These

correlation are shown in the appendix A.1. The correlations that cause the bias were

mainly those between mES and other variables in the DKX and DπX backgrounds.

To eliminate these correlations, we do not use mES in the fit. Instead, we apply a

tight cut on this variable, as shown below. In addition, excluding mD from the fit has

been shown to have a small effect on the expected sensitivity. Therefore, we cut hard
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on this variable in the selection, and do not use it in the fit. Loose cuts on ΔE, N1

and N2 provide some further reduction of the correlations and remove events far away

from the signal region. More details about this are provided in the appendix A.1.

A decay D0/D̄0 → K0
Sπ

0 with three pions is a D0 decay CP eigenstate and

was previously studied (see Ref. [62]). As this mode is not relevant to the method

described in Ref. [35], it is excluded here.

These additional cuts are:

1. K0
S veto, reject if 0.489 < mK0

S
< 0.509 GeV/c2;

2. 5.272 < mES < 5.3 GeV/c2;

3. −0.07 < ΔE < 0.06 GeV;

4. 1.83 < mD < 1.895 GeV/c2;

5. N1 > 0.1;

6. N2 > 0.1;

With these additional final selection criteria, the final reconstructed signal MC

efficiency is 11.21%.
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6.6.3. Probability density function

The probability density function (PDF) used in the fit is

P = NDKD
(PDKD

+RDK �DPDK �D)

+ NDπD
(PDπD

+RDπ �DPDπ �D)

+ NBB(RDKXRDπXPDKX +RDπXPDπX

+ (1 − RDπX(1 +RDKX)PBBC�D) +RBBCD
PBBCD

)

+ Nqq �D(Pqq �D +RqqDPqqD), (6.7)

where Nj is the number of events of type j, NBB is the sum of the numbers of events

of type DπX, DKX and BBC �D, and Rj are defined as

1. RDK �D is the ratio of NDK �D/NDKD
;

2. RDπ �D is the ratio of NDπ �D/NDπD
;

3. RDπX is the ratio of NDπX/NBB;

4. RDKX is the ratio of NDKX/NDπX;

5. RBBCD
is the ratio of NBBCD

/NBB;

6. RqqD is the ratio of NqqD/Nqq �D .
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6. Analysis of B± → DK±

The function Pj is the PDF for the events of type j. Under the assumption of no,

or very small, correlation between the fit variables, for each type j, Pj can be write

as the product of one-dimensional PDFs. For a PDF Pj with three fit variables:

Pj(ΔE,N1, N2) = Ej(ΔE)Qj(N1)Cj(N2). (6.8)

To extract the parameters θ̂ (also called floating parameters) that are described

in section 4.2, we minimize the negative log of the extended likelihood

L =
e−N̄ N̄N

N !

N∏
i=1

P (i), (6.9)

here N is the number of the observed events and N̄ is the sum of the numbers of the

events for all types:

N̄ = NDKD
(1 +RDK �D) +NDπD

(1 +RDπ �D) (6.10)

+ NBB(1 +RBBCD
) +Nqq �D(1 +RqqD).

6.6.4. Parameterization of the probability density function

From Eq. 6.8, Pj is the product of one-dimensional functions of ΔE, N1 and N2.

The parameterizations of these functions, which are obtained from Monte Carlo, are

described here.
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Parameterization of Ej(ΔE)

The functional forms for each type event j are shown in Table 6.2. The results

of the fits to the MC distributions of ΔE for each type j are shown in Figs. 6.13

through 6.17. All the plots are obtained after the final event selection criteria.

Event type E(ΔE) functional form

DKD G+ P

DK �D G+ P

DπD G+ P

Dπ�D G+ P

DπX G+ P

DKX G+G+ P

BBCD G

BBC �D P

qqD P

qq�D P

Table 6.2: Functional forms of the PDFs of each event type, indicated with G =
Gaussian and P = 2nd order polynomial.
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Figure 6.12: Signal efficiency vs. continuum efficiency when applying cuts on the
N2 variable, computed with different input variables. left plot: pπ0 (solid circle),
cos(θπ0) (empty circle), mπ0 (solid square), mh (empty square), ms (solid up triangle),
cos(θh) (empty up triangle), cos(θs) (solid down triangle). right plot: All first seven
π0 variables (solid circle), adding | cos θD| (solid square), and adding cos θBD (solid
triangle).
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Figure 6.13: The distributions of ΔE for DKD (left) and DK �D (right) MC.
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Figure 6.14: The distributions of ΔE for DπD (left) and Dπ�D (right) MC.
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Figure 6.15: The distributions of ΔE for DπX (left), DKX (right) MC.
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Figure 6.16: The distributions of ΔE for BBCD (left) and BBC �D (right) MC.

Deltae
-0.06 -0.04 -0.02 0 0.02 0.04 0.06

E
ve

n
ts

 / 
( 

0.
00

43
33

33
 )

0

1

2

3

4

5

6

Deltae
-0.06 -0.04 -0.02 0 0.02 0.04 0.06

E
ve

n
ts

 / 
( 

0.
00

43
33

33
 )

0

1

2

3

4

5

6

Cont-Good-D

Deltae
-0.06 -0.04 -0.02 0 0.02 0.04 0.06

E
ve

n
ts

 / 
( 

0.
00

18
57

14
 )

0

5

10

15

20

25

30

35

40

45

Deltae
-0.06 -0.04 -0.02 0 0.02 0.04 0.06

E
ve

n
ts

 / 
( 

0.
00

18
57

14
 )

0

5

10

15

20

25

30

35

40

45

Cont-Bad-D

Figure 6.17: The distributions of ΔE for qqD (left) and qq�D (right) MC.
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Parameterization of Qj(N1) and Cj(N2)

The N1 and N2 PDFs are binned histograms obtained from the MC samples

after the final event selection criteria. Figs. 6.18 through 6.27 show the N1 and N2

distributions of the various Monte Carlo event types.
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Figure 6.18: The distributions of N1 (left) and N2 (right) for DKD MC.
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Figure 6.19: The distributions of N1 (left) and N2 (right) for DK �D MC.
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Figure 6.20: The distributions of N1 (left) and N2 (right) for DπD MC.

The Dπ�D, BBCD and qqD background are rare and have low yields in MC after the

final selection criteria. For these types, we take the N1 or N2 shapes from a higher-

statistics event type whose distribution is in good agreement with this low-statistic

even type. Agreement is quantified using the Kolmogorov-Smirnov probability (KSP).

The values of KSP are uniformly distributed between 0.0 and 1.0, for samples origi-

nating from the same distribution, with statistical fluctuations being the only source

of differences between them. For any particular pair of samples, a high value of KSP

indicates a high likelihood that they have the same distribution. usually, several per-

cent is good enough to say that they have a similar distribution. Table 6.3 show the

replacements and the values of KSP.
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Figure 6.21: The distributions of N1 (left) and N2 (right) for Dπ�D MC.
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Figure 6.22: The distributions of N1 (left) and N2 (right) for DπX MC.
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Figure 6.23: The distributions of N1 (left) and N2 (right) for DKX MC.
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Figure 6.24: The distributions of N1 (left) and N2 (right) for BBCD MC.
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Figure 6.25: The distributions of N1 (left) and N2 (right) for BBC �D MC.
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Figure 6.26: The distributions of N1 (left) and N2 (right) for qqD MC.
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Figure 6.27: The distributions of N1 (left) and N2 (right) for qq�D MC.

N1 Shape of Taken from KSP values of distributions

qqD qq�D 88.6%

BBCD DKD 98.5%

Dπ�D DπX 29.9%

N2 Shape of Taken from KSP values of the two distributions

BBCD DK �D 77.7%

Dπ�D DπX 95.5%

Table 6.3: Neural net shape “replacements” and agreement between the two distri-
butions in MC.
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6.6.5. Floating parameters in the fit

The PDF parameters determined by the fit are NDKD
; ADKD

, which is the DKD

decay rate asymmetry, defined as ADKD
=

N−
DKD

−N+
DKD

NDKD
, here N

+/−
DKD

is the number of

DKD from B+/−; NDπD
; RDπX ; NBB; Nqq �D . All shapes parameters for Pj are fixed

to their values or histograms obtained from MC samples. In addition, we fixed the

Rj ratios to values obtained from the MC,

1. RDKX = 0.21 ± 0.05,

2. RDπ �D = 0.171 ± 0.038,

3. RBBCD
= 0.0089 ± 0.0019,

4. RqqD = 0.0136 ± 0.0028,

5. RDK �D = 0.1614 ± 0.0042,

The error of RDKX is from the measured branching ratios in the PDG [61]. All other

errors are due to MC statistics.
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6.6.6. Toy Monte Carlo study

We conduct a toy MC study to test the unbinned maximum likelihood fit and

make sure it is not biased. Table 6.4 shows the initial values used for the floating

parameters, obtained from the MC.

parameter value

RDπX 0.624

NDKD
92.2

ADKD
0.0074

NDπD
39.0

NBB 790.3

Nqq �D 1686.0

Table 6.4: Initial values of the floating parameters for the Toy Monte Carlo.

Fig. 6.28 through 6.33 show the extracted fit values, pulls and error for the fit

parameters. There are no significant biases in these fits.
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Figure 6.29: The fit value (left), error (center), and pull (right) for NDKD
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Figure 6.30: The fit value (left), error (center), and pull (right) for NDπD
.
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Figure 6.31: The fit value (left), error (center), and pull (right) for RDπX .
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Figure 6.32: The fit value (left), error (center), and pull (right) for NBB.
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Figure 6.33: The fit value (left), error (center), and pull (right) for Nqq �D .
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6.7. Validation of event distributions

As our PDFs are constructed totally from MC, we need to test their validity for

the use with on-peak data. To do this, we check whether the shapes obtained from

MC agree well with the corresponding shapes from signal-like or off-peak data. The

differences observed in these validations are all statistically insignificant and are used

to evaluate systematic errors, as will be discussed in following chapters.

The procedure we used here is to compare the shapes from MC and other corre-

sponding data samples by using KSP (Kolmogorov-Simirnov probability).

6.7.1. Continuum validation

In this validation, about 21 fb−1 off-peak data and 168.0 fb−1 continuum MC

were used. The KSP values obtained by comparing the fit variable distributions of

these two samples are listed in Table 6.5. Fig. 6.34 shows the distribution of these

three fit variables and mD from the continuum MC (overlaid with off-peak data).

These shapes agree well with the corresponding shapes from the off-peak data.

ΔE mD N1 N2

0.87 0.91 0.79 0.92

Table 6.5: KSP values by comparing the distribution of the fit variables and mD in
continuum and off-peak data.
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Figure 6.34: Comparison of the distributions of (from left to right, top row) ΔE, mD,
(bottom row) N1, and N2 in off-peak data (dashed) and continuum MC (solid).
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6.7.2. Signal distributions validation with B → Dπ modes

Here two different D0 decay modes, D0 → K−π+π0 and D0 → π+π−π0, are

used. As they are similar to signal mode, they are used to validate the signal MC

distribution.

Mode B− → (K−π+π0)Dπ
−

95,000 MC signal events and about 56 fb−1 on-peak data were used to reconstruct

this mode. As one daughter of D is a kaon and statistics are high, this mode is very

clean.

The requirements used to get a clean B− → (K−π+π0)Dπ
− sample are

1. PidKaonMicroSelector neural net value is less than 0.5 for the bachelor “kaon”;

2. 0.01 < ΔE < 0.09 GeV;

3. 1.845 < mD < 1.885 GeV/c2;

4. 0.125 < mπ0 < 0.1425 GeV/c2;

5. 5.274 < mES < 5.290 GeV/c2.

Figs. 6.35, 6.36, and 6.37 show the distributions of mES, ΔE and mD with overlaid

fits for data and MC. mES and mD are used to reject the background in the recon-

struction of this mode. Fig. 6.38 shows the distributions of N1 and N2 with data and
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MC overlaid. The KSP value for the N1 (N2) distribution is 0.988 (0.345), indicating

that the neural network distributions of data and MC are in good agreement.
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Figure 6.35: The mES distributions of B− → (K−π+π0)Dπ
− data (left) and MC

(right). The fit function (Gaussian plus ARGUS for data and signal MC) is overlaid.
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Figure 6.36: The ΔE distributions of B− → (K−π+π0)Dπ
− data (left) and MC

(right). The fit function (two Gaussians plus a first order polynomial for data, Gaus-
sian for signal) is overlaid.
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Figure 6.37: The mD0 distributions of B− → (K−π+π0)Dπ
− data (left) and truth-

matched MC (right). The fit function (Crystal Ball function [59] plus 2nd order
polynomial for both data and signal) is overlaid.
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As an additional validation study, we list in Table 6.6 the parameters of the

functions used to fit the data and MC mES, mD, and ΔE distributions. The data and

MC mES distributions are in good agreement. The ΔE Gaussian mean in the data is

shifted by −2.8 ± 0.61 MeV with respect to the MC. The mD Crystal Ball Gaussian

width in the data is 2.4 ± 0.4 Mev/c2 broader than in MC. Although we do not use

mD in the fit, this width difference affects the signal efficiency. The efficiency and its

systematic error are discussed in later chapters.

mES( GeV/c2) ΔE( GeV)

data MC data MC

mean 5.27980±0.00006 5.27910±0.00004 0.0457±0.0006 0.0483±0.0003

sigma 0.00273±0.00006 0.00266±0.00003 0.0209±0.0006 0.0209±0.0003

mD( GeV/c2)

mean 1.8634±0.0004 1.8632±0.0002

sigma 0.0116±0.0005 0.0100±0.0002

Table 6.6: mES, ΔE, and mD Gaussian fit parameters for B− → (K−π+π0)Dπ
− data

and MC.

We also roughly estimated the branching ratio of this mode, 50904±79 (2464±57)

events are extracted from a Gaussian plus an Argus fit to the mES distribution of

the MC (on-peak data) sample (see Fig. 6.35). Given the sizes of the data and MC

samples, this gives the branching ratio for B− → Dπ− (5.08±0.38)×10−3, in a good

agreement with the PDG value of (4.98 ± 0.29) × 10−3.
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Mode B− → (π+π−π0)Dπ
−

About ∼ 170 fb−1 on-peak and 15,000 B− → (π+π−π0)Dπ
− MC events with 100%

resonant D → ρπ decay were used for the study of this mode. The following cuts

were used to reduce the background,

1. 5.274 < mES < 5.290 GeV/c2,

2. 1.84 < mD < 1.89 GeV/c2,

3. N1 > 0.4 and N2 > 0.2,

4. 0.01 < ΔE < 0.09 GeV,

5. K0
S veto: mπ+π− > 0.508 GeV/c2 or mπ+π− < 0.489 GeV/c2.

As this mode has much more background than B− → (K−π+π0)Dπ
−, a different

strategy is adopted here. Specifically, to avoid uncertainties in the shape of BB̄

background that peaks in mES, the signal yield was extracted from a fit to the ΔE

distribution. A Gaussian plus first-order polynomial fit finds 943±60 (1286 ± 37)

events in the data (MC) sample, giving a branching ratio of B− → Dπ− (4.68 ±

0.48) × 10−3, which is in agreement with the PDG value. Fig. 6.39 shows the ΔE

fit. The parameters of the ΔE and mD fit functions (see Fig. 6.40) are shown in

Table 6.7. We do not find a shift in the ΔE Gaussian mean. As this mode is closer

to the signal mode than B− → (K−π+π0)Dπ
−, in the final data fit, we did not shift
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the ΔE mean of the signal PDF relative to the value obtained from the signal MC.

Due to background shape uncertainties, no comparison was done for mES, N1, and

N2.
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Figure 6.39: distribution of ΔE of B± → (π+π−π0)Dπ
± with the fit overlaid, data

(left), MC (right).

mD0 ΔE

data MC data MC

mean 1.8628±0.0009 1.8621±0.0005 0.0471±0.0012 0.0472±0.0007

sigma 0.0125±0.0015 0.0139±0.0004 0.0214±0.0013 0.0215±0.0006

Table 6.7: Parameters extracted from the fit on mD0 and ΔE from B± →
(π+π−π0)Dπ

± on-peak data and MC.
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Figure 6.40: Distribution of mD0 of B± → (π+π−π0)Dπ
±with fit overlaid, data (left),

MC match (right).

6.7.3. On-peak data sideband

We used on-peak data sidebands (samples with cuts designed to eliminate the

contribution of signal events) to test the agreement between the data and MC for the

sum of continuum and BB̄ backgrounds. Three sidebands are used to compare the

data and MC shapes: The mES sideband 5.23 < mES < 5.26 GeV/c2, the low ΔE

sideband, 0.09 < ΔE < 0.140 GeV, and the high ΔE sideband −0.07 < ΔE < 0.14

GeV. For each of these three sidebands, distributions of the other fit variables in the

data and MC are overlaid, as shown in Fig. 6.41, 6.42 and 6.43, respectively. The

KSP values obtained by comparing the MC and data for each of these figures are

shown in Table 6.8.

The MC sample used for this comparison contains the full generic BB̄ and con-
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tinuum MC samples that are scaled to the data luminosity (∼ 170 fb−1) with the

continuum contribution reduced by 16% in order to solve a problem with the kaon

yield in the continuum MC, which is 16% higher than in the off-resonance data. The

plots and KSP values show good agreement between data and MC.

Sideband ΔE N1 N2

5.23 < mES < 5.26 0.071 0.548 0.362

−0.07 < ΔE < −0.45 0.813 0.847

0.09 < ΔE < 0.14 0.998 0.048

Table 6.8: Kolmogorov-Simirnov probabilities comparing the on-peak data and MC
in the side bands.

6.8. Full Monte Carlo fit

As a test of the analysis, we conducted fits to full MC samples containing both

signal and background events. From Table 6.2, we see that continuum MC sample is

about 170 fb−1, while theBB̄ sample is about 3 times larger and the signal MC sample

is about 100 times larger. To make best use of the larger samples, we conducted 98

different fits. In each fit, a different signal sample is used. The 98 fits are divided

into two sets of 33 fits each and one set of 32 fits, where each set uses a different BB̄

sample, and all the fits within the set share the same BB̄ sample. All 98 fits use the

same continuum sample. The results of these fits, averaged over the experiments in

each of the three BB̄ sets, are listed in Table 6.9, and consistent with the true values
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Figure 6.41: On-peak mES sideband distribution of ΔE (top left), mD (top right)
N1 (bottom left) and N2 (bottom right) with MC overlaid (dashed). All plots are
normalized to unit area.
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Figure 6.42: On-peak high ΔE sideband distribution of mD (top left) N1 (top right)
and N2 (bottom left) with MC overlaid (dashed). All plots are normalized to unit
area.
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Figure 6.43: On-peak low ΔE sideband distribution of mD (top left) N1 (top right)
and N2 (bottom left) with MC overlaid (dashed). All plots are normalized to unit
area.
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of the floating parameters. From the value listed in this table, we can break the

statistical error into three parts, writing it as as a sum in quadrature of the statistical

error contributions of the signal, BB̄ background and continuum background events:

σ2 = σ2
sig + σ2

BB̄ + σ2
cont. (6.11)

We find σsig = 10 events, σcont = 11 events, and σBB̄ = 15 events. The dominant

component in the statistical error is the BB̄ events. The background increases the

total error by a factor of about two compared with the no-background case.

6.9. Fit results with on-peak data

Armed with validations of the input variable shapes and MC studies, we performed

a fit on the on-peak data with about 168 fb−1. Table 6.10 shows the values and errors

of all the parameters floating in the fit. The correlation matrix is shown in Table 6.11.

With added about 39 fb−1 more data, a fit is done on the total about 207 fb−1 on-

peak data. Fig. 6.44 shows the projections of the data and PDF onto the fit variable

axes over the entire fit range. Projections with a signal likelihood cut, which reduces

the signal yield but increases the signal-to-background ratio, are shown in Fig. 6.45.

Table 6.12 and 6.13 show the final data fit results and the correlation between its fit

variables.
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Parameter <True value> <Fit value> & < σ >

Set 1

RDπX 0.6151 0.6144±0.1235

NDπD
39 24.5±15.3

ADKD
0.0141 -0.1962±0.1788

Nqq �D 1686 1675.0±55.3

NDKD
91.3 108.6±20.8

NBB �D 730 738.1±52.5

Set 2

RDπX 0.6323 0.6867±0.1156

NDπD
42 35.1±16.4

ADKD
0.0020 0.0227±0.1940

Nqq �D 1686 1673.0±56.7

NDKD
91.1 102.1±20.9

NBB �D 854 863.5±54.8

Set 3

RDπX 0.6255 0.6819±0.1254

NDπD
36 30.47±16.5

ADKD
0.0031 0.0501±0.1827

Nqq �D 1686.0 1705.0±56.0

NDKD
92.0 109.0±21.2

NBB �D 777.0 745.1±53.0

Table 6.9: Results of the full MC fits, averaged over about 33 fits in each set of fits.
Each experiment has a different signal sample. Each set of fits has a different BB
sample and a different group of 33 independent signal samples. All fits have the same
continuum sample.
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No. Parameter Value

1 RDπX 0.823 ± 0.110

2 NDπD
43.2 ± 15.9

3 ADKD
−0.044 ± 0.164

4 Nqq �D 1454.3 ± 52.9

5 NDKD
123.3 ± 22.0

6 NBB �D 806.0 ± 53.5

Table 6.10: Results of the data fit with about 170 fb−1 with statistical error. See
section 6.6.5 for the definitions of the variables.

No. Parameter RDπX NDπD
ADKD

Nqq �D NDKD
NBB �D

1 RDπX 1.000 -0.008 -0.000 0.195 -0.076 -0.157

2 NDπD
-0.008 1.000 0.000 -0.025 -0.198 -0.177

3 ADKD
-0.000 0.000 1.000 0.007 0.010 -0.012

4 Nqq �D 0.195 -0.025 0.007 1.000 0.031 -0.500

5 NDKD
-0.076 -0.198 0.010 0.031 1.000 -0.332

6 NBB �D -0.157 -0.177 -0.012 -0.500 -0.332 1.000

Table 6.11: Correlation matrix of the data fit with about 170 fb−1 on-peak data.

189



6. Analysis of B± → DK±

 E(GeV)Δ
-0.06 -0.04 -0.02 0 0.02 0.04 0.06

E
ve

n
ts

 / 
( 

0.
00

5 
)

0

20

40

60

80

100

120

140

 E(GeV)Δ
-0.06 -0.04 -0.02 0 0.02 0.04 0.06

E
ve

n
ts

 / 
( 

0.
00

5 
)

0

20

40

60

80

100

120

140 BABAR

N1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ve

n
ts

 / 
( 

0.
06

 )
0

50

100

150

200

250

300

350

400

450

N1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ve

n
ts

 / 
( 

0.
06

 )
0

50

100

150

200

250

300

350

400

450 BABAR

N2
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ve

n
ts

 / 
( 

0.
06

 )

0

100

200

300

400

500

N2
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ve

n
ts

 / 
( 

0.
06

 )

0

100

200

300

400

500
BABAR

Figure 6.44: Projections of the data and PDF onto the 3 fit variable axes, clockwise,
ΔE, N1and N2; bottom. The lines indicate the contributions to the PDF of (from
bottom to top) continuum, all background, and all event types including signal.
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Figure 6.45: Projection of the data and PDF onto ΔE N1 , N2 , after a signal
likelihood cut to enhance the signal to background ratio. The likelihood that we
cut on is calculated using the two fit variables not been plotted. The lines indicate
the contributions to the PDF of (from bottom to top) continuum, continuum plus
combinatorial BB background, all backgrounds, and all event types including signal.
The efficiencies of the cut applied to obtain the ΔE plot are 43% for signal, 15% for
the sum of the BB backgrounds, and 1.5% for continuum.

The additional 39 fb−1 data seems to have low signal yield which is due to a

downward fluctuation. The details can be found in Ref. [63].
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No. Parameter Value

1 RDπX 0.835 ± 0.100

2 NDπD
43.2 ± 15.9

3 ADKD
−0.044 ± 0.164

4 Nqq �D 1454.3 ± 52.9

5 NDKD
123.3 ± 22.0

6 NBB �D 806.0 ± 53.5

Table 6.12: Results of the data fit with ∼ 208 fb−1 on-peak data for the definitions of
the variables.

No. Parameter 1 2 3 4 5 6

1 RDπX 1.000 -0.008 -0.000 0.195 -0.076 -0.157

2 NDπD
-0.008 1.000 0.000 -0.025 -0.198 -0.177

3 ADKD
-0.000 0.000 1.000 0.007 0.010 -0.012

4 Nqq �D 0.195 -0.025 0.007 1.000 0.031 -0.500

5 NDKD
-0.076 -0.198 0.010 0.031 1.000 -0.332

6 NBB �D -0.157 -0.177 -0.012 -0.500 -0.332 1.000

Table 6.13: Correlation matrix of the data fit with 208 fb−1.

6.10. Systematic errors

The following subsections describe the methods used to obtain the systematic

errors of this analysis. The errors are calculated for a luminosity of 168.3 fb−1, and

in the end are scaled for the full luminosity.
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6.10.1. Variation of fixed fractions

The fixed ratios of event yields listed in section 6.6.5 are obtained from MC. In

order to evaluate the systematic error due to this MC dependence, we vary each of

these fixed ratios by ± half of its value, and refit the data. An exception is RDKX ,

whose error is obtained from the PDG and is therefore reliable. In this case, we vary

RDKX by ± its error. In all cases, the change in the signal yield and asymmetry after

the ratio is varied are taken as the systematic error (see Table 6.19 ).

6.10.2. Effect of Dalitz plot uncertainty on signal efficiency

The signal reconstruction efficiency depends on the Dalitz plot distribution, mostly

through the π0 momentum. The signal MC sample used to evaluate the efficiency of

(11.2 ± 0.1)% (section 6.6.2) was generated using the parameters of ref. [56], which has

almost all resonant D0 → ρπ decays, with just a (2.7± 1.9)% non-resonant contribu-

tion. The efficiency obtained from a non-resonant phase-space B± → (π+π−π0)DK
±

distribution is (13.05 ± 0.10)%, where the error is due to MC statistics only. The

relative difference between the two samples is (1.97 ± 0.1)%. Therefore we take a

relative error of 0.019 × 1.97/0.1121 = 0.0033, which is 0.41 events.
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6.10.3. Monte Carlo statistics

Our ΔE PDF parameters are obtained by fitting finite MC samples. To propagate

the statistical errors in these MC fits to the final result while taking into account the

statistical correlations between them, we follow the following procedure: Each MC fit

gives a vector of N floating parameters and an N ×N error matrix V . We transform

the matrix and the vector to the basis in which the matrix is diagonal. In that basis,

we vary the first parameter by
√
V11, transform the vector of parameters back to the

original basis, and perform the data fit again, obtaining a new result x1
+ (where x

refers to NDKD
or ADKD

). We then apply a −√
V11 variation to the first parameter,

and obtain x1
−. The procedure is repeated for all the parameters. The total systematic

error due to MC statistics in this particular fit is

σ2
ΔE MCstat =

1

2

N∑
i=1

[(
xi+ − x

)2
+
(
xi− − x

)2
]
. (6.12)

This procedure is repeated for all MC fits used to obtain ΔE PDF shape parameters.

We use a different procedure to determine the errors associated with N1 and N2

shapes. As each bin of the shape histograms of these variables is uncorrelated with

all other bins, we use shapes obtained by random fluctuations of the bin entry and

its error to refit the data, and xi (where x refers to NDKD
or ADKD

) is refitted result.

194



6. Analysis of B± → DK±

This experiment is the repeated N times. The total error due to this procedure is:

σ2
NN MCstat =

1

N

N∑
i=1

(xi − x)2 (6.13)

Source NDKD
error (events) ADKD

error

ΔE variation 5.55 2.88 × 10−3

N2 variation 7.22 1.21 × 10−2

N1 variation 2.88 5.44 × 10−3

Total error 9.55 1.35 × 10−2

Table 6.14: Systematic errors due to finite Monte Carlo statistics.

6.10.4. Uncertainty in the charmless branching fractions

The total branching fraction of charmless B+ → K+π−π+π0 events in the generic

MC is 6 × 10−5. We estimate a 100% uncertainty on this value by removing these

events (regardless of how they were reconstructed) from the MC sample, obtaining

new PDF shapes without these events, and refitting the data. The changes in the

signal yield and asymmetry are taken as the systematic errors.

6.10.5. Global detector charge asymmetry

Since we are measuring a decay rate asymmetry, it is important to account for

a possible detector asymmetry. To do this, we include in the PDF a global charge
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asymmetry parameter that affects equally all event types. When this parameter is

floating, it obtains the value (−0.3± 2.2)× 10−2. The changes in the signal yield and

asymmetry are taken as the related systematic errors.

6.10.6. Neural network shape replacements

As discussed in section 6.6.4, the neural net shapes of some low-statistics back-

grounds were taken from high-statistics event types. To obtain the systematic error

associated with these replacements, we undid one replacement at a time and refit

the data. The results of these fits are shown in Table 6.15. The total error due to

this is taken as the quadrature sum of the resulting differences in the signal yield or

asymmetry.

Source NDKD
change (events) ADKD

change

N2, BBCD 0.55 5.42 × 10−4

N2, Dπ�D 0.83 1.73 × 10−3

N2 total 1.00 1.81 × 10−3

N1, BBCD 0.09 7.72 × 10−3

N1, Dπ�D 0.16 8.50 × 10−3

N1, qqD 0.41 1.81 × 10−4

N1 total 0.45 1.15 × 10−2

Total error 1.10 1.16 × 10−2

Table 6.15: Changes in signal yield and asymmetry when removing one of the neural
network shape replacements at a time.
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We also tried to fit the data without any neural network replacements. Table 6.16

shows the changes, which are consistent with those of Table 6.15.

Source NDKD
change (events) ADKD

change

N2 1.6 1.03 × 10−3

N1 0.05 8.00 × 10−3

Table 6.16: Changes in signal yields and asymmetry with no neural network shape
replacements.

6.10.7. Correlation between ΔE and N2 in DKD

Table A.33 (Appendix) shows that there is some correlation between ΔE and N2,

which is ignored in the PDF. To estimate the effect of ignoring this correlation on the

signal yield and asymmetry, we repeated the data fit three times, each time taking the

N2 shape of DKD events from a different ΔE bin The resulting changes in the signal

yield and asymmetry are listed in Table 6.17. The sum of these changes, weighted by

the fraction of signal events in that bin, is taken as the systematic error.

6.10.8. Data Monte Carlo shape comparison

Comparison in the mES Sideband

In the validation plots of section 6.7.3 we generally see good agreement between

MC and data distributions. To evaluate the error due to possible disagreements in
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Shape taken from NDKD
change (events) ADKD

change Fraction of events

Bin 1 3.40 6.65 × 10−4 14.90%

Bin 2 1.13 2.83 × 10−3 72.87%

Bin 3 8.09 1.41 × 10−2 12.23%

Total 2.32 3.89 × 10−3

Table 6.17: Change in the signal yield and asymmetry when the N2 shape of DKD

events is taken from the different ΔE bins.

the shapes of the background and propagate the statistical errors of the validation, we

use Fig. 6.41 as a measure of such disagreements in the mES sideband. The procedure

for quantifying the effect is as follows:

For n = {N1, N2} and bin i, we calculate the histogram

hn(i) ≡ hDn (i) − hMC
n (i), (6.14)

where hDn (hMC
n ) is the data (MC) histogram of Fig. 6.41, which is already normal-

ized to unit area. We then modify the n shape of the DπX events by changing its

histogram sDπXn (i) in the following way:

sDπXn (i) → sDπXn (i)(1 + hn(i)). (6.15)

In other words, we assign the entire MC-data difference to the DπX shape.

Since the ΔE PDF is parameterized as a second order polynomial, a different
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procedure was used for varying this PDF. In this case, we conduct second order

polynomial fits to the data and MC ΔE histograms of Fig. 6.41. These fits give

the polynomial coefficients cDi and cMC
i , where i = {0, 1, 2}. We then modify the

parameters cDπXi of the DπX ΔE PDF:

cDπXi → cDπXi + cDi − cMC
i . (6.16)

The fit results on data obtained with these PDF modifications are shown in Ta-

ble 6.18. The change in the signal yield (asymmetry) is 6.25 events (4.5 × 10−3)

relative to Table 6.10.

parameters value

RDπX 0.794 ± 0.114

NDπD
46.5 ± 16.0

ADKD
−0.0039 ± 0.158

Nqq �D 1461.9 ± 52.9

NDKD
129.6 ± 22.0

NBB 787.3 ± 52.9

NDKD
error (events) ADKD

error

6.25 4.32 × 10−3

Table 6.18: Data fit parameters and additional systematic error check with the dif-
ference between Data and MC from the mES sideband.

As a cross-check, we repeated this procedure, but this time assigning the difference

to the qq�D PDF or the DKX PDF. The change in the signal yield (asymmetry) for
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qq�D PDF modifications is 1.5 events (2.5×10−3), and for DKX PDF modifications it

is 0.7 events (9.5× 10−4). These changes lead to smaller systematic errors than when

we apply the change to the DπX PDF. This is probably due to the fact that the

DπX component is the largest of the BB backgrounds, which have a much larger

correlation with signal than does the continuum background.

Comparison of B− → (K−π+π0)Dπ− NN distributions

As for decay mode B− → (K−π+π0)Dπ
−, the neural net plots in Fig. 6.38 are

for signal only. Applying the procedure described in section 6.10.8 to Fig. 6.38 and

assigning the difference to the DKD PDF, we obtain a change of 0.1 events in the

signal yield and a 1.5 × 10−2 change in the asymmetry.

Comparison of B− → (K−π+π0)Dπ− ΔE mean

Table 6.6 shows a difference of 2.6 MeV between the mean of the ΔE Gaussian in

data and MC. To estimate the effect of this on our fit, we shift the mean values of

all ΔE Gaussians by this amount relative to their original (MC) values, and repeat

the fit. This gives a change of 3.4 in the signal yield and a 4.2 × 10−3 change in the

asymmetry.
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Comparison of B− → (K−π+π0)Dπ− Cut Efficiencies

Table 6.6 shows that data and MC have slightly different mES and mD shapes.

Although we do not use these variables in the fit, we do cut on them. Therefore, we

obtained a systematic error due to the MC/data efficiency difference of these cuts.

To do this, we generated about 100,000 events with the data and MC parameters of

Table 6.6, corresponding to the pre-selection cuts, and calculated the data and MC

efficiencies of the final cuts on the generated distributions. The same was done to

evaluate the efficiencies of the neural net cuts. The ratios between the MC and data

efficiencies are

rmES = 1.0029±0.0013,

rmD
= 0.9981±0.0018,

rN1 = 0.9963 ± 0.0011,

rN2 = 0.9987 ± 0.0012, (6.17)

where the errors were obtained by calculating the efficiencies after changing the pa-

rameters of Table 6.6 by ±1σ. Combining the errors in quadrature, we obtain a total

systematic error due to this signal efficiency difference of 0.28%, and also apply a

total efficiency correction factor of 0.9960.
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6.10.9. Tracking efficiency

Based on the studies performed by members of BABAR collaboration track effi-

ciency task force group (Ref. [64]), We apply a relative efficiency correction of −0.5%

per track with respect to the MC, and take the systematic error to be 1.4% per track.

This decay mode has 3 tracks, so the total systematic error is 4.2% and the efficiency

correction factor is 0.9851.

6.10.10. π0 efficiency

Following the official recipe (Ref. [65]), we take the ratio between data and MC

efficiencies to be 0.968311, and apply a 3.5% systematic error.

6.10.11. BB̄ counting

The standard collaboration systematic due to BB̄ counting is 1.1%.

6.10.12. Particle ID

To evaluate the systematic error due to the PID selection (Ref. [66]), we used the

errors in the PID tables, adding in quadrature the errors of the weights of each track

in our MC sample. Using this procedure, we found the systematic errors to be 0.75%

for kaons and 0.69% for pions, for a total error of 1.02%.
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6.10.13. Summary of the systematic errors for B± → DK±

The systematic errors on the signal yield and asymmetry are summarized in Ta-

ble 6.19. Table 6.20 lists additional systematic errors that apply to the branching frac-

tion. Combining these two tables, the total relative systematic error on the branching

fraction is 12.9%. The following subsections describe how these errors were evaluated.

Source NDKD
error (events) ADKD

error

RDK �D variation 1.40 6.51 × 10−4

RDπ �D variation 0.02 1.30 × 10−4

RBBCD
variation 0.93 6.06 × 10−4

RDKX variation 5.98 1.97 × 10−3

RqqD variation 4.33 1.28 × 10−3

Dalitz plot distribution uncertainty 0.41 NA

MC statistics 9.55 1.35 × 10−2

Uncertainty in Charmless BR 1.04 9.32 × 10−4

Detector charge asymmetry 0.04 9.02 × 10−3

Neural network shape replacements 1.10 1.16 × 10−2

ΔE −N2 correlations in DKD 2.32 3.89 × 10−3

Data-MC shape comparison 7.12 1.62 × 10−2

Total systematic error 14.4 (11.7%) 2.61 × 10−2

Table 6.19: Systematic errors in the signal event yield and asymmetry.
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Source Signal BR error (%)

PID efficiency 1.0

Tracking efficiency 4.2

π0 efficiency 3.5

BB̄ counting 1.1

Total 5.70

Table 6.20: Additional systematic errors on the signal branching fraction.

6.11. Physics results

6.11.1. Efficiency corrections

Table 6.21 shows the corrections from the possible sources in which data and

Monte Carlo have discrepancies. These correction factors are obtained from BABAR

official recipes. With these corrections, the final Monte Carlo signal efficiency is

10.53%.

Source correction factor

Pid efficiency 0.9893

Tracking efficiency 0.985

π0 efficiency 0.968

Data-MC efficiency difference 0.996

Total correction 0.9395

Table 6.21: Efficiency correction factors for B± → DK±.
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6.11.2. Branching fraction and decay asymmetry measurement

The branching fraction is determined from

B(B± → (π+π−π0)DK
±) =

NDKD

NBB̄ ε
, (6.18)

where NBB̄ and ε are the number of BB̄ events and the signal efficiency, respectively.

We measure the branching fraction

B(B± → (π+π−π0)DK
±) = (5.5 ± 1.0 ± 0.7) × 10−6 (6.19)

and decay rate asymmetry

B(B+ → (π+π−π0)DK
+) − B(B− → (π+π−π0)DK

−)

B(B+ → (π+π−π0)DK+) + B(B− → (π+π−π0)DK−)
= 0.02 ± 0.16 ± 0.02. (6.20)

6.12. Some cross checks and additional studies

6.12.1. Fit to mD sideband

We conducted a fit to data in the mD sidebands 1.775 < mD < 1.800 GeV/c2 and

1.920 < mD < 1.955 GeV/c2. Given the signal efficiency for this cut, we expect 2.7

signal events in the fit. We find 17.0±9.3 events, which is 1.5σ above the expectation,

given only the statistical error of the fit.
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6.12.2. Toy Monte Carlo study with the data fit parameters

We did a second toy MC study, this time with the parameters obtained from the

data fit (see Table 6.10). The results of this study are in good agreement with the

input parameters. Figs. 6.46 and 6.47 show the distributions of the fit parameter

values and pulls for ADKD
and NDKD

. Fig. 6.48 compares the distribution of negative-

log-likelihood values in the toy experiments to the value obtained in the data fit. The

value from data fit falls well within the distribution of toy study results.
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Figure 6.46: The fit value (left), error (center), and pull (right) for ADKD
. Vertical

lines indicate the values obtained in the data fit.

6.12.3. Significance of the signal observation

Fig. 6.49 shows a scan of the negative log likelihood as a function of the signal

yield (NDKD
), with all other parameters fixed. From the value of the negative log

likelihood (see Fig. 6.49) at NDKD
= 0, the significance is 5.74σ, in agreement with
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Figure 6.47: The fit value (left), error (center), and pull (right) for NDKD
. Vertical

lines indicate the values obtained in the data fit.

the ratio between NDKD
and its statistical error.

6.12.4. Uncertainty in DKX ΔE shape

The ΔE distribution of DKX (Fig. 6.15, right), has a Gaussian component peak-

ing around -7 MeV. It is not clear what source causes this from the existing MC

samples. To estimate this peaking component effect, we fit the MC without it and

used the resulting shape to fit the data. The changes in the signal yield was 3.0

events, and the change in the asymmetry was 1.7 × 10−3. This may be compared

with the systematic error obtained due to the finite MC statistics with which the ΔE

shape of this event type was obtained. That error is 2.3 events for the signal yield and

2×10−3 for the asymmetry. We conclude therefore that no additional error is needed

to account for the uncertainty in the central Gaussian of the DKX ΔE shape.
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Figure 6.48: The distribution of log likelihood values for the toy fit. The vertical line
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6.12.5. Cross check on ΔE sideband for Monte Carlo data difference

The procedure of Section. 6.10.8 is repeated, using the sum of Figs. 6.42 and

6.43 instead of Fig. 6.41. This gives a change of 0.76 events in the signal yield and

a 8.51 × 10−3 change in the asymmetry, consistent with the error of section 6.10.8.

Since Figs. 6.42 and 6.43 contain lower statistics than Fig. 6.41, this result is used

only as a cross check, but not as a systematic error.

6.12.6. Alternative candidate selections for multi-candidate events

In this B± → DK± analysis, a single candidate per event was chosen randomly.

This selection method does not result in an accumulation of background events in any

208



6. Analysis of B± → DK±

signal # of events
0 20 40 60 80 100 120 140 160 180

P
ro

je
ct

io
n

 o
f 

-l
o

g
(L

)

0

5

10

15

20

25

30

signal # of events
0 20 40 60 80 100 120 140 160 180

P
ro

je
ct

io
n

 o
f 

-l
o

g
(L

)

0

5

10

15

20

25

30

signal # of events

Figure 6.49: The difference between the value of the negative log likelihood as a
function of NDKD

and its minimum value.
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variable. It therefore allowed us to test different fit variables during the development

of the analysis procedure. But it does not necessarily give the most sensitive results.

Using toy MC, we explored two χ2 selections, one based on mES and mD, and the

other on mD only. In this method, we select the one candidate per event that has the

smallest value of χ2.

The cuts applied here are the same as in the main analysis (Section 6.6.2), with

the same procedure as the random selection method.

Best candidate selection with χ2(mD, mES)

From MC truth we determine the values of the parameters listed in Table 6.22.

Comparing these parameters with the values they take with the random selection

(Table 6.4), we observe that relative to the random selection, this χ2 selection in-

creases the signal efficiency by 16.4%, the BB background (with a fake D) by 24.9%,

and the continuum background (with a fake D) by 20.8%. Thus, both the signal and

background efficiencies increase, with the BB background increasing the most. To

determine the effect on the analysis, we ran toy MC experiments with the input pa-

rameters of Table 6.22. The results are shown in Figs. 6.50 and 6.51. From Fig. 6.51

we see that the average relative statistical error on NDKD
is about 0.219, whereas

for the random selection (Fig. 6.29) this value is 0.227. Therefore, the statistical

significance changes very little between the random selection and this χ2(mES, mD)

selection. In addition, the larger background (especially in BB̄) in the χ2 selection
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could result in somewhat larger systematic errors. Therefore, the χ2(mES, mD) selec-

tion is not significantly superior to the random selection method.

parameter value

RDKX 0.2679

RDπX 0.5627

NDKD
107.3

ADKD
0.0

RDK �D 0.1324

NDπD
41.4

RDπ �D 0.2615

RBBCD
0.00429

NBB̄ 987.3

Nqq �D 2037.0

RqqD 0.0128

Table 6.22: Parameter values obtained from full Monte Carlo for χ2(mES, mD) best
candidate selection.

.

Best candidate selection with χ2(mD)

We used the same produce as above but calculating the χ2 using mD only. The

input parameters are listed in Table 6.23. . Compared with the values in Table 6.4, the

χ2(mD) selection increases the signal efficiency by 14.9%, the BB background (with

a fake D) by 16.2%, and the continuum background (with a fake D) by 35.8%. The

greatest increase is in the continuum. The average fit result for NDKD
is 103.9±22.21.
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parameter value

RDKX 0.2823

RDπX 0.5769

NDKD
105.9

ADKD
0.0

RDK �D 0.1383

NDπD
41.7

RDπ �D 0.2266

RBBCD
0.0050

NBB̄ 918.0

Nqq �D 2291.0

RqqD 0.0105

Table 6.23: Parameter values obtained from full Monte Carlo for χ2(mD) best candi-
date selection.
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Figure 6.50: The fit value (left), error (center), and pull (right) for ADKD
with χ2

selection with mES and mD.

The relative statistical error on NDKD
is 0.214. Compared with random selection

(0.227), the sensitivity is a bit improved but not significantly (about 5.7% better).

We therefore conclude that the random selection is satisfactory.

6.12.7. Different fit configurations with Monte Carlo

We tried different fit configurations, using all or some of the variables mES, mD,

ΔE, N1 and N2. These are

a) 5D fit with the cuts of Section 6.3.2,

b) 5D fit with the cuts of Section 6.6.2,

c) 5D fit with the cuts of Section 6.6.2 but with a loose mES cut,

d) 4D fit (mES ΔE N1 and N2) with the cuts of Section 6.6.2,
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Figure 6.51: The fit value (left), error (center), and pull (right) for NDKD
with χ2

selection with mES and mD.

e) 4D fit (mD ΔE N1 and N2) with the cuts of Section 6.6.2,

f) 3D fit (mES, ΔE andmD) with the cuts of Section 6.6.2 exceptmES > 5.23, 0.06 <

ΔE < 0.11, N1 > 0.4 and N2 > 0.4.

In this section, the detail of the configurations are omitted, only the results are

given.

Table 6.24 shows the bias in the NDKD
with above fit configurations.

To check whether the bias is caused by the correlation between mES and other fit

variables, we replaced (a) all themES distributions, (b) only the BB̄ mES distributions

with MC PDF, and refit the MC samples with replaced mES distribution, the resulting

bias in NDKD
are inside 1σ range.
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Configure Type Bias in NDKD
(σ) value of 1σ

a 1.5σ 18.3

b 1.4σ 18.1

c 1.9σ 19.0

d 1.4σ 19.5

e 1.2σ 19.6

f 2.0σ 19.1

Table 6.24: MC fit bias in NDKD
with different fit configurations.
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Chapter 7

Conclusion

Two analyses are documented, both are on rare decays associated with charm

decay of the B mesons, one is to a charmonium state,B → J/ψηK, which is useful to

identify the property of X(3872); the other one is to an open charm state, B± → DK±

with D0/D̄0 → π+π−π0, which can be used to extract the weak phase γ through the

inteference between the two processes of b→ cūs and b → uc̄s via D0/D̄0 → π+π−π0.

The background for each analysis is different. For B → J/ψηK, the J/ψ candidate

can be cleanly reconstructed from leptons and gives a clean signal, the background is

mainly from B → J/ψ + A (inclusive J/ψ ), where A is any combination of particles

which are not for our signal modes. For B± → DK±, the main contributions to

background are continuum and BB̄ backgrounds; continuum background constitutes

about 70%. The continuum background is flat while the BB̄ may contribute peaking

background. How to deal with the BB̄ background is a challenge for both analyses.
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7. Conclusion

For B → J/ψηK, we use ΔE sideband to model the distribution of the backgrond

and one dimension fit on mES is used to extract the signal events. For B± → DK±,

two neural network variables are developed to suppress the background, a maximum

likelihood fit is used to extract the signal yields. Though the methods used for these

two analyses are quite different, both are aimed at extracting a branching fraction.

In B → J/ψηK analysis, the branching fraction of charged (neutral) channel is

(10.8±2.31(stat.)±2.37(syst.))×10−5 ((8.4±2.6±2.7)×10−5). The ratio between neu-

tral and charged kaon modes is (0.77±0.23), agrees with the expectation (0.5). Search

for X(3872) particle was conducted in charged mode, no evidence was found with the

data we used, a 90% C.L. branching fraction upper limit forX(3872) → ηJ/ψ was set,

7.7× 10−6. If X(3872) is a conventional charmonium state like ψ(2S), the branching

fraction of B(B+ → X(3872)K+) × B(X(3872) → ηJ/ψ ) ∼ 1.4 × 10−6 [2], com-

pared to the upper limit we set, no confirmative conclusion on whether X(3872) is a

conventional charmonium state can be established.

For B± → DK±, the necessary analysis techniques to suppress high background

have been developed. With 207 fb−1 data, we got a good measurement on the branch-

ing ratio of the decay chain B± → DK± with D0/D̄0 → π+π−π0, the measurement is

(5.5±1.0±0.7)×10−6; the decay rate asymmetry is (0.02±0.16±0.02). For the further

weak phase γ measurement, some members from BABAR will pick it up.
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Appendix A

Correlation check for fit variables

A.1. Variable correlation after the pre-selection cuts

As a maximum likelihood fit is sensitive to the correlation of the variables input

into the fit, we first investigate the correlations between the potential fit variables

mES, ΔE, mD, N1, and N2. This study has led to tightening of the cuts and removal

of mES and mD from the fit. Everything in this section uses the cuts of section 6.3.2.

Here we list the correlation matrixes of these variable in Tables A.1 through A.10.

The correlation matrix element for variables x and y is calculated as

ρxy =
Vxy√
VxxVyy

, (A.1)

where Vxy ≡< xy > − < x >< y > and the average is over all events in the sample.

In addition to this linear correlation calculation, we evaluated non-linear corre-

lations in the following way: We divided MC events in each of the variables mES,
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A. Correlation check for fit variables

ΔE, mD, and N1, with the binning shown in Table A.11. For each bin of vari-

able i, we made histograms of the other fit variables (variables j �= i), and made

Kolmogorov-Smirnov comparisons of the histograms in the different bins. A low KS

probability indicates correlations between variables i and j. The KSP probabilities

are summarized in Tables A.12 through A.21. In cases where the KSP probabilities

are particularly low we show the plots being compared. This is done in Figures A.1

through A.5.

mES ΔE mD N1 N2

mES 1 -0.159 -0.007 -0.013 0.012

ΔE 1 -0.003 -0.008 -0.063

mD 1 0.012 -0.004

N1 1 0.035

Table A.1: Correlation matrix for DKD MC events.

mES ΔE mD N1 N2

mES 1 -0.133 0.043 0.068 -0.022

ΔE 1 -0.029 -0.057 0.103

mD 1 -0.002 0.091

N1 1 0.048

Table A.2: Correlation matrix for DK �D MC events.
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A. Correlation check for fit variables

mES ΔE mD N1 N2

mES 1 -0.207 -0.049 -0.062 0.048

ΔE 1 - 0.014 -0.079 -0.089

mD 1 0.045 -0.029

N1 1 -0.067

Table A.3: Correlation matrix for DπD MC events.

mES ΔE mD N1 N2

mES 1 0.208 -0.066 0.121 -0.032

ΔE 1 -0.138 -0.018 0.055

mD 1 0.080 -0.101

N1 1 -0.053

Table A.4: Correlation matrix for Dπ�D MC events.

mES ΔE mD N1 N2

mES 1 -0.007 0.008 0.031 -0.140

ΔE 1 -0.017 0.018 0.009

mD 1 0.005 -0.011

N1 1 -0.035

Table A.5: Correlation matrix for other DπX background MC events.
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A. Correlation check for fit variables

mES ΔE mD N1 N2

mES 1 -0.0522 0.006 0.058 -0.018

ΔE 1 -0.025 -0.016 0.014

mD 1 0.048 -0.006

N1 1 -0.028

Table A.6: Correlation matrix for other DKX background MC events.

mES ΔE mD N1 N2

mES 1 -0.014 -0.002 0.038 -0.133

ΔE 1 -0.031 -0.014 -0.004

mD 1 0.003 -0.025

N1 1 -0.023

Table A.7: Correlation matrix for other BBC �D background MC events.

mES ΔE mD N1 N2

mES 1 0.032 0.047 -0.072 -0.055

ΔE 1 0.073 -0.062 0.030

mD 1 -0.005 -0.060

N1 1 -0.081

Table A.8: Correlation matrix for other BBCD background MC events.
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A. Correlation check for fit variables

mES ΔE mD N1 N2

mES 1 -0.032 0.048 -0.073 0.056

ΔE 1 -0.073 -0.062 -0.030

mD 1 0.005 0.060

N1 1 0.081

Table A.9: Correlation matrix for qqD MC events.

mES ΔE mD N1 N2

mES 1 -0.007 −3.1 × 10−5 -0.024 -0.009

ΔE 1 0.0036 0.012 -0.017

mD 1 0.010 -0.022

N1 1 0.008

Table A.10: Correlation matrix for qq�D MC events.

Variable Bin 1 Bin 2 Bin 3

mES( GeV) 5.2 < mES < 5.265 5.265 < mES < 5.3 5.3 < mES < 5.3

ΔE( MeV) −70 < ΔE < −20. −20 < ΔE < 20 20 < ΔE < 140

mD( GeV) 1.805 < mD < 1.853 1.853 < mD < 1.877 1.877 < mD < 1.924

N1 0 < N1 < 0.5 0.5 < N1 < 0.8 0.8 < N1 < 1

Table A.11: Bins used for the KSP comparisons in Tables A.12 through A.21.
.
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A. Correlation check for fit variables

(mES) ΔE (mES) mD (mES) N1 (mES) N2 (ΔE) mD

Bins 1,2 0.46102 0.43423 0.24803 0.94714 0.00004

Bins 1,3 0.33502 0.43792 0.23789 0.94592 0.59884

Bins 2,3 0.00000 0.98352 0.99999 0.99934 0.00034

(ΔE) N1 (ΔE) N2 (mD) N1 (mD) N2 (N1) N2

Bins 1,2 0.71732 0.14083 0.37645 0.00431 0.15411

Bins 1,3 0.87929 0.00000 0.15512 0.03858 0.00114

Bins 2,3 0.44211 0.00000 0.04052 0.00264 0.50961

Table A.12: KSP tests for correlations in DKD. In each column, (x) y indicates that
the KSP compare the histograms of variable y in bins of variable x. See Table A.11
for the bin ranges.
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Figure A.1: DKD plot pairs with low KS probabilities for (mES)ΔE (left), (ΔE)mD

(middle) and (ΔE)N2 (right). Top plot is for bins 1-2, middle plot is bins 1-3, bottom
plot is bins 2-3. See Table A.11 for the bin ranges.
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A. Correlation check for fit variables

(mES) ΔE (mES) mD (mES) N1 (mES) N2 (ΔE) mD

Bins 1,2 0.00000 0.00011 0.00036 0.27794 0.00824

Bins 1,3 0.00000 0.00853 0.02549 0.68862 0.00232

Bins 2,3 0.64449 0.26339 0.53197 0.97006 0.02823

(ΔE) N1 (ΔE) N2 (mD) N1 (mD) N2 (N1) N2

Bins 1,2 0.63190 0.23492 0.98557 0.01105 0.09839

Bins 1,3 0.00229 0.00000 0.97260 0.00000 0.96704

Bins 2,3 0.07849 0.00085 0.84767 0.14873 0.20128

Table A.13: KSP tests for correlations in DK �D. In each column, (x) y indicates that
the KSP compare the histograms of variable y in bins of variable x. See Table A.11
for the bin ranges.
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Figure A.2: DK �D plot pairs with low KSP for (mES)ΔE (left) , (ΔE)N2 (middle)
and (mD)N2 (right). Top plot is for bins 1-2, middle plot is bins 1-3, bottom plot is
bins 2-3. See Table A.11 for the bin ranges.
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A. Correlation check for fit variables

(mES) ΔE (mES) mD (mES) N1 (mES) N2 (ΔE) mD

Bins 1,2 N/A N/A N/A N/A 0.48713

Bins 1,3 N/A N/A N/A N/A 0.94187

Bins 2,3 0.04517 0.45651 0.28163 0.99997 0.36874

(ΔE) N1 (ΔE) N2 (mD) N1 (mD) N2 (N1) N2

Bins 1,2 0.98341 0.84903 0.98181 0.99544 0.81411

Bins 1,3 0.75658 0.92110 0.38775 0.12822 0.88331

Bins 2,3 0.66102 0.92710 0.32657 0.15735 0.94598

Table A.14: KSP tests for correlations in DπD. In each column, (x) y indicates that
the KSP compare the histograms of variable y in bins of variable x. See Table A.11
for the bin ranges.

(mES) ΔE (mES) mD (mES) N1 (mES) N2 (ΔE) mD

Bins 1,2 0.04704 0.16430 0.03519 0.73042 0.86689

Bins 1,3 0.03965 0.23904 0.96779 0.60935 0.19905

Bins 2,3 0.71791 0.92533 0.68458 0.92312 0.56582

(ΔE) N1 (ΔE) N2 (mD) N1 (mD) N2 (N1) N2

Bins 1,2 0.48995 0.75137 0.98674 0.60836 0.98759

Bins 1,3 0.99631 0.94781 0.75944 0.51317 0.56521

Bins 2,3 0.80912 0.96379 0.99110 0.43050 0.99946

Table A.15: KSP tests for correlations in Dπ�D. In each column, (x) y indicates that
the KSP compare the histograms of variable y in bins of variable x. See Table A.11
for the bin ranges.
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A. Correlation check for fit variables

(mES) ΔE (mES) mD (mES) N1 (mES) N2 (ΔE) mD

Bins 1,2 0.31128 0.64805 0.00004 0.00000 0.17917

Bins 1,3 0.50691 0.01341 0.00001 0.00000 0.00004

Bins 2,3 0.99900 0.21847 0.28046 0.00548 0.00030

(ΔE) N1 (ΔE) N2 (mD) N1 (mD) N2 (N1) N2

Bins 1,2 0.75235 0.80808 0.95599 0.53301 0.34816

Bins 1,3 0.15161 0.15197 0.81675 0.17513 0.00075

Bins 2,3 0.12792 0.77201 0.34973 0.81281 0.08937

Table A.16: KSP value for correlation in DπX. (x) y indicates that the KSP compare
the histograms of variable y in bins of variable x. See Table A.11 for the bin ranges.
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Figure A.3: DπX plot pairs with low KSP for (mES)N1 (left), (mES)N2 (middle)
and (ΔE)mD (right). top plot is for bins 1-2, middle plot is bins 1-3, bottom plot is
bins 2-3. See Table A.11 for the bin ranges.

(mES) ΔE (mES) mD (mES) N1 (mES) N2 (ΔE) mD

Bins 1,2 0.17498 0.86883 0.00004 0.83127 0.44587

Bins 1,3 0.40631 0.67470 0.00014 0.89592 0.48898

Bins 2,3 0.64018 0.97473 0.41820 0.97267 0.29258

(ΔE) N1 (ΔE) N2 (mD) N1 (mD) N2 (N1) N2

Bins 1,2 0.80953 0.66199 0.99828 0.40591 0.55844

Bins 1,3 0.46510 0.99583 0.75892 0.92588 0.99040

Bins 2,3 0.63428 0.77098 0.67266 0.71975 0.73563

Table A.17: KSP value for correlation inDKX. (x) y indicates that the KSP compare
the histograms of variable y in bins of variable x. See Table A.11 for the bin ranges.
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(mES) ΔE (mES) mD (mES) N1 (mES) N2 (ΔE) mD

Bins 1,2 0.45455 0.05042 0.00203 0.00000 0.74721

Bins 1,3 0.02570 0.98851 0.01675 0.00000 0.05823

Bins 2,3 0.14152 0.21257 0.98550 0.41973 0.00783

(ΔE) N1 (ΔE) N2 (mD) N1 (mD) N2 (N1) N2

Bins 1,2 0.53011 0.67626 0.49505 0.89024 0.23089

Bins 1,3 0.05580 0.88581 0.91791 0.00911 0.02547

Bins 2,3 0.83061 0.31678 0.18642 0.27839 0.84262

Table A.18: KSP values for BBC �D. In each column, (x) y indicates that the KSP
compare the histograms of variable y in bins of variable x. See Table A.11 for the bin
ranges.
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Figure A.4: BBC �D plot pairs with low KSP for (mES)N1 (left), (mES)N2 (middle)
and (mD)N2 (right). top plot is for bins 1-2, middle plot is bins 1-3, bottom plot is
bins 2-3. See Table A.11 for the bin ranges.
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(mES) ΔE (mES) mD (mES) N1 (mES) N2 (ΔE) mD

Bins 1,2 0.99716 0.31444 0.80655 0.80655 0.99681

Bins 1,3 0.98826 0.40047 0.75910 0.75910 N/A

Bins 2,3 0.89278 0.44131 0.99196 0.44131 N/A

(ΔE) N1 (ΔE) N2 (mD) N1 (mD) N2 (N1) N2

Bins 1,2 0.80877 0.64412 0.94397 0.94397 0.97936

Bins 1,3 N/A N/A 0.24855 0.84749 0.91883

Bins 2,3 N/A N/A 0.46107 0.90301 0.93245

Table A.19: KSP for BBCD. In each column, (x) y indicates that the KSP compare
the histograms of variable y in bins of variable x. See Table A.11 for the bin ranges.

(mES) ΔE (mES) mD (mES) N1 (mES) N2 (ΔE) mD

Bins 1,2 0.26456 0.20157 0.00002 0.51418 0.89847

Bins 1,3 0.06345 0.11402 0.61756 0.07876 0.86135

Bins 2,3 0.84073 0.86051 0.09796 0.07187 0.96523

(ΔE) N1 (ΔE) N2 (mD) N1 (mD) N2 (N1) N2

Bins 1,2 0.90482 0.55710 0.04074 0.94575 0.78846

Bins 1,3 0.00312 0.00005 0.01631 0.00000 0.01004

Bins 2,3 0.10582 0.00023 1.00000 0.00006 0.07228

Table A.20: KSP tests for correlations in qq�D. In each column, (x) y indicates that
the KSP compare the histograms of variable y in bins of variable x. See Table A.11
for the bin ranges.
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Figure A.5: qq�D plot pairs with low KSP for (mES)N1 (left), (ΔE)N2 (middle) and
(mD)N2 (right). top plot is for bins 1-2, middle plot is bins 1-3, bottom plot is bins
2-3. See Table A.11 for the bin ranges.

(mES) ΔE (mES) mD (mES) N1 (mES) N2 (ΔE) mD

Bins 1,2 0.19988 0.21052 0.34146 0.69933 0.35138

Bins 1,3 0.17231 0.54168 0.99970 0.41780 0.07796

Bins 2,3 0.68727 0.96733 0.97351 0.70567 0.92490

(ΔE) N1 (ΔE) N2 (mD) N1 (mD) N2 (N1) N2

Bins 1,2 0.75495 0.88596 0.80257 0.89224 0.30785

Bins 1,3 0.28808 0.39670 0.81145 0.80450 0.97947

Bins 2,3 0.92726 0.85680 0.93722 0.68931 0.92000

Table A.21: KSP tests for correlations in qqD. In each column, (x) y indicates that
the KSP compare the histograms of variable y in bins of variable x. See Table A.11
for the bin ranges.
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A.2. Correlation check after final cuts

The much reduced linear correlations after the final cuts are shown in Tables A.22

through A.31. Tables A.33 through A.42 show the KSP test value after the final cuts.

In some of these tables we keep mD entries, to show cases where mD still retains

significant correlations with some of the other variables.

ΔE N1 N2

ΔE 1 0.0013 -0.060

N1 1 -0.040

Table A.22: Correlation matrix for DKD MC events after final cuts.

ΔE N1 N2

ΔE 1 -0.016 -0.090

N1 1 -0.002

Table A.23: Correlation matrix for DK �D MC events after final cuts.

ΔE N1 N2

ΔE 1 -0.076 -0.0282

N1 1 -0.095

Table A.24: Correlation matrix for DπD MC events after final cuts.
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ΔE N1 N2

ΔE 1 -0.140 -0.212

N1 1 0.164

Table A.25: Correlation matrix for Dπ�D MC events after final cuts.

ΔE N1 N2

ΔE 1 -0.050 -0.020

N1 1 -0.001

Table A.26: Correlation matrix for DπX MC events after final cuts.

ΔE N1 N2

ΔE 1 -0.031 -0.038

N1 1 -0.126

Table A.27: Correlation matrix for DKX MC events after final cuts.

ΔE N1 N2

ΔE 1 -0.006 -0.076

N1 1 0.009

Table A.28: Correlation matrix for BBC �D MC events after final cuts.

ΔE N1 N2

ΔE 1 -0.237 0.189

N1 1 0.017

Table A.29: Correlation matrix for BBCD MC events after final cuts.
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ΔE N1 N2

ΔE 1 -0.047 -0.062

N1 1 -0.059

Table A.30: Correlation matrix for qqD MC events after final cuts.

ΔE N1 N2

ΔE 1 -0.033 0.016

N1 1 0.015

Table A.31: Correlation matrix for qq�D MC events after final cuts.

Variable Bin 1 Bin 2 Bin 3

ΔE( MeV) −70 < ΔE < −20. −20 < ΔE < 20 20 < ΔE < 60

mD( GeV) 1.83 < mES < 1.853 1.853 < mES < 1.877 1.877 < mES < 1.895

N1 0.1 < N1 < 0.5 0.5 < N1 < 0.8 0.8 < N1 < 1

N2 0.1 < N2 < 0.5 0.5 < N2 < 0.8 0.8 < N2 < 1

Table A.32: Bins used for the KS comparisons in Tables A.33 through A.42.
.

(ΔE )mD (ΔE)N1 (ΔE)N2 (mD)N1 (mD)N2 (N1)N2

Bins 1,2 0.0143 0.6244 0.2675 0.9836 0.0421 0.1906

Bins 1,3 0.5053 0.9902 0.0003 0.2192 0.0092 0.0011

Bins 2,3 0.7303 0.9622 0.0003 0.1439 0.0002 0.5757

Table A.33: KSP tests for correlations in DKD. In each column, (x) y indicates that
the KSP compare the histograms of variable y in bins of variable x.
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(ΔE )mD (ΔE)N1 (ΔE)N2 (mD)N1 (mD)N2 (N1)N2

Bins 1,2 0.0149 0.9995 0.3037 0.9505 0.6592 0.0458

Bins 1,3 0.2090 0.9034 0.0011 0.9247 0.1748 0.9229

Bins 2,3 0.7020 0.8181 0.0798 0.7873 0.6401 0.0415

Table A.34: KSP tests for correlations in DK �D. In each column, (x) y indicates that
the KSP compare the histograms of variable y in bins of variable x.

(ΔE)N1 (ΔE)N2 (N1)N2

Bins 1,2 0.9696 0.9696 0.8159

Bins 1,3 0.9584 0.9584 0.9016

Bins 2,3 0.9918 0.7071 0.9104

Table A.35: KSP for correlations in DπD. In each column, (x) y indicates that the
KSP compare the histograms of variable y in bins of variable x.

(ΔE)N1 (ΔE)N2 (N1)N2

Bins 1,2 0.1705 0.7964 0.2755

Bins 1,3 0.7741 0.9900 0.4611

Bins 2,3 0.7381 0.5479 0.9794

Table A.36: KSP tests for correlations in Dπ�D. In each column, (x) y indicates that
the KSP compare the histograms of variable y in bins of variable x.
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(ΔE )mD (ΔE)N1 (ΔE)N2 (mD)N1 (mD)N2 (N1)N2

Bins 1,2 0.1147 0.3816 0.3188 0.7709 0.7279 0.4844

Bins 1,3 0.00003 0.1460 0.6450 0.5551 0.4134 0.9382

Bins 2,3 0.0101 0.5792 0.0226 0.8924 0.9639 0.8351

Table A.37: KSP for correlations in DπX. In each column, (x) y indicates that the
KP compare the histograms of variable y in bins of variable x.

(ΔE )N1 (ΔE )N2 (N1)N2

Bins 1,2 0.8741 0.0819 0.1414

Bins 1,3 0.9925 0.9924 0.1686

Bins 2,3 0.7209 0.2205 0.5776

Table A.38: KSP tests for correlations in DKX. In each column, (x) y indicates that
the KSP compare the histograms of variable y in bins of variable x.
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(ΔE )N1 (ΔE )N2 (N1)N2

Bins 1,2 0.1690 0.4987 0.7315

Bins 1,3 0.4989 0.7567 0.4981

Bins 2,3 0.0139 0.9695 0.6819

Table A.39: KSP tests for correlations in BBC �D. In each column, (x) y indicates
that the KSP compare the histograms of variable y in bins of variable x.

(ΔE)N1 (ΔE)N2 (N1)N2

Bins 1,2 0.8407 0.1938 0.5095

Bins 1,3 0.3081 0.8352 0.7546

Bins 2,3 0.3457 0.7634 0.9956

Table A.40: KSP tests for correlations in BBCD. In each column, (x) y indicates
that the KSP compare the histograms of variable y in bins of variable x.

(ΔE)N1 (ΔE)N2 (N1)N2

Bins 1,2 0.9920 0.6749 0.9801

Bins 1,3 0.9552 0.3768 0.8709

Bins 2,3 0.9451 0.8284 0.5176

Table A.41: KSP tests for correlations in qqD. In each column, (x) y indicates that
the KSP compare the histograms of variable y in bins of variable x.
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(ΔE )N1 ( ΔE )N2 (N1 )N2

Bins 1,2 0.8004 0.3952 0.9965

Bins 1,3 0.2151 0.8108 0.6741

Bins 2,3 0.5970 0.9902 0.9589

Table A.42: KSP tests for correlations in qq�D. In each column, (x) y indicates that
the KSP compare the histograms of variable y in bins of variable x.
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